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lattice structure, is widely considered a pivotal tool for enabling fault-tolerant
quantum computation. Through redundancy introduced across multiple qubits, the
surface code safeguards quantum information and identifies errors via state changes
captured by syndrome qubits. However, simultaneous errors in data and syndrome
qubits substantially escalate decoding complexity. Quantum Generative Adversarial
Networks (QGANSs) have emerged as promising deep learning frameworks, effectively
harnessing quantum advantages for practical tasks such as image processing and
data optimization. Consequently, a topological code trainer for quantum-classical
hybrid GANs is proposed as an auxiliary model to enhance error correction in
machine learning-based decoders, demonstrating significantly improved training
accuracy compared to the traditional Minimum Weight Perfect Matching (MWPM)
algorithm, which achieves an accuracy of 65%. Numerical experiments reveal that the
decoder achieves a fidelity threshold of P = 0.1978, substantially surpassing the
traditional algorithm’s threshold of P = 0.1024. To enhance decoding efficiency, a
Transformer decoder is integrated, incorporating syndrome error outputs trained via
QGANs into its framework. By leveraging its self-attention mechanism, the
Transformer effectively captures long-range qubit dependencies at a global scale,
enabling high-fidelity error correction over larger dimensions. Numerical validation of
the surface code error threshold demonstrates an 8.5% threshold with a correction
success rate exceeding 94%, whereas the local MWPM decoder achieves only 55%
and fails to support large-scale computation at a 4% threshold.

Keywords: Quantum error correction; QGAN decoder; Reinforcement learning

1 Introduction

Many quantum physical systems, such as superconducting qubits [1], ion trap quantum
computing [2], and photonic quantum systems [3], are widely regarded as promising plat-
forms for the future development of quantum computers. Quantum bits are highly sus-
ceptible to noise and quantum decoherence, which can lead to computational errors dur-
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ing the calculation process. One promising approach to overcoming these challenges is
the implementation of quantum error correction (QEC), a critical technology that re-
duces errors by encoding multiple physical qubits to protect the information of logical
qubits. In QEC, logical qubits are used to store the actual quantum information, while data
qubits provide redundancy encoding for the logical qubits, with error detection assisted
by parity-check qubits. Syndrome extraction is the core process for error detection, and
periodic syndrome extraction, through repeated measurements, locates errors as observ-
able syndrome states, allowing errors to accumulate and manifest over multiple cycles.
Classical decoders analyze these syndromes to infer errors and correct them. Since er-
rors in quantum systems can overlap and influence each other, decoders typically require
broader correction subspaces to accurately correct errors, enabling practical computation
with low error rates.

The rotated surface code [4] is considered one of the most promising quantum error-
correcting codes (QECCs), where the encoding capacity does not depend on the size of the
code itself, but rather on the number of topological qubits embedded in the torus. This en-
coding strategy not only effectively protects the quantum bit information but also ensures
that error localization exhibits high locality. Topological quantum error correction lever-
ages the geometric locality of check operators, using it as the foundation for symbolic op-
erations. By mapping multiple physical qubits to a single logical qubit and arranging them
on a grid for validation, this method relies only on minimal information from neighboring
grids for verification. This topology-based error-correcting code, particularly in applica-
tions such as surface codes and color codes, can increase the code distance by expanding
the grid size, thereby enhancing the stability and noise resistance of qubits [5]. Quantum
topological codes exhibit high degeneracy, meaning the same error correction operator
can be corrected by multiple strategies, requiring the decoder to precisely select the op-
timal error correction path. Designing high-fidelity and efficient decoders for quantum
topological codes has long been a research focus in this field. For example, the minimum-
weight perfect matching (MWPM) algorithm [6] offers an effective decoding strategy by
identifying the shortest error correction path within the correction operator. However,
despite the improvements in fault tolerance performance provided by MWPM, further
research is required to enhance the fidelity of the decoder. In recent years, deep learning
has demonstrated significant potential in this field, offering new methods and theoreti-
cal support for optimizing quantum topological code decoders. However, MWPM faces
bottlenecks in decoding speed for large-scale quantum systems, especially under high-
noise environments, where its performance degrades. To address this, the Union-Find
(UF) method [7] has emerged as a more efficient alternative, capable of rapidly identify-
ing and repairing error chains, significantly improving decoding efficiency and becoming
another focal point in research. However, despite the superior speed of the UF method, it
tends to produce suboptimal solutions when dealing with complex topological structures
or long-distance qubit error correction, resulting in lower decoding fidelity compared to
MWPM.

Over the past decade, we have witnessed significant success of machine learning in var-
ious complex tasks, such as classification, regression, and generative modeling [8—10].
Recently, a considerable amount of research has focused on applying machine learn-
ing to quantum error correction, with neural networks, as a deep learning model, be-
ing used in decoding quantum topological codes. For example, convolutional neural net-
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works (CNNs) are used to learn quantum noise patterns [11]. By continuously optimizing
weights, CNNs can effectively handle complex error patterns and improve decoding accu-
racy. However, training such network models requires large amounts of labeled data, and
generating sufficient high-quality training data in practical quantum systems is a chal-
lenge. The application of traditional generative adversarial networks (GANSs) in quantum
error correction has also gradually gained attention [12]. Despite the dual advantages of
generative and adversarial learning offered by GANS, they are prone to mode collapse dur-
ing training, preventing them from fully capturing all noise distributions. Additionally,
the traditional GAN structure struggles to efficiently handle high-dimensional quantum
data, limiting its application in quantum decoding. To overcome the limitations of tra-
ditional machine learning methods, quantum generative adversarial networks (QGANS)
have emerged as a promising decoder design approach, demonstrating tremendous po-
tential. Unlike classical machine learning methods, quantum GANs operate directly in
quantum state space, offering greater expressive power and the ability to extract deep fea-
tures from complex quantum noise distributions, thereby generating higher fidelity error
correction strategies. Quantum GANs not only improve efficiency but also enhance the
decoder’s generalization ability across diverse noise models through quantum state adver-
sarial training. With the development of quantum computing hardware, quantum GANs
are expected to become a core technology for improving the decoding performance of
quantum topological codes, addressing bottleneck issues in existing classical methods,
and advancing quantum error correction to new heights.

In this paper, we pioneered the use of a hybrid quantum-classical generative adversarial
network (QGAN) as a pre-training model for error correction, assuming that the quan-
tum generator partially serves as a black-box model capable of generating error-free or
near-ideal quantum states. The “black-box” assumption here means that we are not con-
cerned with the specific details of the internal operation of the quantum circuit, nor do we
consider the noise or errors that it may introduce, and we focus on its function as a train-
ing error syndrome in the error correction process, with the overall architecture training
shown in Fig. 1. The training of this decoder is based on optimal decoding datasets with
code distances of d = 3 and d = 5, and the error correction strategies generated by the gen-
erator during training demonstrate a high success rate. Meanwhile, to accelerate decod-
ing efficiency, we choose a Transformer decoder. The syndrome error outputs trained by
GAN are input into the Transformer model, where its self-attention mechanism captures
long-range dependencies between qubits globally, enabling high-fidelity error correction
at larger scales. Experimental results show that under the same noise rate conditions, the
decoder processed by quantum GAN and Transformer demonstrates higher success rates
and fault tolerance thresholds compared to the MWPM algorithm and traditional GAN
algorithm. Particularly, at the error correction threshold of the quantum surface code, the
QGAN decoder exhibits superior fault tolerance. The hybrid decoder based on Quantum
GAN and Transformer will provide new possibilities for achieving fault-tolerant quantum
computing.

The main content of this paper is outlined as follows. In the next section, we will briefly
introduce the background of Quantum GAN, rotational surface codes, and quantum er-
ror correction. Section 3 provides a detailed description of the structure and underlying
principles of the QGAN algorithm for training the error correction model. Section 4 will
discuss the details and principles of the Transformer model. Section 5 presents the exper-
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Figure 1 Architecture of the QGAN error correction training model. The lower left corner is the input of
potential vectors into the PQC circuit network encoder to obtain a new feature vector w1. The discriminator
into the classical network divides the data into real data and fake data in the upper left corner. It is also
constantly compared with the real samples of the input and returns to the PQC circuit for training and
optimization to obtain the final feature vector w2

imental results of the hybrid error correction scheme and compares them with traditional
algorithms. Finally, a summary and outlook of the research findings are provided.

2 Theoretical background

2.1 Surface code

The 2D plane mapping of the quantum surface code on a torus [13] is a class of quantum
topological codes that maintain spatial properties under continuous deformations. This
topological quantum error correction code not only simplifies physical implementation
but also possesses the advantages of stabilizer codes, enabling the effective protection of
target qubits through the introduction of auxiliary qubits. Adjacent parity-check qubits
detect errors in data qubits through the stabilizer circuit, which can identify and distin-
guish X-type, Y-type, or Z-type errors. The self-duality of surface codes and their 1/2
rotational degree of freedom allow their stabilizer operators [14] to be periodically em-
bedded into the grid, forming an efficient periodic structure. Let the number of vertices,
edges, and faces of the lattice be denoted as Ny, Ng, and Np, respectively. According to
the structure of the surface code, the code has Ny + Nr — 2 independent generators. Based
on stabilizer theory, the number of encoded qubits “k” can be expressed as:

kZNE—(Nv+NF—2)=2—X=2g (1)

Here, x represents the Euler characteristic, and g denotes the number of closed loops.
For a surface code with code distance “d”, we have Ny, = Ny = d?, thus the number of qubits
is 2d% and the number of stabilizers is 24> — 2. We define the lattice operator and vertex
operator as follows:

$u=Tlop 7= Tof @

jem jen

For any edge j € m, the code ensures that S, | {) =| ¥), which holds for all 7; Similarly,
T, | ¥) =| ¥), which holds for all n. The stability of the topological code is maintained
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Figure 2 Basic structure of a rotating surface code. The X-stabilizer is used to detect Z-errors and the
Z-stabilizer is used to detect X-errors. On the right is a single-cycle surface code quantum circuit that includes
X-ancilla guantum bits and Z-ancilla quantum bits

through stabilizer generators and local cohomology [15], ensuring that particles can tran-
sition from the excited state to the ground state. The topological code space consists of a

single qubit in a two-dimensional Hilbert space, and its operations are defined as follows:

. 3
M, = {e‘961®~--®Gn|Vke{1,...,n},erg,06 {0%71%” 3)

The eigenspace with eigenvalue +1 constitutes the surface code space. Assuming that the
dimension of the code space is 2", p quantum bits can be encoded in this space. Among
these quantum bits, the smallest stabilizer T can independently describe p independent
topologically stable generators {/1,...,h,,_, | Vj € {1,...,m — p}, h; € T}. Since the surface
code possesses a local topological homotopy, it acts on the spin states of the 2D neighbor-

ing lattice, generating an analog Hamiltonian quantity of:

N M
Hsc=-K> §-KY T,K>0 @

i=1 j=1

The rotated surface code is a simplified variant of the surface code, as shown in Fig. 2.
Unlike the classical surface code, the rotated surface code optimizes the encoding struc-
ture by introducing angular rotations to the grid, thus improving encoding density and
error resilience. Its core advantage lies in its efficient use of hardware resources, particu-
larly in significantly reducing the demand for qubits and gates. This makes it easier to im-
plement on existing quantum hardware platforms and gives it good scalability potential.
Furthermore, the rotated surface code retains the stabilizer architecture of the traditional
surface code, with the decoder correcting errors on the data qubits by analyzing the stabi-
lizers {C;} from auxiliary measurements. [16] With the further development of the rotated
surface code and the integration of efficient decoder algorithms, it is expected to play a

significant role in achieving more efficient error correction schemes.

2.2 Quantum generative adversarial network(QGAN)
Quantum Generative Adversarial Networks (QGAN) are a novel unsupervised learning
model that combines the classical GAN framework with quantum computing [17]. The
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QGAN employed in this paper consists of a quantum generator G and a classical neural
network discriminator D, with the generator leveraging the unique properties of quantum
superposition and entanglement. The two components are parameterized by 6 and 6p,
respectively, and engage in a game of maximization and minimization. Specifically, G’s
task is to obtain a noise vector z from the noise source and generate data x" that closely
mimics real data x to deceive D, while D’s task is to distinguish whether the received data
is real or generated by G. The training process of G is to maximize D’s error probability,
while D’s training process minimizes the error probability of distinguishing between the
data, alternating updates of ¢ and 6p until the network reaches optimality. Ideally, in the
game between the two, when the data x" generated by G perfectly matches the real data x,
and D cannot determine the data’s origin, optimality is reached, which corresponds to the
Nash equilibrium [18].

The generator G acquires a low-dimensional noise vector z sampled from some distri-
bution Pz (e.g., a Gaussian distribution [19]) and then maps it into a high-dimensional
space to generate the output G,), with the goal of matching the learned distribution Pg
with the true distribution Pj,,. The discriminator D takes its input from either the real
data x or the output G(,)), and D outputs the probabilistic outcome y of its belief that x
originates from Pz, and classifies the input as originating from the real data if y is greater
than one-half of it, and otherwise classifies it as originating from the generator G. The
optimization objective of D is to maximize the probabilistic outcome y, while the opti-
mization objective of G is to generate spurious samples to fool D. The training process of
the GAN is represented as a process of playing with each other.

minmaxEx-p, , [log D(x)] + E,p,[log (1 - D(G(z)))] (5)

2.3 ML based decoder

In recent years, machine learning (ML) decoders have made significant advancements in
the field of quantum error correction, particularly in neural networks (NN) and reinforce-
ment learning (RL). Early work in the neural network domain saw the introduction of
the Boltzmann machine for decoding topological codes [20]. This was later followed by
the application of multi-layer perceptrons [21] and long short-term memory networks
(LSTM) [22] in the decoding of three-dimensional codes, further promoting the use of ML
decoders. Progress in the reinforcement learning domain is marked by framing the decod-
ing problem as a reinforcement learning environment [23], optimizing for specific errors
and greatly enhancing the robustness of decoding. To address the scalability challenges in
decoding, researchers have proposed several solutions, including deep convolutional neu-
ral networks [24] and ResNet [25]. In this context, the Transformer architecture, one of
the most groundbreaking neural networks in recent years, has shown enormous potential
in quantum error correction tasks due to its ability to process sequences without requiring
sequential handling. The Transformer model, through its self-attention mechanism, can
process large amounts of data in parallel and effectively capture both global and local cor-
relations, making it highly adaptable to large-scale error patterns. The Transformer-based
decoding architecture adopts a two-level local-global design, where a local decoder first
corrects local errors, and a global decoder then integrates global information to achieve
a more efficient and precise decoding process. Unlike traditional neural networks, Trans-
formers significantly enhance parallel computation capabilities, reduce decoding time,
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and their scalability enables them to handle larger quantum error correction tasks. With
the development of hardware accelerators, quantum error correction schemes based on

Transformers are expected to achieve significant practical results.

3 Methods

3.1 Error correction

In quantum error correction, the first step is to measure the stabilizers of the surface code
to obtain the syndrome. [26] Within the surface code framework, stabilizers are catego-
rized into two types: one for detecting phase errors (Z errors) through vertex operators A,,
and the other for detecting bit-flip errors (X errors) through plaquette operators By. [27]
When an error is detected, the stabilizer’s eigenvalue changes from +1 to -1, creating sym-
metric defects at the lattice vertices. In an A x A lattice, there are A2-1 independent stabi-
lizer operators, meaning each independent syndrome can be derived from these stabilizer
measurements. Theoretically, an isolated —1 eigenvalue is impossible, as errors must oc-
cur in pairs, and stabilizer measurements typically generate two symmetric defects locally.

The probability of obtaining a given correction operator is:

P@x0* )= D P +epu+0) (6)

€€Xe Lezgp

In the surface code, syndromes exhibit degeneracy, meaning that different error patterns
can produce the same syndrome. To correct errors, correction qubits must be selected
and defects in the syndromes eliminated pairwise. If these correction qubits form a triv-
ial loop [28] with the error qubits, the surface code’s logical state will revert to its initial
state, and the error will be successfully corrected. However, if the correction qubits form
a nontrivial loop, i.e., one that loops around the lattice’s topological boundary, although
defects are eliminated, the logical state of the quantum code is altered, leading to a correc-
tion failure. In this case, although local errors are eliminated, the system’s global state has
changed. An optimal decoder selects the path with the fewest correction qubits to min-
imize the risk of forming a nontrivial loop. The success probability of this optimal path

is:
Popt = max P(A+¢€,u +€* 7
opt 2;66*65 ( n ) (7)
0,0

In the limit of large-scale lattices, when the noise is below a specific critical threshold, the
probability of successful correction, p,,:, approaches 1. For incoherent noise models [29],
as the system size d tends to infinity, the critical threshold P, is determined by mapping the
system to the random Ising model [30]. Below this threshold, the correction strategy leads
to the formation of trivial loops. Figure 3 illustrates the error correction process of the
quantum rotational surface code, clearly depicting the relationship between quantum bits
and stabilizers, and providing examples of both successful and failed corrections caused
by a string of erroneous quantum bits.

A corresponding error correction strategy must be devised for a string of erroneous
quantum bits. Error correction in the quantum rotational surface code exhibits degen-
eracy, meaning that for a given error syndrome, multiple valid correction schemes exist.
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Figure 3 Rotating surface code error type. Red data quantum bits indicate that an error has occurred. Green
data quantum bits mean they are selected as error correcting quantum bits. (a) Surface code of the erroneous
data quantum bit. The stabilizer eigenvalue around the erroneous quantum bit becomes 1. (b) Successful
quantum surface code for error correction. This strategy forms a mundane cycle, but is not optimal (c) Failed
quantum surface code error correction. The error correction chain and the error chain form a non-trivial loop
(d) Successful quantum surface code error correction. The error correction chain and the error chain form a
mundane loop

This differs from other quantum error correction codes, which typically provide fixed cor-
rection methods for each error type. In the rotational surface code, error correction is
considered successful as long as the erroneous quantum bits form a trivial loop with the
correcting quantum bits; conversely, if a nontrivial loop is formed, error correction fails.
Therefore, the goal of the decoder is to generate a correction path such that the quantum
bits along the path form a trivial loop with the erroneous quantum bits.

When bit-flip errors occur, a pair of X syndromes will be generated on the X quantum
bits. Once the error is correctly corrected, the corresponding syndromes will disappear.
However, when a Y error occurs, both X and Z syndromes are generated simultaneously,
making error correction irreversible and reducing the success rate of correction. To im-
prove the success rate of error correction, we should avoid Y errors as well as situations
where both X and Z syndromes are encountered simultaneously, as errors in such cases
are more difficult to correct.

To address this issue and simultaneously find an optimal correction path, we introduce
a quantum generative adversarial network (QGAN) model based on a quantum generator
in the context of a non-polarized noise model, training it to generate defect-matching

results [31] that assist in effective classification of syndromes. This approach optimizes the
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Figure 4 Generator structure of the GAN decoder. On the left, in red, is the surface code with erroneous bit
quantum bits, which is fed into the quantum generator for training, resulting in a corrected surface code that
forms a mundane loop

4

Convl Conv2 Conv3 Convd Convs
Relu BN BN BN
Relu Relu Relu

ResNet

Figure 5 Structure of the classical discriminator decoder. Orange and red blocks indicate the different
convolutional layers, green blocks indicate the ReLU function, gray blocks indicate the BN layer, and blue
rectangles indicate the FC layer

syndrome recognition process, thereby reducing correction failures caused by complex
error combinations and improving the overall efficiency of quantum error correction.

3.2 QGAN decoding model

In this section, we introduce the quantum generative adversarial network framework in
quantum error correction (See Appendix C for details). Consisting of a quantum gener-
ator and a discriminator of a classical neural network, its training framework is shown
in Fig. 4, 5. Unlike the classical GAN, the variational quantum generator does not need
to map the a priori noise distribution into a high-dimensional space, but instead obtains
different results through the randomness of the quantum measurements. The QGAN de-
coder is continuously adversarial-trained to make the generator produce correction paths
with mundane loops, and the eigenvalues of the rotated surface code are taken as inputs,
which are passed in the form of matrices into the discriminator, which is trained to rec-
ognize the authenticity of the inputs and updates the parameters. The quantum generator
iteratively optimizes training and learning through variational quantum circuits (see Ap-
pendix A for details), generates forged data to confuse the discriminator, and updates the
discriminator parameters, repeating the process until a Nash equilibrium point is reached.
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3.2.1 Quantum generator structure

The quantum generator component is a network of multiple sub-generators. Each of these
sub-generators is a variational quantum circuit (PQC) that optimizes the entire model by
training iteratively on each sub-generator individually. A quantum circuit is essentially a
series of operations on a series of quantum gates applied to quantum bits. Single-bit quan-
tum gates [32], such as the Bubblegate (Ry, R, R;) produce a rotation angle transformation
on a quantum bit. And multi-bit quantum gates [33], such as the CNOT gate, are applied
to produce entanglement on two quantum bits.

The generator concatenates the eigenvalue matrices of the rotating surface code along
the channel dimensions, with N-dimensional eigenvectors L = (I, 05, ..., Iy). Inmediately
after, the components of the feature vector L are input to the R, layer rotational coding that
is parameterized in the sub-generator. From the input 10)®" to the generator, we obtain the
state by encoding the circuit:

L) = Ry (L)R3 () . .. RY (In)|0) &N ®

Here, R} (Iy) represents a rotation gate parameterized by angles and applied to quantum
bits. Subsequently, the vectors pass through the rotational layers of an efficient ANSATZ
structure, each comprising parameterized R(A, 6, ¢) gates, followed by a set of CNOT gates
applied to neighboring qubits to generate entanglement. R(%,0,¢) can be expressed as
R,(M)Ry(0)R,(¢), designed to map a quantum bit to an arbitrary quantum state on the
Bloch sphere [34]using unitary transformations. A variational quantum circuit consists of
X, representing fixed gates for entangling quantum bits, and 6, representing gates with
tunable parameters, where the latter is optimized via training. Thus, the entire circuit V'
can be represented as an optimized function V = U(X, #) through unitary transforma-
tions [35]. One advantage of variational quantum circuits is their ability to be trained
and optimized using existing machine learning techniques, such as the cross-entropy loss
function [36] and the Adam optimizer [37].

All sub-generators share an identical circuit structure, comprising a five-qubit circuit,
with the configuration of each sub-generator illustrated in Fig. 4. The circuit encodes the
eigenvalues of the input surface code into angles using R, and R, gates, while CZ gates gen-
erate entanglement, employing a unitary transformation U(, 6, ¢) such that the quantum
state of the i-th sub-generator evolves through the unitary operation as:

Vi) = Up(ri, 6i, §i)IL) )

Subsequently, a measurement operation is applied to the Ancilla qubits, yielding the
resultant state of the output data qubits. This process aims to enhance the nonlinearity of
the generator circuit. In general, the measurement operator M = (|0)(0[)®4 is chosen for
projection measurement, resulting in the quantum state |;;) after tracing out the Ancilla
qubits being:

(10)

(loy(op®4 ®]1|1m)(%|>

=T
W) = Trs <<wi|(|0> (OD®4 @ T y7)

From the formula, it is evident that both the numerator and denominator contain |¥;),
indicating that the resultant quantum state is a nonlinear transformation of |L). Finally,



Tian et al. EPJ Quantum Technology (2025) 12:76 Page 11 of 27

we measure the probability of each resultant quantum state to obtain the output of each

sub-generator.

3.2.2 Discriminator structure

The discriminator used is a classical deep learning neural network, designed to assist in
training the quantum generator, as illustrated in Fig. 5. The classical discriminator is larger
in scale than the quantum generator, as it needs to compete with multiple quantum gener-
ators in adversarial training. Similar to traditional discriminators, it extracts deep features
from both generated and real data through convolutional layers, interspersed with residual
blocks [38] for feature extraction over changes in data dimensions, and includes multiple

linear layers with LeakyReLU activation functions [39]:

X, ifx >0
LReLU(x) = (11)
o-x, ifx<0

Here, « is a constant used to handle negative values. In addition to the activation func-
tion, a batch normalization (BN) layer [40] is added after each convolutional layer to stan-
dardize the data, thereby stabilizing the training process. The final single output allows it

to function as a classifier, distinguishing real data from generated data:
X KB

Yi=V  —F—
JoR+e

Here, x; represents the i-th input sample, up and o are the mean and variance of the

+B (12)

mini-batch, € is a constant to prevent division by zero, and y and 8 are learnable parame-
ters, which represent scaling and shifting operations applied to the normalized input data,
ensuring stable and rapid convergence of the network. After convolution and batch nor-
malization, the output is produced through a fully connected layer, with the final layer
utilizing a Sigmoid activation function to increase the network’s nonlinearity, enabling it

to learn more complex structures. The entire process is represented as:

y=0(Wx+Db) (13)

In the equation, W represents the weight matrix, and b represents the bias vector. The

details of the network parameters are shown in Table 1 in Appendix C.

3.3 Transformer decoding model

Building on the error syndromes generated by the QGAN, the Transformer model fur-
ther optimizes the decoding process [41]. The Transformer processes all input data ele-
ments in parallel using the self-attention mechanism, demonstrating high efficiency, par-
ticularly in the handling of multi-round measurement data. This overcomes the limita-
tions of sequential processing in traditional decoding algorithms and meets the require-
ment of surface code decoding for multi-round measurements. Unlike recurrent neural
networks (RNNs) [42], the Transformer does not rely on sequentially propagated hidden
states, making it more robust in handling long sequence data and effectively avoiding the
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Figure 6 Transformer model architecture. This figure shows the architecture of the Transformer model,
including the encoder and decoder. The encoder consists of N identical layers each containing two
sub-layers: a multi-head self-attention mechanism and a fully connected feed-forward network(See
Appendix C for details). The decoder also consists of N identical layers, but with the addition of sublayers for
masking the multi-head attention to prevent positional attention to subsequent positions of the data
quantum bits encoded to produce physical error predictions

vanishing gradient problem. Errors in quantum computing have a cumulative effect, re-
quiring the decoder to capture error correlations over long time spans. The Transformer’s
global self-attention mechanism [43] can simultaneously access the full input sequence,
exhibiting superior fault tolerance under complex error syndrome sequences.

The Transformer encoder consists of multiple layers, each containing a multi-head self-
attention mechanism (MHSA) and a feed-forward neural network (FFN), as shown in the
model architecture in Fig. 6. The multi-head self-attention mechanism enables the model
to globally interact with any syndrome feature in a three-dimensional grid, enhancing its
sensitivity in detecting error correlations among multiple qubits:

Attention(Q, K, V) = soft (QKT) (14)
ention , I\, = sortmax v
N dk

Here, Q, K and V represent the query, key, and value vectors, respectively, and dy de-
notes the dimension of the key. This mechanism effectively captures widely distributed
error patterns, rather than being limited to a local range. The feedforward network layer
projects the embedded feature information into a high-dimensional space to extract more
complex and deeper error features. After the high-dimensional projection, the feedfor-
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Figure 7 The architecture of the transformer decoder model. First, the input syndromes are encoded into a
cubic grid of dimension d + 1, which is then fed into the Transformer encoder that includes self-attention and
FEN layers. Next, the transformer decoder processes the d-dimensional positional encoding of the data qubits
to generate the predictions for physical errors

ward network uses a nonlinear activation function to compress the high-dimensional fea-
tures back to a lower-dimensional space, restoring the original input dimensions. This
not only enhances the model’s generalization ability but also effectively improves the pre-
diction accuracy of complex errors, ultimately enhancing the overall performance of the
quantum error correction system. Finally, we use a Transformer decoder to predict physi-
cal errors based on the syndrome measurement results of each round, with the final output
prediction converted into the probability of error occurrence via a ‘Sigmoid’ function:

P(error) = o (W, -h; +b,) (15)

Here, o represents the activation function, W, is the weight matrix, h; is the input fea-
ture vector, and b, is the bias vector. Once the decoder completes the prediction of all
errors, these predictions will be used to remove the syndromes and obtain the global par-
ity of the errors [44]. The process of syndrome removal involves flipping the syndromes
associated with the errors again, with the final output being the global parity prediction of
the surface code syndromes. During the decoding process, the positional information of
the quantum bits is embedded as vector inputs. By analyzing the three-dimensional grid
data, the decoder can determine which quantum bits have errors. Each decoding layer in-
cludes a self-attention mechanism and a cross-attention mechanism between the encoder
and the decoder. The cross-attention allows the decoder to access the output information
from the encoder and combine it with the processed syndrome data to predict errors, ref-
erencing all prior measurements and features. This mechanism ensures that the decoder
can access and integrate all prior syndrome information.

3.4 Details of model decoding

The transformer architecture includes an embedding module, a recurrent core, and aread-
out network. It is used in surface code decoding due to the correlation between the surface
code’s grid structure and its vertices. The syndrome sequence from qubit measurements
feeds into the recurrent core, and the readout network classifies these syndromes into la-
bels. Surface code decoding involves multiple rounds of measurements, with each round
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producing a new syndrome sequence. Unlike traditional decoders, ML decoders like trans-
formers process all input data in parallel, making them more efficient for multi-round data
and avoiding the vanishing gradient problem seen in RNNSs.

To prepare the input data for the neural network, we map the surface code onto a square
lattice, as shown in Fig. 7. This lattice representation ensures that each syndrome qubit is
positioned at the intersection of grid lines. For a surface code with code distance d, we
transform it into a lattice of size (d + 1) x (d + 1) by adding virtual nodes. These virtual
nodes do not contribute to the decoding process and are always set to 0 during decoding.
The lattice contains d* - 1 stabilizers, and the virtual nodes help ensure that the syndrome
qubits are placed at the correct locations on the lattice. Error syndromes only affect the
stabilizer values, and the number of measurement rounds generally equals the code dis-
tance d. However, an extra round is added to account for physical mechanisms, bringing
the total number of rounds to d + 1. By combining the data from these rounds, each syn-
drome qubit’s features for each round are placed into a (d + 1)-dimensional cubic grid.
Each position in the grid is represented as a feature vector of length six. To distinguish
between d and d syndrome qubits, they are represented in separate channels, ensuring
accurate mapping of their positions and measurement results. This encoding ensures that

the network receives precise information for decoding.
v = v, v, 0,00, T, ¢ (16)

Here, T\" and T}” represent the start and end points of the measurement rounds. The
first two channels are used to encode the positions of the X syndrome qubits and Z syn-
drome qubits, respectively. Since syndrome information can change across measurement
rounds, the next two channels are used to capture this variability, reflecting the state of the
syndrome qubits at different times. To help the network adapt to different measurement
rounds, the temporal boundaries are clearly defined using the fifth and sixth channels. In
the first round, these channels are set to 1, and in all subsequent rounds, they are set to 0.
This ensures that the network can identify the start and end points of the measurement se-
quence. In the final stage of quantum error correction, errors are corrected by measuring

the data qubits in a specific basis.

4 Simulation analysis

When a qubit error occurs, a quantum generative adversarial network (QGAN) is first
trained to generate a correction path. This path ensures that the qubits on the path and the
error qubits form a trivial loop, maximizing the likelihood of successful error correction.
The generated parity-check matrix is subsequently processed by a Transformer network

model, which decodes it to produce the final syndrome.

4.1 Training model

The experiment was conducted using Python 3 with the PyTorch and PennyLane libraries.
PyTorch is a widely adopted and efficient machine learning library, while PennyLane, a
popular quantum machine learning framework, integrates seamlessly with mainstream
machine learning libraries, facilitating enhanced interaction between quantum computing

and classical machine learning.
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To evaluate the performance of quantum generators and enable a direct comparison
with the classical QGpatch [45]model, we adopted its training parameters and employed
the ADAM optimizer. The learning rate for the generator was set to 0.25 and that for the
discriminator to 0.06, based on the results of multiple training iterations. The outcomes
of sub-generators were integrated using the measurement results of Ancilla qubits in each
generator. Due to resource limitations, we selected a batch size of 20 for each training iter-
ation, updating the generator’s parameters throughout the training process. The generator
underwent 500 iterations in total.

In traditional neural network algorithms, gradient descent methods (e.g., stochastic gra-
dient descent, SGD) [46] are typically employed to update the generator parameters and
compute gradients of the loss function. By applying the chain rule in the backpropagation
algorithm, the partial derivatives of the loss function are calculated step by step. However,
this method is not suitable for the complex gradient scenarios in quantum circuits, where
the gradient information in variational quantum circuits (VQCs) is typically treated as
a “black box” Therefore, the parameter-shift rule [47] is employed to compute the par-
tial derivatives of quantum circuits by altering the parameters of the PQC twice. The

parameter-shift formula is expressed as:

% _LO+3)-L(O-9)

a0 c 17

Here, § denotes a small offset added to the selected parameter of the circuit. This offset
is finite, with its value restricted to a maximum of 77/2. The values of § and ¢ are deter-
mined by the type of quantum gate. The gradient is estimated by comparing the changes
in the loss function values before and after applying the shift. In this manner, the gradient
information of the PQC is derived within the same quantum circuit. Assuming the gen-
erator has # total parameters, the gradient of the j-th parameter of the i-th sub-generator
with respect to loss function f(0) is expressed using the parameter-shift rule as follows:

e, 1 7
= - 9 ,...,9[” —,...,9;1 1)\
a6, 2 W[ v ity ] 2

(18)
- (f([el,l,...,ei,j— %9] 1)

By continuously optimizing and training the quantum GAN model, a trivial correction
loop path was achieved with an accuracy of 99.8%. Simultaneously, during the search
for the optimal ancillary path, determining the optimal code distance between erroneous
qubits is essential. Figure 8 and Figure 9 presents the training outcomes of the quantum
GAN decoder, showing the generator and discriminator losses (Lg and Lp) after 700 it-
erations with a code distance of d = 3 and 3000 iterations with a code distance of d = 5.
Furthermore, we introduced an approximation using a discrete Gaussian distribution [48]
described in Appendix C.

After determining the optimal error correction path, a new feature vector is gener-
ated and subsequently decoded (i.e., syndrome selection). Thus, training a stabilizer to
match the optimal measurement state with high probability and output successfully cor-
rected syndromes is crucial. A Transformer network decoder is employed for training.
Specifically, the Transformer model features a six-layer encoder-decoder architecture,
with an embedding dimension of 64. The multi-head attention mechanism incorporates
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Figure 8 Training results of the QGAN decoder. The graphs show the loss of the generator and the
discriminator. Used for d = 3 is considered fully trained after 700 training iterations
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Figure 9 Training results of the QGAN decoder. The graphs show the loss of the generator and the
discriminator. Used for d = 5 is considered fully trained after 3000 training iterations

four heads, while the feedforward network’s hidden layer dimension is set to 256. The
training dataset comprises 10° samples, with a base error rate of 1.2%. In each batch, the
model executes forward propagation to compute the output and loss, followed by back-
propagation to update the weights. Each parameter update uses a step size of 0.1%, a
dropout rate of 0.1, and L2 regularization with a coefficient of 0.0002 to effectively miti-
gate overfitting and improve generalization. Furthermore, the Adam optimizer and binary
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Figure 10 The figure shows a comparison of the iterative change in model training accuracy. The red star
solid line indicates that the decoder model reaches 92.4% for the training accuracy model under the QGAN
network structure. The orange circular solid line and the blue circular solid line are the training accuracies of
55.6% and 66.7% for the two different states of the MWPM

cross-entropy loss function are employed to ensure a smoother training process and accel-
erated convergence. The hyperparameters for the model training process are summarized
in Table 2 in Appendix C.

During the training process, we first train the data with a code distance of d = 3, stopping
when the decoding performance approaches the threshold. Subsequently, we increase the
code distance and continue training on data with the same error rate, stopping again when
the new threshold is approached. Finally, when the code distance is further increased,
we observe that for the same error rate dataset, the prediction results begin to diverge
from the threshold, indicating that a high-precision prediction model sufficiently close to
the threshold has been trained. This is shown in Fig. 10, which illustrates the iteration of
training and prediction accuracy.

4.2 Analysis of results

We tested the error correction capabilities of the Quantum GAN and the traditional lo-
cal MWPM model on systems with code distances of d = 3,5,7,9, and the results obtained
after training under specific noise conditions are shown in Fig. 11. At lower error rates,
the error correction success rates for different code distances all exhibited a high level of
performance. The logical error rates vary with different code distances, with larger code
distances leading to higher error correction success rates. However, as the flip error rate
increases, the logical error rate gradually approaches saturation. We define the threshold
as the orange solid line in the figure, which represents the error rate at which error correc-
tion can achieve a logical error rate below the threshold. It can be observed that the error
correction threshold for the local MWPM model is around 4.3%, whereas the threshold
for the trained Quantum GAN reaches approximately 7.5%, highlighting the superiority
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Figure 11 The error correction accuracies of the model using QGAN structure with surface code distances of
3,5,7 and 9 are green triangular dashed, blue triangular dashed and red circular dashed, respectively. The
logical error rate changes from 0.14, 0.174, and 0.21 to 0.589 as the flip error rate increases, and the error
correction strength of the MWPM changes to about 0.4 as the flip error rate increases for the purple-brown
circular solid line and blue-yellow triangular solid line. The triangular solid lines and circular solid lines are
much lower than the model with QGAN added to it

of Quantum GAN, which can perform effective error correction even at higher logical
error rates.

Additionally, after training the Quantum GAN, we achieved a logical fidelity of 99.875%
on the surface code decoder. Figure 12 illustrates the variation in logical fidelity of the
Quantum GAN and local MWPM models at different code distances under varying phys-
ical error rates. As shown in the figure, in the initial stage, the logical fidelity for smaller
code distances is lower than that for larger code distances. As the error rate gradually
increases, the error correction success rate decreases until it reaches a threshold p (repre-
sented by the red solid points in the figure), which is a critical error rate used as an indica-
tor of the decoding algorithm’s performance. When the error rate is below the threshold p,
the logical fidelity increases further with the increase in code distance. However, when the
error rate exceeds the threshold p, the logical fidelity decreases with increasing code dis-
tance. This indicates that the change in error correction success rate due to code distance
is influenced by the threshold. Overall, the Quantum GAN model outperforms the tradi-
tional MWPM algorithm in terms of logical fidelity performance, with a fidelity threshold
of P =0.1978 for the Quantum GAN decoder, compared to P = 0.1024 for the local MWPM
model.

The experimental results show that the local MWPM algorithm, in the context of tra-
ditional error correction, fails to fully account for the strong correlations between the
vertices and lattice points in the surface code topology, leading to its limitations in error
correction. In contrast, the trained Quantum GAN is highly sensitive to classification, ef-
fectively exploiting the strong correlation characteristics to significantly improve the error
correction threshold and logical fidelity under physical error rates. By integrating Trans-
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Figure 12 The figure represents the logical fidelity of the training model as a function of the physical error
rate, where the horizontal axis represents the physical error rate and the vertical axis represents the logical
fidelity. The MWPM and QGAN model thresholds are 0.1024 and 0.1978 at code distances d = 3, 5,and 7,
which are indicated by orange-red-gray solid lines and blue-green-purple solid lines, respectively

former network decoding, which combines all input syndromes, the accuracy of surface
code error correction can be significantly enhanced.

5 Discussion
In this work, we employ a Quantum-Classical Hybrid GAN model to train and obtain
an effective correction path for the rotated surface code, using a Transformer network
decoder to fully integrate global information, thereby significantly enhancing decoding
performance. Moreover, under a phenomenological noise model, the QGAN as a surface
code predictor achieves a decoding accuracy of 99.875% and an error correction thresh-
old of 7.5%, compared to 65% accuracy for the local MWPM algorithm, marking a signif-
icant breakthrough. Furthermore, the Quantum GAN decoder model achieves a fidelity
threshold of P = 0.1978, compared to the logical fidelity of P = 0.1024 for the traditional
MWPM algorithm, further improving the fault tolerance of quantum error correction and
demonstrating the immense potential of quantum machine learning in the field of quan-
tum error correction. One direction for future research is to explore the integration of
QGAN with other topological quantum error correction codes (e.g., color codes and sur-
face codes), while optimizing the efficiency and accuracy of quantum decoders to achieve
higher fidelity in a broader range of quantum computing applications. Although our study
shows that QGAN can achieve threshold decoding for surface codes, there remains a gap
compared to the theoretical optimal threshold. With the ongoing development of quan-
tum machine learning, Quantum GAN-based decoders are poised to become a reliable
tool for quantum error correction, and hybrid quantum error correction schemes using
Quantum GAN and Transformer decoding algorithms open new avenues in the field of
error correction.

In this paper, the quantum circuit is treated as a black box, assuming that it does not
introduce errors, which enables the implementation of error correction in quantum com-
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puting. This assumption implies that we do not directly address potential noise and er-
rors within the QGAN, but instead rely on external error detection and correction for the
generated results. However, the current QGAN models may still be affected by quantum
noise at this stage. The realization of this assumption and its application to error correc-
tion in practical quantum computing may require integrating quantum machine learn-
ing, error correction techniques, and innovative methods in quantum generative models,
warranting further research and exploration in this area. With advancements in quantum
hardware, further analysis and validation of QGAN’s application on practical quantum
computers, particularly in the domain of quantum error correction, may be possible in
the future.

Appendix A: A Parametric Quantum Circuit (PQC)

The variational quantum circuit (PQC) is usually organized as a quantum neural network,
which is a circuit consisting of a series of parameterized quantum gates, where the param-
eters of the quantum gates in the circuit are controlled by €, and these parameters can be
adjusted by classical optimization algorithms in order to minimize the objective function.
The PQC generally consists of an initial state, quantum gates with the parameter 6, and
a measurement operation. The initial state is |0)®”, and this initial quantum state will be
used as the input of the PQC. The initial quantum state can be transformed into a new
state by continuously adjusting the parameter 6 of the quantum gate through the opti-
mization algorithm, until the convergence condition is satisfied. Finally, the expectation
value of the quantum circuit, obtained through the measurement operation, can be ex-
pressed as:

E©)= (0| U (6)MU(®) ] 0) (19)

where U represents the youngest positive transformation of the gate, M represents the
measurement operation of the expectation value, and 0 represents the parameter set of a
series of quantum gates. The optimization objective of a quantum circuit is often to solve a
specific task by finding the optimal set of gate parameters 6 such that the expectation value
E(9) is minimized or a specific objective condition is satisfied. The optimization process
of PQC is shown in Fig. 13.

£(0) Cost function

Update

Figure 13 Optimization process of PQC
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Appendix B: Gate-model quantum neural networks

In recent years, the advancement of quantum computing has made gate-model quantum
neural networks (Gate-QNNs) a viable research direction, particularly in the context of
near-term quantum computing architectures. [49, 50] Gate-based quantum computers im-
plement quantum state transformations using quantum gates, where each quantum gate
corresponds to a unitary operation. By applying a sequence of quantum gates to an input
state and performing measurements, a class of neural networks based on the gate model
can be constructed.

In Gate-QNNs, neurons are composed of a set of quantum gates and parameterized
weights that connect them, with the core of the network being a quantum circuit formed
by unitary operations. The input to the network typically consists of a computational basis
state and auxiliary qubits, which serve as readout states during the measurement phase.
The training process aims to adjust the parameters of the quantum gates such that the
predicted labels closely match the true labels, minimizing the loss function. This opti-
mization process is analogous to classical deep learning training but leverages quantum-
specific mechanisms such as coherence and entanglement.

A QNN refers to a quantum neural network (QNN) designed for a gate-model quan-
tum computer, utilizing a specific quantum gate structure QG, as shown in the gate ar-
chitecture in Fig. 14. This network incorporates quantum connections between unitary
operations and classical channels for transmitting classical side information. Within a
QNN quantum information flows exclusively in a forward direction from input to out-
put, whereas classical side information has the flexibility to move both forward and back-
ward throughout the network. Additionally, no historical data regarding past execution
sequences of the structure is accessible within a QNNgg.

A QNN is formulated by a collection of L unitary gates, such that an i-th,i=1,..., L
unitary gate U;(6;) is

U;(8;) = exp(=it;P) (20)
where P is a generalized Pauli operator formulated by a tensor product of Pauli operators
[X,Y,Z], while 6; is referred to as the gate parameter associated with U;(6;).

In QNNg, a given unitary gate U/;(6;) sequentially acts on the output of the previ-
ous unitary gate U;_1(f;_;), without any nonlinearities '*. The classical side information

of QNN is used in calculations related to error derivation and gradient computations,
such that side information can propagate arbitrarily in the network structure.

—
The sequential application of the L unitaries formulates a unitary operator U( 0 ) as
9
U0 )=U,0)Ur-1(0r-1) ... Uh(6h) (21)
—
where U;(6;) identifies an i-th unitary gate, and 6 is the gate parameter vector
e T
0 = (91,...,9[,_1,8[,) (22)

At (2), the evolution of the system of QNN for a particular input system [¢), ¢) is

— — —
1Y) =UCO)IY)|p) =U(O )lz)|1) = U(O )|z, 1) (23)
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Figure 14 Schematic representation of a QNN in the n-th measurement round

where |Y) is the (n + 1)-length output quantum system, and |¢) = |z) is a computational

basis state, where z is an n-length string

eB
where each z; represents a classical bit with values

zief{-1,1} (25)
while the (# + 1)-th quantum state is initialized as

lp) =11) (26)

Furthermore, Gate-QNNs have attracted attention for their potential applications in
quantum internet environments. By combining quantum computing with quantum com-
munication, gate-model quantum neural networks are expected to play a crucial role in
distributed quantum computing architectures. To deepen the understanding of these as-
pects, recent studies have explored the theoretical limitations of quantum information
transfer across quantum channels [51], the integration of quantum learning for memory
efficiency in near-term quantum devices [52]. These works provide valuable theoretical
and experimental support for the practical development of QNNg, particularly in the
context of hybrid quantum-classical networks and distributed quantum computing sce-

narios.

Appendix C: Methodological details and parameter settings for model training
In the classical generative task, the generator samples random probabilities to perform
quantum measurements of the ground state. Given that the initial input state is |0)®”, only
a rotational layer is required, primarily composed of R, and R, gates. In our simplified
quantum generator, after encoding via R, gates, we apply an additional R, gate to each
qubit, i.e., Ug = [, R«(8)). This reduces the number of parameters and resource usage
significantly compared to more complex rotational layers.

To explore the effect of two-qubit gates, we tested CZ, CNOT, and ISWAP gates. No-
tably, CNOT performed worse than the other two. The best results were achieved with the
CZ gate, yielding a fidelity of 0.946, suggesting better trainability of entanglement. Given
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the lower hardware overhead, we propose using duplicated CZ gates in the model for en-
tanglement.

All sub-generators in model follow the same structure, with parameterized quantum
circuits (PQC) on five qubits. Each sub-generator’s circuit, noisily encodes data into angles
via R, and R, gates, with adjacent qubits entangled through CZ gates. After several layers,
parametric weights are optimized, and measurements on ancilla qubits perform nonlinear
transformations. This design reduces PQC depth, mitigating hardware errors, minimizing
parameter counts.

From the input |0)&# to the generator, we obtain the state by encoding the circuit:
IL) = RL(L)R2 (L) ... RY (In)|0)®N (27)

Where R(A,0,¢) can be denoted as R,(A)R,(9)R,(¢), the aim is to change a quantum bit
into an arbitrary quantum state on the Bloch sphere using the Mississippi transformation.
This youngest-positive transformation we denote by a U(A,6, ¢), and the quantum state
of the ith subgenerator after passing through the youngest-positive operation evolves as:
0)

[¥i) = UL (Ai, 0 1) IL) (28)
In general, here we choose the measurement operator M = (|0) (0[)®4 for the projection

measurements, so that the resultant quantum state |y,) after tracking the Ancilla quantum
bit is:

A . .
(|0Y(0)® ®I|wz><wl|) (29)

=T
Wu) =Tra <<wi|(|0> ODFA @ I[v7)

For parameter updates, we utilize the gradient descent algorithm, traditionally used in
neural networks, to derive gradients of the loss function. However, in quantum circuits,
the gradient information is complex and often treated as a black box. To compute partial
derivatives within variational quantum circuits, we apply the parameter shift rule, modi-
fying the parameters of the PQC twice. The partial derivative is approximated by:

AL L6 +68)-L(O-9)

200 c (30)

Here, § represents a small offset (bounded by 7) applied to circuit parameters, while
¢ depends on the specific quantum gate. The change in loss function values before and
after the shift allows us to estimate the gradient for the PQC within the same quantum
circuit. Denoting the total parameters of our generator as n, we express the gradient of

the calculated parameter j of the i-th sub-generator with respect to the loss function f(6)

accordingly.
et L[S TR )
39i,j z(f( 1,1 ,;+2 n )

(31)
- gf([el,l,...,ei,j - g,...,en],x»
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Table 1 Summary of Discriminator Parameters and Settings

Layer Filter Size  Output Size

Conv1 5x5/2 64Xx64x64
Conv2 3x3/2 32%32x128
Conv3 3x3/2 16Xx16x256
Conv4 3x3/1 8x8x512
Conv5s 1x1/1 8x8%256
Convé 1x1/1 8x8x128
Resnet1 3x3/1 8x8x64
Resnet2  3x3/1 8x8x64
Resnet3  3x3/1 8x8%128
FC - 1

The generated distribution

T __1_ target 0.220

1 P=2500

0.176

A r0.132

1 \ 0. 088

0. 044

0. 000

Y

Vi

Figure 15 The figure shows the simulation results of approximating a discrete Gaussian distribution for
observations taking P = 2500. The performance of the approximated discrete Gaussian distribution is shown,
demonstrating how the distribution of the generated data evolves towards the closest true distribution

The approximation using a discrete Gaussian distribution defined as:

Q

(v, 1) = (32)
Here, a € [0,31] denotes a discrete variable, Q serves as a normalization factor, and the
objective is to express the quantum state |7r) as a discrete Gaussian distribution, ensuring
that the probability observed under the ground state |b) aligns closely with a Gaussian
distribution. In the generator, the quantum state ¢(y) generated is expressed as:

J
6 = [ Vu()10)®° (33)
m=1

Here, V,, denotes the parameterized quantum circuit (PQC), which is optimized by ad-
justing parameters y to approximate the target state. During training, the number of mea-
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Table 2 Summary of Transformer Model Parameters and Settings

Parameter/Setting Description
Transformer Layers 6 (for both encoder and decoder)
Embedding Dimension 64

Number of Attention Heads 4

Feedforward Network Dimension 256

Dropout Rate 0.1

Regularization Parameter (L2) 0.0002

Training Dataset Size 10° samples
Baseline Error Rate 1.2%

Learning Rate Step Size 0.1% per update
Batch Size 32

Optimization Algorithm Adam optimizer
Loss Function Binary cross-entropy

Training Details

Forward Propagation Computes output and loss
Backpropagation Updates weights to minimize loss
Total Training Iterations 500

Implementation Libraries PyTorch PennylLane

surements, P, is fixed at 2500, indicating that 2500 measurements are performed per train-
ing step to acquire the quantum state’s probability distribution. Figure 15 demonstrates the
simulation results for approximating the discrete Gaussian distribution, showcasing the
evolution of the generated data distribution toward the true distribution. Subsequently,
the Transformer network model was utilized for decoding, producing an output feature
vector that represents the density matrix of 1 s and —1 s. Moreover, in the search for the
optimal adjacency [53], determining the optimal code distance [54] between erroneous
qubits is essential.
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