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Abstract: The Standard Model is an up-to-date theory that best summarizes current knowledge in

particle physics. Although some problems still remain open, it represents the leading model which

all physicists refer to. One of the pillars which underpin the Standard Model is represented by the

Lorentz invariance of the equations that form its backbone. These equations made it possible to

predict the existence of particles and phenomena that experimental physics had not yet been able

to detect. The first hint of formulating a fundamental theory of particles can be found in the 1932

Majorana equation, formulated when electrons and protons were the only known particles. Today

we know that parts of the hypotheses set by Majorana were not correct, but his equation hid concepts

that are found in the Standard Model. In this study, the Majorana equation is revisited and solved for

free particles. The time-like, light-like and space-like solutions, represented by infinite-component

wave functions, are discussed.

Keywords: relativistic wave equations; higher spin; mass quantization; irreducible representations of

Lorentz group

1. Introduction

The formulation of the Majorana relativistic theory of particles with arbitrary spin [1]
appeared in 1932 and remained unknown for a long time, despite being full of remarkable
new ideas. The reasons are attributable to the fact that the paper was published only in
Italian; moreover, it dealt with a premature problem both with respect to the dominant
interests among physicists of the early 1930s, and with respect to knowledge of experimental
results relating to elementary particles [2–4]. In fact, the work was sent by Majorana to Il
Nuovo Cimento, before Rome received news of the discovery of the positron announced
by Anderson [5]. It is from the 1940s that Majorana’s article began to attract the attention
of mathematically oriented theoretical physicists who exploited his ideas, often without
ever citing him expressly in their works, and developed theories that helped to build the
Standard Model [6–12].

In the Majorana paper, there are the first hints of supersymmetry, of the spin-mass
correlation and of spontaneous symmetry breaking: three fundamental conceptual bases of
modern particle physics [13]. These hints prove that our conceptual understanding of the
fundamental laws of nature were already in Majorana, which attempts to describe particles
with arbitrary spins in a relativistic invariant way. This proves how interesting the Majorana
theory still is and why it is worth investigating its formalism. Concerning the first concept,
Majorana states that the simplest representation of the Lorentz group is infinite-dimensional.
In this representation, the states with integer (bosons) and half-integer (fermions) spins
are treated on equal grounds. In other words, the relativistic description of particle states
allows bosons and fermions to exist on equal grounds. These two fundamental sets of
states are just the first hint of supersymmetry. The second remarkable novelty is the
correlation between spin and mass. As we will see later, the mass eigenvalues provided by
the Majorana equation are given by mJ = χ/(J + 1/2), where J is the spin and χ is a given
mass term (whose meaning will be clarified later). The mass decreases with increasing
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spin, the opposite of what would appear, many decades later, in the study of the strong
interactions between baryons and mesons (Chew–Frautschi–Gribov–Regge trajectories) [14].
However, by assigning to χ a suitable value, the Majorana equation returns the entire mass
spectrum of each specific particle. The last remarkable concept hidden in the Majorana
equation is that it can explain spontaneous symmetry breaking. In fact, the equation also
provides imaginary mass eigenvalues, and today we know that the symmetry-breaking
mechanism—which is the only way to introduce the real masses of particles forming the
universe we know—involves negative square mass terms in the Lagrangian [15]. In the
framework of quantum field theory, these terms are explained without the need to invoke
imaginary (unphysical) quantities: the mass is not the square root of these terms. However,
in the old quantum physics, spontaneous symmetry breaking can only be treated using
imaginary masses. They must not be considered physical quantities but mathematical
tools to handle phenomena that were not yet discovered in the 1930s. There is a further
development which this paper contributed to: the formidable relation between spin and
statistics, which led to the discovery of another invariance law, valid for all quantized
relativistic field theories: the CPT theorem. First of all, the Majorana paper shows that
the relativistic description of a particle state allows the existence of integer and half-
integer spin values. However, it was already known that the electron must obey the
Pauli exclusion principle and that the electron has half-integer spin. Thus, the problem
arises of understanding if the Pauli principle is valid for all half-integer spins. If this were
the case, it would be necessary to find which properties characterize these two classes
of particle (fermions and bosons). The first of these properties are of a statistical nature,
governing groups of identical fermions and groups of identical bosons. We now know that a
fundamental distinction exists and that the bases for the statistical laws governing fermions
and bosons are the anticommutation relations for fermions and the commutation relations
for bosons [16]. Well, the Majorana equation provides the correct algebraic relations,
depending on whether the construction of the spin matrices is done for fermions or bosons.
We can state that Majorana’s work is a precursor of the spin-statistics theorem proved years
later by Pauli [17].

Today, almost a century later, what was considered a purely mathematical curiosity
in 1932 represents a powerful source of incredibly new ideas, such as those mentioned
earlier. Since Majorana’s equation for particles with arbitrary spins remains unknown to
the majority of the physics community, it must be revisited in a modern key, not only for
purely historical reasons but also, and above all, because it is a tool that could help solve
some of the open questions of particle physics or be useful in other areas of physics, such as
quantum optics. This is the goal that this work sets out to achieve. The paper is organized
as follows: Section 2 is dedicated to the Majorana formalism, based on the theory of Lie
groups, which leads to the correct formulation of the commutation relations for fermions
and bosons, regardless of the spin value. In Section 3, the Majorana equation is solved
both by the algebraic approach and by complex analysis. The first method allows us to
explicitly obtain the probability of the existence of states with a given spin as a function of
the particle energy. The second, on the other hand, brings out the physical meaning of all
the possible solutions, including superluminal ones.

2. The Majorana Formalism

Majorana’s goal was to find a relativistic equation describing particles with arbitrary
spin. The relativistic invariance requires that spatiotemporal coordinates are treated on
the same footing, and, using the form of the Dirac equation [18], Majorana writes down its
equation as:

(i∂t − iαi∂i − βχ)ψ = 0, (1)

where the natural units ℏ = c = 1 have been used (this notation will be used throughout
the article). The index (i = 1, 2, 3) is for spatial coordinates, αi and β are numerical
matrices to be found, and χ is a mass term that we leave unspecified for now. Since
Majorana considers the negative energy solutions of the Dirac equation to be unmeaningful,
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Equation (1) must be formulated so that matrix β is positive-definite. Moreover, Majorana
does not require the respect of the relativistic energy–momentum relationship. This means
that Equation (1) multiplied times its conjugate does not necessarily have to return the
Klein–Gordon equation. Hence, not only are the dimensions of the matrices αi and β
different from those of Dirac (at least for spin-1/2 particles), but also commutation relations
change. The set of these hypotheses determines the Majorana formalism for the construction
of the matrices αi and β.

To obtain the explicit form of matrices αi and β, Majorana uses the variational principle
(see Equation (2) in the original paper of reference [1].) Using a modern formalism, the
same result can be obtained by imposing the Lorentz invariance on the Lagrangian density.
This Lagrangian reads:

L = ψ†(i∂t − iαi∂i − βχ)ψ. (2)

The invariance f Lagrangian (4) implies that all the terms that form it are relativistically
invariant. Therefore, the term ψ†βψ must also be invariant under the action of the elements
of the Lorentz group. This means that it is possible to perform a non-unitary transfor-
mation ψ → ϕ such that ψ†βψ → ϕ† ϕ , where the term ϕ† ϕ must also be relativistically
invariant. This transformation is necessary to ensure that the Majorana spinors that are
being formulated represent the Lorentz group (which, as we will see later, will no longer be
a finite representation, as are the Dirac spinors, but rather infinite-dimensional). To avoid
mathematical complications, Majorana uses infinitesimal Lorentz transformations in the
variables t, x, y, z, whose space–space and space–time generators, respectively, are:

S1 =





02×2 02×2

02×2
0 1
1 0



 , S2 =









02×2
0 0
0 1

0 0
0 1

02×2









, S3 =









02×2
0 0
1 0

0 1
0 0

02×2









, (3)

T1 =





0 1
1 0

02×2

02×2 02×2



 , T2 =









02×2
1 0
0 0

1 0
0 0

02×2









, T3 =









02×2
0 1
0 0

0 0
1 0

02×2









, (4)

where 02×2 is the 2 × 2 zero matrix and 1 = −1. The Si space-space transformations are
rotations, while the Ti space-time transformations are boosts. Such transformations have
the advantage of simplifying the formulation of the equations, and by their integration it is
possible to obtain the corresponding finite transformations. From generators (3) and (4),
the following operators are obtained:

{

â1 = iS1 , â2 = iS2 , â3 = iS3

b̂1 = −iT1 , b̂2 = −iT2 , b3 = −iT3
. (5)

The operators âi are Hermitian, whereas operators b̂i are anti-Hermitian. Notice that
while the âi are Hermitian, the boosts b̂i are anti-hermitian, this being related to the fact that
the Lorentz group is non-compact (topologically, the Lorentz group is R3 × S3/Z2, the non-
compact factor corresponding to boosts and the doubly connected S3/Z2 corresponding to
rotations). In order to construct a unitary representation, âi and b̂i must be Hermitian, and
vice versa. To satisfy this requirement and for infinitesimal transformations to be integrable,
Majorana introduced appropriate commutation relations. To obtain these, let us consider
the following example in R3. Let R1(α) and R2(θ) be two infinitesimal rotations about the
x and y axes, respectively, whose exponential representations are:

R1(α) = eαS1 and R2(α) = eθS2 . (6)
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The consecutive action of the two rotations is given by:

R1(α)R2(θ) = e(αS1+θS2). (7)

If we develop this equation using Taylor series, we obtain:

R1(α)R2(θ) = 1 + (αS1 + θS2) +
1
2
(αS1 + θS2)

2 +
1
2
[αS1, θS2] + · · · , (8)

where
[αS1, θS2] = αϑS1S2 − αϑS2S1. (9)

The commutator (9) has been introduced in Equation (8) to obtain the correct form of
the square binomial that appears in the integration formulas:

(αS1 + θS2)
2 + [αS1, θS2] = α2S2

1 + 2αθS1S2 + θ2S2
2. (10)

Since in the Taylor series (8) binomials also appear, (αS1 + θS2)
n with n > 2, it is

necessary to assure their correct forms in order to introduce further commutators. The
procedure is completely analogous to that of the case n = 2. However, having used
infinitesimal generators, the development (8) can be truncated at the third term, thus also
avoiding the calculation of the higher-order commutators.

The commutator (9) recalls that which is typical of the angular momentum obtained by
Schrödinger, Heisenberg and Dirac in their quantum theories [18–20]. Therefore, whatever
the combinations between infinitesimal transformations (5), the following commutation
relations must hold:

[

âi, âj

]

= iεijk âk ,
[

b̂i, b̂j

]

= −iεijk âk ,
[

âi, b̂j

]

= iεijkbk, (11)

where i, j, k = 1, 2, 3. The elements of the operators âi and b̂i in the matrix representation are
obtained using the wave functions of the total angular momentum operator, characterized
by quantum numbers j and m:



































⟨j, m|â1 ∓ iâ2|j, m ± 1⟩ = [(j ± m + 1)(j ∓ m)]1/2

⟨j, m|â3|j, m⟩ = m
〈

j, m
∣

∣

∣b̂1 ∓ ib̂2

∣

∣

∣j ± 1, m ± 1
〉

= − 1
2 ± {[j ± (m ± 1)][j + 1 ± (m ± 1)]}1/2

〈

j, m
∣

∣

∣b̂3

∣

∣

∣j ± 1, m
〉

= 1
2{[j + m + 1][j − m + 1]}1/2

, (12)

where j can take both half-integer and integer values, while −j ≤ m ≤ j. All the non-trivial
components of the infinite-dimensional Majorana matrices are obtained by varying j from
0 to ∞ through integer steps (see Equation (9) of reference [1]). Therefore, Majorana’s
approach treats half-integer and integer spin states on equal grounds. This is the first hint
of the supersymmetry that was anticipated in the previous section. A closer analysis of
relations (12) reveals that operators â1 ∓ iâ2 and b̂1 ∓ ib̂2 are nothing but the creation and
annihilation operators, already introduced a few years earlier by Dirac for the harmonic
oscillator18. In his theory for particles with arbitrary spin, Majorana generalizes this
formalism, which is now commonly used in quantum field theory.

We must now find the explicit form of transformation ψ → ϕ . In this regard, let us
rewrite Equation (2) as follows:

L = ϕ†(iγµ∂µ − χ
)

ϕ, (13)

where we set ϕ† = β−1ψ† and ϕ = ψ. In this way we obtain:

ψ†βψ = ϕ† ϕ. (14)
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To ensure the invariance of the Lagrangian (13), the following commutation relations
must hold:

[

γ0, â1

]

= 0 ,
[

γ0, b̂1

]

= iγ1 ,
[

γ1, â1

]

= 0,
[

γ1, b̂2

]

= iγ3 ,
[

γ1, â3

]

= −iγ2 ,
[

γ1, b̂1

]

= iγ0 , · · · . (15)

It is easy to verify that the explicit form of the matrices γµ, with µ = 0, 1, 2, 3, is
γ0 = β−1 and γi = β−1αi. The explicit form of matrices γµ can be obtained by proceeding
as we did for operators âi and b̂j:















〈

j, m
∣

∣γ0
∣

∣j, m
〉

= −i(j + 1/2)
〈

j, m
∣

∣γ1 ∓ iγ2
∣

∣j ± 1, m ± 1
〉

= ∓ 1
2{[j ± (m ± 1)][j + 1 ± (m ± 1)]}1/2

〈

j, m
∣

∣γ3
∣

∣j ± 1, m
〉

= ± 1
2{[j + m + 1][j − m + 1]}1/2

. (16)

All other matrix elements different from those in Equation (16) are trivially zero.
We are now able to determine the transformation T, such that ϕ = Tψ. To obtain more
information on the nature of this transformation, we have to find an algebraical relation
preserving the form of Equation (14). To this end, let us write:

ϕ† ϕ = (Tψ)†(Tψ) = ψ†
(

T†T
)

ψ. (17)

This algebraical constraint forces the transformation T to be such that ψ†βψ = ϕ† ϕ,
and this holds if T†T = β, i.e., T is not unitary. Considering that γ0 = β−1 and that
〈

j, m
∣

∣γ0
∣

∣j, m
〉

= −i(j + 1/2), we obtain:

⟨j, m|T|j, m⟩ = (j + 1/2)−1/2. (18)

In Equation (18), the explicit form of matrix β, given by β = T2, is obtained. Moreover,
the spin matrices αν are given by αν = TγνT. It must be observed that the non-unitary of
the transformation T is due to the fact that Majorana does not require compliance with the
energy–momentum relation, a necessary condition for T2 =

𝑝ఓ → −𝑝ఓ 𝛤ఓ → −𝛤ఓ 𝛤ఓ𝛾ఔ 𝛤ఓ → −𝛤ఓ ℜ௭ሺ𝜋ሻ𝜋 𝔅௭ሺ𝑖𝜋ሻ 𝑖𝜋𝛾ହ 𝛾଴
tz 𝜉 𝑖𝜋𝔅௭ 𝛤ఓ → −𝛤ఓ

ሺ 𝛾଴𝜕௧ − 𝛾௜𝜕௜ − 𝜒ሻ𝜑𝑖 𝜓⟨𝜑 𝜑⟩ 𝜑𝛾଴ 𝛾௜𝛾଴ 𝛾ଷ 𝛾ଵ 𝛾ଶ ff𝛾ଵ 𝛾ଶ
൬𝑖 𝜒 𝛾଴𝜕௧ − 𝜒𝛾௜𝜕௜ − 𝟙൰𝜑 ⇒ 𝐴𝜑 − 𝟙𝜑𝐴 𝜕௧ 𝜕ఔ

tt 𝜑ିଵ𝐴𝜑 𝟙 𝐴𝐴

.
The form of matrix β leads to a discrete mass spectrum, determined by the term χ and

the particle spin:
mj = χ/(j + 1/2). (19)

In his article, Majorana does not comment on this result, considering it trivial. On
the other hand, he is mainly interested in the mathematical aspects of his research, aiming
to obtain the first infinite-dimensional representation of the Lorentz group, an algebraic
formalism unknown to most physicists at that time. Several authors have tried to give a
physical explanation to Equation (19), without ever obtaining relations consistent with the
measured values of the masses of the known particles [21–24]. The widespread opinion of
those who dealt with the 1932 Majorana equation is that the mass spectrum of Equation (19)
is mostly a side-effect of the theory for particles with arbitrary spin, essentially due to the
elimination of the negative energy solutions and the non-respect of the energy–momentum
relation. However, the mass term χ is never made explicit by Majorana, and this leaves
open the possibility of investigating other less conventional approaches that could lead to
new research perspectives aimed at solving the problem of the masses [25,26].

Majorana’s approach leads to the formulations of infinite matrices αµ and γµ, and
therefore the solutions of Equation (1) are wave functions with infinite components. In the
reference frame with p ̸= 0 (where p is the space component of four-momentum pµ), each
component ψj,m of the wave function ψ is characterized by the quantum numbers j and m.
For fermions, the form of the wave function is:

ψ = (ψ1/2,1/2, ψ1/2,−1/2, ψ3/2,3/2, ψ3/2,1/2, ψ3/2,−1/2, ψ3/2,−3/2, · · ·), (20)
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while for bosons it is:

ψ = (ψ0, ψ1,1, ψ1,0, ψ1,−1, ψ2,2, ψ2,1, ψ2,0, ψ2,−1, ψ2,−2 · · ·). (21)

Majorana proves that the probability of existence of states with spin j is proportional
to (u/c)n, where u is the particle velocity and n is a positive integer, such that n = 1 for
j = 1/2 or 0, n = 2 for j = 3/2 or 1, and so on. As u ≪ c, the probability that states with
high j exist decreases progressively. Therefore, it is reasonable to assume that the high spin
states are excited states of other particles accessible only in ultrarelativistic regimes.

The Majorana equation also provides space-like solutions, and this too is a direct
consequence of not respecting the energy–momentum relation. Today we know that the
only way to introduce real masses, without destroying the theoretical description of nature,
is by the mechanism of spontaneous symmetry breaking, and such a mechanism could
not exist without the imaginary masses. Almost a century ago, Majorana had formulated
such a sophisticated theory that, had it been published in an international journal, would
probably have accelerated the construction of modern particle theory.

Before going to the next section, it is appropriate to study how the Majorana equation
behaves under the action of CPT symmetry, considered to be the only exact discrete sym-
metry in nature. The wave operator of Equation (1) is CPT invariant if the transformations
pµ → −pµ and Γµ → −Γµ hold (the operator Γµ is the vector whose components are the
γν matrices). The transformation Γµ → −Γµ is obtained by applying a rotation ℜz(π) of π
along the z axis followed by a boost Bz(iπ) of imaginary parameter iπ along the same di-
rection. For Dirac 1/2-spin particles, the product of these two consecutive transformations
gives the matrix γ5, but in the case of Majorana particles, whatever the spin, this relation
is not more valid since the eigenvalues of γ0 are all positive. In the framework of infinite
unitary representation of the Lorentz group, the parameter ξ = iπ is a pole for the boost
Bz. This is the mathematical reason why the transformation Γµ → −Γµ does not exist for
Equation (1). This also compromises the possibility of deriving the spin-statistics theorem
from the Majorana equation. However, it cannot be a priori ruled out that Majorana’s
theory can be modified to make it invariant under the action of CPT symmetry. This is
one of the points worth working on, and in any case the goal is to make Majorana’s theory
complementary to the Standard Model, not to replace it.

3. Solving the Majorana Equation for Free Particles

Solving the Majorana equation is a challenging and fascinating task. This equation
corresponds to an infinite number of linear equations in an infinite number of variables, a
problem that has been a classic of contemporary mathematics. An exhaustive discussion of
this problem can be found in reference [27]. For our purposes, let us rewrite the Majorana
equation as:

(

iγ0∂t − iγi∂i − χ
)

ϕ = 0, (22)

where, as usual, i = 1, 2, 3. The wave function ψ is the infinite-component spinor of
the Majorana equation to be found. One of the constraints which this equation must
satisfy is the normalization condition ⟨ϕ|ϕ⟩ = 1, which is the usual dot product between
eigenvectors in the Dirac formalism, to have ϕ the meaning of probability amplitude. This
condition is one of the requisites for making Equation (22) admit a non-trivial solution [27].
The explicit forms of matrices γ0 and γi were obtained in the previous section. In particular,
matrix γ0 has all zero elements except those on the main diagonal, which are real and
positive. On the other hand, matrix γ3, unlike γ1 and γ2, is a block off-diagonal matrix.
Matrices γ1 and γ2 have non-trivial elements on the secondary diagonals adjacent to the
main one.

Let us rewrite Equation (22) as:

(

i
1
χ

γ0∂t − i
1
χ

γi∂i −

𝑝ఓ → −𝑝ఓ 𝛤ఓ → −𝛤ఓ 𝛤ఓ𝛾ఔ 𝛤ఓ → −𝛤ఓ ℜ௭ሺ𝜋ሻ𝜋 𝔅௭ሺ𝑖𝜋ሻ 𝑖𝜋𝛾ହ 𝛾଴
tz 𝜉 𝑖𝜋𝔅௭ 𝛤ఓ → −𝛤ఓ

ሺ 𝛾଴𝜕௧ − 𝛾௜𝜕௜ − 𝜒ሻ𝜑𝑖 𝜓⟨𝜑 𝜑⟩ 𝜑𝛾଴ 𝛾௜𝛾଴ 𝛾ଷ 𝛾ଵ 𝛾ଶ ff𝛾ଵ 𝛾ଶ
൬𝑖 𝜒 𝛾଴𝜕௧ − 𝜒𝛾௜𝜕௜ − 𝟙൰𝜑 ⇒ 𝐴𝜑 − 𝟙𝜑𝐴 𝜕௧ 𝜕ఔ

tt 𝜑ିଵ𝐴𝜑 𝟙 𝐴𝐴

)

ϕ = 0 ⇒ Aϕ −

𝑝ఓ → −𝑝ఓ 𝛤ఓ → −𝛤ఓ 𝛤ఓ𝛾ఔ 𝛤ఓ → −𝛤ఓ ℜ௭ሺ𝜋ሻ𝜋 𝔅௭ሺ𝑖𝜋ሻ 𝑖𝜋𝛾ହ 𝛾଴
tz 𝜉 𝑖𝜋𝔅௭ 𝛤ఓ → −𝛤ఓ

ሺ 𝛾଴𝜕௧ − 𝛾௜𝜕௜ − 𝜒ሻ𝜑𝑖 𝜓⟨𝜑 𝜑⟩ 𝜑𝛾଴ 𝛾௜𝛾଴ 𝛾ଷ 𝛾ଵ 𝛾ଶ ff𝛾ଵ 𝛾ଶ
൬𝑖 𝜒 𝛾଴𝜕௧ − 𝜒𝛾௜𝜕௜ − 𝟙൰𝜑 ⇒ 𝐴𝜑 − 𝟙𝜑𝐴 𝜕௧ 𝜕ఔ

tt 𝜑ିଵ𝐴𝜑 𝟙 𝐴𝐴

ϕ = 0, (23)
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where A is the matrix given by the sum of the terms in ∂t and ∂ν. Equation (23) can also
be rewritten as ϕ−1 Aϕ =

𝑝ఓ → −𝑝ఓ 𝛤ఓ → −𝛤ఓ 𝛤ఓ𝛾ఔ 𝛤ఓ → −𝛤ఓ ℜ௭ሺ𝜋ሻ𝜋 𝔅௭ሺ𝑖𝜋ሻ 𝑖𝜋𝛾ହ 𝛾଴
tz 𝜉 𝑖𝜋𝔅௭ 𝛤ఓ → −𝛤ఓ

ሺ 𝛾଴𝜕௧ − 𝛾௜𝜕௜ − 𝜒ሻ𝜑𝑖 𝜓⟨𝜑 𝜑⟩ 𝜑𝛾଴ 𝛾௜𝛾଴ 𝛾ଷ 𝛾ଵ 𝛾ଶ ff𝛾ଵ 𝛾ଶ
൬𝑖 𝜒 𝛾଴𝜕௧ − 𝜒𝛾௜𝜕௜ − 𝟙൰𝜑 ⇒ 𝐴𝜑 − 𝟙𝜑𝐴 𝜕௧ 𝜕ఔ

tt 𝜑ିଵ𝐴𝜑 𝟙 𝐴𝐴

, which is the typical similitude relation of linear algebra. It is
proved that Equation (23) can be solved if A is a lower half-matrix or a block matrix which
develops on the main diagonal [28]. In the case under study, whatever the integer or half-
integer value of the spin is, A is always a block matrix constructed along the main diagonal.
This property ensures that Equation (23) admits a non-trivial solution. Its Hamiltonian is

given by H = ∑
3
i γi p̂i + χ

(

γ0
)−1

, where p̂i are the impulse operators and
(

γi, γ0
)

are the
spin matrices constructed as explained above. This Hamiltonian is an infinite sequence.

Following this approach, and considering that matrix ϕ has non-trivial ϕ
(j)
µ elements

only on the main diagonal, we obtain the following proportions:










ϕ
(j)
r ∼

(

± p3
E+χ

)j+1/2
, ϕ

(j)
s ∼

[

(p1±ip2)
E+χ

]j+1/2
f or j = n/2

ϕ
(j)
r ∼

(

± p3
E+χ

)j+1
, ϕ

(j)
s ∼

[

(p1±ip2)
E+χ

]j+1
f or j = n

, (24)

where r and s are indexes related by s = r + 1, while pν are the spatial components of
four-vector pµ. For time-like solutions, the term pν/E + χ is always lower than one. This

means that as the spin increases, the components ϕ
(j)
r and ϕ

(j)
s become progressively smaller,

tending to zero as j → ∞ . This convergence is the second requirement needed to ensure
that Equation (23) is solvable [27,28]. The spinor components that contribute the most to
the calculation of the average value

〈

ϕ
∣

∣Ô
∣

∣ϕ
〉

of a generic observable O, where Ô is the
Hermitian operator corresponding to this variable, are the ones with small j. The relevance
of high spin components increases as the particle velocity increases. It has been proven that
the probability P(n) of the existence of a state with half-integer spin j is [29]:

P(n) =
[

(u)n − (u)n+1
]

f or j = n/2, (25)

where n is the order of the state under consideration (in his original work, Majorana
maintains the physical meaning of ϕ as a probabilistic wave function, in line with the
previous theories of Dirac and Schrodinger). In Equation (25), u = (v/c), where v is the
particle velocity and c is the speed of light. For luxons, all spin states become equally
probable, while for space-like particles the probability of existence increases as j increases,
diverging as j → ∞ . This compromises our ability to solve Equation (23) for these specific
cases, at least by using the algebraic approach. However, this difficulty can be overcome by
addressing the solution of the Majorana equation by means of complex analysis.

The complex analysis approach to solve the Majorana equation was proposed by
Barut [30]. This approach, besides being simpler and more powerful than the algebraic
one, has the advantage of better highlighting the physical meaning of the solutions. The
method of complex analysis is based on the fact that once a solution of the equation is
obtained for a particular configuration, it is possible to obtain all the others by means of
Lorentz transformations. Let us suppose ϕ is a known solution of Equation (22) for a given
configuration, and we want to obtain the solution ϕ′ for a configuration with different spin.
Therefore, a transformation U must be found, depending on the Lorentz transformation Λ,
such that:

ϕ′ = U(Λ)ϕ ⇒ ϕ = U−1(Λ)ϕ′. (26)

If we substitute Equation (26) for Equation (22), we obtain:

(iγ0∂t − iγi∂i − χ)U−1(Λ)ϕ′ = 0. (27)

By multiplying on the left side with U(Λ), we obtain:

(iUγ0U−1∂t − iUγiU−1∂i − χ)ϕ′ = 0, (28)

which has the same form of Equation (22).
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Let us start analysing the case of time-like solutions. The simplest configuration is that
of the centre-of-mass reference frame, for which the Majorana equation becomes:

(iγ0∂t − χ)ϕ = 0. (29)

Considering that the eigenvalues of matrix γ0 are given by (j + 1/2), the mass spectra
associated with ϕ is χ/(j + 1/2). Let us introduce a representation of the Lorentz group
through complex analysis [31,32], where the Lie rotations are represented by complex
differential operators:

z = x + iy, z = x − iy, ∂ =
∂

∂z
, ∂ =

∂

∂z
. (30)

Using these transformations, the four-vector
(

γ0, γ1, γ2, γ3
)

can be written as:

(

γ0, γ1, γ2, γ3
)

=

[

1
2

(

zz − ∂∂
)

,−
1
4

(

z∂ + z∂
)

,
1
4

i
(

z∂ + z∂
)

,−
1
2

(

zz + ∂∂
)

]

. (31)

The transformations of Equation (30) allow us to pass from the four-dimensional space
to the two-dimensional space. In the latter, the operators appear as:

z =
x + iy

λ0
, zz =

x2 + y2

λ2
0

, ∂∂ =
1
4

λ0

(

∂2

∂x2 +
∂2

∂y2

)

, (32)

where λ0 =
(

x2
0 + y2

0

)1/2
is a unit length introduced to obtain dimensionless quantities. If

we substitute the operators of Equation (32) into Equation (31), we obtain the corresponding
functional operator of matrix γ0:

γ0 =
1
2

(

zz − ∂∂
)

=
1
2

[

x2 + y2

λ2
0

−
1
2

λ0

(

∂2

∂x2 +
∂2

∂y2

)

]

. (33)

If we substitute Equation (33) for Equation (29), we obtain:

[

−
ℏ2

2µ

(

∂2

∂x2 +
∂2

∂y2

)

+
1
2

µω2λ2
]

ϕ = Eϕ, (34)

where:

ω =
2

µλ2
0

, E =
2

µλ2
0

. (35)

In Equation (34), µ is the reduced mass given by µ = χ/2(j + 1/2). Unexpectedly, the
Majorana equation of a time-like particle in the centre-of-mass reference frame is equivalent
to the Schrödinger equation of a two-dimensional oscillator in an attractive harmonic
potential. The values of the masses forming the oscillator are χ/(j + 1/2) and χ/(j + 3/2),
respectively. Therefore, the solution of Equation (29) is an infinite set of harmonic oscillators
with quantized reduced mass µ(j). It follows that energy E and frequency ω are also
quantized. In particular, the frequency and energy progressively increase as the spin
increases. This result restores the order in the theory under study: although they have
a very small mass, high spin particles are energetically unstable (their energy increases
progressively as j increases, as prescribed by Equation (35)), and this is what is observed in
nature. This result complies with the one obtained by Afkhami-Jeddi et al., who proved
that there are universal bounds on theories with higher spin massive particles [33]. Hidden
between the lines of a cryptic article, this proof had already been shown by Majorana nearly
a century ago. The explicit form of the solution of Equation (34) is:

ϕj = p(x, y) exp
[

−χω
(

x2 + y2
)

/4(j + 1)
]

, (36)
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where p(x, y) is a polynomial in the x and y coordinates. Owing to the particular configura-
tion chosen, in which all the spatial components of the impulse are zero, the components of
the spinor depend only on spin j and not on the quantum number m.

Let us now consider the massive light-like solutions. In this case, the simplest configu-
ration must contain at least a non-zero component of impulse. Choosing the one along the
z axis, Equation (22) becomes:

(

iγ0∂t ± iγ3∂z − χ
)

ϕ = 0. (37)

Since the particle velocity is u = 1, it is convenient to use the parametrization
(i∂t)ϕ = (i∂z)ϕ = ω. Moreover, since the matrices γ0 and γ3 are diagonal, the energy
spectrum of Equation (37) is:

ω =
χ

(

s + 1
2

)

± m
, (38)

where m are the eigenvalues of γ3. For this configuration, the spinor components will
depend not only on j but also on the quantum number m. If we substitute Equation (31)
and Equations (32) and (38) for Equation (37), we obtain:















[

− ℏ2

2µ

(

∂2

∂x2 +
∂2

∂y2

)

− 2χ

µωλ2
0

]

ϕ = 0,

(

ω
x2+y2

λ2
0

− χ

)

ϕ = 0,

(39)

where the first and second equations correspond to the + and – signs respectively in
front of the γ3 matrix in Equation (37). The explicit form of ω is the same as that given
in Equation (35). The first of Equation (39) is the Schrödinger equation for a particle
in a constant potential and with zero total energy. However, light-like particles cannot
have zero energy, and the obtained result can be interpreted by assuming that the first
of Equation (39) describes the motion of a composite system with zero total energy. The
second of Equation (39) corresponds to the Cartesian equation of a circle of radius λ2

0χ/ω,
which implies that the motion of the harmonic oscillator associated with each spin is
constrained to lie on a circle.

Finally, let us consider space-like solutions. The simplest configuration is that in which
the particle has zero energy, i.e., the reference frame with infinite velocity. For simplicity,
we assume that only the z component of space-like momentum is different from zero.
Equation (22) then becomes:

(

iγ3∂z − χ
)

ϕ = 0 ⇒ m2
j = −(χ/m)2, (40)

where χ is an imaginary rest mass, m are the eigenvalues of the γ3 matrix and m2
j is the mass

spectrum. As usual, if we substitute Equations (31) and (32) for Equation (40), we obtain:

[

−
ℏ2

2µ

(

∂2

∂x2 +
∂2

∂y2

)

−
1
2

µω2λ2 − E

]

ϕ = 0. (41)

Equation (41) is completely analogous to Equation (34), except for the repulsive
parabolic potential. Therefore, in the framework of the Majorana theory, the space-like
solutions are energetically unstable but still possible. In particular, this instability decreases
as j increases. Subluminal and superluminal particles therefore have a mirror behaviour.

4. Concluding Discussion

The problem of infinite-dimensional representations of the Lorentz group was dis-
cussed in 1938 by Wigner [6], in 1945 by Dirac [34] and again in 1948 by Wigner [35].
Dirac seemed to have been unaware of Majorana’s paper, while Wigner, in his book on
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the Poincaré group, mentioned it almost incidentally. The many studies carried out subse-
quently by other authors on the infinite-dimensional representations of the Lorentz group
did not refer to Majorana’s paper. It is not even mentioned by those authors [36] who in
recent years have reconstructed, discussed and generalized the Majorana theory without
realizing it. An exception is Barut and Kleinert’s paper [37], which makes specific reference
to Majorana’s results. In this scenario, we could say that the 1932 Majorana theory was the
object of unconscious plagiarism by many authoritative physicists of the twentieth century.

Apart from the mathematical and historical interest, this work demonstrates Majo-
rana’s sensitivity to fundamental problems that he addressed independently, well ahead
of most contemporary physicists. With this study, we want to highlight that the Majorana
theory for particles with arbitrary angular momentum was not only ahead of its time, but
also is still so contemporary as to be useful for addressing the study of unsolved problems
in particle physics, such as that relating to the mass spectrum, or to investigate other
branches of physics with less conventional tools than those commonly used. Reinterpret-
ing Majorana’s equation of 1932 and solving it for those physical systems that currently
represent open problems could be a way out of the impasse slowing down some sectors of
research in particle physics. In the 2006 lecture held at the Majorana Centenary Celebrations
symposium, Nambu commented positively on the idea of revisiting the 1932 Majorana
equation in view of its application to controversial problems of particle physics. This study
hopes to provide an impulse for a physics capable of exploring and approaching problems
in an unconventional way, going beyond current theories.
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