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ABSTRACT

A SEARCH FOR EXOTIC HIGGS DECAYS OR: HOW 1
LEARNED TO STOP WORRYING AND LOVE LONG-LIVED
PARTICLES

SEPTEMBER 2021

JACKSON CARL BURZYNSKI
B.Sc., TUFTS UNIVERSITY
M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSSETTS AMHERST

Directed by: Professor B. Brau

A novel search for exotic decays of the Higgs boson to pairs of long-lived neutral parti-
cles, each decaying to a bottom quark pair, is performed using 139 fb~! of /s = 13 TeV
proton-proton collision data collected with the ATLAS detector at the LHC. Events consis-
tent with the production of a Higgs boson in association with a leptonically-decaying Z
boson are analyzed. Long-lived particle (LLP) decays are reconstructed from inner detec-
tor tracks as displaced vertices with high mass and track multiplicity relative to Standard
Model processes. The analysis selection requires the presence of at least two displaced
vertices, effectively suppressing Standard Model backgrounds. The residual background
contribution is estimated using a data driven technique. No excess over Standard Model
predictions is observed, therefore upper limits are set on the branching ratio of the Higgs
boson to LLPs. Branching ratios of 10% are excluded for LLP mean proper lifetimes as
small as 4 mm and as large as 110 mm. For LLP masses below 40 GeV, these results repre-

sent the most stringent constraint in this lifetime regime.
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Introduction

What we know is a drop, what we don’t know is an ocean.
-Isaac Newton
Seeking what is true is not seeking what is desirable.
-Albert Camus, The Myth of Sisyphus and other essays

The discovery of a new particle consistent with the Higgs boson at the Large Hadron
Collider in 2012 constituted the final missing piece of the puzzle of the Standard Model
of particle physics [1], [2]. Since then, a new physics program has emerged which aims
to scrutinize the nature of this elusive particle and understand its properties. While the
Standard Model has been enormously successful in predicting the results of every ma-
jor collider experiment, it is known to not be the ultimate theory of the universe. Many
theories which aim to address the limitations of the Standard Model point to the Higgs
boson as a possible portal to new physics, with exotic Higgs decays being the primary
phenomenological consequence and means of discovery. It is well motivated both from
theory and experimental constraints to consider the scenario in which the particles pro-
duced in these exotic decays have macroscopic proper lifetimes and give rise to unique
detector signatures.

This work describes a search for exotic decays of the Higgs boson to two long-lived,
neutral, spin-0 particles which subsequently decay to pairs of b quarks, giving the signa-
ture H — aa — 4b. The search uses 139 fb~! of \/s = 13 TeV pp data collected with the
ATLAS detector between 2015 and 2018 and focuses on Higgs production in association
with a Z boson. The signature of interest comprises two leptons from the Z boson decay

and two displaced hadronic vertices in the ATLAS inner detector from the decays of the
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long-lived particles. The analysis uses a data-driven method to predict the number of ex-
pected events from background and novel discriminating variables which were optimized
to reduce the background to O(1) events while maximizing the signal sensitivity. The work
presented in this thesis has led to the paper “Search for exotic decays of the Higgs boson
to long-lived particles in pp collisions at /s = 13 TeV using displaced vertices in the AT-
LAS inner detector” [3], and was first presented at the 55th Rencontres de Moriond session
on Electroweak Interactions and Unified Theories in a talk titled “Probing the dark sector
with b-quarks with the ATLAS detector” [4].

This thesis organized in three parts. Part I contains a discussion of the Standard Model,
its successes and shortcomings, and an overview of several beyond Standard Model sce-
narios which aim to address these limitations. The motivation for searches for long-lived
particles is presented, along with a discussion of previous searches that have set con-
straints on this signature. Part I describes the experimental apparatus used in this work.
An overview of the ATLAS experiment at the Large Hadron Collider is given, along with
details about the reconstruction of the physics objects used in this analysis. A chapter is
then dedicated to a discussion of the specialized reconstruction methods needed to identify
the decays of long-lived particles. Finally, Part III outlines a search for Higgs boson decays
to long-lived particles. The results of this search are presented along with a discussion of

the statistical methods used to perform the interpretation.
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Theoretical Motivation



Chapter 1

The Standard Model

There is no exquisite beauty...without some strangeness in the proportion.
-Edgar Allan Poe

Why should things be easy to understand?
-Thomas Pynchon

The Standard Model (SM) of particle physics constitutes one of the greatest scientific
achievements in modern history. Based on empirical evidence gathered by experiments
over the course of more than 100 years, the SM provides a single elegant theoretical frame-
work which describes the interactions between all known elementary particles to aston-
ishing levels of precision. Starting with the discovery of the electron by J.J. Thomson in
1897 [5] and developed over the course of much of the 20t century, this theory represents
the culmination of a decades long effort to understand the dynamics of elementary par-
ticles at ever-increasing energies. The discovery of the Higgs boson at the Large Hadron
Collider in 2012 [1], [2] completed our current picture of the SM and underlined the pre-
dictive power of the theory, cementing its place in scientific history as one of the most
successful models of all time.

As of the writing of this thesis, there are four known fundamental forces at work
the universe: electromagnetism, the strong interaction, the weak interaction, and grav-
ity. These forces are responsible for the interactions between the fundamental, point-like

particles that make up the matter in the universe. Of these four, the SM describes all but
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gravity, which is too weak in relation to the other three forces to play a role in high-energy
physics experiments. While the gravitational force is attributed to the curvature of space-
time as described by Einstein’s general theory of relativity, the SM describes the other three
forces as being mediated by elementary particles. The electromagnetic force (Section 1.2)
is carried by the photon, v, and is responsible for the attraction between the electrons and
protons which holds atoms together. The strong interaction (Section 1.3) is carried by the
gluon, g, and is responsible for binding quarks together to form hadrons such as protons
and neutrons. Finally, the weak interaction (Section 1.4) is carried by the W and Z bosons,
and gives rise to the radioactive decay of atomic nuclei. In this chapter, we will give an
overview of how the SM describes each of these forces, which will lead us to a discussion
of the role of the Higgs boson in the SM and its phenomenology (Section 1.5), and allow

us to understand the motivation for a more complete theory beyond the SM (Section 1.6).

1.1 Quantum Field Theory and Gauge Theory

The particles described by the SM come in two general classes:

¢ fermions are characterized by having half-integral spin. The two types of fermions,
leptons (such as the electron), and quarks (which group together to form baryons
such as protons and neutrons) combine to form the atoms which comprise all visible

matter in the universe.

* bosons are characterized by having integral spin. The three fundamental interactions
described by the SM are mediated by spin-1 bosons (W¥, Z, ), and the spin-0 Higgs

boson h is responsible for giving mass to other elementary particles.

Mathematically, these elementary particles are described as the quanta of fields in the lan-
guage of Quantum Field Theory (QFT). This section will discuss several basic concepts
of QFT that are essential for understanding the theoretical motivation for the search pre-

sented in this thesis and will serve as a reference for later discussions.
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1.1.1 Cross sections and decay widths

QFT provides a framework within which various observables that are measured in high
energy physics experiments can be predicted. First, the decay rate, I, is the probability per
unit time that a particle will decay. For an ensemble of N identical particles, the decay rate

satisfies dN = —I'Ndt. Thus, given an initial population of Ny particles, we have

N(t) = Noe (1.1)

In most scenarios, several decay modes are possible. The total decay rate is then given
as a sum over the rates of the individual modes, which allows us to compute the proper

lifetime of the particle, given by the reciprocal of the total rate:

1 n
F’to’tal o ; '

It is conventional to write the lifetime multiplied by the speed of light, so that the product
cr has units of distance. From this, we may compute the branching ratio of an individual

decay mode A — ii, defined as

T
1ﬂtotal

Br(A — ii) = (1.3)

When measuring the mass of an elementary particle, the total decay rate appears as the
irreducible “width” of the Gaussian distribution. For this reason the decay rate is often
called the width of the particle!.

The decay rate is computed from Fermi’s golden rule, which separates the rate as a

product of dynamic and kinematic factors:

dl' = | M|* x (phase space) (1.4)

where M is the amplitude or matrix element of the decay process and the phase space

factors consist of differential forms over 4-momentum space and energy and momentum

T has dimensions of inverse time, which in natural units is the same as mass.
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conserving d-functions. The amplitude encodes information regarding the underlying pro-
cess and will depend on the coupling constants, masses of intermediate particles, etc. More
concretely, for an n-body decay A — fi, (k = 1,...,n), Fermi’s Golden rule for the differ-

ential decay rate is given by

ar = M2 (

2my

L . n
H (27r)32Ek> x (2m)0 (pA - ;m) (1.5)
where py, is the 4-momentum of the k' particle, and S is a statistical factor corresponding
to the permutations of identical particle families in the final state.

In collider experiments, one must also compute the 2 — n scattering process AB — fj.
The likelihood for a scattering process to occur is measured in terms of the scattering cross
section, 0. The cross section may be thought of as the constant of proportionality that
relates the number of scatterings, Ng, to the numbers of incoming particles N4 and Np,
divided by the overlap area A. More concretely,

Ny4Np
A

Ng=o (1.6)

Thus, the cross section has units of area. Cross sections are typically measured in units of
barns (b), where 1 b = 10724 cm?. At the LHC, interesting processes have cross sections
that are much smaller than 1 b, so in practice units of picobarns (pb) and femtobarns (fb)
are more common. In analogy with Equation 1.5, we may right down the “golden rule of
scattering” which gives the differential cross section for the 2 — n process:

s G -
do = IM* (H M) x (2m)*s* <pA +p5 — Zpk> (17)
k=i

V(pa-pB)? — (mamp)? P

For a given Lagrangian density £, the formalism of QFT gives a prescription for how to
compute M for a given decay or scattering process. The Lagrangian density of the SM will

be introduced in the next several sections.
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1.1.2 Symmetries and Representations

Symmetry plays a crucial role in quantum field theory. In 1918, German mathematician
Emmy Noether published a pioneering result which related global symmetries of a Lan-
grangian to conservation laws [6]. The result showed that if the Lagrangian of a physical

system is invariant under a continuous infinitesimal transformation

$(z) = ¢'(z) = ¢(z) + alg(z) (1.8)

then the quantity
, oc
Julz) = 78(8“¢)A¢ (1.9)

has vanishing divergence, 9,,j#(x) = 0. This quantity j,(z) is called the Noether current.

From this we may define

Q= [ i (1.10)
all space

which will satisfy %Q = 0, meaning that it is conserved in time. To reiterate this important
result, for every continuous symmetry transformation which leaves the Lagrangian invari-
ant, there is a corresponding Noether current with vanishing divergence, and therefore a
conserved charge. These currents and charges will appear throughout our discussion of
the SM.

In the SM, particles are classified based on how their fields transform under the oper-
ations of various symmetry transformations. These sets of transformations are known as
Lie groups, and their action on the fields of the SM is formalized using the language of
representation theory. Given a Lie group G and a vector space V, we define a representa-
tion of G to be a map IT : G — GL(V) from the group G to the group of linear operators
on V GL(V) satisfying

(g - h)v = I(g) - I(h)v

forall g, h € G and v € V. We write the representation as a pair (II, V). The multiplication
on the left is taking place in G, whereas the multiplication on the right is taking place in
GL(V'). We can similarly define a representation of the Lie algebra g which is related to II

via the Lie group-Lie algebra correspondence. In QFT when we refer to representations,
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we usually are referring to representations of the Lie algebra.
In the SM, there are two important types of symmetries to consider: spacetime sym-
metries such as translations, rotations and boosts, and gauge symmetries which act on

internal degrees of freedom in a quantum system.

Symmetries of Spacetime

Perhaps the most familiar symmetry of nature is that the speed of light has the same value
in all reference frames. Originally stated axiomatically in Albert Einstein’s annus mirabilis
paper on what is now called special relativity [7], this symmetry now provides the foun-
dation for all quantum field theories which describe elementary particles. The set of trans-
formations that respect this symmetry, the Poincaré group, is described mathematically as
the semi-direct product of the group of spacetime translations R*!, and the set of Lorentz
transformations, O(3, 1)2. From Noether’s theorem, the translational symmetries give rise
to energy and momentum conservation, whereas the Lorentz symmetry gives conserva-
tion of angular momentum.

To understand how different types of particles transform under Poincaré transforma-
tions, it is necessary to classify the different representations of the group. In practice, this is
done by studying the representation theory of the Lie algebra of the Lorentz group, s0(3,1).
With a bit of algebra, one can show that this Lie algebra is isomorphic to su(2) x su(2) and
we see the connection between spin and relativistic transformation properties. Borrowing
from what we know from the theory of non-relativistic spin, the representations of so(3, 1)
must then be characterized by pairs of numbers (j1, j2) where ji, jo are either integer or
half-integer. The particles that make up the SM may then be classified based on their trans-
formation properties using these two values. A table of these representations is given in

Table 1.1.

2The set of Lorentz transformations is defined as the set of isometries of Minkowski space. That is, it is the
group of transformations A satisfying gxo = A" AA” 5 gu..
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Representation | Spin Name
(0,0) 0 scalar
(3,0) i left-handed Weyl spinor
(0,2) 3 right-handed Weyl spinor
(2,00 (0,3) 3 Dirac spinor/bispinor
.4 1 vector

Table 1.1: The representations of the Lorentz group.

The massive fermions in the SM transform in the (3, 0)& (0, 1) representation. We write

their 4-component fields as a combination of two Weyl spinors

b= vr (1.11)
YR

where v, and 1 transform under (3,0) and (0, 5), respectively. We can project out the

left- and right-handed components of a fermion using the projection operators

V1= Pup = 50—, r = Prv = 5(1+5)0 (1.12)

where 7° = i79919243 is the chirality operator. The distinction between left-handed and

right-handed representations will be crucial for understanding the electroweak force in the

SM (Section 1.4).

Gauge Theory

The core idea underpinning the SM is gauge theory. A gauge theory with gauge group G
is a quantum field theory with a Lagrangian that is invariant under local transformations
of a Lie group G. The most notable example of a gauge theory is quantum electrodynamics
(Section 1.2) which is based on the abelian U(1) group. In the 1950’s, Chen Ning Yang and
Robert Mills extended the concept of gauge theory to nonabelian groups in an attempt
to provide an explanation for strong interactions [8]. This sparked the so-called “gauge

theory revolution” and would turn out to be one of the most crucial developments in the
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history of the making of the SM. For this reason, non-abelian gauge theory is also referred
to as Yang-Mills theory.

To appreciate the subtleties of Yang-Mills theory, we begin with a complex-valued
Dirac field ¢(x), and require that our theory should be invariant under the transforma-
tion

Y(x) = @ T (z) (1.13)

where the set 7% € g, often referred to as the generators of the transformation, form a
basis of the Lie algebra of G. The transformation property in Equation 1.13 is that of the
fundamental or defining representation because the operators 7 are represented by the
matrices that define the Lie group structure. The fermionic fields in a gauge theory always
belong to either the fundamental representation or the trivial representation where 1) — 1.

In order to describe a dynamical theory, the Lagrangian must also contain terms in-
volving derivatives of the fields 9,,%. Local gauge invariance complicates this, because the

definition of the derivative (in a given direction specified by n*)
1
nH o) = limGHOE [Y(z + en) — ¢(x)] (1.14)

requires a comparison of fields at different points in spacetime which will have different
transformation properties in our local gauge theory. To include derivative terms in our La-
grangian, we then need a systematic and consistent way to “connect” or identify the gauge
transformation properties of our field ) over nearby points in spacetime. In other words,
how can we transport our field ¥)(x) along a path in a gauge covariant way?

To do this, we introduce an additional mathematical structure A, known as a connec-
tion which is a Lie algebra valued 1-form: A, = AjT“. The role of the connection is to

compensate for the difference in gauge transformations from one point to the next:
1
n"' D, = limﬁﬁog [Y(x + en) — igent A, ()Y ()] (1.15)

This operator D,, in Equation 1.15 is called the gauge covariant derivative and will take the

place of the usual d,% terms in our Lagrangian. More succinctly, the covariant derivative
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takes the form

D, p(x) = 0 (x) +igAup(z) (1.16)

In gauge theories, the connection is called a gauge field as it may be identified with the
gauge bosons that carry the forces between particles. The gauge fields transform under

the adjoint representation, defined by

Ay— AL =UAU + é(@uU)UT (1.17)
Mathematically, the adjoint representation of a Lie group is the representation of the group
on its own Lie algebra. To build a gauge-invariant kinetic term for the gauge fields, we

define the field strength tensor as®

F, = 0,A% — 0,A% + gf**°Ab A (1.18)
where f¢ are the structure constants of the Lie algebra g
[T%, T = if®Te, forT®cg (1.19)

With the covariant derivative in hand, we can now write down the Lagrangian. The
Lagrangian density for a free, massless non-Abelian gauge theory with gauge group G is
given by

1

L= F P (1.20)

This allows us to define the SM as a non-abelian gauge theory with a gauge group that is

a direct product of the QCD gauge group and the electroweak gauge group

GSM = SU(3)C X SU(Q)L X U(l)y . (1.21)
——
QCD EW

These two pieces will be described in detail in the following sections.

3For the reader who prefers coordinate free notation, the field strength tensor may be expressed as F =
dA + A A A, where A A A does not vanish because A takes values in the Lie algebra.
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1.2 Quantum Electrodynamics

In the late 1920’s, Paul Dirac introduced the first relativistic treatment of quantum me-
chanics, solving a problem that had eluded physicists since the early days of the quantum
theory [9], [10]. This breakthrough was the first of many in the development of the SM
and laid the groundwork for relativistic quantum field theory. However, it was the work
of Dyson, Feynman, Schwinger, and Tomanaga that finally formulated electrodynamics in
the language of relativistic quantum field theory in a consistent manner [11]-[17]. Their
theory, known as Quantum Electrodynamics (QED) was the first such relativistic quan-
tum field theory and marked the first major development in the making of the SM.
Formally, QED is an abelian gauge theory with G = U(1)em. The covariant derivative
(Equation 1.16) is given by
Dyth = 8, + ie A1 (1.22)

where v is a Dirac spinor, and e, the coupling constant of the theory, is the familiar electric

charge. From this, we may construct the QED Lagrangian for a single Dirac fermion :
LoED = —EFWFW + (i Dy — m)y (1.23)
This Lagrangian is invariant under a U(1) gauge transformation acting as
Ay = Ay + 9,0, Y — e Ny (1.24)

for an arbitrary function A\(z). The Noether current associated with this symmetry may

then be computed using Equation 1.9
" = ey, (1.25)

After quantizing the theory, we may write down the expression for the conserved charge

corresponding to the Noether current,

/ 27:;32(19%8 s ) (1.26)

s=1
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which is equal to the electric charge times number of particles (b;.Tbg.), minus the number

of antiparticles (cf;r cz)- Thus, we observe the motivation for defining the coupling constant

to be the electric charge. The electric charge is usually expressed in terms of the dimen-

sionless ratio «;, known as the fine structure constant:

e2 1
4rhe 137 (1.27)

o =

As alluded to in the first paragraph of this section, in the late 1940’s it was shown that
the divergent contributions to physical quantities such as the self-energy of the electron
could be removed in a systematic fashion through the procedure of renormalization. This
cemented QED as a robust description of the interaction between light and matter. QED
is still most accurate physical theory ever formulated and serves as a prototype for a suc-

cessful quantum field theory.

1.3 Quantum Chromodynamics

Much before the development of the modern understanding of the SM it was known that
a "strong nuclear interaction" must exist to overcome electrostatic repulsion in atomic nu-
clei. In the 1950s and 1960s, a large number of stable hadrons and hadronic resonances
were discovered that were thought to interact via this strong interaction, but little was
understood about their dynamics. To make sense of the mass spectrum of this so-called
“particle zoo”, Murray Gell-Mann [18] and Yuval Ne’eman [19] posited that the observed
hadrons are members of specific representations of a new approximate SU(3) symmetry
that was an extension to the SU(2) description of isospin put in place by Werner Heisen-
berg in 1932 to relate protons to neutrons [20]. Due to the fact that certain mesonic (spin-0)
and baryonic (spin-1/2) states could be neatly classified by the 8 representation of SU(3),
this model was deemed the Eightfold way. Then in 1963, the quark model was intro-
duced independently by Murray Gell-Mann [21] and George Zweig [22], [23] as a way to
explain the origins of this SU(3) symmetry. The model proposed the existence of a new

type of fundamental particle called the quark which came in three different flavors, and
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an approximate SU(3); symmetry that related them®. After the experimental findings of
James Bjorken showed that hadrons behave as collections of point-like constituents when
probed at high energies [24], the quark model was cemented as a fundamental aspect of
the SM and our understanding of strong nuclear force.

Despite the great successes of the SU(3) y quark model, there were several phenomenon
that it could not explain. In particular, the model could not explain the fact that the spin
S = 3/2 baryon, the A", was comprised of three up quarks with parallel spins and van-
ishing orbital angular momentum, thereby having a symmetric wavefunction and seem-
ingly violating Fermi-Dirac statistics. To solve this dilemma, Gell-Mann and others hy-
pothesized that quarks carry an additional quantum number called color [25]-[27]. The
Fermi-Dirac problem is then solved if the baryon wavefunctions are antisymmetric under
this new color charge, giving rise to a totally antisymmetric wavefunction. For this mech-
anism to work, three color indices were needed for the quarks with an internal symmetry
group SU (3)c to relate them, building on the earlier work of Yang and Mills.

This theory, known as Quantum chromodynamics (QCD), is a non-nonabelian gauge
theory with G = SU(3)¢ which describes the strong nuclear force. The Lie algebra su(3)
has dimension 3% — 1 = 8, and is spanned by a set of 3 x 3 hermitian matrices T with
a=1,...,8. Asusual, the 7% € su(3) are used to generate the local SU(3) gauge transfor-
mations () — U(z)¢(z) where U(z) = ¢*(®7T*, We can then write down the covariant

derivative, defined by its action on a field ¢ in the fundamental representation.

Du¢($) = (au - igsTaAZ)w(l‘) (1-28)

where the gauge fields Aj, are the gluon fields, and g; is the QCD coupling constant. The

QCD Lagrangian is then deceptively simple:

1 a apy Ik

with Fj, as defined in Equation 1.18. Aside from the masses of the quarks (whose origin

will be discussed in Section 1.4.3), the QCD coupling constant g, is the only fundamental

4ugr for flavor, of course
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parameter of QCD. In analogy with the fine-structure constant of QED, this coupling is
usually written in terms of o = %.

Despite the simplicity of the QCD Lagrangian, there are many intricacies lurking be-
neath which make QCD a complex and fascinating theory. Like all QFTs, predictions for
QCD observables are expressed in terms of the renormalized coupling constant a;(u%),
where 11 is the renormalization scale. The exact value of ;1 is unphysical, but when taken
to be the scale of the momentum transfer @ of a given process, as(Q?) is representative of
the effective strength of the interaction in that process. The evolution of the coupling con-

stant as the scale changes is called the running of the coupling. This running is described

by the renormalization group equation (RGE)

= B(as) = —(boa? + brad + byt +---). (1.30)

For a nonabelian gauge theory with G = SU(N), the 1-loop S-function by is given by

1

For QCD, we have N = 3 and ny = 6. Thus,

Bacp(as) = —(%az +ee) (1.32)

The negative sign on the 1 loop S-function implies that the strength of the coupling con-
stant decreases as the renormalization scale increases. For momentum transfers on the order
of 100 GeV-1 TeV, a,, ~ 0.1, meaning that the quarks inside hadrons behave more or less
as free particles when probed at large enough energies. This property of QCD is known as
asymptotic freedom, and was first discovered in 1973 by David Gross, Frank Wilczek [28]
and David Politzer [29], earning the trio the 2004 Nobel Prize. In this so-called “pertur-
bative regime”, analytic computations using perturbation theory allow for quantitative

predictions for hadronic interaction cross sections.
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At one loop, we may solve the RGE for a(Q?):

o g (NQ)
QAQ%__1+hw4u%thWu% (1.33)

This may be simplified by introducing the QCD scale parameter A as

1 B 1 QQ B QQ
O " ae T <u2> = by 1n (A2> . (134)

The scale A corresponds to the scale where a;(1?) becomes infinite. Equation 1.33 may

then be written as
1

@)= gz

(1.35)

The value of A has been derived experimentally and is roughly 300 MeV [30]. For Q? values
close to A, the coupling constant becomes large and perturbative QCD breaks down. For
large distances (small @), the coupling then becomes so large that is impossible to isolate
a quark from a bound hadronic state. In fact, it becomes energetically favorable for a new
quark-antiquark pair to be created, forming a new bound state. This property, known as
color confinement, is observed experimentally and in lattice simulations but cannot be de-
rived from first principles due to the failing of perturbation theory in this regime. Thus, the
only stable QCD states are color-neutral groupings of quarks and gluons such as mesons
and baryons. In collider experiments, color confinement manifests in the formation of jets,
collimated sprays of hadrons and other particles initiated from the production of a single
quark or gluon. When a quark or gluon is produced in isolation, quark/anti-quark pairs
are spontaneously created from the vacuum to form color neutral bound states. This pro-
cess is known as hadronization. Figure 1.1 shows a simplified diagram of jet formation,
in which two free quarks are produced which subsequently hadronize, each forming an

isolated jet. The simulation of this phenomena will be described in Section 6.1.1.

1.4 Electroweak Unification

The story of the SM gets particularly interesting when we begin to consider the weak

nuclear force. Perhaps the most important realization during the entire development of
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A0, Q99009

Figure 1.1: The formation of two jets from a quark-antiquark pair [31].

the SM was the discovery that the weak force and the electromagnetic force were two
sides of the same coin. The discovery of this so-called “electroweak unification” (and the
subsequent symmetry breaking mechanism that breaks it down) in many ways defines the
SM, and radically redefined our current understanding of high-energy physics. In this
Section, we will discuss this development in depth, starting with a brief overview of the

weak force (Section 1.4.1) before diving into electroweak unification (Section 1.4.2).

1.4.1 The Weak Force

Following the tremendous success of QED, 20" century physicists were motivated to pro-
vide a quantum field theoretic description of the experimentally observed weak nuclear
force responsible for S-decay. In 1933, Enrico Fermi proposed a theory of $-decay which

posited a four-fermion interaction between the neutron, electron, neutrino, and proton
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known as the Fermi interaction. This theory was expanded to further explain the decay
of the muon [32], and incorporate the parity violation observed in the famous 1958 exper-
iment conducted by Chien-Shiung Wu [33]. Then in 1958, Richard Feynman and Murray
Gell-Mann determined that the tensor structure of the four fermion interaction was that of
a vector minus axial vector, or V — A [34], and it seemed that the fundamental nature of
the weak nuclear force was slowly being uncovered.

However, despite its success as a low energy description of the weak force, there were
several fundamental issues with the Fermi theory. For one, computations resulted in irre-
movable infinities when pushed to higher order in perturbation theory, indicating that the
Fermi theory was not as robust as QED which by that time had been shown to be renor-
malizable. Perhaps even more distressing was the fact that there was little rational for the
structure of the Fermi interaction. Physicists at the time viewed the model as a theory
that was “cobbled together” to fit experimental data [35]. This eventually led to the re-
placement of the four-fermion contact interaction by a more complete theory describing a
short-range non-contact force mediated by the W and Z bosons, once again taking advan-
tage of the work of Yang and Mills. But as we will see, in order to apply Yang-Mills theory
to the weak force, it must be viewed as a manifestation of a unified theory of electroweak

interactions.

1.4.2 Glashow-Weinberg-Salam Theory

In the 1960’s, Sheldon Glashow, Steven Weinberg, and Abdus Salam developed a ground-
breaking model for the unification of the weak force and electromagnetism [36]-[38]. The
theory, known as the GWS model or electroweak model, was a major milestone in the
development of the Standard Model and earned its three founders the Nobel prize in 1979.
The GWS theory is a non-abelian gauge theory with gauge group SU(2);, x U(1)y. The
subscript Y is used to differentiate the U(1) of the GWS model from the more familiar

U(1)em of QED. The relationship between the two will be described in Section 1.4.3.
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In the GWS model, fermions are grouped into SU(2), doublets

Ve vy Uy U S b
) ) ; ) Y (1 * 3 6)
e” uwo T~ d c t
leptons quarks

This is motivated by the experimentally observed properties of the weak force which show
that the interactions induce a transition between fermions of different charges. The other
important property of the weak interaction is that it is a chiral theory, meaning that it treats
left-handed and right-handed fermion representations differently. The subscript L in the
SU(2), group refers to the fact that only the left-handed fermions transform under a non-
trivial representation of the SU(2)r, group whereas the right-handed fermions transform
as singlets. Hence, the doublets in Equation 1.36 are further decomposed into their left-

and right-handed Weyl spinor components. The left-handed fields form SU(2);, doublets

Ve,L ur,
Er = S QL: e (137)
€y, dL

while the right-handed components are singlets 1., = er,- - ,%q, = ur,---. The fields

transform under local gauge transformations as

Uy — W) = VeB@)gial@) Ty (1.38)

YR — P = VPP @y (1.39)

where the charge Y7, r is called the weak hypercharge (hence the subscript Y on U(1)y)
and 7% = 0%/2 are the familiar SU(2) generators in the spinor representation. These

charges are related to the familiar electric charge () via the Gell-Mann-Nishijima relation:

Q=T3+Y)/2 (1.40)

Like all gauge theories, local gauge invariance gives rise to connection forms. For the

SU(2)L group, there are three gauge bosons W (a = 1,2, or 3) which form the adjoint
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representation. Like the familiar U(1) of QED, the U(1)y gauge group has only a single
gauge boson B, in the adjoint representation. The action of the covariant derivative on

SU(2)r, doublets and singlets ¥, and vy is given by
DV = (8, +igWiT* +ig'Y1.B,) ¥r, Dur = (0u+ig'YrBy) ¥r (1.41)

It is convenient to re-parameterize the gauge fields as

1

+ 112
Wy = 7 (W, 7iW;) (1.42)
A, = cosbw B, + sin GWWE (1.43)
Z, = —sinOw By, + cos Oy W, (1.44)
where 60y is the weak mixing angle
g g

cos Oy =

/92 +g’27 72 + g2

This angle quantifies the degree of gauge mixing that occurs between the SU(2);, and

sin Oy = (1.45)

U(1)y groups.
Using this re-parameterization, we can now write down the fermion portion of Lgw

starting with the general form

»Cfermion = Z@jL’YMDu\I’jL + ZE]’R’Y“DMT/UR (146)

J f
where the index j runs over the three fermion generations, the index f runs over the 9
charged fermions. Plugging in the covariant derivative expressed in terms of the fields
let, Z, and A, we obtain terms corresponding to both charged and neutral currents. The

charged current is given by

Loc = \% [(@y"dy + ey er) W, +hee)] (1.47)

The charged current has several notable properties. First, only left-handed fermions and
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right-handed antifermions couple to the W+ bosons. This means there is a maximal break-
ing of both parity P (left <+ right) and charge conjugation C' (particle <+ antiparticle) sym-
metries in this interaction. Also, the charged current couples the W to SU(2),, fermion
doublets which differ by one unit of electric charge. We may use the chiral projection

operator (Equation 1.12) to rewrite these couplings as
_ 1_
Ve VMer = 51/67“(1 —7s)e. (1.48)

In this form, we observe that the charged current has the form of a vector () minus axial
vector (y/v5), making the connection with the V' — A Fermi interaction manifest.

The neutral current has two components:
Lne = Laep + LE¢ (1.49)

Using the Gell-Mann-Nishijima relation (Equation 1.40) and letting e = g sin fy we obtain

the interaction term from the familiar QED Lagrangian
Laep = €Ay Y P Qi (1.50)
J
The neutral weak interaction is given by
e = ﬁ EJ: [0 (T} = Qjsin® 0w ) r, + ¥ p2" (—Q; sin® Ow) ¥jr] Z,  (1.51)

The neutral current differs from the charged current in several ways. First, all interaction
vertices are flavor conserving: both the v and Z boson couple to fermions and their own
antiparticles. Second, both the QED and weak neutral currents interact with both fermion
chiralities due to the SU(2);, x U(1)y gauge mixing. However, only the QED current
respects P symmetry because the neutrino coupling to the Z only exists for left-handed
chiralities.

As is stands, we have accomplished the goal of constructing a theory which combines

QED and both the neutral and charged weak interactions. However, there is an important
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piece missing from the theory which is known to be true from experimental results: the

fermion and gauge boson mass terms. This is where the Higgs mechanism comes into play.

1.4.3 Symmetry Breaking and the Higgs Mechanism

In 1964, three landmark papers were submitted to Physical Review Letters by separate
teams in close succession which proposed related mechanisms to introduce mass terms
to a gauge theory in a way that respected the symmetry of the theory [39]-[41]. This
mechanism, now known as the Brout-Englert-Higgs mechanism, or simply the Higgs
mechanism, showed that by introducing an additional field that spontaneously breaks the
gauge symmetry, the gauge bosons can acquire mass terms in a consistent manner. To
illustrate the mechanism, we begin with a simple example of an abelian gauge theory with

gauge group U(1). Consider the gauge field portion of the Lagrangian:

1
Loauge = —7 Fuu F* (1.52)

This Lagrangian is invariant under the usual local U(1) gauge transformation of a field in
the adjoint representation: A, (z) — A,(z) — 19,n(z). If we were to naively add a mass

term for the gauge field

1 1
Egauge = _ZF;WFW/ + imAMA“ (153)

it would spoil the U(1) gauge symmetry of the Lagrangian. Instead, we may extend the

gauge field Lagrangian in Equation 1.52 by introducing a complex scalar field ¢:
L= L BB 4 (D)} (Du0) ~ V(9) (1.54)
with the usual covariant derivative D, = 0, + ieA,, and scalar field potential
V(o) = —olo+ 2 (66) (1.55)
The Lagrangian in Equation 1.54 is invariant under the local U (1) gauge transformation

Au(z) = Au(z) - é a(z), () = 9@ (a). (156)
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Figure 1.2: The Higgs potential V(¢). For > < 0 (a), the minimum energy configuration
of the fields will be that with ¢ = 0, and the global U (1) symmetry of the Lagrangian is
preserved. For u? > 0 (b), the potential will obtain local minima at ¢ = +/u2/\ = +v,
and the U(1) symmetry is broken.

If 4% < 0, the classical minimum energy configuration of the fields will be that with ¢ = 0.
In this case, the global U (1) symmetry of the Lagrangian is preserved, and our Lagrangian
simply describes a massless gauge boson coupled to a charged scalar field ¢ with mass .
However, if 42 > 0, then the extremum at ¢ = 0 is unstable, and two global minima appear
in the potential at v = /2 /. In this case, the field ¢ will acquire a vacuum expectation
value, or vev. In this configuration of the fields, the global U(1) symmetry is said to have
been spontaneously broken. This is shown graphically in Figure 1.2.

To observe the consequences of this spontaneous symmetry breaking (SSB), we can

expand the field ¢ about the minimum wv:
$(x) = (v + h(z))e ™ (1.57)

for small h(x),&(x). Plugging this expansion into the Lagrangian, we have to lowest non-

trivial order in the fields h(z),&(z),

1 1 4
L= (@) + €20 + WP (A + 20,6)* = TFu ™ + ’2‘7 —2u2h? (1.58)

Thus, after SSB we have a field h with mass m; = 2y, and a massless field ¢ called the



Chapter 1. The Standard Model 25

Goldstone boson. This is a specific example of a more general principal known as Gold-
stone’s theorem which states that for every spontaneously broken continuous symmetry,
there must arise a new massless scalar particle [42].

Despite having broken the global U(1) symmetry, we can still exploit the local U(1)
gauge symmetry to choose A, in such a way as to eliminate {(z) from the Lagrangian.
This choice of gauge is called the unitary gauge, and is given by fixing A}, = A, + 19,¢.
We can now write down the Lagrangian after SSB and unitary gauge transformation:

L= —EF’VF/’“’ + (9,h)? + 2% (A)? + w 2uh? 4 - - - (1.59)

4+ " 2\

where we have omitted terms that are cubic or quartic in the fields A, and h. From this,
we see that we now have a massive gauge boson with mass m 4 = v/2ev which depends on
the vev of the original scalar field ¢. But what happened to the Goldstone mode £? It is
useful now to consider the number of degrees of freedom before and after SSB. We began
with a massless gauge boson with two longitudinal degrees of freedom, and a complex
scalar with two additional degrees of freedom for a total of four degrees of freedom. After
SSB, we have a massive gauge boson with two longitudinal degrees of freedom and one
transverse degree of freedom, and a real scalar field with one degree of freedom, once
again for a total of four degrees of freedom. Hence, the complex degree of freedom of our
original scalar field has gone into the new longitudinal mode of the gauge boson. Because
of this, it is often said that the Goldstone mode is eaten by the gauge boson to give it its

mass.

Generation of W/Z masses

We can now apply the Higgs mechanism to the GWS model. It was Weinberg and Salam
who incorporated the Higgs mechanism to Glashow’s model of electroweak unification,
giving the theory its modern form. Consider a complex scalar ® which is an SU(2), dou-
blet
o = ¢ (1.60)
0
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with a Lagrangian
2
Lo = (D"®) (D) — V(D) = (D"®)!(D,®) + 1120Td — (qﬂ@) (1.61)
The minimum of V(@) in Eq. 1.61 occurs for
2 2
tp= =Y 1.62
OO 5y = 3 (1.62)
Expanding about this minimum °, we obtain
P ! 0 (1.63)
V2, + h(z)

where h(x) is a real scalar field. Evaluating the electroweak Lagrangian Lgw for this par-

ticular value of ®, we observe that the covariant derivative term generates terms quadratic

in the gauge boson fields

DG D & 9 ig’ B ig v 1 (0
( . )T ( 12 ) < H 9 I 9 ,u,) 2
v

[\

= — (g’Bu—i—gTiW/i) +...

2 gW/} — z'gWi

9B, — gWi’

=5 19 (W) + 07)°) + (6B — g

Wi + ..

Using the redefinition of the fields from Eq. 1.44, this first term becomes

2 2,2
1 () + ()?) + (/B — gW))?| = T-wrwr 4 (

g/2 + 92)1)2

8

5To obtain this form a gauge transformation to the unitary gauge is also necessary.

(1.64)

(1.65)

(1.66)

(1.67)

Z,7" (1.68)
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yielding mass terms for three of the four gauge fields:

(% v
mW:%, mzz§ma m4 =0 (1.69)

The mass terms for the W and Z bosons break the global SU(2);, x U(1)y symmetry, but
the massless photon preserves a residual global U(1)em symmetry subgroup. Thus, the

field ® acquiring a vev has broken the EW symmetry SU(2);, x U(1)y — U(1)em-

Fermion Masses

In the Dirac Lagrangian, the fermion mass terms appear as Dirac bilinears, m1v. Expand-

ing this in terms of the Weyl spinor components, we have

m (Prr + YriL) (1.70)

Because this term contains couplings between left and right handed fields, it will no longer
be gauge invariant due to the fact that these fields have different transformation properties
under SU(2)r,. Luckily, the introduction of the scalar field ® allows us to formulate fermion
mass terms in a gauge invariant way. First, consider the lepton SU(2);, doublet terms.

Without loss of generality, we specialize to the electron term. We have
Lkawa = ~AeEra®’er +h.c. (1.71)

where a is the SU(2)[, index, and A, is a new dimensionless coupling constant. This is of
course gauge invariant because combinations of the form L®R are SU(2), singlets. After
SSB, we may replace ® in the above equation with Equation 1.63 to obtain

B

E?(ukawa = - \/i)\evéLeR +hec+---. (172)

Thus, we have generated a mass term for the electron which is proportional to the vev of
the Higgs field:
Ae. (1.73)

me =

Sl
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The same procedure may be applied to the quark families. For simplicity, we only

consider the first generation. We have

Eq

Yukawa

= Q1 , PR — M€ Q;, Ppup + h.c. (1.74)

Substituting the vev of ® once again, we have

1 - 1
£${ukawa = _ﬁ)‘ddLvdR - EAUULUR +h.c. (1.75)
which gives us mass terms for the d and u quarks:
m—i)\v m—ix\v (1.76)
d \/§ dv, U \/5 u .

These additions to the Lagrangian are known as Yukawa interactions, and will henceforth
be referred to as Lyykawa- Note that there is no corresponding mass term for the neutrino.
Because there is no right-handed neutrino in the SM, it cannot obtain its mass through the
Yukawa interaction.

So far, the way we have written the electroweak Lagrangian points to only interactions
between fermion pairs in the same generation. This is true for particles in their weak eigen-
states. However, a freely propagating particle will always be in a mass eigenstate. The
difference between the two bases is encoded in a unitary matrix V' known as the Cabibbo-

Kobayashi-Maskawa (CKM) matrix:

(0 Vud Vus V| [ %a
Vol = | Vea Ves Ve | | s (1.77)
Uy, Via Vis V] \

The off-diagonal terms in V' allow for non-zero transition amplitudes between different
quark generations. This allows for weak flavor changing currents involving the W+ bosons.
There are no flavor changing neutral currents in the SM because the Z boson is neutral and
can hence only couple to quarks of the same charge. For leptons, all experimental evidence

is consistent with the mass eigenstates being equal to the weak eigenstates. Thus, there are
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no weak processes that are capable of changing lepton flavor in the SM.

1.5 The Higgs Boson

We have seen how introducing an additional scalar doublet ® with an appropriate poten-
tial can spontaneously break the SU(2)1, x U(1)y and give rise to mass terms for the vector
bosons. We have also see how the field ® can be used to give mass terms to the fermions
of the SM in a gauge invariant way. However, our discussion has yet to consider terms
involving the new scalar field h(z) from Equation 1.63. Let us first combine the pieces of

our previous discussion to write down the complete electroweak Lagrangian:
Lew = £gauge + Efermion + Lo + EYukawa (1-78)

The field ® appears in both Lo and Lyykawa- After SSB, we can plug the expression in
Equation 1.63 into the above Lagrangian. This gives kinetic terms for the field h(z) as well
as terms which couple the field i () to itself, fermions, and electroweak gauge bosons. We

obtain a mass term for the h(x) field, as well as cubic and quartic self interaction terms.

Ly = %(8“h)(8uh) — u*h? — b3 — iw* (1.79)

We can thus interpret the quantum of the field h(z) as a scalar particle with mass

my, = V2u? = \/gv. (1.80)

This particle is known as the Higgs boson, and the field h(z) is the Higgs field. The

interactions between the Higgs field and the gauge vector bosons are

h2  h -
Ly = (2@2 + v) 2myy WIW "+ +m% 2, 2") (1.81)

This gives rise to 3-point and 4-point interactions between the Higgs boson and the mas-

sive vector bosons. Finally, the interactions between the Higgs boson and the fermion
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sector is given by

Lop=-Y %f fh (1.82)
f

To summarize, we see that in order to explain the masses of the vector gauge bosons and
fermions, we must have a new massive scalar particle that couples to the SM fields.

In 1973 the weak neutral current was observed for the first time in a bubble chamber
at CERN, providing clear evidence of the existence of a new neutral boson consistent with
the Z [43]. Then, in 1983, unambiguous evidence of direct production of the W and Z
bosons was observed at the Super Proton Synchotron at CERN [44]-[47]. However, for
nearly 50 years, the Higgs boson eluded experimental evidence. But in 2012, a new parti-
cle was observed by the ATLAS and CMS experiments at the Large Hadron Collider that

was consistent with the SM Higgs boson [1], [2]. By fitting the mass distribution of dipho-

ATLAS ¢ Data

—— Sig+Bkg Fit (m _=126.5 GeV)

-------- Bkg (4th order polynomial)

Events / 2 GeV

= (5=7TeV, [Ldt=4 81"
500~ (5=8 TeV, [Ldt=5.91b" Hyy

Events - Bkg
o

100 110 120 130 140 150 160
m,, [GeV]

Figure 1.3: The invariant mass distribution of diphoton candidates observed using ATLAS
data at /s = 7 TeV and /s = 8 TeV. The resonant structure in the distribution at 125 GeV
constituted the first observation of the Higgs boson decaying to two photons. Image taken
from [1].

ton and ZZ pairs as shown in Figure 1.3, the new particle was found to have a mass of
roughly 125 GeV. The observation of the diphoton decay mode indicated that the new par-
ticle was not a vector boson, providing further evidence that was consistent with it being
the SM scalar Higgs. This all but confirmed that the Higgs mechanism applied to the elec-
troweak theory is an accurate description of Nature, and in 2013, Francois Englert and

Peter Higgs were jointly awarded the Nobel Prize in Physics for their contributions to this
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(a) (b)

Figure 1.4: Leading order Higgs production modes via the (a) ggF and (b) VBF processes.
Diagrams created using the TikZ-Feynman package [48].

groundbreaking achievement.

Since the initial observation of the Higgs boson, a rigorous program has been under-
way to study this new particle and better understand its properties. At proton-proton col-
liders such as the Large Hadron Collider, the Higgs boson can be produced through several
different interactions. Feynman diagrams of several leading-order production modes are
shown in Figures 1.4 and 1.5, and the corresponding cross sections are given in Table 1.2.

As described above, the Higgs boson couples to all massive SM particles allowing for a

Vs (TeV) Production cross section (in pb) for m;, = 125 GeV
gglb VBF WH ZH total
7 16.9740%  1.24720%  0.58722%  0.34730% 191
8 21.4750% 1607258 070720 042730% 242
13 48.6745%  378TZZE 137t200 o88tilt 551
14 54.TTESE 4287220 151TL0% 099731 621

Table 1.2: The SM Higgs boson production cross sections for m;, = 125 GeV in pp collisions
as a function of the center of mass energy [49].

wide range of potential decay modes. Figure 1.6 shows the predicted branching ratio of
the Higgs to various final states as a function of my,. For m;, = 125 GeV, the most favorable

decay mode is h — bb with Br(H — bb) = 58%.
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Figure 1.5: Leading order V H production modes via the (a) gq¢ — VH and (b,c) g9 -+ ZH
processes. Diagrams created using the TikZ-Feynman package [48].
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Figure 1.6: The branching ratios for the dominant decay modes of the SM Higgs boson as
a function of my,. Image taken from Ref [50].
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1.6 Summary

Putting the pieces together, the complete SM Lagrangian is simply the sum of the QCD
and EW Lagrangians (Equations 1.29 and 1.78)

Lsm = Locp + Lew (1.83)

The complete particle content of the SM is summarized in Figure 1.7. In total, there are
three generations of lepton doublets, three generations of quark doublets, four gauge

bosons, and the Higgs boson.

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
| 1 11l
mass [=2.2 MeV/c? ~1.28 GeV/c? ~173.1 GeV/c? 0 ~124.97 GeVic?
charge §% % % 0 0
o | QU P « @ |- H
up charm top gluon higgs

=4.7 MeV/c? =96 MeV/c? =418 GeV/c? 0

% % % 0

» d % (S » b "

down strange bottom photon

=0.511 MeV/c? =105.66 MeV/c? =1.7768 GeV/c? =91.19 GeVic?

-1 -1 -1 0

% | (- » (M » Gl 1 ;

electron muon tau Z boson

<1.0 eV/c? <0.17 MeV/c? <18.2 MeV/c? ~80.39 GeV/c?

0 0 0 +1

% Ve % V].L % V’L’ 1 \&

electron muon tau
neutrino neutrino neutrino W boson

Figure 1.7: The particle content of the Standard Model.

The SM has been overwhelmingly successful at predicting the results of every collider
experiment conducted thus far and to date, there has been no statistically significant ev-
idence suggesting that any of the Standard Model’s predictions are inconsistent with na-
ture. This makes the SM unequivocally the most successful theory of physics of all time.

This may be summarized by comparing the predicted and observed cross sections for a
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range of SM processes. The total and fiducial production cross sections for several SM pro-
cesses observed by the ATLAS experiment are shown in Figure 1.8, along with the most
precise theoretical expectations currently available. Each measurement is found to agree
with the theoretical expectation within uncertainties, underscoring the profound predic-

tion power of the SM.
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Figure 1.8: Summary of several Standard Model total and fiducial production cross section
measurements, corrected for leptonic branching fractions, compared to the corresponding
theoretical expectations. All theoretical expectations were calculated at NLO or higher.
The dark-color error bar represents the statistical uncertainty. The lighter-color error bar
represents the full uncertainty, including systematics and luminosity uncertainties. The
data/theory ratio, luminosity used and reference for each measurement are also shown.
Image taken from Ref [51].

Furthermore, the Higgs boson has now been observed in all of its dominant production
modes, and the experimentally measured cross sections for each process have been found
to be in perfect agreement with the SM predictions, as shown in Figure 1.9a. By measuring
the cross section of the various decay modes, the strength of the interactions between the
Higgs boson and SM particles can be tested (Equations 1.81 1.82). Figure 1.9b shows the

coupling strength as a function of particle mass. All data points agree perfectly with the
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SM predictions. At the time of writing, there has yet to be any indications of a discrepancy
between the SM description of the Higgs boson and the observed properties of the particle
observed at the LHC in 2012.
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Figure 1.9: Experimental measurements of the properties of the Higgs boson compared
to theoretical predictions by the Standard Model. (a) Cross sections for ggF, VBE, W H,
ZH and ttH + tH normalized to their SM predictions. Image taken from Ref [52]. (b)
Reduced coupling strength modifiers k™ for fermions (F' = ¢,b,7, 1) and /ky = for
weak gauge bosons (V' = W, Z) as a function of their masses mr and my, respectively, and
the vacuum expectation value of the Higgs field v = 246 GeV. The SM prediction for both
cases is shown as a dotted line. Image taken from Ref [53].

1.6.1 Shortcomings of the Standard Model

In spite of the overwhelming successes of the SM, there are several glaring issues with
the SM which remain unresolved. First and foremost, there are many fundamental phe-
nomena observed in nature that are not predicted or explained by the SM. These include
gravity, the nature of dark matter, neutrino masses, and the matter-antimatter asymmetry
observed in the universe, among others. Second, there are theoretical problems with the
SM which imply a lack of complete understanding of underlying phenomena. Examples

include the hierarchy problem and the strong CP problem.
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|

Figure 1.10: The contribution to the Higgs self energy due to a heavy fermion. Diagram
created using the TikZ-Feynman package [48].

The Hierarchy Problem

When computing the mass of the Higgs boson at one-loop level, self-interactions, gauge

loops, and fermion loops provide corrections to the bare mass:
mi = m,ZLO + om3

Consider the contribution to the self energy of the Higgs boson from the diagram in Fig-

ure 1.10. Let the H f f coupling be )\ ;. Computing this correction gives

-0 | e[ (20) 2 (%)

Ak k2 +m?
=28 [ G RE
<k2 —m f) (1.84)
dk 1 2m7
= —2N(f)\’ / + !
(f) f (2m)4 | k2 — m?c (k;2 - m%)z

where N(f) is a multiplicity factor equal to the number of color indices of the fermion
(N(f) = 3 for the SM quarks). The first term in the last expression of Equation 1.84 is
quadratically divergent. This means that in order to explain the observed mass of the
125 GeV Higgs boson, its bare mass mj, o must be fine-tuned in order to almost perfectly
counteract this divergent term. While this is not a physical dilemma, it is conceptually

worrisome because it is at odds with the guiding aesthetic principal of naturalness which
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posits that there should not be a hierarchy of scales among free parameters in a theory.

This is what is known as the hierarchy problem.

Dark Matter

A range of astrophysical measurements point to the existence of a non-baryonic type of
matter that is not described by the SM [54]-[56]. As early as the 1930s it was observed
that the rotation curves of spiral galaxies could not be explained by their visible matter
content alone. This phenomenon can be explained by the existence of dark matter (DM)
which interacts gravitationally with visible baryonic matter but not electromagnetically.

A representative distribution is shown in Figure 1.11 for the NGC 6503 galaxy. While

150 —

0 10 20 30
Radius (kpc)

Figure 1.11: Rotation curve of the NGC 6503 galaxy. The dotted, dashed and dash—dotted
lines are the contributions of gas, disk and dark matter, respectively. Image taken from
Ref [57].

there are several ways of explaining these measurements, the most natural explanation is
that DM comprised of weakly interacting massive particles (WIMPs). It is now believed
that as much as 27% of the matter content of the universe is comprised of dark matter,
and yet there is currently no explanation as to what is it or how it fits into out current

understanding of elementary particles. The fact that the SM does not provide a dark matter
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candidate is one of the most compelling arguments for the existence of a more universal

theory of particles beyond the SM.
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Chapter 2

Physics Beyond the Standard Model

If you think this Universe is bad, you should see some of the others.
-Philip K. Dick
Reality is not always probable, or likely.
-Jorge Luis Borges

Given the shortcomings of the SM described in Section 1.6.1, there have been many ef-
forts to develop a more complete theory which gives rise to the same predictions as the SM
at low energies, but incorporates Beyond Standard Model (BSM) physics at higher scales.
These range from “Theories of Everything” such as string theory, to “Grand Unified Theo-
ries” which unify the three gauge symmetries of the SM in one single gauge symmetry such
as SU(5) [58], to simple extensions to the SM gauge group via the inclusion of additional
gauge symmetries. In this chapter, we will discuss some of these theories with an emphasis
on phenomenology and prospect for discovery at hadron colliders. Section 2.1 introduces
the concept of supersymmetry, which posits an additional symmetry of spacetime that can
be used to simultaneously solve both the hierarchy problem as well as provide potential
dark matter candidates. Section 2.2 then considers alternative scenarios that share simi-
larities with supersymmetric models while evading certain experimental constraints. The
phenomenology of these models is described in Section 2.3, which leads us to a general
overview of long-lived particles in Section 2.4. Section 2.5 introduces a simplified class

of models that can be used to search for new physics in a model independent way, and a
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summary of existing constraints on these simplified models is summarized in Section 2.6

which provides further motivation for the search presented in this thesis.

2.1 Supersymmetry

In a famous “no-go” theorem published by Coleman and Mandula in 1967, the authors
prove that the most general symmetry of the S-matrix takes the form of a direct product
of Poincaré symmetry and internal symmetry [59]. That is to say, there can be no trans-
formations acting on the fields which cannot be factorized into the product of two terms,
one acting only on the particle type indices and the other acting only on the space-time
indices. As written, this theorem seems to preclude symmetries which mix particles of
different spins while still preserving non-trivial interactions. However, as is the case with
most “no-go” theorems, it was only a matter of time before further symmetries of the S-
matrix were discovered.

Supersymmetry (SUSY) is a principle of several notable BSM theories which posits the
existence of a symmetry relating fermions and bosons [60]-[65]. At its core, SUSY is a fea-
ture of spacetime which extends the Poincaré algebra into a super-Poincaré algebra. The
simplest supersymmetric extension of the Poincaré algebra adds a 2-component (Weyl)

spinor @ and its conjugate () with the anti-commutation relation

{Qa:Q3} =2(0") 5 Fu (2.1)
These operators generate the SUSY transformations, and acts on states as follows:

@ |boson) = |fermion) (2.2)

Q |fermion) = |boson) (2.3)

While this may seem to violate the Coleman and Mandula Theorem, a key assumption in
the 1967 proof required that the generators of the spacetime symmetry be bosonic opera-
tors, that is, that they obey commutation relations and not anticommutation relations. In

1975, Haag, Lopuszanski and Sohnius generalized the Coleman Mandula theorem to show
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that the only non-trivial quantum field theories have a symmetry group which is a direct
product of a super-Poincaré group and internal symmetries [66]. This spurred a revolution

in theoretical physics and paved the way for deriving the current understanding of SUSY.

Figure 2.1: The contribution to the Higgs self energy due to a heavy sfermion f. Diagrams
created using the TikZ-Feynman package [48].

The simplest extension to the SM which realizes SUSY is known as the Minimal Su-
persymmetric Standard Model (MSSM). The MSSM essentially doubles the number of
particles in the SM, but with the addition of an extended Higgs sector needed to cancel
a gauge anomaly. In the MSSM, the gauge structure of the theory commutes with super-
symmetry, implying that particles and their superpartners carry identical gauge charges.
To see how the MSSM can resolve the hierarchy problem, consider a simplified example in
which two complex scalars fr and fr are added to the SM which couple to the Higgs field
as follows:

- _ _ . _ ~ A o
Lyj= %)\th (|fL!2 + yfRP) +vAsh (|le2 + |fR|2) + <\/f§Afhfo}*% + h-C-) (2.4)



Chapter 2. Physics Beyond the Standard Model 42

This Lagrangian gives additional contributions to X (shown in Figure 2.1) which are

computed as [67]:

7 « < d*k 1 1
2/, (0) = —AfN(f)/ @m) [kg _m?; + _mi ] (2.5)

+ (va>2N(f)/(;i;’§4 S 1

+ AfAf|2N(f)/ (;l:; <k2 g )1(k2 —m )]

where we have assumed N(f) = N(fg) = N(f). The first term in Equation 2.5, which
corresponds to the left diagram in Figure 2.1, is quadratically divergent. Comparing with
Equation 1.84, one finds that these two terms can be made to cancel if the following prop-

erties are satisfied:

A= —A}

While this may seem like trading one fine tuning for another, the remarkable thing is that
in the MSSM this relation is precisely satisfied naturally from the symmetries of the theory.
Note that this cancellation does not rely on any particular values of the masses mf , mj,
L R

or the coupling Ay.
In addition to providing a solution to the hierarchy problem, SUSY is further motivated

due to the fact that it can easily incorporate dark matter. R-parity is a Z; symmetry acting

on the fields of the MSSM defined as
P = (_1)3(B—L)+25 (2.6)

All Standard Model particles have R-parity of +1 while supersymmetric particles have R-
parity of —1. If R-parity is a conserved quantity, then the lightest supersymmetric particle

(LSP) of the MSSM would be forbidden from decaying into any SM particle. This means

'For a full proof, see Ref [68], for example.
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that the LSP is a stable, weakly interacting massive particle (WIMP), making it a prime
dark matter candidate. Thus, the MSSM is an extremely promising theory that can simul-
taneously restore naturalness to the SM as well as potentially explain the nature of dark
matter.

Finally, supersymmetry is also a necessary feature of all formulations of string theory
which give a realistic description of low energy physics 2. As a self-consistent formulation
of quantum gravity, string theory is widely considered the most promising candidate for a
Theory of Everything. Hence, SUSY is even further motivated as a potentially experimen-

tally probeable manifestation of Plank scale physics.

2.2 Models of uncolored naturalness

Despite providing a compelling solution to the hierarchy problem, the top partners of the
MSSM carry SM color, and are therefore expected to be produced abundantly at the LHC.
In the absence of a discovery at collider experiments, the MSSM and other theories with
colored top partners are becoming increasingly constrained. However, it is also possible
for extensions of the SM to address the hierarchy problem while introducing top partners
which do not carry SM color, due to the fact that the cancellation mechanism in Equation 2.5
works independently of the color of the particles in the loop. That is to say that color in this
context is nothing but a dummy index that is summed over, and it is logically consistent
for top partner states to be SM color-neutral. Because the production cross-section of the
uncolored top partners is significantly reduced, these models of neutral naturalness (NN)
can help resolve the hierarchy problem while evading constraints imposed by experiment.
In this section we will briefly review the most notable examples of NN: Folded SUSY, Twin

Higgs, and Quirky Little Higgs models.

2.2.1 Folded SUSY

Folded SUSY (FS) theories [69], [70] address the question: can we have SUSY with color-

less stops? In FS theories, at low energies the Lagrangian for the top sector has the same

2Bosonic string theory exists without supersymmetry, but since we know fermions to exist, it should not
be considered a theory with a realistic description of low energy physics.
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form as in in MSSM, however the scalars are not charged under SM color, but rather a new
hidden color group. To realize this, FS theories turn to 5D constructions with the extra
dimension compactified on S;/Z;. In these extra dimensional models, the five dimen-
sional space is called the bulk, and the surfaces at the points y = 0 and y = 7R are called
branes, where y is the coordinate of the fifth dimension. These models rely on the par-
ent/daughter orbifold correspondence, which is a relationship that exists between the correla-
tion functions of supersymmetric “parent” theories and those of their non-supersymmetric
“orbifold daughters” which are created by projecting out states of the parent theory by a
discrete symmetry. Using this correspondence, it is possible to build non-SUSY daughter
models that cancel the quadratic divergences of the Higgs mass due to the SUSY of the
parent theory.

The gauge structure of FS models is
SU(3)A X SU(?))B X SU(Q)L X U(l)y (27)

i.e. the gauge structure of the SM with an additional SU(3)p. Despite not having SM
color, the stops charged under SU(3) g must couple to the SM-like Higgs identically to the
stops in the MSSM in order to protect the Higgs mass through the mechanism described in
Section 2.1. However, the stops in Folded SUSY still carry EW charge, which implies that
they must not be lighter than 100 GeV due to LEP-era constraints [71]. The lightest states

in the mirror sector will therefore be pure gauge SU (3) g states known as mirror glueballs.

2.2.2 Twin Higgs

Twin Higgs models posit the existence of an additional copy of the SM called the Twin
(or mirror) sector, along with a discrete Z, symmetry that exchanges the two sectors [72].
In these models, the Higgs is identified as a pseudo-Nambu Goldstone boson (pNGB)
of an additional global symmetry that is spontaneously broken by one of the two fields

acquiring a vev f//2. The amount of this vev contained in each sector is given by

v = fsin (;) = fsind,vg = f cos <;) = fcos? (2.8)
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where v4 = 246 GeV.

The Zs symmetry between the SM and twin sectors ensures that the quadratic correc-
tions to the Higgs mass due to gauge and fermion loops are canceled. Unlike Folded SUSY,
light fermions charged under the mirror SU(3) g will be EW singlets and are therefore not
excluded from existing constraints. However in the absence of light mirror QCD matter,
the low energy limit of the Twin Higgs model can be described similarly to Folded SUSY

as a pure gauge SU(3)p theory giving rise once again to glueballs of SU(3)p.

2.2.3 Quirky Little Higgs

Finally, there are several BSM models which posit the existence of “quirks”, or quark-like
fermions that are charged under a different SU(3) g group than the SM quarks. One might
naively suspect that a theory could be devised in such a way that the “top quirk” cancels
the divergence caused by the top quark loop in the Higgs mass calculation. However,
without a symmetry argument requiring the cancellation of the divergence, this would not
amount to a solution of the hierarchy problem, but rather an additional instance of unnat-
ural fine-tuning. The Quirky Little Higgs (QLH) model [73] ensures this cancellation by
embedding the SU(3) 4 and SU(3)p groups in a larger gauge symmetry.

Similar to FS, QLH is a 5D construction which is compactified over an S; /Z, orbifold
with branes at y = 0 and y = mR. The gauge structure of the bulk is SU(6) x SU(3)w X
U(1)x, but boundary conditions on the brane at y = 0 break the gauge symmetry to
SU(3)a x SU3)p x SU(2)r, x U(1)y. Thus, the gauge structure of QLH is identical to
that of F'S. The most notable difference between QLH and FS constructions is that the
top-partners in QLH are fermions, but the low-energy phenomenology of QLH models is
largely identical to FS. Like FS, the fermionic top-partner in QLH carries EW charge and

therefore the bottom of the SU(3) p spectrum will consist of pure gauge states.

2.3 Neutral naturalness phenomenology

As described above, models of uncolored naturalness generally involve a mirror sector that

can be described as a pure SU(3)p gauge theory in the low energy limit with pure gauge
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mirror glueballs comprising the bottom of the mirror SU(3)p spectrum. The spectrum of
pure QCD glueball states has been computed using lattice methods and provides a de-
scription of 12 stable eigenstates [74]. The mirror glueball masses are entirely determined
by the running of the SU(3) 5 coupling constant a® and are given as multiples of my, the
mass of the scalar glueball state at the bottom of the spectrum, denoted 07 . The value of
my is thus highly dependent on the choice of model and relevant model parameters, but

has been shown to be preferred in the range of 12 - 55 GeV [75].

2.3.1 Exotic Higgs decays

Just as the SM Higgs boson couples to gluons through a top quark loop, the corresponding
top-partner loop provides a coupling between the Higgs and the mirror glueballs of NN.
Assuming that the mass of the top partner is sufficiently heavy, this interaction may be
described in an effective field theory through the addition of a dimension-6 operator to the
SM:

5L — ol [y* |HP2GB gBw (2.9)
3m | M? mv ’

where H is the SM-like Higgs doublet, G\ is the SU(3) s field strength tensor, and [y?/M?]

is a coefficient that depends on the specific UV-complete theory being considered. For

Folded SUSY, this coefficient is given by

2 2
Y L my
= == 2.10
M2 8v?m? (210
where m; is the FS stop mass. For certain Twin Higgs models, it is found to be
2 1 2
Yo sy 2.11)

where mr is the mass of the top partner.

Given that the preferred mass of the lightest glueball state satisfies mg < my,/2, this
coupling gives rise to the possibility of exotic Higgs decays to pairs of mirror glueballs.
This decay is therefore regarded as a “smoking gun” signature of NN models. For a sim-

plified scenario assuming symmetric two-body Higgs decays only, the branching ratio of
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Figure 2.2: The branching ratios of the Higgs boson to pairs of light glueball states 01+ as
a function of top-partner mass m;. Image taken from Ref [75].

the Higgs to pairs of mirror glueball states 07 is given by

B 2 7\ 2 2
FHHH) A (as(mn) oy |, 4mg
Br(h — 0770"") =~ Br(h — gg)sm <asA( " 4v [ 2}) 1 2 k(mo)  (2.12)

where k(my) is a parameter which represents potential effects from glueball hadronization

that are not taken into account [75]. The branching ratios are shown as a function of m; for
Folded SUSY in Figure 2.2 assuming x(mg) = 1. Depending on the values of mq and m;,
the branching ratio Br(h — 07107 ") can be on the order of 1%, making this decay mode
easily probeable by current LHC experiments and well within the current experimental

constraints on Higgs decays to exotic states (see Section 2.6).

2.3.2 Glueball decays

The dimension-6 operator in Equation 2.9 also provides a mechanism for glueballs to decay
back to SM particles through an off-shell Higgs. For the lightest glueball decaying to two
SM particles £, the decay width is given by [76]:

1 y? v 2
1972 |:]\42:| Z m2> (4WQEF§++)2F§LI\—4>&(T”%)7 (2.13)
h 0

ror - 69 - (



Chapter 2. Physics Beyond the Standard Model 48

2000F T ,,,,,,,,,,,,,,,,,,,,,,,, -
12500
> 1500f iy
8 12000 3
(7] T
© c
S s
3 =
= 11500
1000} —
= %
Q <)
~ ~
& 41000 €
500}
/500
‘ / ‘ : ‘ ‘ -9
0 10 20 30 40 50 60
mg (GeV)

Figure 2.3: Contours of log;, ¢c7/m, where c7 is the mean proper lifetime of the lightest
glueball state 07 *. Image taken from Ref [75].

where F§, | = (0| Tr GEG®r |0y, and oM ec(mp) is the partial decay width of a SM-like
Higgs boson with mass mg. Thus, the branching ratios of mirror glueballs are identical to
those of a SM-like Higgs boson of the same mass. From the discussion in Section 1.5, we
know that the dominant mirror glueball decay mode will thus be to bb, giving rise to a 4b
final state.

From Equation 2.13, we may compute the proper lifetime of the glueballs using Equa-
tion 1.2. The glueball lifetimes are shown as contours of log;, ¢r/m in Figure 2.3 as func-
tions of my and both m; and mr for the Folded SUSY and Twin Higgs scenarios, respec-
tively. For masses in the preferred mass range of 12 — 55 GeV, the lifetime of the lightest
glueball state spans nine orders of magnitude, ranging from microns to kilometers. Parti-
cles with such macroscopic proper lifetimes are referred to as long-lived particles (LLPs)
due to the fact they will travel sizeable distances from the primary interaction point prior
to decaying. Thus, we arrive at an important conclusion: models of uncolored naturalness
give rise to the signature of exotic decays of the Higgs boson to pairs of long-lived scalar
particles with masses in the 12 — 15 GeV range. Such decays would provide striking detec-

tor signatures and would likely be missed without dedicated searches. This signature will
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be further motivated in the next section.

24 Long-lived particles

In addition to strong motivation from top-down theories of Neutral Naturalness, LLPs
are becoming increasingly well motivated from an experimental point of view. As we
approach the beginning of the third run of the LHC, the absence of new physics observed
at the LHC is becoming more and more perplexing: we know that it must exist, yet we
still have as many unanswered questions as we did before the beginning of the LHC era.
While it may well be the case that new physics is above the scale accessible by the LHC,
or requires a much larger dataset to observe, we must consider the possibility that we
are looking for new physics in the wrong places. Nature may not necessarily be kind to
the experimentalist, and within the vast theory space available there are many scenarios
that give rise to more challenging detector signatures that may be extremely difficult to
observe. While the general approach at the beginning of the LHC era was to start with the
simplest search scenarios, the plethora of null search results has led experimentalists to
begin focusing their efforts on well-motivated but significantly more challenging searches.
These include low-mass, low cross section signals, very soft final states, and most notably,
non-prompt BSM decays. From the detector perspective, LLPs are of particular interest
due to their ability to elude the majority of searches which rely on the assumption that the
BSM particles will decay close to the primary interaction point. However, if the lifetime
of the LLPs is such that they decay within the fiducial volume of the LHC experiments
they can provide striking detector signatures with little to no SM backgrounds. Figure 2.4
shows an overlay of several different long-lived signatures that are being pursued at the
LHC, including disappearing tracks, emerging jets, and various displaced jet scenarios.
Each of these signatures requires a dedicated search with non-standard analysis strategies.

Despite giving rise to unconventional detector signatures, long-lived particles are not
an intrinsically exotic phenomena that should be discounted as a fringe corner of phase
space. From Fermi’s golden rule (Equation 1.5) we know that there are many possible

mechanisms which may give a particle a long lifetime, such as small couplings, heavy
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Figure 2.4: An overlay of several different LLP signatures in the ATLAS detector [77].
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Figure 2.5: The lifetime c7 as a function of particle mass for a variety of particles in the
Standard Model. Image taken from Ref [78].

mediators, and phase space suppressions from small mass splittings. Figure 2.5 shows the
lifetime as a function of particle mass for several SM particles. There are many particles in
the SM that have very macroscopic lifetimes, ranging from metastable particles like Kaons
and b-hadrons with lifetimes on the order of a few cm, to the muon with it’s nearly 1 km
lifetime. Thus, given the existence of LLPs in the Standard Model, it is perfectly reasonable
to consider the scenario in which BSM particles may also have macroscopic lifetimes. Any
model with small couplings, small mass splittings, or decays via off-shell particles can
similarly give rise to long lived particles.

Due to the exponential nature of particle decays (Section 1.1.1), the highest density of
decays per-unit volume will always occur close to the LLP production point. This means
that searches for LLP decays in the innermost tracking subsystems of particle detectors
at the LHC have sensitivity for wide ranges of proper lifetimes and are among the most
promising strategies for observing LLP signatures. In particular, if the LLPs decay within
the volume of the silicon tracking detectors of the ATLAS and CMS experiment, their de-
cay position may be precisely reconstructed as a displaced vertex (DV) from the recon-
structed trajectories of its charged decay products. Example diagrams of this signature
are shown in Figure 2.6. Depending on the angular separation of the decay products, a
hadronically decaying LLP can give rise to either a single merged jet (Figure 2.6a) or a pair

of well-separated jets (Figure 2.6b) that originate from a common vertex. Searches for this
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Figure 2.6: A long-lived particle hadronically decaying in the inner detector to (a) a single
reconstructable jet [79] and (b) two reconstructable jets in the calorimeters [80].

signature are thus sensitive to a wide range of potential BSM scenarios with LLPs.

2.5 Bottom-up considerations

We have now seen that LLP signatures are well-motivated both from top-down theories of
Neutral Naturalness described Section 2.2, as well as from a generic detector perspective
as constraints on strongly-interacting theories with traditional detector signatures grow
ever more stringent. Throughout the past several years prior to the writing of this thesis,
the focus of much of the theory community has shifted away from specific UV-complete
models of new physics toward more phenomena-driven approaches to hopefully identify
such signatures. This so-called “bottom-up” approach attempts to build simplified models
that give rise to unique signatures. Considering these simplified models allows signature-
driven searches to proceed in a largely model-independent way and remain sensitive to
a wide range of top-down BSM scenarios. These models should not necessarily be con-

sidered “toy models”, but rather potential scenarios that arise naturally in the IR limits of
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more complete theories of Neutral Naturalness. These models simplify the task of simulat-
ing BSM physics while still containing the relevant phenomenological signatures needed
to probe UV complete scenarios. Two such scenarios are described in the remainder of this

section.

2.5.1 The hidden sector

Hidden Valleys (HVs), also known as Hidden or “Dark” Sectors, are a generic class of
models in which a new confining gauge group is added to the SM [81]. Unlike the pure
gauge scenarios discussed in Section 2.2, HV models consider light “v-particles” that are
charged under the new gauge group but neutral under the SM. Due to the confining nature
of the HV gauge group the v-particles will assemble into neutral bound states called v-
hadrons. In these models, v-hadrons masses are predicted to be much smaller than 1 TeV
but can only be observed by passing over a barrier separating the hidden sector from the
Standard Model sector creating a so-called “valley” of states.

To explore the phenomenology of HV models further, let us consider a concrete ex-
ample®. We begin by extending the SM gauge group with an additional U (1)’ x SU(n,)
symmetry, where n,, > 2. If the U(1) symmetry is broken via a scalar vev (¢), we obtain
a massive gauge boson labeled Z’. The U(1) breaking is also responsible for giving mass
to the v-particles via the usual Higgs mechanism. For values of the HV confinement scale
A, between 1 GeV and 1 TeV, we expect Z’' masses on the order of 1-6 TeV [81]. Both
Standard Model fermions and v-particles will carry U(1)" charge, allowing the Z’ to serve
as a mediator between the HV and the SM. The TeV-scale mass of the Z’ gives rise to the
aforementioned “barrier” between the two sectors.

If the SM-like Higgs boson mixes with ¢, then this model predicts exotic Higgs decays
to pairs of v-hadrons. The v-hadrons may be unstable, decaying back to SM particles via
their mutual interaction with the Z’. In some scenarios, v-hadrons decay preferentially to
heavy flavor giving rise to the same H — bbbb final state observed in the Neutral Natural-
ness models considered previously. Given the large Z’ mass, the lifetime of the v-hadrons

may be sizeable. A diagram of the H — bbbb process as predicted by the HV scenario is

*It should be noted that this is just one example of a large set of possible models.
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shown in Figure 2.7. Thus, in this example we have constructed a simplified model with

Figure 2.7: Diagram of Higgs decays to v-pions, each of which decay to bb. The mixing
with the scalar ¢ provides the mechanism for the coupling between the Higgs boson and
the hidden sector. Image taken from Ref [82].

similar phenomenology to the top-down Neutral Naturalness models but from an entirely

bottom-up approach that does not rely on a specific UV-completion.

2.5.2 A simplified model

To maximize the discovery potential of a search for BSM physics, it is useful to conduct the
search in a way which is as model-independent as possible. Thus, rather than focusing on
a particular model, the search described in this thesis instead considers an even simpler
model to the HV scenarios in which a single additional scalar field is added to the SM
which couples to the Higgs field via the renormalizable Higgs portal interaction eS2HH.

A simple model can be constructed with the scalar Lagrangian
Loty 1 2 Asca 2y t )2
Escalar = Ekin - 555 H'H + 5,“55 - ES + /J’HH H - \gy (H H) (2.14)

where a discrete Z; symmetry S — —S has been imposed to prevent all terms cubic and
linear in S*. Depending on the choice of couplings, the value of the scalar potential may
have a minimum at § = 0 in which case the Z; symmetry will be unbroken and there
will be no mixing between the H and S fields. Thus, the scalar S will not decay and the
coupling € induces the invisible Higgs boson decay mode h — ss. If the minimum instead
has S # 0, then the two fields acquire nonzero vevs, S = s + vs and H = (h + vp,)/ V2,

and the two scalar states will mix. One of the mass eigenstates may be identified with

*These terms complicate the model but do not drastically change the phenomenology. Thus, for the sake
of this discussion the simplified model is sufficient.
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the observed Higgs boson mass m; = 125 GeV, and v;, may be identified as the usual
Higgs vev, vy = 246 GeV. The remaining free parameters in the Lagrangian written in
Equation 2.14 may be identified with the mass of the new scalar, the mixing angle,

EVL Vs

2 2
my — m;

sinf = + O(e) (2.15)

and the hss coupling constant. After symmetry breaking, the effective Lagrangian contains

1 /s 2 4 2m?
£s5h = L2 gng <mh+m> hs? (2.16)
2 2\ 3 e

which governs the interaction of the Higgs with two BSM scalar particles.

the term

The partial width for decays of the Higgs boson to these new scalars is then given by

1 k%02
F(h — SS) = 1677'(' mhh

By (2.17)

where 3y = /1 — 4m?c /m2. At lowest order, the partial decay width of the scalar to pairs

of fermions is given by

2
N, msmy
8t vp

['(s — ff) =sin?0g B3 (2.18)

where N, is the number of colors (3 for quarks, 1 for leptons). This width is equivalent to
the Standard Model-like Higgs of the same mass reduced by a factor of sin?6, i.e. Ty =
Tj.sm(ms) sin? §. The branching ratios B(s — SM) and B(h — ss — SM) may then be
computed from Equations 2.17 and 2.18, and are shown in Figure 2.8 as functions of the
scalar mass m,. Assuming that s cannot decay to other non-SM fields, the mixing angle
then determines the lifetime c7 of the scalar s. For sufficiently small values of the mixing
angle (6 < 1079), the lifetime of s is macroscopic, giving us a model of Higgs boson decays
to pairs of LLPs.

Although this is a simplified model, is has been used to describe a wide range of phe-
nomena such as dark matter and naturalness and appears in the IR limit of more complete
models such as Folded SUSY and Quirky Little Higgs. Thus, targeting this model allows
for constraints to be placed on a wide range of top-down BSM scenarios. In this thesis, this

S M +scalar model will be referred to as the signal model, and the specific h — ss — bbbb



Chapter 2. Physics Beyond the Standard Model 56

10°F T T T 10°F T T T
/ ]
, ‘ ‘ — b
| N -1 . i 2b21
107"~ | —  bb = 10 - T
S b 2c2t
= cc | / i
3 3 U I 4t
T / g
o2 A 8 102k ‘ 5 49
- e, MU
x 1T g 292t
o . .- - g9 S i [ —
el x : -~ 2b2p
ol | 8 i vy O o3k ! ] i 4u
--- uu+dd +ss : i
N : ’ . 212u
N N s 292y
10-4 | | Lot 104 A L Lviibevalul
1 2 4 6 810 20 40 60 1 2 4 6 810 20 40 60
ms [GeV] ms [GeV]

Figure 2.8: Branching ratios of (left) a CP-even scalar singlet to SM particles, as a function
of ms, and (right) exotic decays of the Higgs boson to as a function of m;. Image taken
from Ref [83].

process is the signal process. All non-signal processes will be referred to as background.

2.6 Existing constraints on Br(H — ss)

Under the assumption that new physics does not increase the magnitude of the couplings
of the Higgs boson to W/Z bosons, current experimental constraints allow for branching
ratios of the Higgs boson to BSM states of up to 21% [52], [84]. As shown in Figure 2.2,
the predicted branching ratios of the Higgs to pairs Folded SUSY mirror glueballs range
from 107° — 0.01, meaning that indirect probes through SM Higgs measurements are cur-
rently insensitive to this signature. Thus, dedicated searches for exotic Higgs decays are
necessary.

Several searches for h — ss — bbbb decays have been performed at the LHC, optimized
for different regimes of c7,. To identify LLP decays in the hadronic calorimeter, the ATLAS
experiment uses a dedicated trigger algorithm to select jets with anomalously high ratios of
energy deposited in the hadronic and electromagnetic calorimeters, providing sensitivity
for 0.1 m < ers < 10 m [85], [86]. ATLAS extends this sensitivity up to c¢75 < 100 m with
searches for LLPs decaying within the muon spectrometer. These searches make use of
a dedicated trigger algorithm which identifies clusters of regions of interest in the muon

spectrometer [85]. Offline, these searches reconstruct DVs from muon spectrometer tracks
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and further require large missing transverse energy or a second displaced vertex in the
ATLAS inner detector, providing sensitivity to a wide range of LLP lifetimes [87], [88]. All
of these searches rely on dedicated triggers designed to select events with LLPs decaying
in the ATLAS calorimeter or muon spectrometer. The lack of an equivalent trigger for LLP
decays in the ATLAS inner detector has been a limiting factor in probing LLP lifetimes less
than 102 m.

Other LHC experiments have developed searches targeting this lifetime regime. The
LHCb experiment performed a search for DVs resulting from LLP decays with sensitivity
in the range 1 mm < c7, < 0.1 m [89]. The CMS experiment also has a robust LLP search
program, and has placed limits on Higgs decays to LLPs in the range 1 mm < ¢75 S 1m

for ms > 40 GeV using a DV signature [90]. These results are shown in Figure 2.9.
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Figure 2.9: Existing limits on the Higgs branching ratio to pairs of long-lived particles
derived by (a) the LHCb experiment [89] and (b) the CMS experiment [90].

To circumvent the difficulty of triggering on LLP decays, other ATLAS searches have
exploited the V H associated production mode and relied on leptonic trigger signatures.
Searches based on standard b-tagging techniques were performed by ATLAS, with sensi-

tivity for crs S 1 mm [91], [92]. However, for longer lifetimes, standard reconstruction

~

algorithms become inefficient for identifying displaced decays and specialized reconstruc-

tion algorithms are needed. The current exclusion limits on Higgs boson decays to pairs of



Chapter 2. Physics Beyond the Standard Model 58

- .EWH Ll I YA T T P T TrTI T

: ATLAS
: [s=13TeV
: CR+(MS1+MS2) limit
: m,=125GeV

ms =5 GeV

ms = 8 GeV
— mg =15 GeV
— mg =25 GeV
—— ms =40 GeV
JHEP 10 (2018) 031
—— m, =20 GeV

m, = 30 GeV
—8— m, =60 GeV

;\HH‘ \\HHH‘ \\HHH‘ \\HHH‘ \\HHH‘ \\HHH‘ \\HHH‘ Lo L
10* 10° 102 10" 1 10 10® 10°
s proper decay length [m]

107!

1072

95% CL Upper Limiton B, _, .

L L S

1072

Figure 2.10: Summary of current exclusion limits for Higgs boson decays to long-lived
scalar particles s. Figure taken from Ref [86].

scalar particles are shown in Figure 2.10 as a function of the proper lifetime of the scalar.
For values of cry < 100 mm, the branching ratio of the Higgs boson to pairs of LLPs is
largely unconstrained by current ATLAS searches. The search presented in this thesis is
optimized for this range of proper lifetimes and aims to close the gap in coverage left by

previous ATLAS searches.
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Chapter 3

The Large Hadron Collider and the
ATLAS Detector

Gee, I wish we had one of them doomsday machines.
-Stanley Kubrick, Dr. Strangelove

Machines take me by surprise with great frequency.
-Alan Turing

This thesis describes a search performed using data collected by the ATLAS detector at
the Large Hadron Collider. In this chapter, we provide an overview of these two machines
and describe how the data were obtained. Section 3.1 describes the mechanics and oper-
ation of the Large Hadron Collider. An overview of the machine design is given which
outlines how the protons are accelerated to their final collision energies within the ATLAS
detector, and the metrics of the accelerator’s performance are defined. Section 3.2 then
gives an overview the ATLAS detector. The operation and performance of the three AT-
LAS subdetectors are detailed, along with a discussion of how ATLAS collects the data
that is used for physics analysis. The goal of this chapter is to provide the reader with ade-
quate background information so as to understand the discussions in Chapters 4, 5, and 7.
As such, the discussion is focused on the aspects of the LHC and ATLAS detector that are

most relevant to the search presented in this thesis.
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3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [93] is a multi-purpose particle accelerator located at
the European Organization for Nuclear Research (CERN) in Geneva, Switzerland. The ac-
celerator inhabits a tunnel approximately 100 m under the French-Swiss border extend-
ing from the CERN site in Meyrin to the foothills of the Jura mountains. The 3.8 m
wide concrete-lined tunnel was originally built for the Large Electron-Positron Collider
(LEP) [94], [95], and the LHC is the natural successor to that machine. At 27 km in cir-
cumference, the LHC is the largest and most complex machine in the world. The LHC is a
particle-particle collider !, meaning that it accelerates beams of identical particles in oppo-
site directions through two separate beampipes. While primarily a proton-proton collider,
it is capable of accelerating both protons as well as heavy ions in each of its beams. This
allows the various LHC experiments to study proton-proton (pp), proton-lead (p-Pb), or
lead-lead (Pb-Pb) collisions. The LHC was designed to achieve a maximal pp center of
mass energy of /s = 14 TeV, corresponding to a beam energy of 7 TeV per beam.

Situated at different points along the ring are the four main LHC experiments: AT-
LAS [96], CMS [97], LHCb [98], and ALICE [99]. The ATLAS and CMS experiments are
general purpose particle detectors designed to be sensitive to a wide range of final states.
The two experiments have similar design, sensitivity, and physics goals, and were built
to ensure reproducibility of results. The LHCb experiment was designed to study flavor
physics and CP-violation, and the ALICE experiment primarily uses heavy ion collisions to
study quark-gluon plasma. A map of the LHC and surrounding area is given in Figure 3.1

which shows the location of the four main experiments along the ring.

3.1.1 Machine design
Injection chain

Before being injected into the main LHC ring, particles are accelerated to increasingly high
energies by a series of smaller accelerators known together as the injection chain [101].

The protons used in pp collisions begin their journey as hydrogen gas [102]. After being

'as opposed to a particle-antiparticle collider, for example
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Figure 3.1: Overall view of the LHC, including the ALICE, ATLAS, CMS and LHCb exper-
iments. Image taken from Ref. [100]

stripped of their electrons, they are fed into the first step of the injection chain which is a
linear accelerator named Linac2. Here, the protons are accelerated from rest to an energy
of 50 MeV. They are then transferred to the Proton Synchrotron Booster (PSB), a circular
accelerator of radius 25 m, where their energy is increased from 50 MeV to 1.4 GeV. Next,
the protons are injected into the Proton Synchotron (PS) and further accelerated to 25 GeV
before being transferred to the aptly named Super Proton Synchotron (SPS). As the final
step of the injection chain, the SPS brings the protons up to an energy of 450 GeV at which
point they are ready to be injected into the main LHC ring. A schematic of the various

stages of the injection chain is shown in Figure 3.2.

The LHC machine

After the protons are accelerated through the injection chain, they are fed into the LHC

through two 2 km-long tunnels. The LHC ring consists of eight octants, with straight
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Figure 3.2: The CERN accelerator complex. Image taken from Ref. [103].

sections at their centers that are connected by arcs, as shown in Figure 3.3. The straight
sections are referred to as “Points” and house the main experimental and service facilities
of the LHC. The ATLAS, ALICE, CMS, and LHCb experiments are located at Points 1, 2,
5, and 8, respectively. At these points the two counterrotating beams are brought together
to yield collisions, and are therefore referred to as the interaction points (IPs). The other
points accommodate various beam service facilities that are needed to maintain the in-
tegrity of the beam. The LHC beam cleaning services are located at Points 3 and 7. These
facilities are used to collimate the beams to protect the accelerator from particles straying
away from the main beam path. Point 4 hosts the superconducting radio-frequency (RF)
cavities which are used to increase the energy of the beam from 450 GeV to 6.5 TeV [104].
There are eight RF cavities per beam which oscillate at a frequency of 400 MHz and pro-
vide an accelerating field of 5 MV /m. This corresponds to an increase in energy of 16 MeV
per LHC revolution, allowing the desired beam energy of 6.5 TeV to be reached after about

20 minutes. Point 6 is the location of the “beam dump” facility. Here, so called “kicker”
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Figure 3.3: Schematic layout of the LHC. Beam 1 travels clockwise and Beam 2 travels
counterclockwise. Image taken from [93].

magnets are used to quickly re-direct the beams vertically out of the LHC ring and into
an external absorber [105]. This allows for the emptying of the LHC beams in a safe and
controlled way in case of malfunctions or to prepare the beam for a new fill.

The LHC magnet system consists of coils of superconducting Niobium-Titanium (NbTi)
cooled by superfluid helium to an operating temperature of 1.4 K. The bending of the beam
through the arc sections of the LHC ring is provided by 1232 dipole magnets. Each dipole
magnet is 15 m long and produces a magnetic field of 8.33 T which constrains the beam to a
circular orbit. Given the limited space in the tunnel, the two LHC beams are housed in the
same cryostat and coupled magnetic fields of opposite polarity allow for the bending of
the counter-rotating beams. A cross sectional diagram of an LHC dipole magnet is shown
in Figure 3.4. A combination of dipole, quadrupole, sextupole, and octopole magnets are
used to focus the beam and further control the beam optics. This includes the squeezing
of the beam that occurs prior to collisions at the various IPs as well as maintaining a fixed

beam radius as the energy increases.
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Figure 3.4: Cross-section of an LHC dipole magnet. Image taken from Ref [106].

3.1.2 Performance and operation

The LHC began stable operation in 2009, with the main research program commencing in
March 2010 after a center of mass energy of /s = 7 TeV was reached for the first time. The
tirst data taking period of the LHC (Run 1) took place between 2010 and 2012, with a brief
shutdown at the end of 2011 to allow for an increase in beam energy from 3.5 to 4 TeV per
beam. In 2013, the LHC was shut down for a two year period known as Long Shutdown 1
(LS1). During this time various upgrades were performed to the detectors, injection chain
(the PS and SPS), and bending magnets to prepare for beam energies of 7 TeV.

The second data taking period (Run 2) began in 2015 with a beam energy of 6.5 TeV and
continued though 2018. The full Run 2 dataset comprises the data used in this thesis. At
the time of writing, the LHC is currently in the Long Shutdown 2 (LS2) period. During this
time, the first phase of upgrades are being performed to the ATLAS and CMS experiments
to prepare for the High-Luminosity LHC (HL-LHC) era. A diagram of the operational

timeline of the LHC is shown in Figure 3.5.

The LHC beam

The protons that comprise the LHC beam are not uniformly distributed, but rather di-

vided into bunches which are shaped by the RF cavities. As mentioned previously, the
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Figure 3.5: The planned run schedule of the LHC.

electromagnetic field in the RF cavities oscillates at a frequency 400 MHz. A proton that is
perfectly synchronised with the RF frequency is called a synchronous particle and will not
receive any further acceleration. However, any protons that arrive before or after the syn-
chronous particle will be accelerated or decelerated so as to match the RF frequency. This
results in the protons in the LHC clustering around the synchronous particle in bunches.
The number of protons per bunch is on the order of 10!
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Figure 3.6: Schematic of how a proton bunch is constrained inside of an RF bucket. Image
taken from [107].
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The oscillation of the RF cavities defines an envelope of allowed positions for the pro-
ton bunch known as an RF bucket, shown in Figure 3.6. The operating conditions of the
LHC determine the number of buckets to be approximately 35640, meaning that a max-
imum of 35640 bunches can occupy the LHC ring. However, not all RF buckets can be
tilled with bunches as this would overwhelm the experimental capabilities of the detectors
at the various IPs. Instead, only 1 out of every 10 RF buckets are filled with a proton bunch.
This corresponds to 2808 total bunches with a bunch spacing of 25 ns [108] and a bunch

collision rate of 40 MHz at the IPs.

Luminosity

The amount of potential collisions in a detector per unit time is characterized by a quantity
known as instantaneous luminosity, or £. The luminosity is the proportionality factor
between the number of events per second dN/dt and the interaction cross section of the

colliding particles
dN
E =L -0 Dp (31)
Thus, the instantaneous luminosity is measured in cm~2s~!. The luminosity is a charac-
teristic of the accelerator. Assuming the particles in the beam are Gaussian distributed in

the transverse plane, the instantaneous luminosity is given by

_ N1Nany frevyr

£ 4re, B*

F, (3.2)

where N; is the number of particles in each bunch, n, is the number of bunches per beam,
frev is the frequency of revolution, v, is the Lorentz factor, ¢, is the emittance of the beams,
p* is the beta function of the beam which quantifies how narrow the beam is, and F'is a
geometric factor due to the crossing angle of the beams [109]. The total amount of lumi-
nosity delivered is then simply the integral of the instantaneous luminosity with respect
to time:

Ling = / Ldt (3.3)
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The LHC is designed to deliver collisions to ATLAS and CMS with an instantaneous lu-
minosity of £ = 103 cm~2s~!. The total integrated luminosity delivered and recorded by
the ATLAS experiment are shown as a function of time in Figure 3.7. During Run 2, the
peak instantaneous luminosity recorded at ATLAS was 2.1 x 103 ecm~2s7!, far exceeding

the design luminosity.
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Figure 3.7: The integrated luminosity versus time delivered to (green) and recorded by
ATLAS (yellow) during stable beam conditions for pp collisions at /s = 13 TeV. Image
taken from [110].

Pileup

As described previously, the bunches in the LHC consist of roughly 100 billion protons
each, which is necessary to achieve the desired luminosity (Equation 3.2). A consequence
of this is that each time a pair of bunches cross paths at one of the interaction points, there
will be multiple distinct pp interactions. The interaction vertex with the highest > p?r of
associated tracks is known as the hard-scatter vertex, and is the most promising candidate
for producing interesting physics. The pp interactions that occur in addition to the hard
scatter are known as pileup and mostly consist of soft, inelastic scattering events. When
the pileup interactions occur in the same bunch crossing as the hard scatter vertex it is
called in-time pileup, and if the collisions originate from a previous or subsequent bunch
crossing it is called out-of-time pileup. Pileup presents a challenge to detector experiments

because the additional energy deposits complicate the identification of the physics objects
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originating from the hard scatter. The amount of pileup interactions is characterized by
computing the time averaged number of interactions per bunch crossing (x). During Run
2, the average value of (1) in ATLAS was (1) = 33.7 with peak values of (1) reaching 70.
The luminosity-weighted distribution of (u) is shown in Figure 3.8 for each data taking

year.
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Figure 3.8: The luminosity-weighted distribution of the mean number of interactions per
bunch crossing for the 2015-2018 pp collision data at /s = 13 TeV. Image taken from [110].

3.2 The ATLAS Detector

ATLAS (A Toroidal LHC ApparatuS) is a cylindrical multi-purpose particle detector lo-
cated at Point 1 of the LHC ring (Figure 3.2). Spanning 44m in length and 25m in height,
ATLAS is the largest particle detector ever constructed and one of the most complex sci-
entific experiments in existence. The detector spans nearly 47 radians in solid angle cov-
erage with respect to the pp interaction point. The ATLAS detector is composed of three
subsystems known as subdetectors, each of which are specialized for the identification of
specific types of particles produced in pp collisions. The subdetectors are the inner track-
ing detector, the electromagnetic and hadronic calorimeters, and the muon spectrometer.
The combination of these three systems makes ATLAS extremely versatile and capable of
reconstructing a wide range of potential interactions and final states. The ATLAS cylinder

is divided into the barrel region and two endcap regions. Each subdetector is designed



Chapter 3. The Large Hadron Collider and the ATLAS Detector 70

around this geometry with each system forming a coaxial layer around a central beam
pipe. Figure 3.9 shows the layout of the ATLAS detector and its subdetector systems. In
this section we will provide an overview of each subdetector, after some brief preliminar-

ies.

Tile calorimeters

: LAr hadronic end-cap and
forward calorimeters
Pixel detector

LAr eleciromagnetic calorimeters

Toroid magnets
Muon chambers Solenoid magnet | Transition radiation fracker

Semiconductor tracker

Figure 3.9: A cutaway of the ATLAS detector. Two people are shown for scale on the left
side of the figure next to the Muon chambers. Image taken from Ref. [96].

Magnet System

A defining feature of the ATLAS detector is its unique magnet system. The system is com-
posed of two parts: the central solenoid, and the toroidal magnet system?. Both systems
use a superconducting Niobium-Titanium alloy which is cooled to a temperature of less
than 5 K using liquid helium. A schematic of the magnet system is shown in Figure 3.10.
The central solenoid is 5.3 m long, 2.4 m in diameter, and only 4.5 cm thick. The layout of
the solenoid was designed to minimize the radiative thickness in front of the electromag-
netic calorimeter with the entire solenoid assembly contributing a total of ~ 0.66 radiation

lengths at normal incidence [111]. The solenoid is responsible for providing a 2 T axial

2Hence the “T” in ATLAS
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magnetic field for the inner detector. The toroid system consists of three separate magnets:
one in the barrel and one in each endcap. The barrel toroid is 25.3 m in length, with inner
and outer diameters of 9.4 m and 20.1 m, respectively. Each endcap toroid is 10.7 m in
diameter with an axial length of 5 m. The toroids use 8 air-core coils each and are respon-
sible for providing the field in the muon spectrometer which allows for the determination
of muon momenta. The magnetic field has a magnitude of approximately 0.5 T and 1.0 T

in the central and endcap regions, respectively.

\
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Figure 3.10: Schematic representation of the ATLAS magnets. Image taken from [112].

Coordinate System

The ATLAS detector uses a right-handed coordinate system with its origin at the nominal
interaction point in the center of the detector. The positive xz-axis points to the center of the
LHC ring, the positive y-axis points up toward the surface, and the positive z-axis points
along the counter clockwise direction of the beam. Cylindrical coordinates (r, ¢, z) are
used, where the azimuthal angle around the z-axis ¢ is defined such that ¢ = 0 corresponds
to the direction pointing toward the center of the LHC ring. The spherical polar angle 6 is
measured with respect to the beamline, with § = 0 in the plane of the LHC ring and 6 = 7 /2
in the transverse plane. Momentum vectors are described in terms of the momentum in
the transverse plane, pr, and the momentum in the direction of the beam, p.. The energy
in the transverse plane is labeled £t = Esinf. Transverse quantities are useful because

the initial energy in the transverse plane is known to be zero for the colliding system.
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The rapidity of an object is defined as

y_2 E—p,

(3.4)

In the massless or ultrarelativistic limit, the rapidity can be approximated by the pseudo-

rapidity, defined in terms of the polar angle 6 as
n = —Intan(6/2). (3.5)

A pseudorapidity of n = 0 corresponds to a vector in the transverse plane, whereas 1 = 0o
corresponds to a vector along the axis of the beam. Pseudorapidity is used as a measure of
polar angle rather than 6 because it is Lorentz invariant under boosts for massless particles.
The coordinate system used to describe a particle or system of particles is usually given
in terms of (pt,n, ¢). Angular distance is measured in terms of the pseudorapidity using
the metric AR = 1/(An)? + (A¢)?. This is a purely geometric quantity and is Lorentz

invariant if the involved particles are massless.

3.2.1 The Inner Detector

The innermost ATLAS subdetector is aptly named the Inner Detector (ID) and is the first
system to encounter the particles produced in the pp collision. The ID covers the region
In| < 2.5 and the volume 0.03m < r < 1.1m and |z| < 3.5 m. As a charged particle
traverses the ID, it deposits energy in various detector elements. These energy deposits
are called hits and are used to reconstruct the trajectories of charged particles. The ID is
immersed in a 2 T axial magnetic field produced from a superconducting solenoid magnet
which bends a particle’s trajectory in the azimuthal direction. This allows the detector to
measure the direction, momentum, and charge of electrically-charged particles based on
their reconstructed trajectory when traveling through the magnetic field. These trajectories
are known as tracks, and the algorithms used to reconstruct them will be described in

detail in Section 4.1.
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The ID is itself composed of three subsystems: the silicon pixel detector, the silicon-
strip semiconductor tracker (SCT), and the transition radiation tracker (TRT). Each subsys-
tem is dividing into a barrel region consisting of concentric cylindrical layers surrounding
the beam pipe, and two end cap regions on either side of the barrel. A rendering of the
ATLAS ID showing these systems is shown in Figure 3.11, and a more detailed schematic

is given in Figure 3.12.

r‘ R=1082mm

TRT

L R =554mm
( R=514mm

R =443mm

N

SCT
R=371mm

. R=299mm

R=122.5mm
R =88.5mm
R =50.5mm

R =33.25mm

R=0mm

Pixels

Figure 3.11: A cutaway of the ATLAS inner detector. Image taken from Ref. [113].

Pixel

The innermost subsystem of the ATLAS ID is the pixel detector [114]. It is composed of a

barrel section and two endcap regions and covers the pseudorapidity range || < 2.5.
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Figure 3.12: The layout of the ATLAS Inner Detector shown as an R — z cross-section. The
inlet on the lower left shows the pixel system in more detail including the IBL in orange.
The inlet on the lower right describes the fiducial regions defined by the three detector
subsystems. Image taken from Ref. [113].

The basic detector element of the pixel system is a module composed of silicon sensors

and electronics for readout and control. The sensing material is 250 ym thick and is con-

structed from an n-type silicon semiconductor. When a charged particle passes through a

semiconductor detector such as a pixel sensor, it excites electrons to the conduction band

leaving behind holes in the valence band. Under the influence of an electric field, electrons

and holes travel to electrodes where they result in a pulse that can be read out by dedicated

electronics and registered as a hit. In the pixel detector, this electric field is provided by a

bias voltage that is applied over the module.

In the barrel region, the pixel modules are distributed among three concentric 4 m long

layers positioned at radii of 50.5 mm, 88.5 mm, and 122.5 mm. In each endcap there are

three disks positioned at |z| = 495,580,650 mm. Each module in these layers is identical

and consists of 47232 sensing elements called pixels which are 50 ym x 400 ym in area and
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provides a spacial resolution of 10 ym in the x — y plane and 115 ym in z. Thus, each hit
in the pixel detector provides a precise three-dimensional measurement for a point along
the trajectory of a charged particle. The three barrel layers have 1456 modules for a total
of 67M pixels, and the endcap disks have 13M pixels across 288 modules.

Prior to the Run 2 data-taking period, an additional pixel layer was installed between
the beam pipe and the B-Layer called the Insertable B-Layer (IBL). The purpose of this
upgrade was to improve impact parameter and vertex resolution as well as protect the
B-Layer from excessive radiation damage. The IBL consists of 12 million pixels of area
50 x 200 um which give a spacial hit resolution of 8 ym in z — y and 40 ym in z. The
improvements provided by the IBL are crucial for the reconstruction of secondary vertices

such as those originating from b-hadrons or exotic LLPs.

SCT

The pixel detector is surrounded by the semiconductor tracker (SCT). Like the pixel detec-
tor, the SCT uses silicon sensors to detect incident ionizing particles but instead of pixels,
the SCT uses silicon microstrips. The SCT consists of 61 m? of silicon sensors divided be-
tween 4088 modules with 1536 channels per module separated by an approximately 80 ym
pitch. Each SCT module consists of two 12 cm long layers which are glued back-to-back
at a 40 mrad stereo angle in order to provide a two-dimensional position measurement, as
shown in Figure 3.13. This configuration provides a hit resolution of 17 ym in the z — y
plane and 580 um in z. In the barrel region, the SCT is composed of four cylindrical layers
positioned at radii of 299, 371, 443, and 514 mm. In each endcap there are nine SCT disks,
ranging from |z| = 854 to 2720 mm. In total, the SCT contains approximately 6.3M readout

channels.

TRT

The outermost system of the ID is the transition radiation tracker (TRT) which provides
tracking information out to || < 2.0. Unlike the silicon-based pixel and SCT detectors,
the TRT is a gaseous drift tube detector. The basic detector element of the TRT is a straw

tube with 4 mm diameter which surrounds a 0.03 mm diameter gold-plated tungsten wire.
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Figure 3.13: Diagram of an SCT barrel module, showing the stereo angle offset between
the two silicon layers. Image taken from Ref [96].

Each tube is filled with a mixture of 70% Xe, 27% CO», and 3% O, which is ionized by
charged particles as they move through the detector. The central wire is grounded, while
the straw wall is kept at a voltage of —1.5 kV. When a charged particle passes through
the gaseous mixture, it ionizes the gas, and the resulting free electrons drift towards the
central wire, where they are amplified and read out. The barrel region of the TRT covers
the pseudorapidity range || < 1 and contains 52544 straw tubes of 144 cm length parallel
to the beam axis which extend radially from 554 mm to 1082 mm from the beam center.
The endcap region extends from 1 < || < 2and 0.8 m < |z| < 2.7m and contains 122880
tubes of 39 cm length which are arranged radially perpendicular to the beam pipe.

On average, a charged particle leaves 36 hits in the TRT with a resolution of 130 ym
per hit. Despite only providing two dimensional (r — ¢ in the barrel, z — ¢ in the endcap)
information with relatively poor position resolution in comparison to silicon detectors, the
large number of TRT hits improves the overall momentum resolution of tracks because
the curvature can be constrained over a larger path length. Additionally, the straws are
interlaced with polypropylene fibres to induce transition radiation as charged particles
traverse the material boundaries. The photons emitted are reabsorbed by the Xe atoms in
the gas resulting in significantly higher readout signals. This effect is dependent on both
the relativistic Lorentz factor of the particle as well as its mass. Thus, the TRT provides

additional discrimination power between electrons and charged hadrons such as the pion.
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3.2.2 Calorimeter

The ATLAS calorimetry system [115] is designed to measure and absorb the energy of
both electrically charged and neutral particles. The calorimeter surrounds the ID and cov-
ers the range |n| < 4.9. It is comprised of two distinct subsystems: the electromagnetic
and hadronic calorimeters. The electromagnetic calorimeter is designed to measure the
energy of electrons and photons, while the hadronic calorimeter is designed to measure
the energy of hadrons such as protons and neutrons. The calorimeter system measures
the energy of particles by absorbing their kinetic energy as they interact with the detector
material. All particles except muons and neutrinos are stopped by the calorimeter, thereby
depositing all of their energy within the system. An overview of the calorimeter is shown
in Figure 3.14

Both the electromagnetic and hadronic calorimeters are sampling calorimeters which
use alternating layers of “passive” and “active” materials. The passive, or absorbing,
layers are constructed from a dense material which initiates electromagnetic or hadronic
showers as incident particles pass through and interact with the detector material. The
active layers then measure the energy produced in the shower and give a detectable sig-
nal. Because a portion of the energy of the incident particle is lost to the absorber medium,
these calorimeters are only capable of “sampling” the energy of the particle. The design

and specifications of the two calorimeter systems are described below.

Electromagnetic calorimeter

The electromagnetic calorimeter (ECal) [117] is divided into a barrel section (|| < 1.475)
and two endcap components (1.375 < || < 3.2). The barrel region is composed of two
identical half-barrels, separated by a 4 mm gap at z = 0 and extends from 1250 < r < 2050
mm and |z| < 3100 mm. Each half-barrel is divided into 16 modules, each covering a
A¢ = 22.5°. Each endcap is composed of two coaxial wheels which are divided into
8 modules. The outer wheel covers the region 1.375 < |n| < 2.5 and the inner wheel
covers the region 2.5 < || < 3.2. The ECal is called the Liquid Argon calorimeter (LAr)
because it uses liquid argon as its active material. Lead is used as the absorbing material

and is responsible for inducing electromagnetic showers as incident electrons and photons
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Figure 3.14: A cutaway of the ATLAS calorimeter system showing the electromagnetic and
hadronic subsystems. Image taken from Ref. [116].

interact with its heavy nucleus. In the region || < 1.8 a presampler detector is used to
correct for the energy lost by electrons and photons upstream of the calorimeter.

The LAr modules are constructed with an accordion geometry which allows for com-
plete symmetry in ¢ without any gaps in acceptance. Each module consists of three layers.
The first layer is finely segmented in ) with a resolution Anx A¢ = 0.003 x 0.1 in the region
In| < 1.4 This provides precise position measurements of photons which, unlike electrons,
do not have a corresponding ID track. It also allows the ECal to differentiate individ-
ual photons from photon pairs which is important in identifying 79 — -~ decays. This
layer is approximately 4 radiation lengths (Xy) thick. The second layer has a resolution of
Anx A¢ = 0.025 x 0.025 and a length of at least 16 X,. The vast majority of the shower en-
ergy is deposited in this layer. A coarse third layer with resolution An x A¢ = 0.05 x 0.025
and length of 2.X is used to collect the tail of the electromagnetic shower and estimate the
amount of leakage outside of the ECal. Depending on the location in 7, the thickness of

each module ranges from 22 X, to 33 X, ensuring that the vast majority of electrons and
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photons are completely stopped by the ECal. A schematic of an LAr module is shown in
Figure 3.15.
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Figure 3.15: Sketch of a barrel LAr module which shows the accordion geometry. The
granularity in 7 and ¢ are shown in the figure for each layer. Image taken from Ref. [96].

Hadronic calorimeter

Hadronic calorimetry is provided by the tile calorimeter, the hadronic end-cap calorimeter
(HEC) and the forward calorimeter (FCal) [118]. The combined system covers the range
In| < 4.9. Like the ECal, the hadronic calorimeters are sampling calorimeters which use
active layers to measure showers produced when hadrons interact with the absorbing ma-
terial.

The tile calorimeter covers the range |n| < 1.7 and uses plastic scintillator as the active
medium with steel tiles as the absorber. It is comprised of a 5.8 m long central barrel
(In] < 1.0) and two 2.6 m long endcaps, or “extended barrels” (0.8 < [n| < 1.7). and

extends radially from » = 2.28 m to » = 4.25 m. Each of the three barrel regions of the
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tile calorimeter consists of 64 wedge-shaped modules and are segmented in three layers.
The barrel layers are approximately 1.5, 4.1, and 1.8 interaction lengths () thick, and the
extended barrel layers are 1.5, 2.6, and 3.3 X thick. As hadrons interact with the steel
absorber, showers are produced consisting primarily of pions. These showers interact with
the plastic tiles producing scintillation light which is read out through wavelength-shifting
fibers and into photomultiplier tubes. A schematic of the modules is given in Figure 3.16
which shows how the readout is integrated with the mechanical structure. In the barrel,
the first two layers have a granularity of An x A¢ = 0.1 x 0.1 while the third layer has a
granularity of 0.2 x0.1. In the extended barrel, the first layer has a granularity of AnxA¢ =

0.1x0.1 and the second two layers have a granularity of approximately AnxA¢ = 0.2x0.2.

Photomultiplier

Wavelength-shifting fibre

Steel

Scintillator

Figure 3.16: Schematic of a tile calorimeter module showing how the optical readout is
integrated with the alternating active and passive layers. The “source tubes” labeled in the
diagram are used for the radioactive source calibration system. Image taken from Ref. [96].

The HEC extends the coverage of the tile calorimeter to the range 1.5 < |n| < 3.2.
Like the ECal, the HEC uses liquid-argon as the active material, but uses copper instead

of lead as the absorber. The HEC consists of two wheels per endcap, with each wheel
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consisting of 32 wedge-shaped modules. Finally, the FCal further extends the range of the
HCal by providing coverage in the region 3.2 < |n| < 4.9. The FCal consists of three layers,
each of which use liquid argon as their active medium. The first layer is an electromagnetic
module which uses copper as an absorber, while the outer two layers are hadronic modules
and use tungsten. The total thickness of the hadronic calorimeter is 9.7\ in the barrel and

10 in the forward region.

3.2.3 The Muon Spectrometer

The outermost ATLAS subdetector is the Muon Spectrometer (MS) [119] which consists
of separate trigger and high-precision tracking subsystems. The MS uses large supercon-
ducting air-core toroid magnets to bend the tracks of muons after they exit the calorimeter.
In the range || < 1.4, the magnetic field is provided by the large barrel toroid and for
1.6 < |n| < 2.7, muon tracks are bent by two smaller toroids inserted into each endcap.
This configuration of magnets provides a field that is mostly orthogonal to the trajectories
of muons originating from the IP.

The MS is comprised of four gaseous subdetector systems, as shown in Figure 3.17. The
tracking system consists of the Monitored Drift Tubes (MDT) [120] and the Cathode Strip
Chambers (CSC) [121]. These systems provide measurements of the coordinate in the
bending direction of muons as they traverse the detector allowing for precise momentum
measurements determined through the track curvature. The trigger system covers the
pseudorapidity range || < 2.4 and uses Resistive Plate Chambers (RPC) [122] in the
barrel and Thin Gap Chambers (TGC) [123] in the endcap. The trigger chambers serve
several purposes, including coarse measurement of muon transverse momentum, bunch
crossing identification, and second coordinate measurements in the direction orthogonal
to those determined by the precision-tracking chambers. A more detailed diagram of the
subdetector systems is shown in Figure 3.18, and an overview of the main parameters of
each system is provided in Table 3.1. A brief overview of the four subsystems is provided

in the remainder of this section.
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Figure 3.17: A cutaway of the ATLAS muon spectrometer system showing the tracking
and triggering subsystems. Image taken from Ref. [96].

Monitored drift tubes

In the range n < 2.0, muon tracks are measured using monitored drift tube chambers
(MDTs). The MDT chambers are arranged in three cylindrical layers at radii of 5 m, 7.5
m, and 10.0 m in the barrel and three endcap layers at |z| positions of 7.4 m, 14.0 m and
21.5 m. The three layers allow for a determination of the muon’s momenta based on the
sagitta of the track as the trajectory of the muon is bent by the magnetic field. The basic
unit of the MDT is a 30 mm in diameter drift tube filled with a 93% /7% mixture of Ar/CO,
gas. A single tungsten-rhenium anode wire sits at the center of each tube and is kept at a
potential of 3 kV. As a charged particle passes through the tube it will ionize the argon, and
the resulting electrons will be collected by the central wire and read out as a signal. The
time it takes for the electrons to drift to the anode is measured and used to determine the
distance between the path of the incident particle and the center of the tube at a precision of

80 um. In each chamber, the MDT tubes are arranged in two “multilayers” consisting of 3
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Figure 3.18: Detailed diagram of the muon spectrometer subsystems. Image taken from
Ref. [96].

Detector Function Coverage Chambers  Channels
MDT Precision tracking In| < 2.0 1150 354000
CSC Precision tracking 20 < |n| <2.7 32 31000
RPC Triggering In| < 1.05 606 373000
TGC Triggering 1.05 < |n| < 2.4 3588 318000

Table 3.1: Main parameters of the muon spectrometer

or 4 layers of tubes which are used to form the tracklets used in muon track building. This
is shown schematically in Figure 3.19. The MDT chambers are arranged into 16 sectors in
¢ and are oriented such that the center points of the tubes are tangential to circles around
the beam axis. The entire MDT detector system consists of 1,150 chambers and a total of

354 000 individual drift tube channels.

Cathode strip chambers

In the region 2.0 < n < 2.7, particle fluxes exceed the design capabilities of the MDT cham-

bers of 150 Hz/cm?. To accommodate this harsh environment, Cathode Strip Chambers
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Figure 3.19: (a) MDT tube cross section showing ionization clusters along a muon track.
Image taken from Ref. [124]. (b) Track fit in a MDT multilayer. Image taken from Ref. [125]

(CSC) are used which can sustain hit rates as high as 1 kHz/cm?. The CSCs are multiwire
proportional chambers with cathodes segmented into strips, as shown in Figure 3.20. The
chambers use a 80%/20% mixture of Ar/CO; gas and operate at a voltage of 1900 V. The
anode-cathode distance is d = 2.54 mm which corresponds to a maximum drift time of
about 30 ns. Like the MDTs the CSCs are segmented into large and small chambers in
¢. Each endcap consists of eight small chambers and eight large chambers, each of which
contain four CSC planes providing four independent (7, ¢) measurements along each track
with resolutions of 60 ym x5 mm. The CSC system consists of 32 chambers in total and

31 000 individual readout channels.
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Figure 3.20: Schematic diagram of the cathode strip chamber. The anode-cathode distance,
d, and the wire spacing, S, are both 2.54 mm. The Cathode readout pitch, W is 5.08 mm.
Image taken from [119].
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Resistive plate chambers

In the pseudorapidity range || < 1.05, trigger signals are provided by a system of resistive-
plate chambers (RPCs). RPCs are gasesous parallel-plate detectors filled with tetrafluo-
rethane (CoHyF,). Each chamber consists of two resistive plates separated by a 2 mm gap
and kept at a potential difference of 9.8 kV. This configuration allows for trigger timing
resolutions of less than 2 ns. Each side of the chamber has a readout strip, with one side
providing a measurement in z and the other in ¢. Each RPC unit consists of two of the
above described detector layers and four readout strip panels. Like the MDTs, the RPCs
chambers are distributed among 16 sectors in ¢ and are positioned on either side of the

MDT chambers as shown in Figure 3.18.

Thin gap chambers

In the region 1.05 < |n| < 2.4, the trigger system is comprised of thin-gap chambers
(TGCs). The CSCs provide both trigger capabilities as well as a second, azimuthal coordi-
nate to complement the MDT measurement in the radial bending direction. Like the CSCs,
the TGCs are multiwire proportional chambers with a 55%/45% gas mixture of COy/n-
CsHi2. The anode wires are kept at a nominal potential of 2.9 kV and run perpendicular
to the cathode strips to allow for two-dimensional spacial coordinate measurements, The
TGC wires provide a measurement of the radial, bending coordinate and the azimuthal
coordinate is measured by the strips. The layout of the TCG chamber is shown in Fig-
ure 3.21. The distance between the wires is 1.8 mm and the anode-cathode distance is 1.4
mm. This potential and cell geometry allows for a trigger timing resolution of 4 ns. The
TGC chambers are organized in 12 sectors per endcap, with each sector containing an inner
and outer part, as shown in Figure 3.18. In total the TGC system consists of 3588 chambers

and 318 000 individual readout channels.

3.24 Trigger

During Run 2, the LHC delivered pairs of proton bunches to the ATLAS detector every 25

ns, corresponding to a crossing rate of 40 MHz. The amount of memory needed to write
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Figure 3.21: Schematic diagram of the thin gap chamber. Image taken from [119].

out the data from all detector subsystems is approximately 1.5 Mb per collision, meaning
that if ATLAS were to record every single event it would generate over 60 Tb of data per
second! It would be both unfeasible as well as unnecessary to store all of this data, as most
pp collisions are soft parton scattering events which are absent of noteworthy physics. To
reduce the data rate to a manageable level, ATLAS uses a combined hardware and software
system known as the trigger to identify and save potentially interesting events for further
analysis.

The ATLAS trigger system consists of two levels, or tiers. The Level 1 (L1) trigger is
a hardware based system which uses coarse data collected from the calorimeters (L1Calo)
and MS (L1Muon) to perform an initial loose event filtering decision within 2.5 us of the
bunch crossing. It tries to identify events with high pr leptons, photons, jets, and large
total or missing transverse energy. The L1 trigger also defines Regions-of-Interest (Rol’s)
in 7 and ¢ where the system has identified interesting features. The trigger decision is
performed by the central trigger processor (CTP). The CTP can also perform prescaling
which reduces the rate of events passing a nominal L1 decision by a constant factor. The
L1 trigger reduces the event rate from the LHC crossing frequency of 40 MHz to a design
value of 100 kHz.

Events which are selected by the L1 trigger are then passed to a software-based sys-

tem known as the High-Level Trigger (HLT) which performs a more refined filtering of
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the data by roughly reconstructing physics objects. The HLT uses all of the available de-
tector data within the Rol’s identified by the L1 system at full granularity and precision.
The HLT reduces the rate of events which are written out to approximately 1 kHz, which
corresponds to roughly one out of every 40000 collision events being saved. The events se-

lected by the HLT are then transferred to the Tier-0 computing facility at CERN for offline

reconstruction.
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Figure 3.22: A schematic overview of the ATLAS TDAQ system in Run 2 with the L1 and
HLT trigger systems shown on the left. The Fast TracKer (FTK) shown in this figure was
being commissioned during Run 2 but was canceled. Image taken from Ref. [126].
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Chapter 4

Event Reconstruction

It has been my philosophy of life that difficulties vanish when faced boldly.
- Isaac Asimov

In order to translate the raw data read out from the various ATLAS subsystems de-
scribed in Chapter 3.2 into actual representations of the final state particles usable for
physics analysis, a multitude of reconstruction algorithms are performed. Figure 4.1
shows how various particles interact with the ATLAS subdetectors. After the event is
recorded by the online trigger system, the information from all subdetectors is combined
to reconstruct so-called “physics objects” like electrons, muons, jets, etc. These objects
are the closest representation available to the actual particles produced in the underlying
physics process, but should always be considered candidates rather than true particles due
to the imperfection of the reconstruction process®. This chapter describes the “standard”
physics objects used in this thesis, which consist of electrons, muons, photons, and jets. A
separate discussion is dedicated to the reconstruction of non-standard physics objects asso-
ciated with the decays of LLPs in Chapter 5. First, Section 4.1 describes how inner detector
tracks and primary vertices are reconstructed. These tracks are used as input to various
physics object reconstruction algorithms, and the primary vertex is used to define the ref-
erence point for the downstream reconstruction algorithms. Section 4.2 then describes the

algorithms used to reconstruct and identify jets, muons, electrons, and photons.

Photons can be misreconstructed as electrons, for example.
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Figure 4.1: Diagram of how ATLAS detects various particles [127].

4.1 Track and vertex reconstruction

The first step in reconstructing a collision event in the ATLAS detector is the reconstruction
of charged particle trajectories and identifying the proton-proton interaction vertex from

which they originate.

4.1.1 Track reconstruction

As described in Section 3.2.1, a charged particle will leave energy deposits, or hits, in the
active material of the ID as it traverses the detector. The trajectory, or track, of this charged
particle may then be reconstructed by “connecting the dots” of the hits left in the various
ID subsystems. However, this is much, much, easier said than done. To see why, consult
Figure 4.2 which shows a representative event display from the view of the inner detector.
In this event, 25 proton-proton collision vertices are reconstructed, each of which results in
many charged particles which deposit their energy in the ID. Due to this incredibly dense
environment, tracking is an exceptionally complex combinatorial problem that requires

advanced algorithms to solve.
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Run Number: 336567, Event Number: 190582407 |
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Figure 4.2: A display of a Z — pu candidate event from proton-proton collisions recorded
by ATLAS with LHC stable beams at a collision energy of 13 TeV on 25" September 2017
(Run 336567, Event 190582407). The Z candidate is reconstructed in a beam crossing with
24 additionally reconstructed vertices from minimum bias interactions. The display is a
zoom into the interaction region and shows a fraction of the 25 reconstructed vertices. The
hard interaction vertex is represented by a green square from which the two muons (red
tracks) are emerging. Tracks with pT > 500 MeV are displayed. Image and caption taken
from [128].

Tracks are described by a set of five parameters, using a perigee representation mea-

sured in relation to the primary vertex:

T = (dOaZ07¢07eaQ/p) (41)

The transverse and longitudinal impact parameters (dy and zp) are the distances of closest
approach between the track and the primary vertex in the transverse and longitudinal
plane. The other three parameters are the azimuthal angle ¢ and the polar angle 6 of the
track momentum, and the ratio ¢/p of the charge of the reconstructed track divided by the
magnitude of its momentum. The principal goal of track reconstruction is then to compute
these five parameters for each charged particle trajectory. In this section, we will describe
the various algorithms used in the standard ATLAS tracking procedure, and in Section 5.1

we will extend this discussion to the specialized tracking used to reconstruct the decays of
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long-lived particles. Track reconstruction in the inner detector primarily uses an inside-
out tracking algorithm which starts from track seeds in the pixel and SCT detectors that
is then extended to a full track. A second tracking pass, referred to as outside-in, is then
performed starting from information in the TRT and then extending to the pixel and SCT
using hits that are unassociated to tracks formed in the inside-out pass. These algorithms

are described in detail below.

Inside-out

The inside-out tracking procedure begins with the formation of clusters from raw pixel
and SCT measurements. A cluster consists of groups of pixels or strips in a given sen-

sor with energy deposits above threshold that share an edge or corner (Figure 4.3). From

Figure 4.3: The formation of clusters from raw energy deposits in the pixel system. Image
taken from Ref [129].

these clusters, three-dimensional position measurements called space-points are created.
In the pixel detector this is simple, because the pixel modules already provide a three-
dimensional local measurement. In the SCT however, the precision measurement is only
given in the direction orthogonal to the silicon strip direction. To obtain a three-dimensional
point, the stereo angle rotation between the two sides of the SCT layers modules is used
(Section 3.2.1).

Tracks are then seeded using sets of three space-points [130]. Seeds can be built from

three pixel space-points, three SCT space-points, or a combination of space points from
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both detectors. The seed provides already a rough estimate of the momentum and im-
pact parameters of the trajectory, and loose selections are placed on the track seeds to re-
move those which are not compatible with a charged particle originating from the IP. Most
notably, seeds are removed if the absolute value of the transverse (longitudinal) impact
parameter, dj (20) is greater than 10 mm (250 mm). The impact of this selection will be dis-
cussed in Chapter 5. The combinatorial Kalman filter algorithm [131] is then used to form
track candidates from the accepted seeds by incorporating additional space-points which
are compatible with the initial seed trajectory. The Kalman filter is an iterative process
which alternates between two steps, called the filter and the smoother. The filter performs
a prediction about the location of the next hit along the track trajectory. If a compatible
hit is found it is added to the track. In the smoothing step, the track fit is updated to re-
flect the newly added measurement. Each time a new measurement is incorporated the
track parameters and error matrix are recomputed. This process increases the accuracy on
the track parameter estimate after each new measurement is added, and continues until it
reaches the last layer of the silicon detector.

The track finding process results in a very high number of track candidates, many of
which have overlapping or incorrectly assigned space points. To resolve this, the track
candidates are then fed into ambiguity-solving algorithms which assign each candidate a
score based on its momentum, number of hits, number of shared modules, and number of
holes? [130]. Each additional hit associated with a track increases the score, with the weight
of each hit determined by the precision of the corresponding subdetector (pixel clusters are
weighted higher than SCT). The presence of holes on the other hand reduces the overall
track score. The x? of the track fit is also used to penalize against poor quality candidates.
Track candidates with a high score are most likely to correctly represent the trajectory of
a charged particle, whereas tracks with a low score are more often purely combinatorial
collections of hits, often referred to as fakes. Tracks that are assigned a low relative score
by the ambiguity solver are rejected.

After the tracks are assigned scores, the ambiguity solver determines how to handle

clusters that are assigned to multiple track candidates. When clusters are shared between

*Holes are defined as intersections of the reconstructed particle trajectory with an active detector module
that do not contain a corresponding hit.
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multiple tracks, the candidates compete against each other to determine to which track
the hit will be associated. Hits are mainly assigned to the track with higher score, and the
remaining track is refit without the formerly shared hit and scored again. Track candidates

are then rejected by the ambiguity solver if they fail to meet a series of quality criteria given

in Table 4.1.
Parameter Cut value
Min. pr 400 MeV
Max. |n| 2.5
Max. |d8Y| 2 mm
Max. | 250 sin 6| 3 mm
Min Si hits 7
Max. shared clusters || 1 pixel or 2 SCT
Max. # of pixel holes 1
Max. # of Si holes 2

Table 4.1: Quality criteria used in the ambiguity solver. Si refers to the combined pixel
and SCT systems. |d5%| and |2"| are the impact parameters calculated with respect to the
measured beam-line position [129].

Finally, track candidates that pass the ambiguity solver are extended into the TRT by
extrapolating the trajectory of the track and associating TRT hits compatible with the can-
didate. The track is then refit and the track parameters are recomputed. The quality of the
combined track is then evaluated using a similar procedure to that of the ambiguity solver,
and the scores of the original silicon-only track are compared to the score computed after
the TRT extension. If the extended track is assigned a worse score than the non-extended
track, the extension is rejected and the original silicon track is kept. This can happen if
there are too many outlier TRT hits or holes (see Figure 4.4). If the inclusion of the TRT hits
improves the overall track fit, the TRT extension is marked successful and is incorporated

into the final track.

Outside-in

After the inside-out algorithm is run, a second, outside-in, tracking pass is performed. The
outside-in algorithm begins by reconstructing standalone TRT track segments in regions
seeded by the electromagnetic calorimeter. The resulting TRT segments are then extrap-

olated into the silicon detectors, and compatible hits that were not used in the inside-out
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Figure 4.4: Definition of TRT hits. Image taken from [132].

tracking pass are used to extend the segment to a full track. The outside-in algorithm is
capable of reconstructing tracks coming from secondary decay vertices (e.g. K2 decays
and photon conversions) which may not have a sufficient number of silicon hits to be re-
constructed by the inside-out algorithm, but still have small enough impact parameters to

survive the quality cuts.

Tracking performance

The resulting tracks from both the inside-out and outside-in tracking passes form the com-
plete collection of standard tracks. After reconstruction, additional selections are placed
on tracks to define tight and loose working points. The track reconstruction efficiency as a
function of truth pr is shown in Figure 4.5 for both working points.

It is important to note the limitations of the standard tracking procedure. As mentioned
previously, both the inside-out and outside-in algorithms place strict cuts on the transverse
and longitudinal impact parameters at 10 mm and 250 mm, respectively. These require-
ments are put in place to reduce both the number of fake tracks that are reconstructed, as

well as the overall CPU time of the tracking algorithm. However, they also severely limit
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Figure 4.5: The standard track reconstruction efficiency as a function of truth pr. Image
taken from [133].

the ability of the standard tracking procedure to reconstruct tracks that are significantly
displaced from the IP such as those originating from the decays of long-lived particles.
To reconstruct these decays, an additional tracking pass is needed with loosened impact

parameter requirements. This will be described in Section 5.1.

4.1.2 Primary vertex reconstruction

Once the charged particle trajectories have been reconstructed by the tracking algorithm,
the next step in reconstructing the full kinematic properties of the event is to determine
from which pp interaction each charged particle originated. The process of associating
charged particle trajectories to pp interactions is known as primary vertex reconstruction
and is essential for the reconstruction of hard-scatter interactions. The ATLAS primary
vertex reconstruction algorithm [134] consists of two steps: vertex finding, in which ver-
tex candidates are formed from the collection of selected tracks, and vertex fitting which
reconstructs the vertex position along with its covariance matrix.

For tracks to be considered in the vertex reconstruction, they are required to satisfy

following requirements [134], [135]:
* pr > 500 MeV; |dy| < 4 mm; o(dp) < 5 mm; o(zp) < 10 mm;

e Number of silicon hits > 9 (11) if || < 1.65 (|n| > 1.65)
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Hits in the first two pixel layers > 1

¢ A maximum of 1 shared module (1 shared pixel hit or 2 shared SCT hits)

Pixel holes =0

SCT holes < 1

From the collection of selected tracks, an iterative algorithm is used to identify primary
vertex candidates. The algorithm proceeds in several steps. First, a seed position for the
first vertex is computed using the center of the beam spot to determine the z- and y- co-
ordinates, and the mode of the z-coordinates of tracks at their points of closest approach
the beam spot to determine the z-coordinate. Next, the input tracks and the seed position
are used to determine the best fit vertex position. The fit uses an iterative annealing proce-
dure, where each input track is assigned a weight corresponding to its compatibility with
the vertex estimate. The vertex position is recalculated using the weighted tracks, and then
the procedure is repeated, with new track weights computed with respect to the updated
vertex position. At first all tracks will have similar weights. But after several iterations,
tracks that are not compatible with the vertex will have small weights and therefore a min-
imal impact on the vertex position. A representative histogram of the distribution of track

weights at several points in the iterative process is shown in Figure 4.6. After the vertex
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Figure 4.6: Histogram showing the weights applied to tracks in the vertex reconstruction
fit. At each iteration, outlier tracks are downweighted so as to have a lesser impact on the
vertex position in the fit. Image taken from [135].
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position is determined, tracks that are incompatible with the vertex by more than seven
standard deviations are removed, and the rejected tracks are used as input for a new itera-
tion of the vertex finding algorithm. The above procedure is repeated until there are either
no remaining tracks, or no additional vertices can be found.

All vertices with at least two tracks are considered in the collection of reconstructed
vertices. The vertex with the highest Y p2 of associated tracks is taken to be the hard scatter
vertex and is usually referred to as the primary vertex. All other vertices are considered to

be pileup interactions.

4.2 Physics object reconstruction

This analysis makes use of a variety of different standard physics objects, including jets,
muons, electrons, and photons. Each object has an associated reconstruction algorithm
which is used to identify candidates, and careful calibration procedures are applied to
ensure good agreement between data and simulation. In some cases, additional identifi-
cation algorithms are applied which help to reduce spurious detector signals that may be
reconstructed as true physics objects. These algorithms are detailed below for each physics

object.

4.2.1 Jets
Jet reconstruction

Jet reconstruction begins with the formation of three-dimensional, massless, topologically
connected EM and hadronic calorimeter cells called topo-clusters using a nearest-neighbor
algorithm [116]. The basic observable controlling this cluster formation is the cell signal

significance, ¢Z}!, defined as the ratio of the cell energy to the expected noise in each cell:

EEM

EM __ ce

Scell = —EM (4.2)
noise,cell

Topo-clusters are formed starting from a calorimeter cell with a highly significant seed

signal satisfying ¢E > 4. Cells neighboring the seed cells in three-dimensions are added to
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the topo-cluster using the threshold <&l > 2 to control its growth. If a particular neighbor
is a seed cell passing the threshold &l > 4 the two clusters are merged. Finally, cells with

gEM

ol = 0in the perimeter are added to the cluster, to ensure that the tails of showers are not

discarded. This set of thresholds is often referred to as ‘4-2-0" topo-cluster reconstruction.
The resulting topo-cluster is characterized by a core of cells with highly significant signals
surrounded by an envelope of less significant cells. The resulting energy of the topo-cluster
is defined at the electromagnetic (EM) scale, and corrections are applied to the topo-cluster
four-vectors to account for the position of the primary vertex.

The jets used in this thesis are reconstructed using only calorimeter-based energy in-
formation using the origin-corrected EM scale topo-clusters and are referred to as EMtopo
jets. Hadronic final-state measurements can be improved by using the information from
both the tracking and calorimeter systems using the particle flow (PFlow) algorithm [136].
However, the use of tracking information in jet reconstruction is not suitable for jets origi-
nating from the decay of long-lived particles which may not satisfy the assumptions made
by the PFlow algorithm.

The topo-cluster four-vectors are then used as input constituents to the anti-k; jet clus-
tering algorithm [137]. The anti-k; algorithm is a sequential recombination algorithm that
is infrared and collinear (IRC) safe and has the property that the boundaries of the final jets
are not significantly affected by soft radiation, making it the default jet-finding algorithm
used by the experiments at the LHC among the set of IRC-safe jet finding algorithms. The

algorithm relies on the distance metrics

1 1 AR2.
d;; = mi —, *J 4.3
j = min (k%ﬂ k%j> jrE (4.3)
1
dip = —— 4.4
B i, (4.4)

where AR?; = (yi — y;)* + (i — ¢;)?, R is the radius parameter, and kr,; is the transverse
momentum of the it jet constituent. The metric d;; is a measure of the “distance” between
the i and j™ constituents, and d;p is the distance between the i™ constituent and the
beam. The jets used in this thesis are defined using radius parameter R = 0.4.

For each input constituent i, the algorithm proceeds by computing d;p and d;; for all
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other constituents j # . If the minimum distance computed is a d;;, then the two con-
stituents ¢ and j are combined to form a single constituent in the list, and the original
constituents are removed. If instead d;p < min(d,;), then the ith constituent is removed
from the set of constituents and is considered as a complete jet. The algorithm continues
sequentially until there are no more constituents in the input list. The result of this process

is a set of jets in the form of recombined constituents, as shown in Figure 4.7. The key

p, [GeV] | antik,RE1 |

Figure 4.7: A sample parton-level event clustered with the anti-k; algorithm. Image taken
from Ref [137].

feature of the anti-k; algorithm is that it tends to cluster soft particles with hard ones long
before they cluster among themselves. If an energetic constituent has no similarly hard
neighbors within a distance 2R, then the algorithm will simply combine all soft particles
within a circle of radius R resulting in a perfectly conical jet. This results in jet boundaries

that are resilient with respect to soft radiation, but flexible with respect to hard radiation.

Jet calibration

As mentioned in the previous section, the energy of the topo-clusters is defined at the EM-
scale, meaning that energy deposited in the calorimeters by particles produced in electro-
magnetic showers is correctly measured. However, this does not take into account energy

deposited by particles produced in a hadronic shower. To correct for this as well as several
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other effects, a series of jet energy scale (JES) calibrations are applied to the jet four-vectors
to correct the energy of the reconstructed jets in the detector to match that of the truth-level
jets. The JES calibration sequence is shown in Figure 4.8 and described in more detail in

this section.

Reconstructed p.-density-based Absolute MC-based
jets pile-up correction calibration

Jet finding applied to Applied as a function of Removes residual pile-up Corrects jet 4-momentum

tracking- and/or event pile-up p; density dependence, as a to the particle-level energy

calorimeter-based inputs. and jet area. function of it and Np. scale. Both the energy and
direction are calibrated.

Global sequential Residual in situ
E calibration calibration

Reduces flavour dependence A residual calibration
and energy leakage effects is applied only to data
using calorimeter, track, and ~ to correct for data/MC
muon-segment variables. differences.

Figure 4.8: The stages of jet energy scale calibrations. Each correction is applied to the
four-momentum of the jet. Image taken from Ref [138].

When performing the jet clustering in dense environments, particles originating from
pileup interactions are likely to contribute to the measured jet energy. The JES pileup
calibrations corrects for this by subtracting off these additional contributions from the re-
constructed jet pr. The first correction is computed from the median pr density of jets in
the n — ¢ plane, p = (pr/A), where the jet area A is a measure of the susceptibility of the jet
to pileup and is computed from the relative number of ghost particles associated with a jet
after clustering [139]. The quantity p x A then gives an estimate of the pileup contribution
for a jet of area A. However, due to the fact that the p calculation does not fully describe
the pileup sensitivity in the forward calorimeter region or in the higher-occupancy core
of high-pr jets, some dependence of the jet pr remains after the pr-density based correc-
tion. This residual dependence is corrected for by computing the difference between the
reconstructed jet pr and truth jet pr as a function of both Npy and y, which are sensitive to
in-time and out-of-time pile-up respectively. The jet pr after all pileup corrections is given
by

COrr

prr =pro —pxA—ax(Npy—1)=Bxp (4.5)
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Figure 4.9: (a) The average jet energy response as a function of 74 for jets with several
difference values of E™". The energy response is computed after origin and pile-up cor-
rections are applied. (b) The signed difference between the truth jet 7" and the recon-
structed jet "°“° due to biases in the jet reconstruction. Images taken from Ref [140].

where o = 8%’;\/, and 8 = %—p:.

Next, the absolute jet energy scale and 7 calibrations restore the reconstructed jet four-
momenta to the particle-level energy scale. These calibrations account for differences be-
tween the measured and true jet energies due to detector effects such as non-compensating
calorimeter response, mismodeling of the inactive material within the detector, and biases
in the jet n reconstruction caused by the transition between different calorimeter technolo-
gies and regions with different calorimeter granularity. The JES calibration is derived from
MC simulation by calculating the jet response, R, defined as the ratio £/ E'uth, The av-
erage jet response is shown in Figure 4.9a for several different values of E™"". The inverse
of the jet response is applied as a correction to the EM scale jets, after which the response is
consistent with unity [140]. A bias in the reconstructed jet 7 is also observed, as shown in
Figure 4.9b. This bias artificially increases the energy of one side of the jet with respect to
the other, thereby distorting the reconstructed four-momentum. An additional correction
is then applied to 7 to account for this effect as a function of |74et|. EMtopo jets calibrated
with the full JES and 7 calibrations are considered to be at the EM+]JES scale.

After applying the previous jet calibrations, residual dependencies of the JES on sev-
eral jet properties remain. These include the flavor and energy distribution of the jet’s

constituent particles, their transverse distribution within the jet, and effects due to the ini-

tiating particle (i.e. quark- vs. gluon-initiated jets) such as the average particle composition
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and shower shape. In a given (p"®, [n4et|) bin, fluctuations in these properties can impact
the JES from jet to jet. To account for these effects, a series of multiplicative corrections
known as the Global Sequential Calibration (GSC) are applied. The GSC has five stages®,
each of which consists of an independent jet four-momentum correction derived based on
a particular jet observable that has been identified to improve the JES. The corrections are
applied sequentially, neglecting correlations between observables. The GSG improves the
Jet Energy Resolution (JER) without changing the average jet energy response, where the
jet resolution is defined as the standard deviation of a Gaussian fit to the jet pr response
distribution®.

The final JES calibration step accounts for remaining differences in the EM+]ES jet re-
sponse between data and simulation. As opposed to the previously described calibrations,
this so-called in situ calibration is only applied to data. First, the jet energy scale of forward
jets (0.8 < |nget| < 4.5) is corrected to that of well-measured central jets (|74e¢| < 0.8) using
dijet events in a process known as n-intercalibration. The calibration is derived from the
ratio of the jet pr responses in data and simulation. Three other in situ calibrations are de-
rived by balancing the pr of a jet against other well-measured reference objects including
photons, Z bosons, and calibrated jets. A statistical combination of the three methods pro-
vides a single smooth calibration which is applicable across the full range of pt, as shown

in Figure 4.10.

The uncertainties corresponding to the full set of JES calibrations will be discussed in

Section 7.3.

Flavor tagging

ATLAS uses several different algorithms to identify jets containing b-hadrons (b-jets). These
so-called b-tagging algorithms are essential tools for both measurements of SM processes
as well as searches for new physics. The DL1 b-tagging algorithm quantifies the likeli-

hood that a jet originated from a light- (u, d, s, ¢, g) versus b-flavor quark [141], [142]. This

*The GSC for PFlow jets has an additional stage to correct the fraction of the jet pr measured from ghost-
associated tracks [138].
*Similarly to the jet energy response, the pr response is defined as the ratio of p*° to pi™™®
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Figure 4.10: Ratio of the EM+]JES jet response in data to that in simulation as a function of
jet pr for Z-jet, y-jet, and multijet in situ calibrations. Image taken from Ref [140].

algorithm exploits several features of b-jets, such as the lifetime, mass, and decay kinemat-
ics of b-hadrons, within a deep feed-forward neural network to distinguish between these
hypotheses. Large values of the DL1 discriminant correspond to b-like jets, while small
values correspond to light-like jets. In the search presented in this thesis, the DL1 discrimi-
nant is an important ingredient used to classify and predict the number of expected events

due to SM backgrounds (Section 7.2).

4.2.2 Muons

The search presented in this thesis utilizes muons to identify the muonic decays of the
Z boson. The algorithms used by the ATLAS experiment to reconstruct, identify, and

calibrate muons are hence described below.

Muon reconstruction

Muons are reconstructed using independent tracking information from both the ID and
the MS detector subsystems [143]. The ID tracks are reconstructed using the same algo-
rithm described in Section 4.1. In the MS, track reconstruction begins by combining hits
in each MDT chamber to form muon segments by fitting the hits found in each layer to a

straight-line. Information from the trigger chambers (RPC and TGC) is used to measure
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the coordinate orthogonal to the bending plane. In the region || > 2.0, the CSC cham-
bers provide additional tracking coverage and a separate combinatorial search is used to
reconstruct tracklets.

Muon track candidates are then built by combining segments from different layers.
First, candidates are seeded in the central layers of the detector where the number of hits
in the trigger chambers is greatest. When no further candidates may be seeded, the search
is extended to form seeds in the inner and outer layers. At least two segments are required
to build a track candidate, except in the transition region between the barrel and endcap
where one high quality segment may be used. An overlap removal algorithm is then used
to resolve the situation in which one segment is used to build several track candidates by
either assigning the segment to the track to which it has the strongest association, or in
some situations allowing for the segment to be shared between two tracks. For example,
to maintain high efficiency for muons produced with small opening angles, tracks are al-
lowed to share segments in two layers so long as their trajectories diverge in the outermost
layers. The hits associated with each track candidate are then fitted using a global y? fit,
and candidates are accepted if the x? satisfies the selection criteria. Hits are removed from
the track candidate if they are found to negatively impact the fit, and additional hits may
be added if they are found to be compatible with the trajectory. The track candidate is refit
each time a hit is added or removed.

There are four muon reconstruction algorithms used to combine the information from

the various detector subsystems into a fully reconstructed muon:

¢ Combined (CB) muons use the tracking information from both the ID and the MS
and are reconstructed by performing a global refit of the hits corresponding to the ID
and MS tracks. During the refitting procedure, MS hits may be added or removed
from the track to improve the fit quality. In general, combined muons are recon-
structed following an outside-in pattern recognition algorithm, in which the muons
are first reconstructed in the MS and then extrapolated inward and matched to an ID

track.

¢ Segment-tagged (ST) muons consist of a fitted ID track and a single MS segment. ST
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muons are used to reconstruct muons which cross only one layer of MS chambers,

either because of insufficient pr or because they fall in a region of reduced acceptance.

* Calorimeter-tagged (CT) muons consist of a fitted ID track and an energy deposit in
the calorimeters. CT muons have the lowest purity of all the muon types but recover

acceptance for muons in regions with low coverage from the MS.

¢ Extrapolated (ME) muons consist of only a MS track and a loose requirement on com-
patibility with originating from the IP. These muons are required to traverse at least
two layers of MS chambers to provide a track measurement, except in the forward
region where three layers are required. ME muons are used to extend the acceptance
for muon reconstruction into the region 2.5 < |n| < 2.7, which is not covered by the

ID.

When two muon types share the same ID track, preference is given first to CB muons,
then to ST, and lastly to CT muons. Overlap between ME muons is resolved by selecting

the track with the best fit quality and highest number of hits.

Muon identification

Muons are categorized by a set of identification working points (WPs) which applying
quality requirements designed to reduce backgrounds from pion and kaon decays. Four
muon identification selections (Medium, Loose, Tight, and High-pr) are provided to accom-
modate the needs of different physics analysis and performance groups [143]. The Medium
identification criteria is the default selection for muons in ATLAS, as well as the WP used
in this thesis.

Medium muons are required to have either CB or ME tracks. For CB tracks, the variables

used in muon identification are:

1. g/p significance, defined as the absolute value of the difference between the ratio of

the charge and momentum of the muons measured in the ID and MS divided by the
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sum in quadrature of the corresp

onding uncertainties:

MS’

(¢/p)™ — (¢/p)
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2. p/, defined as the absolute value of the difference between the transverse momentum

measurements in the ID and MS

divided by the pt of the combined track:

MS 1D
lpT” — Pt
pgombined

(4.7)

3. The normalized x? of the combined track fit

The Medium WP requires CB muons to have > 3 hits in at least two MDT layers, except for

tracks in the |n| < 0.1 region where tracks with at least one MDT layer but no more than

one MDT hole layer are allowed. ME muons are included to extend the acceptance outside

the ID geometrical coverage, and are required to have 2.5 < || < 2.7 and hits in at least

three MDT/CSC layers. To suppress the contamination due to hadrons misidentified as

muons, ¢/p significance is required to

be less than seven to ensure compatibility between

the ID and MS momentum measurement. The ID track is required to have at least one
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Pixel hit, at least five SCT hits, fewer than three Pixel or SCT holes, and that at least 10% of
the TRT hits originally assigned to the track are included in the final fit°.

The reconstruction efficiency for Medium muons is shown in Figure 7.25 for data and
simulated samples of Z — ppand J/¥ — pp events. As shown in the Data/MC ratio, the

Data

measured reconstruction efficiency in data, €-2*?, differs from that of simulation, MC To

account for this difference, a scale factor is defined

6Data
6MC

SF = (4.8)

which is a function of muon pr and 7. The scale factors are applied to each selected muon
in an event to correct for systematic differences between data and MC. The systematic

uncertainty associated with these scale factors will be discussed in Section 7.3.

Muon calibration

After reconstruction, corrections are applied to muon candidates to achieve better agree-
ment between data and simulation in terms of the muon momentum scale and resolution.
To derive these corrections, the transverse momentum of the ID and MS components of
a CB track are compared between data and MC in 7 — ¢ detector regions that are homo-
geneous in terms of detector technology and performance [143]. These corrections are
applied to MC to account for effects such as magnetic field inhomogeneities that are not
properly taken into account in the simulation. The momentum distribution in MC is also
smeared such that the relative pt resolution, o(pr)/pr, properly describes that of the data.
The invariant mass distributions of Z — pu candidates are shown in Figure 4.12 for data
as well as uncorrected and corrected simulation. After correction, the distribution in simu-
lation agrees with the data within the systematic uncertainties, demonstrating the overall
effectiveness of the muon calibration procedure. The systematic uncertainties associated
with this calibration and their impact on the analysis presented in this thesis will be dis-

cussed in Section 7.3.

°The TRT requirement is only employed for |n| between 0.1 and 1.9, in the region of full TRT acceptance
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Figure 4.12: Dimuon invariant mass distribution of Z — pu events. The solid line corre-
sponds to the simulation with the MC momentum corrections applied while the dashed
lines show the simulation when no correction is applied. Image taken from Ref [143].

4.2.3 Electrons

In addition to muons, this search makes use of electrons to identify the Z — ee decay.
The algorithms used by the ATLAS experiment for the reconstruction, identification, and

calibration of electrons are described below.

Electron reconstruction

The reconstruction of electron candidates is based on localized clusters of energy deposits
in the electromagnetic calorimeter, charged-particle tracks in the inner detector, and a
matching in 1 x ¢ space of the tracks to the clusters [144], [145]. A schematic illustrat-
ing the path of an electron through the detector is shown in Figure 4.13.

Similar to the jet reconstruction algorithm described in Section 4.2.1, electron recon-
struction begins with the formation of topo-clusters from EM and hadronic calorimeter
cells using the “4-2-0" set of thresholds on the cell significance. These topo-clusters are then
used to identify potential electron tracks using a loose matching criteria in 7 and ¢. A sub-

sequent fitting procedure is performed on the matched tracks using a Gaussian Sum Filter
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(GSF) [146] method designed to better account for energy loss of charged particles in ma-
terial than the standard Kalman Filter. The topo-clusters are then grouped into dynamic,
variable-size clusters, called superclusters which are designed to help recover the energy
lost due to the emission of bremsstrahlung photons. The procedure to form superclusters
proceeds as follows. First, topo-clusters are tested one by one in order of descending Er
to be seeds for superclustering. For a cluster to be used as an electron supercluster seed,
it is required to have Er > 1 GeV and must be matched to a track with at least four Si
hits®. Once a seed cluster is identified, the algorithm attempts to find satellite clusters
based on a An x A¢ window centered on the seed barycenter to capture energy deposits
by secondary showers generated by the original electron. The grouping of seed clusters

and their associated satellite clusters are called superclusters.

hadronic calorimeter

third layer ,~
AnxAp=0.05x0.0245

second layer
AnxAg=0.025%0.0245

first layer (strips)
AnpxAg=0.0031x0.098

presampler

TRT (73 layers)

SCT

beam axis pixels

-
beam spot

do

insertable B-layer

Figure 4.13: A schematic of the path of an electron through the detector. The dashed red
trajectory indicates the path of a photon produced by the interaction of the electron with
the material in the ID. Image taken from Ref [144].

Electron identification

After reconstruction, electrons are selected using a likelihood based (LH) identification [144]
to reject background from jets that mimic the signature of prompt electrons, electrons from
photon conversions in the detector material, and non-prompt electrons from the decay of

heavy flavor hadrons. The LH is given by the product of probability density functions

®Outside-in tracks are allowed to have fewer than the requisite 7 Si hits if they are loosely matched to EM
clusters.
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(PDFs) for a set of input variables chosen based on their ability to discriminate between
prompt electrons and various forms of background. The inputs to the LH include measure-
ments from the inner detector, the calorimeter, and quantities that combine both tracking

and calorimeter information. The LH is given by
LS(B) (X) = H PS(B),i (:L'l) (49)
i=1

where x is the vector of input quantities, Pg;(x;) is the PDF of quantity i at value x; for
signal electrons, and Pg;(x;) is corresponding PDF for background. The signal PDFs are
derived from Z — ee and J/¥ — ee events in data, while those for the background are
derived from a sample primarily comprised of dijet events. For each electron candidate, a

discriminant dy, is formed:
Ls

dp = ——5
YT Ls+Lp

(4.10)

which is ultimately transformed to smooth sharp peaks in the distribution using the in-
verse sigmoid function. The distribution of the transformed LH discriminant is shown in

Figure 4.14.
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Figure 4.14: The transformed LH discriminant for reconstructed electron candidates with
30 < Bt < 35GeV and |n| < 0.6. Image taken from Ref [144].

Fixed values of the LH discriminant are used to define four operating points corre-

sponding to increasing thresholds of the discriminant. These operating points are referred
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to as VeryLoose, Loose, Medium, and Tight. The electrons used by the search presented in this
thesis are required to pass the Medium operating point. The identification efficiency for the
Loose, Medium and Tight electron operating points is shown in Figure 4.15 for Z — ee
events in data. The efficiencies for identifying an electron with By = 40 GeV are 93%,
88%, and 80% for the Loose, Medium, and Tight operating points, respectively. As shown in
the Data/MC ratio, the measured identification efficiency in data, Pt differs from that
of simulation, eMC. For this reason, data-to-simulation scale factors are calculated in the
same way as Equation 4.8. The systematic uncertainty associated with these scale factors

will be discussed in Section 7.3.
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Figure 4.15: The electron identification efficiency in Z — ee events in data as a function
of Er (left) and 7 (right) for the Loose, Medium and Tight operating points. Image taken
from Ref [145].

Electron calibration

After reconstruction, electron candidates in data and MC are calibrated to correct for en-
ergy losses upstream of the LAr calorimeter and differences between data and simulation.
Similar to the jet calibration described in Section 4.2.1, corrections are applied to both data
and MC to restore the reconstructed electron four-momenta to the particle-level energy
scale [147], [148]. To estimate the energy of the electron from the energy deposits in the

calorimeter, a multivariate regression algorithm is used which is trained on samples of
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simulated events. The same algorithm is applied to data and simulation. Next, in situ
corrections are applied to the data to account for residual differences between data and
simulation. These include the intercalibration of the different calorimeter layers, pile-up
corrections, and corrections to improve the uniformity of the energy response. The overall
electron response in data is calibrated so that it agrees with the expectation from sim-
ulation, and corrections are derived and applied to simulation such that electron energy
resolution matches the data. The invariant mass distributions of dielectron pairsin Z — ee
events are shown in Figure 4.16 for data and simulation after the calibration and resolution
corrections are applied. Good agreement is observed indicating the efficacy of the electron

calibration procedure.
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Figure 4.16: Dielectron invariant mass distribution in Z — ee events after the calibration
and resolution corrections are applied. The uncertainty band in the ratio represents the
impact of the uncertainties in the calibration and resolution correction factors. Image taken
from Ref [145].

4.2.4 Photons

Finally, the search presented in this thesis also makes use of photons in order to define
a signal-free region to use to validate the background estimation method (Section 7.2.2).
Photon reconstruction follows nearly the same procedure used to reconstruct electrons
(Section 4.2.3) but with a few additional complications, due to the fact that as photons

travel through the ATLAS detector they will interact nontrivially with the material in the
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ID before depositing their energy in the ECal [145]. These interactions can transform pho-
tons into e*e™ pairs in a process known as photon conversion. To properly identify pho-
tons in the ATLAS detector, it is thus essential to identify these eTe™ conversion vertices.
First, tracks which are loosely matched to a fixed-size topo-cluster are used to seed
the reconstruction of photon conversion vertices. Two-track conversion vertices are recon-
structed from pairs of opposite-charge tracks which form a vertex consistent with that of
a massless particle. So-called “single-track” vertices are also reconstructed which are in-
dividual tracks without hits in the innermost tracking layers. Clusters which are matched
to a conversion vertex are then considered as converted photons, while clusters which are

matched to neither a track nor a vertex are considered unconverted photons.
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Figure 4.17: Diagram of the superclustering algorithm for electrons and photons. Seed
clusters are shown in red, satellite clusters in blue. Image taken from Ref [145].

Superclusters formation then proceeds similarly to the procedure described in Sec-
tion 4.2.3. As with electrons, the algorithm attempts to find satellite clusters based on a
3 x 5 window in An x A¢ space around a seed cluster to capture energy deposits from
secondary EM showers. For converted photons, clusters are added to the supercluster if
they have the same conversion vertex as the seed cluster, or if their best-matched track
belongs to the conversion vertex which is matched to the seed cluster. Figure 4.17 shows a
diagram of the superclustering algorithm for electrons and photons to illustrate the differ-

ences between the two clustering algorithms.
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The photon energy scale is calibrated following a procedure similar to that described in
Section 4.2.3 [145]. A rectangular cut-based selection is then used to construct photon iden-
tification working points. The search presented in this thesis considers photons which pass
the Loose identification working point, which does not differentiate between converted and

unconverted photons.
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Chapter 5

Reconstruction of Long-Lived Particle

Decays

You cannot swim for new horizons until you have courage to lose sight of the shore.
-William Faulkner

The ATLAS detector was designed to reconstruct particles originating from close to the
primary interaction point. This is sufficient for probing the SM electroweak sector as well
as most BSM scenarios because lifetimes of heavy states like the Higgs and 1W/Z bosons are
generally on the order of 1071 m or smaller. The track reconstruction algorithm described
in Section 4.1 was developed with these types of signatures in mind and therefore places
strict requirements on the transverse and the longitudinal impact parameters. These se-
lections are necessary to maintain high purity of primary charged particle reconstruction
and efficient computation times, but at the detriment of sensitivity to long-lived particle
signatures. To search for particles with lifetimes greater than a few millimeters, the ATLAS
detector must be repurposed and the standard reconstruction chain described in Chapter 4
reimagined.

To reconstruct the decays of long-lived particles in the inner detector, the search de-
scribed in this thesis uses two dedicated reconstruction algorithms. First, a tertiary track-
ing pass is run with loosened impact parameter and hit requirements to recover the loss in

efficiency of the standard tracking procedure for displaced decays. This algorithm, known
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as Large Radius Tracking, was optimized to maximize efficiency for reconstructing the de-
cay products of long-lived particles and is the subject of Section 5.1. Next, a dedicated
secondary vertex reconstruction algorithm is performed taking as input the combined col-
lection of standard and large radius tracks. This allows the decay position of the long-lived
particles to be identified and for its kinematics to be studied. The vertex reconstruction al-

gorithm and its performance is described in Section 5.2.

5.1 Large Radius Tracking

The Large Radius Tracking (LRT) algorithm [132] is used to supplement the standard
tracking algorithm described in Section 4.1. The LRT algorithm follows the same recon-
struction algorithm as the inside-out tracking procedure, but has loosened quality selec-
tions in both the track seeding and ambiguity solving steps. Most importantly, the trans-
verse and longitudinal impact parameter requirements are relaxed to |dp| < 300 mm and
|z0| < 1500 mm, and the range of allowed pseudorapidities is increased to || < 5. This
allows the LRT algorithm to reconstruct tracks originating in the inner detector far from
the IP. Several hit requirements are also loosened slightly to increase efficiency without sig-
nificantly degrading the track purity. The main differences between LRT and the standard

inside-out tracking are summarized in Table 5.1.

Standard Large radius

Maximum dy (mm) 10 300
Maximum zg (mm) 250 1500
Maximum |7| 2.7 5
Maximum shared silicon modules 1 2
Minimum unshared silicon hits 6 5
Minimum silicon hits 7 7
Seed extension Combinatorial ~ Sequential

Table 5.1: Main selections that differ between the standard inside-out tracking and
LRT [132].

The algorithm begins by forming space-points from hits that were not used in either the
inside-out or outside-in standard tracking passes. The seeds are then extended using the
same approach as the standard tracking, but with a sequential instead of a combinatorial

Kalman filter to accommodate the increase in the number of possible track candidates for a
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given seed as a result of the loosened requirements. Track candidates are then fed into the
ambiguity solver with the same loosened selection criteria used in the track seed selection.
The candidates that are accepted by the ambiguity solver are then extended to the TRT,
and the resulting tracks are merged with the standard track collection to form the final

track collection.

5.1.1 LRT performance

The performance of the LRT algorithm is studied in Ref [132]. The main metric used to
evaluate the algorithmic performance is the track reconstruction efficiency, defined as the
ratio of the number of tracks matched to a signal truth particle and the number of signal
truth particles. The track-truth matching is computed from the weighted fraction of hits
left by the generated particle that are included in the reconstructed track. For a track to
be considered matched to a truth particle, this fraction must be > 0.5. A benchmark SUSY
sample is used in which long-lived gluinos decay to a quark and a virtual squark, which
subsequently decays to a neutralino and quark. This leads to the final state of displaced
hadronic jets. Despite being a different physics process the final state is not dissimilar to
the final state being probed in this search, and the studies are therefore representative of
the algorithmic performance for the case of Higgs decays to LLPs.

Figure 5.1 shows the track reconstruction efficiency as a function of charge particle pro-
duction radius rprodl for standard tracks, large radius tracks, and the combined collection
of standard and large radius tracks. At low 7,44, the standard tracking algorithm is very
efficient and leaves relatively few hits to be used as input to the LRT algorithm. However,
the efficiency quickly drops after 7,09 > 10 mm, with fewer than 20% of tracks being re-
constructed by the standard tracking algorithm after rp04 > 50 mm. The addition of large
radius tracks significantly increases the reconstruction efficiency for LLP production radii
above 50 mm.

The track reconstruction efficiency decreases roughly linearly as a function of rpyoq-

!This variable corresponds exactly to the decay radius of the LLP.
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Figure 5.1: Inclusive track reconstruction efficiency for displaced charged particles pro-
duced by the decay of long-lived particles as a function of the production radius rprq4. The
efficiency for standard and large radius tracking is shown, as well as the total efficiency,
defined as their sum. Image taken from [132].

This can be a result of both algorithmic inefficiencies as well as the fact that as 7,04 in-
creases, truth particles are less likely to traverse the necessary number of detector lay-
ers to leave at least seven silicon hits. To disentangle these two effects, a technical ef-
ficiency is defined which places additional requirements on the truth particles entering
the efficiency calculation to ensure that the particles are theoretically reconstructible. Fig-
ure 5.2 shows the technical efficiency as a function of 7,44 for the LRT and combined track
containers. The total combined track collection has a technical efficiency of > 90% for
Tprod < 300 mm, with the large radius tracks providing the dominant contribution to the

efficiency for rproq < 20 mm.

Fiducial selections for technical efficiency
Tprod < 300 mm
In| <5
pr > 1GeV
Number of silicon hits > 7

Table 5.2: Selections on truth particles used to define the technical efficiency [132].

This high reconstruction efficiency is not without its downsides. As a consequence of

the loose track selections applied, the LRT algorithm reconstructs many fake tracks that
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Figure 5.2: Technical reconstruction efficiency for large radius tracking and combined stan-
dard plus large radius tracking as a function of production radius rp,q. Image taken
from [132].

2. The rate of fake tracks re-

do not correspond to any true charged particle trajectories
constructed in the LLP benchmark samples studied in Ref [132] is approximately 80%.
This has a significant impact on both the amount of background observed at the analy-
sis level, as well as the computational performance of the algorithm. When large radius
tracking is included in the reconstruction chain, the time needed to fully reconstruct each
event is increased by a factor of approximately 2.5 with respect to the standard configu-
ration. Not only is the tracking step itself time consuming, but the large number of fake
tracks produced as a result of the loose tracking selections complicates downstream recon-
struction of physics objects. This precludes LRT from being run by default alongside the
standard reconstruction. Instead, approximately a few percent of the data is selected using

event-level quantities computed after the standard reconstruction to have the additional

reconstruction performed. This process will be described in more detail in Section 6.2.2.

5.2 Displaced Vertex Reconstruction

As we have seen, the LRT algorithm is capable of efficiently reconstructing the charged
daughters produced in the decay of a long-lived particle. After reconstructing these dis-

placed tracks, the decay position of the LLP can be identified by reconstructing a secondary

2A track is considered fake if the match score between the reconstructed track and the track created by the
hits from a truth particle is less than 50%
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vertex from this collection of tracks that may be significantly displaced from the primary
pp interaction vertex. Reconstructing the decay of the LLP as a secondary vertex is an es-
sential ingredient for studying its kinematics and provides an experimental signature with
strong discrimination power between signal and SM backgrounds (see Section 7.1.2).
There are several different algorithms designed to reconstruct secondary vertices used
in ATLAS. Use cases for these algorithms range from the reconstruction of b-hadron decay
vertices inside jets to the mapping of the material inside the inner detector. The search
presented in this thesis uses an algorithm known as Vrt SecInclusive (VSI) [149] which
was designed specifically to reconstruct the secondary vertices associated with the LLP
decays. A description of the algorithm and an overview of its performance on several LLP

signatures is given below.

5.2.1 Description of the algorithm

The VSI algorithm proceeds in several steps. First, vertex reconstruction is seeded by pairs
of tracks that are compatible with originating from a long-lived particle decay. The com-
patibility of each possible pair of preselected tracks is then computed, and those deemed
loosely compatible are retained. These two-track seed vertices are then combined to form
multi-track vertices using a pairwise compatibility graph. Nearby vertices are then merged,
and lower-quality tracks not initially preselected for vertex seeding are attached to com-

patible vertices. Each step of the algorithm is described in more detail below.

Track selection

Tracks are preselected for vertex reconstruction from the combined collection of standard

and large radius tracks using the following selection criteria:
e pr > 1GeV
¢ the track must not be associated to any primary vertex (hard-scatter or pileup)
¢ if the track has zero pixel hits, it must have at least six hits in the SCT

¢ if the track has fewer than two pixel hits, it must have at least one hit in the TRT
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¢ if the track pr is less than 20 GeV, it must have at least seven hits in the SCT

e if the track pr is less than 20 GeV and |n| is less than 1.7, it must have at least 20 hits

in the TRT

The track selections were designed to be as inclusive as possible to allow for sensitivity to
a wide range of models while still reducing the number of vertices reconstructed from the

random crossing of fake tracks.

Two-track seed finding

Vertex reconstruction begins with the formation of two-track seed vertices. In addition to
the track selection criteria listed above, tracks used for vertex seeding must have trans-
verse impact parameter |dg| > 2 mm to reduce the number of vertices formed from SM
processes. The algorithm then forms vertices from all possible pairs of preselected tracks.
The vertex position is estimated from the track parameters measured with respect to the
beam spot, and two-track pairs that have small impact parameters with respect to the es-
timated secondary vertex position are then fit using a x? minimization [150]. After the fit,
vertices are rejected if their radial position ryt is greater than 563 mm (corresponding to
the SCT/TRT boundary) or if the reduced vertex-fitting quality x*/npor is greater than 5,
where npgr is the number of degrees of freedom in the fit. For vertices this is given by
npor = 2n — 3 where n is the number of constituent tracks in the vertex.

The tracks in each remaining seed vertex are then required to pass a hit-pattern re-
quirement which checks that the hits associated to each track are compatible with a parti-
cle originating from the position of the seed vertex. For example, the tracks in the vertex
must not have hits on the layers within the vertex radius and must have hits on the clos-
est layer outside the vertex. The forbidden and allowed hits are shown for two different
example seed vertices in Figure 5.3. Silicon layers with disabled modules are treated as if
they had produced a hit to ensure that vertices near inactive modules are not spuriously
rejected. Seed vertices in which both tracks fulfill the hit-pattern requirement are retained.

Otherwise the vertex is rejected.
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Figure 5.3: Examples of allowed and forbidden hits for tracks associated to seed vertices in
the hit-pattern requirement. The tracks must not have hits on the layers within the vertex
radius, and must have hits on the closest layer outside the vertex. Image taken from [149].

Multi-track vertex forming

When forming all possible combinations of two-track vertices from the input tracks, it is
likely that multiple seed vertices will be formed from the tracks originating from a single
LLP decay, as well as individual tracks being associated to multiple vertex seeds. To com-
bine the seeds into multi-track vertices and resolve the sharing of tracks between vertices,
a pairwise compatibility graph is constructed by mapping tracks as nodes and two-track
vertices as edges between them. The same state can be represented as an incompatibility
graph where the edges are instead formed between tracks which do not form vertices. The

two types of graphs are shown in Figure 5.4. A group of tracks which are fully compati-

a

® o
,

,
K

° P °
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Figure 5.4: Illustration of the (in)compatibility graph for a five-track collection in which
three tracks (a, b, d) form a common vertex. Image taken from [149].

ble with each other can then be combined into a single multi-track vertex by removing all

irrelevant nodes from the incompatibility graph and performing a new vertex fit.
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After the formation of multi-track vertices from the two-track seeds, it is possible for
a single track to be associated to multiple vertices. To remedy this, the goodness of fit
is evaluated for the track in question between all of its associated vertices, and the track
is assigned to the vertex with the best fit. All vertices are then refit with their updated

associated track constituents.

Vertex merging

At this point, it is still possible for a single LLP decay to be reconstructed as several distinct
multi-track vertices. This leads to a degradation of the vertex track multiplicity which is
one of the primary discriminating variables used in searches for displaced vertex signa-
tures (see Section 7.1.2). In order to reconstruct each LLP decay as a single vertex, the
algorithm attempts to merge nearby vertices by performing a series of tests as described in
Ref [149]. Each pair of vertices are considered for merging if their positions are compatible
within 100, where ¢ is the uncertainty on the distance between the two vertex positions
calculated from the quadrature sum of the covariance matrices of the vertex fits. Any ver-
tices with a separation of less than 1 mm are forced to merge, and all merged vertices are

refit using the combined collection of associated tracks from the two input vertices.

Track attachment

Finally, it is possible that there are tracks that are compatible with the vertices formed in
the above algorithm that did not pass the original track selections required for seeding. In
order to recover these tracks, a track attachment procedure is performed which aims to
augment existing vertices with additional tracks to improve the vertex track multiplicity.
Tracks considered for attachment are required to satisfy a loosened set of selection cri-

teria, summarized in Table 5.3. Unlike in the vertex seeding, tracks are considered even

Attached track requirements
pr > 1 GeV
Xz/nDoF <5

|dosv|/o(dosv) <5
|20.sv|/0(z0.v) <5

Table 5.3: The selections applied to tracks during the track attachment procedure.
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if they are already associated to a primary pp vertex. In descending order of vertex track
multiplicity, an attempt is made to associate a track to each secondary vertex. The impact
parameters of the tracks with respect to the target secondary vertex are computed, and
tracks with transverse and longitudinal impact parameter significances of less than 5 are
attached to the vertex. The vertex position is re-fit for each attempted track association,
and the track is accepted if the updated vertex fit has x2,, /npor < 20. Tracks are limited to
be associated to a single secondary vertex, so once a successful vertex fit is performed the
track is not considered for further association to other vertices. The philosophy used in the
track attachment procedure is to accept as many tracks as possible during reconstruction

and for analysis-specific track pruning to be determined downstream?.

5.2.2 Performance

The performance of the VSI algorithm was studied in Ref [149]. Three different bench-
mark models containing long-lived particles were used to test the performance on a range
of different signatures. The first is an R-parity violating SUSY model that assumes the
neutralino is the lightest supersymmetric particle. The neutralino is produced during the
cascade decay of a heavier gluino particle in the process pp — §3,§ — qqX} and subse-
quently decays to light SM quarks via off-shell squarks, X — ggq. The mass of the squarks
and gluino are 3 and 2.4 TeV respectively, and neutralino mass is 2050 GeV with lifetime
¢7go = 300 mm. This model probes the performance for heavy LLP decays which produce
high-multiplicity hadronic secondary vertices. The second model considers the existence
of long-lived heavy neutral leptons (HNL), N. Via a mixing with SM neutrinos the HNL
may be produced in decays of the W boson and subsequently decay to v,¢*¢~. HNL
masses of 15 GeV are considered with a lifetime of ¢y = 100 mm. This model probes the
secondary vertex reconstruction performance for low-track-multiplicity secondary vertices
with leptonic constituents. Finally, the study considered the model probed in this thesis,
in which the Higgs boson decays to pairs of pseudoscalar bosons a which subsequently
decay to pairs of b quarks. The mass of the a boson was taken to be 55 GeV, with a lifetime

c7, = 100 mm.

*1t is significantly easier to remove extraneous tracks at the analysis level then to add them in.
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To evaluate the vertex reconstruction efficiency on the signal MC samples, a truth
matching procedure is used to determine if LLP decays are reconstructed as displaced
vertices. LLP decays are considered reconstructed if the tracks associated to a displaced
vertex are primarily matched to truth particles originating from the LLP, where the match-
ing of tracks to truth particles uses the same criteria as described in Section 5.1.1. For each
pair of a reconstructed vertex v and a truth decay vertex [, a truth-matching score s is

computed which uses the magnitude of the track pr as a weight. The score is given as:

Y ic tracks cv (p(Tl )| descendent of LLP decay l)

Z (4)
i€ tracks €v PT

s(v,l) =

A vertex is considered matched to a true LLP decay if s(v,l) > 0.5.

To decouple the algorithmic performance of the vertex reconstruction algorithm from
other effects, the performance of the algorithm is analyzed using several metrics. The
acceptance (A) of truth LLP vertices is defined as the ratio of reconstructible LLP vertices
to all LLP vertices in the MC truth record. A reconstructible LLP decay is defined as one

satisfying the following set of requirements:
¢ the transverse distance from the origin must be L, < 563 mm.
¢ the z-position must be |z| < 2720 mm.
¢ atleast two charged particles with pr > 1 GeV must be produced in the decay chain.

The first two requirements ensure that the LLP decay occurred within the tracking volume
of the ID, while the latter ensures that the tracks originating from the decay have large
enough momentum to be reconstructed by the tracking algorithms.

In order to reconstruct an LLP decay as a secondary vertex, at least two constituent
tracks from the decay must be reconstructed. Furthermore, in order for the LLP decay to
be seeded, the tracks must pass the selection criteria detailed in Section 5.2. The seed effi-
ciency (egeed) is defined as the ratio of the number of LLP decays with at least two selected
tracks passing these requirements to the number of LLP decays passing the acceptance

criteria.
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Finally, the core efficiency (ecore) is defined as the ratio of the number of LLP decays
that are matched to a reconstructed vertex (with a match score of at least 0.5) to the number
of LLP decays that pass the seeding criteria. The total reconstruction efficiency is then

defined as the product of these three terms:

€total — A- €seed * €core- (51)

Decomposing the efficiency in this way allows the algorithmic performance to be sepa-
rated from inefficiencies induced from truth acceptance, track reconstruction, and track
selection.

The acceptance, seed, core, and total efficiencies are shown in Figure 5.5 for the three

benchmark signal processes. Total reconstruction efficiencies of nearly 60% are observed
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Figure 5.5: Clockwise from upper left: The acceptance, seed, total, and core vertex recon-
struction efficiencies as a function of LLP decay radius for all three benchmark models.
Image taken from [149].

for the H — aa — bbbb process. The performance of the vertex reconstruction algorithm
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was also studied as a function of pileup. As shown in Figure 5.6, the total vertex recon-
struction efficiency is observed to decrease as a function of the number of pp interactions,
primarily due to a degradation in track quality in high multiplicity environments. How-

ever, the algorithm is still found to be robust up to 80 pp interactions per bunch crossing.
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Figure 5.6: The total vertex reconstruction efficiency as a function of the number of pp
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128

Part 111

Search for Exotic Higgs Decays



129

Chapter 6

Data and Simulated Samples

Three quarks for Muster Mark!
-James Joyce

To perform the search for exotic Higgs decays to long-lived particles, simulated and
real proton-proton collision data is used. This chapter is dedicated to describing these
samples and how they were generated/collected. Section 6.1 describes the simulated sig-
nal and background samples that are used to develop the analysis, optimize the event
selection criteria, measure the signal selection efficiency, and assess sources of systematic
uncertainty. An overview of Monte-Carlo event generation is given with a focus on the
simulation of QCD phenomena such as showering and hadronization, and then the pro-
cedure for simulating the signal and background processes is detailed. Section 6.2 then
describes the dataset used by this search, which was collected by the ATLAS detector be-

tween 2015 and 2018 and represents the entirety of the Run-2 dataset.

6.1 Simulation

Accurate simulation of both signal and background processes is a central component of
searches for BSM physics. Simulation of the signal process is essential for optimizing the
analysis selections to maximize the discovery potential, as well as understanding the ef-
ficiency of these selections to determine the total expected number of signal events in the
measurement which is needed to perform hypothesis tests on the observed data. Being a

rather complicated endeavor, we dedicate a brief discussion to dissecting what goes in to
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simulating the physics of high-energy hadron-hadron collisions before detailing the simu-

lation of Higgs boson decays to long-lived particles

6.1.1 Monte-Carlo event generation

The event structure of a hadron-hadron collision is extremely complex, with a description
of the full final state involving many multi-particle interactions. To perform the calcula-
tions needed to describe these final states, Monte-Carlo (MC) methods are the only viable
option. Figure 6.1 shows a sketch of a hadron-hadron collision as simulated by a Monte-
Carlo event generator. The event consists of many different interactions, from the hard pp
collision and subsequent Bremsstrahlung radiation, all the way to the parton-to-hadron
transitions and eventual hadron decays. Not to mention the simulation of the dynamics of
the remnants of the incoming hadrons that do not participate in the hard scatter! Needless
to say, the pp collisions that occur at the LHC are an extremely complicated process to sim-
ulate. Due to the complexity of the situation, the simulation of a scattering event such as

the one shown in Figure 6.1 is factorized into several stages, which are described below.

The hard scatter

The hard scattering process is the first phase of the event that is simulated. This essentially
consists of the evaluation of the cross section for the production of an /N-particle final state
in a proton-proton interaction. Because the interacting particles are actually constituents
of composite hadrons, this cross section relies on the parton distribution function (PDF)
which describes how the momentum of the incoming proton is distributed among its con-

stituent partons. The cross section is given by
Opp—sN = Z/d$1d$2fa($1,ﬂ%)fb($2aM%)f}%) (6.1)
ab

where é}j‘\? is the cross-section for a specific partonic initial state (ab), and f, (1, u%) is the
probability distribution to find a parton a with a fraction z; of the energy of the incoming
proton evaluated at scale Q? = 2. The scale pup is called the factorization scale which sets

the energy threshold below which radiative effects are absorbed into the PDF and above
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Figure 6.1: Sketch of a hadron-hadron collision as simulated by a Monte-Carlo event gen-
erator. The red blob in the center represents the hard collision, surrounded by a tree-like
structure representing Bremsstrahlung as simulated by parton showers. The purple blob
indicates a secondary hard scattering event. Parton-to-hadron transitions are represented
by light green blobs, dark green blobs indicate hadron decays, while yellow lines signal
soft photon radiation. Figure and caption from Ref [151].
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Figure 6.2: The MMHT2014 NNLO PDFs at Q2 = 10 GeV (left) and Q? = 10* GeV (right).
The valence quarks are labeled uy and dy . Image taken from Ref [152].

which are included directly in the calculation of the hard scatter. The cross section also
depends on the renormalization scale, ;1. As usual, this scale is introduced to resolve the
logarithmic divergences that appear when computing the loop diagrams representing the
amplitude. The QCD coupling constant is then given as a function of the scale, ag(ir).
Figure 6.2 shows an example PDF derived using data from the LHC at two differ-
ent values of the scale Q2. At low energies, the valence quarks uy and dy are domi-
nant, whereas at higher energies contributions from virtual partons that form the “quark-
sea” become more significant. The PDF shown in Figure 6.2 is the MMHT2014 NNLO
PDF [152], which is one of several PDFs used by the experiments at the LHC. The other
commonly used PDFs are the NNPDF3.0 [153] and CT14 [154] sets. Several different gen-
erators are used for computing the matrix elements of the hard subprocess such as MAD-
GRAPH [155] and POWHEGBOX [156]. The generators used to simulate the processes con-

sidered in this thesis will be described in Sections 6.1.2 and 6.1.3.

The parton shower

Just as electrically charged particles undergoing acceleration will emit bremstrallung ra-

diation of photons, accelerated partons will emit QCD radiation in the form of gluons.
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Unlike QCD, gluons themselves carry color charge and will thus emit their own radiation
leading to a so-called parton shower (PS). The parton shower is simulated after the gen-
eration of the hard-scatter process and models the emission of both initial- and final-state
radiation. Final-state radiation refers to emissions from an outgoing parton of the hard
subprocess, and initial-state showers are those that originate from an incoming parton of
the hard subprocess. These emissions are in principle higher-order corrections to the hard
subprocess, with the dominant contributions originating from collinear parton splitting or
soft gluon emission. Consider the almost-collinear splitting of a parton of type ¢ into two
partons of type j and k, such as ¢ — ¢ + g. If the n-parton differential cross section before

splitting is given by do,,, then at leading order in perturbation theory we have

ag dh?
dopi1 ~ do—n%ﬁdngbf)]z (2,9) (6.2)

where ¢ and ¢ are the opening angle and azimuthal angle of the splitting, and P; is the
splitting function which describes the fraction z of the initial parton (i) energy carried
by j [157]. Sequential application of Equation 6.2 using MC methods to generate values
of z, 6, and ¢ allows for simulation of the shower for each initial and final state parton.
The process is terminated when the energies of the showered partons have fallen to the
hadronization scale Q% ~ 1 GeV. The most commonly used of parton-shower MC genera-

tors are PYTHIA [158] and HERWIG [159].

Hadronization

To complete the simulation of the event into the final topology as observed by the de-
tector, the quarks and gluons produced in the parton shower must be transformed into
color-neutral final states. This process is known as hadronization. At the hadronization
scale, the coupling a is too large for perturbation theory and the dynamics enter a non-
perturbative phase. Current analytic methods are unable to describe hadronization from
tirst principles, and thus event generators rely on phenomenological models based on gen-
eral features of QCD. There are two models currently used to simulate the parton-hadron

transition: the string model and the cluster model. The Lund string model [160], depicted
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in Figure 6.3a, relies on the observation from QCD lattice simulations that the potential
energy between a quark-antiquark pair increases linearly with their separation. When
the separation corresponds to a potential energy on the order of hadron masses, it be-
comes energetically favorable for the gluonic string that stretches between them to break
at some point along its length through the creation of a new quark-antiquark pair. This
process is then repeated for the new string segments that are formed between the two
quark-antiquark pairs, and continues to do so until all of the energy has been converted
into quark-antiquark pairs which can be identified with hadrons. The cluster model [161]
depicted in Figure 6.3b, is instead based on the preconfinement property of QCD [162]. At
scales much less than the scale of the hard scatter, the partons in a shower are clustered in
colorless groups. It is then natural to identify these clusters at the hadronization scale as
proto-hadrons that decay into the observed final-state hadrons. In practical implementations
of the model, gluons in the shower are forced to split into quark-antiquark pairs which then
form clusters with their corresponding color partners. Due to the non-perturbative nature
of the hadronization process, the simulation involves many parameters that represent the
uncertainty in our understanding of nature. The specific set of parameters that enter the
calculation is called a tune. Hadronization is usually simulated by the same generators
used to produce the PS evolution, with PYTHIA and HERWIG once again being the most

commonly used.

The underlying event and pileup

The procedure described above gives a complete picture of how to simulate the final state
particles produced from the hard parton-parton subprocess that occurs in the pp collisions
at the LHC. However, this is not the full picture of what occurs when two protons col-
lide. Accurate simulation of pp collisions must also consider the dynamics of the partons
in the incoming protons that do not directly participate in the hard subprocess. The soft
interactions between these “spectator partons” comprise what is known as the underly-
ing event, and are highly probably in pp collisions at the LHC [163]. It is also possible to
have multiple parton hard-scatterings, i.e. events in which two or more distinct hard par-

ton interactions occur simultaneously in a single pp collision. Similar to the modeling of
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Figure 6.3: The cluster (a) and string (b) hadronization models. Images taken from
Ref [157].

hadronization, these interactions are non-perturbative in nature and thus their simulation
relies on a large number of free parameters that must be tuned.

The simulation must also take into account the interactions between the other proton-
proton interactions in each bunch crossing. Recall from Section 3.1.2 that during Run 2,
there were 33.7 interactions per bunch crossing on average. In order to replicated the
pileup conditions in data, the generated hard-scatter events are overlayed with simulated
minimum-bias events, which are soft inelastic collisions that are modeled to represent
those observed in data. To account for the fact that the pileup profile used when generat-
ing the simulated events may be slightly different than the actual pileup profile observed
in data, a reweighting procedure is used known as pileup reweighting (PRW). This pro-
cedure (and its associated uncertainties) will be described in more detail in Section 7.3.

Finally, the entire generated event including the hard-scatter, underlying event, and
pileup is run through a detailed GEANT4 [164] simulation of the ATLAS detector to sim-

ulate the detector response. The result of this simulation is a set of digitized signals which
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may be treated in the same way as the data collected by the detector, giving the most ac-

curate possible representation of how the simulated events would be observed.

6.1.2 Simulation of Higgs boson decays to long-lived particles

Simulated events with a Higgs boson produced in association with a Z boson are gen-
erated using POWHEG v2 [156], [165]-[167]. The POWHEG prediction is accurate to next-
to-leading order for the ZH boson plus one jet production. Virtual amplitudes are con-
structed through the interface to the GOSAM package [168]. The loop-induced gg —
ZH process is generated separately at leading order with POWHEG. In all cases, the
PDF4LHC15nlo PDF set [169] is used. The simulated prediction is normalized to cross
sections calculated at NNLO in QCD with NLO electroweak corrections for ¢q¢ — ZH and
at NLO and next-to-leading-logarithm accuracy in QCD for gg — ZH [170]-[176]. The
POWHEG method [166], [167] is used to match the matrix element computation to that of
the subsequent parton shower.

The decay of the Higgs boson to two spin-0 a bosons and the subsequent decay of each
a boson into a pair of b quarks are simulated with PYTHIA 8.212 [158]. The coupling of
the a boson to b quarks is assumed to be that of a pseudoscalar, however, the informa-
tion about the parity of the a boson assumed in the simulation is lost in the hadroniza-
tion of the b quarks and thus the results of this search apply equally to scalars and pseu-
doscalars. A Feynman diagram depicting the leading order production mode for the ZH,
H — aa — 4b process is shown in Figure 6.4. PYTHIA 8.212 is also used for parton
showering and hadronization, as well as underlying-event simulation using the AZNLO
CTEQ6L1 tune [177]. The samples include weight variations evaluated on-the-fly for the
estimation of QCD scale, PDF- and ag-induced uncertainties. The QCD scales pr and pp
are varied independently by factors of 0.5 and 2.0 to allow for the assessment of their ef-
fect on the signal process. Masses of the a boson in the range 15-55 GeV are considered,
and statistically-independent samples are produced with mean proper lifetimes of 10 mm,
100 mm, and 1 m for each value of mass. These samples are ultimately reweighted to ob-
tain samples corresponding to alternative lifetimes. This reweighting procedure will be

described in Section 8.3.1.
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Figure 6.4: Feynman diagram depicting the leading order production mode for the ZH,
H — aa — 4b process. Diagram created using the TikZ-Feynman package [48].
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Figure 6.5: Distributions of the pr of the (a) Z boson and (b) Higgs boson in truth signal

MC samples with ¢ = 10 mm.



Chapter 6. Data and Simulated Samples 138
> 0.12F T T T T T T [ T T 11 LU B B B R B B g | > 018__- LB . VL DL L B B B
8 [ ATLAS Simulation Internal m, = 15 GeV ] 8 E ATLAS Simulation Internal m, = 15 GeV 3
0 - Ef:gTeV ——— m, =25GeV B 0 0-16:_ Ef:gTeV —— m, =25 GeV 3
& 0.1~ ct=10mm —— m, =35GeV ] ;014-_01_ mm —— m, =35GeV =
g C —— m,=45GeV ] s F —— m,=45GeV ]
Rt 0.08_— —— m, =55 GeV ] & 0.12:— —— m, =55 GeV =
5 r 1 B o =
5 0.06F 1 Sk 3
3 C ] g 0.08 =
o - E o u ]
L 0.04_— ] L 0.06 —
C ] 0.04F E
0.02[—~ - E E
- ] 0.02] 3
o ST AP E I B SR ] O:...I...I...I...I... | L]

0 50 100 150 200 250 0 20 40 60 80 100 120 140
p.() [GeV] p,(L,) [GeV]
(@) (b)

Figure 6.6: Distributions of the pr of the (a) leading and (b) subleading leptons in truth

signal MC samples with c7 = 10 mm.
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Figure 6.8: Distributions of (a) the AR between the two a bosons and (b) AR between the
decay products of the leading a boson in truth signal MC samples with c¢7, = 10 mm.

The pr distributions of the Z boson, Higgs, leptons, and the long-lived a bosons are
shown in Figures 6.5, 6.6, and 6.7 for signal samples with ¢ = 10 mm. The a boson pr
spectra is hardest for small values of m, due to the larger difference in mass relative to
the mass of the Higgs boson. The pr distributions are independent of the lifetime of the a
boson. The AR between the two a bosons is shown in Figure 6.8 for signal samples with
cr = 10 mm. The AR between the b quarks produced in the leading a boson decay is also
shown in Figure 6.8. For large values of m,, the a bosons tend to have smaller angular
separations, but their subsequent decay products are produced with larger separations.
The proper lifetime (c7) of the a bosons are shown in Figure 6.9b for signal samples with
mg = 15 GeV and cr = 100 mm, and the radial decay positions (L) of the a bosons are

shown in Figure 6.9a.

6.1.3 Simulation of Z+jets events

Simulated samples of the Z+jets process are used to develop the background estimation
method and analysis selections, as well as to derive systematic uncertainties (to be de-
scribed in Section 7.3). These samples are generated with the SHERPA v2.2.1 [178] gener-
ator. Matrix elements are calculated for up to two additional partons at NLO and four
partons at LO using the Comix [179] and OpenLoops [180] matrix element generators
and merged with the Sherpa PS [181] using the ME+PS@NLO prescription [182]. The
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Figure 6.9: Distributions of (a) the radial decay position of the leading a boson with cr =
100 mm and (b) the proper lifetime of the leading long-lived a boson with m, = 15 GeV.

NNPDF30NNLO PDF set [153] is used in conjunction with a dedicated PS tune developed
by the Sherpa authors. The Z+jets events are normalized to their NNLO QCD theoretical
cross-sections calculated using FEWZ [183]. Samples are produced in slices of pr using

filters for a b-jet, a c-jet and no b-jet, and with a veto on b and c-jets.

6.2 Data

This analysis uses 139.0 fb~! of /s = 13 TeV pp collision data, collected by the ATLAS
experiment from 2015-2018. Only data collected during stable beam conditions in which
all detector subsystems were operational is considered [184]. The data used in this analysis

are preselected with basic event requirements:

¢ GRL: Events are required to pass the Good Run List (GRL) for the corresponding
data taking period, which specifies the luminosity blocks from within the data runs

(spanning 1-2 minutes of data-taking) which are usable for physics analysis.

¢ Cleaning: After applying the GRL, there are still some individual events which are
affected by detector problems that are not removed. This is because a single lumi-
nosity block can be thousands of events, and to remove an entire luminosity block
for a single problematic event could lead to a loss of usable data for physics analy-

sis. To remedy this, flags are used to remove problematic events due to errors in the
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liquid argon system, tile calorimeter system, SCT inner detector system, or due to
incomplete events. Thus, events must not have LArError, TileError, SCTError,

or CoreError.

¢ PV: Events are required to have at least one primary vertex reconstructed with two

or more associated tracks with pr > 500 MeV.
¢ Trigger: Events must fire at least one of the triggers described in Section 6.2.1.
¢ Filter: Events are required to pass the filter described in Section 6.2.2.

The trigger and filter requirements will be described in more detail in the following two

subsections.

6.2.1 Trigger

As described in Section 3.2.4, the ATLAS trigger system is used to select interesting events
for further processing. To select events consistent with the ZH topology, this analysis
uses single lepton triggers which are designed to select isolated electrons and muons with
transverse momenta pr > 26 GeV. The lowest threshold unprescaled trigger operating in a
given year is used, in addition to higher threshold triggers which have looser restrictions
on lepton identification and isolation. Events in both data and simulation are required to
fire the trigger. The trigger efficiencies for the most important triggers used in this search
are shown in Figure 6.10. The high efficiency of these leptonic triggers and the lack of an
explicit trigger for displaced jets is the primary motivating factor for targeting the asso-
ciated ZH production mode rather than ggF production. The ratios show the difference
in trigger efficiencies between data and simulation. These differences are accounted for
by applying scale factors to the simulation, which will be described in more detail in Sec-
tion 7.3. The full list of triggers used, and the years in which they were operation is given
in Table 6.1.

This analysis also makes use of a collection of photon triggers in order to define a val-

idation region in which to test the background estimation method (Section 7.2.2). Both
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Figure 6.10: Trigger efficiencies for (a) electrons and (b) muons. Images taken from
Refs [185], [186].

] l \ Trigger \ 2015 \ 2016 \ 2017 \ 2018 \
HLT_e24_lhmedium_L1EM20VH | v
HLT_e24_lhtight_nod0_ivarloose v
HLT_e26_lhtight_nod0_ivarloose v v v

. HLT_e60_lhmedium v v
HLT_e60_lhmedium_nod0 v v v
HLT_e120_lhloose v
HLT_e140_lhloose_nod0 v v v
HLT_mu?20_iloose_L1MU15 v
HLT_mu?24_iloose v
HLT_mu?24_ivarloose v
HLT _mu?24_imedium v v
K HLT mu24 ivarmedium v
HLT _mu26_imedium v
HLT_mu26_ivarmedium v v v
HLT_mu40 v v
HLT _mu50 v v v v

Table 6.1: The full list of single lepton triggers used in this search.
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single photon and diphoton triggers are used in order to collect a large statistic data sam-
ple. The single photon triggers have a pr threshold of 150 GeV, and the diphoton triggers

require at least two photons with pr > 60 GeV.

6.2.2 The RPVLL stream

As mentioned in Section 5.1, the LRT algorithm is extremely computationally expensive
and can therefore not be run by default on the full dataset!. Instead, events are prese-
lected based on a collection of algorithms known as filters prior to the LRT reprocessing.
The filters can be thought of as an additional trigger-like selection that further reduces
the number of events to be processed to a manageable level. Internally to ATLAS, these
selections are known as the DRAW_RPVLL filter, because they are run in before the RAW
data format is processed further (RAW to DRAW) and are used by several analyses targeting
R-parity violating SUSY scenarios. The rate of data selected by the DRAW_RPVLL filters
is shown in Figure 6.11. The combined rate of all filters is less than 50 Hz, which is sig-
nificantly less than the HLT rate of 1 kHz. Because these events are processed separately
from the main data stream, the computational resource quota is increased with respect to
the standard ATLAS reconstruction. This allows for the LRT algorithm to be run without
having to compromise on performance.

The filter used by this analysis is optimized to select events that match the ZH, H — aa
topology by requiring the presence of at least one lepton and a jet which is consistent with
originating from the decay of an LLP. Displaced jets are defined as the subset of jets that
satisfy a logical OR of requirements on two track-based observables, optimized to select
jets initiated by LLP decay products and reject those initiated by prompt partons. The first
observable [187] exploits the fact that jets with relatively small displacements with respect
to the IP will contain tracks that are incompatible with the PV. For each primary vertex

PV;, «; is defined as
(ZtracksEPVi ﬁ )T

(Ztracks ﬁ) T ’

!In the configuration used in Run 2, that is. The improvements made to LRT to reduce the CPU budget will
be discussed in Chapter 9

(6.3)

Q; =
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Figure 6.11: Rate of data selected by the collection of RPVLL filters for one run during the
Run 2 data taking period as a function of luminosity block. The primary filter used by
the analysis is labeled “VHLowTrack]etFilterKernel” and is shown in purple. The total
rate is shown in black markers, and is less than the sum of the individual filters due to
overlapping selections among multiple filter.

where a subscript “T” denotes the component of a vector transverse to the beam direction,
the sum in the denominator is over all tracks geometrically-associated to the jet, and the
sum in the numerator extends over the subset of tracks that are matched to PV;. A track
is considered matched to a PV if |dp| < 0.5 mm and |Azysiné| < 0.3 mm, where Az is
the longitudinal distance between the vertex position and the point of closest approach of
the track to the vertex. Standard QCD jets should have a large value of «; for the vertex
in which they were produced, while jets originating from the decay of an LLP should
have small values of «; for all PVs. Therefore, the maximum «; value for all PVs, ap.x =
max (o), is used to discriminate between signal and QCD jets and reject jets originating
from pileup interactions. The second observable, charged hadron fraction (CHF), exploits
the fact that more significantly-displaced jets deposit energy in the calorimeters but contain

few reconstructed tracks. CHF is defined as the ratio of the transverse component of the
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Figure 6.12: Schematic of several types of jets in the ATLAS detector before running the
LRT algorithm. The leftmost jet is originating from the decay of an LLP and has few re-
constructed tracks. Thus, both CHF and amax take values that are approximately zero. Jets
with tracks originating from one or more primary vertices will have larger values of both
CHF and omax.

total track momentum to the jet pr, or

CHF = My (6.4)

pT

where the sum in the numerator is over all tracks geometrically-associated to the jet with
|do| < 0.5 mm. These two variables are shown schematically in Figure 6.12. A jet is con-
sidered displaced if CHF < 0.045 or amax < 0.05. This selection was optimized to provide
high signal efficiency for a wide range of LLP proper lifetimes while maximizing back-
ground rejection. For an event to pass the filter, at least one of the leading two jets must
satisfy the displaced jet criteria.

In addition to the jet-level observables, the filter also places loose requirements on the
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Selection e 1
min pr 27 GeV 25 GeV
n <247,¢ [1.37,1.52] | <25
|20 sin 0] < 0.5 mm < 0.5 mm
0 <5 <3
Working point Medium Medium

Table 6.2: Filter-level lepton selections.

leptons in the event as summarized in Table 6.2. For an event to pass the filter, it is re-
quired to have at least one electron or muon passing these selections. This combination
of selections efficiently selects events consistent with the signal topology while rejecting
SM backgrounds. Events passing the photon triggers described in Section 6.2.1 are also
included in a separate filter. The high pr threshold of these triggers gives smaller rates and

therefore there is no need for the additional displaced jet requirements.
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Chapter 7

Search for Higgs decays to long-lived

particles

Your mind will answer most questions if you learn to relax and wait for the answer.
-William S. Burroughs

At this point, we have described all of the prerequisite information needed to develop
a search for exotic Higgs decays to pairs of long-lived particles which decay in the ATLAS
inner detector. In this chapter, we will describe the methods used to optimize sensitivity
for this unique signature, and the procedures used to derive and validate a method to esti-
mate the Standard Model backgrounds which can mimic it. Section 7.1 gives an overview
of the event-level and object-level selections applied to identify signal-like events and re-
ject background. These selections are highly effective at reducing the number of SM events,
and the residual background is estimated using a data-driven procedure as described in
Section 7.2. The validation of the background estimate is presented, and a systematic un-
certainty on the prediction is derived. Finally, Section 7.3 describes the various sources of

systematic uncertainty on the predicted signal yield that factor into the final results.

7.1 Event Selection

In order to define a region with maximum sensitivity for the H — aa — bbbb signature, as

well as signal-free regions to derive and validate an estimate for the SM backgrounds in
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this region, various event-level selections are applied. These selections will be described

in the following section.

7.1.1 Preselection

To define the preliminary selection used to select signal-like events, events are required
to contain exactly two opposite-sign, same-flavor leptons. This serves as a baseline se-
lection to identify events containing a Z boson. Electron candidates are required to be
within the fiducial region || < 2.47, and not within the calorimeter transition region
(1.37 < |n| < 1.52). To reduce the background from non-prompt electrons and photon
conversions, electrons must pass the Medium likelihood identification working point (Sec-
tion 4.2.3). Electron candidates are additionally required to have |zpsiné| < 0.5 mm and

do
‘O’ do)

| < 5. Muon candidates are required to pass the Medium reconstruction working

point and are further required to have || < 2.5, |zpsinf| < 0.5, mm and \Udé’o) | < 3 (Sec-
tion 4.2.2). In both dielectron and dimuon events, the leading lepton is required to have
pr > 27 GeV and the sub-leading lepton must have pr > 10 GeV. To further ensure that the
selected events are consistent with the presence of a Z boson, the dilepton invariant mass
myy is required to be in the range 66 < my, < 116 GeV.

Additionally, events are required to contain at least two jets with pt > 20 GeV and
In| < 2.5. Standard jet cleaning and pileup-rejection cuts are not applied in this analysis
as they were found to have a negative impact on jets originating from displaced decays.
Instead, a custom jet cleaning working point LooseBadLLP is used which has loosened
cuts and higher acceptance for displaced decays. In order to avoid double counting of
energy deposits in the detector where multiple analysis objects are reconstructed from the
same detector signals, an overlap removal procedure is used. This algorithm iteratively re-
moves overlapping analysis objects with preference given to different objects at each step.
For example, if an electron and a muon are reconstructed using the same inner-detector
track, the electron is discarded to suppress contributions from muon bremsstrahlung. For

overlapping jets and electrons, jets are first removed if they lie within AR < 0.2 of an

electrons, then electrons are removed if they lie within AR < 0.4 of a remaining jet. The
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final-state objects considered in the analysis are those which survive the overlap-removal
algorithm.

The trigger, filter, lepton, my, and jet requirements comprise the event preselection.

7.1.2 Displaced vertex selection

After applying the preselection, the primary discriminating variable between the signal
process and SM backgrounds is the presence of multiple displaced vertices. There are
several background sources of secondary vertices which mimic the decays of LLPs in the
ID. These include QCD decays, interactions between SM particles and detector material,
random crossings, and merged vertices. Selections are applied on both the location and
kinematics of the vertices which aim to reduce the background contribution to a negligible

amount. These selections are described and justified below.

Track pruning

As described in Section 5.2.1, the final step in the vertex reconstruction algorithm attaches
lower-quality tracks not initially preselected for vertex seeding to compatible vertices. At
the analysis level, a further set of criteria is placed on the tracks associated to existing
vertices to remove some of these tracks to improve signal to background discrimination.
These cuts are described in Table 7.1. These selections define three different DV working
points that were used to investigate and optimize the analysis sensitivity. All DVs consid-
ered in the analysis are required to pass the MEDIUM WD, which was optimized using an

S+/B metric by comparing tracks in signal vertices to those in Z-+jets MC. Figure 7.1 shows

Track parameter (w.r.t. DV) Cut Vlalue .
Loose | Medium | Tight
do (mm) - 0.8 0.1
2o (mm) - 1.2 0.4
o(dp) (mm) - 0.1 0.01
o(zp) (mm) - 0.2 0.04

Table 7.1: The track selections applied to vertices at analysis level. Only tracks which pass
the given working point selections are used when computing the vertex kinematics.

the L,, distributions of LOOSE and MEDIUM vertices in data and signal MC with m, = 15
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GeV and c¢7, = 100 mm. The number of vertices increases substantially after the last pixel
layer due to the increased number of fake tracks formed in this region'. By placing strict
requirements on o (dp) with respect to the DV, these vertices are largely removed due to the
increased track-parameter uncertainties for SCT-only tracks, at the expense of some signal

efficiency for samples with longer lifetimes.
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Figure 7.1: The L, distributions of LOOSE and MEDIUM vertices in (a) data and (b) signal
MC with m, = 15 GeV and ¢, = 100 mm.

Vertex preselection

One of the primary sources of background for secondary vertices in the ID are interactions
between SM particles with the detector material. As shown in Figure 7.2, these interactions
create secondary vertices concentrated around regions dense in detector material. These
vertices may be difficult to distinguish from true exotic decays occurring in the same region
of the detector. Figure 7.3 shows the distribution of vertices as a cross-section of the ATLAS
detector which clearly shows how the location of vertices closely maps the location of
dense detector elements.

To reduce the contribution from hadronic material interactions, a material veto is ap-
plied which rejects any vertices whose (z,y, z) position coincides with the location of
known detector elements. The veto is implemented through the use of two separate 3-

dimensional maps of the location of the material in the ID originally developed for a search

"When not requiring a hit in the pixel detector the number of potential track candidates increases signifi-
cantly.
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Figure 7.2: Comparison of the radial distribution of hadronic interaction candidates be-
tween data and simulation. Images from Ref [113].

for R-parity violating SUSY decays [188]. The first map extends to » < 150 mm and is con-
structed from the locations of low-mass, low-track multiplicity vertices in an inclusive data
sample using all available Run 2 data. The vertices are required to have m < 2.5 GeV to
remove potential bias from signal vertices, and vetoes are applied to remove SM LLPs such
as KY. Additionally, cuts are placed on the number of pixel hits on each outgoing track,
the A¢ between the vertex momentum vector and the vector between the primary and
secondary vertex, and the opening angle of the tracks in the vertex in order to reduce ver-
tices reconstructed from fake tracks. To enhance the amount of data in the map a folding
technique is used which exploits the periodicity of the detector structures in ¢. After this

folding procedure, the material map is smoothed to avoid the possibility of small regions
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Figure 7.3: Distribution of hadronic-interaction vertex candidates for data and Pythia 8
MC simulation. Image taken from Ref [113].

of detector material being unaccounted for in the map.

The density of vertices found in data starts to decrease sharply after 150 mm due to
a lack of statistics. To obtain a robust map of the full fiducial volume, a second map is
constructed using simulated data to extend the map in the region 150 < r < 300 mm. The
simulated map is then compared to the data in the region, and modifications are made
by hand to improve the agreement between the data and MC. Finally, known regions are
added by hand, which is especially necessary in high eta regions at the edge of the prese-
lection criteria.

The material veto is applied by comparing the (z, y, z) position of each vertex to the 3-
dimensional map and vetoing vertices in locations where material is present. The impact
of the material veto on the radial distribution of secondary vertices is shown in Figure 7.4.
The peaks in the distribution of vertices occurring at the pixel layers (shown in red in the
figure) are removed by the material veto leaving behind only vertices whose positions do
not coincide with regions dense in detector material. Figure 7.5 shows comparisons of the
distribution of L, for vertices in signal samples with m, = 15 GeV and m, = 55 GeV both
with and without the material veto applied which illustrate the impact of the material veto
on true LLP decays. The fiducial volume considered for vertices in the analysis is defined

by the material map, and requires that vertices have L, < 300 mm and L, < 300 mm.
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Figure 7.4: The radial distribution of secondary vertices in an inclusive data sample both
with and without the material veto applied. The red lines indicate the position of the 4
pixel layers and first SCT layer.

Finally, to reduce the background contribution due to poorly fitted vertices, vertices
are required to have x?/npor < 5. The material veto, fiducial volume restrictions, and
quality cut comprise the vertex preselection which is applied to all vertices considered in

the analysis.

Signal vertex selection

After the removal of vertices originating from material interactions, the remaining back-
ground vertices are primarily comprised of QCD decays and combinatorial vertices. The
primary discriminating variables between vertices originating from exotic decays and SM
processes are the number of tracks associated to the vertex and the reconstructed mass.
Secondary vertices originating from SM processes such as K3 decays and photon con-
versions tend to be 2-prong decays. Removing 2-track vertices eliminates the vast majority
of vertices in data while only removing 20-30% of vertices in signal MC. Figure 7.6 shows
the distribution of ny for all vertices in signal MC and a background-enriched data sam-
ple which pass the preselection. The vertices considered in this analysis are required to

have ny > 2.
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Figure 7.5: The L,, distributions of signal with m, = 15 GeV and m, = 55 GeV both with
and without the material veto applied.

Vertices with more than two tracks originate predominantly from random crossings.
Random crossings refer to any 2-track vertex which is promoted to a higher track multi-
plicity by an unrelated track crossing within close enough proximity to the decay to be
included in the vertex fit. Depending on the geometry of the random crossing with respect
to the rest of the vertex, this can drastically increase the computed value of invariant mass.
Figure 7.7 shows the distribution of the reconstructed vertex mass in signal MC and control
region data. Due to the relatively low masses of the LLPs probed in this search in compar-
ison to other searches for LLPs with displaced vertices, the reconstructed mass does not
provide much separation between signal and background. Instead of placing a cut directly
on the mass of the vertex, a novel discriminating variable has been developed which aims
to exploit the geometry of the tracks in vertices formed from random crossings. Consider
the diagram shown in Figure 7.8 which shows an example 4-track vertex formed from a
random crossing of an unrelated track with a 3-track vertex originating from a low-mass
metastable particle such as a B-hadron. These vertices are characterized by computing the

quantity ARpmax:

ARmax = max{AR(Ti, Z Tj)}
J#i

where T} is the four-vector of the it track in the vertex. Vertices caused by a random cross-

ing tend to have a large A Rmax in comparison to signal vertices, as shown in Figure 7.9. By
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Figure 7.6: The (a) linear and (b) logarithmic distributions of the number of tracks per

vertex in signal MC and control region data.
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Figure 7.7: The (a) linear and (b) logarithmic distributions of the reconstructed vertex mass
in signal MC and control region data. The vertices are required to pass the vertex preselec-
tion and have ngy, > 2.
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Figure 7.8: Schematic of a 4-track random crossing vertex. The blue tracks represent tracks
originating from the decay of a metastable particle such as a B-hadron. The red track
represents a track originating from an unrelated process that is spuriously associated to
the vertex during reconstruction. The four-vector of the vertex without the inclusion of the
random track is shown as a dotted grey line. The A Ry of this vertex is then given by the
AR between this four-vector and the four-vector of the random track.
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Figure 7.9: The distribution of ARmax in signal MC and control region data. The vertices
are required to pass the vertex preselection and have nyy > 2.
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Figure 7.10: The (a) linear and (b) logarithmic distributions of the reduced reconstructed
vertex mass in signal MC and control region data. The vertices are required to pass the
vertex preselection and have ny > 2.

dividing the reconstructed mass of the vertex by the quantity ARpyax a modified mass ob-
servable is obtained. This variable, known as the reduced mass of the vertex, ;, provides
much better discrimination power than the normal reconstructed vertex mass, as shown
in Figure 7.10. In addition, the distribution of the reduced mass is largely independent
of the mass of the LLP, allowing for a mass-agnostic discriminating variable. The vertices
considered in this analysis are required to have p > 3 GeV.

To further reduce the contribution from QCD processes such as heavy-flavor decays,
additional cuts are placed on the L, significance, defined as L,, /o (L,,) as well as requir-
ing that at least one track in the vertex has dy > 3 mm. These selections reduce the number
of vertices originating from prompt SM decays while having a minimal impact on the sig-
nal selection efficiency. Finally, to facilitate the modeling of the background, the position
of the vertex is required to be within AR < 0.6 from the axis of one of the leading four jets.
When multiple DVs are considered they must be matched to different jets. The full set of
vertex selection criteria are shown in Table 7.2, and the impact of the various selections on
the number of reconstructed vertices in signal with ¢7, = 100 mm is shown as a cutflow in
Figure 7.11.

The selection efficiency for identifying true LLP decays in signal MC is shown as a

function of L, in Figure 7.12. The identification efficiency is roughly 10-20% for LLPs
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Selection type Parameter Value
Track cleaning Max. dp sv 0.8 mm
Max. zpsv 1.2 mm

Max. o(dpsv) 0.1 mm

Max. o(zosv) 0.2 mm

Vertex preselection | Max x° /MDoF 5
Max. L, 300 mm

Max. |z| 300 mm

Material veto True

Signal selection Min. nyy 3
Min. m/A Rmax 3 GeV

Min. Lyy/0(Lzy) 100

Min. dopmax 3 mm

Max. ARjet 0.6

Table 7.2: The full set of selections applied to vertices considered in the analysis.

decaying within the fiducial volume of the pixel detector, after which the decreased track

resolution causes vertices to fail the MEDIUM WP.

7.1.3 Event categorization

The most discriminating variable between signal and background events is the number
of displaced vertices present in the event. The signal region (SR) is defined by requiring
events to pass the preselection described in Section 7.1.1, as well as the presence of at least

two displaced vertices which pass the selections described in Section 7.1.2.

Selection Value
Number of jets > 2
Number of OSSF leptons 2
my 66 < my < 116 GeV

Number of DVs > 2

Table 7.3: The full set of selections applied to the signal region after the trigger and filter
requirements. The DVs are required to pass all of the selections listed in Table 7.2.

This search is conducted as a blind analysis, meaning that the data in regions expected
to be populated by signal events are not revealed until after the experiment is complete.
This prevents information which may influence the final results from biasing the analysis
in any way. To define a region with minimal signal contamination, the selection on the

number of displaced vertices in the event is inverted to define a control region (CR) that



Chapter 7. Search for Higgs decays to long-lived particles 159

10°
o 14E T T T | | T T T =]
2 - ATLAS Internal ——— m,=15GeV ]
£ 1oE s =13 TeV, X.X b’ — m,=25GeV ]
> - ct =100 mm —— m, =35GeV -
C m, = 45 GeV ]
10— —— m, =55GeV —
. N
8 7
 — | ]
6 -
— — | ]
4 -
C ' I
iy s T ——
oL | | | | | | | | ]
al Cch; fiay,.. M (S n Us o et
2 Tlcigy Moy v Sg. Maxgy 32 U 8gg " Mary,
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is used to estimate the background contribution from SM processes in the SR. Data in
the signal region are not revealed until after the background estimate is derived with a
corresponding systematic uncertainty. An additional signal-free region is used to validate

the background estimate and will be described in Section 7.2.2.

7.1.4 Analysis cutflow

The full event selection applied to signal MC is shown as a cutflow in Figures 7.13 and 7.14
for the different values of cr. Samples are weighted to the Run 2 luminosity according to
their cross sections and generated number of weighted events, so that the value of each bin

represents the total expected signal yield passing that selection. The total expected yields

Sample Selection
mg [GeV]  er [mm] | Yield Init Trigger Filter Leptons Z Jets >1DV >2DV

10 Total | 11371.6  6776.6 2950.5 1665.1 1606.0 1528.6 601.8 51.0

55 100 Total | 11386.4 6770.2 3014.1 1737.8 1677.1 1590.2 4119 23.7
1000 Total | 11409.2 68126 27358 15849 15259 1411.1 58.6 0.6

10 Total | 11361.7 6781.1 3082.4 17483 16909 1612.1 651.7 70.2

45 100 Total | 113625 6747.2 3138.5 18122 17522 1669.5 376.7 20.9
1000 Total | 11372.6 6717.8 2747.1 1605.8 1549.8 1427.0 54.2 0.5

10 Total | 11406.3 6833.5 3187.6 18174 17606 1683.1 668.8 71.4

35 100 Total | 11410.6 6804.4 3345.6 19119 1845.7 1747.1 339.3 21.1
1000 Total | 11438.0 6784.7 2760.2 1596.9 1544.5 1404.6  41.8 0.2

10 Total | 11435.8 6826.3 3315.1 1880.8 18224 17219 623.7 63.9

25 100 Total | 11438.4 6807.4 3592.0 2072.7 2002.7 1879.4 2828 114
1000 Total | 11434.5 6801.8 2639.6 1525.6 14722 1305.6 34.0 04

10 Total | 11434.3 6829.1 3659.9 20719 20024 1869.0 576.4 54.1

15 100 Total | 11419.2 6804.0 3814.3 2196.8 2123.7 1985.8 194.5 4.6
1000 Total | 11404.4 6786.7 22243 12745 12282 1044.7 19.4 0.1

Table 7.4: The total expected yield for each signal point after each selection is applied,
assuming B(H — aa — bbbb) = 1.

in the signal region (assuming B(H — aa — bbbb) = 1) are shown as a cutflow are shown
for the full signal grid in Table 7.4. The fraction of weighted events passing each cut are

shown for the full signal grid in Table 7.5.
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Figure 7.13: The weighted number of events passing each cut used in the event selection,
for each signal mass point. Samples are weighted to the Run 2 luminosity according to

their cross sections and generated number of weighted events.
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Figure 7.14: The weighted number of events passing each cut used in the event selection,
for each generated value of c7. Samples are weighted to the Run 2 luminosity according to
their cross sections and generated number of weighted events.
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Sample Selection

mgq [GeV]  cr [mm] | Efficiency Init  Trigger Filter Leptons Z Jets >1DV >2DV
10 Total 1.0000 0.5949 0.2589 0.1457 0.1405 0.1336 0.0520 0.0044

Relative | 1.0000 0.5949 0.4353 05626 0.9646 0.9512 0.3894 0.0845

55 100 Total 1.0000 0.5932 0.2640 0.1521 0.1468 0.1394 0.0359  0.0020
Relative | 1.0000 0.5932 0.4449 05762 0.9652 0.9497 0.2575 0.0567

1000 Total 1.0000 0.5980 0.2401 0.1392 0.1340 0.1242 0.0051  0.0000

Relative | 1.0000 0.5980 0.4015 05797 0.9627 0.9269 0.0411  0.0096

10 Total 1.0000 0.5969 0.2720 0.1542 0.1492 0.1424 0.0573  0.0061

Relative | 1.0000 0.5969 0.4556 0.5670 0.9673 0.9543 0.4024 0.1069

45 100 Total 1.0000 0.5940 0.2763 0.1595 0.1542 0.1470 0.0333  0.0018
Relative | 1.0000 0.5940 0.4651 05773 0.9669 0.9530 0.2268  0.0548

1000 Total 1.0000 0.5908 0.2420 0.1415 0.1365 0.1257 0.0048  0.0000

Relative | 1.0000 0.5908 0.4096 0.5847 0.9650 0.9205 0.0379  0.0093

10 Total 1.0000 0.5983 0.2785 0.1586 0.1537 0.1468 0.0586  0.0064

Relative | 1.0000 0.5983 0.4656 0.5693 0.9694 0.9551 0.3994  0.1083

35 100 Total 1.0000 0.5969 0.2940 0.1681 0.1623 0.1536 0.0299  0.0018
Relative | 1.0000 0.5969 0.4925 05718 0.9654 0.9465 0.1946 0.0614

1000 Total 1.0000 0.5933 0.2417 0.1399 0.1353 0.1230 0.0036  0.0000

Relative | 1.0000 0.5933 0.4074 0.5788 0.9669 0.9091 0.0294  0.0046

10 Total 1.0000 0.5971 0.2897 0.1644 0.1593 0.1506 0.0545  0.0056

Relative | 1.0000 0.5971 0.4852 0.5673 0.9689 0.9457 0.3619 0.1024

25 100 Total 1.0000 0.5928 0.3117 0.1796 0.1734 0.1633 0.0242  0.0009
Relative | 1.0000 0.5928 0.5259 0.5760 0.9657 0.9419 0.1480 0.0384

1000 Total 1.0000 0.5918 0.2284 0.1316 0.1271 0.1131 0.0030  0.0000

Relative | 1.0000 0.5918 0.3859 0.5763 0.9656 0.8901 0.0263 0.0116

10 Total 1.0000 0.5987 0.3200 0.1813 0.1752 0.1631 0.0509  0.0048

Relative | 1.0000 0.5987 0.5344 05667 0.9664 0.9307 0.3118  0.0953

15 100 Total 1.0000 0.5963 0.3345 0.1926 0.1862 0.1741 0.0171  0.0004
Relative | 1.0000 0.5963 0.5609 0.5759 0.9667 0.9353 0.0982  0.0235

1000 Total 1.0000 0.5987 0.1983 0.1138 0.1096 0.0921 0.0017  0.0000

Relative | 1.0000 0.5987 0.3312 0.5738 0.9633 0.8404 0.0188  0.0033

Table 7.5: The total and relative efficiencies for each selection, for each signal point.
7.2 Background estimation

The probability that a given jet will contain a DV that passes the full signal vertex selection
described in Section 7.1.2 is found to be highly correlated with several jet properties. The
track multiplicity and density within a jet increase with the jet pr [189], resulting in in-
creased probability that a DV is reconstructed within the jet cone. Additionally, due to the
lifetime of hadrons containing heavy flavor quarks, the probability also depends strongly

on the flavor of the parton that initiated the jet. To estimate the number of background
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Figure 7.15: The per-jet DV probabilities as a function of jet pr and DL1 b-tag score com-
puted in the CR. The probabilities are computed by taking the ratio of jets that are matched
to a DV within AR < 0.6 to the inclusive jet collection in events with fewer than two DVs.

events that will pass the full signal selection, a per-jet vertex efficiency map is derived
which parameterizes the probability that a given jet will contain a DV based on the jet pt
and DL1 b-tag score (Section 4.2.1). The map is computed by taking the ratio of jets which
are matched to a DV passing the full signal vertex selection to the total number of jets in the
preselected data. The probability that an event contains exactly one DV is then computed

from a binomial distribution based on the leading four jets in the event:

4
Pevent(npv = 1[j1, .., ja) = Y _ Pet(npy = 1[ji) x [ ] (1 = Bet(npv = 1]jx)) (7.1)

i=1 ki
where Pei(npy = 1[j;) is the probability for the i*" jet in the event to contain a DV, given
its pr and DL1 score. The map used to predict the number of events in the signal region
is shown in Figure 7.15. The numerator and denominator used to construct the efficiency
map are shown in Figure 7.16.

To compute the number of events with at least 2 DVs, the compliment is used:

Pevent(nDV > 2) =1~ Pevent(nDV = 1) - Pevent(nDV = 0) (7-2)
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Figure 7.16: The (a) numerator and (b) denominator used to construct the efficiency map.

To compute the uncertainty on the background estimate, a toy method is used which per-
forms N = 100 pseudo-experiments to propagate the statistical uncertainty on the values
of the efficiency map to the final background estimate. The nominal efficiency map is var-
ied bin-by-bin using a Gaussian of width given by the statistical uncertainty on the bin to
create 100 statistically varied efficiency maps. The background estimate is then computed
using both the nominal and statistically varied maps. This gives N = 100 different back-
ground estimates which are Gaussian distributed. The mean of this distribution is taken
as the final background estimate, and the standard deviation is taken as the uncertainty.
Using this strategy, we obtain an estimate of 1.30 & 0.08 (stat) events in the signal region

due to SM backgrounds.

7.2.1 Closure test

To ensure that the per-jet map sufficiently replicates per-event probabilities, a closure test
is performed which compares the predicted and observed event-level distributions in the
region with npy = 1. Figure 7.18 shows the predicted and observed distributions for sev-
eral event-level observables. Excellent agreement is observed for all variables, indicating
that the per-jet method accurately captures the complete kinematics of the event. This
method gives an estimate of 2283 + 59 total events in the 1 DV region due to background.

We observe 2297 events which is a deviation of 0.20 away from the prediction.
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7.2.2 Validation

This method for computing the background prediction relies on the assumption that the
per-jet DV probabilities are unaffected by the presence of multiple DVs in an event. To
test this assumption, events passing an orthogonal y+jet selection are used which closely
mimic the dominant Z+jet background in the signal region. This region, known as the val-
idation region (VR), requires events to pass a high pt photon trigger, contain at least one
photon with pr > 160 GeV or two photons with pt > 60 GeV, and at least two jets. Addi-
tionally, events containing charged leptons are vetoed in the VR to remove potential biases
from signal. This selection results in a signal-free region with which to test the validity of
the background modeling strategy. The parameterization of the per-jet DV probabilities in
terms of pr and DL1 allows for a robust validation of the method despite the different kine-
matic properties of the jets in this region with respect to the SR. By studying the predicted
and observed number of events with at least two DVs in the VR, the core assumption of
the background estimate may be tested and any systematic deviations may be taken into
account as an additional uncertainty on the background estimate.

The per-jet DV probability is calculated using events in this VR with fewer than two
DVs, and used to predict the number of events with at least two DVs. Using this method,
19.9£0.4 events are predicted and 23 are observed, as shown in Figure 7.19, demonstrating
that any jet-jet correlations are negligible or captured by the parameterization in terms of
jet pr and DL1. The distribution of the sum of the DL1 score of the leading four jets is
shown in Figure 7.20 to demonstrate that per-event quantities are well modeled by the
background estimation method.

The systematic uncertainty on the method used to obtain the background prediction is
derived by comparing the number of predicted and observed events in the VR. Although
the prediction and observation agree within uncertainties, due to the limited statistics
available to test the background estimation method a conservative systematic uncertainty
is assigned on the total expected number of background events in the SR which is equal to
the statistical uncertainty on the observed number of events in the VR. This amounts to a
21% uncertainty, or +0.27 events, on the final background estimate giving a prediction of

1.30 £ 0.08 (stat.) + 0.27 (syst.) events.
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the prediction within statistical uncertainty.
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ing jets. The shaded bands on the prediction represent the statistical uncertainty on the
prediction.
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Figure 7.21: The ratio of the efficiency maps derived in the photon+filter selection to the Z
selection

To ensure that the displaced jet filter used to collect the data for the Z region does not
introduce an additional bias that is not present in the photon region, we mimic the filter by
requiring that one of the leading two jets in the photon region passes the cuts on CHF and
amax described in Section 6.2.2. With these event selections the predicted number of events
in the photon region is 2.2 events. We observe 2.0 events in this region, indicating that the
displaced jet filter does not impact the background estimation method. Furthermore, when
the additional selections are placed on the photon region, the discrepancy on the efficiency
maps and between the photon and Z region is reduced, as shown in Figure 7.21. This
translates to significantly improved agreement in the final background prediction obtained

when using the photon and Z maps, as shown in Figure 7.22.

7.2.3 Signal injection test

To assess the impact of potential signal contamination in the 1 DV CR used to derive the
efficiency map, injection tests are performed. First, we assume the presence of signal in the
1 DV Z region. A modified efficiency map is computed after subtracting the signal from
the numerator and denominator used to create the map, assuming a 25% branching ratio
of H — aa. The ratio of the modified map to the nominal map is shown in Figure 7.23
for the 35 GeV scalar mass point with a lifetime of 10 cm. The number of signal and data

jets used to compute the map are given in Table 7.6. The background prediction is then
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Figure 7.23: The modified efficiency map formed by subtracting signal.



Chapter 7. Search for Higgs decays to long-lived particles 171

Jet type data signal (Br—aa = 25%)
DV matched 2296 156
Inclusive 32150432 1457

Table 7.6: The number of jets used to compute the modified map. The numerator of the
efficiency map is the first row (DV matched), and the denominator is the second (Inclusive)
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Figure 7.24: The predicted distribution of |[A®(Z, jj)| in the (a) 1DV and (b) > 2 DV regions
using the nominal and modified efficiency maps

computed using the modified map and compared to the nominal prediction. The predicted
distributions of |[A®(Z, jj)| are shown in Figure 7.24. The number of predicted events in

the 1 and 2 DV regions when using the two different maps is given in Table 7.7. Only

Region | Nominal Modified Observed
1DV 2293 2140 2297
> 2DV 1.30 1.18 -

Table 7.7: The number of predicted and observed events in the 1 and 2 DV regions when
using the nominal and modified efficiency maps.

the baseline efficiency maps are used when computing the predicted background with no
pseudoexperiments performed. Hence the predicted number of events for the nominal
map in Table 7.7 is expected to differ slightly from the complete background prediction
described in this Section. Overall the effect of subtracting the signal from the histograms
used to compute the efficiency map has a roughly 10% effect, which is well within the total
uncertainty on the background estimate. In comparison, under this signal hypothesis of a
25% branching ratio of H — aa we would expect 20 additional events in the signal region

meaning that the presence of signal in the 1 DV region would not prevent a discovery.
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This test was performed with for each generated value of m, and c7,. The results are

summarized in Table 7.8

Sample Value

mq [GeV] er[mm] | AB S S/AB
10 0.127 12.756 100.196
55 100 0.052 5931 112972
1000 | 0.005 0.147  29.056
10 0.124 17.551 141.901
45 100 0.045 5.237 116.101
1000 | 0.005 0.130 25.572
10 0.129 17.842 138.471
35 100 0.042 5271 126.659
1000 | 0.005 0.049 10.328
10 0.118 15.947 135.570

25 100 0.035 2.842  81.966
1000 | 0.002 0.095 38.924
10 0.108 13.516 125.509

15 100 0.026 1.142 43.795

1000 | 0.002 0.014  9.348

Table 7.8: Summary of the signal contamination tests.

7.3 Signal systematic uncertainties

The predicted number of signal events for each signal hypothesis is subject to experimen-

tal and theoretical sources of systematic error. These experimental uncertainties originate

predominantly from differences in the modeling of physics objects and pileup between

MC simulation and data. In this section, the various sources of systematic uncertainty on

the total signal yield are described.

7.3.1 Uncertainties on standard objects

Experimental uncertainties originating from differences between data and simulation are

considered for all physics objects used in the analysis. For standard objects, these include

uncertainties on the reconstruction and identification efficiency, as well as energy calibra-

tions.
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Leptons

Efficiency scale factors are used to correct the modeling of electrons and muons in simula-
tion with respect to data. These comprise electron identification and muon reconstruction
scale factors as well as the scale factors applied to correct for differences in the trigger
efficiencies between data and simulation. Each of these scale factors comes with a corre-
sponding uncertainty which encompasses both statistical and systematic effects. For ex-
ample, a breakdown of the relative sources of uncertainty on the efficiency scale factor for
Medium muons is shown in Figure 7.25. To propagate these uncertainties to the final signal
prediction, each lepton scale factor is varied up and down by one standard deviation, and

the corresponding change in the expected number of signal events is taken as a systematic

uncertainty.
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Figure 7.25: Total uncertainty in the efficiency scale factor for Medium muons as a function
of the pr of the muon in Z — pp and J/W¥ — pp events. Image taken from Ref [143].

The uncertainties associated with the correction factors applied to calibrate lepton en-
ergy scale and resolution must also be taken into consideration. To assess the impact of
these uncertainties on the final signal yield, modified lepton containers are created for sig-
nal MC which correspond to up and down variations of groups of calibration parameters
with respect to their nominal values. For each variation, the final signal yield is computed,

and the sum in quadrature of all variations is taken as a systematic uncertainty on the
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yield. For both electrons and muons, these variations are found to have a sub-percent

level effect on the expected signal yield.

Jets

For jets, the uncertainties from the JES and JER calibrations are considered. Figure 7.26
shows the jet energy scale systematic uncertainty components, and Figure 7.27 shows the
relative jet energy resolution as a function of pr for fully calibrated jets along with the
absolute uncertainty on the relative jet energy resolution. Similar to the uncertainties orig-
inating from the lepton calibrations, these uncertainties are propagated to the final signal
yield by a set of varied jet containers which correspond to up and down variations of
groups of calibration parameters. The quadrature sums of these variations for each JES

and JER are taken as a systematic uncertainty on the final signal yield. The applicability
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Figure 7.26: Fractional jet energy scale systematic uncertainty components for anti-kt R =
0.4 jets as a function of jet pr at n = 0. The total uncertainty, determined as the quadrature
sum of all components, is shown as a filled region topped by a solid black line. Image
taken from Ref [138].

of the standard jet calibration scheme to the displaced jets considered in this analysis has
been studied and found to be satisfactory [190], indicating that no additional uncertainties

are needed to account for effects from jet displacement.
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Figure 7.27: (left) The relative jet energy resolution as a function of pr for fully calibrated
PFlow+]ES jets. The error bars on points indicate the total uncertainties on the derivation
of the relative resolution in dijet events, adding in quadrature statistical and systematic
components. The expectation from Monte Carlo simulation is compared with the relative
resolution as evaluated in data through the combination of the dijet balance and random
cone techniques. (right) Absolute uncertainty on the relative jet energy resolution as a
function of jet pr. Uncertainties from the two in situ measurements and from the data/MC
simulation difference are shown separately. Image and caption taken from Ref [138].

7.3.2 Uncertainties on non-standard reconstruction

The dominant uncertainty is due to the difference in performance of both the standard
and large radius tracking algorithms between data and MC. For standard tracking, this
uncertainty is known to be around 2% [191]. To assess the systematic uncertainty of the ID
vertex reconstruction efficiency due to the modeling of the large-radius tracking, the rates
of displaced vertices consistent with K§ — 77~ decays are compared between data and
Z+jets simulation. The uncertainty is estimated by examining the variations between data
and simulation in the K yield.

From the preselected events, candidate K¢ vertices are identified by requiring that the
vertices pass the vertex preselection, have exactly two tracks of opposite charge, and have
an invariant mass in the region 450 to 550 MeV. The kinematic distributions of candidate
K} vertices are compared between data and MC and are found to have good agreement
within statistical uncertainties, as shown in Figure 7.28.

Tracks originating from a K decay can be reconstructed by either the standard tracking
or the LRT algorithm. The MC is normalized such that the number of K vertices inside

the beampipe (L, < 23.5 mm) is the same between data and simulation. This accounts
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Figure 7.28: The kinematic distributions of candidate K vertices in data and Z+jets MC.
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ized such that the yield of candidate K vertices inside the beampipe is equal to the yield
in data. (b) The per-track uncertainty computed from the data/MC ratio.

for any differences that may exist between data and simulation in the total number of K2
decays in a region where tracking uncertainties are well understood.

The vertex yields of KQ are then compared between data and the normalized MC in 5
bins of L, ranging from 0 to the radius of the last pixel layer (122 mm). After this radius
there are negligible statistics. The ratio quantifies the discrepancy between data and MC in
the number of K vertices reconstructed from tracks outside of the beampipe. To compute
a per-track uncertainty, we take the square root of the deviation from unity (motivated by
the fact that K g vertices are two-track vertices), which is then summed in quadrature with
the 1.7% uncertainty on the standard tracking. The yields and per-track uncertainty are
shown in Figure 7.29. To ensure that there is residual pr dependence in the uncertainty, we
reweight the K [? pr distribution in MC such that the L, distributions agree between data
and MC. As shown in Figure 7.30, the reweighted pr distributions are in good agreement.

To propagate this uncertainty to the signal yield, tracks are randomly removed from
reconstructed vertices with a probability given by the per-track uncertainty corresponding
to the L., position of the vertex. The difference between the yield of vertices passing the
full signal vertex selection is then compared between the nominal and modified vertex
collections as a function of L,,. To mitigate again statistical effects, the 10 mm, 100 mm,

and 1000 mm samples are combined for each mass point. This is shown in Figure 7.31.
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Figure 7.30: The reweighted pr distributions
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Figure 7.31: The per-vertex signal uncertainty computed by taking the ratio of the modified
to the nominal vertex yields.

The decay position of the LLPs at truth level is then used to compute an scale factor for
the reconstruction efficiency of each LLP. The scale factors corresponding to each LLP are
multiplied together to obtain a per-event efficiency correction scale factor. The difference
between the efficiency computed with the scale factors applied and the nominal selection
efficiency is taken as the systematic uncertainty. This uncertainty is largest for small values
of m, and increases with the scalar proper lifetime up to a maximum value of 17%. This
uncertainty is shown in Figure 7.32

An alternate approach was also tested in which tracks are removed in a fully correlated
fashion, which effectively removed entire vertices with a probability given by the data/MC
ratio in Figure 7.29. This method results in a considerably larger uncertainty, as shown in
Figure 7.33. The statistical analysis described in Section 8.3 was found to be unaffected by

this larger uncertainty. Because this approach will give an overestimate of the uncertainty
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Figure 7.33: The vertex reconstruction uncertainty as a function of ¢r when a fully corre-

lated track removal is performed.
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on the vertex reconstruction efficiency, it was chosen to not be adopted by the analysis.
Potential sources of uncertainty on the vertex selection are also investigated. In partic-
ular, due to the fact that the material veto is derived predominantly from data it is possible
that simulated material interactions in signal MC will not be fully removed by this veto
and artificially increase the signal acceptance. To quantify this effect, vertices passing the
tull signal selection are separated into two categories: vertices which are matched to a true
LLP decay vertex, and vertices which are not matched to any true decay vertex. Simu-
lated material interactions will fall into the second category. The vertices are then plotted
as a function of L,, to determine if there is any correlation between vertices that are not
matched to any truth decay and the location of known detector elements. As shown in Fig-
ure 7.34, the fraction of vertices passing the full signal vertex selection that are not matched
to a true LLP decay is very small, and there is no noticeable correlation between their po-
sition in L,, and the densest material layers. Thus, from this we conclude that there is no

systematic effect on the signal acceptance due to the material veto.
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Figure 7.34: The L, distribution for vertices which pass the full signal selection.

7.3.3 Theory and signal modeling

An uncertainty of £4% and +25% is assumed for the total qqZH and ggZH, H — 2a — 4b
cross section, respectively [50]. These uncertainties include effects from varying the fac-

torization and renormalization scales, the PDF and «,. To determine the uncertainty due
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Figure 7.35: Comparison of the pt spectra of the ZH system when considering Pythia8 or
Herwig? parton showers.

to the choice of parton shower, the nominal Pythia8 samples are compared to a reference
Herwig?7 sample of ZH production. The pr of the ZH system is compared between the
two samples as shown in Figure 7.35. To propagate the slight differences observed to the
signal acceptance, the ratio of the unit-normalized distributions is used to derive per-event
weights which are applied to the Pythia8 signal samples. The difference in acceptance af-
ter reweighting the pr of the ZH system to the reference Herwig sample is found to be on
the order of 0.5% and is included as and additional systematic uncertainty on the signal

modeling.

7.3.4 Other sources of systematic error

Simulated events are reweighted such that the distribution of the average number of in-
teractions per bunch crossing matches the distribution measured in data. The difference
between predicted and measured inelastic cross-section [192], on which the measurement
of interactions per bunch crossing depends, is propagated into simulation by a systematic
variation of the reweighted distribution. Figure 7.36 shows the reweighted distributions
of the mean number of interactions per bunch crossing ({x)) in MC using both the nominal
pileup weights, as well as the +10 variations. The signal yields are then computed using
each set of weights, and the largest difference from the nominal is taken as an additional

systematic uncertainty for each sample.
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Figure 7.36: Distribution of the mean number of interactions per bunch crossing ({x)) in
MC using both the nominal pileup weights, as well as the +1¢ variations.

Uncertainties associated with the displaced-jet filter are considered. The dominant con-
tribution to the uncertainty originates from the use of uncalibrated jets in the filter. This
uncertainty is estimated by increasing the jet pr criteria in the filter from 20 to 25 GeV and
calculating the change in filter efficiency on simulated signal samples. The choice of 5 GeV
is motivated by studying the difference in efficiency of the uncalibrated jet pt selection as
a function of calibrated jet pr between data and simulation. This is shown in Figure 7.37
below.

Finally, the expected number of signal events is subject to the uncertainty on the total
integrated luminosity of the data sample used, as described in Section 6.2. The uncertainty
in the combined 2015-2018 integrated luminosity is 1.7% [193], obtained using the LUCID-

2 detector [194] for the primary luminosity measurements.

7.3.5 Summary of uncertainties

A summary of the systematic uncertainties is given in Table 7.9. With the exception of
the uncertainty on LRT and the displaced jet filter, the systematic uncertainties are not
observed to vary significantly with m, or c7, and are thus computed from the weighted

average across samples.
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calibrated pr for data and Z+jets simulation.

Source Uncertainty (%)
Theory 4.7
Luminosity 1.7
Pileup reweighting 2.6
Electron identification 1.6
Electron calibration 0.4
Muon reconstruction 0.9
Muon calibration 0.4
Electron trigger 0.7
Muon trigger 1.3
Jet energy scale 1.4
Jet energy resolution 1.3
Filter 2.8-3.8
LRT 2.4-12
Total 7.4-14

Table 7.9: Summary of all systematic uncertainties considered in the analysis. The values
in the table are percent uncertainties on the final signal yield. With the exception of the
uncertainties on LRT and the displaced jet filter, no significant dependence on m,, or c7, is
observed, so the quoted values are those derived from averaging over the different masses
and lifetimes. The uncertainty on the displaced-jet filter was found to be uncorrelated with
lifetime but increase with m,, so the quoted values are derived from averaging over the
different lifetimes and the range represents the minimum and maximum observed values
corresponding to m, = 15 GeV and m, = 55 GeV. The range of values for the LRT and
total uncertainties represent the minimum and maximum observed values across the five
masses at ct, = 1l mm and ¢, = 1 m.
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Chapter 8

Results

The great tragedy of science—the slaying of a beautiful hypothesis by an ugly fact.
-Thomas Huxley

As described in Section 7.2.2, the method used to estimate the number of events in the
SR from background has been shown to be robust, and a final background estimate and
corresponding uncertainty have been derived. The analysis may then proceed to unblind,
or reveal the data that populates the signal region. This chapter will describe the unblinded
results and the methods used to interpret them. First, the unblinded signal region is shown
in Section 8.1. Section 8.2 gives an overview of the theory behind the method used to
interpret the observed data, and then in Section 8.3, this theory is applied to this search.
The results are discussed and compared to the constraints set by previous searches at the

LHC.

8.1 Unblinded results

As described in Section 7.2, the number of background events predicted in the SR is 1.30 &
0.08 (stat.) == 0.27 (syst.). The DV multiplicity for signal and data is shown in Figure 8.1 for
the unblinded SR with npy > 2. Zero events are observed in this region. Computing the
68% quantile on zero observed events gives an upper limit of 1.83 events, which is shown
as an error bar on the third bin containing all events with npy > 2. Thus, we may claim
that the background prediction is in good agreement with the number of observed events

in the signal region. Given that no excess of signal-like events is observed, we may place
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Figure 8.1: DV multiplicity among preselected events for signal (dashed lines), background
prediction (solid line), and data (black points). The bins corresponding to npy = 0 and
npy = 1 comprise the CR which is used to derive the background estimate. The third bin
is the SR and contains all events with npy > 2. The shaded bands represent the combined
statistical and systematic uncertainty on the prediction. Signal distributions are normal-
ized assuming B(H — aa — bbbb) = 10%.

constraints on the branching ratio of Higgs decays to pairs of LLPs. The remainder of this
chapter is dedicated to describing the procedure for setting these exclusion limits, and the

final results we obtain after applying such a procedure to this search.

8.2 Statistics

After performing an analysis such as the one described in this thesis, a statistical analysis
must be performed in order to interpret the results. This boils down to determining which
of two hypotheses are most consistent with the observed data. Simply put, a hypothesis
is a statement that is either true or false. For example “The Higgs boson decays to pairs of
long lived scalars of mass 15 GeV and mean proper lifetime 10 mm with a 10% branching
ratio”. More formally, if x is the outcome of our experiment, a hypothesis H is a state-
ment for the probability to find the data x. We write P(x|H) for the probability to find
data x under assumption of the hypothesis H. The first hypothesis, Hy, is called the null
hypothesis. In high-energy physics terminology, this corresponds to the background-only
(B) hypothesis. The second hypothesis, H, is called the alternate hypothesis. This cor-
responds to the signal-plus-background (S5+B) hypothesis. Roughly speaking, claiming a
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discovery is a statement that the observed data are incompatible with the background-only
hypothesis.

In this section, we will describe the theory behind the statistical analysis used to inter-
pret the results of the analysis presented in this thesis. Section 8.2.1 defines the likelihood
function and describes how to build a statistical model to describe searches for new physics
analysis. Section 8.2.2 then defines the concept of hypothesis testing and how test statistics
are used to compute p-values. Finally 8.2.3 describes the procedure used to set limits on
signal models when the background-only hypothesis can not be excluded. The theoretical

discussion in this section is based primarily on that of Refs [195]-[197].

8.2.1 The likelihood function

To begin our discussion, let us introduce a concrete example. Consider a simple “count-
ing experiment” in which the data x consists of a single number ng,. Under the signal-
plus-background hypothesis, the number of predicted events from our experiment may be
written as

Npred = 1S + b (8.1)

where s is the predicted signal yield, b is the predicted background yield, and y is the
signal strength which might represent the signal production cross-section or branching
ratio. In the language of statistics, u is the parameter of interest (POI) that differentiates
our two hypotheses Hy and H;. The background-only hypothesis is obtained by letting
w=0.

The probability to observe ngps events assuming our prediction is given by the Poisson
distribution:

P(nly) = ('MS:!b)e(“S*b) = Pois(n|us +b) (8.2)

This is an example of a probability density function (PDF). More generally, a PDF is a

function of the data f(x) that satisfies

/ f(x)dx =1 (8.3)
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If our model depends on some parameter o, we often write the PDF as f(x|«), read “f
of x given a”. If we evaluate f(z|a) with the observed data and treat it as a function of
«, we obtain the likelihood function £(«). The likelihood function is the probability of
the observed data, seen as a function of the model parameter(s). According to the likeli-
hood principle, the likelihood function contains all the information from the experiment
that is relevant to inferences about value of the model parameters. For the example in
Equation 8.1, we have

L(p) = Pois(ngps|ps + b) (8:4)

So far our likelihood £(x) assumes an idealized experiment with a single parameter
1 which is not particularly representative of a true high-energy physics experiment. In
order to incorporate the uncertainties on the number of signal and background events
into our hypothesis test, we need to include a set of nuisance parameters (NPs), 6 into our
model. The nuisance parameters will affect the number of predicted events in our counting

experiment by modifying the expected signal and background yield:
Npred = psls + boy (8.5)

The nuisance parameters each have their own PDF which must then be included in the
likelihood function. For the NPs in the above example, the PDFs are usually assumed
to be Gaussian with a width given by the corresponding uncertainty. For example, if our
experiment has a 20% uncertainty on the number of predicted background events, the PDF

describing 6, will be a Gaussian with o3, = 0.2. Our likelihood function then becomes
L(1,0) = Pois(nops| 11505 + b)) - Gaus(0s|0s, 05) - Gaus(6y|6y, o) (8.6)

where 6, and 6, are the global observables corresponding to our NPs. The nuisance pa-
rameter PDFs are often referred to as constraints. Generally speaking, a nuisance param-
eter is any parameter in the model other than the parameter of interest. The nuisance
parameters affect the measurement, so we must account for them even though we are not

interested in them directly.
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We have now written down the full likelihood for a simple counting experiment with
uncertainties on the predicted number of signal and background events. Although this is
a simple model, it can be used to describe a wide range of realistic high-energy physics
experiments, including the one presented in this thesis! We will see how the likelihood

enters in to the actual statistical inference in the following sections.

8.2.2 Hypothesis tests

Armed with our likelihood function, we may now begin to test our two hypotheses. In
frequentist statistics, we perform a test of Hy by defining a subset of data space w called
the critical region such that for some small value «, the probability of observing the data

in that region is less than a. More compactly, the critical region satisfies

P(x € w|Hp) < a. (8.7)

Figure 8.2 shows schematically how the critical region is defined. A standard convention
in high-energy physics is to let o = 0.05. The p-value of a hypothesis H is the probability
assuming H to have observed the data in the critical region. If the data are observed in w,
or equivalently, the p-value of Hj is found to be less or equal to «, then we conclude that
the hypothesis Hj is rejected. The p-value may be translated into an equivalent quantity

called the significance Z, given by

Z=o"11-p) (8.8)

where @1 is the inverse of the cumulative standard Gaussian distribution. A significance
of Z = 5 is the gold-standard for claiming a discovery in high-energy physics, correspond-
ing to a p-value of 2.9 x 10~ for the background only hypothesis.

More concretely, in order to determine the critical region we need to define a test statis-
tic. The test statistic may be thought of as a function ¢ that maps the data x to a single
real-valued number ¢(x). This allows the critical region to be defined in terms of a single
real-valued number ¢,

a = P(q(x) = ga|Ho) (8.9)
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Figure 8.2: The critical region for a hypothesis test. Image taken from Ref [195].

The value « is called the size of the test, and it specifies the probability that the null hypoth-
esis will be rejected when it is in fact true. Similarly, we may define 3 to be the probability

that our test accepts the null hypothesis when the alternate is true

B = P(q(x) < qa|H1) (8.10)

The quantity 1 — 3 is called the power of the test, and clearly represents the probability to
reject the null hypothesis if the alternate is true.

The Neyman-Pearson lemma [198] states that if Hj is the null hypothesis and H; is the
alternate hypothesis, then the most powerful test statistic (assuming no systematics) is the

likelihood ratio
L(Hy)
L(Ho)

(8.11)
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The Neyman-Pearson lemma can be generalized to the case when systematics are included

in our likelihood function by defining the profile likelihood ratio.

A) = ) (5.12)

L(i1,0)

Here, /i and 6 are called the maximum likelihood estimates (MLEs) and are the values of
the parameters that globally maximize the likelihood. The éu parameters in the numerator
are called the profiled values of the nuisance parameters ¢ and are the values of 6 that
maximize L(u, 0) for the specified value of ;1. The profiled values of 6 are also called the con-
ditional maximum likelihood estimates (CMLEs). The most commonly used test statistic

for setting limits is the one-sided profile-likelihood test statistic, g,,:

—211’1A(M) /l <
qu = (8.13)

0 o>p

In this thesis, it will be assumed that when referring to the test statistic, we are referring to

the definition of ¢, in Equation 8.13.

8.2.3 Confidence intervals and the CL; Method

If our analysis is unable to reject the background-only hypothesis, we can still test various
signal-plus-background hypotheses to determine whether or not they are compatible with
the observed data. Consider a test of size . The values of i that are are not rejected define
a confidence interval with a confidence level of CL = 1 — «. In high energy physics,
the standard convention is to let o = 0.05 so that confidence intervals are reported with
a confidence level of 95%. The highest value of . that we do not reject is then called the
upper limit of 1 at 95% CL and will be denoted here as jiyp.

Given the test statistic, we may compute the p-values for the two hypotheses from their

respective PDFs f(q|H). For the signal plus background hypothesis H;, we have

o0

pu = Plq, > quS| signal + background) = /b F(qulp, éZbS)qu (8.14)

a0
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For the null, background only hypothesis H,, we have
1—py=P(g, > qﬁbs|background—only) = /b f(qulO0, éng)qu (8.15)
@

A standard frequentist 95% CL confidence interval is then obtained by solving for p, =
0.05. Confidence levels derived in this way are often labeled CLs,;,. However, the CLg,y,
approach has undesirable pathologies. If the number of observed events fluctuates far
below the expected background, the value of p, will be very small even for arbitrarily
small signal sensitivities. Because the frequentist procedure will reject a signal hypothesis
if the p-value is found to be less than o = 0.05, we are bound to reject models to which
we have little to no sensitivity. But if we have no sensitivity to a particular model, our
measurement can not justify this exclusion! To avoid this pathology, several experiments
at the LHC have adopted the modified frequentist method called CLs [199]. The CLs
metric is defined as

CL, = 21 (8.16)
1 —pp

In the modified frequentist approach, downward fluctuations will lead to larger values of
pp, and hence larger values of CLs, thereby preventing spurious exclusions.

The modified frequentist 95% CL upper limit on y is obtained by solving for CLs
= 0.5%. In order to compute the p-values in Equations 8.14 and 8.15, we must evaluate
several complicated integrals. Under certain conditions, these integrals may be evaluated
directly using the so-called asymptotic approximation [200]. However, in the scenario in
which the number of background events is small (as is the case in this thesis) these approx-
imations do not hold in general. Thus, the integrals must be performed numerically using
“Toy” Monte Carlo techniques. In the Toy Monte Carlo approach, we generate pseudoex-
periments in which the model parameters are sampled from the total PDF of the model
to obtain the value of the test statistic. Figure 8.3 shows two example distributions of the
profile likelihood test statistic generated using pseudoexperiments for the counting exper-
iment we have been considering for y = 0.1 and p = 0.05. Here, we have let s = 100,
b =10, 05 = 0.1, and 0, = 0.2. The p-values may then be easily computed by numeri-

cally integrating the toy distributions using the observed value of the test statistic q/‘jbs. For
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Figure 8.3: The distributions of the one-sided profile likelihood test statistic generated us-
ing toy Monte Carlo pseudoexperiments for 1 = 0.1 (left) and pu = 0.05 (right). The alter-
nate hypothesis is shown in pink, and the null hypothesis is shown in blue. The observed
value of the test statistic is shown with a vertical black line.

p = 0.1, we have npreq = ps +b = 20 and ngs = 5.0. From Equations 8.14 and 8.15 we
find p, = 0.014 and 1 — p;, = 0.59. Thus, CLs = 0.024, meaning that we may exclude the
signal hypothesis with y = 0.1 at 95% CL. For = 0.05, we have nyreq = pus +b = 15 and
qﬁbs = 1.5. For this experiment we find p,, = 0.12, and 1 — p, = 0.53. Thus, CLs = 0.23,
meaning that for our experiment does not have sufficient sensitivity to exclude this signal
hypothesis.

By performing the above procedure for a range of values of 1, we may compute fiyp
by finding the highest value of n that we do not reject. Figure 8.4 shows the p-values
for CL,, CLg,p, and CLs for a range of values of ;1 computed for our simple counting
experiment. Using this simple model, the computed upper limit on 4 is 0.089. So far in
this section, we have been describing how to compute the upper limits using the observed
data. Figure 8.4 also shows the expected limit and its associated £1 and 2o error bands.
The expected limit is the upper limit we would expect to obtain if the background-only
hypothesis is true. It is computed using the PDF f (|0, 03"°) by taking the median value
of the upper limits obtained. A somewhat peculiar feature of the expected limit is that it
depends on the profiled values of the nuisance parameters derived from the observed data,
which has led some to pursue alternative approaches to limit setting [201]'. The values of

p corresponding to +£1o deviations from the median are denoted p+; and are computed

'In particular, the Bayesian approach makes use of our prior belief in the scale and description of the
uncertainties on signal and background event yields, rather than fitting them to the observed data.
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Figure 8.4: The CL; scan for the counting experiment described in the text. The upper
limit fuyp is obtained by finding the intersection between the CLs curve and the red line at
p=0.05.

from

HE1 R
| g0, 88y = 071 (21) (8.17)
0

where 7! is the inverse of the cumulative distribution of the Gaussian. The +10 errors
are usually drawn as a dark green band around the median expected limit, as shown in

Figure 8.4. The +2¢0 band is similarly computed from

Ht2

£ (trapl0, 05%%) dprp = @71 (&2) (8.18)

This band is usually drawn in yellow, giving the expected limit plot the characteristic
“Brazilian flag” appearance.
We have now outlined the recipe needed to find the observed and expected limits for a

given experiment. For completeness, this recipe is summarized below.

1. Construct the likelihood function £(s, §) where p is the signal strength and 6 is the

set of nuisance parameters.
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2. Construct the test statistic ¢, from the profile likelihood ratio

—2 ln)\(ﬂ) :0’ < W,
qp =

0 > p

with
E(M» u) .
L(f1,0)

Ap) =

obs

3. Compute the test statistic for the observed data g¢;;>*.

4. Generate pseudoexperiments to construct the PDF of ¢, under both signal-plus-

background and background-only hypotheses.

5. From the generated distributions of g, compute the p-values in Equations 8.14 and

8.15.

6. Determine the largest value of y that satisfies

CL, = -2 <005

C1—p
This is the observed limit jiyp.

7. To derive the expected limit, take the median value of ji,, obtained through background-

only toy MC pseudoexperiments and the PDF f (j1up|0, 035).
8. Compute the +1 and +20 error bands using the generated PDF for jiyp.

In the next section we will apply this machinery to the search for Higgs decays to LLPs.

8.3 Exclusion limits on B(H — aa — bbbb)

We may now apply the recipe detailed above to the search presented in this thesis. In
this section we will first derive the expected number of signal events as a function of c7,
using a reweighting procedure. This allows us to compute exclusion curves of B(H —

aa — bbbb) as a function of c7,. The impact of systematic uncertainties on the final limits
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are explored in a brief aside, and finally these results are then discussed and compared to

existing constraints on B(H — aa — bbbb) set by previous searches at the LHC.

8.3.1 Lifetime reweighting

To extrapolate the signal efficiency to proper scalar lifetimes other than the generated val-
ues, a procedure known as lifetime reweighting is used which applies a weight to each
event passing the analysis selection, which depends on the proper lifetimes of the LLPs in
the event. To reweight from lifetime 7; to 7, the weight for the it LLP is given by

T — L,L) )
w; = —16 (7'2 1 ti
T2

The total event weight is then simply the product of the weights for each LLP

w = wiwg = <7—1) 2 6_(%_%)(t1+t2)
2
For each mass point, events from all three generated lifetimes are used to mitigate against
statistical dilution. In this procedure, a target lifetime sample is obtained by reweight-
ing events from reference samples with lifetimes above and below the target lifetime. To
reweight to lifetime 7 from reference samples with lifetimes 71 and 73 (Where 71 < 7 < 73)
events from the 7| sample are used when the sum of the proper decay times ¢ of the LLPs
is less than the critical lifetime ¢, and events from the 73 sample are used when the sum of

proper lifetimes is greater than the critical lifetime, where the critical lifetime is the point

21n (%)
(5-%)

Figure 8.5 shows the exponential PDFs for the three generated values of c7, which shows

where the PDFs are equal:

te =

how the critical lifetimes are computed. In each region, a partial efficiency is defined as

€ =

2| =
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Figure 8.5: The exponential PDFs for the three generated values of c7,. The critical lifetimes
tc1 and t. 2 are determined by finding the points at which the PDFs are equal.

where W; is the sum of weights of the events passing the full analysis selection for the ith
reference sample, and NV; is the number of entries in the ith reference sample. The weights
are not included in the denominator as this has been shown to overestimate the efficiency
when extrapolating to values of c7 larger than the generated mean proper lifetime. The
overall efficiency is then computed by taking the sum of these partial efficiencies, as shown
in Figure 8.6.

Applying the lifetime reweighting procedure to the full signal grid, we obtain the anal-
ysis selection efficiency as a function of c7 for each signal mass point. The efficiencies may
then be scaled by the total ZH cross section and integrated luminosity to obtain the pre-
dicted number of signal events s. As shown in Figure 8.7, the selection efficiency peaks
between c7, = 10 and 20 mm, with expected signal yields of 50-75 events. To validate the
extrapolated efficiency curves, we scale the curves by the total integrated luminosity mul-
tiplied by the ZH cross section to obtain the expected signal yield as a function of c7. The
yields at 10, 100, and 1000 mm are then compared to the observed yields in the generated

samples at each lifetime from Table 7.4. A comparison of the yields is shown in Table 8.1.
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Figure 8.6: The partial and total efficiencies for m, = 35 GeV.

8.3.2 Limits

As shown in Section 8.1, no excess of events over the predicted Standard Model back-
ground is observed. Thus, we are unable to exclude the background-only hypothesis
or claim evidence of Higgs boson decays to long-lived scalar particles. Instead, we set
exclusion limits on the branching ratio of the Higgs boson to pairs of long-lived scalars
B(H — aa — bbbb).

After obtaining the number of predicted signal events as a function of ¢, we may
perform the CLs procedure described in Section 8.2.3. We begin by establishing the prob-
ability model that will describe our experiment. The analysis is performed as a single bin
counting experiment similar to the example described in Section 8.2.1. However unlike
our simple example, this analysis considers several sources of systematic uncertainty on
the number of expected signal events. Thus, rather than a single nuisance parameter as-
sociated to the signal prediction 65, we have a set of NPs 65 = {6}, one for each source of

uncertainty described in Section 7.3. The likelihood function is then

L(p,0) = Pois(nops|pss + boy) - H Gaus(0816%, 02) - Gaus(60y|6y, o) (8.19)

1

In our model, i represents the branching ratio B(H — aa — bbbb). A value of u = 1 means
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Figure 8.7: (a) The global selection efficiency curves and (b) the number of predicted signal
events s as a function of c7, for each signal mass point.

that the Higgs boson decays to pairs of long-lived scalars 100% of the time. A value of
i = 0 corresponds to the background only hypothesis in which the Higgs boson has no
coupling to LLPs.

Upper limits at 95% CL are derived for each signal mass hypothesis at a range of values
of e, from 107 to 10 m using the observed dataset ny,s = 0 the background prediction
b = 1.3, and the value of s taken from the scaled efficiency curve in Figure 8.7. For each
value of m, and c7,, we follow the prescription described at the end of Section 8.2.3 to
compute jiyp. Twenty-five values of 1 are considered in the CLs scan. For each hypothesis,
we generate 25000 pseudoexperiments for the alternative hypothesis and 12 500 pseudo-
experiments for the null hypothesis to compute the PDF of the test statistic. Figure 8.8
shows the generated pseudoexperiments at each point in the CLs scan for m, = 35 GeV
and cr, = 10 mm. From the generated distributions, the p-values for CLg,},, CLp, and
CLs are computed. This allows us to compute the observed upper limit uy, as well as
the expected limit and corresponding +1 and +2¢ error bands, as shown in Figure 8.9 for
m, = 35 GeV and c¢7, = 10 mm.

After performing the CLs prescription across the full range of masses and scalar proper
lifetimes, we obtain the final exclusion limits on the branching ratio B(H — aa — bbbb),
as shown in Figure 8.10. A discussion of these results will be given in Section 8.3.4 after a

brief intermezzo to investigate the impact of systematic uncertainties in the analysis.
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Sample Selection
mg [GeV] ¢ [mm] | Generated Extrapolated

10 51.0 + 4.4 50.472%

55 100 23.7+£2.4 26.2123
1000 0.6+0.3 1.049°

10 70.2 +3.4 67.277%

45 100 | 209+19 228727
1000 0.6 +0.2 0.8103

10 71.4+4.3 704751

35 100 21.1 £2.2 23.4137
1000 0.2 +0.2 0.5103

10 63.9 4+ 2.9 65.7755

25 100 114412 14.5713
1000 0.4+0.2 0.3151

10 54.14+2.4 52.7753

15 100 4.6 +0.4 6.870:2
1000 0.1+0.0 0.110:%

Table 8.1: The total expected yield for each signal point after each selection is applied,
assuming B(H — aa — bbbb) = 1.

8.3.3 Better than zero?

In most cases, there are several ways to improve the sensitivity of a physics analysis. First
and most obviously, would be to modify the analysis strategy to improve S/v/B. How-
ever, assuming that the analysis has been sufficiently optimized, this may or many not be
feasible. The other possibility is to collect more data using the same analysis methodology.
This will increase the expected signal and background yields correspondingly, but increase
S/v/B giving rise to a more sensitive analysis. The third and final way is to increase the
precision of the analysis predictions, i.e. reducing the systematic uncertainties. In the pres-
ence of a systematic uncertainty on o3, on the background prediction, the sensitivity of the
analysis may be approximated as S/y/B(1 + o2 B) for large S and B. In the limit of infinite
luminosity, this becomes J%B, significantly reducing the significance of the observation if
oy is sufficiently large.
To understand the limitations of the current analysis, it is necessary to determine whether

or not the systematic uncertainties on the signal and background prediction have a signif-
icant impact on the sensitivity of the analysis. To assess the impact of the systematics on

the final exclusion limits, we perform the CLs method with all nuisance parameters set to
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Figure 8.8: The distribution of the profile-likelihood test statistic for various values of u
for mg, = 35 GeV and c7, = 10 mm. The signal-plus-background hypothesis is shown in
red, and the background-only hypothesis is shown in blue. The observed value of the test
statistic is drawn as a black line, and the integral used to compute the p-values is shown
as a shaded area.
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Figure 8.9: The 95% CL upper limits on y for m, = 35 GeV and c7, = 10 mm.



Chapter 8. Results 201

g 10° — T — T —T—TTrT g 10° — T — T —T—TTrT
N ATLAS Internal N ATLAS Internal

& s =13 TeV, 139 fb”' & s =13 TeV, 139 fb”'

c m, =15 GeV c m, =25 GeV

s 10 )

E E

- -

5 5

a a

=) =)

— |

(@] ; (@]

fo\o 100 — Observed fo\o — Observed

o - - - Expected o - - - Expected

I Expected = 10
Expected £ 2 o

I Expected = 10
Expected £ 2 o

10°® 1072 107 1 10°® 1072 107 1
a proper decay length [m] a proper decay length [m]

(a) mqy = 15 GeV (b) mq = 25 GeV
'.%102 — — T — '.%102 — — T —
' ATLAS Internal ' ATLAS Internal
& s=13TeV, 139 fb & s=13TeV, 139 fb™
c m, = 35 GeV c m, =45 GeV
s 10 s 10
E E
- |
a 1 a 1
o o
=) =)
— —
o o
3\‘; 10 — Observed 3\‘; 10 — Observed
o - - - Expected (5] - - - Expected
I Expected = 10 I Expected = 10
> Expected +2 o > Expected +2 o
10™ 10™
10 102 10™ 1 107 102 10™ 1
a proper decay length [m] a proper decay length [m]
(c) mq = 35 GeV (d) m, = 45 GeV
s 10° T — T —T—TTrT
N ATLAS Internal
& s =13 TeV, 139 fb™
c m, =55 GeV
s 10
£
-
2
o
=)
|
< 1
fo\o 107 Observed
o - - - Expected

I Expected = 10
Expected =2 o

10°® 1072 107 1
a proper decay length [m]

(e) my, = 55 GeV

Figure 8.10: Expected and observed exclusion limits on By, for (a) m, = 15 GeV, (b)
mq = 25 GeV, (¢) my = 35 GeV, (d) m, = 45 GeV, and (e) m, = 55 GeV with +1¢ and +2¢
error bands.



Chapter 8. Results 202

—_

T
ATLAS Internal

Vs =13 TeV, 139 fb
m, = 35 GeV

1

—
Q

—— syst. included
—=— stat. only

95% CL Upper Limiton B,,_, .

10—2 1 ool 1 ool L Lo

107 1072 107 1
a proper decay length [m]

Figure 8.11: Comparison of the exclusion curves with and without systematics applied.

c — - c = S
L Nobs>=3 ] L2 E 3
w E 107y E
0.25 Nobs=2 : E
02 ] 102y 3
Nobs=1 Bl B

0.15 ] 10° i
0.1 Nobs=0 3 1

B 10 =

0.05 . 3
B -5 L M | L L | L L L L lw L | L L L ]

% 2 1 6 8 10 1070 2 7 6 8 10

el

S

Q0

Figure 8.12: Normalized distribution of the one-sided profile likelihood test statistic g,, for
w1 = 3 with no systematic uncertainty (left) and with a systematic uncertainty on the signal
efficiency of o5 = 0.05 (right). Image taken from Ref [202].

their nominal constant values. In most situations, uncertainty on the predicted number of
signal and background events decreases the sensitivity of an analysis and therefore gives
rise to weaker limits. However as shown in Figure 8.11, the limits derived with system-
atics included are slightly stronger than when all nuisance parameters are constant! This
somewhat peculiar result is an example of the better than zero problem [202].

To explore this problem further, let us further simplify the example counting experi-
ment used previously in Section 8.2.1 to the situation in which b = 0, and there is only
one nuisance parameter in our model, 6. Figure 8.12 shows the distribution of pseudoex-
periments generated under the alternate hypothesis with ;1 = 3 both with and without a
systematic uncertainty on the signal efficiency for this scenario. In both cases, 5% of the

alternate hypothesis resides in the final peak, but the uncertainty on the signal efficiency
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Figure 8.13: Distribution of the one-sided profile likelihood test statistic for a hypothesis
test with u = 3, where o5 = 0.05. The solid black vertical line indicates the observed value
of the test statistic for an observation of 0 events.

smooths out the overall distribution symmetrically about the center of each peak. The

p-value for this example is given by

pu = Pois(ngps = 0|ush) - Gaus(f > 6°°%|0, o)

st g § — gobs
Os

where 0 is the assumed true value of the nuisance parameter when generating the pseu-

doexperiments. The CMLE of the nuisance parameter 0 is given by

05Ps = §°b — pso?. (8.20)

S

Thus, the toys are generated at a slightly shifted value of 0 relative to the observed value,
with the shift depending on the uncertainty of the signal yield. In the background-only
hypothesis, the shift in the distribution is not present because ;1 = 0. Figure 8.12 shows the
distributions of the test statistic for both the null and alternate hypotheses, with the final
peaks corresponding to ny,s = 0 being clearly shifted from one another. The location of
the observed value of the test statistic corresponds to the central value of the background-

only distribution, giving a CLj, p-value of 0.5. The shift in the distribution for the alternate
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hypotheses implies that the CLg,, p-value will be slightly less than 0.025, corresponding to
a lower CL; limit than would be computed from the unshifted distribution!
For this simple model, we can quantify this effect by solving for the p-values exactly.

The CLs,1, and CL;, p-values are given by
Pu = e Hst” 6“252‘7§§>(—u305), oy = ®(0) =0.5 (8.21)
and thus the 95% CL upper limit is obtained by solving (note gobs — 1)
0.05 = 2eM'5* 1P (— psorg) (8.22)

Numerical solutions to this equation are given in Table 8.2 for several values of o,. Hence,

os | 95% CL upper limit on sy
0 2.996

0.05 2.894

0.10 2.824

0.20 2.757

0.25 2.759

0.30 2.786

Table 8.2: Upper limits for difference values of uncertainty on the signal yield. The low-
est lowest limit is obtained for an uncertainty of approximately 20%. Values taken from
Ref [202].

in the case of zero background, the introduction of a systematic uncertainty on the signal
prediction actually leads to a stronger limit than in the absence of all uncertainties.

Let us now explore what is happening in the hypothesis testing for the search for Higgs
boson decays to LLPs. Although we are no longer able to easily solve for the p-values ex-
actly, we can still investigate what happens to the distributions of the test statistic when
we either enable or disable the nuisance parameters in our fit. We will use the values of the
model parameters corresponding to m, = 35 GeV and c¢7, = 10 mm. Figure 8.14 shows the
distributions of the test statistic for the case in which no systematics considered as well as
only considering systematic uncertainties on the background estimate. Here we have set
p equal to the value p,p computed with no systematics. In both cases, we observe that the

final peak is a delta function similar to what was observed in Figure 8.12.  As shown in
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Figure 8.14: Distribution of the one-sided profile likelihood test statistic for m, = 35 GeV
and c7, = 10 mm with no systematics (left) and only the systematic uncertainty on the
background prediction (right).The solid black vertical line indicates the observed value of
the test statistic for an observation of 0 events.
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Figure 8.15: Distribution of the one-sided profile likelihood test statistic for m, = 35 GeV
and c7, = 10 mm with all systematic uncertainties included. The solid black vertical line
indicates the observed value of the test statistic for an observation of 0 events.
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Figure 8.16: The observed limits for all signal mass points as a function of c7 of the a boson.

Figure 8.15, when we introduce systematic uncertainties on the signal prediction, the same
shift in the distribution for the alternate hypotheses relative to the null hypothesis is ob-
served as in Figure 8.13. Thus, the same “better than zero” phenomenon is observed with
nonzero background prediction and uncertainty on the background yield. Quantitatively,
including the systematic uncertainties in the model gives improved limits on the order of
a few percent. From this we conclude that systematic uncertainties are not a limiting factor
in the sensitivity of this analysis. Hence, to improve upon the sensitivity, either more data

or a more highly optimized analysis strategy is needed.

8.3.4 Summary of results

Now that we have computed 95% CL upper limits on B(H — aa — bbbb) for a range of
masses m, and lifetimes c7,, we move to a discussion of how to interpret these results
and their significance. The observed limits from Figure 8.10 are shown together on one
canvas in Figure 8.16. We observe that this search has excluded B(H — aa — bbbb) > 10%
for LLP mean proper lifetimes c7, as small as 4 mm and as large as 110 mm. For m, =
35 GeV, B(H — aa — bbbb) 2 3% is excluded for er = 20 mm. The excluded ranges of cr
are shown in Table 8.3 for several branching ratio hypotheses, and Figure 8.17 shows the

exclusion in the 2-dimensional space of m, vs. c7,.
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Figure 8.17: Observed 95% CL exclusion limits on B(H — aa — bbbb) shown as a function
of both m, and proper lifetime c7,. Contours are included which show the area of excluded
values for several branching ratio hypotheses.
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ma B(H — aa — bbbb) Excluded cr range [m]

100% 0.0019 - 0.5248
55 50% 0.0024 - 0.3388
25% 0.0031 - 0.2163
10% 0.0052 - 0.1072
100% 0.0015 - 0.4467
45 50% 0.0019 - 0.2851
25% 0.0025 - 0.1778
10% 0.0038 - 0.0871
100% 0.0016 - 0.3981
35 50% 0.0020 - 0.2630
25% 0.0025 - 0.1698
10% 0.0039 - 0.0881
100% 0.0013 - 0.2786
25 50% 0.0016 - 0.1862
25% 0.0022 - 0.1202
10% 0.0036 - 0.0624
100% 0.0014 - 0.1660
15 50% 0.0018 - 0.1109
25% 0.0023 - 0.0716
10% 0.0038 - 0.0359

Table 8.3: Ranges of proper lifetimes excluded at 95% CL for each benchmark sample
shown for several values of B(H — aa — bbbb).

In comparison to the previous searches for Higgs decays to LLPs described in Sec-
tion 2.6, these are among the most stringent limits placed on B(H — aa — bbbb) thus far
at the LHC. For scalars with m, < 40 GeV, these results represent the strongest existing
constraints on B(H — aa — bbbb) in this lifetime regime. Although for scalar masses
above 40 GeV this search is not as sensitive as the search for displaced jets performed by
the CMS experiment [90], among ATLAS searches, the region c7, < 100 mm was mostly
unconstrained prior to this search regardless of the scalar mass. Figure 8.18 shows a new
version of Figure 2.10 which has been updated to include the results of this search in the
summary of current exclusion limits set by ATLAS. The limits derived from this search fill
the gap in exclusion left by the previous searches which targeted lifetimes c¢7, < 1 mm
and cr, > 1 m. Despite not being as sensitive as the searches which probed LLP life-
times cr, > 1 m, this search provides the complementarity needed to begin to exclude a

significantly wider range of LLP lifetimes.
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Figure 8.18: Summary of current observed limits on decays of the Higgs boson to pairs
of long-lived a bosons as a function of proper lifetime c7,, obtained by the ATLAS exper-
iment. The limits shown include the results from a search optimized for prompt decays
(JHEP 10 (2018) 031), the inner detector DV-based search presented here, and the combined
results of two searches for displaced jets in the ATLAS calorimeter (CR) and muon spec-
trometer (MS1+MS2) (Eur. Phys. J. C 79 (2019) 481). The a bosons are allowed to decay
inclusively to all kinematically-allowed final states, with mass-dependent a boson branch-
ing ratios. For m, > 25 GeV, the branching ratios to bb, c¢, and 777~ are approximately
constant and given by 85%, 5%, and 8%, respectively. The prompt and inner detector DV-
based results assume negligible signal efficiency for decays other than a — bb.
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Chapter 9

Conclusion

And once the storm is over you won't remember how you made it through, how you
managed to survive. You won't even be sure, in fact, whether the storm is really over.
But one thing is certain. When you come out of the storm you won't be the same person

who walked in. That’s what this storm’s all about.
-Haruki Murakami, Kafka on the Shore

This thesis has described a novel search for exotic decays of the Higgs boson to pairs of
displaced vertices in the ATLAS inner detector. Although no evidence for BSM physics was
observed, the limits derived through the statistical interpretation presented in Chapter 8
represent the strongest existing constraints on the branching ratio of the Higgs boson to
pairs of long-lived scalars with m, < 40 GeV in the lifetime region 1 < c7, < 100 mm.
Branching ratios of greater than 10% are excluded in this regime for a wide range of scalar
masses m,q. In order to probe branching ratios less than 1%, considerable improvements to
the analysis strategy must be made. Including the W+ H production mode would give an
immediate improvement of roughly a factor of 5 in terms of total signal cross section due
to the larger o x B(V — ¢¢) of W H with respect to ZH production modes [50]. However,
the W H channel will suffer from larger backgrounds due to the additional contribution
from the ¢t process. Thus, further studies will need to be performed to assess the actual
improvement gained by including this additional channel. Being a zero background search
already, the only way to improve the sensitivity of the ZH channel is to increase the signal

selection efficiency. The most obvious way to accomplish this would be to only require the
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Figure 9.1: The radial distribution of truth-matched LLP vertices and fake vertices for three
different versions of the LRT algorithm. “R21” is the version of the algorithm used in this
thesis, while “v8” is the final configuration of the algorithm that will be used in Run III.
“v3” is an intermediate configuration that was being considered but was superseded by
the v8. Material layers are shown as red dashed lines.

presence of one DV. However, with the current analysis selections the single DV channel
has prohibitively large background, so future developments will need to be made to the
both the reconstruction algorithms and analysis-level selections in order to achieve the
background rejection necessary to pursue a single DV channel.

Thankfully, the LRT algorithm has been reoptimized to significantly decrease the num-
ber of fake tracks, and therefore the number of fake vertices reconstructed. Figure 9.1
shows the radial distribution of vertices reconstructed in a simulated sample of H — aa —
4b production for three different versions of the LRT algorithm. “R21” is the version of the
algorithm used in this thesis, while “v8” is the final configuration of the algorithm that will
be used in Run III The filled-in markers represent vertices that are matched to true LLP de-
cays, while the hollow markers represent fake vertices that are not matched to any truth
particle. The number of fake vertices reconstructed in signal MC is reduced by an order of
magnitude with a negligible impact on the LLP vertex reconstruction efficiency. Further
studies need to be performed to quantify the reduction in fake vertices reconstructed in
data, but the reduction in background is expected to be substantial. With this updated
configuration and the addition of the W H channel, we expect to be able to significantly

improve the analysis sensitivity in future searches.
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While writing this thesis, tantalizing hints of new physics have been presented by the
LHCb Collaboration [203] and the Muon g — 2 experiment at Fermilab [204]. All eyes
are thus once again on the ATLAS and CMS experiments to find direct evidence for new
particles that could be causing these discrepancies between theoretical prediction and ex-
perimental observations. As described in Section 2.5, there is strong reason to believe that
the most promising avenue for discovery of BSM physics is by searching for exotic Higgs
decays to challenging detector signatures that have been overlooked by traditional AT-
LAS searches. Despite not finding evidence of new physics, this novel search has laid the
groundwork for future research to scrutinize the Higgs sector more closely using different
final states. The current theory space is extremely vast and there are myriad scenarios in
which the Higgs boson can serve as a mediator between the SM and new physics. The
possible detector signatures are numerous, from long-lived scenarios such as displaced
vertices and emerging jets, to challenging prompt signatures like semi-visible jets and soft
unclustered energy patterns (SUEP). The improved LRT algorithm will open the door for
many such searches, and the interest from the experimental and theoretical community in
these searches is growing quickly. We hope that this search will be the first in an exhaustive
search program for exotic Higgs decays with challenging detector signatures that exploit

the associated production mode to trigger.

We live to search another day.
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