
Received: June 4, 2024. Revised: November 27, 2024. Accepted: January 4, 2025

© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

International Mathematics Research Notices, 2025, 2025(3), 1–26

https://doi.org/10.1093/imrn/rnaf003
Article

Invariance of Elliptic Genus Under
Wall-Crossing
Henry Liu*

Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced
Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
*Correspondence to be sent to: e-mail: henry.liu@ipmu.jp
Communicated by Prof. Dragos Oprea

Wall-crossing formulas for various flavors of elliptic genus can be obtained using master spaces. We
give a topological criterion which implies that such wall-crossing formulas are trivial. Applications are
given for the following: GIT quotients, following Thaddeus; moduli of sheaves, following Mochizuki;
and Donaldson–Thomas and Vafa–Witten theory, following Joyce and Tanaka–Thomas, respectively.

1 Introduction
1.1

Let X be a smooth proper scheme over C. Recall the q-Pochhammer and (normalized) odd Jacobi theta
functions

φ(z) :=
∏
n>0

(1 − qnz), ϑ(z) := (1 − z−1)φ(qz)φ(qz−1),

respectively. Both can be extended to functions of vector bundles on X as

�(E) :=
∏
L∈E

φ(L), �(E) :=
∏
L∈E

ϑ(L),

where the products range over the Chern roots L of E . Then, following [19, 27], the elliptic genus of X is

E−y(X) := χ

(
X,

�(yTX)

�(TX)�(T ∨
X )

)
, (1)

where TX is the tangent bundle and y is a formal variable. If G is a group of automorphisms of X, then
(1) is naturally an element

E−y(X) ∈ KG(pt)[y±1][[q]],

where, for a scheme Z with G-action, KG(Z) denotes the G-equivariant K-theory of Z, that is, the
Grothendieck group of G-equivariant coherent sheaves on Z.

Note that the q = 0 specialization of E−y(X) is the Hirzebruch χ−y genus of X.
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2 | H. Liu

1.2

To give a sense of what elliptic genus looks like, consider the simple case where a torus T = (C×)r acts
on X and the fixed point set XT consists only of isolated points. Then, by torus-equivariant localization
[43],

E−y(X) =
∑
p∈XT

∏
w∈TpX

ϑ(yw)

ϑ(w)
, (2)

where the product ranges over the T-weights of TpX. Indeed, the definition (1) is purposefully designed
so that (2) holds.

More generally, let NXT⊂X be the normal bundle of XT ⊂ X. Then localization, combined with the
multiplicativity of � and �, produces

E−y(X) = χ

(
XT,

�(yNXT⊂X)

�(NXT⊂X)

�(yTXT )

�(TXT )�(T ∨
XT )

)
. (3)

Note that only the first factor in the integrand has non-trivial T-dependence.

1.3

It turns out E−y(X) has better properties when it is valued in equivariant elliptic cohomology, rather than
equivariant K-theory as written in (1). For a torus T = (C×)r, this means being a section of a line bundle
on the elliptic cohomology scheme [17]

EllT(pt) := T/qcochar T ∼= (C×/qZ)r,

rather than merely on the K-theory scheme Spec KT(pt) = T. Here q = exp(2π iτ) where τ is the elliptic
modulus,C×/qZ is the Tate elliptic curve, and cochar T and char T denote the cocharacter and character
lattices of T.

We may view q either as a formal variable or as a complex number, so that C×/qZ is a family of
complex elliptic curves over either Z[[q]] or the punctured disk 0 < |q| < 1, respectively. Since both φ(z)
and ϑ(z) are absolutely convergent, all convergence issues may be disregarded.

Properness of T/qcochar T, in contrast to T, provides strong control over E−y(X) and related quantities.

1.4

Recall [7] that meromorphic sections of a degree d line bundle on C×/qZ correspond to meromorphic
functions f (s) on the pre-quotient C× satisfying the q-difference equation

f (qs) = cs−df (s), c ∈ C×. (4)

For example, ϑ satisfies ϑ(qz) = −(qz)−1ϑ(z). Given a line bundle L on XT, let wtT(L) ∈ char T correspond
to its T-weight. Using (3) and (4), one can check that if

y
−∑

L∈N
XT⊂X

〈σ ,wtT(L)〉
is constant on XT (5)

for any cocharacter σ ∈ cochar T, then E−y(X) becomes a genuinely elliptic object, that is, it becomes a
meromorphic section of a (degree-0) line bundle on T/qcochar T.

The simplest way to satisfy (5) is to assume that detTX is an N-th power, so that
∑

L wtT(L) is a
multiple of N, and to specialize y to an N-th root of unity ζN �= 1. Thus, the following two cases will
feature prominently in this paper:

(i) (X is spin) y = −1 and the canonical bundle KX admits a square root; and
(ii) (X is Calabi–Yau) y is arbitrary and KX = OX.

The y = −1 specialization E1(X) is particularly notable because it is the historically earlier notion of
elliptic genus due to Landweber–Stong, Ochanine, and Witten [29, 45].
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1.5

In this paper, we consider the following geometric setup for studying (equivariant) wall-crossing
problems: T is a torus and M is a T-equivariant master space. This means that M is a smooth proper
scheme with a (T × S)-action, where S := C× with coordinate denoted s, such that the S-fixed locus is a
disjoint union of the following T-invariant pieces:

(i) smooth divisors ι± : Z± ↪→ M with normal bundles of S-weights s±1, respectively;
(ii) other proper component(s) ι0 : Z0 ↪→ M whose normal sheaf Nι0 is locally free.

(More generally, M can be a smooth Deligne–Mumford stack satisfying the weaker properness
condition of Remark 2.9. For elliptic genus, the S-fixed components Z± are still required to be schemes.)
Generally, in applications, Z± will be two different stable loci in an ambient algebraic stack.

Many master spaces exist in the literature; examples include [15, 22, 35, 38, 41, 47]. In many of these,
M is only quasi-smooth instead of smooth (see Remark 2.8).

1.6

Theorem (Main theorem). Suppose Nι0

∣∣
ZT

0
= E+ ⊕ E− only has pieces of S-weight s±1, and

rankE+ ≡ rankE− mod N (6)

for some integer N > 0. Then, for any N-th root of unity ζN �= 1,

E−ζN (Z+) = E−ζN (Z−).

To be clear, ZT
0 may have many connected components. While rankE± need not be constant on ZT

0 ,
(6) must hold on each connected component.

Note that if rankE+ = rankE−, that is, the theorem holds for all N > 0, then E−y(Z+) = E−y(Z−) for
general y because q-coefficients of E−y are Laurent polynomials in y.

In practice, the condition that only pieces of S-weights s±1 appear is often satisfied automatically,
but it may also be removed by replacing (6) with a more complicated condition.

1.7

The proof of Theorem 1.6, given in §2, is fairly elementary. A very general wall-crossing procedure,
arising from (T×S)-equivariant localization on M, expresses the difference between E−y(Z+) and E−y(Z−)

in terms of a contour integral

∮
|s|≈1

�(y(E+ + E−))

�(E+ + E−)

ds
s

(7)

on S. The integrand is a function on S in general, but specializing y = ζN makes it qcochar S-invariant, so
the contour integral descends to the elliptic curve S/qcochar S. There, the contour encloses all the poles
of the integrand, and therefore vanishes by Cauchy’s residue theorem and properness of S/qcochar S.

1.8

Previous work studying elliptic genus under birational transformations focused on the Calabi–Yau
setting of 1.4(ii), and the non-equivariant (i.e., T is trivial) elliptic genus

E−y : MSU∗ ⊗Q → Jac

viewed as a homomorphism from the SU-bordism ring to Jacobi forms in (y, τ). A bordism argument
by Totaro [44,§4] shows that E−y is invariant under certain Calabi–Yau flops, using Krichever–Höhn’s
elliptic rigidity [19, 27]. More sophisticated work by Borisov and Libgober extends this to arbitrary crepant
birational transformations [8].

It is possible that an equivariant version of such arguments can be used to prove Theorem 1.6, as
explained below. But our approach outlined in §1.7 is more versatile; for instance, it applies equally well
to virtual chiral elliptic genus (see §1.13).
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4 | H. Liu

1.9

In fact, a simple geometric formula for the contour integral (7) exists in general. In Appendix A, we
explain how Jeffrey–Kirwan integration expresses contour integrals of this shape as equivariant Euler
characteristics on GIT quotients—in our case (Proposition A.2), as

χ

(
P(V),

�(yO(1) ⊗ V+ + y−1O(1) ⊗ V−)

�(O(1) ⊗ V)�(O(−1) ⊗ V∨)

)
, (8)

where V := V+⊕V− and coordinates of V± correspond to Chern roots of E±. A slightly different application
of Jeffrey–Kirwan integration expresses (7) as the change in E−y across certain toric flips (Remark A.5).
The invariance of E−ζN under these toric flips is equivalent to our main Theorem 1.6.

Unfortunately for wall-crossing, in general (8) appears to be a non-trivial function of the Chern roots
of E±, with no productive closed form.

1.10

We give two direct applications of Theorem 1.6: to the original Thaddeus master space, studying
variation of GIT (§3), and to Mochizuki’s enhanced master space, studying moduli of sheaves (§4). In
each, most of the work is to identify sufficiently explicit and useful criteria such that the topological
condition (6) holds. As such, the following two theorems describe certain “nice” cases which may be less
general than permitted by their constituent pieces.

1.11

Theorem (Theorem 3.6, Theorem 3.7). Let X �L± G be two smooth GIT quotients separated by a
single, simple (§3.3) wall L0 in the space of GIT stability conditions, and let Xsst(L) ⊂ X denote
the L-semistable locus. The natural maps

(Xsst(L0) \ Xsst(L∓)) �L± G → (Xsst(L0) \ (Xsst(L+) ∪ Xsst(L−))) �L0 G

are always locally trivial fibrations by weighted projective spaces. If in fact they are locally
trivial PN± -fibrations with N+ − N− ≡ 0 mod N, then

E−ζN (X �L+ G) = E−ζN (X �L− G).

1.12

Theorem (Theorem 4.6, Lemma 4.7, Theorem 4.10, Corollary 4.12). Let Y be a smooth projective
variety with canonical bundle KY. Under the assumptions of §4.1 and §4.2, consider two stable
loci Msst

α (±) ⊂ M
sst
α (0) in a moduli stack of sheaves of class α ∈ H∗(Y) on Y, separated by a

single wall at 0.

• (Spin) If KY admits a square root, then

E1(M
sst
α (+)) = E1(M

sst
α (−)).

• (Calabi–Yau) If K⊗k
Y = OY for some integer k, and the wall is simple (see 4.4(i)), then

E−y(M
sst
α (+)) = E−y(M

sst
α (−)).

Unfortunately, in practice, the assumption 4.2(ii) that all semistable loci are smooth is too strong. For
instance, it is satisfied for surfaces Y if Y is Fano (Remark 4.3) (i.e., a del Pezzo surface), but then only
Y = P2 and Y = P1 × P1 have canonical bundles which are divisible (i.e. non-trivial powers of some line
bundle).

In the Calabi–Yau case, the assumption that the wall is simple is an artefact of Mochizuki’s setup,
and is possibly unnecessary; see Remark 4.13.
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1.13

In §5, we replace the smoothness condition on X or the master space M with the condition that they
admit equivariantly-symmetric perfect obstruction theories. Then E−y(X) may be replaced by the virtual
chiral elliptic genus

Evir/2
−y (X) := χ

(
X,

Ovir
X ⊗ K1/2

vir

�(T vir
X )�((T vir

X )∨)

)

following ideas of [14,§8], and there is a virtual version (Theorem 5.6) of our main theorem. The twist
by a square root of the virtual canonical Kvir := det(T vir

X ) is crucial, as first observed in [36].
Symmetric perfect obstruction theories are a hallmark of Donaldson–Thomas-type theories on

Calabi–Yau 3-folds, to which we apply Theorem 5.6 as follows.

1.14

Let Y be a quasi-projective Calabi–Yau 3-fold, acted on by a torus with proper fixed loci, such that the
(trivial) canonical bundle has non-trivial weight y. For the Donaldson–Thomas (DT) moduli stack Nα ,
and a stability condition σ with no strictly σ -semistable objects, we define the elliptic DT invariant as the
virtual chiral elliptic genus

DTEll /2
−y (α; σ) := Evir/2

−y (Nsst
α (σ ))

of the σ -stable locus in Nα , whenever it has proper torus-fixed loci (Definition 6.3). Note that the q = 0
specialization is what is usually referred to as a K-theoretic DT invariant.

A special case is Vafa–Witten (VW) theory [40], where Y = tot(KS) is an equivariant local surface (§6.10)
for a smooth projective surface S acted on by a torus T. Up to some modifications to Nα , the elliptic DT
invariant becomes the elliptic VW invariant VWEll /2

−y (α; σ).

1.15

Theorem (Theorem 6.5, Remark 6.6, Lemma 6.10, Lemma 4.7, Corollary 6.12, Lemma 6.13). Consider
two stable loci Nsst

α (±) ⊂ N
sst
α (0) in the VW moduli stack of class α ∈ H∗(S), separated by a

single wall at 0 (see 4.1(i)).

(i) (Spin) If KS admits a square root, and KS
∣∣
ST has non-trivial T-weight on each component, then

VWEll /2
1 (α; +) = VWEll /2

1 (α; −).

(ii) (Calabi–Yau) If K⊗k
S = OS for some integer k, and the wall is simple (see 4.4(i)), then

VWEll /2
−y (α; +) = VWEll /2

−y (α; −).

In contrast to Theorem 1.12, the smoothness assumption 4.2(ii) is no longer required. For instance,
S can be a Hirzebruch surface of even degree, satisfying the spin condition, or an Enriques surface,
satisfying the Calabi–Yau condition for k = 2.

As in §1.12, in the Calabi–Yau case it may be unnecessary to require the wall to be simple.

1.16 Notation
All schemes are Noetherian and over C. Given a torus T = (C×)r, its character and cocharacter lattices
are char(T) := Hom(T,C×) and cochar(T) := Hom(C×, T) respectively, and:

• KT(pt) = Z[tω : ω ∈ char T] where t ∈ T denotes the coordinate;
• KT(pt)loc := KT(pt)[(1 − tω)−1 : 0 �= ω ∈ char T]; and
• KT(X)loc := KT(X) ⊗KT(pt) KT(pt)loc is the localized T-equivariant K-group of X.

The monomials tω ∈ KT(pt) are referred to as T-weights.
In K-theory, χ(X, −) := ∑

i(−1)iHi(X, −) is the Euler characteristic, ∧•
z := ∑

i zi∧i is the exterior algebra,
and all functors are derived, for example, ExtX(−, −) := ∑

i(−1)i Exti
X(−, −).
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6 | H. Liu

Given a closed embedding ι : Z ↪→ Z′, let Nι or NZ⊂Z′ denote its normal sheaf.
Finally, ln(z) := log(z)/2π i so that exp(2π i ln z) = z.

2 Wall-Crossing and Proof of the Main Theorem
2.1

Let M be the T-equivariant master space from §1.5, with action by T × S. Let s denote the coordinate on
S = C×.

In this section, we explain the general strategy for obtaining wall-crossing formulas from M, and
prove the main Theorem 1.6. It has a long history with many interesting applications to cohomological
and K-theoretic invariants, particularly when M is allowed to be quasi-smooth instead of smooth. But
it has not yet been systematically applied to elliptic genus.

2.2

Wall-crossing formulas arise from the (T × S)-equivariant localization formula on M. Explicitly, if F is a
coherent sheaf on M, then

χ(M,F) = χ

(
ZT

−,
1

∧•
−1(N ∨

ZT−⊂Z−
)

F
∣∣
ZT−

1 − sL∨−

)
+ χ

(
ZT

+,
1

∧•
−1(N ∨

ZT+⊂Z+
)

F
∣∣
ZT+

1 − s−1L∨+

)

+ χ

(
ZT

0 ,
1

∧•
−1(N ∨

ZT
0 ⊂Z0

)

F |ZT
0

∧•
−1(N ∨

ι0
)

)
,

(9)

where Nι± =: s±L± are the normal line bundles from 1.5(i), and several obvious pullbacks have been
omitted. Each integrand is written so that only the second factor is a non-trivial (rational) function of s.

The left-hand side χ(M,F) is an element in the non-localized K-group KT×S(pt) since M is proper and
F is coherent, but each individual term in the right hand side of (9) lives in the localized KT×S(pt)loc.

2.3

The idea is to apply an operation res on rational functions of s such that:

(i) res : KT×S(pt) �→ 0;
(ii) for any T-equivariant line bundle L on a Deligne–Mumford stack with trivial T-action,

res
1

1 − sL = 1.

Property (i) ensures the left-hand side of (9) will vanish, while property (ii) ensures the first two terms
on the right-hand side of (9) will become

χ

(
ZT

±,
F

∣∣
s∓1=L±

∧•
−1(NZT±⊂Z± )

)
= χ

(
Z±,F

∣∣
s∓1=L±

)
,

where the equality is T-equivariant localization on Z±.

2.4

As the notation suggests, res is given by the K-theoretic residue map

res: KT×S(pt)loc → KT(pt)loc

f �→ 1
2π i

∮
|s|≈1

f
ds
s

(10)

where the contour encloses precisely the poles of the form sk = w for all 0 �= k ∈ Z and T-weights w.
(The notation |s| ≈ 1 is solely a suggestive name for the contour.) Equivalently, res computes the sum
of residues at all such poles in s in the function f/s.
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Invariance of Elliptic Genus Under Wall Crossing | 7

Fig. 1. The contour |s| ≈ 1 on S. It can be represented by the annulus drawn in red. Crosses indicate poles of a
sample elliptic function.

For any Deligne–Mumford stack Z with (T × S)-action, we continue to use res to denote the map

res: KT×S(Z)loc → KT(ZS)loc

induced by tensor product with K(ZT×S). It is not difficult to check that res satisfies properties 2.3(i) and
2.3(ii), and in fact is uniquely characterized by them. For instance, Laurent polynomials in s have poles
only at s = 0 and s = ∞, and neither point is enclosed by the contour |s| ≈ 1.

2.5

More generally, res is well-defined for any meromorphic function on S. In particular we will apply it to
elliptic functions, i.e. meromorphic functions invariant under s �→ qs, and related objects. Analytically,
we treat the T-weights w as complex numbers much closer to 1 than q is, i.e. |1 − w| � |1 − q| for all
T-weights w. Thus, by definition, the contour excludes poles of the form skqn = w for n �= 0. Figure 1
contains an illustration.

2.6

Example. Let t be any T-weight. Then ϑ(yst)/ϑ(st) has a simple pole at s = t−1, which is enclosed
by |s| ≈ 1, and it has no other poles enclosed by the contour. Hence,

res
ϑ(yst)
ϑ(st)

= lim
s→t−1

(1 − st)
ϑ(yst)

(1 − (st)−1)φ(st)φ((st)−1)
= − ϑ(y)

φ(1)2
.

This still holds when s is replaced by s−1, without the minus sign on the right-hand side.

2.7

For elliptic genus, take F = �(yTM)/�(TM)�(T ∨
M ) in (9) and apply res. Recall that in K-theory, there are

splittings such as

TM
∣∣
ZT±

= s±L±
∣∣
ZT±

+ NZT±⊂Z± + TZT± ,
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8 | H. Liu

and � and � are multiplicative. Combined with the calculation in Example 2.6, we get

0 = ϑ(y)

φ(1)2

(
E−y(Z−) − E−y(Z+)

) + χ

(
ZT

0 , · · · ⊗ res
�(yNι0 )

�(Nι0 )

)
, (11)

a wall-crossing formula relating E−y(Z−) and E−y(Z+). In the remaining integrand, the terms represented
by · · · are irrelevant because our goal is to study the case where the residue vanishes, and therefore
E−y(Z−) = E−y(Z+).

The assumption y �= 1 of the main Theorem 1.6 is important for this step (and only this step), in order
for the right-hand side of (11) to be non-trivial.

2.8

Remark. Smoothness of M is crucial for (11) to hold. It is natural to ask whether we can allow
M to be only quasi- or virtually smooth, meaning that M may not be smooth but instead has a
perfect obstruction theory [6]. The naive answer is no (cf. §5), for the following reason.

For quasi-smooth schemes, the elliptic genus E−y should be upgraded to the virtual elliptic genus
Evir

−y by replacing all instances of T in (1) with the virtual tangent bundle T vir [13]. Virtual
localization [16] provides a virtual version of (9). However, the residue arguments fail to work
for Evir

−y: the left-hand side of (11) is no longer zero because the term

�(yT vir
M ) ∈ KT×S(M)loc

in the integrand F = �(yT vir
M )/�(T vir

M )�((T vir
M )∨) may now have poles at |s| ≈ 1. Put differently,

χ(M,F) is now an element of KT×S(pt)loc, not KT×S(pt), and there is no good way to control its
poles in s. So virtual elliptic genus is not amenable to our wall-crossing setup.

2.9

Remark. Properness of M is not crucial for (11) to hold. We used properness to conclude that
res χ(M,F) = 0, but it can be replaced by the weaker property that

• for any (T × S)-weight w with non-trivial S-component, the fixed locus MTw is proper, where Tw ⊂
ker(w) is the maximal torus.

A priori, χ(M,F) ∈ KT×S(pt)loc, but by applying the pole cancellation Lemma 2.10 below, it has no
poles at w = 1 for any w with non-trivial S-component. In other words,

χ(M,F) ∈ KT(pt)loc ⊗Z KS(pt).

This is enough to imply res χ(M,F) = 0.

2.10

Lemma (Pole cancellation). Let M be a scheme acted on by a torus T. Let w be a T-weight and
Tw ⊂ ker(w) be the maximal torus. If the Tw-fixed locus of M is proper, then

χ(M,F)
∣∣
w=1 ∈ KTw (pt)loc

is well defined. In particular, χ(M,F) has no pole at w = 1.

Proof. This is a geometric observation from [5, Proposition 3.2], see also [32, Lemma 5.5]. Properness of
MTw means that Tw-equivariant localization can be used to compute the right-hand side of

χ(M,F)
∣∣
w=1 = χ

(
M,F

∣∣
w=1

)
.

The result is an element of KTw (pt)loc. �
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Invariance of Elliptic Genus Under Wall Crossing | 9

2.11

Remark. The abstract study of residue maps, meaning module homomorphisms satisfying 2.3(i)
and 2.3(i), was first explicitly done in [34]. There, (10) appeared in the slightly different form

f �→ − (Ress=0 + Ress=∞)

(
f

ds
s

)
=

∑
s0∈C×

Ress=s0

(
f

ds
s

)
,

where Res denotes the usual notion of the residue of a differential 1-form and the equality is
the residue theorem. For f ∈ KT×S(pt)loc, which have poles in s only in the set S := {0, ∞} � {|s| ≈
1}, we may replace s0 ∈ C× with s0 ∈ {|s| ≈ 1}. Thus, for such f , Metzler’s residue map is
equivalent to ours. However, this is no longer true for elliptic functions f , which, in addition to
poles in S, have poles at every q-shift of S (as in Figure 1).

2.12

Using the wall-crossing formula (11), the main Theorem 1.6 is reduced to the following.

Proposition. Let E± be equivariant vector bundles of S-weight s±1, respectively, on a scheme with
trivial (T × S)-action. If

rankE+ ≡ rankE− mod N

for some integer N > 0, then, for any N-th root of unity ζN,(
res

�(y(E+ + E−))

�(E+ + E−)

) ∣∣∣∣
y=ζN

= 0. (12)

In §5.8, we will explain why this theorem continues to hold even if E± are virtual bundles.

2.13

Proof. of Proposition 2.12 To be very explicit, the left-hand side of (12), before specializing to y = ζN, is

∮
|s|≈1

∏
i

ϑ(ysa : i, τ)

ϑ(sa : i, τ)

∏
j

ϑ(ys−1bj, τ)

ϑ(s−1bj, τ)

ds
s

(13)

for variables {ai}i and {bj}j which will eventually be specialized to the T-equivariant Chern roots of E+
and E−, respectively. These Chern roots have the form w ⊗ L, where w is a T-weight and L is a non-
equivariant line bundle. In particular, L is unipotent:

(1 − L)⊗M = 0, ∀M � 0.

Analytically, we can therefore treat the variable corresponding to the Chern root the same way as the
T-weight w. �

2.14

Let I(s) denote the integrand in (13), so that I(s) is a meromorphic 1-form on S once the T-weights are
fixed to be some appropriately-generic elements in S. Using the basic q-difference equation ϑ(qs) =
−(qs)−1ϑ(s), one checks easily that

I(qs) = yrankE−−rankE+ I(s).

Hence, specializing y = ζN, both the integrand I(s) and the contour integral (13) descend to the elliptic
curve ES := S/qcochar S. But on ES, all poles of I(s) are enclosed by the contour, and therefore the contour
integral is zero by Cauchy’s residue theorem [18, Chapter VII] and properness of ES.

This concludes the proof of the main Theorem 1.6 as well.
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10 | H. Liu

3 Example: GIT Quotients
3.1

Let X be a smooth projective variety with the action of a reductive group G. Pick two ample linearizations
L± which lie in adjacent chambers in the space of ample linearizations of this G-action ([12,§3.3], [41,§2]).
Explicitly, let

Lt := L(1+t)/2
+ ⊗ L(1−t)/2

− , t ∈ [−1, 1],

and assume, without loss of generality, that L0 is the only point that is “on the wall”, that is, there are
strictly Lt-semistable points only for t = 0. Let Xsst(t) denote the Lt-semistable locus in X, and write

X �t G := Xsst(t)/G

for the GIT quotient, for short. We assume X �± G are smooth, and refer to this setup as variation of GIT
(VGIT).

If X is acted on by a torus T commuting with G, then clearly everything above can be made T-
equivariant.

3.2

Thaddeus [41,§3] constructs a master space for VGIT as follows: for the natural G-action on L+ ⊕L−, it
is the projective GIT quotient

M := P(L+ ⊕ L−) �O(1) G,

where the ample line bundle O(1) has the canonical linearization. The torus S := C×, with coordinate
s, acts on M by scaling the L+ factor with weight s. Let

ι± : X ∼= P(L±) ↪→ P(L+ ⊕ L−)

be the inclusion of the 0 and ∞ sections, and P◦(L+ ⊕ L−) := P(L+ ⊕ L−) \ (im(ι+) ∪ im(ι−)).

3.3

Throughout this section, we assume that L0 is a simple wall, meaning that for all x in

X0 := Xsst(0) \ (Xsst(+) ∪ Xsst(−)) :

(i) the stabilizer Gx of the G-action on x is C×;
(ii) Gx acts on the fiber (L+ ⊗ L∨−)|x by scaling with weight one.

Lemma. Under these assumptions, M is a T-equivariant master space in the sense of §1.5.

Proof sketch. We must check M is a smooth scheme. The semistable locus in P(L+ ⊕ L−) decomposes
as

ι+(Xsst(+)) ∪ ι−(Xsst(−)) ∪
⋃

t∈[−1,1]

π−1(Xsst(t)) ∩ P◦(L+ ⊕ L−) (14)

where π : P(L+ ⊕ L−) → X is the projection. Points in the image of the first two terms in M must be
smooth because X �± G are smooth. The assumptions imply the G-action on the third term is free. See
[41,§4] for details. �

Note that (L+ ⊗ L∨−)|x \ {0} is the fiber of the projection P◦(L+ ⊕ L−) → X.
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Invariance of Elliptic Genus Under Wall Crossing | 11

3.4

Remark (Toric varieties). When G is a torus, the assumptions of §3.3 automatically hold, possibly
after replacing L+ and L− by some positive powers. In particular, if X = Cr and G ⊂ (C×)r is a
sub-torus of the maximal torus of GL(r), then X �± G are toric varieties and VGIT reduces to
the combinatorics of lattice polyhedra.

Recall that, conversely, all toric varieties without torus factor have the form Cr �θ G, where G ⊂
(C×)r is an algebraic subgroup and θ is a G-weight.

3.5

In the decomposition (14), clearly the first two terms ι±(Xsst(±)) are S-fixed and induce inclusions which
we also denote

ι± : X �± G ↪→ M,

whose normal bundles are L±. In the third term, a point becomes S-fixed in M if and only if it has
positive-dimensional stabilizer under the (G × S)-action. By hypothesis, such points must belong to
π−1(X0), so the remaining S-fixed locus is exactly

ι0 : (π−1(X0) ∩ P◦(L+ ⊕ L−)) �O(1) G ↪→ M

and the stabilizer Gx of points in X0 is identified with S. Thus, Nι0 is identified with NX0⊂X.

3.6

Theorem. Under the assumptions of §3.3, if NX0⊂X

∣∣
(X0)T = E+ ⊕E− only has pieces of S-weight s±1,

and

rankE+ ≡ rankE− mod N

for some integer N > 0, then E−ζN (X �+ G) = E−ζN (X �− G).

This is a restatement of the main Theorem 1.6 in the current setting, using the description of S-fixed
loci in §3.5. It remains to describe the S-weight pieces of NX0⊂X in some useful way, which Thaddeus
provides and we summarize as Theorem 3.7 below.

3.7

Theorem ([41, Proposition 4.6, Theorem 4.7]). Let X± := Xsst(0) \ Xsst(∓). Under the assumptions
of §3.3,

X± �± G → X0 �0 G

are locally trivial fibrations whose fibers are weighted projective spaces P(|w±
i |), where {w±

i }i ∈
Z are (the exponents of) the positive and negative S-weights, respectively, of NX0⊂X.

Proof sketch. This claim may be checked affine-locally. For example, the Bialynicki-Birula decompo-
sition theorem shows that the positive and negative S-weight parts of NX0⊂X are equal to NX0⊂X± ,
respectively. �

3.8

Example (Blow-ups). Let Y := X �− G and suppose that X �+ G = Blp Y is the blow-up of a point
p ∈ Y. (Conversely, a large class of blow-ups of points in GIT quotients can be realized as VGIT
[20].) Let N := dim Y − 1 and assume that the wall is simple. Then X± �± G → X0 �0 G are the
exceptional loci, which are PN and P0-fibrations respectively, so Theorem 3.6 says

E−y(Y) = E−y(Blp Y) if y = ζN. (15)
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12 | H. Liu

Note that if Y is toric and p is a torus-fixed point, then, using torus-equivariant localization as in
(2), the equality of elliptic genera is equivalent to the identity

N+1∏
i=1

ϑ(yxi)

ϑ(xi)
=

N+1∑
i=1

ϑ(yxi)

ϑ(xi)

∏
j �=i

ϑ(yxj/xi)

ϑ(xj/xi)
if y = ζN. (16)

Here, xi are weights of TpY. In the blow-up, p is replaced by N + 1 = dim Y different torus-fixed
points, corresponding to the terms in the sum on the right hand side.

3.9

Remark. In fact, some toric computation can strengthen the results in Example 3.8. In particular
we claim that (15) (as a claim about a class of varieties Y), and therefore (16), is an “if and only
if”. First, by explicit computation,

E−y(P
N+1) = χ

(
PN+1, ∧•

−y(T ∨
PN+1 )

)
+ · · · = 1 − yN+2

1 − y
+ · · · (17)

where · · · denotes terms involving q. Second, if π : A → B is a Pn-fibration, then

E−y(A) = χ

(
B,

�(yTB)

�(TB)�(T ∨
B )

⊗ π∗
�(yTπ )

�(Tπ )�(T ∨
π )

)
= E−y(P

n)E−y(B).

The first equality is the projection formula for π , and the second equality is because all relative
cohomology bundles Riπ∗(T j

π ) are canonically trivialized by powers of the hyperplane class.
Hence, for a torus-fixed point p ∈ PN+1, the P1-fibration π : Blp P

N+1 → PN implies

E−y(Blp P
N+1) = E−y(P

1)E−y(P
N) = 1 − y2

1 − y
1 − yN+1

1 − y
+ · · · .

Comparing with (17), the q-constant terms match if and only if y = ζN. So the hypothesis in (15)
is really necessary.

4 Example: Moduli of Sheaves
4.1

Let Y be a smooth projective variety acted on by a torus T, and A ⊂ DbC (Y) be an abelian subcategory
of its bounded derived category of coherent sheaves. (For the purposes of this section, with some care it
is also possible to consider an exact subcategory B ⊂ A which may not be abelian but is closed under
isomorphisms and direct sum; see, e.g., the setup of [22,§5.1].) We refer to A as a moduli of sheaves even
though the objects involved may in general be complexes of sheaves.

Given α ∈ H∗(Y), a typical wall-crossing problem in A involves a continuous family {σξ }ξ∈[−1,1] of
stability conditions such that (we use Joyce’s notion of stability condition: functions σ from non-zero
classes α into some totally-ordered set, such that if α = β + γ for α, β, γ �= 0, then either σ(β) > σ(α) >

σ(γ ) or σ(β) = σ(α) = σ(γ ) or σ(β) < σ(α) < σ(γ )):

(i) for ξ �= 0, there are no strictly σξ -semistable objects E ∈ A with ch(E) = α;
(ii) for any ξ , there exist algebraic moduli stacks (acted on by T)

M
sst
β (ξ) := {E ∈ A : E is σξ -semistable and ch(E) = β}

for all relevant β, which includes α and the classes appearing in (19).

The goal is to relate elliptic genus of M
sst
α (+) and M

sst
α (−), where ± means ±1. Continuity implies

that all {σξ }ξ∈(0,1] are equivalent, and similarly for {σξ }ξ∈[−1,0).

4.2

To consider enumerative invariants, one usually makes a properness assumption:
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Invariance of Elliptic Genus Under Wall Crossing | 13

(i) the moduli stacks M
sst
α (±) are proper algebraic spaces. (For this paper, the words “algebraic space”

and “scheme” are basically interchangeable. In practice M
sst
α (±) are often projective schemes.)

To be precise, all objects in A have at least aC×’s worth of scalar automorphisms, andM
sst
α (ξ) denotes

the rigidified moduli stacks where this C× has been removed [1, Appendix A]. So, objects in M
sst
α (±) have

no non-trivial automorphisms and M
sst
α (±) are automatically algebraic spaces.

Our main Theorem 1.6 requires the master space to be smooth; see Remark 2.8. To satisfy this, it is
typically enough to assume that:

(ii) for any ξ , in particular ξ = 0, the moduli stack M
sst
α (ξ) is smooth.

In particular, Msst
α (±) are smooth and proper, so their elliptic genera Ey(M

sst
α (±)) exist.

4.3

Remark. Conditions 4.1(i), 4.1(ii), and 4.2(i) are relatively weak for most wall-crossing problems
of interest. For instance, if for any ξ ,

Ext<0
Y (E, E) = 0, ∀ [E] ∈ M

sst
β (ξ),

then 4.1(ii) holds [31]. There also exists machinery [3] for verifying 4.2(i) in great generality, or,
more concretely, one can often use Langton’s strategy for semistable reduction [30].

On the other hand, condition 4.2(ii) is very strong — it is basically the requirement that for any ξ ,
including ξ = 0 where there exist strictly semistable objects,

Ext>1
Y (E, E) = 0, ∀ [E] ∈ M

sst
α (ξ). (18)

This is automatic if dim Y ≤ 1. If dim Y = 2, this is equivalent to the vanishing of Ext2
Y(E, E) =

HomY(E, E⊗KY)∨ which, for example, holds if KY is anti-ample by a standard degree argument
for semistable objects [21, Proposition 1.2.6], cf. [22, Definition 7.47]. If dim Y ≥ 3, this is
typically hopeless.

4.4

We begin with the case of a simple wall (cf. §3.3), namely:

(i) all strictly semistable [E] ∈ M
sst
α (0) split as E = E1 ⊕ E2 where E1, E2 are both σ0-stable.

In other words, the automorphism group of objects in M
sst
α (0) is at worst C×, given by scaling E1.

Then, the strategy behind the Thaddeus master space can be applied directly to obtain a master space;
this is done explicitly in [23,§4], or can also be recovered implicitly from the more general wall-crossing
machinery of Mochizuki [35,§1.3, §1.6.1] or of Joyce [22]. (Both [35] and [22] are written in a vastly more
general setting where the assumptions 4.1(i), 4.2(i) and 4.2(ii) may not hold. They must pass to auxiliary
moduli stacks, impose a quasi-smoothness assumption and work with virtual cycles, like in §5 and §6.
In our simpler setting, these complications may be ignored.)

In the notation of §1.5, the complicated locus Z0 in the master space is

Z0 =
⊔

α1+α2=α
σ0(α1)=σ0(α2)

{
[E1 ⊕ E2] ∈ M

sst
α (0) : [Ei] ∈ M

sst
αi

(0) stable
}

↪→ M
sst
α (0). (19)

4.5

Remark. If α is rank-2 and torsion-free, then all walls are simple because the rank can only
decompose as 2 = 1 + 1. For rank greater than two, typically non-simple walls exist.

4.6

Theorem (Simple wall). Assume 4.4(i). If, for all [E1 ⊕ E2] ∈ ZT
0 ,

dim ExtY(E1, E2) ≡ dim ExtY(E2, E1) mod N

for some integer N > 0, then E−ζN (Msst
α (+)) = E−ζN (Msst

α (−)).
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14 | H. Liu

Lemma 4.7 below gives some situations in which the dimension condition is satisfied.

Proof. The S-action scales E1 with weight s, so the normal bundle is given by

Nι0

∣∣∣
[E1⊕E2]

= −s−1 ExtY(E1, E2) − s ExtY(E2, E1). (20)

We conclude by a direct application of Theorem 1.6. �

4.7

Lemma. Let S be a smooth projective surface with canonical bundle KS, and take E, F ∈ A .

(i) If KS admits a square root, then dim ExtS(E, F) ≡ dim ExtS(F, E) mod 2.
(ii) If K⊗k

S = OS for some integer k, then dim ExtS(E, F) = dim ExtS(F, E).

Proof. By Serre duality, we are comparing dim ExtS(E, F) and dim ExtS(E, F ⊗ KS). Using bilinearity of
ExtS, assume that E, F ∈ C (S). Also, assume E is locally free; if not, take a locally free resolution and
consider each term of the resolution. So, without loss of generality, we are comparing dim χ(S, F) and
dim χ(S, F ⊗ KS). Hirzebruch–Riemann–Roch says

dim χ(S, F) = rank(F)χ(S) − 1
2

c1(F)K + ch2(F),

where K := c1(KS) is the canonical divisor. Then,

dim χ(S, F) − dim χ(S, F ⊗ KS) = 1 − rank(F)

2
K2 − c1(F)K.

For (i), K = 2D for some D, so this is divisible by 2. For (ii), K = 0 so this is zero. �

4.8

Remark. From Remark 4.3, if we only consider the case of Fano surfaces Y, then either Y = P1 ×P1

or Y is the blow-up of P2 at ≤ 8 points. In the latter case, the canonical divisor

KY = π∗KP2 +
∑

i

Ei

is either π∗KP2 = −3H or a primitive vector. Here Ei denote the exceptional divisors and H is
the hyperplane class. So the hypotheses of Lemma 4.7 are only satisfied for Fano surfaces Y if
Y = P1 ×P1, where KY = OP1 (−2)�OP1 (−2) admits a square root. Nonetheless, for more general
surfaces Y, the results of this section will be useful in §6.

4.9

Generally, walls in A are not simple, meaning that condition 4.4(i) does not hold. In [35] and [22], this
issue is solved by lifting the wall-crossing problem to the auxiliary abelian category

Ã Fr := {(E, V•) : E ∈ A and V• is a full flag in Fr(E)}

associated to a framing functor, which is an exact functor

Fr : A ′ → V (21)

on a full exact subcategory A ′ ⊂ A containing all objects of interest, such that

Hom(E, E) → Hom(Fr(E), Fr(E))
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Invariance of Elliptic Genus Under Wall Crossing | 15

is injective for all E ∈ A ′. (The injectivity condition is explicitly stated by Joyce [22, Assumption 5.1(g)(iii)]
but not mentioned by Mochizuki, who only uses Fr(E) := H0(E ⊗ OY(m)).) For example, if A ⊂ C (Y), a
common choice is Fr(E) := H0(E ⊗ OY(m)) for m � 0. See §4.11 for our notion of a full flag.

The additional data of the flag “resolves” the non-simple wall in A into multiple simple walls in Ã Fr.
Each such simple wall can be crossed like in §4.4; the so-called enhanced master space, for the auxiliary
stacks, sits inside a flag variety fibration over the original master space and is therefore still smooth.
The complicated locus ZT

0 in the master space now involves splittings

(E, V•) = (E1 ⊕ E2, V•
1 ⊕ V•

2), σ0(E1) = σ0(E2) (22)

where V•
i is a full flag in Fr(Ei) and each (Ei, V•

i ) is σ0-stable.

4.10

Theorem. If, for all splittings (22) appearing in all auxiliary wall-crossings,

dim ExtQ(V•
1, V•

2) − dim ExtY(E1, E2) ≡ dim ExtQ(V•
2, V•

1) − dim ExtY(E2, E1) mod N

for some integer N > 0, then E−ζN (Msst
α (+)) = E−ζN (Msst

α (−)).

Note that this is not as widely applicable as Theorem 4.6, because we get very little control over the
ExtQ terms; see Lemma 4.11 below.

Proof. The normal bundle is now, cf. (20),

Nι0

∣∣∣
[(E1⊕E2,V•

1⊕V•
2)]

= s−1 (
ExtQ(V•

1, V•
2) − ExtY(E1, E2)

)
+ s

(
ExtQ(V•

2, V•
1) − ExtY(E2, E1)

)
.

(23)

Here, viewing flags as representations of a type A quiver Q, the quiver part of the deformation theory
is given by the standard formula

ExtQ(V•
1, V•

2) :=
∑

i

(
Hom(Vi

1, Vi+1
2 ) − Hom(Vi

1, Vi
2)

)
. (24)

We conclude by a direct application of Theorem 1.6. �

4.11

Let W be a vector space. For us, V• being a full f lag of length K in W means that

dim Vk ≤ dim Vk+1 ≤ dim Vk + 1

for 0 ≤ k ≤ K, with the convention that V0 = 0 and VK+1 = W. We write dim V• := dim W.

Lemma. Let Split(V•; d1, d2) be the set of splittings V• = V•
1 ⊕ V•

2 of a full flag into two smaller full
flags with dim V•

i = di. Then

{
dim ExtQ(V•

1, V•
2) − dim ExtQ(V•

2, V•
1)

} = {−d1d2, −d1d2 + 2, . . . , d1d2 − 2, d1d2},

where the left-hand side ranges over all splittings in Split(V•; d1, d2).

Proof. Note that if Vk
i = Vk+1

i for i = 1, 2 and some k, then by (24) we can remove the k-th step from
both flags without affecting dim ExtQ(V•

1, V•
2) or dim ExtQ(V•

2, V•
1). So, without loss of generality, V• has
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16 | H. Liu

the shortest possible length d := dim V•. Then it is convenient to use the bijection

Split(V•; d1, d2)
∼−→ {I ⊂ {1, 2, . . . , d} : |I| = d1}

(V•
1, V•

2) �→ {i : Vi
1 �= Vi+1

1 }.

Let vk
i := dim Vk

i , and write the quantity of interest as ext1
Q(I, +) − ext1

Q(I, −) where

ext1
Q(I, +) :=

∑
i

vi
1vi+1

2 , ext1
Q(I, −) :=

∑
i

vi
2vi+1

1 .

It is straightforward that, for Imax := {1, 2, . . . , d1} and Imin = {d1 + 1, d1 + 2, . . . , d},

ext1
Q(Imax, +) = d1d2, ext1

Q(Imax, −) = 0

ext1
Q(Imin, +) = 0, ext1

Q(Imin, −) = d1d2.

These result in the maximum and minimum values ±d1d2. For the intermediate values, suppose I and I′

differ by replacing an element k by k + 1. This amounts to (v′
1)

k+1 = vk+1
1 − 1, and consequently (v′

2)
k+1 =

vk+1
2 + 1, while all other dimensions remain unchanged, so

ext1
Q(I′, +) = ext1

Q(I, +) + vk
1 − vk+2

2 , ext1
Q(I′, −) = ext1

Q(I, −) + vk+2
1 − vk

2.

Since |I| = |I′| = d1, it must be that vk+2
i − vk

i = 1 for i = 1, 2. �

4.12

Corollary. If Y is a smooth projective surface whose canonical bundle admits a square root, then
the hypothesis of Theorem 4.10 is satisfied for N = 2.

Lemma 4.11 shows that there is no way to generalize this to N > 2, in contrast to, for example,
Theorem 4.6 in the setting of Lemma 4.7(ii).

Proof. By Lemma 4.11, it suffices to ensure that dim(V•
1) dim(V•

2) = dim Fr(E1) dim Fr(E2) is always even.
This can be done by replacing the framing functor Fr in the wall-crossing machinery with Fr⊕2. �

4.13

Remark. We expect that the N = 2 restriction of Corollary 4.12 is an artefact of the choice
of auxiliary category Ã Fr, rather than an intrinsic limitation. Namely, for any given N ≥ 2,
one may speculate that there exist auxiliary categories ÃN which work equally well for wall-
crossing, for which the contribution from the “auxiliary” part of the obstruction theory, that is,
the dimensions in Lemma 4.11, are all 0 mod N instead of merely 0 mod 2.

For example, the Calabi–Yau case of Theorem 1.12 should hold without the assumption that the
wall is simple. Evidence for this includes the fact that if Y is a K3 or abelian surface, α is
primitive (and not too small), and {σξ }ξ is a general family of Gieseker stability conditions, then
M

sst
α (+) is deformation-equivalent to M

sst
α (−) [46, Theorems 0.1 and 8.1] and therefore their

elliptic genera are equal.

5 The Virtual Chiral Version
5.1

Let X be a proper scheme, and, instead of assuming X is smooth, assume the weaker condition:

(i) X has a T̃-equivariant perfect obstruction theory [6], obtained from a perfect complex E ∈ DbC T(X)

which satisfies

E = y ⊗ E∨[1] (25)

for some non-trivial T̃-weight y; we say E is equivariantly symmetric.
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Invariance of Elliptic Genus Under Wall Crossing | 17

(One typically assumes that E admits a two-term resolution by vector bundles. However, recent
technical advances [4,§5] suggest that this condition is unnecessary, so we do not worry about it.) Then
X has a virtual structure sheaf Ovir

X and virtual tangent bundle T vir
X [11, 26], both elements of KT̃(X). Let

Kvir := det(T vir
X )∨ be the virtual canonical.

The notation T̃, instead of T, is a reminder that y is now an equivariant weight as opposed to a
formal variable. For instance, if X is smooth with T-action, then let C× scale fibers of the cotangent
bundle Y := T∗X with weight y and view X as its zero section. Then X satisfies 5.1(i) with T̃ := T × C×

and E = (T ∨
Y − yTY)|X in K-theory.

5.2

Whenever a square root K1/2
vir exists, following [36,§3.1] let

Ôvir
X := Ovir

X ⊗ K1/2
vir ∈ KT̃(X)

After possibly passing to a double cover of T̃ so that y1/2 exists, the virtual chiral elliptic genus of X is

Evir/2
−y (X) := χ

(
X,

Ôvir
X

�(T vir
X )�((T vir

X )∨)

)
∈ KT̃(pt)[[q]];

cf. [14]. The expression Evir/2
−y0

(X), for y0 ∈ C×, means the specialization of Evir/2
−y (X) to y = y0. Since X is

proper, the only poles in y are at 0 and ∞, so this specialization is always well defined.
The deformation invariance of virtual cycles and the class T vir

X immediately implies the deformation
invariance of Evir/2

−y (X); see, for example, [13,§3.5].

5.3

Remark. In [14,§8.1], virtual chiral elliptic genus was defined without requiring the equivariant
symmetry (25), and without inserting K1/2

vir . In that generality, it has no hope of being a truly
elliptic class (see §1.3) and will not have any of the nice wall-crossing properties considered in
this paper.

5.4

Remark 5.1. The perfect obstruction theory in condition 5.1(i) is really only used to construct Ovir
X

and T vir
X . There are many weaker, more local notions that also suffice, with obvious analogues

of the equivariant symmetry (25):

(i) weak perfect obstruction theories (equivalent to complex Kuranishi structures) [37];
(ii) almost perfect obstruction theories [24];

(iii) semi-perfect obstruction theories [10].

These are ordered such that (i) �⇒ (ii) �⇒ (iii), and it is known that virtual localization holds at
least for (ii) [25]. The content of this section therefore holds at the level of (ii).

5.5

For wall-crossing with virtual chiral elliptic genus, we assume the T̃-equivariant master space M is a
proper scheme (more generally M can be a Deligne–Mumford stack satisfying the weaker properness
condition of Remark 2.9) satisfying 5.1(i) for an action of T̃ × S where S = C×, and the S-fixed locus is a
disjoint union of the following T̃-invariant pieces (cf. §1.5):

(i) ι± : Z± ↪→ M with N vir
ι± = L± − y−1L∨ for line bundles L± of S-weights s±1;

(ii) other proper component(s) ι0 : Z0 ↪→ M with

N vir
ι0

= N vir/2
0 − y−1(N vir/2

0 )∨

for some virtual bundle N vir/2
0 .

Here N vir
f denotes the virtual normal bundle of the closed embedding f , namely the S-moving part of

the restriction f ∗T vir
M .
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18 | H. Liu

To emphasize, unlike in the non-virtual setting, M does not need to be actually smooth (cf.
Remark 2.8).

5.6

Theorem. (Virtual analogue of Theorem 1.6) Suppose N vir/2
0

∣∣
ZT

0
= E+ ⊕ E− only has pieces of S-

weight s±1, and

rankE+ ≡ rankE− mod N (26)

for some integer N > 0. Then, for any N-th root of unity ζN �= 1,

Evir/2
−ζN

(Z+) = Evir/2
−ζN

(Z−).

Here E± may be virtual vector bundles, i.e. of the form E1± − E2± for genuine vector bundles E1± and E2±.

5.7

Proof of Theorem 5.6. Since all steps are analogous to the proof of Theorem 1.6, we only indicate what
needs to be modified.

All wall-crossing considerations from §2 continue to hold, with the following minor adjustments:

• in §2.2, the virtual localization formula [16] is used to obtain (9);
• in §2.7, the integrand is F = Ôvir

M /�(T vir
M )�((T vir

M )∨);
• in §2.7, the resulting wall-crossing formula (11) is

0 = y
1
2 ϑ(y)

φ(1)2

(
Evir/2

−y (Z−) − Evir/2
−y (Z+)

)
+ χ

(
ZT

0 , · · · ⊗ res
(detN vir

ι0
)− 1

2

�(N vir
ι0

)

)
.

To compare with (11) more closely, note that

(detN vir
ι0

)− 1
2

�(N vir
ι0

)
= y

1
2 rankN vir/2

0
�(yN vir/2

0 )

�(N vir/2
0 )

.

�

5.8

It remains to explain why Theorem 2.12 continues to hold for when E± are allowed to be virtual vector
bundles. If {ai}i and {b−1

j } are the Chern roots of E1+ and E1−, respectively, like in §2.13, and {a′
k}k and {(b′

l)
−1}l

are the Chern roots of E2+ and E2−, respectively, then the contour integral of interest is

∮
|s|≈1

∏
i

ϑ(ysa : i, τ)

ϑ(sa : i, τ)

∏
j

ϑ(ys−1b−1
j , τ)

ϑ(s−1b−1
j , τ)

∏
k

ϑ(sa : k′, τ)

ϑ(ysa : k′, τ)

∏
l

ϑ(s−1(b′
l)

−1, τ)

ϑ(ys−1(b′
l)

−1, τ)

ds
s

.

Upon the change of variables a′′
k := ya′

k and b′′
l := yb′

l, the result is exactly the original contour integral
(13) using the variables {ai}i ∪ {b′′

l }l and {(a′′
k)

−1}k ∪ {b−1
j }j. Analytically, upon specializing all variables to

complex numbers, note that |a′
k| = |a′′

k| and |b′
l| = |b′′

l | since y is eventually specialized to a root of unity,
so, the new variables {a′′

k}k and {b′′
l }l may be treated the same way as the old variables {ai}i and {bj}j.

Hence, the remainder of the proof of Theorem 2.12 can proceed in exactly the same way.
This concludes the proof of Theorem 5.6.

6 Example: Donaldson–Thomas Theory
6.1

Let Y be a quasi-projective Calabi–Yau 3-fold acted on by a torus T̃ such that

KY = y ⊗ OY
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Invariance of Elliptic Genus Under Wall Crossing | 19

for a T̃-weight y, and the T̃-fixed locus in Y is proper. For instance, Y could be toric and T̃ = (C×)3 the
standard torus, or, more generally, Y can be a local curve or surface.

We work in the setup of §4.1, denoting the stability condition by σ , but using the moduli substack

N
sst
α (σ ) := {det E = L} ⊂ M

sst
α (σ ) (27)

of fixed-determinant objects. Here the line bundle L must be chosen such that c1(L) agrees with the
H2(Y) component of α ∈ H∗(Y). Such moduli stacks N are part of the Donaldson–Thomas (DT) theory of
Y, whose characterizing property is the existence of an equivariantly-symmetric perfect obstruction
theory given at the point [E] by

E∨[−1]
∣∣∣
[E]

= ExtY(E, E)0, (28)

where the subscript 0 denotes trace-less part [42, Theorem 3.30]. We will assume that rank α > 0 until
§6.10.

6.2

Let σ be a stability condition with no strictly semistable objects in class α. The moduli stack N
sst
α (σ ) is an

algebraic space (see §4.2), but is generally not proper since Y is not proper. So, throughout this section,
we assume the following analogue of 4.2(i):

(i) the Ty-fixed locus in N
sst
α (σ ) is proper, where Ty ⊂ ker(y) is the maximal torus.

Since Ty ⊂ T̃, this implies:

(ii) the T̃-fixed locus in N
sst
α (σ ) is proper.

But 6.2(i) is a stronger assumption, and we really need its full strength to study wall-crossing for
elliptic DT invariants (Definition 6.3).

In practice, properness of the Ty-fixed locus in Y is usually enough to imply 6.2(i). This is a much
more manageable condition. For instance, if Y is toric, it is equivalent to the condition that non-compact
edges in its toric 1-skeleton cannot have T̃-weight yk for any k ∈ Z (but weights ykw for non-trivial w are
allowed).

6.3

Definition. Let α ∈ H∗(Y) and σ be a stability condition with no strictly semistable objects in A of
class α. Assume 6.2(ii). Then the elliptic DT invariant is

DTEll /2
−y (α; σ) := Evir/2

−y (Nsst
α (σ )) ∈ KT̃(pt)loc[[q]], (29)

where the virtual chiral elliptic genus is defined by T̃-equivariant localization, that is, as the
right-hand side of (3). Consequently the result lives in the localized K-group, and in particular
it may have non-trivial poles in {|y| = 1}. But if we further assume 6.2(i), then no such poles in
y exist by Lemma 2.10, and y may be specialized to any root of unity.

6.4

Remark. In (27), Nsst
α (σ ) has obstruction theory given by the traceless ExtY(E, E)0 while M

sst
α (σ )

has obstruction theory given by ExtY(E, E). If H1(OY) �= 0, the latter contains trivial summands
H1(OY) and its dual H2(OY) = y−1H1(OY)∨, and therefore all enumerative invariants of Msst

α (σ )

vanish. This is why we generally work with N
sst
α (σ ).

However, the discrepancy between Ext and traceless Ext does not affect the “off-diagonal” terms
ExtY(E1, E2) and ExtY(E2, E1) appearing in arguments below. This is true of many reductions one
may want to perform on the obstruction theory, for example, [40,§1.6] in Vafa–Witten theory.

6.5

Theorem. Assume 6.2(i) and use the notation of §4.
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20 | H. Liu

(i) (Simple wall) Assume 4.4(i). If, for all [E1 ⊕ E2] ∈ ZT̃
0 ,

dim ExtY(E1, E2) ≡ 0 mod N

for some integer N > 0, then DTEll /2
−ζN

(α; +) = DTEll /2
−ζN

(α; −).
(2) (General wall) If, for all splittings (22) appearing in all auxiliary wall-crossings,

dim ExtY(E1, E2) ≡ dim ExtQ(V•
1, V•

2) − dim ExtQ(V•
2, V•

1) mod N

for some integer N > 0, then DTEll /2
−ζN

(α; +) = DTEll /2
−ζN

(α; −).

This is the direct analogue of Theorems 4.6 and 4.10, but without requiring the strong assumption
4.2(ii) on the smoothness of the moduli spaces.

6.6

Remark. Suppose that the numerical conditions in Theorem 6.5 hold for all N > 0, that is, they
are equalities instead of congruences mod N. Then one obtains equalities

DTEll /2
−y (α; +) = DTEll /2

−y (α; −)

under only the weaker assumption 6.2(ii) which ensures both sides are well-defined. This is
because both sides only have finitely many poles in {|y| = 1}, so their y = ζN specializations are
well defined for all N � 0. Coefficients of the q-series on both sides are rational functions of y,
which are therefore equal if and only if they are equal at y = ζN for all N � 0.

6.7

Proof of Theorem 6.5. In [22,§10.6], Joyce constructs a master space M, roughly the moduli space of
triples (E, V, ρ) where [E] ∈ N

sst
α (0) and (V, ρ) is a representation of a certain quiver. There is a forgetful

morphism

π : M → N
sst
α (0)

which is smooth as a morphism of algebraic stacks. Then symmetrized pullback ([32,§2], [28,§2]) along
π of the equivariantly-symmetric obstruction theory on N

sst
α (0) (not necessarily perfect!) results in a

equivariantly-symmetric almost perfect obstruction theory on M. By Remark 5.1, this suffices for wall-
crossing.

Although the almost perfect obstruction theory on M can only be compared étale-locally to the
(pullback along π of the) original obstruction theory on N

sst
α (0), there is a well-defined global virtual

tangent bundle on M, satisfying

T vir
M = π∗T vir

Nsst
α (0)

+ (Tπ − y−1T ∨
π ) ∈ KT̃(M), (30)

where Tπ is the relative tangent complex of π . �

6.8

We will apply Theorem 5.6. The analogue of (20),

N vir
ι0

∣∣∣
[E1⊕E2]

= −s−1 ExtY(E1, E2) − s ExtY(E2, E1)

continues to hold. By Serre duality, in the setting of a simple wall,

N vir/2
0

∣∣∣
[E1⊕E2]

= −s−1 ExtY(E1, E2).
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Invariance of Elliptic Genus Under Wall Crossing | 21

In the setting of a non-simple wall where the wall-crossing problem has been lifted to the auxiliary
abelian category Ã Fr, like in §4.9,

N vir/2
0

∣∣∣
[E1⊕E2,V•

1⊕V•
2)]

= −s−1 ExtY(E1, E2) + (
s−1 ExtQ(V•

1, V•
2) + s ExtQ(V•

2, V•
1)

)
using (30). This explains the numerical conditions in Theorem 6.5.

6.9

Finally, care is required when applying Theorem 5.6, because the master space M is not proper. We will
use the argument in Remark 2.9 to work around this issue, by checking that all T̃w-fixed loci of M are
proper, for maximal tori

T̃w ⊂ ker(w) ⊂ T̃ × S

where w is a (T̃ × S)-weight with non-trivial S-component. This is the same argument as in [32, Lemma
5.7], which we summarize for the sake of completeness. Take any T̃-equivariant compactification Y of
Y. Let N denote the moduli stack N but for objects on Y, and similarly let M denote the master space
for N. It is known that M is proper. Consider the inclusions

MT̃w ⊂ M
T̃w ⊂ M.

The second inclusion is clearly closed. The first inclusion is also closed: on triples (E, V, ρ) parameterized
by M, only T̃ ⊂ T̃w acts on E, and so

MT̃w = {(E, V, ρ) : supp E ⊂ YT̃ ⊂ Y
T̃},

where supp means set-theoretic support. In other words, the T̃w-fixed locus in M is a collection of certain
T̃w-fixed components of M. Closed subsets of proper spaces are proper.

Applying Theorem 5.6 concludes the proof.

6.10

We give one explicit situation, Vafa–Witten (VW) theory [40], in which the divisibility of ExtY(E1, E2),
required by Theorem 6.5, can be controlled. VW theory is a form of DT theory when Y = tot(KS) is
an equivariant local surface, meaning:

• S is a smooth projective surface acted on by a torus T;
• T̃ := T × C× where C× acts by scaling the fibers of π : Y → S with weight y−1.

Let M be the moduli stack of compactly-supported coherent sheaves on Y. By the spectral construction
[40,§2], a point [E] ∈ M is equivalent to a pair (E , φ) where

E = π∗E ∈ C (S), φ ∈ HomS(E ,E ⊗ KS).

Lemma ([40, Proposition 2.14]) . For E1,E2 ∈ M,

ExtY(E1,E2) = ExtS(E1,E2) − y−1 ExtS(E2,E1)
∨.

6.11

The VW moduli stack comes in two flavors. Fix a class α = (r, c1, c2) ∈ Z>0 ⊕ H2(S) ⊕ H4(S).

• (U) If H1(OS) = H2(OS) = 0, then define the moduli substack

Nα := {ch(E) = α} ⊂ M.
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22 | H. Liu

• (SU) Otherwise, pick L ∈ Pic(S) with c1(L) = c1 and define the moduli substack

Nα := {detE = L, tr φ = 0, ch(E) = α} ⊂ M.

Then Nα has equivariantly-symmetric perfect obstruction theory given by ExtY(E ,E) or some
reduction of it [40, Corollary 2.26, Theorem 5.46]. Assuming 6.2(ii), Definition 6.3 produces elliptic VW
invariants

VWEll /2
−y (α; σ) ∈ KT̃(pt)loc[[q]].

Typically, σ is Gieseker stability with respect to a choice of ample line bundle, but more general σ are
permitted as long as the properness assumption 6.2(i) holds.

6.12

Corollary. If S is a smooth projective surface whose canonical bundle admits a square root, then
the hypothesis of Theorem 6.5 is satisfied for N = 2.

This is the direct analogue of Corollary 4.12.

Proof. By Lemma 6.10 and Lemma 4.7(i), dim ExtY(E1,E2) ≡ 0 mod 2. By the same argument as in the
proof of Corollary 4.12, the framing functor may be doubled so that dim ExtQ(V•

1, V•
2)−dim ExtQ(V•

2, V•
1) ≡

0 mod 2 as well. �

6.13

Finally, in the VW setting, we can simplify the properness assumption 6.2(i).

Lemma. Suppose that KS
∣∣
ST has non-trivial T-weight on each component. Then assumption 6.2(i)

is satisfied.

Proof. Since Ty = T, by hypothesis the Ty-fixed locus of Y lies within S and is therefore proper. Then
the Ty-fixed locus of Nsst

α (σ ) is also proper by the same argument as in §6.9: it is a closed subspace in
the analogous moduli space for any choice of compactification Y, which is proper for standard reasons
[21]. �
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A Appendix: A Geometric Formula for the Wall-Crossing Term

A.1
In this appendix, we study the general contour integral

Cn(a, τ ; y) :=
∮

|s|≈1
sn

r+∏
i=1

ϑ(ysa : i; τ)

ϑ(sa : i; τ)

r−∏
j=1

ϑ(y−1sb : j; τ)

ϑ(sb : j; τ)

ds
s

,

where the a := (a1, . . . , ar+ , b1, . . . , br− ) are viewed as fixed, generic elements of S with |ai|, |bj| � 1. Using
that ϑ(z−1; τ) = −zϑ(z; τ), clearly C0(a, τ ; y) is the contour integral (13) up to an overall factor yr− .
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The main results are a geometric formula (Proposition A.2) for Cn(a, τ ; y), and some mild control over
where Cn(a, τ ; y) has poles, as a meromorphic function of a and τ . Neither result is used in any other
part of the paper and may be safely skipped on a first reading. While the main Theorem 1.6 of this
paper concerns the vanishing of C0(a, τ ; ζN), we hope the results in this appendix will help control the
wall-crossing term in the future study of more general, non-trivial wall-crossings.

We assume throughout this section that r+ + r− > 0.

A.2
Proposition. Let A := (C×)r++r− with coordinates identified with a. Then

Cn(a, τ ; y) = χ

(
P(V),O(n) ⊗ �(yO(1) ⊗ V+ + y−1O(1) ⊗ V−)

�(O(1) ⊗ V)�(O(−1) ⊗ V∨)

)
∈ KA(pt)[y±1][[q]] (A.1)

is an A-equivariant Euler characteristic, where V := V+ ⊕ V− := Cr+ ⊕ Cr− and A ⊂ GL(V) acts
as the maximal torus.

Note that P(V) is proper, and each coefficient of y and q is an element of KA(P(V)), so indeed the result
is valued in the Laurent polynomial ring KA(pt) instead of its localization KA(pt)loc.

A.3
Remark. While this paper mostly focuses on the case where C0(a, τ ; y) vanishes for some spe-

cialization of y, it is possible that this explicit formula may be useful for the wall-crossing
in §2. However, it is clear from this formula that C0(a, τ ; y) will depend non-trivially on the
coordinates ai ∈ A. In wall-crossing, these correspond to the Chern roots of Nι0 , and typically
one has very little control over these Chern roots.

A.4
Proof of Proposition A.2. This is a standard application of the Jeffrey–Kirwan residue formula for
integrals over GIT quotients; see [2, Appendix A], or the more general [39, Proposition 2.4] (written in
cohomology, not K-theory).

To summarize the basic idea in our setting, let F be a coherent sheaf on P(V) = (V \ 0)/S which is
induced by restriction from an S-equivariant coherent sheaf F̃ on V. Concretely, F is a coefficient of y
and q in the integrand of (A.1). Then,

χ((V \ 0)/S,F(m)) = χ(V \ 0, F̃ ⊗ sm)S ∼= χ(V, F̃ ⊗ sm)S.

Analytically, χ(V, F̃ ⊗ sm) converges to a rational function on A × S for |ai| � 1, with no poles on the
maximal compact subgroup {|s| = 1} ⊂ S, so

χ(V, F̃ ⊗ sm)S =
∫

|s|=1
χ(V, F̃ ⊗ sm)

ds
s

=
∫

|s|=1

F̃
∣∣
0 ⊗ sm∏

i(1 − a−1
i s−1)

∏
j(1 − b−1

j s−1)

ds
s

where the second equality is (A × S)-equivariant localization on V. Since F̃ |0 has bounded degree in s,
for m � 0 there is no pole at s = 0 and therefore {|s| = 1} and {|s| ≈ 1} enclose the same poles. We obtain
the desired formula upon specializing m = 0. This is valid because

χ((V \ 0)/S,F(m)) ∈ Q[m, x±m
1 , x±m

2 , . . .],

where the xi may be roots of unity or (A × S)-weights, and for elements of such a ring, if an equality
holds for all m � 0, then in fact it holds for all m ∈ Z. �
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A.5
Remark. By the same reasoning as in the proof of Proposition A.2, it turns out that the vanishing

of C0(a, τ ; ζN) (Proposition 2.12) is equivalent to the invariance of elliptic genus under certain
toric flips. Namely, the contour integral in (13) may also be expressed as

E−y(tot(OP(V+)(−1) ⊗ V∨
−)) − E−y(tot(OP(V−)(−1) ⊗ V∨

+)), (A.2)

where tot denotes total space. These non-compact toric geometries Y± := tot(OP(V±)(−1) ⊗ V∨∓)

are related by the birational transformation

(A.3)

where f± contracts the zero section P(V±). If π± : Y± → P(V±) denotes the projection, then the
canonical bundles are

KY± = π∗
±

(
KP(V±) ⊗ det(OP(V±)(1) ⊗ V∓)

)
= π∗

±OP(V±)(dim V± − dim V∓) ⊗ det(V±) det(V∓),

so (A.3) is a flip in general and a flop if and only if dim V+ = dim V−. For instance, the classical
Atiyah flop is modeled by the case dim V+ = dim V− = 2.

In particular, if dim V− = 0, then the vanishing of (A.2) becomes E−ζN (PN−1) = 0.

A.6
We turn to studying poles of Cn(a, τ ; y) as a meromorphic function on A × H, where H � τ is the upper
half plane. Recall that ϑ(z; τ) is a holomorphic function of τ . By construction, poles of Cn(a, τ ; y) can only
occur at

Poles(qm) :=
⋃
μ

{qmaμ = 1} ⊂ A × H

for various m ∈ Z, where μ ranges over finitely many non-trivial A-characters. (More precisely, by A-
equivariant localization applied to (A.1), aμ ranges over all A-weights of the normal bundle of P(V)A ⊂
P(V).) Proposition A.2 allows us to be more precise about where poles actually occur.

A.7
Proposition A.1. Cn(a, τ ; y) is holomorphic on Poles(q0).

Proof. This is the same argument as in [9, Proposition 5.1] or [33, Lemma 1.3], so we give only a
sketch. The idea is to obtain more mileage from Proposition A.2 by computing (A.1) via A-equivariant
localization on P(V). The resulting expression, in the domain

⋂
μ

{|q| < |aμ| < |q|−1}, 0 < |q| < 1, (A.4)

has an expansion of the form
∑

j≥0 cj(a)qj where the cj(a) are rational functions of a which only have poles
on Poles(A; q0), and the possible locations of such poles are independent of j. On the other hand, from
properness, we also know that the cj(a) are Laurent polynomials of bounded degree (polynomial in j),
and in particular have no poles on Poles(q0). This is enough to conclude the desired holomorphicity
since (A.4) contains Poles(q0). �
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