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Abstract

This thesis is devoted to studies of quantum field theories with dynamical fields

in the vector, matrix or tensor representations of O(N) symmetry groups. These

models provide interesting classes of exactly solvable models that can be examined

in detail and give insights into the properties of other, more complicated quantum

field theories.

The introduction to the thesis reviews the general ideas about why such systems

are interesting and exactly solvable. The different classes of Feynman diagrams

which dominate the large N limits are exhibited. The introduction is partially

based on work [1] with Igor R. Klebanov and Preethi Pallegar.

Chapter 2 is based on work [2] with Igor R. Klebanov, Preethi Pallegar, Gabriel

Gaitan and Kiryl Pakrouski. It is dedicated to the study of quantum Majorana

fermionic models. The refined energy bound is derived for these models. We study

these models numerically, analytically and qualitavely. All of these results hint that

the vector quantum mechanics undergoes second order phase transition and has a

limiting temperature in the large N limit.

Chapter 3 is based on papers [3, 4] with Igor R. Klebanov, Simone Giombi,

Grigory Tarnopolsky and Shiroman Prakash. It is dedicated to the search of a stable

bosonic tensor and SYK-like theories in higher dimensions. We propose two models:

prismatic and supersymmetric that have a positive potential and therefore these

theories should be stable unlike the bosonic tensor models with quartic tetrahedral

interactions.

Chapter 4 is based on papers [5, 6] with Igor R. Klebanov and Christian Jepsen.

It studies the properties of RG flow and bifurcations that could arise in this case.

We consider a theory of symmetric traceless matrices in d = 3 − ε dimensions

and analytically continue the rank of these matrices to fractional values. At some

values of N we managed to find a fixed point whose stability matrix has a pair of

purely imaginary eigenvalues. From the theory of ordinary differential equations

it is known that it corresponds to Hopf bifurcation and that at some values of

N a stable limit cycle exists, that we also find numerically. Such an approach is
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extended to the case of O(N)×O(M) group, where it is shown that a homoclinic

RG flow exists, which starts and terminates at the same fixed point.
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1 Introduction

In all branches of theoretical and experimental physics, people deal only with approx-

imations to the real world. One of the main reasons for this is because we do not have

full knowledge about the fundamental laws of physics. Thus, classical mechanics is an

approximation to the quantum mechanics, and maybe quantum mechanics is an approx-

imation to some other more fundamental theory. In some limits this fundamental theory

reduces to quantum and classical mechanics. For instance, we use classical mechanics to

describe the phenomena that occur at scales of everyday life, while quantum mechanics

could be used to describe the physics of the hydrogen atom. Other approximations hap-

pen because we do not posses the complete information about the system in question.

In a condensed matter experiment we do not have the detailed knowledge about micro-

scopoc structure of a crystal — we do not know the exact distance between the 1000th

and 1001st atom, what isotope the 2021st atom in a lattice is and etc. However, some of

this information is not actually necessary for our purposes. Under the assumption that

these minute details do not have a drastic effect on the larger-scale phenomena, we can

neglect such exact knowledge.

One can think that we have listed all possible approximations that could arise in a

physical problem and as soon as we remove them we could describe and solve any natural

phenomenon. But there is another obstacle. Namely, the inability of humans to solve

some problems. As Alexander Markovich Polyakov noted, ”dogs are very smart, but they

still can not solve simple linear equations”. Maybe there are some limits for human mind

[7]. Hence, if we pose a precise mathematical problem or a physical model with a given

framework of fundamental laws perhaps we will still be unable to solve the problem. For

example, we may not prove the Goldbach’s Conjecture [8] or solve three body problem

in classical gravity [9] .

The only problems that human mind could comprehend entirely are linear problems

and a few non-linear models. And if we constrained ourselves only to these problems,

which we can solve exactly, we would not be able to describe the natrual world around

us. However, the real physics sometimes can be modeled as a small perturbation of an
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Figure 1.1: Three different large N limits and theirs ”graphical” representations.

exactly solvable model. On this basis, a successful description, or at least qualitative

understanding, can be built1. Therefore developing interesting and solvable models, or

considering systems in some limits, where they can be solved, is one of the most funda-

mental endeavors of modern theoretical physics.

One of the earliest ideas of theoretical physics is, that models, in the limit of a large

number of degrees of freedom, are much simpler than those containing a small number

of degrees of freedom and can therefore be effectively solved. This happens because in

the limit of a large number of degrees of freedoms, the common behavior of the system

averages allowing us to disregard local fluctuations and other microscopic details. The

embodiment of this principle is the famous central limit theorem, wherein we start from

some unknown distribution and in the limit of large number we always end up with

a Gaussian distribution. Another example of this idea can be found in the theory of

second-order phase transitions. In this case, we assume that in the thermodynamic limit

the system is described by some universal behavior and is not sensitive to the internal

structure of the system. Therefore considering models with a large number of degrees

of freedom, and successfully solving them could help us better understand how to solve

problems of quantum field theory, as well as theoretical physics more broadly.

Usually people considered only two such systems with large numbers of degrees or

1Sometimes, we do not have even such a luxury, thus the fractional quantum hall effect already
considers a complicated interaction without any approximations.
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large N models, namely, vector and matrix large N models. Both of these models were

quite important as tests for AdS/CFT correspondence and as key to understaning of low

dimensional quantum gravity or string theory. Recently, people managed to generalize

this approach to so called tensor models that give a quite different large N model, that is

much simpler than the matrix one and more complicated than the vector large N limit.

Therefore it gives some interesting new limits that could give some hints on the structure

of the large N systems (see fig. 1.1). In this section we will briefly review the main results

about systems with vector, matrix and tensor large N limits.

1.1 Vector Models

In 1952 Berlin and Kac introduced the generalized Ising model (see fig. 1.2), where

the spin has N components and constrained to have length ~Si · ~Si = N [10, 11]. The

Hamiltonian of this model is:

H = −
∑
ij

Jij ~Si · ~Sj, (1.1)

at N = 1 the model reduces to a usual Ising model. This model posseses an exact solution

at large N . This happens because the local fluctuations are suppressed in comparison to

the collective behaviour. We will show it considering the model (1.1) in the continium

limit at d = 2 [12, 13]. Namely, by rescaling ~ni =
~Si√
N

we get

L =
N

2λ
(∂µ~n)2 , ~n2 = 1. (1.2)

We introduce an auxilary field α(x) into the action, that imposes the condition ~n2 = 1

L =
N

2λ
(∂µ~n)2 +

iN

2λ
α
(
~n2 − 1

)
.

3



Figure 1.2: Generalized Ising model, where the each site has a N -component vector of
length

√
N .

This action is quadratic in ~n and hence we can integrate out the field ~n. The effective

action reads as

Seff = −N
2

(
Tr log

(
−∂2

µ + iα
)

+
i

λ

ˆ
ddxα

)
,

since the quantum averages are computed with the weight e−Seff , in the large N we can

use saddle point approximation to evaluate the partition function for the action (1.1).

Moreover, one can see that the number of degrees of freedom N plays the role of inverse

of Plank constant 1
~ and therefore 1

N
controls quantum corrections. Then only classical

solution of the action contributes to the dynamics of the generalized Ising model. Thus

varying the equation (1.1) we get the following equation for the field α:

GΛ
α(x, x) = λ, or

1

2π
log

Λ

iα
=

1

λ
(1.3)

where GΛ
α(x, x) is a regularized propagator of a free scalar field in 2 dimensions with mass

iα(x), that could depend on the coordinates. For simplicity we assume that α is constant

throughout space-time (one can strictly show it from the eq. (1.3)). Introducing cut-off

Λ we get the value of α:

α = iΛ exp

[
−2π

λ

]
. (1.4)
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We can easily read off the dependence of λ on the cut-off Λ and get the beta-function

for this model in the large N limit and we see in the large N limit the model (1.1) is

described by a free massive scalar field. It happened again because we considered the

limit of large numbers of degrees of freedom, that drastically simplified the analysis of

the system. Therefore we could expect the same type of simplification for other large

N vector theories. Namely, that the local fluctuation are suppressed while the collective

behaviour is described by some classical model and 1
N

corrections could be considered as

quantum corrections.

While in the case of the ~n model it is quite hard to see this 1
N

structure in terms of

diagrams we can show it in the example of just 0-dimensional mechanics of a real vector.

Namely, we want to study the following integral

Z =

ˆ
dφi exp

[
−1

2
φ2
i −

λ

24

(
φ2
i

)2
]

(1.5)

In the spirit of quantum field theory we will assume that λ is small and approximate the

exponent by its Taylor series. It gives the following rules for drawing Feynman diagrams

〈φaφb〉 = δab = ,
(
φ2
i

)2 ∼ (1.6)

Each loop of field φ contributes a factor of N , and therefore to get large N limit we

should maximize the number of loops at the given level of perturbation theory or in front

of the coupling constant λ. To proceed further we need so-called Euler formula. This

formula comes from computing Poincare-Hopf index of triangulation of Riemann surface

of genus g by some graph. Namely, if a graph drawn on a Rieman surface of genus g then

the number of vertices V , edges E and faces F satisfy the following linear relation

e = V − E + F = 2− 2g. (1.7)

Then let us consider some graph in this vector model that has V vertices or dashed

lines. Let Fφ be the number of loops created by the field φ, each contributing a factor of

5



Figure 1.3: One of the leading diagrams that give dominant contribution to the partition
function of the scalar vector model. The dashed lines correspond to the propagation of
an auxilary field σ and the dashed lines to the real fields φi.

N to the amplitude. Then we can shrink each of the matter loop and get a graph that

has Fφ vertices, V edges and F faces spanned by dashed lines. By Euler formula we get

Fφ = 2− 2g + V − F faces. Then the given graph will contribute as

A ∼ λVN2−2g+V−F = (λN)V N1−2g−(F−1), (1.8)

if one introduces a rescaled coupling λtH = λN in the large N limit only planar diagrams

with exactly one face F = 1 contribute.The last means that the graph should be tree. A

tree graph can always be drawn on a plane. Hence F = 1 is a necessary and sufficient

condition for the diagram domination. An example of such a diagram could be seen in

the fig. 1.3, sometimes such a diagrams are called ”snails” [14] or ”cacti” [15].

The scaling (1.8) suggests that the partition function behaves as logZ ∼ Nf0 + . . ..

Let us get the f0 from the summation over all possible tree diagrams. One can notice

that tree diagrams are just a semiclassical approximation of some quantum model. Since

in our case there could be vertices of any valence the action of such a model is

S0 = − 3

λtH
σ2 +

∞∑
k=0

akσ
k, (1.9)

where the normalization of the ”kinetic term” comes from the fact the propagator of an

auxillary field σ is induced by an interaction term of the original model. It is easy to see
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that the coupling ”constants” are ak = 1
k
. The action reads as

S0 = − 3

λtH
σ2 + log(1 + σ), (1.10)

It would be interesting to derive this action in the same fashion we derived an effective

action for the ~n-model. We again introduce an auxiliary variable σ, so that

Z(λtH) =

ˆ ∞
−∞

N∏
j=1

dφj

ˆ
dσ exp

(
− 3N

2λtH
σ2 − φkφk(1 + iσ)

2

)
. (1.11)

After performing the Gaussian integral over φj we find

Z(λtH) =

ˆ
dσ exp

(
N

2

[
3

λtH
σ2 − log(1 + σ)

])
, (1.12)

that coincides with the action we derived aboive. In large N the integral is dominated

by the saddle point

6σ

λtH
=

1

1 + σ
. (1.13)

The solution of this quadratic equation which matches onto the perturbation theory is

σ(λtH) =

√
1 + 2λtH

3
− 1

2
, (1.14)

and we find to all orders in λtH ,

f0(λtH) =
∞∑
k=1

(−λtH)k
1

4k(k + 1)6k

(
2k

k

)
. (1.15)

In this series the coefficients decrease, so it is convergent for sufficiently small |λtH |. This

is one of the advantages of the large N limit – the functions that appear order by order

in 1/N have perturbation series with a finite radius of convergence.

The next subleading contribution comes from the planar diagrams with F = 2 and

g = 0. The subleading diagrams are shown in the fig. 2.2 and will be studied in the

following sections.
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Figure 1.4: Examples of fat graphs in Yang-Mills theory. The graph on the left side could
be drawn on a sphere, while the graph on the right could be drawn only a torus.

1.2 Matrix Models

The natural generalization of the previous model is to consider the dynamical matrices.

This idea was originally proposed by ‘t-Hooft in 1973 [16] and comes from the study of

the Yang-Mills theory. Namely, the dynamical degrees of freedom in this case are a d-

dimensional vector of hermitian matricies of size N × N . The propagator of this field

is

〈Aabµ Acdν 〉 ∼ g2
YM a d

bc
(1.16)

and the interaction terms are

trA3
µ ∼

1

g2
YM

trA4
µ ∼

1

g2
YM

(1.17)

Graphically each Feynman diagram could be drawn as a fat graph (see fig. 1.4). It is

easy to see that each of these fat graphs could be drawn only on a Riemann surface of a

particular genus.

Again each face gives a factor of N . And if we have a graph with V vertices and E

edges this graph comes with the following amplitude

A ∼ g
2(E−V )
YM NF = N2−2g

(
g2

YMN
)E−V

. (1.18)

8



=⇒

Figure 1.5: The triangulation of the plane generated by a 0-dimensional model (1.19)

Introducing g2
YMN = g2

tH the factor of N depends only on the genus of the surface and

the dominant contribution is given by the planar diagrams while the other contributions

are suppressed. It gives quite interesting picture — the 1
N

corrections are given by the

topological expansion in terms of Riemann surfaces. Thus 1
N2 corrections are given by the

graphs that could be drawn on torus and etc. Each of the graphs would be a triangulation

of such a surface and if we fine tune the coupling constant we would expect second order

phase transition that make this triangulations smooth and give some 2d surface (see

fig. 1.5). From this computation one can suggest that the actual dynamical degrees of

freedom are strings (that sweep some smooth surface in 4 dimensional space-time) and

after some suitable transformation or smart computation we can derive the action for

these strings as it was shown in the case of vector models. But still we do not know how

it should work. Thus, we still are not able to solve the Yang-Mills theory, even though

we get a nice interpretation of the large N limit.

But as in the case of the vectors we can consider the zero dimensional model [17].

Namely,

Z(g) =

ˆ
dHij exp

(
−1

2
trH2 − g

24
trH4

)
, H = H†, (1.19)

this model has U(N) invariance H → U †HU,U †U = 1 would leave the action unchanged.

Naively, we could have make a U(N) transformation and make the action quite trivial

U †HHUH = diag (κ1, . . . , κN). But the measure changes and adds some additional terms to

the action. To take this into account we should compute the Fadeev-Popov determinant

[18]. We pick the following gauge conditions

9



∀a = 1, N , [H, da] = 0, (da)ij = δiaδij, (1.20)

under a small gauge transformation U ≈ 1 − iA,A† = A the matrix H changes as

H → H + i[A,H]. Therefore we need to find the eigenvalues of the following equation

[da, [H,A]] = λA, (δai − δaj) (κi − κj)Aij = λAij. (1.21)

The eigenvectors are Aij = Aji = δiaδjb with eigenvalues κa − κb. The product of these

eigenvalues gives a Fadeev-Popov determinant. So we come to the following action

Z(g) =

ˆ N∏
a=1

dκa exp

(
2
∑
a<b

log |κa − κb| −
∑
a

[
1

2
κ2
a +

g

24
κ4
a

])
, (1.22)

rescaling κa →
√
Nxa, g → gtH

N
we get

Z(gtH) =

ˆ N∏
a=1

dxa exp

(
2
∑
a<b

log |xa − xb| −N
∑
a

[
1

2
x2
a +

gtH
24

x4
a

])
. (1.23)

In the large N limit we should study a saddle point:

2

N

∑
b6=a

1

xa − xb
= xa + gtH

x3
a

6
, (1.24)

if one introduces an eigenvalue destiny ρ(x) = 1
N

∑
a

δ(x− xa) we get

 
ρ(y)dy

x− y =
x

2
+ gtH

x3

12
. (1.25)

To solve this equation we introduce an analytic function ρA(z) =
´ dyρ(y)

y−z . By construction

this function is analytic everwhere except of the points where ρ(x) 6= 0 and at z =∞ it

should behave

ρA(z) ∼ 1

z
+ . . . , (1.26)

10



if the density is non-zero the analytic function ρ(z) has a cut and the jump across it

defines our function

Im ρA(z) = πρ(x), (1.27)

and the equation (1.25) gives the real part of the function along the cut

Re ρA(z) = θ(Im(ρA(z)))

(
z

2
+ gtH

z3

12

)
(1.28)

From this representation we can deduce the form of our analytic function and therefore

solve the equation (1.25). First we notice that ρ(x) is non-zero only on a finite interval.

Indeed, otherwise the equation (1.28) would state that near the cut the analytic function

ρA(z = x) = x
2

+ gtH
x3

12
+ iπρ(x) that is unbound as x→∞ and it would mean that ρ(z)

violates (1.26). Therefore, we must conclude that there is some number M > 0, such

that if |x| > M then ρ(x) = 0.

We know that for a continuous function supp ρ(x) = ∪i∈I [ai, bi], for physical reasons

we assume that there is only one cut [a, b]. The function ρ̃A(z) = ρA(z) − z
2
− gtH z3

12
=

±iρ(x) is purely imaginary on the cut and equal to zero at ρ̃A(a) = ρ̃A(b) = 0. Hence

the function δ(z) = ρ̃A(z)√
(z−a)(b−z)

does not have a cut and analytic in the whole complex

plane. One can notice |ρ̃A(z)| ≤ C |z|2 for big enough z the function ρ̃(z) must be just

a simple polynomial of degree 2 by Liouville theorem. Hence the analytic function must

be of the following form

ρA(z) =
z

2
+ gtH

z3

12
+
√

(b− z)(z − a)
(
dz2 + ez + f

)
, (1.29)

and by comparing with large z expansion (1.26) we can find the unknown coefficients and

finally get

ρA(z) =
z

2
+ gtH

z3

12
+
√
z2 − a2

(
−gtH

z2

12
− 1

2
− a2 gtH

24

)
, a = 2

√√
1 + 2g − 1

g
,

(1.30)
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that predicts famous Wigner-Semicircle for eigenvalues distribution of a random matrix

in the large N limit

ρ(x) =
√
a2 − x2

(
gtH

x2

12
+

1

2
+ a2 gtH

24

)
(1.31)

1.3 Tensor Models

The natural generalization of the considered above models is a tensor model. We

started with vector models — a model where the fundamental degrees of freedom with

one index, then we generalized to the matrix one — models where the fundamental

degrees of freedom having two index. The next logical step is to consider model with

dergrees of freedom ψabc having three indicies [19, 14, 20, 21, 22, 23]. For example, we

can consider the following model of Majorana fermions

S =

ˆ
dt [iψabc∂tψabc + V (ψabc)] , a = 1, . . . , N1, b = 1, . . . , N2, c = 1, . . . , N3, (1.32)

naively the theory has O(N)3 = O(N1) × O(N2) × O(N3) symmetry. But if there is

no interaction term, the kinetic term actually does not feel the presence of three index

structure in the field. We can introduce the multiindex I = (abc) and see that a kinetic

term has O(N1N2N3) symmetry. Therefore the actual symmetry of the system depends

on the interaction term V (ψabc). If we restrict otherselves to quatric operators that are

singlets under the action of O(N)3 group (see fig. (1.6)) we get only 3 independent

operators. The two ”trivial” operators are

Ods = gds (ψabcψabc)
2 = 0, Op = gpψabcψabc′ψa′b′cψa′b′c′ , (1.33)

that we used that for grassman variables ψ2
abc = 0 but we can still consider such an

operator if ψabc was a real valued non-grassmanian field. As one can see the first operator

also respects the O(N1N2N3) symmetry while the second one respects the symmetry

O(N1N2)×O(N3). Therefore they would be described by the type of the models discussed

above. Actually, one can show that these operators have vectorial large N limit.

12



(a) (b) (c)

Figure 1.6: Diagrams of the double-trace operator (a), one of the pillow operators (b)
and a tethrahedral opeartor (c).

To get a model that would have the O(N)3 that is smaller than the above considered

groups we should considered a little bit more complicated interaction

Ot = gtφabcφab′c′φa′bc′φa′b′c, (1.34)

one can see that each field in this interaction is connected by index contraction with

other field. And the diagramatic expansion will be drastically different from the one

considered in the case of vector and matrix models. Namely, one can show that the

model is enhanced by so called melonic diagrams [23, 19]. The simple proof for the case

of the interaction (1.34) could be found in [19].

Let us find the scaling of the coupling constants for these interactions in the large N

limit. Thus let us consider the following interaction

Ht =
gt
4
ψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1 , (1.35)

which is illustrated in fig. 1.6.

One can study this model perturbatively and find that indeed in the large N limit

the melon diagrams dominates. The melonic diagrams are quite important for the study

of Sachdev-Ye-Kitaev (SYK) model [24, 25]. The SYK model describes the interaction

of Majorana fermion by a random quartic interaction. In contrast to the SYK model the

tensor models do not contain disorder and therefore could be generalized to any dimension

and field content. Also it allows the use of the usual tools of Quantum Field Theory such

as ε-expansion. Hence, we will also consider the tensor analog of the SYK model, where

13



the Majorana fermions are tensors with interaction (1.34).

We can prove that only melonic diagrams dominate in the large N limit. Let us study

the vacuum Feynman graphs of this theory (1.35) and take turns erasing the strands of

a given color. We would get fat graphs similar to the one studied for the matrix models.

To get maximal scaling, the remaining double-line diagrams are planar, since increasing

their genus decreases the number of loops [22, 19]. If such a double-line diagram has n

separate connected components, then the Euler theorem states that the number of index

loops is given by

frb = 2nrb + vt, and frg,bg = 2nrg,bg + vt + vp , (1.36)

where vt and vp are the numbers of the tetrahedral and pillow vertices, respectively. Since

the pillow vertex (1.6) becomes disconnected when the green strands are erased, we find

that the number of separate components of the red-blue graph satisfies

nrb ≤ 1 + vp . (1.37)

On the other hand, the tetrahedral vertex stays connected when red or blue strands

are erased, so that nrg = nbg = 1. These numbers are independent of vt because the

tetrahedral vertex stays connected when any color is erased

frb = fr + fb ≤ 2 + vt + 2vp ,

frg = fr + fg = 2 + vt + vp ,

fbg = fb + fg = 2 + vt + vp . (1.38)

Adding these equations, we find that the maximum total number of closed loops is

fr + fb + fg = 3 +
3

2
vt + 2vp . (1.39)

14



This means that the maximum weight of a graph is N3λvtt λ
vp
p . Here

λt = gtN
3/2 , λp = gpN

2 (1.40)

are the quantities which must be held fixed to achieve a smooth large N limit. These

scalings apply to any rank-3 tensor theory with O(N)3 symmetry and quartic interactions

[22, 19, 26].2

The discussion above shows that the simplest melonic large N limit applies to the

gp = 0 model which has a purely tetrahedral interaction. The tetrahedron vertex stays

connected when the strands of one color are erased and becomes a connected double-line

vertex, which is found in the O(N)×O(N) symmetric matrix model with a single-trace

interaction gt tr(MMT )2. In the O(N)3 model, the tetrahedral vertex is the unique

quartic vertex which is maximally single-trace.

There also some hints that these melonic limits also exist if one considers the fields

ψabc to be some irreducible tensor representation of a group O(N) [27]. Now one can

wonder, what would happen if we consider models with much more complicated groups

O(N)q−1. Apparently, one can show that these models fall into one of these considered

above groups.So let us now perform a similar analysis in the large N limit of O(N)q−1

symmetric tensor models corresponding to higher even values of q. To achieve the simplest

large N limit we will consider only the maximally single-trace interaction vertices [28],

which stay connected whenever any q − 3 colors or indices are erased. The unique such

interaction vertex for q = 6 is shown in fig. 1.7. When colors i and j are left, the

double-line vertex is of the kind found in a O(N)×O(N) symmetric matrix model with

the single-trace interaction g tr(MMT )q/2. Since this interaction is single-trace, the two-

color graph may be drawn on a connected Riemann surface of genus gij, and we have the

constraint

fij + v − e = 2− 2gij , (1.41)

2In the special case of quantum mechanics of Majorana fermions ψabc, the pillow operators are simply
the quadratic Casimir invariants of the O(N) groups. It is possible to show that their maximal values
in the Hilbert space are of order N5. This means that the energy shift for such states due to the pillow
operator is ∼ gpN

5 ∼ λpN
3. The fact that this scales as the number of degrees of freedom, N3, is a

confirmation that the scaling (1.40) is correct.
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where e and v are the total numbers of the edges and the vertices. Since the graphs may

be non-orientable, the possible values of the genera, gij, are 0, 1/2, 1, . . .. Using e = qv/2

and summing over all choices of remaining two colors we find

∑
i<j

fij = (q − 1)(q − 2) + (q − 1)(q − 2)24v − 2
∑
i<j

gij . (1.42)

Since ∑
i<j

fij = (q − 2)
∑
i

fi = (q − 2)ftotal , (1.43)

we find

ftotal = q − 1 +
(q − 1)(q − 2)

4
v − 2

q − 2

∑
i<j

gij . (1.44)

The maximum possible weight of a vacuum graph with v vertices, corresponding to all

gij = 0, is

N q−1λv , (1.45)

and the large-N limit needs to be taken with

λ = gN (q−1)(q−2)/4 (1.46)

held fixed.3 We see that the large-N partition function of the O(N)q−1 tensor model has

the structure

lim
N→∞

N1−q lnZ = f(λ) . (1.47)

Now we sketch a proof that the model with a maximally single-trace interaction vertex

possesses the melonic dominance in the large N limit — for such an operator, forgetting

any q − 3 indices leads to a single-trace operator (a diagrammatic representation of this

for q = 6 is shown in fig. 1.7). A more rigorous proof, which is however restricted to

cases where q − 1 is prime, was given in [28].

3This large-N scaling is the same as in the Gurau-Witten model [20, 23] for q flavors of rank q − 1
tensors.
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Figure 1.7: The vertex becomes single-trace if we keep any two colors.

As we have shown, the graphs giving the leading contribution in the large N limit

have gij = 0, i.e., any choice of the double-line graph is planar. In this case we find

ftotal = q − 1 +
(q − 1)(q − 2)

4
v . (1.48)

Let us show that there is a loop passing through only 2 vertices and use the strategy

analogous to that in the q = 4 case [19]. Let fr denote the number of loops passing

through r vertices. Since there are q(q−1)
2

strands meeting at every vertex, we find the

sum rules

∑
fr = ftotal ,

∑
r

rfr =
q(q − 1)

2
v . (1.49)

Combining these relations, we find

∑
r

(
1− rq − 2

2q

)
fr = q − 1 . (1.50)

Assuming that there are no snail diagrams, so that f1 = 0, we have4

2

q
f2 = q − 1 +

∑
r>2

(
r
q − 2

2q
− 1

)
fr . (1.51)

For q ≥ 6 the sum on the RHS of this equation is greater than zero. This implies that

4Indeed, for any snail diagram, some of the double-line subgraphs must be non-planar. For q = 6
this can be seen in fig. 1.7 by connecting a pair of fields and checking that some of the double-line
propagators need to be twisted, thus causing non-planarity. For example, when connecting fields 1 and
3 the blue-green propagator clearly contains such a twist.
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3L

4L

5L

6L

3R

4R

5R

6R

1L,R

2L,R

Figure 1.8: A basis pair of vertices that is connected by a pair of propagators.

there is a loop passing through exactly two vertices. We shall call them a basis pair of

vertices. Without a loss of generality one can assume that these vertices can be drawn as

in fig. 1.8. Also, for convenience we will number the fields in the vertices as in fig. 1.8.

We can say that this loop, passing through two vertices, is a pair of bare propagators

that connects the outputs with numbers 1L with 1R and 2L with 2R, see fig. 1.8. Now let

us choose any other field in the left vertex, aL, in the range from 3L to qL (for instance,

we choose 3). Let us erase all colors except for (1L3L) and (3L2L). We can make a

permutation of vertices such that the output will be between the first and second outputs

(see fig. 1.9). However, the same does not hold for the right vertex; for example, between

the 1R and 2R there could be another number of the field ri, that must be non-zero.

Because the double-line graph constructed out of the colors (1L3L) and (3L2L) should

be planar, the output 3L on the left vertex can be connected only with these ri outputs.

It cannot be connected with the other fields, and these ri fields in the right vertex could

be connected only to this field 3L on the left (for example, in fig. 1.9 the field 3L can be

connected only to the fields 3R, 5R, 4R in order for the graph to be planar). From this we

derive that for each field on the left we must assign a subset of the fields on the right.

These subsets do not intersect with each other in order for the graph to be planar for any

choice of the pairs of colors. From this we have

q∑
a=3

ra = q − 2 . (1.52)
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6L

1L,R

3L

2L,R

4L

5L

3R

5R

4R

6R

Figure 1.9: Because we consider a maximally single-trace operator, we can erase all
except two colors and have a single-trace vertex. If they are connected to each other by
two propagators, then the most general structure could be only the one shown in this
figure. For the output 3L in this case we assign the number r3 = 3.

Since ra ≥ 1, this equation implies ra = 1. Therefore, each output on the left is connected

to the one on the right with a one-to-one correspondence. Thus, each ribbon graph,

which is made by removing any set of q−3 colors, is planar. The graph has the structure

depicted in fig. 1.10 for q = 6, where Gi are propagator insertions. We can connect the

ends of these structures to get four other maximal vacuum diagrams and apply the same

reasoning to them. From this one can see that the maximal graph must be melonic.

G5

G6

G4

G3

Figure 1.10: Any maximal graph for q = 6 must be of this form. Gi are arbitrary
propagator insertions.
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Figure 1.11: The graphic representation of Dyson-Schwinger equation for q = 4 melonic
theory.

Thus, we have shown that, in order for a graph to have the maximal large-N scaling,

it must be melonic. It is also not hard to see [28, 29] that, if we take two MST interaction

vertices and connect each field from one vertex with the corresponding field in the other,

we will find the maximal large-N scaling. This completes the argument that, for any

MST interaction vertex, a graph has the maximal large-N scaling if and only if it is

melonic.

Therefore, if have a MST interaction the system in the large N limit is dominated by

the melonic diagrams. The proof provided above is purely combinatorial, therefore the

same applies to any theories: in any dimension with any field content. As soon as the

system provides a MST interaction in the large N limit we would get a melonic theory.

Apparently, such melonic theories were firstly discussed in the context of the superfluidity

[30], where it was shown that such theories are conformal even in the subleading orders

in the perturbation theory. The problem in such a theories, that there some diagrams

that give big corrections to the conformal solutions and therefore is no longer applicable.

But one can check that in the tensor models this diagrams are suppressed in the large N

limit and we have a nearly conformal field theory [19].

Here for simplicity we consider again a 0-dimensional model

Z(λ) =

ˆ
dφabc√

2π
exp

[
−1

2
φ2
abc +

λ

4N
3
2

φabcφab′c′φa′bc′φa′b′c

]
, (1.53)

then we can use Dyson-Schwinger equation for this model. Namely, we notice that

0 =
1

Z(gt)

ˆ
dφabc√

2π

∂

∂φa′b′c′

(
φa′b′c′ exp

[
−1

2
φ2
abc +

λ

4N
3
2

φabcφab′c′φa′bc′φa′b′c

])
=
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= N3 −N3G+ 4
∂ logZ

∂ log λ
= 0 (1.54)

The equation for G is easy to deduct from the diagramatic expansion of melonic theory

(see fig. (1.11))

G(λ) = 1 + λ2G(λ)3,

G(λ) = −
(

2

3

) 1
3 1(

9λ4 +
√

81λ8 − 23λ6
) 1

3

−
(
9λ4 +

√
81λ8 − 23λ6

) 1
3

2
1
3 3

2
3λ2

, (1.55)

substituting it in the relation for Z(λ) we get

Z(λ)

N3
=
∞∑
n=1

a2nλ
2n, a2n =

1

8n(4n+ 1)

(
4n+ 1

n

)
(1.56)

Some of the results of this thesis were presented at the quantum field theory seminar

in Columbia University, New York University California Institute of Technology and

Moscow State University and at the conference ”Quantum Gravity in Paris 2019”.
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2 Majorana Quantum Mechanics

Strongly interacting fermionic systems describe some of the most challenging and

interesting problems in physics. For example, one of the big open questions in condensed

matter physics is the microscopic description of the various phases observed in the high-

temperature superconducting materials. Models relevant in this context [31, 32, 33]

include the Hubbard [34, 35] and t − J models [36]. The Hamiltonians of these models

include the quadratic hopping terms for fermions on a lattice, as well as approximately

local quartic interaction terms. The analysis of such models often begins with treating a

quartic interaction term as a small perturbation. In the cases when such an expansion is

not possible, for example, the fractional quantum Hall effect, one typically has to resort to

numerical calculations. Fortunately, there are also fermionic systems which can be solved

analytically in the strongly interacting regime, when the number of degrees of freedom

is sent to infinity. Such large N systems include the Sachdev-Ye-Kitaev (SYK) models

[37, 25, 38, 39, 24, 40] (see also the earlier work [41, 42]). The SYK models have been

studied extensively in the recent years; for reviews and recent progress, see [43, 44, 45].

The simplest of them, the so-called Majorana SYK model [25, 40], has the Hamiltonian

H = Jijklψiψjψkψl, which describes a large number NSYK of Majorana fermions ψi (we

assume summation over repeated indices throughout this work). They have random

quartic couplings Jijkl with appropriately chosen variance. A remarkable feature of this

model is that, in the limit where NSYK →∞, it becomes nearly conformal at low energies.

The low-lying spectrum exhibits gaps which are exponentially small in NSYK. In further

work, models consisting of coupled pairs of Majorana SYK models [46, 47, 48], as well

as the SYK chain models [49, 50], have produced a host of dynamical phenomena which

include gapped phases and spontaneous symmetry breaking. In addition to the terms

quartic in fermions, they can include quadratic terms which describe hopping between

different SYK sites.

Another class of solvable large N fermionic models are those with degrees of freedom

transforming as tensors under continuous symmetry groups [23, 19] (for reviews, see

[14, 51]). A simple example [19] is the O(N)3 symmetric quantum mechanics for N3
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Majorana fermions ψabc. In these tensor models the interaction is disorder-free, so the

standard rules of quantum mechanics apply. Interestingly, the large N limit is similar to

that in the SYK model because in both classes of models the perturbative expansion is

dominated by the “melonic” Feynman diagrams, which can be summed [20, 52, 53, 54,

55, 56, 22, 57, 58, 28, 29, 3, 1, 59, 4]. Since the Hubbard and t-J models do not have any

random couplings, the disorder-free tensor models may be viewed as their generalization,

and it is interesting to investigate if they can incorporate some interesting physical effects

in a solvable setting. One possibility is to interpret the three indices of the tensor ψabc,

where a, b, c = 1, . . . , N , as labeling the sites of a 3-dimensional cubic lattice [60]. Then

the tensor models may perhaps be interpreted as non-local versions of the Hubbard model.

[19] It is also natural to generalize the Majorana tensor model of [19] to the cases where

the indices have different ranges: a = 1, . . . N1, b = 1, . . . N2, c = 1, . . . N3; then the

model has O(N1) × O(N2) × O(N3) symmetry [61, 62] (see also [63, 28]). The traceless

Hamiltonian of this model is [19, 62]

H = gψabcψab′c′ψa′bc′ψa′b′c −
g

4
N1N2N3 (N1 −N2 +N3) , (2.1)

where {ψabc, ψa′b′c′} = δaa′δbb′δcc′ . If the ranks Ni are sent to infinity with fixed ratios,

then the perturbation theory is dominated by the melonic graphs. However, it is also

interesting to consider the cases where one or two of the Ni are not sent to infinity.

Such models with O(N) × O(2)2 and O(N)2 × O(2) symmetry were studied in [62] and

were shown to be exactly solvable, with the integer energy spectrum in units of g. The

O(N)×O(2)2 model has the familiar vector large N limit, where gN = λ is held fixed. A

closely related vector model, which we also study in this paper, has Majorana variables

ψaI , I = 1, . . . , 4, and symmetry enhanced to O(N)× SO(4):

HO(N)×SO(4) =
g

2
εIJKLψaIψaJψa′Kψa′L . (2.2)

The O(N)2 × O(2) model, which may be viewed as a complex fermionic matrix model

[62], has the ‘t Hooft large N limit where all the planar diagrams contribute (similar
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fermionic matrix models were studied in [64, 65]).

In this paper we will carry out further analysis of the fermionic vector and matrix

models. In particular, we study the large N densities of states ρ and analyze the resulting

temperature dependence of the specific heat. In the matrix model case, the density

of states is smooth and nearly Gaussian, which is a rather familiar behavior. In the

large N vector models, we instead find a surprise: for a wide range of energies we find

log ρ ≈ −|E|/λ plus slowly varying terms. The approximately exponential growth of

the density of states, discussed long ago in the context of hadronic physics and string

theory [66, 67], leads to interesting behavior as the temperature approaches the Hagedorn

temperature, TH = λ. In the Majorana vector models we indeed find critical behavior as

the temperature is tuned to λ, with a sharp peak in the specific heat. In the formal large

N limit, the specific heat blows up as (TH − T )−2. This means that TH is the limiting

temperature, and it is impossible to heat the system above it. However, at any finite

N , no matter how large, the specific heat does not blow up, so it is possible to reach

arbitrarily large temperatures. Thus, our model provides a demonstration of how the

finite N effects can smooth the Hagedorn transition.

In section 2.2, we study the O(N) × O(2)2 symmetric vector model. We find that

the density of states exhibits exponential growth in a large range of energies, and match

this with analytical results. In section 2.3 we study a related vector model, where the

symmetry is enhanced to O(N) × SO(4). In this case, we obtain simple closed-form

expressions for the large N density of states, free energy, and specific heat. In section

2.4, we consider the fermionic matrix model with O(N)2×O(2) symmetry and find that

the spectrum now exhibits a nearly Gaussian distribution for sufficiently large N . In

appendix A we study the structure of the Hilbert space of the above models, and derive

the Cauchy identities from simple physical arguments.
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2.1 Bound on the energy spectrum

In this section we present an energy bounds for the Hamiltonian (2.1). We note the

following relation

H =
g

2

∑
abc

[ψabc, habc] , habc =
1

4
∂tψabc = ψab′c′ψa′bc′ψa′b′c, (2.3)

then if we have an arbitary singlet density matrix ρs, that is invariant under the O(N1)×

O(N2)× O(N3) rotations. One of the way to build it is to consider some representation

R of the O(N1)×O(N2)×O(N3) in the Hilbert space H with a basis |ei〉 , i = 1.. dimR.

Then we can define the following density matrix

ρR =
1

dimR
dimR∑
i=1

|ei〉 〈ei| , tr ρR = 1, ρ2
R =

1

dimRρR . (2.4)

It is easy to see, that this density matrix is invariant under rotations OTρRO = ρR for

any O ∈ O(N1)×O(N2)×O(N3). We can calculate the expectation value of the energy

for this density matrix as

E = tr [ρsH] =
g

2
N1N2N3 tr [ρs [ψ111, h111]] , (2.5)

where the sum over the repeated indexes does not depend on the indexes a, b, c. Therefore

we can fix theirs value to be just some specific value and carry out the summation. Let

us note that by symmetry argument we have tr [ρsψ111] = tr [ρsh111] = 0. Then we can

estimate the trace in the formula with the use of Heisenberg uncertantiy principle, we

have

tr [ρs [ψ111, h111]] ≤ 2

√
tr [ρsψ2

111] tr
[
ρsh

†
111h111

]
(2.6)

tr
[
ρsψ

2
111

]
tr
[
ρsh

†
111h111

]
=

1

2
tr
[
ρsψab1ψa1cψ1bcψ1b′c′ψa′1c′ψa′b′1

]
, (2.7)
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where we have used that ψ2
111 = 1

2
. Because the density matrix ρ is a singlet we can

rotate indexes back to get

E2 ≤ g2

2N1N2N3

∑
abc

tr
[
ρsh

†
abchabc

]
. (2.8)

The square of the operator habc can be expressed as a sum of Casimir operators due to

the virtue of the anticommutation relations. That gives us the bound on the energies of

states in representation R [62]:

|ER| ≤
g

4
N1N2N3

(
N1N2N3 +N2

1 +N2
2 +N2

3 − 4− 8

N1N2N3

3∑
i=1

(Ni + 2)CRi

)1/2

, (2.9)

where CRi is the value of Casimir operator in the representation R. For the singlet states

this gives

|E| ≤ g

4
N1N2N3(N1N2N3 +N2

1 +N2
2 +N2

3 − 4)1/2 . (2.10)

Since Ci ≥ 0 this bound applies to all energies. Let us note that for N3 = 2 the square

root may be taken explicitly:

|E|N3=2 ≤
g

2
N1N2(N1 +N2) . (2.11)

For the case when N1 = N2 = N3 = N and N > 2 the bound is:

|E| ≤ Ebound =
g

4
N3(N + 2)

√
N − 1 (2.12)

In the large N limit, Ebound → JN3/4, which is the expected behavior of the ground state

energy; in the melonic limit it scales as N3. This answer is off by 25 percent from the

numerical result for the ground state energy in the SYK model [68]: E0 ≈ −0.16JNSYK,

that is believed should give the ground state energy of a tensor model. We can compare

how this bound works for O(4)3 model [69]. The refined bound [62] for this representation

gives |E(4,4,4)| < 72
√

5 ≈ 160.997, while the actual lowest state in this representation has

E ≈ −140.743885. That is in a good agreement.
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2.2 The O(N)×O(2)2 model

Let us consider the Hamiltonian (2.1) in the case N1 = N , N2 = N3 = 2, so that

it has O(N) × O(2) × O(2) symmetry. We may think of one of the O(2) symmetries as

corresponding to charge, and the other O(2) as the third component of spin Sz. The first

index of ψabc, which takes N values, can perhaps be interpreted as a generalized orbital

quantum number.5 It will be convenient to think of the last two indices as one composite

index taking four values (I ∈ {(11), (12), (21), (22)}). Thus, we have Majorana fermions

ψaI with anticommutation relations {ψaI , ψbJ} = δabδIJ . Hence, the Hilbert space of this

problem, according to the results of the appendix, has a simple decomposition in the

irreducible representations of the SO(N)× SO(4) group

H =
∑

µ⊂µmax=((2)N/2)

[µ]O(N) ⊗ [(µmax/µ)T ]O(4), (2.13)

where [µ]G stands for a representation of the group G described by the Young Tableaux

µ. In the Hilbert space of our model, the Young Tableaux of SO(N) contains at most 2

columns and N/2 rows. In terms of fermions ψaI , the Hamiltonian (2.1) may be rewritten

as

H =
g

2
εIJKLψaIψaJψa′Kψa′L − 2g

[
(ψab1ψab2)2 − (ψa1cψa2c)

2] . (2.14)

The last two terms are the charges of the two O(2) groups, which break the SO(4)

symmetry of the first term containing the invariant tensor εIJKL. Each of the terms has a

simple action on each of the terms of (2.13), since O(2)×O(2) ⊂ O(4) could be thought

of as the Cartan subalgebra of O(4), and we know how the Cartan subalgebra acts in the

representations of O(4). The normalized generators of the SO(4) group have the form

JIJ = ψaIψaJ , (2.15)

5We are grateful to Philipp Werner for this suggestion.
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and can be used to split the lie algebra so(4) into the direct sum of the two su(2) algebras,

which we have labeled by + and −, as follows:

K±1 =
1

2
J01 ±

1

2
J23, K±2 =

1

2
J02 ±

1

2
J31, K±3 =

1

2
J03 ±

1

2
J12. (2.16)

It is easy to see that both sets K+
i and K−i comprise an SU(2) algebra, and thus the

representations of the two SU(2) groups with spins Q+/2 and Q−/2, respectively, fully

determine the representation of the SO(4) group. One can derive the following algebraic

relation:

g

2
εIJKLψaIψaJψa′Kψa′L =

g

2
εIJKLJIJJKL =

= 4g
∑
i

[(
K+
i

)2 −
(
K−i
)2
]

= g [Q+(Q+ + 2)−Q−(Q− + 2)] , (2.17)

where we have used that
(
K+
i

)2
is the quadratic Casimir operator and we know its value

in each of the representations of SU(2). It is also interesting to notice that from (2.16)

we have

ψab1ψab2 = 2K+
1 , ψa1cψa2c = 2K−1 . (2.18)

This allows one to rewrite the Hamiltonian only in terms of the SO(4) representations.

If we have a representation with SU(2) spins (Q+/2, Q−/2), then all eigenvectors with

definite K±1 are the eigenvalues of Hamiltonian with energies

E(Q+, Q−, q+, q−) = g
[
Q+(Q+ + 2)−Q−(Q− + 2) + 2q2

− − 2q2
+

]
,

K±1 |Q±, q±〉 = q± |Q±, q±〉 . (2.19)

The degeneracy of such a state is determined by the dimension of the corresponding

SO(N) representation. Because we know the structure of the Hilbert space (2.13), we can

determine the complete structure of the spectrum. If we have a SO(N) representation

with a Young tableaux µ consisting of two columns of the length µ1 ≥ µ2 ≥ 0, the
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corresponding representations of SO(4) have Q+ = N − µ1 − µ2, Q− = µ1 − µ2, and the

dimension of the representation of SO(N) is [70]

dim (Q+, Q−) =
(Q+ + 1)(Q− + 1)N !(N + 2)!(

N−Q+−Q−
2

)
!
(
N+Q+−Q−+2

2

)
!
(
N−Q++Q−+2

2

)
!
(
N+Q++Q−+4

2

)
!
. (2.20)

From this one can see that each set of pairs of non-negative integers (Q+, Q−) whose sum

is constrained to take values N,N − 2, N − 4, . . . appears once. This formula allows us

to study the density of states in the vicinity of the ground state and of E = 0.

The ground state (E0 = −gN(N + 2)) corresponds to the choice of Q+ = 0, Q− = N ,

thus q+ ≡ 0 and the spectrum in its vicinity has the form,

E = 2gq2
− − gN(N + 2), deg = dim(N, 0) = 1, −N ≤ q− ≤ N. (2.21)

The states immediately above the ground state are labeled by q− and the gap between

them is of the order g ∼ λ
N

. The next excited states correspond to the choice Q+ > 0. The

gap between such states and the ground state is of the order ∆E ∼ gN ∼ λ and is finite

in the large N limit, but the dimension of the representation is of the order dim ∼ NQ+

and diverges in the large N limit. Immediately above the ground state (δE ∼ λ, Q+ = 0)

the density of states may be approximated as

Γ(E) = {# of states: Est ≤ E + E0} =
{

# of q− : 2gq2
− − gN(N + 2) ≤ E + E0

}
≈
√
E

2g
,

ρ(E) =
dΓ

dE
∼
√

1

8gE
, E ∼ λ

N
. (2.22)

On the other hand, near E = 0, the logarithm of the density of states exhibits an unusual

cusp-like behavior shown in figure 2.1. Another remarkable feature is its approximately

linear behavior for a large range of energies.

For |E|/λ of order 1, the dominant contributions come from the states with large

charges Q± ∼
√
N � 1. In this regime we can apply the Stirling approximation to the
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Figure 2.1: The logarithm of the density of states of the O(N) × O(2)2 vector model,
shown for N = 100. For comparison, the large N result (2.25) is shown with a dashed
line.

factorials in (2.20) to obtain

dim(Q+, Q−) ≈ 22NQ+Q− exp

(
−Q

2
+ +Q2

−

N

)
. (2.23)

To obtain the density of states in the large N limit, we introduce the variables t± =

Q±√
N
, u± = q±√

N
, and x = E

λ
. Then we have

ρ(x) ∼
∞̂

0

t+dt+

∞̂

0

t−dt−e
−t2−−t2+

t+ˆ

−t+

du+

t−ˆ

−t−

du−δ
(
x+ t2+ − t2− + 2u2

− − 2u2
+

)
. (2.24)

This may be evaluated if we first perform the integrals over T± = t2±:

ρ(x) ∼
∞̂

−∞

du+

∞̂

−∞

du−

∞̂

u2
+

dT+

∞̂

u2
−

dT−e
−T−−T+δ

(
x+ T+ − T− + 2u2

− − 2u2
+

)
∼

∼
∞̂

0

du e−2u2−|x|
√
|x|+ u2 +

∞̂

√
|x|

du e|x|−2u2
√
u2 − |x| =

= e−|x|1F1

(
−1

2
; 0; 2|x|

)
+
e|x|√

2

√
|x|G0,1

1,2

(
1

− 1
2
, 1
2

∣∣∣∣2|x|) , (2.25)
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Figure 2.2: The cactus diagrams, which are of order N , vanish due to the Majorana
nature of the variables. The “necklace” diagrams, are not equal to zero and give the
leading contributions in the large N limit, which are of order N0.

where the last term involves the Meijer G-function. The formula (2.25) is in good agree-

ment with the numerical results (see figure 2.1). Expanding ρ(x) near x = 0 we see

that

ρ(x) ∼ 1 +
1

4

(
2 log

|x|
2

+ 2γ − 1

)
x2 , (2.26)

which exhibits a singularity at x = 0: ρ′′(0) diverges, signaling a breakdown of the

Gaussian approximation of the density of states. We also note that, for x � 1, ρ(x) ∼

|x| 12 e−|x|.

We can present an argument for why the density of states is not Gaussian near the

origin. The high temperature expansion of the free energy is:

tr e−βH = e−F , F =
∞∑
n=1

(−1)n+1βn trcon [Hn] . (2.27)

The quantity on the right-hand side of (2.27) may be computed with the use of Feynman

diagrams. For vector models, the “cactus” or “snail” diagrams, shown in figure 2.2,

typically dominate in the large N limit [14, 15]. However, in our problem they vanish

due to the Majorana nature of the variables. Therefore, for any connected part, the trace

begins with the subleading term

1

Nn
trcon [Hn] = N0C1 +N−1C2 + . . . (2.28)
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It is easy to see that C1 comes from the necklace diagrams in figure 2.2, which give

C1 =
∞∑
k=1

(gN)k

k

(1 + (−1)k)

2
, (2.29)

where the factor of 1
k

comes from the symmetries of the necklace diagrams. These necklace

diagrams may be interpreted as trajectories of a particle propagating in one dimension.

Introducing the ‘t-Hooft coupling λ = gN and taking the large N limit while keeping λ

finite, we calculate the free energy,

F =
∞∑
k=1

(βλ)k

k

(1 + (−1)k)

2
= −1

2
(log(1 + βλ) + log(1− βλ)) = −1

2
log
[
1− (βλ)2

]
.

(2.30)

The inverse Laplace transformation with respect to β yields the density of states log ρ(E) ∼

a − |E|
λ

. From this one can derive that the distribution must have a Laplace-like form,

and this agrees with the numerical results.

Let us review the physical effects of the approximately exponential behavior of ρ. In

the canonical ensemble, the partition function as a function of inverse temperature β is

Z =

ˆ ∞
0

dẼρ(Ẽ)e−βẼ , (2.31)

where we define Ẽ = E − E0 to be the energy above the ground state. If ρ(Ẽ) ∼ eẼ/TH ,

then Z diverges for β < βH , where βH = 1/TH ; this is the well-known Hagedorn behavior.

For our vector model, the Hagedorn temperature is TH = λ. However, the divergence

is cut off by the fact that ρ(Ẽ) grows approimately exponentially only from some initial

value Ẽ0 up to some critical value Ẽc, as shown in figure 2.1. The contribution to Z from

this region of energies is

ZHagedorn ∼
e−(β−βH)Ẽ0 − e−(β−βH)Ẽc

β − βH
. (2.32)

The presence of the denominator produces a logarithmic term in the free energy, but
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Figure 2.3: The plot of specific heat C for the O(N) × O(2)2 model, as a function of
temperature T/λ, for N = 50, 100, 150. The specific heat has a pronounced peak which
gets closer to T/λ = 1 as N grows.

it is cut off by the numerator before it diverges. It follows that the specific heat C =

−T∂2F/∂T 2 may be approximated by

C =
1(

T
TH
− 1
)2 +

δẼ2

4T 2 sinh2
(
δẼ
2

[
1
T
− 1

TH

]) , δẼ = Ẽc − Ẽ0, (2.33)

where δẼ goes to infinity in the large N limit and the second term vanishes. Thus, for

large enough N , there should be a clear peak in the specific heat. This simple analytic

argument for the existence of a peak is supported by the numerical plots of specific heat

shown in figure 2.3. For any finite N , the height of the peak in C is finite, so that it is

possible to heat the system up to any temperature. However, in the formal large N limit,

the specific heat blows up as (T − TH)−2 so the Hagedorn temperature is the limiting

temperature. This shows that the finite N effects smooth out the Hagedorn transition.

2.3 The O(N)× SO(4) model

In this section we study the simpler vector model where we retain only the first term

in the Hamiltonian (2.14). The symmetry is then enhanced to O(N)×SO(4) symmetry.

Since SO(4) ∼ SU(2)×SU(2), we can think of one of the SU(2) groups as corresponding
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to the spin of the fermions. From the previous section we know that the spectrum of

the model may be expressed in terms of the two SU(2) spins, Q±/2, where Q± are non-

negative integers whose sum is constrained to take values N,N − 2, N − 4, . . .. The

energies and their degeneracies are:

E(Q+, Q−) = g [Q+(Q+ + 2)−Q−(Q− + 2)] = g(Q+ −Q−)(Q+ +Q− + 2) ,

deg(Q+, Q−) =
(Q+ + 1)2(Q− + 1)2N !(N + 2)!(

N−Q+−Q−
2

)
!
(
N+Q+−Q−+2

2

)
!
(
N−Q++Q−+2

2

)
!
(
N+Q++Q−+4

2

)
!
. (2.34)

The ground state corresponds to Q+ = 0, Q− = N ; it has energy E0 = −λ(N + 2) and

degeneracy N + 1. For the series of states Q+ = m, Q− = N −m, where m are positive

integers much smaller than N , we find the excitation energies Em − E0 ≈ 2mλ. These

states are equally spaced in the large N limit, and their degeneracies behave for large N

as N1+m

(m+1)!
. Thus, the density of states ρ(E) near the lower edge grows as ∼ N

E−E0
2λ . This

edge behavior does not have a smooth large N limit; it is very different from the random

matrix behavior ∼ √E − E0 which is observed in the SYK model.

Just like for the O(N)× O(2)2 model, we find that the large N limit of the O(N)×

SO(4) model has a nearly linear behavior of the logarithm of density of states for a certain

range of E/λ (see figure 2.4). Let us study this function more precisely near the middle

of the distribution, following the procedure used in the previous section. We include the

contributions of representations where Q± ∼
√
N , and introduce variables x± = Q±/

√
N .

The energy is then given by E = λ
(
x2

+ − x2
−
)
. Using the Stirling approximation for the

factorials in (2.34), we find that the density of states is

ρ(E) ∼
ˆ ∞

0

dx+

ˆ ∞
0

dx−x
2
+x

2
−e
−(x2

++x2
−)δ
(
E − λ

(
x2

+ − x2
−
))

. (2.35)

This integral can be evaluated in closed form:

ρ(E) = 22N |E|
πλ2

K1

( |E|
λ

)
, (2.36)

where K1 is the modified Bessel function, and the normalization is such that ρ integrates
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Figure 2.4: The logarithm of the density of states for the O(200) × SO(4) (on the left)
and O(300)× SO(4) (on the right) models with Hamiltonian (2.2). For comparison, the
large N result (2.36) is shown with a dashed line.

to the total number of states, 22N . Plotting (2.36), we see that in the range where

N−1〈|E|/λ〈N , it is close to the numerical results in figure 2.4. The expansion of (2.36)

near the origin,

ρ = 22N 1

πλ

(
1 +

1

4
(2 log

|x|
2

+ 2γ − 1)x2 +O(log |x|x4)

)
, x =

E

λ
, (2.37)

shows that ρ′′(0) diverges. The reasons for this unusual behavior in the large N limit

were discussed in the previous section. We also note that ρ ∼ |x|1/2e−|x| for |x| � 1.

The approximation (2.36) can be used to get the large N limit of the free energy:

F (T ) = −T logZ(T ) =
3

2
T log

(
λ2

T 2
− 1

)
, (2.38)

up to an additive term linear in T . The specific heat diverges at the Hagedorn temperature

TH = λ,

C(T ) = −T ∂
2F

∂T 2
=

3λ2 (T 2 + λ2)

(T 2 − λ2)2 . (2.39)

Note that this is of order N0 for T < TH , as usual for the Hagedorn transition. For a

finite N , the divergence is cut off, but the peak is prominent; see figure 2.5.

We can write the Hamiltonian (2.2) in terms of complex fermions by introducing the

following operators:

ca1 =
1√
2

(ψa1 + iψa2) , c̄a1 =
1√
2

(ψa1 − iψa2) ,
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Figure 2.5: The plot of specific heat C for the O(N) × SO(4) model, as a function of
temperature T/λ, for N = 50, 100, 150. The peak in specific heat gets closer to T/λ = 1
as N increases.

ca2 =
1√
2

(ψa3 + iψa4) , c̄a2 =
1√
2

(ψa3 − iψa4) . (2.40)

We may think of a = 1, . . . N as a 1-dimensional lattice index, so that there are two

complex fermions at each lattice site. The lattice Hamiltonian is then non-local:6

HO(N)×SO(4) = −gN
2
− gN2

4
+ gc̄a1c̄a2cb1cb2 + g

(∑
a

~Ja

)2

, ~Ja = c̄aα~σαβcaβ .

(2.41)

It is then not surprising that this model exhibits a phase transition in the large N limit:

it corresponds to the limit where the lattice becomes infinitely long.

For the Hilbert space of the model containing fermions ψiJ , the quadratic Casimirs of

the SO(N) and SO(4) symmetry groups satisfy the constraint [62],

C
SO(N)
2 + C

SO(4)
2 =

1

2
N (N + 2) . (2.42)

In later sections we will be interested in the SO(N) invariant states, and (2.42) implies

that these states must have C
SO(4)
2 = N

(
N
2

+ 1
)
. The corresponding representations of

6This Hamiltonian should be contrasted with the local fermionic O(N) chains, where there are N
fermions at each lattice site.
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SU(2)× SU(2) have spins j+ = 0, j− = N/2 or j+ = N/2, j− = 0. The first set of N + 1

states has the lowest energy, while the second set of N + 1 states has the highest energy.

In total there are 2N + 2 states which are SO(N) invariant.

We may also work in terms of complex fermions cai, (2.40), which are naturally acted

on by SU(N)×SU(2)×U(1). The SU(N) acts on the first index, SU(2) on the second,

and U(1) by overall phase rotation. On the Hilbert space constructed this way, the

quadratic Casimirs satisfy the constraint [62]

C
SU(N)
2 + C

SU(2)
2 =

N + 2

4N
(N2 −Q2) , (2.43)

where Q is the U(1) charge. This implies that the SU(N) invariant states with Q = 0

must be in the spin N/2 representation of SU(2). Therefore, there are N + 1 such states.

There are also two SU(N) × SU(2) invariant states, which have Q = ±N . Thus, the

total number of SU(N) invariant states is N + 3.

We can generalize such a model to the case of O(N)×SO(2M) with the Hamiltonian

H = iM
g

M !
εj1...j2Mψa1j1ψa1j2 . . . ψaM j2M−1

ψaM j2M . (2.44)

This may be expressed via the higher Casimirs operators of the SO(2M) group. For the

case of M = 1 we would have a simple model O(N)× SO(2),

H = igεijψaiψaj = 2igψa1ψa2 = 2g

(
c̄aca −

N

2

)
, ca =

ψa1 + iψa2√
2

. (2.45)

The spectrum consists of half-integers running from E = −N
2

+ q and the degeneracy

deg(E) = N !
q!(N−q)! corresponds to the representation of the fully antisymmetric tensors.

2.4 Fermionic matrix models

In this section we study the fermionic matrix models with O(N1) × O(N2) × O(2)

symmetry [62]. They contain 2N1N2 Majorana fermions that are coupled by the Hamil-
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tonian

H = gψabcψab′c′ψa′bc′ψa′b′c −
g

2
N1N2 (N1 −N2 + 2) . (2.46)

The direct numerical diagonalization of this Hamiltonian is hampered by the exponential

growth of the dimension of Hilbert space as 2N1N2 . For N1 = N2 = 6 it is ≈ 7 ·1010, while

for N1 = N2 = 8 it is ≈ 2 · 1018 states. For the former we were able to carry out Lanczos

diagonalization giving the wave functions and energies of the lowest few states.
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Figure 2.6: The spectrum for N1 = N2 = 8 and N1 = N2 = 10 on the top and the bottom
row. One can see that the spectrum is Gaussian, but split into two branches. The fit is
quite close to the theoretical predictions.

Fortunately, the Hamiltonian (2.46) may be expressed in terms of the U(1) charge Q,

the Casimir operators of the SO(Ni) symmetry groups, as well as of the SU(N1) group

which acts on the spectrum [62]:

H = −2g

(
4C

SU(N1)
2 − CSO(N1)

2 + C
SO(N2)
2 +

2

N1

Q2 + (N2 −N1)Q− 1

4
N1N2(N1 +N2)

)
.

(2.47)

This analytical expression allows us to proceed to higher values of Ni. In general, all the
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energy eigenvalues are integers in units of g, but finding their degeneracies requires some

calculations via the group representation theory.

For N1 = N2 = N , we find that near E ≈ 0 the density of states may be approximated

by the Gaussian:

log ρ(E) = N2 log 2− 1

2

(
E

λN

)2

, (2.48)

where λ = gN is the ‘t-Hooft coupling, which is held fixed as N → ∞. We find nice

agreement, which is shown for N1 = N2 = 8 and N1 = N2 = 10 in figure 2.6 and for

N1 = N2 = 9 in figure 2.7.

To demonstrate the validity of this approximation, let us compute

〈En〉 =

ˆ
dE ρ(E)En =

tr [Hn]

tr [1]
. (2.49)

This may be computed via the path integral

tr [Hn]

tr [1]
=

ˆ
DψabHn exp

− βˆ

0

dτ ψab(τ) ∂τψab(τ)

 . (2.50)

Therefore we can use standard Feynman techniques with the propagator 〈ψabψa′b′〉 =

1
2
δaa′δbb′ and H as an interaction vertex. Since H has the form of a single-trace operator

in the large N limit, this product is dominated by the planar diagrams and moreover by

the disconnected parts. From this point of view one can see that

tr [H2n]

tr [1]
=

(2n)!

2nn!
σ2
E, where σ2

E =
tr [H2]

tr [1]
= H H. (2.51)

Then one can invert (2.49) and get that ρ(E) is the Gaussian distribution

ρ(E) =
1√

2πσ2
E

exp

(
− E2

2σ2
E

)
. (2.52)

The second moment, σ2
E, is easy to compute using the diagrammatic technique: σ2

E =
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g2 (N4 −N3) ≈ (λN)2. To get the higher order corrections to the distribution function,

we can continue calculating the energy moments, or we can instead simply compute the

free energy and perform the inverse Laplace transformation to get the energy distribution.

To be more precise, the free energy is defined as

F (β) = − log tr e−βH = − log

ˆ
dE ρ(E) e−βE. (2.53)

This gives us a formula to compute F (β) as a sum of the connected diagrams with H as

an interaction vertex

F (β) =
∞∑
n=1

βn tr (Hn)con = β2 tr
(
H2
)

con
+ β4 tr (Hn)con + . . . (2.54)

Continuing this function to imaginary temperatures β → iβ, we can use the inverse

Fourier transform

ρ(E) =

ˆ
dβ

2π
eiβEe−F (iβ) =

ˆ
dβ

2π
eiβEe−β

2 tr(H2)
con
−β4 tr(H4)

con
+.... (2.55)

This integral can be calculated with the use of general diagrammatic technique, where

iE is the source for the energy, tr(H2)con is the propagator, and tr (H4)con and the higher

correlators are the vertices. By using these procedures we can compute the connected

contribution. It is easy to compute the leading contributions to the connected trace of

H4,

(
trH4

)
con.

=
(
trH4

)
− 3

(
trH2

)2

con.
= 8g4N6 . (2.56)

After that we can restore

log ρ(E) = N2 log 2− 1

2
x2 − 1

12N2
x4 + . . . , E = gN2x . (2.57)

Comparing this expression with the numerical data we find a nice agreement between

these two formulas.
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Figure 2.7: The spectrum for N1 = N2 = 9. As one can see it has the same features as
for N1 = N2 = 8 and N1 = N2 = 10, but there is no separation between the even and
the odd energy sectors. It could indicate that this difference has a purely group theoretic
explanation.
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Figure 2.8: The specific heat as a function of temperature for the O(N)2 × O(2) matrix
model with N = 10. The low-temperature peak is due to the discreteness of the spectrum.
At higher T , the specific heat falls off polynomially with the power α = d logC

d log T
= −1.98,

close to that predicted by the analytic result (2.60).
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Let us note the splitting between the even and the odd energies, which is seen in figure

2.6 but absent in figure 2.7. These two sets of energies are distinguished by the value of

PC = (−1)
1
2(C2

O1
−C2

O2
) . (2.58)

The trace of this operator counts the difference between the number of these branches.

The trace of this operator over the whole space can be computed via the representation

theory and is equal to trPC = 22N2−N+1.

We can study the thermodynamic properties of the matrix model in a similar fashion

as in the case of the vector models. The behavior of the system would be analogous to a

system of the spins in an external magnetic field. The partition function is

Z(T ) =

∞̂

−∞

dEe−
E
T e−

E2

2λ2N2 ∼ e
λ2N2

2T2 , F = −T logZ(T ) = −λ
2N2

2T
, (2.59)

and the heat capacity C is

C = −T ∂
2F

∂T 2
=
λ2N2

T 2
. (2.60)

This behavior is nicely captured by the numerical results shown in figure 2.8. Note that

the peak near Tpeak ∼ g ∼ λ
N

is due to the discreteness of the spectrum; it may be seen

if we consider the contributions coming only from the ground state and the first excited

state.

2.5 Decomposing the Hilbert Space

In this section we will review the structure of the Hilbert space of the O(N1) ×

O(N2)×O(2) symmetric Majorana models. We will study the irreducible representation

of this algebra, which is spanned by 2 × N1 × N2 Majorana fermions ψabc subject to

the anticommutation relations (2.46). To simplify the structure we introduce the Dirac

42



fermions by combining two Majorana fermions,

cab =
1√
2

(ψab1 + iψab2) , c̄ab =
1√
2

(ψab1 − iψab2) ,

{cab, c̄a′b′} = δaa′δbb′ , {cab, ca′b′} = {c̄ab, c̄a′b′} = 0. (2.61)

These relations respect the larger symmetry group U(N1)a × U(N2)b, and could be con-

sidered as symmetries of the Hilbert space, in contrast to the Hamiltonian (2.46) which

does not respect these symmetries. We can now try to decompose the Hilbert space in

terms of the representations of these unitary groups using the character theory [71]. We

notice that the generator of the U(N1)a and U(N2)b groups could be rewritten in the

following form

JAT =
1

2
TAaa′ [c̄ab, ca′b] , JBT =

1

2
TBbb′ [c̄ab, cab′ ] , (2.62)

where TA,Baa′ are hermitian matrices and can be considered as elements of the u(Ni) algebra.

Then the operators JA,BT are the corresponding representations of these elements of the

u(Ni) algebra. Hence, a general element of the Ua(N1) × Ub(N2) group, acting on the

Hilbert space, is

g = eiT
A

, ρψ(g) = e
i
2
TA
aa′ [c̄ab,ca′b]. (2.63)

Therefore we can compute the trace of this operator in the Hilbert space, and it is equal

to the following:

χH(TA, TB) = tr
(
e
i
2
TA
aa′ [c̄ab,ca′b]+

i
2
TB
bb′ [c̄ab,cab′ ]

)
. (2.64)

We can study this trace rigorously and expand this exponent to compute the trace order

by order. Since the TA,B are hermitian matrices, we can diagonalize the matrix by some

unitary transformation of the Hilbert space. Therefore, we can just consider the case
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where the matrices TA,B are diagonal

TAaa′ = xaδaa′ , TBbb′ = ybδbb′ . (2.65)

This gives the following formula for the character

χH(xa, yb) = tr
(
e
i
2

∑
a,b(xa+yb)[c̄ab,cab]

)
. (2.66)

Since each of the N1N2 pairs cab, c̄ab and [c̄ab, cab] acts diagonally on the Hilbert space,

the trace for each of the ab effectively decouples from the rest making the computation

straightforward,

χH (xa, yb) =

N1,N2∏
a,b=1

(
e−

i
2

(xa+yb) + e
i
2

(xa+yb)
)

=

N,M∏
a,b=1

2 cos

[
xa + yb

2

]
. (2.67)

One can see that this integral has the correct normalization, because if xa = yb = 0 we

restore the dimension of the space and χH = 2N1N2 as it should be. We can decompose

this product in terms of the Schur polynomials, which are the characters of the irreducible

representations of U(Ni). Fortunately, this problem is easily solved with the use of the

dual Cauchy identity [72]

N1,N2∏
a,b=1

(
e−

i
2

(xa+yb) + e
i
2

(xa+yb)
)

=
∑

λ⊂(N
N2
1 )

sλ
(
eixa
)
sλT
(
eiyb
)
, (2.68)

where the λ is the Young Tableaux and λT is the transpose. Therefore the Hilbert space

has a very simple decomposition in terms of the U(Ni) groups. To each Young tableaux

λ ⊂ (NN2
1 ) with no more than N1 columns and N2 rows we assign only one Ua(N1)

representation; this state is an irreducible representation for the second unitary group

described by the transposed Young Tableaux λT : H =
∑

λ⊂(N
N2
1 )

[λ]⊗
[
λT
]
.

Our original problem came from the study of the Hamiltonians and the anticommu-

tation relations respecting the O(Ni) group, instead of the unitary group U(Ni). Since

O(Ni) ⊂ U(Ni) we can simply decompose each of the representations [λ] of the U(Ni) into
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irreducible representations of O(Ni). This problem was successfully solved by Littlewood

in 1947 [73] and he obtained the following result [74],

[λ]U(Ni) =
∑

µ,δ≺λ,δ∈∆2

cλδ,µ[µ]O(Ni), (2.69)

where [λ]U(Ni) and [µ]O(Ni) are representations of the U(Ni) andO(Ni) groups described by

Young Tableaux λ, and ∆2 is the set of all Young Tableaux with an even number of rows,

and cλδ,µ is a Littlewood-Richardson coefficient. While this rule gives a nice procedure

for the decomposition of the Hilbert space in terms of the irreducible representations of

O(Ni), it complicates the analytical understanding of the structure of the Hilbert space.

It is interesting to notice that if, instead of complex fermions cab, we considered Majo-

rana fermions ψab, we can compute the partition function to get the following character,

χH(xa, yb) =

N1
2
,
N2
2∏

i=a,j=b

(
eixa + e−ixa + eiyb + e−iyb

)
. (2.70)

We can deduce this structure heuristically. Note that, because of the Fermi-nature

of each state λ of the O(2n) representation, we must include the correspondence λ ⊂

((N1/2)(N2/2)). One can compute the dimension of all of these representations and find

that it is equal to the full Hilbert space. This gives a new dual Cauchy identity for

orthogonal Schur polynomials,

∑
λ⊂(nm)

oλ(x)o((N1/2)(N2/2)/λ)′(y) =
∏
i,j

(
xi + x−1

i + yj + y−1
j

)
. (2.71)

It is easy to show that this is true just from the definition of the orthogonal characters.

First of all, we notice that the charater of O(2n) in the even case has the following form

[71, 75],

oλ(x) =
aλ
a0

=
det
(
x
λj+n−j
i + x

−(λj+n−j)
i

)
det
(
xn−ji + x

−(n−j)
i

) . (2.72)
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Then we notice that if we denote the length of rows in the diagram ((N1/2)(N2/2)/λ)′ as

µi, the numbers µi+m− i, λj +n−j comprise a permutation σ ∈ Sn of the numbers In =

{0, 1, . . . , n+m− 1}. Therefore, we just need to sum up all over possible permutations

of the set In. This gives us

∑
λ⊂(nm)

oλ(x)o((N1/2)(N2/2)/λ)′(y) =

∑
σ∈Sn aσλ(x)aλ̃(y)

a2
0

, (2.73)

where σ(λ) = σ ({0, . . . , n− 1}) σ(λ̃) = σ ({n, . . . , n+m− 1}). This could be rewritten

using the Laplace rule for calculating determinants. We find that,

∑
σ∈Sn

aσλ(x)aλ̃(y) = ∆
(
x1 + x−1

1 , x2 + x−1
2 , . . . ,−y1 − y−1

1 , . . . ,−yn − y−1
n

)
=

= a0(x)a0(y)

n,m∏
i=1,j=1

(
xi + x−1

i + yj + y−1
j

)
. (2.74)

The relation (2.71) directly follows. This concludes the proof of the structure of the

O(2n) × O(2m) model. We can present a direct computation to show that this relation

works for the O(4)×O(2) model. The content of the Hilbert space is

H = · ⊗ + ⊗ + ⊗ · (2.75)

The characters of this representations are

O(2) : χ· = 1, χ = x1 + x−1
1 , χ = x2

1 + x−2
1

O(4) : χ· = 1, χ = y1 + y−1
1 + y2 + y−1

2 , χ = 2 + y1y2 + y1y
−1
2 + y−1

1 y2 + y−1
1 y−1

2 .

(2.76)

Substituting these into the character of the Hilbert space we get

χH =

(
x1 +

1

x1

+ y1 +
1

y1

)(
x1 +

1

x1

+ y2 +
1

y2

)
. (2.77)

46



As one can see, the representation of the one-dimensional fermions gives a very power-

ful tool for proving famous combinatorial equalities. It would be interesting to expand

these ideas for other groups, say Sp(N), and to generalize it for the case of MacDonald

polynomials [72].
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3 RG Flow and ε expansions

3.1 Prismatic Model

3.1.1 Introduction

In recent literature, there has been considerable interest in models where the degrees

of freedom transform as tensors of rank 3 or higher. Such models with appropriately

chosen interactions admit new kinds of large N limits, which are not of ’t Hooft type and

are dominated by the so-called melonic Feynman diagrams [20, 54, 22, 23, 19]. Much of

the recent activity (for a review see [14]) has been on the quantum mechanical models of

fermionic tensors [23, 19], which have large N limits similar to that in the Sachdev-Ye-

Kitaev (SYK) model [37, 25, 39, 24, 76, 77, 40, 78].

It is also of interest to explore similar quantum theories of bosonic tensors [19, 26, 79].

In [19, 26] an O(N)3 invariant theory of the scalar fields φabc was studied:

S4 =

ˆ
ddx

(
1

2
(∂µφ

abc)2 +
g

4!
Otetra

)
,

Otetra = φa1b1c1φa1b2c2φa2b1c2φa2b2c1 . (3.1)

This QFT is super-renormalizable in d < 4 and is formally solvable using the Schwinger-

Dyson equations in the large N limit where gN3/2 is held fixed. However, this model has

some instabilities. One problem is that the “tetrahedral” operator Otetra is not positive

definite. Even if we ignore this and consider the large N limit formally, we find that in

d < 4 the O(N)3 invariant operator φabcφabc has a complex dimension of the form d
2
+iα(d)

[26].7 From the dual AdS point of view, such a complex dimension corresponds to a scalar

field whose m2 is below the Breitenlohner-Freedman stability bound [84, 85]. The origin of

the complex dimensions was elucidated using perturbation theory in 4−ε dimensions: the

fixed point was found to be at complex values of the couplings for the additional O(N)3

invariant operators required by the renormalizability [26]. In [26] a O(N)5 symmetric

theory for tensor φabcde and sextic interactions was also considered. It was found that

7Such complex dimensions appear in various other large N theories; see, for example, [80, 81, 82, 83].
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the dimension of operator φabcdeφabcde is real in the narrow range dcrit < d < 3, where

dcrit ≈ 2.97. However, the scalar potential of this theory is again unstable, so the theory

may be defined only formally. In spite of these problems, some interesting formal results

on melonic scalar theories of this type were found recently [86].

g1 g2 g3 g4 g5 g6 g7 g8

Figure 3.1: Diagrammatic representation of the eight possible O(N)3 invariant sextic
interaction terms.

In this paper, we continue the search for stable bosonic large N tensor models with

multiple O(N) symmetry groups. Specifically, we study the O(N)3 symmetric theory of

scalar fields φabc with a sixth-order interaction, whose Euclidean action is

S6 =

ˆ
ddx

(
1

2
(∂µφ

abc)2 +
g1

6!
φa1b1c1φa1b2c2φa2b1c2φa3b3c1φa3b2c3φa2b3c3

)
. (3.2)

This QFT is super-renormalizable in d < 3. When the fields φabc are represented by

vertices and index contractions by edges, this interaction term looks like a prism (see

figure 11 in [19]); it is the leftmost diagram in figure 3.1. Unlike with the tetrahedral

quartic interaction (3.1), the action (3.2) is positive for g1 > 0. In sections 3.1.2 and

3.1.3, we will show that there is a smooth large N limit where g1N
3 is held fixed and

derive formulae for various operator dimensions in continuous d. We will call this large

N limit the “prismatic” limit: the leading Feynman diagrams are not the same as the

melonic diagrams, which appear in the O(N)5 symmetric φ6 QFT for a tensor φabcde [26].

However, as we discuss in section 3.1.2, the prismatic interaction may be reduced to a

tetrahedral one, (3.3), by introducing an auxiliary tensor field χabc.

The theory (3.2) may be viewed as a tensor counterpart of the bosonic theory with

random couplings, which was introduced in section 6.2 of [79]. Since both theories are

dominated by the same class of diagrams in the large N limit, they have the same

Schwinger-Dyson equations for the 2-point and 4-point functions. We will confirm the
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conclusion of [79] that the d = 2 theory does not have a stable IR limit; this is due to

the appearance of a complex scaling dimension. However, we find that in the ranges

2.81 < d < 3 and d < 1.68, the large N prismatic theory does not have any complex

dimensions for the bilinear operators. In section 3.1.5 we use renormalized perturbation

theory to develop the 3 − ε expansion of the prismatic QFT. We have to include all

eight operators invariant under the O(N)3 symmetry and the S3 symmetry permuting

the O(N) groups; they are shown in figure 3.1 and written down in (3.76). For N > Ncrit,

where Ncrit ≈ 53.65, we find a prismatic RG fixed point where all eight coupling constants

are real. At this fixed point, ε expansions of various operator dimensions agree in the

large N limit with those obtained using the Schwinger-Dyson equations. Futhermore, the

3− ε expansion provides us with a method to calculate the 1/N corrections to operator

dimensions, as shown in (3.65), (3.66). At N = Ncrit the prismatic fixed point merges

with another fixed point, and for N < Ncrit both become complex.

In section 3.1.6 we discuss the d = 1 version of the model (3.2). Our large N solution

gives a slightly negative scaling dimension, ∆φ ≈ −0.09, while the spectrum of bilinear

operators is free of complex scaling dimensions.

3.1.2 Large N Limit

To study the large N limit of this theory, we will find it helpful to introduce an

auxiliary field χabc so that8

S =

ˆ
ddx

(
1

2
(∂µφ

abc)2 +
g

3!
φa1b1c1φa1b2c2φa2b1c2χa2b2c1 − 1

2
χabcχabc

)
. (3.3)

where g ∼ √g
1
. Integrating out χabc gives rise to the action (3.2). The advantage of

keeping χabc explicitly is that the theory is then a theory withO(N)3 symmetry dominated

by the tetrahedral interactions, except it now involves two rank-3 fields; this shows that

it has a smooth large N limit. Thus, a prismatic large N limit for the theory with one

3-tensor φabc may be viewed as a tetrahedral limit for two 3-tensors.

8If we added fermions to make the tensor model supersymmetric [19, 79, 87, 88] then χabc would be
interpreted as the highest component of the superfield Φabc.
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Let us define the following propagators:

〈φ(p)φ(q)〉 = (2π)dδd(p+ q)G(p), 〈χ(p)χ(q)〉 = (2π)dδd(p+ q)F (p). (3.4)

In the free theory G(p) = G0(p) = 1
p2 , and F (p) = F0 = 1. In the strong coupling limit

the self-energies of the fields are given by the inverse propagators: G(p)−1 = Σφ and

F (p)−1 = Σχ. The Schwinger-Dyson equations for the exact two-point functions can be

written as:

F (p) = F0 + g2N3F0

ˆ
ddqddk

(2π)2d
G(p− q − k)G(q)G(k)F (p) ,

G(p) = G0(p) + 3g2N3G0(p)

ˆ
ddqddk

(2π)2d
G(p− q − k)F (q)G(k)G(p) , (3.5)

and represented in figure 3.2.

Figure 3.2: Diagramatic representation of the Schwinger-Dyson equations. Solid lines
denote φ propagators, and dashed lines denote χ propagators.

Multiplying the first equation by F−1
0 on the left and F (p)−1 on the right, and likewise

for the second equation we obtain:

F (p)−1 = F−1
0 − λ2

ˆ
ddqddk

(2π)2d
G(p− q − k)G(q)G(k) ,

G(p)−1 = G0(p)−1 − 3λ2

ˆ
ddqddk

(2π)2d
G(p− q − k)F (q)G(k) , (3.6)

where λ2 = N3g2 ∼ N3g1. We have to take the large N limit keeping λ2 fixed. In the IR
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limit, let us assume

G(p) =
A

p2a
, F (p) =

B

p2b
.

a is related to the scaling dimension of φ, ∆φ via a = d/2−∆φ.

For what range of a and b can we drop the free terms in the gap equations above?

In the strong coupling limit we require b < 0 and a < 1. Since b = −3a + d, we have

d/3 < a < 1. In terms of ∆φ, we then find

3∆φ + ∆χ = d , d/2− 1 < ∆φ < d/6. (3.7)

Notice that, if we had the usual kinetic term for the χ field, the allowed range for ∆φ

would be larger. Therefore, our solution may also apply to a model with two dynamical

scalar fields interacting via the particular interaction given above.

The gap equation is finally:

F (p)−1 = −λ2

ˆ
ddqddk

(2π)2d
G(p− q − k)G(q)G(k) ,

G(p)−1 = −3λ2

ˆ
ddqddk

(2π)2d
G(p− q − k)F (q)G(k) . (3.8)

Dimensional analysis of the strong coupling fixed point actually does not fix a: we get

b = −3a + d from the first equation and a = −2a − b + d from the second equation.

Let us try to solve the above equations, in the hope that numerical factors arising from

the Feynman integrals may determine a. The overall constant A is not determined from

this procedure, but note that [λ] = 3 − d, and therefore A ∼ λ
2(a−1)

3−d . This procedure is

analogous to solving an eigenvalue equation, and perhaps it is not surprising that we have

to do this, since a solution for a also determines the anomalous dimension of a composite

operator φ3. We then find

F (p) =
−1

A3λ2

(2π)2d

Ld(a, a)Ld(2a− d/2, a)

1

p2b
, (3.9)
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where

Ld(a, b) = πd/2
Γ(d/2− a)Γ(d/2− b)Γ(a+ b− d/2)

Γ(a)Γ(b)Γ(d− a− b) . (3.10)

The condition that must be satisfied by a is then:

3
Ld(2a− d/2, d− 3a)

Ld(2a− d/2, a)
= 1 . (3.11)

In position space, the IR two-point functions take the form

G(x) =
Γ(d/2− a)

πd/222aΓ(a)

A

(x2)∆φ
, (3.12)

F (x) =
Γ(d/2− b)
πd/222bΓ(b)

(2π)2d

A3λ2Ld(a, a)Ld(2a− d/2, a)

1

(x2)d−3∆φ
. (3.13)

In terms of ∆φ, (3.11) may be written as

f(d,∆φ) ≡ 1

3

Γ(d
2
− 3∆φ)Γ(−d

2
+ 3∆φ)Γ(∆φ)Γ(d−∆φ)

Γ(d
2
−∆φ)Γ(−d

2
+ ∆φ)Γ(3∆φ)Γ(d− 3∆φ)

= 1 . (3.14)

It can be verified numerically that that solutions to (3.14) within the allowed range

(3.7) do exist in d < 3. For example, for d = 2.9 we have the solution shown in Figure

3.3:

∆φ ≈ 0.456 , ∆χ ≈ 1.531 . (3.15)

For d = 2.99, we find ∆φ = 0.495, and d = 2.999, ∆φ = 0.4995, consistent with the 3− ε

expansion (3.36). For d = 2, (3.11) simplifies to

3(3∆φ − 1)2 = (∆φ − 1)2 . (3.16)

The solution ∆φ = 1
13

(
4−
√

3
)

lies within the allowed range (3.7), while the one with

the other branch of the square root is outside it.

For d < 2 we find multiple solutions within the allowed range (3.7), as shown for d = 1

in figure 3.4. One of the solutions gives ∆φ = 0; this produces singularities in the large
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0.455 0.460 0.465 0.470 0.475 0.480
Δϕ

-2
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1

2

3

f 2.9, Δϕ

Figure 3.3: Solving (3.14) for d = 2.9.

N dimensions of scalar bilinears, and we will not use it. The other solution,

∆φ ≈ −0.09055 , ∆χ ≈ 1.2717 , (3.17)

appears to be acceptable. Although ∆φ >
d−2

2
it still violates the unitraity bound, since

∆φ is negative. We note that there is also a positive solution ∆φ ≈ 0.225, which lies

outside of the allowed range (although it would be allowed if the χ field was dynamical).

-0.5 -0.4 -0.3 -0.2 -0.1 0.1
Δϕ

-2

-1

1

2

3

f 1, Δϕ

Figure 3.4: Solving (3.14) for d = 1.

There is an interesting transition in behavior which happens at d = dc where there is
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a double root at ∆φ = 0. The critical dimension dc is the solution of

2 + dcπ cot(dcπ/2) + dc(γ + ψ(dc)) = 0 . (3.18)

Its numerical value is dc = 1.35287. For d slightly above dc one of the solutions for ∆φ is

zero, while the other is positive; we have to pick the positive one. However, for d slightly

below dc one of the solutions for ∆φ is zero, while the other is negative. Special care may

be needed for continuation to d < dc; in particular, for studying the d = 1 case.

3.1.3 Bilinear Operators

There are three types of scalar bilinears one can consider, which are of the schematic

form: A = φ(ξ · ∂)s(∂2)nφ, B = φ(ξ · ∂)s(∂2)nχ and C = χ(ξ · ∂)s(∂2)nχ, where ξµ is an

auxiliary null vector introduced to encode the spin of the operators, ξ · ∂ = ξµ∂µ, and

∂2 = ∂µ∂µ. We note that there is mixing of operators of type A and C. It is easy to

convince oneself that there is no mixing with the B operators by drawing a few diagrams.

Let us consider a bilinear of type B, of spin s and scaling dimension ∆, for which

there is no mixing. The three-point functions take the form [89, 90]:

〈φabc(x1)χabc(x2)Bs(x3; ξ)〉 = v(B)(x1, x2, x3) =
Qs

3

x
τ+∆φ−∆χ

31 x
τ+∆χ−∆φ

32 x
∆φ+∆χ−τ
12

→ v(B)
s,τ (x1, x2) = (x12 · ξ)sxτ−∆φ−∆χ

12 ,

(3.19)

where τ = ∆ − s is the twist of the bilinear, ξ is the null polarization vector, Q3 is the

conformally invariant tensor structure defined in [89, 90] and we took the limit x3 →∞ in

the second line. The eigenvalue equation, obtained using the integration kernel depicted

schematically in figure 3.5, is

vs,τ (x1, x2) = 3λ2

ˆ
ddyddzF (x2, y)G(y, z)2G(z, x1)vs,τ (y, z) (3.20)
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Figure 3.5: The integration kernel for type B bilinears.

When s = 0, we have:

|x1 − x2|−∆φ−∆χ+∆ = 3Ã3B̃λ2

ˆ
ddyddz

1

|x2 − y|2∆χ|y − z|5∆φ+∆χ−∆|z − x1|2∆φ
(3.21)

which translates into

g(B)(d,∆) ≡ −3
Γ(3∆φ) sin

(
1
2
π(d− 6∆φ)

)
Γ
(
d
2
−∆φ

)
Γ
(
−d

2
+ 3∆φ + 1

)
Γ
(

∆
2
−∆φ

)
Γ
(

1
2
(d−∆− 2∆φ)

)
πΓ(∆φ)Γ

(
∆
2

+ ∆φ

)
Γ
(
d−∆

2
+ ∆φ

)
= 1 . (3.22)

2 4 6 8
Δ

-1

1

2

g(B)(2.9, Δ)

Figure 3.6: The spectrum of type B bilinears in d = 2.9. The red lines correspond to
asympotes at 2n+ ∆φ + ∆χ = 2n+ 1.98747.

We can solve equation (3.22) numerically to find the allowed scaling dimensions for

type B operators in various dimensions. In d = 2.9 the type B scaling dimensions are

∆B = 2.30120; 4.00173; 5.99214; 7.98983; 9.98891; . . . , (3.23)

as shown in figure 3.6. In the pure φ language, the first one can be identified with the
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tetrahedral operator. The type B scaling approach the asymptotic formula

∆B → 2n+ ∆φ + ∆χ = 2n+ 1.98747 . (3.24)

For example, for n = 54 we numerically find ∆ = 109.98749, which is very close to (3.24).

For spin s > 0 the eigenvalue equation is:

(x12 · ξ)s|x1 − x2|−∆φ−∆χ+∆ = 3Ã3B̃λ2

ˆ
ddyddz

((y − z) · ξ)s
|x2 − y|2∆χ|y − z|5∆φ+∆χ−∆|z − x1|2∆φ

(3.25)

Note that the spectrum of type B bilinears does not contain the stress tensor, which is

of type A/C.

Processing the equation we have the following condition for the allowed twists of

higher spin bilinears:

g(B)(d, τ, s) ≡

−3
Γ(3∆φ) sin

(
1
2
π(d− 6∆φ)

)
Γ
(
d
2
−∆φ

)
Γ
(
−d

2
+ 3∆φ + 1

)
Γ
(

1
2
(d− 2∆φ − τ)

)
Γ
(
s−∆φ + τ

2

)
πΓ(∆φ)Γ

(
d
2

+ ∆φ − τ
2

)
Γ
(
s+ ∆φ + τ

2

)
= 1 . (3.26)

Using this equation one can find the allowed twists of spin-s type B bilinears. For

example, the spectrum when s = 2 and d = 2.9 is found from figure 3.7 to be τ =

2.08, 3.99, 5.99, 7.99, . . ., which approach ∆χ + ∆φ + 2n = 1.99 + 2n from above.

We find that the spectrum of type B bilinear appears to be real for all d < 3. However,

there are ranges of d where the spectrum of type A/C operators do contain complex

eigenvalues, as we discuss in the next section.

Let us now study the spectrum of bilinear operators of type A and C. As mentioned

earlier, by drawing a few diagrams (see figure 3.8) one can see that these operators mix,

in the sense that the two-point function 〈AsCs〉 6= 0. Let τ = ∆ − s be the twist of

mixture of A and C operators, which we denote as Ãs. From the three-point functions
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τ

-1

1

2

g(B)(2.9, τ, 2)

Figure 3.7: Solving equation (3.26) in d = 2.9 for the allowed twists of spin-2 type B
bilinears.

Figure 3.8: The integration kernels KAA, KCA and KAC respectively for mixtures of type
A and C bilinears.

〈φabc(x1)φabc(x2)Ãs(x3; ξ)〉 and 〈χabc(x1)χabc(x2)Ãs(x3; ξ)〉, we define

v(A)
s,τ (x, y) =

((x− y) · ξ)s
(x− y)2∆φ−τ

, v(C)
s,τ (x, y) =

((x− y) · ξ)s
(x− y)2∆χ−τ

. (3.27)

We now define the following kernels, depicted schematically in figure 3.8:

KAA[v(A)] = 3

ˆ
ddxddyG(x1, x)G(x2, y)G(x, y)F (x, y)v(A)

s,τ (x, y) (3.28)

KCA[v(A)] = 3

ˆ
ddxddyF (x1, x)F (x2, y)G(x, y)2v(A)

s,τ (x, y) (3.29)

KAC [v(C)] = 3

ˆ
ddxddyG(x1, x)G(x2, y)G(x, y)2v(C)

s,τ (x, y) (3.30)

Note the factor of 3, which appears from a careful counting of the Wick contractions.

The integration kernel gives rise to the following matrix

2KAA[v(A)]/v(A) KAC [v(C)]/v(A)

KCA[v(A)]/v(C) 0

 ≡
2K1 K3

K2 0

 . (3.31)
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The condition for it to have eigenvalue 1, which determines the allowed values of τ , is

g(A)(d, τ, s) ≡ 2K1 +K3K2 = 1 . (3.32)

Luckily, this condition is independent of the constant A, as one can see from the following

expressions,

K1 =
3(d− 6∆φ)Γ(3∆φ) sin

(
1
2
π(d− 6∆φ)

)
Γ(d− 3∆φ)Γ

(
d
2
−∆φ

)2
Γ
(
∆φ − τ

2

)
Γ
(
−d

2
+ s+ ∆φ + τ

2

)
2πΓ(∆φ)2Γ

(
d−∆φ − τ

2

)
Γ
(

1
2
(d+ 2s− 2∆φ + τ)

) ,

K2 =
3πd24(d−2∆φ)Γ(3∆φ)2Γ

(
d
2
−∆φ

)4
Γ
(
d− 3∆φ − τ

2

)
Γ
(

1
2
(d+ 2s− 6∆φ + τ)

)
A4λ2Γ(∆φ)4Γ

(
d
2
− 3∆φ

)2
Γ
(
3∆φ − τ

2

)
Γ
(
−d

2
+ s+ 3∆φ + τ

2

) ,

K3 =
3A4π−dλ228∆φ−4dΓ(∆φ)2Γ

(
∆φ − τ

2

)
Γ
(
−d

2
+ s+ ∆φ + τ

2

)
Γ
(
d
2
−∆φ

)2
Γ
(
d−∆φ − τ

2

)
Γ
(

1
2
(d+ 2s− 2∆φ + τ)

) . (3.33)

Thus, the equation we need to solve is:

Γ(∆φ)2Γ
(
d
2
− 3∆φ

)2
Γ
(
3∆φ − d

2

)
Γ
(
3∆φ − τ

2

)
Γ
(
d−∆φ − τ

2

)
3Γ(3∆φ)Γ

(
d
2
−∆φ

)2
Γ
(
∆φ − τ

2

)
Γ
(
−d

2
+ s+ ∆φ + τ

2

)
Γ
(

1
2
(d+ 2s− 2∆φ + τ)

)
= 3Γ(3∆φ)Γ

(
3∆φ −

d

2

)
Γ
(
d− 3∆φ −

τ

2

) Γ
(

1
2
(d+ 2s− 6∆φ + τ)

)
Γ
(
−d

2
+ s+ 3∆φ + τ

2

) −
−2Γ

(
d

2
− 3∆φ

)
Γ(d− 3∆φ)Γ

(
3∆φ −

τ

2

)
. (3.34)

One can check that the stress-tensor, which has s = 2 and τ = d − 2, appears in this

spectrum for any d.

The Schwinger-Dyson equations have a symmetry under ∆ → d − ∆. In a given

CFT, only one of this pair of solutions corresponds to a primary operator dimension,

while the other one is its “shadow.” The s = 0 spectrum contains complex modes for

1.6799 < d < 2.8056. In d = 2.9 the graphical solution for the scaling dimensions in the

type A/C sector is shown in figure 3.9. The lowest few are

∆ = 1.064, 1.836, 2.9, 3.114, 4.912, 5.063, 6.913, 7.063, . . . (3.35)

The eigenvalue at ∆ = 2.9 is exact, and in general ∆ = d is an eigenvalue for any d. The

59



2 4 6 8
Δ

-1

1

2

g(A)(2.9, Δ, 0)

Figure 3.9: The spectrum of type A/C scalar bilinears in d = 2.9. The green lines
correspond to the 2∆χ + 2n asymptotics and the red ones to 2∆φ + 2n asymptotics. We
see that the solutions are real, and approach the expected values as n→∞.

2 4 6 8
Δ

-1

1

2

g(A)(2.75, Δ, 0)

Figure 3.10: The spectrum of type A/C scalar bilinears in d = 2.75. The green lines
correspond to the 2∆χ + 2n asymptotics and the red ones to 2∆φ + 2n asymptotics. We
see that two real solutions are no longer present; they are now complex.

solution 1.836 corresponds to the shadow of 1.064. As d is further lowered, the part of

the graph between 1 and 2 moves up so that the two solutions become closer. In d = dcrit,

where dcrit ≈ 2.8056, the two solutions merge into a single one at d/2 (for discussions

of mergers of fixed points, see [91, 92, 93]). For d < dcrit, the solutions become complex

d
2
± iα(d) and the prismatic model becomes unstable. The plot for d = 2.75 is shown in

figure 3.10.

For d ≤ 1.68, the spectrum of bilinears is again real. The plot for d = 1.68, where

∆φ ≈ 0.0867, is shown in figure 3.11. At this critical value of d there are two solutions
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Figure 3.11: The spectrum of type A/C scalar bilinears in d = 1.68. The green vertical
lines correspond to the 2∆χ + 2n asymptotics; the red ones to the 2∆φ + 2n asymptotics.

at d/2; one is the shadow of the other.

3.1.4 Large N results in 3− ε dimensions

Let us solve the Schwinger-Dyson equations in d = 3−ε. The results will be compared

with renormalized perturbation theory in the following section. The scaling dimension of

φabc is found to be

∆φ =
1

2
− ε

2
+ε2− 20ε3

3
+

(
472

9
+
π2

3

)
ε4 +

(
7ζ(3)− 12692

27
− 56π2

9

)
ε5 +O

(
ε6
)
. (3.36)

This is within the allowed range (3.7) and is close to its upper boundary. The scaling

dimension of χabc is

∆χ = d−3∆φ =
3

2
+
ε

2
−3ε2+20ε3−

(
472

3
+ π2

)
ε4−3

(
7ζ(3)− 12692

27
− 56π2

9

)
ε5+O

(
ε6
)
.

(3.37)

Let us consider the s = 0 type A/C bilinears. For the first eigenvalue we find,

∆φ2 = 1− ε+ 32ε2 − 976ε3

3
+

(
30320

9
+

32π2

3

)
ε4 +O

(
ε5
)
. (3.38)

It corresponds to the scaling dimension of operator φabcφabc, as we will show in the next
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section. The next eigenvalue is the shadow dimension d−∆φ2 .

The next solution of the S-D equation is ∆ = d = 3− ε for all d. While this seems to

correspond to an exactly marginal operator, we believe that the corresponding operator

is redundant: it is a linear combination of φabc∂2φabc and χabcχabc. Similar redundant

operators with h = 1 showed up in the Schwinger-Dyson analysis of multi-flavor models

[77, 61]. They decouple in correlation functions [77] and were shown to vanish by the

equations of motion [61]. The next eigenvalue is

∆prism = 3 + ε+ 6ε2−84ε3 +

(
1532

3
+ 10π2

)
ε4 +

(
18ζ(3)− 6392

3
− 452π2

3

)
ε5 +O

(
ε6
)
.

(3.39)

It should correspond to the sextic prism operator (3.2), which is related by the equations

of motion to a linear combination of φabc∂2φabc and χabcχabc.

The subsequent eigenvalues may be separated into two sets. One of them has the

form, for integer n ≥ 0,

∆−n =5 + 2n− ε+ 2ε2 − 40ε3

3
+

+
(2 (472 + 3π2)n(2n+ 7)(n(2n+ 7) + 11) + 180π2 + 28212) ε4

9(n+ 1)(n+ 2)(2n+ 3)(2n+ 5)
+O

(
ε5
)
. (3.40)

For large n this approaches 4 + 2n + 2∆φ, as expected for an operator of the form

φabc(∂2)2+nφabc. The other set of eigenvalues has the form, for integer n ≥ 0,

∆+
n = 5+2n+ ε−6ε2 +4

(
9

n+ 2
− 18

2n+ 3
− 6

2n+ 5
+

3

n+ 1
+ 10

)
ε3 +O

(
ε4
)
. (3.41)

For large n this approaches 2 + 2n + 2∆χ, as expected for an operator of the form

χabc(∂2)1+nχabc. These simple asymptotic forms suggest that for large n the mixing

between operators φabc(∂2)2+nφabc and χabc(∂2)1+nχabc approaches zero.

We can also use (3.22) to derive the 3 − ε expansions of the dimensions of type B

operators,

OB,n = χabc(∂µ∂
µ)nφabc + . . . , (3.42)
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where the additional terms are there to make them conformal primaries. For n = 0 we

find

∆B,0 = 2 + 6ε− 68ε2 +
2848 + 24π2

3
ε3 +O

(
ε4
)
. (3.43)

This scaling dimension corresponds to the operator φabcχabc, which in the original φ

language is the tetrahedron operator Otetra. For the higher operators we get

∆B,1 = 4 + 4ε3 − 44ε4 +O
(
ε5
)
, (3.44)

∆B,2 = 6− 7

5
ε2 +

331

30
ε3 −

(
199547

2250
+

7π2

15

)
ε4 +O

(
ε5
)
, (3.45)

∆B,3 = 8− 12

7
ε2 +

9139

735
ε3 −

(
7581556

77175
+

4π2

7

)
ε4 +O

(
ε5
)
, etc. (3.46)

Using the equations of motion, we can write OB,1, up to a total derivative, as a sum of

the three 8-particle operators shown in the leftmost column of figure 9 in [61]. In general,

for n > 0,

∆B,n = 2n+ 2− 2

(
1− 3

n(2n+ 1)

)
ε2 +O

(
ε3
)
, (3.47)

which agrees for large n with the expected asymptotic behavior

∆B,n → 2n+ ∆φ + ∆χ = 2n+ 2− 2ε2 +O
(
ε3
)
. (3.48)

Let us also present the ε expansions for the higher spin bilinear operators which are

mixtures of type A and C. The lowest eigenvalue of twist τ = ∆− s for spin s is

τ0 =1− ε+
8 (s2 − 4) ε2

4s2 − 1

+
4ε3
(

27 (1− 4s2)Hs− 1
2
− 2s (80s3 + s(54 log(4)− 508) + 45)− 244 + 27 log(4)

)
3 (1− 4s2)2 +O

(
ε4
)

(3.49)

where Hn is the harmonic number and the last two terms (as well as all higher-order
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terms) vanish when s = 2 as expected. In the large s limit, this becomes:

τ0 → 1− ε+ ε2
(

2− 15

2s2
+O(s−3)

)
+O

(
ε4
)
. (3.50)

Comparing with (3.65), we see that

τ0 = 2∆φ +O(
1

s2
) (3.51)

This is the expected large spin limit [94, 95, 96, 97] for an operator bilinear in φ, indicating

that for large spin the mixing with χ bilinears is suppressed.

The next two twists are

τ1 =3− ε+
8s(s+ 2)ε2

4s(s+ 2) + 3

+
4ε3

3(4s(s+ 2) + 3)2

(
− 4(40s(s+ 4) + 157)s2 + 6(s+ 27)− 27γ(4s(s+ 2) + 3)

− 27(4s(s+ 2) + 3) log(4)− 27(4s(s+ 2) + 3)ψ(s+
3

2
)

)
+O

(
ε4
)
, (3.52)

and

τ2 =3 + ε+

(
36

4s(s+ 2) + 3
− 6

)
ε2

+
4ε3

(4s(s+ 2) + 3)2

(
4s(2s(20s(s+ 4) + 56 + 9 log 4)− 105 + 36 log 4)

+ 18γ(4s(s+ 2) + 3) + 18(4s(s+ 2) + 3)ψ(s+
3

2
)− 297 + 54 log 4

)
+O

(
ε4
)
,

(3.53)

where ψ(x) is the digamma function. In the large s limit, these take the form,

τ1 → 3− ε+ ε2
(

2− 3

2s2
+O(s−3)

)
+O

(
ε3
)

= 2∆φ + 2 +O(
1

s2
) ,

(3.54)
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and

τ2 → 3 + ε+ ε2
(
−6 +

9

s2
+O(s−3)

)
+O

(
ε3
)

= 2∆χ +O(
1

s2
) ,

(3.55)

In general, for large spin we find the two towers of twists labelled by an integer n

τAn = 2n+ 1− ε+ 2ε2 − 40ε3

3
+O(ε4) = 2∆φ + 2n+ . . .

τCn = 2n+ 3 + ε− 6ε2 +O(ε3) = 2∆χ + 2n+ . . .

(3.56)

again in agreement with the expected asymptotics and suppression of mixing at large

spin.

We can similarly derive explicit results for spinning operators in the type B sector

using (3.26). For the lowest two twists, we find

τ0 = 2 +
6ε

2s+ 1
+

2ε2
(

3(2s+ 1)2
(
Hs− 1

2
+ log(4)

)
− 8s3 − 84s2 − 72s− 34

)
(2s+ 1)3

+O(ε3)

=
(
2− 2ε2 +O(ε3)

)
+O(

1

s
) ,

τ1 = 4− 4sε2

2s+ 3
+

2ε3
(

9(2s+ 3)Hs+ 1
2

+ 80s2 + 12s(8 + log(8)) + 54 log(2)
)

3(2s+ 3)2
+O(ε4)

=

(
4− 2ε2 +

40ε3

3
+O(ε4)

)
+O(

1

s
) ,

(3.57)

and higher twists may be analyzed similarly. One can see that these results are also in

agreement with the expected large spin limit τn → ∆φ + ∆χ + 2n for fixed n.

3.1.5 Renormalized perturbation theory

In this section we use the renormalized perturbation theory to carry out the 3 − ε

expansion for finite N . We will find a fixed point with real couplings, whose large N limit

reproduces the results found using the 3 − ε expansion of the Schwinger-Dyson solution

in the previous section. This is an excellent check of the Schwinger-Dyson approach to

the prismatic theory.

To carry out the beta function calculation at finite N we need to include all the O(N)3
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Figure 3.12: The two-loop contribution to the beta-function.

invariant sextic terms in the action (as usual in such calculations, we ignore the quartic

and quadratic operators which are relevant in d = 3). The 11 such single-sum terms are

shown diagrammatically in figure 5 of [61]. We will impose the additional constraint that

the action is invariant under the permutation group S3 which acts on the three O(N)

symmetry groups. This leaves us with 8 operators: 5 single-sum, 2 double-sum and 1

triple-sum. They are written down explicitly in (3.76) and shown schematically in figure

3.1. The first one and the most essential one for achieving the solvable large N limit is

the “prism” term (3.2); it is positive definite and symmetric under the interchanges of

the three O(N) groups.

Our action is a special case of a general multi-field φ6 tensor theory:

S =

ˆ
ddx

(
1

2
∂µφ

abc∂µφabc +
1

6!
gκ1κ2κ3κ4κ5κ6φ

κ1φκ2φκ3φκ4φκ5φκ6

)
. (3.58)

The beta-functions and anomalous dimensions for such a general sextic coupling were

calculated in [98, 99]; see also [100, 101] for earlier results on the O(n) invariant sextic

theory. The diagram topology contributing to the leading two-loop beta function is shown

in figure 3.12.

In our case each index κ1, κ2 . . . , κ6 has three sub indices κi = (aibici). The coupling

gκ1κ2κ3κ4κ5κ6 contains 8 different types of interactions

gκ1κ2κ3κ4κ5κ6 = g1T
(1)
κ1κ2κ3κ4κ5κ6

+ g2T
(2)
κ1κ2κ3κ4κ5κ6

+ · · ·+ g8T
(8)
κ1κ2κ3κ4κ5κ6

, (3.59)

which can be graphically represented as in figure 3.1. Each tensor structure T
(k)
κ1κ2κ3κ4κ5κ6

consists of a sum of product of δ functions, which are symmetrized over the colors (abc)
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and over the indices κ1, . . . , κ6.

The two-loop beta functions and anomalous dimensions for general N are given in the

Appendix. Let us use the large N scaling

g1 = 180 · (8π)2ε
g̃1

N3
, g2,4,6,7 = 180 · (8π)2ε

g̃2,4,6,7

N5
,

g3,5 = 180 · (8π)2ε
g̃3,5

N4
, g8 = 180 · (8π)2ε

g̃8

N7
, (3.60)

which is chosen in such a way that all beta functions retain non-vanishing quadratic terms

in the large N limit:

β̃1 = −2g̃1 + 2g̃2
1 , β̃2 = −2g̃2 + 4g̃1 (3g̃1 + 2g̃5) , β̃3 = −2g̃3 + 12g̃2

1 ,

β̃4 = −2g̃4 +
2

3

(
2 (3g̃1 + g̃3)2 + g̃2

5 + 12g̃1g̃5

)
, β̃5 = −2g̃5 + 4g̃1 (6g̃1 + g̃5) ,

β̃6 = −2g̃6 + 4g̃1 (3g̃1 + g̃5 + 2g̃6) , β̃7 = −2g̃7 + 6g̃2
1 ,

β̃8 = −2g̃8 +
4

3

(
g̃2

3 + 4g̃7g̃3 + g̃2
5 + 6g̃2

6 + 2g̃2
7 + 6g̃5g̃6 + 3g̃1 (g̃5 + 6g̃6)

)
. (3.61)

The unique non-trivial fixed point of these scaled beta functions is at

g̃∗1 = 1, g̃∗2 = −42, g̃∗3 = 6, g̃∗4 = 54,

g̃∗5 = −12, g̃∗6 = 6, g̃∗7 = 3, g̃∗8 = 84. (3.62)

For this fixed point, the eigenvalues of the matrix ∂β̃i
∂g̃j

are

λi = 6, 2, 2, − 2, − 2, − 2, − 2, − 2 . (3.63)

That there are unstable directions at the “prismatic” fixed point also follows from the

solution of the Schwinger-Dyson equations.9 Using (3.38) we see that the large N dimen-

sion of the triple-trace operator (φabcφabc)3 is 3(1 − ε) + O(ε2), which means that it is

relevant in d = 3− ε and is one of the operators corresponding to eigenvalue −2. On the

9At finite N , using the beta functions given in the Appendix, we are able to find and study additional
fixed points numerically. The analysis of behavior of the beta-functions shows that they are all saddle
points and, therefore, neither stable in the IR nor in the UV.
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other hand, the prism operator is irrelevant and corresponds to eigenvalue 2. Another

irrelevant operator is Otetraφ
abcφabc; from (3.43) it follows that its large N dimension is

3 + 5ε+O(ε2), so it corresponds to eigenvalue 6.

We have also calculated the 1/N corrections to the fixed point (3.62):

g̃∗1 = 1− 6

N
+

18

N2
+ . . . ,

g̃∗2 = −42 +
384

N
+

8592

N2
+ . . . ,

g̃∗3 = 6 +
1848

N2
+ . . . ,

g̃∗4 = 54− 132

N
+

16392

N2
+ . . . ,

g̃∗5 = −12 +
30

N
+

2340

N2
+ . . . ,

g̃∗6 = 6 +
36

N
− 1320

N2
+ . . . ,

g̃∗7 = 3 +
174

N
+

7080

N2
+ . . . ,

g̃∗8 = 84 +
6732

N
+

309204

N2
+ . . . (3.64)

For the scaling dimension of φ, we find from (3.85):

∆φ =
d− 2

2
+ γφ =

1

2
− ε

2
+ ε2

(
1− 12

N
+

75

N2
+ . . .

)
+O(ε3) . (3.65)

In the large N limit, (3.65) is in agreement with the solution of the S-D equation (3.36).

For the scaling dimension of φabcφabc, we find

∆φ2 = d− 2 + γφ2 = 1− ε+ 32ε2
(

1− 12

N
+

75

N2
+ . . .

)
+O(ε3) . (3.66)

In the large N limit this is in agreement with (3.38). In general, calculating the 1/N

corrections in tensor models seems to be quite difficult [102], but it is nice to see that

in the prismatic QFT the 3 − ε expansion provides us with explicit results for the 1/N

corrections to scaling dimensions of various operators.
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The scaling dimension of the marginal prism operator is

∆prism = d+
dβ̃1

dg̃1

= 3− ε− 2ε+ 4εg̃∗1 + . . . = 3 + ε+O(ε2) , (3.67)

which is in agreement with (3.39).

We have also performed two-loop calculations of the scaling dimensions of the tetra-

hedron and pillow operators; see the appendix for the anomalous dimension matrix. In

the large N limit, we find

∆tetra = 2(d− 2) + γtetra = 2 + 6ε+O(ε2) ,

∆pillow = 2(d− 2) + γpillow = 2− 2ε+O(ε2) , (3.68)

which is in agreement with the S-D result (3.43). Thus, we see that the large N 3− ε ex-

pansions from the Schwinger-Dyson approach have passed a number of 2-loop consistency

checks.

We have also solved the equations for the fixed points of two-loop beta functions

numerically for finite N . The results for the prismatic fixed point are shown in table 1.

These results are in good agreement with the analytic 1/N expansions (3.64) for N ≥ 200.

At N = Ncrit, where Ncrit ≈ 53.65, the prismatic fixed point in 3− ε dimensions merges

N g̃∗1 g̃∗2 g̃∗3 g̃∗4 g̃∗5 g̃∗6 g̃∗7 g̃∗8 γφ/ε
2

54 0.89 -33.06 7.87 83.69 -11.13 6.86 27.37 2047.16 0.80
100 0.94 -37.56 6.23 55.35 -11.53 6.28 5.98 212.08 0.89
200 0.97 -39.90 6.05 53.8 -11.80 6.15 4.09 127.90 0.94
400 0.99 -40.99 6.01 53.78 -11.91 6.08 3.48 103.03 0.97
2000 1.00 -41.81 6.00 53.94 -11.98 6.02 3.09 87.45 0.99
5000 1.00 -41.92 6.00 53.97 -11.99 6.01 3.04 85.36 0.998
10000 1.00 -41.96 6.00 53.99 -12.00 6.00 3.02 84.68 0.999
100000 1.00 -42.00 6.00 54.00 -12.00 6.00 3.00 84.07 1.00

Table 1: The numerical solutions for the coupling constants defined in (3.60)
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with another fixed point;10 they are located at

g̃∗1 = 0.89, g̃∗2 = −32.90, g̃∗3 = 8.24, g̃∗4 = 92.01,

g̃∗5 = −11.15, g̃∗6 = 7.00, g̃∗7 = 35.33, g̃∗8 = 3155.29 . (3.69)

For N < Ncrit both of them become complex. For example, for N = 53.6 the two complex

fixed points are at

g̃∗1 = 0.89− 0.0002i, g̃∗2 = −32.89 + 0.04i, g̃∗3 = 8.24 + 0.15i, g̃∗4 = 91.98 + 3.51i,

g̃∗5 = −11.15− 0.01i, g̃∗6 = 7.00 + 0.06i, g̃∗7 = 35.19 + 3.61i, g̃∗8 = 3107.77 + 554.01i

(3.70)

and at the complex conjugate values.

3.1.6 Bosonic Quantum Mechanics

The action (3.2) for d = 1 describes the quantum mechanics of a particle moving

in N3 dimensions with a non-negative sextic potential which vanishes at the origin.11

Such a problem should exhibit a discrete spectrum with positive energy levels, and it is

conceivable that in the large N limit the gaps become exponentially small, leading to a

nearly conformal behavior. For moderate values of N , this quantum mechanics problem

may even be accessible to numerical studies.

Solving for the scaling dimensions of type A/C bilinears in d = 1, we find that the

low-lying eigenvalues are

∆ = 1, 1.57, 2, 3.29, 4.12, 5.36, 6.14, 7.38, 8.15, 9.39, 10.15, 11.40, . . . (3.71)

10This is similar, for example, to the situation in the O(N) invariant cubic theory in 6− ε dimensions
[103, 104], where Ncrit ≈ 1038.266. For general discussions of mergers of fixed points, see [91, 93].

11A very similar d = 1 model with a stable sextic potential was studied in [105, 106] using the
formulation [63] where a rank-3 tensor is viewed as D matrices. It was argued [105, 106] that the sextic
bosonic model does not have a good IR limit. We, however, don’t find an obvious problem with the
prismatic d = 1 model because the complex scaling dimensions are absent for the bilinear operators. We
note that the negative scaling dimension (3.17), which we find for φ, is quite far from the 1/6 mentioned
in [105, 106].
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The plot for the eigenvalues is shown in figure 3.13.

2 4 6 8
Δ

-1

1

2

3

4

g(A)(1, Δ)

Figure 3.13: The spectrum of scalar type A/C bilinears in 1d. Red vertical lines are
asymptotes corresponding to −2∆φ + 2n and green vertical lines are asymptotes corre-
sponding to −2∆χ + 2n.

The smallest positive eigenvalue, ∆ = 1, is the continuation of the solution ∆ = d

present for any d. As discussed in section (3.1.4), it may correspond to a redundant op-

erator. The next scaling dimension, ∆ = 1.57317, may correspond to a mixture involving

φabcφabc. The appearance of scaling dimension 2, which was also seen for the fermionic

SYK and tensor models, means that the its dual12 should involve dilaton gravity in AdS2

[108, 109, 110, 111].

Let us also list the type B scaling dimensions, i.e. the ones corresponding to operators

φabc∂2n
t χ

abc. Here we find real solutions ∆ = 1.01, 2.96, 4.94, 6.93, . . ..

For large excitation numbers n, the type A/C scaling dimensions appear to (slowly)

approach −2∆φ + 2n and −2∆χ + 2n rather than 2∆φ + 2n and 2∆χ + 2n, as shown in

figure 3.4. The type B scaling dimensions also appear to slowly approach −∆φ−∆χ+ 2n

rather than ∆φ+∆χ+2n. This is likely due to the fact that ∆φ is negative. Further work

is needed to understand better the new features of the large N solution in the regime

where d < 1.35 and ∆φ < 0.

12Of course, as observed in [107, 61], there are important differences between the holographic duals of
tensor models and SYK models.

71



3.1.7 Discussion

In this paper we presented exact results for the O(N)3 invariant theory (3.2) in the

prismatic large N limit where g1N
3 is held fixed. This approach may be generalized to

an O(N)p invariant theory of a rank-p bosonic tensor φa1...ap , with odd p ≥ 3. It has a

positive potential of order 2p:

S2p =

ˆ
ddx

(
1

2
(∂µφ

abc)2 +
g1

(2p)!
(φp)a1...ap(φp)a1...ap

)
. (3.72)

To solve these models in the large N limit where g1N
p is held fixed, we may rewrite the

action with the help of an additional tensor field χ:

S =

ˆ
ddx

(
1

2
(∂µφ

abc)2 +
g

p!
(φp)a1...apχa1...ap − 1

2
χa1...apχa1...ap

)
. (3.73)

For discussions of the structure of the interaction vertex with odd p > 3, see [19, 28, 29].

The models (3.72) are tensor counter-parts of the SYK-like models introduced in [79];

therefore, the Schwinger-Dyson equations derived there should be applicable to the tensor

models. It would be interesting to study the large N solution of theories with p > 3 in

more detail using methods analogous to the ones used for p = 3.

In this paper we analyzed the renormalization of the prismatic theory at the two-loop

order, using the beta functions in [98, 99]. The general four-loop terms are also given

there, and it would be interesting to study the effects they produce. It should be possible

to extend the calculations to even higher loops by modifying the calculations in [101] to

an arbitrary tensorial interaction, which we leave as a possible avenue for future work.

In this context, it would also be interesting to study the possibility of fixed points with

other large N scalings, perhaps dominated by the “wheel” interaction (g2) of figure 3.1,

in addition to the large N fixed point dominated by the prism interaction (g1) studied in

this paper.13

Another interesting extension of the O(N)3 symmetric model (3.2) is to add a 2-

component Majorana fermion ψabc, so that the fields can be assembled into a d = 3

13A d = 0 theory with wheel interactions was studied in [112].
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N = 1 superfield

Φabc = φabc + θ̄ψabc + θ̄θχabc (3.74)

Then the prismatic scalar potential follows if we assume a tetrahedral superpotential

for Φabc [19]. Large N treatments of supersymmetric tensor and SYK-like models with

two supercharges have been given in [79, 88], and we expect the solution of the N = 1

super-tensor model in d < 3 to work analogously. An advantage of the tensor QFT

approach is that one can also develop the 3−ε expansion using the standard renormalized

perturbation theory. In the supersymmetric case, it is sufficient to introduce only three

coupling constants:

W = g1Φa1b1c1Φa1b2c2Φa2b1c2Φa2b2c1

+ g2

(
Φa1b1c1Φa1b1c2Φa2b2c1Φa2b2c2 + Φa1b1c1Φa2b1c1Φa1b2c2Φa2b2c2 + Φa1b1c1Φa1b2c1Φa2b1c2Φa2b2c2

)
+ g3Φa1b1c1Φa1b1c1Φa2b2c2Φa2b2c2 , (3.75)

and it is possible to find explicit expressions for the beta functions and operator scaling

dimensions [113]. Also, directly in d = 3 it is possible to couple theN = 1 theory with the

above superpotential to O(N)k1×O(N)k2×O(N)k3 supersymmetric Chern-Simons gauge

theory with levels k1, k2, k3, and derive the corresponding beta functions for couplings gi

[113].

3.1.8 The two-loop beta functions and anomalous dimensions

In this Appendix we state our explicit two-loop results for the O(N)3 invariant theory

with the 8 coupling constants and interaction terms

g1

6!
φa1b1c1φa1b2c2φa2b1c2φa3b3c1φa3b2c3φa2b3c3 +

g2

6!
φa1b1c1φa1b2c2φa2b2c3φa2b3c1φa3b3c2φa3b1c3

+
g3

3 · 6!

(
φa1b1c1φa2b1c1φa1b2c2φa2b2c3φa3b3c2φa3b3c3 + φa1b1c1φa1b2c1φa2b1c2φa2b2c3φa3b3c2φa3b3c3

+ φa1b1c1φa2b1c1φa1b2c2φa2b3c2φa3b2c3φa3b3c3
)

+
g4

3 · 6!

(
φa1b1c1φa1b1c2φa2b2c2φa2b2c3φa3b3c3φa3b3c1 + φa1b1c1φa2b1c1φa2b2c2φa3b2c2φa3b3c3φa1b3c3
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+ φa1b1c1φa1b2c1φa2b2c2φa2b3c2φa3b3c3φa3b1c3
)

+
g5

3 · 6!

(
φa1b1c1φa1b2c2φa2b1c2φa3b2c1φa2b3c3φa3b3c3 + φa1b1c1φa2b1c2φa1b2c2φa1b2c3φa3b2c3φa3b3c3

+ φa1b1c1φa2b2c1φa2b1c2φa1b2c3φa3b3c2φa3b3c3
)

+
g6

6!
φabcφabcφa1b1c1φa1b2c2φa2b1c2φa2b2c1

+
g7

3 · 6!
φabcφabc(φa1b1c1φa1b1c2φa2b2c1φa2b2c2 + φa1b1c1φa2b1c1φa1b2c2φa2b2c2 + φa1b1c1φa1b2c1φa2b1c2φa2b2c2)

+
g8

6!
(φabcφabc)3 . (3.76)

We find

β1 =− 2g1ε+
1

270(8π)2

(
(g2

5 + 3(g2
1 + 8g2

6))N3 + 3(3g2
5 + 4(2g1 + 3g2 + 4g6)g5 + 6g1(g1 + 3g2))N2

+ 2(32g2
5 + (90g1 + 72g2 + 96g6)g5 + 6g4(9g2 + 4g5) + 9(5g2

1 + 6g2g1 + 16g6g1 + 8g7g1 + 9g2
2

+ 24g2g6))N + 2g2
3(N(N + 6) + 55) + 2g3(9N(g1(N + 8) + 8g2) + 6g4(N + 6)

+ 2g5(N + 10)(2N + 5) + 2(60g1 + 63g2 + 96g6 + 16g7)) + 2(36g2
4 + 36(5g1 + 3g2 + 2g5)g4

+ 80g2
5 + 4g5(45g1 + 4(9g2 + 6g6 + 8g7)) + 3(34g2

1 + 12(7g2 + 4g6 + 2g7 + 20g8)g1 + 27g2
2

+ 128g2
6 + 48g2(g6 + 2g7))

)
(3.77)

β2 =− 2g2ε+
1

270(8π)2

(
g5(12g1 + g5)N2 + 2(13g2

5 + 18(g1 + g2)g5 + 9g1(g1 + 2g4 + 8g6) + 72g2g7)N

+ 2g2
3(N(N + 6) + 19) + 2g3(3N(3g2(N + 4) + 8g1) + 6g4(N + 2) + 6g5(N + 6) + 30g1 + 36g2

+ 32g7) + 2(36g2
1 + 54g2g1 + 96g7g1 + 45g2

2 + 12g2
4 + 20g2

5 + 12g4(3g1 + 9g2 + 2g5)

+ 12g5(4g1 + 3g2 + 8g6) + 72g2g7 + 720g2g8)
)

(3.78)

β3 =− 2g3ε+
1

270(8π)2

(
2(g2

5 + 8g2
7)N3 + 3(6g2

1 + 12g5g1 + 27g2
2 + 5g2

5)N2 + 2(83g2
5 + 2(66g1

+ 63g2 + 48g6 + 64g7)g5 + 9(2g1 + 3g2)(4g1 + 3g2) + 96(g1 + 3g2)g7)N + g2
3(N(N(2N + 31)
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+ 244) + 388) + 18g2
4(N(N + 16) + 12) + 12g4(3g1(N + 1)(N + 14) + g5(5N(N + 6) + 72)

+ (N + 2)(9g2(N + 3) + 8g7N) + 96g6 + 64g7) + 4g3(3g4(N(N(N + 6) + 28) + 102)

+N(g5(11N + 74) + 6(g1 + 3g2 + 4g7)N + 66g1 + 72g2 + 60g6 + 84g7) + 194g5

+ 3(71g1 + 81g2 + 32g6 + 76g7 + 120g8)) + 4(92g2
5 + 2(93g1 + 90g2 + 72g6 + 80g7)g5

+ 128g2
7 + 9(7g2

1 + 15g2g1 + 9g2
2 + 24(g1 + g2)g6) + 144(g1 + g2)g7)

)
(3.79)

β4 =− 2g4ε+
1

270(8π)2

(
(g2

5 + 8g2
7)N3 + 4g5(3g1 + g5)N2 + 6(3g2

1 + 9g2
5 + 8(g1 + 3g2)g7

+ 2g5(5g1 + 9g2 + 4(g6 + 3g7)))N + 2g2
3(N(N(N + 7) + 34) + 113) + 9g2

4(N(N + 2)2 + 52)

+ 4g3(9g2(N + 2)2 + 3g1(N + 1)(N + 13) +N(g4(6N + 75) + g5(6N + 31) + 8g7(N + 4))

+ 16(3g4 + 5g5 + 6g6 + 5g7)) + 12g4(3g1(N + 12) + 2g5(N(N + 6) + 13) + 8N(g7(N + 2) + 3g6)

+ 48g2 + 44g7 + 120g8) + 2(54g2
1 + 162g2g1 + 96g7g1 + 81g2

2 + 58g2
5 + 128g2

7

+ 4g5(27g1 + 27g2 + 24g6 + 32g7))
)

(3.80)

β5 =− 2g5ε+
2

270(8π)2

(
(3(g1g5 + 8g6g7)N3 + 2(9g2

1 + 9(3g2 + g5)g1 + g5(27g2 + 6g5 + 16g7))N2

+ (99g2
1 + 6(45g2 + 35g5 + 36g6 + 40g7)g1 + 81g2

2 + 216g2(g5 + g6)

+ 4g5(21g5 + 42g6 + 38g7))N + g2
3(N(5N + 52) + 161) + 36g2

4(N + 3)

+ 3g4(12g1(N(N + 5) + 12) + g5(N(N(N + 6) + 52) + 132) + 6(N + 2)(4g6N + 9g2)

+ 96g6 + 64g7) + 2g3(6g1(N(3N + 16) + 37) + 9g2(10N + 23) +N(g4(6N + 39)

+ g5(N(N + 13) + 97) + 24g6(N + 4)) + 6(23g4 + 33g5 + 32g6 + 24g7)) + 270g2
1

+ 243g2
2 + 212g2

5 + 432g1g2 + 444g1g5 + 504g2g5 + 432g1g6 + 432g2g6

+ 384g5g6 + 384g1g7 + 288g2g7 + 328g5g7 + 768g6g7 + 720g5g8)
)

(3.81)
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β6 =− 2g6ε+
2

270(8π)2

(
2(g5g7 + 3g6(g1 + 12g8))N3 + (6(9g2g6 + 4(g1 + 2g6)g7)

+ g5(3g1 + 12g6 + 10g7 + 72g8))N2 + (7g2
5 + 2(3g1 + 9g2 + 12g6 + 32g7 + 72g8)g5

+ 3(3g1 + 12(2g6 + g7 + 12g8)g1 + 48g2
6 + 8(3g2 + 5g6)g7))N + g2

3(4N + 6)

+ 3g4(12g1N + g5(N(N + 6) + 10) + 4g7(N + 2) + 18g2 + 60g6) + 2g3(6g1(N + 4)

+ g5(N(N + 6) + 19) + 3g6(N(N + 10) + 4) + 2g7N(N + 5) + 9g2 + 21g4 + 18(g7 + 4g8))

+ 13g2
5 + 48g2

7 + 36g1g2 + 30g1g5 + 18g2g5 + 48g1g6 + 72g2g6 + 108g5g6 + 120g1g7

+ 36g2g7 + 92g5g7 + 120g6g7 + 432g2g8 + 144g5g8 + 1296g6g8

)
(3.82)

β7 =− 2g7ε+
1

270(8π)2

(
4(3g5g6 + g7(2g3 + 3g4 + 36g8))N3 + (10g2

3 + 24(g4 + 3g6

+ 2(g7 + 6g8))g3 + 7g2
5 + 3(9g2

4 + 8(3g6 + 2(g7 + 9g8))g4 + 8(5g2
7 + (g1 + 3g2 + 2g5)g7

+ (3g1 + g5)g6)))N2 + (9g2
1 + 54g5g1 + 72g6g1 + 216g7g1 + 48g2

3 + 63g2
4 + 22g2

5 + 216g2
6

+ 216g2
7 + 216g2g6 + 216g5g6 + 144g2g7 + 160g5g7 + 576g6g7 + 144(3g1 + 9g2 + 5g5)g8

+ 6g4(6g1 + 18g2 + 21g5 + 36g6 + 52g7 + 72g8) + 4g3(3g1 + 9g2 + 36g4 + 19g5 + 42g6

+ 90g7 + 144g8))N + 2(27g2
1 + 3(9g2 + 23g3 + 30g4 + 12g5 + 48g6 + 40g7 + 144g8)g1

+ 9g2(7g3 + 6(g5 + 2g6 + 4g7)) + 2(31g2
3 + (81g4 + 50g5 + 114g6 + 112g7 + 216g8)g3

+ 54g2
4 + 21g2

5 + 108g2
6 + 96g2

7 + 66g5g6 + 106g5g7 + 144g6g7 + 72(2g5 + 9g7)g8

+ 3g4(17g5 + 36g6 + 66g7 + 72g8)))
)

(3.83)

β8 =− 2g8ε+
1

270(8π)2

(
2(g5(2(3g6(N2 +N + 3) + 7g7(N + 1) + 36g8) + 3g1) + 2(3g2

6N
3

+ g2
7N

3 + 18g2
8(3N3 + 22) + 3g2

7N
2 + 12g6g7N

2 + 72g8(g7(N2 +N + 1) + 3g6N) + 9g2
6N

+ 21g2
7N + 12g6g7N + g1(9g6N + 6g7) + 6g2

6 + 23g2
7 + 9g2g6 + 48g6g7) + g2

5(N + 1)
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+ 3g4(2(6g6N + g7(N(N + 3) + 5) + 36g8) + 3g5)) + g2
3(2N + 9) + 4g3(3g4N + 3g6(2N + 5)

+ 2g7(N(N + 3) + 7) + 36g8N + 2g5) + 9g2
2 + 39g2

4

)
(3.84)

and

γφ =
1

12 · 902(8π)4

(
(3g2

1 + 9g2
2 + g2

3 + 3g2
4 + g2

5 + 12g2
6 + 4g2

7 + 72g2
8)N6 + (6g2

3 + 2(3g1 + 9g2

+ 6(g4 + g5) + 8g7)g3 + 9g2
4 + 5g2

5 + 12g2
7 + 54g1g2 + 24g1g5 + 24g5g6 + 48g6g7

+ 12g4(g5 + 2g7) + 144g7g8)N5 + (81g2
1 + 12(9g3 + 6g4 + 5g5 + 12g6 + 2g7)g1 + 81g2

2

+ 39g2
3 + 27g2

4 + 51g2
5 + 36g2

6 + 84g2
7 + 108g3g4 + 76g3g5 + 72g4g5 + 96g3g6 + 144g4g6

+ 48g5g6 + 80g3g7 + 96g4g7 + 88g5g7 + 48g6g7 + 36g2(2g3 + g4 + 4g5 + 2g7)

+ 144(g3 + g4 + 3g6 + g7)g8)N4 + (102g2
1 + 6(75g2 + 47g3 + 54g4 + 64g5 + 24g6

+ 68g7 + 24g8)g1 + 54g2
2 + 160g2

3 + 171g2
4 + 143g2

5 + 120g2
6 + 148g2

7 + 432g2
8 + 288g3g4

+ 344g3g5 + 336g4g5 + 336g3g6 + 288g4g6 + 360g5g6 + 336g3g7 + 336g4g7 + 296g5g7

+ 336g6g7 + 144(2g3 + 3(g4 + g5) + g7)g8 + 18g2(19g3 + 24g4 + 14g5 + 32g6 + 12g7 + 24g8))N3

+ 2(189g2
1 + 6(45g2 + 58g3 + 66g4 + 49g5 + 72g6 + 54g7 + 108g8)g1 + 216g2

2 + 177g2
3

+ 189g2
4 + 176g2

5 + 216g2
6 + 120g2

7 + 318g3g4 + 330g3g5 + 336g4g5 + 360g3g6 + 288g4g6

+ 312g5g6 + 328g3g7 + 312g4g7 + 372g5g7 + 336g6g7 + 72(4g3 + 4g4 + 5g5 + 4g7)g8

+ 18g2(17g3 + 19g4 + 20g5 + 12g6 + 26g7 + 12g8))N2 + 4(81g2
1 + 3(63g2 + 63g3

+ 51g4 + 64g5 + 60g6 + 70g7 + 36g8)g1 + 81g2
2 + 87g2

3 + 72g2
4 + 90g2

5 + 72g2
6 + 96g2

7

+ 207g3g4 + 185g3g5 + 189g4g5 + 156g3g6 + 216g4g6 + 204g5g6 + 184g3g7 + 174g4g7

+ 182g5g7 + 168g6g7 + 36(6g3 + 3g4 + 5g5 + 12g6 + 4g7)g8 + 9g2(23g3 + 18g4 + 19g5

+ 24g6 + 18g7 + 36g8))N + 4(48g2
1 + (90g2 + 78g3 + 90g4 + 84g5 + 72g6 + 60g7 + 72g8)g1

+ 45g2
2 + 43g2

3 + 51g2
4 + 42g2

5 + 48g2
6 + 52g2

7 + 144g2
8 + 72g3g4 + 82g3g5 + 78g4g5 + 96g3g6

+ 72g4g6 + 72g5g6 + 84g3g7 + 96g4g7 + 76g5g7 + 96g6g7 + 18g2(4g3 + 5g4 + 5g5 + 4(g6 + g7))

+ 72(g3 + 2g4 + g5 + 2g7)g8)
)

(3.85)

At the two-loop level we also find the relation γφ2 = 32γφ.
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We can study the anomalous dimensions for quartic operators

O1 = Otetra = φa1b1c1φa1b2c2φa2b1c2φa2b2c1 ,

O2 = Opillow =
1

3
(φa1b1c1φa2b1c1φa1b2c2φa2b2c2 + φa1b1c1φa1b2c1φa2b1c2φa2b2c2 + φa1b1c1φa1b1c2φa2b2c1φa2b2c2)

O3 = Od.t. = φa1b1c1φa1b1c1φa2b2c2φa2b2c2 . (3.86)

The matrix of anomalous dimensions for quartic operators can be written in the following

way

γ11
O =

1

720π2

(
2(6g1 + 2g3 + 3g4 + 5g5 + 2g7 + 12g8) + g1(N3 + 12N + 8) + 4(g5 + 3g6 + g7)N+

+9g2N
2 + 2g5N

2 + g3

(
6N +N2

))
,

γ12
O =

1

2160π2

(
2(9g2 + 9g3 + 6g4 + 11g5 + 12g6 + 8g7) + 6g1(6 + 3N + 2N2) + 36g2N + 6g4N+

+12g6(2N +N2) + 2g3(5N +N2) + g5(24N + 5N2 +N3)
)

γ13
O =

1

180π2

(
6g2 + 2g3 + 6g1N + g6(8 +N3) + g5(2 + 2N +N2)

)
γ21
O =

1

720π2

(
2(12g1 + 9g2 + 11g3 + 12g4 + 9g5 + 12g6 + 8g7) + g5N

3+

+2(3g1 + 9g2 + 7g3 + 9g4 + 9g5 + 6g6 + 10g7)N + 2(3(g1 + g3 + g4) + g5)N2
)

γ22
O =

1

2160π2

(
64g3 + 66g4 + 62g5 + 48g6 + 60g7 + 72g8 + 6g1(N + 1)(N + 8) + 18g2(4 + 2N +N2)+

+3g4(18N + 4N2 +N3) + 2g3(27N + 6N2 +N3) + 4(6g6N + 4g7(2N +N2) + g5(10N + 3N2))
)

γ23
O =

1

180π2

(
6g3 + 6g4 + 4g5 + 8g7 + 3g1(N + 2) + 9g2N + 5g5N + g7N

3 + 3g4(N2 +N)+

+2g3(2N +N2)
)

γ31
O =

1

720π2

(
3g2 + 3g5 + 4g6 + 8g7 + 3g1N + g3(5 + 2N) + 6g4N + g5(N2 +N)+

+4(g7N + 9g8N + g7N
2) + 2g6(3N +N3)

)
γ32
O =

1

2160π2

(
6g1 + 7g5 + 24g6 + 22g7 + 36g8 + 2g3(5 + 3N +N2) + 3g4(5 + 3N +N2) + 7g5N+

+12g6(N +N2) + 36g8(N +N2) + 2g7(13N + 3N2 +N3)
)

(3.87)

The results for the quartic operator dimensions in the prismatic large N limit are listed

in (3.68).

78



A consistent truncation of the system of eight coupling constants is to keep only g8

non-vanishing, since the triple-trace term is the only one which has O(N3) symmetry.

Then we find

β8 = −2g8ε+
1

15(8π)2
g2

8(3N3 + 22) , γφ =
1

1350(8π)4
g2

8(N3 + 2)(N3 + 4) , (3.88)

in agreement with [101, 99]. Thus, there is a fixed point with

g∗8 =
30(8π)2ε

3N3 + 22
, g∗i = 0, i = 1, . . . , 7 . (3.89)

At this fixed point,

∂β8/∂g8 = −2ε+
2

15(8π)2
g∗8(3N3 + 22) = 2ε+O(ε2) , (3.90)

so the triple-trace operator is irrelevant. However, the other 7 operators appear to be

relevant for sufficiently large N . For example,

∂β1

∂g1

= −2ε+
2g∗8

9(8π)2
= ε

(
−2 +

20

3(3N3 + 22)

)
+O(ε2) . (3.91)

So, this fixed point has 7 unstable directions. Examination of 4-loop and higher correc-

tions [101, 99] shows that the 3− ε expansions of operator dimensions at this fixed point

do not generally have a finite large N limit starting with order ε3. This is in contrast

with the prismatic fixed point where all the g∗i are non-vanishing and scale as (3.60); as

a result, the large N limit is smooth.

3.2 Supersymmetric Model

3.2.1 Introduction

In recent literature, there has been strong interest in theories whose dynamical fields

are tensors of rank 3 or higher (for reviews, see [21, 114, 14]). Such theories possess

a number of interesting features. For example, only the melonic diagrams dominate in
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the large N limit, in contrast to the vector models, where only snail diagrams dominate

[14], and the matrix models, where all the planar diagrams survive in the large N limit.

This fact makes the tensor models similar to the famous Sachdev-Ye-Kitaev (SYK) model

[37, 25, 24]. The SYK model contains a disordered coupling constant, making it hard

to use standard tools of quantum field theory. The SYK model is believed to describe

quantum properties of the extremal charged black holes [109, 110, 111] and therefore may

help to serve as a toy model for understanding the AdS/CFT correspondence [115, 116,

117]. It is already used for understanding the properties of the traversable wormholes

[118, 119, 46, 48]. While the tensor models [21] exhibit the same properties at the large N

limit, they do not have disorder therefore giving us hope that they can be understood at

finite N via standard techniques of quantum field theories. These techniques have already

brought many interesting results [120, 121, 52, 23, 19, 83, 106, 122, 123, 124, 125]. [126]

We shall consider a supersymmetric analogue of such theories, which has been recently

considered as a generalization of SYK model [127, 79, 87] or as a quantum mechanical

supersymmetric tensor model [88, 128, 129, 130]. Here we will present a similar model

in continuous dimension d. We consider a minimal N = 1 supersymmetric model, where

we have some number of scalar superfields Φabc(x, θ), and indices a, b, c run from 1 to N .

These fields are coupled via a “tetrahedral“ superpotential14

S =

ˆ
ddx d2θ

[
1

2
(DαΦabc)

2 + gΦabcΦab′c′Φa′bc′Φab′c′

]
. (3.92)

This theory, which is renormalizable in d < 3, possesses O(N) × O(N) × O(N) sym-

metry rather than O(N3) (the superpotential breaks such a symmetry, while the free

theory, of course, posses the O(N3) symmetry). This model has been proposed in the

paper [19] as a generalization of the scalar melonic theory. It was proved that the non-

supersymmetric analogue of this theory has a so-called melonic dominance in the limit

when N → ∞, g → 0 but gN
3
2 is kept fixed [22]. The proof of this peculiar fact relies

on the combinatorial properties of the potential, and therefore is applicable in any di-

14Here we will refer to the appendix 3.2.6 and the paper [131] for the notations and the other helpful
formulas that will be used through the paper.
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mensions and in various theories, provided that the combinatorial properties are left the

same. In the case of the supersymmetric theories, the Feynman diagrams, written down

in terms of the components, look quite complicated and, at first glance, do not possesses a

melonic limit as in the case of scalar model or the SYK model. However, one can develop

a supersymmetric version of the usual Feynman diagrams technique and work explicitly

with the superfields Φabc and see that the combinatorial and topological properties are

the same as in the case of the scalar tensor models. Therefore, the proof of the dominance

of melonic diagrams [23, 132, 19, 22, 133] is applicable in this case and the theory (3.92)

also possesses a melonic dominance in the large N limit. We generalize the theory (3.92)

where the tethrahydral term is replaced by q-valent maximally single-trace operator to

study models with different numbers of the internal propagators in each melon [28, 132].

The properties of such theories in the IR limit can be investigated by solving the

Dyson-Schwinger (DS) equations, which are drastically simplified if the theory is melonic.

Namely, the dominance of the melonic diagrams in the large N limit can be understood

as a suppression of the corrections to the vertex operators in the system of DS equations.

The solution of the DS equation in the IR yields a conformal propagator, suggesting that

the theory in the IR flows to the fixed point, which is described by some conformal field

theory. The existence of the stress-energy tensor with the correct dimension, and the

spectra of the operators confirm this hypothesis. Therefore, one can wonder whether it is

possible to describe such a transition from the UV scale (where we have a bare conformal

propagator determined by commutation relations) to the IR region by means of RG flow

and ε expansion. Several attempts have been made towards this idea. For example, the

melonic scalar theory in 4 dimensions [26] has been considered at the second order of the

perturbation theory. For this theory, a melonic fixed point of RG flow was found, even

though the corresponding couplings are complex. The complex couplings indicate that the

theory is unstable. For example, the dimensions of some operators have imaginary part.

One of the reasons of instability could be that the potential is unbounded from below,

leading to the decay of the vacuum state. The theory (3.92), being supersymmetric, lacks

such a disadvantage.
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It is quite interesting that if one drops the fermionic part of the action (3.92) and

integrates out the auxiliary field, the theory still possesses the melonic dominance in the

large N limit. Such a ”prismatic” theory was considered in the paper [3]. The solution

of this theory was found in the large N limit and the RG properties were investigated at

two loops. As opposed to the standard melonic theory [26], the fixed point is real and

first order of ε expansion recovers the exact solution in the large N limit.

In this paper we solve the model (3.92) in the large N limit, assuming that the

supersymmetry is not broken and that in the IR region the theory is described by the

conformal propagator. The solution is found for general dimension d and general q-valent

MST potential [28, 132]. The dimension of the operators at given d and spin s can be

found as a solution of the corresponding transcendental equation. It is shown that at any

dimension d, there is always a stress-energy operator of dimension d and a supercurrent

operator of dimension d − 1
2
, which indicates that the theory is indeed described by a

conformal field theory. While the model (3.92) exists only in the fractional dimensions

between one and three dimensions, the counterpart SYK model with q = 3 can work at

the integer dimension d = 3 and describe a good conformal field theory with the melonic

dominance in the large N limit. After that we derive a perturbation theory in 3 − ε

dimensions of the theory (3.92) to find a fixed point that could describe the IR solution

of the large N limit of the model (3.92). We find that the ε expansion is consistent with

the exact large N solution up to the first order in ε. The two-loop analysis also suggests

that the found melonic fixed point is IR stable.

The structure of the paper is as follows: in section two, we discuss the properties of

the theory (3.92) in the large N limit. The dimensions of the operators are found and the

DS equation is solved in the superspace formalism. In section three, we consider q = 3

supersymmetric SYK model and study the stability of such a theory. In section four,

we study the RG properties of the quartic super theories in 3 dimensions and compare

to the exact solutions in the large N limit. In section five, we discuss the possibility of

introducing higher order supersymmetry and speculate about the consequences of gaug-

ing the supersymmetric tensor models. The appendix provides supplemental materials
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Figure 3.14: A supersymmetric version of the Dyson-Schwinger equation for melonic
theories in the large N limit.

including the notations and useful formulas that are used throughout the paper.

3.2.2 Solution of the Large N Theory

In this section, we will try to find the solution of DS equations for the theory (3.92)

in the large N limit. As mentioned in the introduction, the theory possesses a melonic

dominance in the large N limit. This means that only specific diagrams survive in

the large N limit, namely the ones generated recursively by the Dyson-Schwinger (DS)

equation (schematically depicted in the fig.(3.14)). The resulting equation for scalar or

fermion field theories was investigated analytically and numerically for many different

theories [24, 19, 30]. For example, the DS equation can be solved in the IR limit and the

solution possesses a conformal symmetry in that limit. In the case of the supersymmetric

theories, one of the important differences is that one can demand the solution to respect

supersymmetry. In order to do it manifestly the DS equation should be formulated in

terms of the superfields. Of course, one can do this calculation in terms of the components

as in the paper [88] and check that these two approaches give the same answers. To make

the discussion more general we consider the case where there are q−1 internal propagators

in the melon diagrams and suitable MST operator is considered [132]. The DS equation

in the supersymmetric case reads as

G(p; θ, θ′) = G0(p; θ, θ′)+ (3.93)

+
1

16
λ2

ˆ
d2θ1 d

2θ2G0(p; θ, θ1)

ˆ q−1∏
i=1

ddki
(2π)d

G(ki; θ1, θ2)(2π)dδd

(
p−

q−1∑
i=1

ki

)
G(p; θ2, θ

′),

whereG0(p; θ, θ′) is a bare superpropagator (3.164), G(p; θ, θ′) is an exact superpropagator

and g = λN
3
2 is a ’t Hooft coupling. Analogously to the scalar case, we consider a
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conformal propagator as an ansatz for the solution. But if we also demand to preserve

supersymmetry and O(N) × O(N) × O(N) symmetry, that yields only one form of the

solution

〈Φabc(p, θ)Φa′b′c′(−p, θ′)〉 = δaa′δbb′δcc′G(p; θ, θ′), G(p; θ, θ′) = A
D2δ(θ − θ′)

p2∆
, (3.94)

where ∆ < ∆0 = 1 for the solution to be valid in the IR limit [109] (namely, we can neglect

by bare propagator in comparison to the exact one G−1
0 〈G−1, p → 0 ). Substituting the

ansatz in the DS equation (3.93) we get

A
D2δ(θ − θ′)

p2∆
=
D2δ(θ − θ′)

p2
+ (3.95)

+Aqλ2

ˆ
d2θ1 d

2θ2
D2δ(θ − θ1)

p2

q−1∏
i=1

ˆ
ddki
(2π)d

(2π)dδd

(
p−

q−1∑
i=1

ki

)
D2δ(θ1 − θ2)

k2∆
i

D2δ(θ2 − θ′)
p2∆

.

As soon as ∆ < 1 we can neglect the LHS of the equation by the RHS in the limit

p → 0. After that one can integrate out Grassman variables using identities for the

superderivative to get

λ2Aq
q−1∏
i=1

ˆ
ddki
(2π)d

1

k2∆
i

(2π)dδd

(
p−

q−1∑
i=1

ki

)
1

p2∆−2
= −1. (3.96)

This equation gives the dimension of the superfield to be ∆ = d(q−2)+2
2q

and

Aq =
(4π)

d(q−2)
2

λ2

Γq−1
(
d
2
− d−1

q

)
Γ
(
d− 1− d−1

q

)
Γq−1

(
d−1
q

)
Γ
(
d−1
q
− d

2
+ 1
) . (3.97)

The solution suggests that we cannot work directly in dcrit(q) = 2q−2
q−2

dimensions because

the bare propagator is not suppressed in the IR limit and change the solution. For

example, for the case of tetrahydral potential q = 4, dcrit = 3, therefore the tensorial

melonic theory is not conformal in 3 dimensions. Nevertheless, we can still study the

theory slightly below 3 dimensions and compare it with the ε expansion.

If one chooses the case of q = 3, the critical dimension is dcrit = 4 and such a melonic
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theory should describe a conformal field theory in 3 dimensions. In the next section we

will review this model in more details.

We calculated the propagator (3.94) in the momentum representation. One can carry

out the calculation in the coordinate space. With the use of the relation

ˆ
ddk

(2π)d
eikxD2δ(θ − θ′) =

ˆ
ddk

(2π)d
eikx

(
1− ikµθ̄′γµθ + k2θ̄′θ′θ̄θ

)
= eθ̄

′γµθ ∂
∂xµ , (3.98)

the propagator in the coordinate representation is

G(x, θ, θ′) =
B

|xµ − θ̄′γµθ|
2(d−1)
q

, Bq =
1

4πdλ2

Γ
(
d−1
q

)
Γ
(
d− 1− d−1

q

)
Γ
(
d
2
− d−1

q

)
Γ
(
d−1
q
− d

2
+ 1
) . (3.99)

Another way to see that the dimension of the superfield is d−1
q

is to rewrite the action

in terms of the components and impose the conditions ∆ψ = ∆φ + 1
2
, then the action

contains a term

W (Φ) = Φq ⇒ W (φ) = φq−2ψ2 ⇒ [W ] = d⇒ (q − 2)∆φ + 2∆ψ = d, ∆φ =
d− 1

q
.

(3.100)

The solution (3.94) suggests that in the IR limit, the theory is described by some confor-

mal field theory (CFT). One of the interesting questions that one may ask is, what is the

spectrum of the bipartite conformal operators in this theory? The supersymmetric theory

(3.92) has different types of the bipartite operators, as the prismatic one [3]. We should

consider these families separetly. The most simple ones have the following structure [79]

VFF = Φ(x, θ)�hΦ(x, θ), VBB = Φ(x, θ)�hD2Φ(x, θ). (3.101)

These operator should be considered as a collection of operators with different spins and

dimensions, that transforms through each other when the supersymmetry transformations

are applied. For instance, these operators could be rewritten in the terms of components
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Figure 3.15: The corrections to the bipartite conformal operator can be summed with
the use of the Bethe-Salpeter equation. The diagrams should be considered to be in the
superspace.

(3.157) as

VFF (x, θ) = φ(x)�hφ(x) + φ(x)�hψα(x)θα + θ2
(
φ(x)�hF (x) +�hφ(x)F (x) + ψ̄(x)�hψ(x)

)
,

VBB(x, θ) = ψ̄�hψ +
(
F�hψα +�hFψα + (γµψ)α∂µ�

hφ+ (γµ�hψ)α∂µ�
hφ
)
θα+

+θ2
(
∂µφ�

h∂µφ+ iψ̄γµ�h∂µψ + F�hF
)
. (3.102)

A similar set of the operators was considered in the paper [79] in 2 dimensions and [88]

in 1 dimension. Later we shall compare the results of these papers with the continuous

solution for arbitrary d. We can try to put more D2 in (3.101) to get more familes, but

with the use of the identity (D2)2 = �, one can descend these operators to the BB or FF

series. That’s why we can consider only these two families to get the whole spectrum of

bipartite operators with the lowest component having spin s = 0.

As usual, the corrections to the bilinear operators in the large N limit are given by

the ladder diagrams (but again, in comparison to [109, 19], these diagrams should be

considered to be in superspace). We assume the following ansatz in momentum space for

the three-point correlation function for these families,

GFF (k, θ, θ′) = 〈VFFΦ(−k, θ)Φ(k, θ′)〉 =
δ(θ − θ′)
k∆V +2∆

,

GBB(k, θ, θ′) = 〈VBBΦ(−k, θ)Φ(k, θ′)〉 =
D2δ(θ − θ′)
k∆V +2∆

, (3.103)

where we have set the operators VBB, VFF to be at infinity and made a Fourier transfor-

mation with respect to the spatial coordinates, and ∆V is the corresponding dimensions
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of the operator. The derivation of the equations for the dimensions ∆V is just a straight-

forward generalization of the analogous calculation for the scalar model [19] or the SYK

model [24]. Here we will show the derivation of such equation for the BB operators.

The addition of one step of the ladder can be considered as the action of the kernel

operator,

K̂ = K(p, k; θ, θ′, θ1, θ2) =

= (q − 1)

q−2∏
i=1

ˆ
ddqi

(2π)d
D2δ(θ1 − θ2)

q2∆
i

D2δ(θ − θ1)

p2∆

D2δ(θ2 − θ′)
p2∆

(2π)dδd
(∑

qi − (p− k)
)
.

(3.104)

We act on the (3.101) by one step of the ladder,

(K̂GBB)(p, θ, θ′) =

ˆ
d2θ1d

2θ2

ˆ
ddk

(2π)d
K(p, k; θ, θ′, θ1, θ2)GBB(k, θ1, θ2). (3.105)

The Grassman variables can be integrated out with the use of identities from the section

3.2.6. After that we are left with a simple integral

(K̂GBB)(p, θ, θ′) =

= (q − 1)Aqλ2D2δ(θ − θ′)
ˆ

ddk

(2π)d

q−2∏
i=1

ddqi
(2π)d

1

q2∆
i

1

k∆V +2∆p2∆−2
(2π)dδd

(∑
qi − (p− k)

)
=

= gB (∆V )GBB(p, θ, θ′), (3.106)

where

gB(∆V ) = −(q − 1)
Γ
(

2+d(q−2)
2q

)
Γ
(

(q−1)(d−1)
4

)
Γ
(
d
4
− 1

q
− ∆V

2

)
Γ
(

1− d
2
− 1

q
+ d

q
+ ∆V

2

)
Γ
(

1− d
2

+ d−1
q

)
Γ
(
d−1
q

)
Γ
(

(q−1)(d−1)
q

− ∆V

2

)
Γ
(
d
2

+ 1
q
− d

q
+ ∆V

2

) .

(3.107)

In order for the operator to be primary, the equation gB(∆V ) = 1 must hold. An
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Figure 3.16: The dimension of the operator Φ2 as a function of the dimension. As d→ 1
the dimension goes to zero.

analogous equation can be written for the VFF operator, but one can see that

gF (∆V ) = gB (∆V − 1) , (3.108)

This suggests that we might build a bigger multiplet and enhance the supersymmetry

to be N = 2 (later we shall see that this does not actually happen, because there is no

additional fermionic counterparts to finish supermultiplet).

From now on we shall consider the case only q = 4 to get 3 − ε expansion unless

the other is specified. Thus, we can get the ε expansion in the large N limit of the Φ2

operator

∆Φ2 = 1 + ε+ 3ε2 − π2 + 24

4
ε3 +O(ε4). (3.109)

The plot of the ∆Φ2 as a function of the dimension is depicted in the figure 3.16. Analo-

gously we get the dimension of ΦD2Φ operator

∆ΦD2Φ = 2 + ε+ 3ε2 − π2 + 24

4
ε3 +O(ε4). (3.110)

We can discuss dimensions of non-singlet operators of the form ΦabcΦa′bc. The equation
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for the dimension of this operator can be rewritten as

gB(∆aa′) = q − 1, (3.111)

where a factor q − 1 appears from the combinatorics [61], and ∆aa′ is the dimension of

the operator. The ε expansion near three dimensions for q = 4 has the following form

∆aa′ = 1− 1

2
ε2 +

π2

24
ε3 +O(ε4). (3.112)

Later, we shall show that the solution coincides with the ε expansion in the second level

of perturbation theory.

From this, the next step would be to study the spectrum of the higher-spin operators.

A generalization for the higher spin operators is

V s
FF = Φ(x, θ)�∂µ1 . . . ∂µsΦ(x, θ), V s

BB = Φ(x, θ)�∂µ1 . . . ∂µsD
2Φ(x, θ), (3.113)

with the corresponding modifications for the ansatz. For example, for higher spin spec-

trum of the BB operators the ansatz is

Gs
µ1...µs,BB

(k, θ, θ′) = 〈V s
µ1µ2...µs,BB

Φ(−k, θ)Φ(k, θ′)〉 =
D2δ(θ − θ′)kµ1 . . . kµs

k∆V + d+1
2

+s
. (3.114)

In this case we consider an arbitrarily chosen null-vector ξµ and consider the convolution

of the ansatz (3.114) with the vector ξ. After that one can integrate out the Grassman

variables and carry out the integration over the real pace with the use of a relation [26]:

ˆ
ddx

(ξ · x)s

x2α(x− y)2β
= π

d
2

Γ
(
d
2
− α + s

)
Γ
(
d
2
− β

)
Γ
(
α + β − d

2

)
Γ(α)Γ(β)Γ(d+ s− α− β)

(ξ · y)s

y2α+2β−d . (3.115)

Eventually, the equation for the dimension at given spin s reads as

gB(d,∆V , s) = (3.116)
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Figure 3.17: The dimension of the operator Φ2 can be found graphically. The plot of
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= −(q − 1)
Γ
(

2+d(q−2)
2q

)
Γ
(

(q−1)(d−1)
4

)
Γ
(
d
4
− 1

q
− ∆V −s

2

)
Γ
(

1− d
2
− 1

q
+ d

q
+ ∆V +s

2

)
Γ
(

1− d
2

+ d−1
q

)
Γ
(
d−1
q

)
Γ
(

(q−1)(d−1)
q

− ∆V −s
2

)
Γ
(
d
2

+ 1
q
− d

q
+ ∆V +s

2

) = 1,

One would expect that there is a solution at any d and s = 2 with ∆ = d, because of the

existence of the stress-energy tensor. However one cannot find this solution. The reason

is quite simple. First of all, there is no stress-energy tensor in the field decomposition

of the BB and FF operators. Second, the stress-energy tensor has a superpartner Sαµ
(corresponding to supertranslations) that has spin 3

2
, and therefore to find it we should

consider a whole different family of operators, with lowest component being a Rarita-

Schwinger field . Namely, let us consider a Fermi conformal primary operator

VBF,µ1...µ2n+1(x, θ) = ∂2n+1
µi

Φ(x, θ)DαΦ(x, θ), (3.117)

where the odd number of the space-time derivatives should be inserted to get a primary

operator. Indeed, if we consider a zero number of the derivatives

VBF = ΦabcDαΦabc =
1

2
Dα

(
Φ2
abc

)
, (3.118)

it is just a descendant of the FF operator. To get a supercurrent multiplet we have to

project the operators (3.117) on the specific component. The ansatz for the three-point
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function has the following form

〈VBFΦ(k, θ)Φ(−k, θ′)〉 =
Dαδ(θ − θ′)
k∆V +2∆

. (3.119)

The derivation of the equation for the spectrum of the dimensions is straightforward

gBF (d,∆V , s) = −gB
(
d,∆V −

1

2
, s− 1

2

)
= 1, (3.120)

where the spin should be chosen to be of the form s = 2n − 1
2
. Now we can try to find

the stress-energy momentum and its partner. And indeed at any d, q and s = 3
2

there

is an operator with dimension ∆ = d − 1
2

that corresponds to the usual stress-energy

supermultiplet.

At this point one can wonder whether the current Jaa′ , responsible for the O(N)’s

transformations, is a primary operator. The supersymmetric multiplet containing the

current should be also a Fermi supermultiplet with spin s = 1/2 (this operator is not a

singlet operator and therefore (3.117) is not applicable). The current should satisfy the

equation [61]

gaa
′

BF (d,∆V , s) =
1

3
gBF (d,∆V , s) = 1, (3.121)

at any d and q there is always a solution ∆V = d−3/2. One can see that the dimension of

square of this operator is given by the direct sum of the dimensions ∆JJ̃ = 2∆V = 2d−3.

This operator becomes relevant when ∆JJ̃ = 2d− 3 ≤ d− 1, where minus 1 comes from

the accounting the dimension of the superspace. From this one can see the operator

becomes marginal in d = 2 and relevant as d < 2. This extra marginal operator in d = 2

may destabilize the CFT. The only exception is the case N = 1, where the theory does

not have any continuous symmetry and has superpotential Φ4. In d = 2 this theory flows

to the m = 4 superconformal minimal model, which has central charge c = 1. 15

The relation (3.116) can be thought as a generalization of the equation for the kernel at

15I would like to thank I.R.Klebanov for pointing out these facts.
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2 dimensions derived by Murugan et al. [79]. In this case they introduced two dimensions,

h = ∆+s
2

and h̃ = ∆−s
2

, and one can check that

k(h, h̃) = gB(d = 2, h+ h̃, h− h̃) = −(q − 1)
Γ2(1− 1/q)Γ(1/q − h̃)Γ(1/q + h)

Γ2(1/q)Γ(1− 1/q − h̃)Γ(h+ 1− 1/q)
,

(3.122)

which coincides with the equation (7.17) in [79].

The relation (3.120) also shows that if there is a scalar bilinear multiplet with di-

mension h, there is no BF operator with higher spin and the dimension ∆ = ∆ + 1
2
.

This shows that we cannot complete the N = 2 supermultiplet and the enhancement

does not happen. It is interesting that there is an argument in d = 1 stating that it

actually must happen. Basically, it comes from the fact that group of diffeormorphims

of supertransformations in 1-dimension comprises the N = 2 superalgebra [79].

Finally we discuss the dimension of the quartic operators, because there is a funda-

mental relation between their dimensions and the eigenvalues of the matrix ∂βi
∂gj

. We can

find the dimensions of some quartic operators in the large N limit. For example, in the

matrix models the anomalous dimension of a double trace operator is just the sum of the

anomalous dimensions of the corresponding single trace operators. By the same analysis,

we get that the anomalous dimension of the double trace operator is

∆Φ4 = 2∆Φ2 = 2 + 2ε+O(ε2). (3.123)

Analogous analysis gives that

∆Pillow = 2∆aa′ = 2 +O(ε2). (3.124)

Finally, the dimension of the tetrahedral operator can be determined as the dimension of

the operator ΦabcD
2Φabc (namely, it follows from the equations of motion) and it gives us

∆Tetra = 2 + ε+O(ε2). (3.125)
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One can try to study the behaviour of the model (3.92) near 1 dimension. The case of

d = 1 supersymmetric tensor models was considered recently (see [88]). It was found that

the supersymmetry is broken in the IR region. The easiest way to see this is to assume a

conformal ansatz and plug it in the DS equation (3.93). The solution suggests ∆ = 0 in

one dimensions, but constant or logarithm function do not satisfy the DS equation. The

conformal solution found in [88] shows, that the dimensions of the superfield components

are not related to each other by usual supersymmetric relations. It might be the case that

for the system in 1 dimensions the conformal solution does not describe the true vacuum

state, while the true vacuum respect supersymmetry and the propagators exponentially

decays at large distances. It might be shown by studying the stability of the conformal

solution in a way described in [48] for two coupled SYK models.

Also, if one consider a limit d → 1 in the equations derived in the previous sections,

the propagator does not have a smooth limit in 1 dimension and the kernel is equal to the

constant lim
d→1

gB(d, h, s) = −1. The last fact confirms that in 1 dimension the conformal

IR solution does not respect the supersymmetry. But, in the vicinity of dimension 1,

everything works fine. Thus, one can study the 1 + ε expansion. We shall consider the

case of tensor models and set q = 4. For example, the dimension of the Φ2 operator is

∆Φ2 = ε− π2

48
ε3 +

3ζ(3)

16
ε4 +O(ε5), ∆ΦD2Φ = 1 + ε− π2

48
ε3 +

3ζ(3)

16
ε4 +O(ε5).

(3.126)

And the dimension of the colored operators ΦabcΦa′bc is

∆aa′ =
3

4
ε− 3π2

256
ε3 +

9ζ(3)

128
ε4 +O(ε5) (3.127)

It would be interesting to derive this results by considering a one dimensional supersym-

metric melonic quantum mechanics and lift the solution to 1+ ε dimenion. Or just derive

these results starting with the conformal solution found in one dimension [88] and show

that in higher dimensions the supersymmetry is immediately restored.
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3.2.3 Supersymmetric SYK model with q = 3 in d = 3

In the previous section we mostly work with the tensor models in non-integer dimen-

sions. The main problem that did not allow us to work directly in 3 dimensions was that

the critical dimension for such a interaction is dcr = 2q−2
q−2

= 3, meaning that directly at

3 dimensions the conformal IR solution does not work. Nevertheless, if one considers

q = 3 case the critical dimension becomes dcr = 4 and therefore should work perfectly

in 3 dimensions. Unfortunately, we do not know any q = 3 tensor model and in order

to somehow study this melonic model we shall consider a SYK like model with disorder,

which is a special case of the models [79].

Thus, we shall try to study the following model

S =

ˆ
ddx d2θ

[
1

2
(DΦi)

2 + CijkΦiΦjΦk

]
, 〈C2

ijk〉 =
J2

3N2
, i, j, k = 1, . . . , N, (3.128)

where we consider a quenched disorder for the coupling Cijk. One might worry, that such

a theory violates the causality, because the field Cijk is assumed to have the same value

across the space-time and therefore the excitation of such a field changes the value of it

everywhere, thus violating causality. But the procedure of quenching requires firstly to

fix the value of Cijk that makes the theory casual and after that average over this field.

It means that we can not excite the field Cijk and violate casuality.

This model is similar to the tensor one considered in the previous section, because

again only melonic diagrams survive in the large N limit, but with two iternal propagators

in each melon. Therefore the formulas derived in the previous section are applicable in

this case and with the replacement of λ→ J and setting q = 3 we can recover the large

N solution of this model. For example, the propagator in this case is

G(x, θ, θ′) =
B∣∣xµ − θ̄′γµθ∣∣ 4

3

, B3 =
1

12
√

3π3J2
, (3.129)

and the dimension of the field Φi is ∆ = 2
3
. Again the spectrum of the operators could

be separated into three sectors, described in the previous section. The equation for the
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BB operators is determined by the equation

g3,3
BB (h, s) = − 2

4
3
√
πΓ
(

2
3
− h

2
+ s

2

)
Γ
(

1
6

+ h
2

+ s
2

)
3Γ
(

1
6

)
Γ
(

4
3
− h

2
+ s

2

)
Γ
(

5
6

+ h
2

+ s
2

) , (3.130)

where s is the spin and should be chosen even. One can try to find the spectra of low

lying states (3.18)

[Φ2]θ=0 s = 0 h = 1.69944, 3.42951, 5.38013, 7.36259, 9.354, . . .

[Dα(Φ2)]θ=0 s = 1/2 h = 2.19944, 3.92951, 5.88013, 7.86259, 9.854, . . .

[Φ∂µ1∂µ2Φ]θ=0 s = 2 h = 3.51911, 5.39016, 7.3654, 9.35514, 11.3496, . . .

[Dα(Φ∂µ1∂µ2Φ)]θ=0 s = 5/2 h = 4.01911, 5.89016, 7.8654, 9.85514, 11.8496, . . .

It is easy to see that the spectrum has the following asymptotic behavior at large spins

h ≈ 4

3
+ 2n+ s+O (1/n, 1/s) , n→∞, s→∞.

On a principal line h = d
2

+ iα the kernel is complex, it is connected to the fact that there

is no well-defined metric in the space of two-point functions [79]. Therefore there is no

problems with the complex modes, that could possibly destroy the conformal solution in

the IR [48]. Thus q = 3 supersymmetric SYK model is stable at least in the BB channel.

Also one can check there are no additional solutions to the equation g3,3
BB(h, s) = 1 in

the complex plane except the ones on the real line. The spectrum of the FF operators

coincides with the spectrum of the BB operators but shifted with h → h + 1, therefore

we don’t have to worry about the instabilities of the theory in this sector.

Analogous calculations could be conducted for the BF series

g3,3
BF (h, s) = −g3,3

BB

(
h− 1

2
, s− 1

2

)
, (3.131)

where the spin s should be in the form s = 2n − 1
2
. One can notice that there is

a solution g3,3
BF (5/2, 3/2) = 1 corresponding to the existence of the supercurrent and

energy momentum tensor (the energy momentum is not seen directly because it belongs

to the supermultiplet of the supercurrent, but if one studies the theory in terms of the
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Figure 3.18: Plots for g3,3
BF (h, 1) and g3,3

BB(h, 0) that can help to understand the structure
of the spectrum of the the theory (3.128)

components, he or she will of course find the energy momentum tensor). There is a list

of some low lying operators in the FF sector (3.18)

[∂µΦDαΦ]θ=0 s = 3
2

: h = 2.5, 4.76759, 6.79738, 8.80934, 10.8157, . . .

[Dβ (∂µΦDαΦ)]θ=0 s = 2 : h = 3, 5.26759, 7.29738, 9.30934, 11.3157, . . .

[∂µ1∂µ2∂µ3ΦDαΦ]θ=0 s = 7
2

: h = 4.15398, 6.28752, 8.30627, 10.3143, 12.3189, . . .

[∂µ1∂µ2∂µ3Dβ (ΦDαΦ)]θ=0 s = 4 : h = 4.65398, 6.78752, 8.80627, 10.8143, 12.8189, . . .

The spectrum has the following form asymptotic behavior

h ≈ 5

6
+ 2n+ s+O (1/n, 1/s) , n→∞.

The kernel is again complex on the principal line, but if one chooses s = 1
2

there would

be an additional solution of the equation g3,3
BF = 1 at h = 1 + 0.496i, but as soon as

it is not on the principal line and s is not permissible we do not have to worry about

this complex mode and expect that it could break the conformal solution. Thus this

q = 3 supersymmetric SYK model could provide us with a conformal field theory that
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is melonic and stable at integer dimensions. It would be interesting to study the 4 − ε

expansion for this model, where it will be close to its critical dimension.

3.2.4 3− ε expansion

In this section, we continue the investigation of the supersymmetric tensor model

(3.92) from the point of view of the ε expansion. The calculation is similar to the ones

performed in the papers [26, 3, 134]. We include all possible O(N)3 symmetric marginal

interactions that respect the supersymmetry. Thus the superpotential has the following

form

W (Φ) = g1ΦabcΦab′c′Φa′bc′Φa′b′c+

+
g2

3
(ΦabcΦa′bcΦab′c′Φa′b′c′ + ΦabcΦab′cΦa′bc′Φa′b′c + ΦabcΦabc′Φa′b′cΦa′b′c′) + g3

(
Φ2
abc

)2
,

(3.132)

where we imposed a symmetry under the exchange of the colors. In comparison to the

”prismatic” theory [3], which has 8 coupling constants, the supersymmetric theory has

only 3; this is a significant simplification.

Let us first consider the general renormalizable d = 3 theory of N = 1 superfields Φi,

i = 1, . . . n:

S[Φi] =

ˆ
d3xd2θ

[
1

2
(DΦi)

2 +
Yijkl
4!

ΦiΦjΦkΦl

]
, (3.133)

where Yijkl is a real symmetric tensor. Adapting the results from [135, 136], we find that

the two-loop corrections to the gamma and beta functions are

γ
(2)
ab =

1

3(8π)2
YajklYbjkl,

β
(2)
abcd =

1

3(8π)2
Yijkl (YjklaYbcdi + YjklbYcdai + YjklcYacdi + YjkldYabci) +

+
2

(8π)2
(YanomYbfomYnfcd + YanomYcfomYnfbd + YanomYdfomYnfbc+

+YbnomYcfomYnfad + YbnomYdfomYnfac + YcnomYdfomYnfab) . (3.134)
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These two-loop results are closely related to those in a non-supersymmetric theory with

Yukawa coupling 1
4
Yijklψ

iψjφkφl (see [136]), except the supersymmetry requires Yijkl to

be fully symmetric.

Substituting Yijkl corresponding to the superpotential (3.132), we find from (3.134):

γΦ
abc,a′b′c′ = δaa′δbb′δcc′γ

Φ

γΦ =
1

6π2

[
12g2g1(1 +N +N2) + 6g2

3(2 +N3) + 3g2
1(2 + 3N +N3)+

+g2
2(5 + 9N + 3N2 +N3) + 36g3g1N + 12g3g2(1 +N +N2)

]
(3.135)

and

β1 = −εg1 +
2

9π2

(
6g1

(
12g2

3

(
N3 + 11

)
+ g2

2(N3 + 6N2 + 30N + 29) + 12g3g2(2N2 + 5N + 5)
)

+

+9g3
1

(
N3 + 12N + 8

)
+ 18g2

1

(
g2(4N2 + 7N + 16) + 24g3N

)
+ 2g2

2

(
g2(2N2 + 13N + 24) + 72g3

))
,

β2 = −εg2 +
2

9π2

(
g2

(
72g2

3

(
N3 + 11

)
+ g2

2(7N3 + 36N2 + 162N + 194) + 36g3g2((5N2 + 9N + 16)
)

+

+54g3
1

(
N2 +N + 4

)
+ 18g2

1

(
g2(N3 + 3N2 + 27N + 26) + 18g3(N + 2)

)
+

+18g2g1

(
g2(7N2 + 21N + 32) + 48g3(N + 1)

))
,

β3 = −εg3 +
2

9π2

(
108g3

3

(
N3 + 4

)
+ 252g2g

2
3

(
N2 +N + 1

)
+ 7g3

2(N2 + 3N + 5)+

+18g2
1

(
2g3

(
N3 + 3N + 2

)
+ g2

(
N2 +N + 4

))
+ 27g3

1N + +12g2
2g3(N3 + 3N2 + 15N + 14)+

36g1

(
2g2

2(N + 1) + 2g3g2(2N2 + 2N + 5) + 21g2
3N
))

(3.136)

If one sets g1 = g2 = 0, the symmetry gets enhanced to O(N3) and corresponds to the

O(n) vector model, which was considered in [135].16 For the supersymmetric O(n) model

with superpotential g(ΦiΦi)2,

βg = −εg +
24(n+ 4)

π2
g3 +O(g5) , (3.137)

in agreement with [135].

16Please note that they considered SU(n) case that corresponds to N3 = 2n and their definition of γΦ

includes a factor of two.
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If we choose N = 1, the couplings g1, g2, g3 becomes degenerate because they de-

scribe the same operator. Therefore, the beta-functions should be added to get the right

expression. And indeed, if we choose N = 1 and sum up the couplings we get

β1 + β2 + β3 = µ
d(g1 + g2 + g3)

dµ
= −ε(g1 + g2 + g3) +

120

π2
(g1 + g2 + g3)3, (3.138)

which is the correct beta function for the theory with superpotential (g1 +g2 +g3)Φ4 for a

single chiral superfield Φ. This special case of our theory is conformal in the entire range

2 ≤ d < 3. Indeed, in d = 2 the N = 1 supersymmetric theory with superpotential Φm

for one superfield Φ flows to the superconformal minimal model with central charge

c =
3

2

(
1− 8

m(m+ 2)

)
. (3.139)

Therefore, the N = 1 case of the supertensor model gives the m = 4, c = 1 superminimal

model in d = 2. For N > 2 the O(N)3 supertensor model is expected to be conformal in

2 < d < 3, but not in d = 2.

Let us consider the large N limit where we scale the coupling constants in the following

way:

g1 =
π

2

√
2ελ1

N
3
2

, g2 =
π

2

√
2ελ2

N
5
2

, g3 =
π

2

√
2ελ3

N
7
2

. (3.140)

The scaling is taken to be the same as in the paper [26]. Applying this scaling to the

formula (3.2.4), we get

γΦ = ε
λ2

1

4
, β1 = −λ1 + λ3

1, (3.141)

β2 = −λ2 + 2λ2λ
2
1 + 6λ3

1, β3 = −λ3 + 2(2λ3 + λ2)λ2
1 + 3λ3

1 .

From this one can find the fixed point in the large N limit. Namely,

λ∞1 = ±1, λ∞2 = ∓6, λ∞3 = ±3, ∆Φ =
d− 2

2
+ γΦ =

1

2
− ε

4
. (3.142)
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N λ1

λ∞1

λ2

λ∞2

λ3

λ∞3

100000 1.000 1.000 1.000
10000 1.000 1.001 1.002
1000 1.000 0.995 0.995
100 1.001 0.953 0.950
10 1.033 0.691 0.670
5 1.068 0.546 0.527
2 1.049 0.350 0.322
1 1.093 0.273 0.139

Table 2: The approach of the finite N fixed points in 3 − ε dimensions to the large N
limit. We note that the fixed point exists for all values of N .

We may try to compute the 1/N corrections to these results to get

λ1 = 1 +O
(

1

N2

)
, λ2 = −6 +

20

N
+O

(
1

N2

)
,

λ3 = 3− 16

N
+O

(
1

N2

)
, γΦ =

1

2
− ε

4
+O

(
1

N2

)
. (3.143)

The anomalous dimension of the matter field operator Φ coincides with the exact dimen-

sion of the field by solving the DS equation found above. This might indicate that the

higher-loop corrections to the RG equations (3.2.4) are suppressed in the large N limit.

It would be interesting to study these suppressions in N for a general superpotential

(3.132) from a combinatorial diagrammatic point of view and compare the results with

the investigation of the finite N solutions of the equations (3.2.4).

If one considers the large N fixed point (3.142) of the RG flow governed by the

equations (3.2.4) and tries to descend to finite N , one can find that the solution always

exists (see the table (2)) and quite close to the found fixed point (3.142) (of course

with the appropriate chosen scaling), in comparison to the ”prismatic” model, where the

melonic fixed point exists only at N > 54 [3].

We can study the dimension of various operators in the fixed point (3.142). One

of these operators is Φ2
abc, which belongs to the BB spectrum. We can find that the

anomalous dimension of this operator is

∆Φ2 = ∆0
Φ2 + 2γΦ + γΦ2 = 1 + ε+O(ε2), (3.144)
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where we have used the relation γΦ2 = 6γΦ, which is true only at the second level of

perturbation theory. The answer coincides with the exact solution found earlier (3.109).

As one can see, the fixed point (3.142) is IR stable, which means that the dimensions

of the operators is bigger than the dimension of the space-time. Indeed, the linearized

equations of RG flow near the fixed point (3.142) have the following eigenvalues

(
∂βi
∂λj

)
=


−1 + 3λ2

1 0 0

4λ2λ1 + 18λ2
1 −1 + 2λ2

1 0

4(2λ3 + λ2)λ1 + 9λ2
1 2λ2

1 −1 + 4λ2
1

 , Λ = [2, 1, 3] , (3.145)

but as it is known the eigenvalues of this matrix gives the dimensions of quartic operators

∆i = d− ε+ Λi. (3.146)

Thus we get

∆Φ4 = 2− ε+ 3ε = 2 + 2ε+O(ε2), ∆pillow = 2− ε+ ε = 2 +O(ε2),

∆tetra = 2− ε+ 2ε = 2 + ε+O(ε2). (3.147)

This is in the agreement with the large N solution. As one can see, Λi > 0, indicating

that the fixed point is IR stable. The agreement found between the exact large N solution

and perturbative ε expansion indicates that there is a nice flow from the UV scale to the

IR one where the bare, free propagator flows to the one found by direct solving the DS

equations (3.93). The study of the higher loop corrections might help to understand this

relation better.

3.2.5 N = 2 supersymmetry and gauging

One can try to consider N = 2 supersymmetry and study the properties of such a

model. Here we are not going to present the solution of the corresponding DS equation

, but we will just calculate the beta-functions and find the fixed point of the resulting

equations. The SYK model with N = 2 supersymmetry at 2 dimensions was considered
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in the paper [87].

The theory is built analogously to the N = 1 case. It can be obtained by dimensional

reduction from N = 1 supersymmetry in 4 dimensions. In this case, we have a set of

chiral superfields Ψabc with the action

S =

ˆ
d3x d2θ d2θ̄ Ψ̄abcΨabc +

ˆ
d3x d2θW (Ψabc), D̄αΨabc = 0, (3.148)

where the superpotential is taken to be the same as in the case of N = 1 supersymmetry.

The beta-function for a general quartic superpotential was considered in the paper [137].

The beta-function receives corrections only from the field renormalizations, meaning that

it has the following form

β1,2,3 =
(
−ε+ 4γΦ

)
g1,2,3

γΦ =
1

6π2

(
12g2g1

(
1 +N +N2

)
+ 6g2

3(2 +N3) + 3g2
1(2 + 3N +N3)+

+g2
2(5 + 9N + 3N2 +N3) + 36g3g1N + 12g3g2(1 +N +N2)

)
. (3.149)

The fixed point is determined by demanding that the anomalous dimension of the field

must be ∆Φ = ∆0
Φ +γΦ = d−1

4
, as we got for a general melonic theory in arbitrary dimen-

sions. Apparently, for N = 2 models this fact comes not from the melonic dominance,

but from the consideration of the supersymmetric algebra that fixes the dimensions to

be proportional to the R charge of the corresponding operator. This condition defines a

whole manifold in the space of marginal couplings. Applying the scaling (3.140), in the

large N limit we get the equation

γ(λ1, λ2, λ3) =
λ2

1

4
=

1

4
, λ1 = 1. (3.150)

It is quite interesting that this equation does not fix λ2, λ3 in the large N limit. One can

study the stability of these fixed points at arbitrary λ2,3. The RG flow near the fixed
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point could be linearized to get the stability matrix

(
∂βi
∂gj

)
=


2 0 0

2λ2 0 0

2λ2 0 0

 , Λ = [2, 0, 0] . (3.151)

The given solution is marginally stable, because of the existence of two marginal oper-

ators. These two zero directions correspond to the previously discussed existence of a

whole manifold of IR fixed points.

From this consideration, it would be interesting to study the large N limit of the con-

sidered N = 2 theory and corresponding DS equations. This model must have the same

combinatorial properties as the N = 1 and scalar tensor model, but some cancellation

happens that drastically simplifies the theory.

One can try to examine a gauged version of N = 2 theory. The gauging of the tensor

models is one of the important aspects that makes them different from the SYK model.

In the latter, due to the presence of the disorder in the system, the theory can possess

only the global O(N) symmetry and can not be gauged, while in the tensor models there

are no such obstructions and one can add gauge field and couple to the tensor models at

any dimensions.

Gauging should be important for understanding the actual AdS/CFT correspondence.

In 1 dimension, the gauging singles out from the spectrum all non-singlet states from

the Hilbert states. There have been many attempts to understand of the structure of

the tensorial quantum mechanics of Majorana fermions from numerical and analytical

calculations [62, 69, 138, 139]. These gave some interesting results, such as the structure

of the spectrum of the matrix quantum mechanics and the importance of the discrete

symmetries for explaining huge degenaracies of the spectra. Still, the general impact of

gauging of the tensorial theory is not clear and demands a new approach. Here, we will

give some comments of the combinatorial character and study how the gauging of N = 2

theory, studied in the previous section, changes.

In 3 dimensions one can gauge a theory by adding a Chern-Simons term instead of
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the usual Yang-Mills term

S =

ˆ
d3xd2θ

[
−k
(
DαΓaβ

)2
+ |(Dαδ

a
b + gΓabα)T aΦabc|2 +W (Φabc)

]
, (3.152)

where W (Φabc) is the same as in the (3.132), T a are the generators of the group O(N)×

O(N) × O(N), and Γα are vector superfields that have a gauge potential Aabµ as one of

the components. If one rewrites the kinetic term for the gauge field in terms of usual

components, he will get a usual Chern-Simons theory. Since the theory is gauge invariant,

we can choose an axial gauge to simplifty the action 17 Aab3 = 0, which eliminates the

non-linear term from the theory and the Fadeev-Popov ghosts decouple from the theory.

Therefore the Aab1, A
a
b2 can be integrated out to get an effective potential. For example,

such a term appears in the action

Weff ∼
1

k

ˆ
d3q

(2π)3

(ΦabcDαΦab′c′)(q)(Φa′bcDαΦa′b′c′)(−q)
q⊥

+ perm., (3.153)

which can be considered as a non-local pillow operator with the wrong scaling, because

the level of CS action usually scales as k = λN . Therefore some diagrams would have

large N factor and diverge in the large N limit. To fix it we should consider the unusual

scaling for the CS level k = λN2.

One can check that only specific Feynman propagators containing the non-local vertex

(3.153) contribute in the large N limit [134]. Namely only snail diagrams contribute in

the large N limit and usually are equal to zero by dimensional regularization for massless

fields. Therefore, one can suggest that the gauge field in the large N limit does not get

any large corrections and does not change the dynamics of the theory. This argument

being purely combinatorial should be applied for any theory coupled to the CS action.

We can confirm this argument by direct calculation of the dimensions of the fields

in the ε expansion for the N = 2 supertensor model at two-loops and see whether the

dimensions of the fields gets modified. The beta-functions for a general N = 2 theory

coupled to a CS action was considered in the paper [137] and have the following form at

17I would like to thank S.Prakash for the suggested argument.
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finite N

β1,2,3 =
(
−ε+ 4γΦ

)
g1,2,3, γΦ = γΦ

k=0 −
3N(N − 1)

64π2k2
. (3.154)

As k ∼ N2, N →∞ the corrections to the gamma-functions vanish in the large N limit.

Thus, the gauging in three dimensions indeed does not bring any new corrections to

the theory. It would be interesting to study such a behavior in different dimensions.

For example, if in 1 dimension the gauging does not change structure of the solutions,

one may conclude that the main physical degrees of freedom are singlets and there is a

gap between the non-singlet and singlet sectors. Also it would be interesting to confirm

this observation by a direct computation for the prismatic theories and for Yang-Mills

theories.

3.2.6 Supersymmetry in 3 dimensions

In this section we will introduce the notations and useful identities for the N = 1

supersymmetric theories in 3 dimensions. We will mostly follow the lectures [131]. The

Lorentz group in 3 dimensions is SL(2,R); that is a group of all unimodular real matrices

of dimension 2. The gamma matrices can be chosen to be real

γ0 =

0 −1

1 0

 , γ1 =

0 1

1 0

 , γ2 =

1 0

0 −1

 , {γµ, γν} = 2ηµν . (3.155)

There is no γ5 matrix, so we can’t split the spinor representation into small Weyl ones.

Because of this, the smallest spinor representation is 2 dimensional and real. It is endowed

with a scalar product defined as

ξ̄η = ξαηα = iξαγ0
αβη

β, θ2 =
1

2
θ̄θ. (3.156)

Because of these facts, the N = 1 superspace, in addition to the usual space-time coor-

dinates, will include two real Grassman variables θ±. The fields on the superspace can

be decomposed in terms of fields in the usual Minkowski space. For instance, a scalar
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superfield (that is our major interest) has the following decomposition

Φ(x, θα) = φ(x) + θ̄ψ(x) + θ2F (x). (3.157)

As usual, the algebra supersymmetry in superspace can be realized via the derivatives

that act on the superfields (3.157) and mix different components

Qα = ∂α + iγµαβθ
β∂µ, {Qα, Qβ} = 2iγµαβ∂µ (3.158)

where ∂µ stands for differentiation with respect to the usual space-time variables, and ∂α

for the anticommuting ones. One can define a superderivative that anticommutes with

supersymmetry generators, and therefore preserves the supersymmetry

Dα = ∂α − iγµαβθβ∂µ, {Dα, Qβ} = 0. (3.159)

Out of these ingredients, namely (3.157),(3.159), we can build an explicit version of a

supersymmetric Lagrangian. For example, we can consider the following Lagrangian

S =

ˆ
d3xd2θ

[
−1

2
(DαΦ)2 +W (Φ)

]
, (3.160)

where the integral over Grassman variables is defined in the usual way with the normal-

ization
´
d2θθ̄θ = 1. Writing out the explicit form of (3.160) we get

S =

ˆ
d3x

[
1

2
(∂µφ)2 + iψαγµαβ∂µψ

β + F 2 +W ′(φ)F +W ′′(φ)ψ2

]
. (3.161)

The field F does not have a kinetic term, and therefore is not dynamical and can be

integrated out (that we will not do). For a further investigation we have to develop the

technique of super Feynman graphs. We start with considering the partition function of

the theory (3.160)

Z[J ] =

ˆ
[dΦ] exp

[ˆ
d3xd2θ

(
1

2
(DαΦ)2 +W (Φ) + JΦ

)]
=
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= exp

(
W

(
δ

δJ

))ˆ
[dΦ] exp

[ˆ
d3xd2θ

(
1

2
ΦD2Φ + JΦ

)]
. (3.162)

The last integral is gaussian and therefore can be evaluated and is equal to

Z[J ] = exp

(
W

(
δ

δJ

))
exp

(
−
ˆ
d3xd2θ

[
1

2
J

1

D2
J

])
. (3.163)

From this one can recover the usual Feynman diagrammatic technique, where the ver-

tex is taken from the superpotential W (Φ) rather than the integrated version, and the

propagator is defined as

〈Φ(x1, θ1)Φ(x2, θ2)〉 =
1

D2
δ2(θ1 − θ2) =

D2

�
δ2(θ1 − θ2), (3.164)

which can be calculated by double differentiation of the partition function (3.162), and

the operator � is the usual laplacian.
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4 Bifurcations and RG Limit Cycles

The Renormalization Group (RG) is among the deepest ideas in modern theoretical

physics. There is a variety of possible RG behaviors, and limit cycles are among the most

exotic and mysterious. Their possibility was mentioned in the classic review [140] in the

context of connections between RG and dynamical systems (for a recent discussion of

these connections, see [141]). However, there has been relatively little research on RG

limit cycles. They have appeared in quantum mechanical systems [142, 143, 144, 145], in

particular, in a description of the Efimov bound states [146] (for a review, see [147]). The

status of RG limit cycles in QFT is less clear. They have been searched for in unitary

4-dimensional QFT [148], but turned out to be impossible [149, 150], essentially due to

the constraints imposed by the a-theorem [151, 152, 153].18

In this paper we report some progress on RG limit cycles in the context of perturbative

QFT. We demonstrate their existence in a simple O(N) symmetric model of scalar fields

with sextic interactions in 3 − ε dimensions. As expected, the limit cycles appear when

the theory is continued to a range of parameters where it is non-unitary. The scalar fields

form a symmetric traceless N×N matrix, and imposition of the O(N) symmetry restricts

the number of sextic operators to 4. When we consider an analytic continuation of this

model to non-integer real values of N (a mathematical framework for such a continuation

was presented in [156]), we find a surprise. In the range 4.465 < N < 4.534, as well as in

three other small ranges of N , there are special RG fixed points which we call “spooky.”

These fixed points are located at real values of the sextic couplings gi, but only two

of the eigenvalues of the Jacobian matrix ∂βi/∂gj are real; the other two are complex

conjugates of each other. This means that a pair of nearly marginal operators at the

spooky fixed points have complex scaling dimensions.19 At the critical value Ncrit ≈ 4.475,

the two complex eigenvalues of the Jacobian become purely imaginary. As a result, for

18See, however, [154, 155], where it is argued that QFTs may exhibit multi-valued c or a-functions
that do not rule out limit cycles.

19These special complex dimensions appear in addition to the complex dimensions of certain evanescent
operators that are typically present in ε expansions [157]. The latter dimensions have large real parts
and are easily distinguished from our nearly marginal operators. Some of the operators with complex
dimensions we observe resemble evanescent operators in that they interpolate to vanishing operators at
integer values of N ; this is discussed in section 4.3.
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N slightly bigger than Ncrit, where the real part of the complex eigenvalues becomes

negative, there are RG flows which lead to limit cycles. In the theory of dynamical

systems this phenomenon is called a Hopf (or Poincarè-Andronov-Hopf) bifurcation [158].

The possibility of RG limit cycles appearing via a Hopf bifurcation was generally raised

in [141], but no specific examples were provided. As we demonstrate in section 4.3,

the symmetric traceless O(N) model in 3− ε dimensions provides a simple perturbative

example of this phenomenon.

We show that there is no conflict between the limit cycles we have found and the

F -theorem [159, 160, 161, 162, 163, 164, 136, 165]. This is because the analytic continu-

ation to non-integer values of N below 5 violates the unitarity of the symmetric traceless

O(N) model, so that the F -function is not monotonic. We feel that the simple pertur-

bative realization of limit cycles we have found is interesting, and we hope that there are

analogous phenomena in other models and dimensions.

Our paper also sheds new light on the large N behavior of the matrix models in

3− ε dimensions. Among the fascinating features of various large N limits (for a recent

brief overview, see [14]) are the “large N equivalences,” which relate models that are

certainly different at finite N . An incomplete list of the conjectured large N equivalences

includes [166, 167, 168, 169, 170, 171, 172, 173]. Some of them appear to be valid, even

non-perturbatively, while others are known to break down dynamically. For example,

in the non-supersymmetric orbifolds of the N = 4 supersymmetric Yang-Mills theory

[174, 167, 168, 169, 170], there are perturbative instabilities in the large N limit due to

the beta functions for certain double-trace couplings having no real zeros [175, 80, 176, 81].

In section 4.2 we study the RG flows of three scalar theories in 3 − ε dimensions

with sextic interactions: the parent O(N)2 symmetric model of N × N matrices φab,

and its two daughter theories which have O(N) symmetry. For each model, we list all

sextic operators marginal in three dimensions, compute the associated beta functions up

to 4 loops, and determine the fixed points. One of our motivations for this study is to

investigate the large N orbifold equivalence and its violation in the simple context of

purely scalar theories. We observe evidence of large N equivalence between the parent
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O(N)2 theory and the daughter O(N) theory of antisymmetric matrices: both theories

have 3 invariant operators, and the large N beta functions are identical. However, the

large N equivalence of the parent theory with the daughter O(N) theory of symmetric

traceless matrices is violated by appearance of an additional invariant operator in the

latter. The large N fixed points in this theory occur at a complex value of the coefficient

of this operator. As a result, instead of the conventional CFT in the parent theory, we

find a “complex CFT” [93, 177] (see also [91]) in the daughter theory. As discussed above,

analytical continuation of this model to small non-integer N leads to the appearance of

the spooky fixed points and limit cycles.

4.1 The Beta Function Master Formula

In a general sextic scalar theory with potential

V (φ) =
λiklmnp

6!
φiφkφlφmφnφp (4.1)

the beta function receives a two-loop contribution from the Feynman diagram

In [136, 165, 99] one can find explicit formulas for the corresponding two-loop beta func-

tion in d = 3− ε dimensions. Equation (6.1) of the latter reference reads

βV (φ) = −2ε V (φ) +
1

3(8π)2
Vijk(φ)Vijk(φ) , (4.2)

where Vi...j(φ) ≡ ∂
∂φi
... ∂
∂φj
V (φ). By taking the indices to stand for doublets of sub-indices,

this formula can be used to compute the beta functions of matrix tensor models. In order

to apply the formula to models of symmetric or anti-symmetric matrices, however, we

need to slightly modify it. Letting i and j stand for dublets of indices, we define the
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object Cij via the momentum space propagator:

〈
φ̃i(k)φ̃j(−k)

〉
0

=
Cij

k2
. (4.3)

With this definition in hand, equation (4.2) straightforwardly generalizes to

βV (φ) = −2ε V (φ) +
Cii′Cjj′Ckk′

3(8π)2
Vijk(φ)Vi′j′k′(φ) . (4.4)

At four-loops the following four kind of Feynman diagrams contribute to the beta func-

tion:

The resulting four-loop beta function can be read off from equation (6.2) of [99]:

β
(4)
V =

1

(8π)4

(
1

6
VijViklmnVjklmn −

4

3
VijkVilmnVjklmn −

π2

12
VijklVklmn +

)
+ φiγ

φ
ijVj , (4.5)

where the anomalous dimension γφij is given by

γφij =
1

90(8π)4
λiklmnpλjklmnp . (4.6)

The above two equations also admit of straightforward generalizations by contracting

indices through the Cij matrix.

Before proceeding to matrix models, we can review the beta function obtained by the

above formulas in the case of a sextic O(M) vector model described by the action

S =

ˆ
d3−εx

(
1

2

(
∂µφ

j
)2

+
g

6!

(
φiφi

)3
)
, (4.7)

where the field φi is a M -component vector. The four-loop beta function of this vector
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model is given by [101, 99]

βg = −2εg +
192(3M + 22)

6!(8π)2
g2 (4.8)

− 1

(6!)2(8π)4

(
9216(53M2 + 858M + 3304) + 1152π2(M3 + 34M2 + 620M + 2720)

)
g3 .

This equation provides a means of checking the beta functions of the matrix models, which

reduce to the vector model when all couplings are set to zero except for the coupling,

denoted g3 below, associated to the triple trace operator.

4.2 Sextic Matrix Models

We now turn to matrix models in d = 3−ε dimensions. The parent theory we consider

has the Lagrangian given by

S =

ˆ
d3−εx

[
1

2

(
∂µφ

ab
)2

+
1

6!

(
g1O1(x) + g2O2(x) + g3O3(x) ,

)]
(4.9)

where the dynamical degrees of freedom are scalar matrices φab which transform under

the action of a global O(N)×O(N) symmetry. The three operators in the potential are

O1 =φa1b1φa2b1φa2b2φa3b2φa3b3φa1b3 = tr
[
φφT

]3
O2 =φabφabφa1b1φa2b1φa2b2φa1b2 = tr

[
φφT

]
tr
[
φφT

]2
(4.10)

O3 =(φabφab)3 =
(
tr
[
φφT

])3
.

They make up all sextic operators that are invariant under the global symmetry. Later we

will also study projections of the parent theory that have only a global O(N) symmetry

that rotates first and second indices at the same time. In such models it becomes possible

to construct singlets via contractions between first and second indices, and therefore there

is an additional sextic scalar:

O4 =
(
φa1a2φa2a3φa3a1

)2
=
(
tr
[
φ3
])2

. (4.11)
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O1 O2 O3 O4

Figure 4.1: The sextic operators in matrix models. The double trace operator O4 exists
only in the theory of symmetric matrices.

The sextic operators are depicted diagrammatically in fig. 4.1. We could also introduce

an operator containing tr [φ], but since the orbifolds we will study are models of symmetric

traceless and anti-symmetric matrices, the trace is identically zero. In the anti-symmetric

model, the operator O4 vanishes, but it is non-vanishing in the symmetric orbifold, and

so in this case we will introduce this additional marginal operator to the Lagrangian and

take the potential to be given by

V (x) =
1

6!

(
g1O1(x) + g2O2(x) + g3O3(x) + g4O4(x)

)
. (4.12)

To study the large N behavior of these matrix models, we introduce rescaled coupling

constants λ1, λ2, λ3, λ4. To simplify expressions, it will be convenient to also rescale the

coupling constants by a numerical prefactor. We therefore define the rescaled couplings

by

g1 = 6!(8π)2 λ1

N2
g2 = 6!(8π)2 λ2

N3
g3 = 6!(8π)2 λ3

N4
g4 = 6!(8π)2 λ4

N3
. (4.13)

To justify these powers of N , let us perform a scaling φab →
√
Nφab. Then the coefficient

of each q-trace term in the action scales as N2−q. This is the standard scaling in the ’t

Hooft limit, which insures that each term in the action is of order N2.

4.2.1 The O(N)2 parent theory

For the matrix model parent theory, the momentum space propagator is given by

〈
φ̃ab(k)φ̃a

′b′(−k)
〉

0
=
δaa

′
δbb
′

k2
. (4.14)
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Computing the four-loop beta functions and taking the large N limit with scalings (4.13),

we find that, up to O( 1
N

) corrections,

βλ1 =− 2λ1ε+ 72λ2
1 − 288(17 + π2)λ3

1

βλ2 =− 2λ2ε+ 432λ2
1 + 96λ1λ2 − 864(90 + 7π2)λ3

1 − 864(10 + π2)λ2
1λ2 (4.15)

βλ3 =− 2λ3ε+ 168λ2
1 + 192λ1λ2 + 32λ2

2 − 432(210 + 23π2)λ3
1 − 1152(39 + 4π2)λ2

1λ2

+ 4608λ2
1λ3 − 768(6 + π2)λ1λ

2
2 −

128

3
π2λ3

2

These beta functions have two non-trivial fixed points, which are both real. But one of

these fixed points, which comes from balancing the 2-loop and 4-loop contributions, is

not perturbatively reliable in an ε expansion around ε = 0 because all the couplings at

this fixed points contain terms of order O(ε0). The other fixed point is given by

λ1 =
ε

36
+

17 + π2

324
ε2, λ2 = − ε

2
− 22 + 7π2

36
ε2, λ3 =

295

108
ε+

4714 + 6301π2

1944
ε2 .

(4.16)

At this fixed point the matrix
∂βλi
∂λj

has eigenvalues

{
−2ε+

32

9
ε2,

2ε

3
− 44 + 10π2

27
ε2, 2ε− 34 + 2π2

9
ε2
}
. (4.17)

Each eigenvalue mi corresponds to a nearly marginal operator with scaling dimension

∆i = d+mi = 3− ε+mi . (4.18)

Thus, negative eigenvalues correspond to slightly relevant operators, which cause an

instability of the fixed point. The only unstable direction, corresponding to eigenvalue

−2ε+ 32
9
ε2, is

(
245

3
+

4225π2 − 4188

36
ε

)
λ1 +

(
10 +

67π2 − 28

6

)
λ2 + λ3. (4.19)
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The above comments relate to the O(N)2 matrix model at N = ∞. We can also study

the model at finite N . One interesting quantity is Nmin, the smallest value of N at which

the fixed-point that interpolates to the large N solution (4.16) appears as a solution to

the beta functions. This fixed point emerges along with another fixed point, and right

at Nmin these solutions to the beta functions are identical, so that the matrix
(
∂βi
∂gj

)
is

degenerate. So we arrive at the following system of equations

βi(λi, N) = 0, det

(
∂βi
∂λj

)
(λi, N) = 0. (4.20)

This system of equations can easily be solved numerically to zeroth order in ε, and with

a zeroth order solution in hand the first order solution can be obtained by linearizing

the system of equations. We find that Nmin = 23.2541 − 577.350ε, which nicely fits the

results of a numerical study where we compute Nmin at different values of ε:

ε 0 0.001 0.002 0.003 0.004 0.005

Nmin 23.255 22.682 22.124 21.576 21.039 20.511

These values result in a numerical fit Nmin(ε) = 23.255−553.7ε, which coincides with the

result stated above.

If we take N to be finite and ε〈 1
N2 , we can provide some more details about the number

and stability of fixed points for different values of N . For N > 23.2541− 577.350ε there

are three non-trivial, real, perturbatively accesible fixed points, which in the large N

limit , to leading order in ε, scale with N as

g1 = g2 = 0, g3 =
6!(8π)2

288

ε

N2
,

g1 =
6!(8π)2

36

ε

N2
, g2 = −10

36
· 6!(8π)2 ε

N3
, g3 =

6!(8π)2

288

ε

N2
, (4.21)

g1 =
6!(8π)2

36

ε

N2
, g2 = −1

2
· 6!(8π)2 ε

N3
, g3 =

295

108
· 6!(8π)2 ε

N4
.

The first of these three fixed points is identical to the vector model fixed point; that is

to say, the symmetry is enhanced from O(N)2 to O(N2). This fixed point extends to all
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N in the small ε regime we are considering:

g1 = g2 = 0, g3 =
6!(8π)2

96(22 + 3N2)
ε. (4.22)

The third fixed point in (4.21) extends to the regime where N2 > 1
ε

and becomes the large

N solution discussed above. This fixed point merges with the second fixed point in (4.21)

at a critical point situated at N(ε) = 23.2541−577.350ε And so at intermediate values of

N , only the vector model fixed point exists. But as we keep decreasing N we encounter

another critical point at N(ε) = 5.01072 + 14.4537ε, from which two new solutions to the

vanishing beta functions emerge. As N further decreases past the value N(ε) = 2.75605−

0.0161858ε, another pair of fixed points appear, but then at N(ε) = 2.72717− 0.757475ε

two of the fixed points merge and become complex. Then at N(ε) = 2.33265− 0.316279ε

two new fixed points appear, but these disappear again at N(ε) = 0.827007 + 8.10374ε,

so that for N below this value there are a total of three real non-trivial fixed points.

4.2.2 The O(N) model of antisymmetric matrices

For the theory of antisymmetric matrices φT = −φ the momentum space propagator

is given by

〈
φ̃ab(k)φ̃a

′b′(−k)
〉

0
=

1

2k2

(
δaa

′
δbb
′ − δab′δba′

)
. (4.23)

Performing the large N expansion using the scalings (4.13) we get the large N beta

functions

βλ1 =− 2λ1ε+ 18λ2
1 − 18(17 + π2)λ3

1

βλ2 =− 2λ2ε+ 108λ2
1 + 24λ1λ2 − 54(90 + 7π2)λ3

1 − 54(10 + π2)λ2
1λ2 (4.24)

βλ3 =− 2λ3ε+ 42λ2
1 + 48λ1λ2 + 8λ2

2 − 27(210 + 23π2)λ3
1 − 72(39 + 4π2)λ2

1λ2

+ 288λ2
1λ3 − 48(6 + π2)λ1λ

2
2 −

8

3
π2λ3

2 .
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large N fixed point

trivial fixed point

vector model fixed point

0

0.83

2.33

2.73

2.76

3.74

5.01

23.25

N

N g1/ε g2/ε g3/ε
23.2541− 577.350ε 20.3055 + 1085.34ε −10.2467− 671.121ε 2.64544 + 226.967ε
5.01072 + 14.4537ε 18.4283 + 56.2132ε 37.3192 + 141.611ε 22.5095 + 65.4233ε√

14 +O(ε) O(ε2) undetermined O(ε) 15π2/2 +O(ε)
2.75605− 0.0161858ε 477.273 + 5099.17ε −829.732− 8328.37ε 382.831 + 3255.35ε
2.72717− 0.757475ε 210.819 + 1081.1ε −428.594− 2397.37ε 270.026 + 1676.65ε
2.33265− 0.316279ε 755.558 + 5809.01ε −1059.23− 8206.69ε 438.184 + 3265.96ε
0.827007 + 8.10374ε 237.478 + 3365.73ε −261.049− 4508.85ε 220.926 + 2109.71ε

Figure 4.2: The real perturbative fixed points of the O(N)2 matrix model parent theory,
the intersection point (marked in brown), and the critical points at which they merge
and disappear (marked in black) as a function of N for small ε. Fixed points that are
IR-unstable in all three directions are drawn in red, those unstable in two directions are
drawn in violet, those unstable in one direction are drawn in blue, and those that are
stable in all three directions are drawn in green. The four-loop corrections to the third
point on the list, where two fixed lines intersect, are undetermined for any O(ε2) value
of λ2.
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These beta-functions are equivalent to (4.15) up to a redefinition of the rescaled couplings

by a factor of four, which is compatible with this daughter theory being equivalent in the

large N limit to the parent theory studied in the previous section.

We can also study the behaviour of this model for finite N and ε〈1. For N > 35.3546−

673.428 ε there are three (real, perturbatively accesible) fixed points, which in the large

N limit (keeping ε〈 1
N2 ) to leading order in ε scale with N as

g1 = g2 = 0, g3 =
6!(8π)2

144

ε

N2
,

g1 =
6!(8π)2

9

ε

N2
, g2 = −10

9
· 6!(8π)2 ε

N3
, g3 =

6!(8π)2

144

ε

N2
, (4.25)

g1 =
6!(8π)2

9

ε

N2
, g2 = −2 · 6!(8π)2 ε

N3
, g3 =

295

27
· 6!(8π)2 ε

N4
.

The first of these three fixed points is the vector model fixed point, and it is present more

generally in the small ε regime we are considering:

g1 = g2 = 0, g3 =
6!(8π)2

48(44− 3N + 3N2)
ε. (4.26)

The third fixed point in (4.25) extends to the regime where N2 > 1
ε

and becomes the large

N solution discussed above. This fixed point merges with the second fixed point in (4.25)

at a critical point situated at N(ε) = 35.3546−673.428 ε And so at intermediate values of

N , only the vector model fixed point exists. But as we keep decreasing N we encounter

another critical point at N(ε) = 6.02669 + 7.37013ε, from which two new solutions to the

vanishing beta functions emerge. As N further decreases past the value N(ε) = 5.70601+

0.540694ε, another pair of fixed points appear, and past N(ε) = 5.075310 − 0.0278896ε

yet another pair of fixed point appear (in this range of N , all seven non-trivial solutions

to the vanishing beta functions are real). But already below N(ε) = 5.03275−0.586724ε,

two of the fixed points become complex, and below N(ε) = 3.08122 + 8.26176ε two more

fixed points become complex, so that for N below this value there are a total of three

real non-trivial fixed points.
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large N fixed point

trivial fixed point

vector model fixed point

0

3.08

5.03

5.08

5.71

5.82

6.03

35.35

N

N λ1/ε λ2/ε λ3/ε
35.3546− 673.428ε 49.5253 + 2344.67ε −14.7886− 819.812ε 2.27483 + 172.497ε
6.02669 + 7.37013ε 13.2186 + 135.952ε 46.5606 + 358.588ε 52.3442 + 184.725ε

(1 +
√

113)/2 +O(ε) O(ε2) undetermined O(ε) 15π2/2 +O(ε)
5.70601 + 0.540694ε 1835.96 + 12199.7ε −1514.42− 9969.85ε 315.529 + 1975.47ε
5.07531− 0.0278896ε 1742.93 + 14681.9ε −1228.95− 10464.7ε 275.926 + 2170.35ε
5.03275− 0.586724ε 350.124 + 3001.15ε −404.283− 3356.64ε 180.867 + 1310.49ε
3.08122 + 8.26176ε 666.939 + 7903.77ε −373.592− 5369.46ε 170.179 + 1403.34ε

Figure 4.3: The real perturbative fixed points of the antisymmetric matrix model, their
intersection point (marked in brown), and the critical points at which they merge and
disappear (marked in black) as a function of N for small ε. Fixed points that are IR-
unstable in all three directions are drawn in red, those unstable in two directions are
drawn in violet, those unstable in one direction are drawn in blue, and those that are
stable in all three directions are drawn in green.
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4.2.3 Symmetric traceless matrices and violation of large N equivalence

There is a projection of the parent theory of general real matrices φab which restricts

them to symmetric matrices φ = φT . In order to have an irreducible representation of

O(N) we should also require them to be traceless trφ = 0. Then the propagator is given

by

〈
φ̃ab(k)φ̃a

′b′(−k)
〉

0
=

1

2k2

(
δaa

′
δbb
′
+ δab

′
δba
′ − 2

N
δabδa

′b′
)
. (4.27)

The operators O1,2,3,4 are actually independent for N > 5, while for N = 2, 3, 4, 5 there

are linear relations between them:

• N = 2 : O4 = 0, O3 = 2O2 = 4O1,

• N = 3 : O3 = 2O2, 2O4 = 3O3 + 6O1,

• N = 4, 5 : 18O2 + 8O4 = 24O1 + 3O3.

We will see that the existence of these relations for small integer values ofN has interesting

implications for the analytic continuation of the theory from N > 5 to N < 5.

Let us first discuss the large N theory. For the rescaled couplings λ1, λ2, and λ3, the

large N beta functions are the same as (4.24) for the anti-symmetric model. But now

there is an additional coupling constant, whose large N beta function is given by

βλ4 =− 2ελ4 + 72λ2
1 + 36λ1λ4 + 6λ2

4 − 738λ2
1λ4 − 18(180 + 11π2)λ3

1 . (4.28)

Consequently, the RG flow now has five non-trivial fixed points, two of which are real

fixed points but with coupling constants containing O(ε0) terms. Another pair of fixed

points is given by

λ1 =
ε

9
+

17 + π2

81
ε2, λ2 = −2ε− 22 + 7π2

9
ε2, λ3 =

295

27
ε+

4714 + 6301π2

486
ε2,

λ4 =
−3± i

√
39

18
ε+

273− 78π2 ± i
√

39(67 + 12π2)

2106
ε2 . (4.29)
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The first three coupling constants assume the same value as for the anti-symmetric model,

a rescaled version of (4.16) of the parent theory, but the additional coupling constant

assumes a complex value, thus breaking large N equiavalence and suggesting that the

fixed point is unstable and described by a complex CFT [93, 177].

We find that the eigenvalues of
∂βλi
∂λj

at this complex fixed point are

{
− 2ε+

32

9
ε2, ∓2i

√
13

3
ε± 2i

67 + 12π2

9
√

39
ε2,

2

3
ε− 2

22 + 5π2

27
ε2, 2ε− 2

17 + π2

9
ε2
}

(4.30)

where the imaginary eigenvalue is associated to a complex linear combination of λ1 and

λ4. Thus, there is actually a pair of complex large N fixed points: at one of them there is

an operator of complex dimension d+ iA = 3−ε+ iA, while at the other it has dimension

d− iA,20 where A = 2
√

13
3
ε− 267+12π2

9
√

39
ε2. Thus, this pair of complex fixed points satisfy

the criteria to be identified as complex CFTs [93, 177]. In our large N theory, the scaling

dimensions d ± iA correspond to the double-trace operator O4, so that the single-trace

operator trφ3 should have scaling dimension 1
2
(d± iA). Indeed, we find that its two-loop

anomalous dimension is, for large N ,

γtrφ3 = 6 (3λ1 + λ2) = ε± i
√

13

3
ε . (4.31)

Therefore,

∆trφ3 = 3

(
d

2
− 1

)
+ γtrφ3 =

3− ε
2
± i
√

13

3
ε =

d± iA
2

. (4.32)

Scaling dimensions of this form are ubiquitous in large N complex CFTs [81, 91, 26, 3]. In

the dual AdS description they correspond to fields violating the Breitenlohner-Freedman

stability bound.

Let us also note that the symmetric orbifold has a fixed point where only the twisted

sector coupling is non-vanishing:

λ1,2,3 = 0, λ4 =
ε

3
. (4.33)

20As N is reduced, the two complex conjugate fixed points persist down to arbitrarily small N . For
finite N , however, the complex scaling dimensions are no longer of the form d± iA: the real part deviates
from d, which is consistent with the behavior of general complex CFTs [93, 177].
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large N fixed point

trivial fixed point

vector model fixed point

0

0.160

0.253

0.457

0.466

0.521

0.702

0.934

1.041

1.094

1.140

1.175

1.186

2.441

3.400

4.465

4.475

4.534

5.000

5.023

5.414

5.501

13.180

N

N g1/ε g2/ε g3/ε g4/ε
13.1802− 57.5808ε 37.9805 + 498.738ε 13.7692 + 157.614ε 0.774624 + 9.43200ε 21.5178 + 155.312ε
5.50104− 0.966432ε 1424.22 + 11076.8ε −1176.03− 9116.73ε 247.515 + 1873.61ε −454.872− 3511.98ε
5.41410 + 13.7204ε 24.4748 + 360.178ε 57.2276 + 450.992ε 39.8006− 29.6552ε −2.62055− 19.2614ε
5.02251 + 0.314146ε 1132.14 + 13268.0ε −775.767− 9368.16ε 185.009 + 1864.18ε −372.446− 4364.10ε

5 +O(ε) O(ε2) undetermined O(ε) 15π2/2 +O(ε) O(ε2)
5 868.525 + 8195.57ε −651.394− 6497.79ε 182.588 + 1618.14ε −289.508− 2731.86ε

3.39974 + 5.04412ε 308.575 + 3818.19ε −149.500− 2394.44ε 113.071 + 818.926ε −100.935− 1242.36ε
1.18613− 1.96911ε 113.631 + 136.626ε −445.062− 3310.43ε 475.932 + 3758.3ε 573.101 + 3747.7ε

1.139999− 0.0564804ε 7.14941 + 103.455ε −121.617− 1749.67ε 281.382 + 2487.82ε 113.505 + 1635.81ε
0.934072− 0.0890231ε 0.0911386 + 344.846ε −2777.40− 9338.97ε 1172.45 + 4559.95ε 2333.04 + 8376.93ε
0.701527 + 10.3604ε 12.8934 + 848.994ε −57.8652− 4059.74ε 279.112 + 3827.54ε 67.4704 + 4336.08ε
0.521281− 14.4794ε 3.96346− 441.552ε −16.5232 + 1957.63ε 257.847 + 606.789ε 22.3424− 2270.44ε
0.465602− 6.81219ε 1.79072− 162.063ε 24.3958− 1503.26ε 228.454 + 2430.09ε −15.2518 + 919.203ε

(
√

33− 3)/6 +O(ε) undetermined O(ε) undetermined O(ε) 24π2 +O(ε) O(ε)

Figure 4.4: The perturbative real fixed points of the symmetric matrix model, the in-
tersection points (marked in brown), and the critical points at which they merge and
disappear (marked in black) as a function of N for small ε. Fixed points that are IR-
unstable in all four directions are drawn in red, those unstable in three directions are
drawn in violet, those unstable in two direction are drawn in blue, those unstable in one
direction are drawn in cyan, and those that are stable in all four directions are drawn
in green. The orange dotted lines denote the segments of “spooky” fixed points, where
two eigenvalues of ∂βi

∂gj
are complex, and at the orange vertex those eigenvalues are purely

imaginary.
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It could be connected to the fact that in the large N limit of the parent theory the O4

could not contribute to the beta functions of the other operators and therefore we can

safely set λ1,2,3 = 0 without setting λ4 6= 0.

We can also study the behaviour of this model for finite N and ε〈1. For N > 13.1802−

57.5808 ε there are three (real, perturbatively accesible) fixed points, which in the large

N limit (keeping ε〈 1
N2 ) to leading order in ε scale with N as

0 = g1 = g2 = g4 g3 =
6!(8π)2

144N2
ε

g1 = 144
6!(8π)2

N6
ε g2 = 66

6!(8π)2

N5
ε g3 =

6!(8π)2

144N2
ε g4 =

6!(8π)2

3N3
ε (4.34)

g1 = −144
6!(8π)2

N6
ε g2 = 18

6!(8π)2

N5
ε g3 = −18

6!(8π)2

N6
ε g4 =

6!(8π)2

3N3
ε

The first of these three fixed points is the vector model fixed point, which is present

generally N in the small ε regime:

0 = g1 = g2 = g4 g3 =
6!(8π)2

48(38 + 3N + 3N2)
ε (4.35)

The third fixed point in (4.34) connects to the large N solution discussed above. This

fixed point merges with the second fixed point in (4.34) at a critical point situated at

N(ε) = 13.1802 − 57.5808 ε And so at intermediate values of N , only the vector model

fixed point exists. But as we keep decreasing N we encounter another critical point at

N(ε) = 5.41410 + 13.7204 ε whence two new fixed points emerge.

4.3 Spooky Fixed Points and Limit Cycles

As indicated in figure 4.4, in the O(N) symmetric traceless model there exist four

segments of real, but spooky fixed points as a function of N .21 For these fixed points the

Jacobian matrix
(
∂βi
∂gj

)
has, in addition to one negative and one positive eigenvalue, a pair

of complex conjugate eigenvalues. Therefore, there are two complex scaling dimensions

(4.18) at these spooky fixed points, so that they correspond to non-unitary CFTs. The

21If we allow negative N , there is a fifth segment of spooky fixed points at N ∈ (−3.148,−3.183).
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eigenvectors corresponding to the complex eigenvalues have zero norm (a derivation of this

fact is given later in this section). Let us note that, in the O(N)2 model and O(N) model

with antisymmetric matrix there are no real fixed points with complex eigenvalues. The

symmetric traceless model provides a simple setting where they occur. In this section we

take a close look at the spooky fixed points and show that they lead to a Hopf bifurcation

and RG limit cycles.

Of the four segments of spooky fixed points with positive N , three, namely those

that fall within the ranges given by N ∈ (1.094, 2.441), N ∈ (1.041, 1.175), and N ∈

(0.160, 0.253), share the property that the complex eigenvalues never become purely imag-

inary. The number of stable and unstable directions therefore remain the same within

these intervals. Something special happens, however, at the integer value N = 2 that lies

within the first interval. Here the two operators with complex dimensions are given by

linear combinations of operators Oi that vanish by virtue of the linear relations between

these operators at N = 2.22 As a result, for N = 2 there are no nearly marginal operators

with complex dimensions, as expected.

The fourth segment of spooky fixed points stands out in that it includes a fixed point

with imaginary eigenvalues. This fourth segment lies in the range N ∈ (Nlower, Nupper),

where, at four-loop level,

Nupper ≈ 4.5339959143 + 1.54247ε , Nlower ≈ 4.4654144982 + 0.693698ε . (4.36)

As N approaches Nupper from above,
(
∂βi
∂gj

)
has one positive and three negative eigenval-

ues, and two of the negative eigenvalues converge on the same value. As N dips below

Nupper, the two erstwhile identical eigenvalues become complex and form a pair of com-

plex conjugate values. As we continue to decrease N , the complex conjugate eigenvalues

traverse mirrored trajectories in the complex plane until they meet at the same positive

value for N equal to Nlower. These trajectories are depicted in figure 4.5. For a critical

value N = Ncrit with Nlower < N < Nupper, the trajectories intersect the imaginary axis

22This is similar to what happens to evanescent operators when they are continued to an integer
dimension.
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such that the two eigenvalues are purely imaginary. At the two-loop order we find that

Ncrit ≈ 4.47507431683 , (4.37)

and the fixed point is located at

g∗1 = 158.684ε, g∗2 = −211.383ε,

g∗3 = 138.686ε, g∗4 = −49.4564ε . (4.38)

The Jacobian matrix evaluated at this fixed point is

(
∂βi
∂gj

)
=



−1.65273 −1.58311 1.33984 −1.19641

1.0242 0.358518 −3.24194 1.21102

0.128059 0.749009 2.9199 −0.210872

−0.0618889 0.428409 −0.417582 −1.20064


ε (4.39)

with eigenvalues {2,−1.57495,−0.153965i, 0.153965i} ε. These quantities are subject to

further perturbative corrections in powers of ε; for example, after including the four-loop

corrections Ncrit ≈ 4.47507431683 + 3.12476ε. The existence of a special spooky fixed

point with imaginary eigenvalues is robust under loop corrections that are suppressed by

a small expansion parameter, since small perturbations of the trajectories still result in

curves that intersect the imaginary axis. In light of the negative value of g∗4, one may

worry that the potential is unbounded from below at the spooky fixed points. It is not

clear how to resolve this question for non-integer N , but at the fixed-points at N = 4

and N = 5 that this spooky fixed point interpolates between, one can explicitly check

that the potential is bounded from below.

The appearance of complex eigenvalues changes the behavior of the RG flow around

the spooky fixed point. Since the fixed point has one negative eigenvalue for all N ∈

(Nlower, Nupper), there is an unstable direction in the space of coupling constants that

renders the fixed point IR-unstable. But we can ask the following question: How do the

coupling constants flow in the two-dimensional manifold that is invariant under the RG
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Figure 4.5: The trajectories of the complex eigenvalues of the Jacobian matrix
(
∂βi
∂gj

)
as

N is varied from Nlower to Nupper.

flow and that is tangent to the plane spanned by the eigenvectors of the Jacobian matrix

with complex eigenvalues?

If the real parts of these eigenvalues are non-zero, the spooky fixed point is a focus

and the flow around it is described by spirals steadily moving inwards or outwards from

the fixed point. For N > Ncrit, the real parts are negative and the fixed point is IR-

unstable, while for N < Ncrit the real parts are positive and the fixed point is stable. By

the Hartman-Grobman theorem [178, 179], one can locally change coordinates (redefine

the coupling constants) such that the beta-functions near the fixed points are linear.

Furthermore, one can get rid of the imaginary part of the eigenvalues in this subspace by

a suitable field redefinition23. An analogous statement was given in [149].

When N = Ncrit, the real parts of the complex eigenvalues are equal to zero. In this

case the equilibrium point is a center, the Hartman-Grobman theorem is not applicable,

and the behavior near the fixed point is controlled by the higher non-linear terms in the

autonomous equations. If we consider N as a parameter of the the RG flow, N = Ncrit

corresponds to a bifurcation point, as first introduced by Poincarè. A standard method of

analyzing bifurcations is to reduce the full system to a set of lower dimensional systems by

use of the center manifold theorem [180]. Denoting by λ the eigenvalues of the Jabobian

matrix at a given fixed point, this theorem guarantees the existence of invariant manifolds

23For instance, in two dimensions with z = x + iy, the equation ż = (−α + iω)z can via a change of
variable z → zei

ω
α log |z| be reduced to ż = −αz.
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Figure 4.6: The RG flow in the invariant manifold tangent to the plane spanned by the
eigenvectors with complex eigenvalues in the space of coupling constants for N = 4.476.
In the IR, the blue curve whirls inwards towards a limit cycle marked in black, while the
orange curve whirls outwards towards the limit cycle. The coordinates t3 and t4 are given
by linear combinations of the couplings g1, g2, g3, and g4 and are defined in appendix 4.4.
The RG flow on the invariant manifold admits of a description in an infinite expansion
in powers of t3 and t4. This plot is drawn retaining terms up to cubic order.
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tangent to the eigenspaces with Reλ > 0, Reλ < 0, and Reλ = 0 respectively. The latter

manifold is known as the center manifold, and in general it need neither be unique nor

smooth. But when, as in our case, the center at g∗ is part of a line of fixed points in

the space (g,N) that vary smoothly with a parameter N , and the complex eigenvalues

satisfy

κ =
d

dN
Re[λ(Ncrit)] 6= 0 , (4.40)

then there exists a unique 3-dimensional center manifold in (~g,N) passing through (g∗, Ncrit).

On planes of constant N in this manifold, there exist coordinates (x, y) such that the

third order Taylor expansion can be written in the form

dx

dt
=
(
κN + a(x2 + y2)

)
x−

(
ω + cN + b(x2 + y2)

)
y ,

dy

dt
=
(
ω + cN + b(x2 + y2)

)
x+

(
κN + a(x2 + y2)

)
y , (4.41)

where t = lnµ. The constant a in these equations is known as the Hopf constant. By a

theorem due to Hopf [158], there exists an IR-attractive limit cycle in the center manifold

if a > 0, while if a < 0 there exists an IR-repulsive limit cycle. In appendix 4.4, we present

an explicit calculation of a for the critical point in the symmetric matrix model, and we

find that a is positive. Hence, we conclude that on analytically continuing in N , the

RG flow of this QFT contains a periodic orbit in the space of coupling constants, an

orbit that is unstable but which in the center manifold constitutes an attractive limit

cycle. This conclusion holds true at all orders in perturbation theory, since the criteria

of Hopf’s theorem, being topological in nature, are not invalidated by small perturbative

corrections.

Now that we have demonstrated the existence of limit cycles, we should ask about their

consistency with the known RG monotonicity theorems. In particularly, in 3 dimensions

the F -theorem has been conjectured and established [159, 160, 162]. Furthermore, in

perturbative 3-dimensional QFT, one can make a stronger statement that the RG flow is

128



a gradient flow, i.e.

Gijβ
j =

∂F

∂gi
, (4.42)

where F and the metric Gij are functions of the coupling constants which can be calcu-

lated perturbatively [161, 163, 164, 136, 165].24 At leading order, Gij may be read off

from the two-point functions of the nearly marginal operators [163, 164]:

〈Oi(x)Oj(y)〉 =
Gij

|x− y|6 . (4.43)

The F -function satisfies the RG equation

µ
∂

∂µ
F =

∂

∂t
F = βiβjGij . (4.44)

This shows that, if the metric is positive definite, then F descreases monotonically as the

theory flows towards the IR. These perturbative statements continue to be applicable in

3− ε dimensions.

At leading order, the metric Gij is exhibited in appendix B. Its determinant is given

by

(N − 5)(N − 4)(N − 3)2(N − 2)3N2(N + 1)3(N + 3)(N + 4)3(N + 6)2(N + 8)(N + 10)

2654208
.

(4.45)

This shows that the metric has three zero eigenvalues for N = 2, two zero eigenvalues

for N = 3, and one zero eigenvalue for N = 4 and 5. This is due to the linear relations

between operators Oi at these integer values of N . For example, for N = 2 there is only

one independent operator. In the range 4 < N < 5, detGij < 0, the metric has one

negative and three positive eigenvalues. This is what explains the possibility of RG limit

cycles in the range Nlower < N < Nupper. For N > 5, Gij is positive definite, and for

N < −10, Gij is negative definite. This is consistent with our observing spooky fixed

points only outside of these regimes.25

24In [136, 165] the terminology a-function was used, but we prefer to call it F -function instead, since
a typically refers to a Weyl anomaly coefficient in d = 4.

25We have also found the metric for the parent O(N)2 theory. In this case it is positive definite for
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In general, the norms of vectors computed with this metric are not positive definite

for N < 5. In particular, we can show that the eigenvectors corresponding to complex

eigenvalues of the Jacobian matrix evaluated at real fixed points have zero norm. Indeed,

let us assume that we have a complex eigenvalue m ∈ C with eigenvector ui

∂βi

∂gj
uj = mui . (4.46)

Now let us differentiate the relation (4.42) with respect to gK :

∂KGIJβ
J +GIJ∂Kβ

J = ∂I∂KF . (4.47)

At a spooky fixed point we have βJ(g) = 0 for real couplings g. Contracting the relation

(4.47) with uK and ūI at a spooky fixed point we get

ūIGIJ∂Kβ
JuK = uK ūI∂I∂KF . (4.48)

Using (4.46) we arrive at the following relations

mūIuJGIJ = ūIuJ∂I∂JF . (4.49)

Since GIJ and ∂I∂JF are real symmetric matrices, the norm u2 = GIJu
I ūJ and f =

ūIuJ∂I∂JF are real numbers. If they are not equal to zero, then we must have m ∈ R,

which contradicts our assumption. Therefore, the norm u2 = 0.

Another consequence of the negative eigenvalues of Gij is that dF/dt can have either

sign, as follows from (4.44). In fig. (4.7) we plot F (t) for the limit cycle of fig. 4.6,

showing that it oscillates. This can also be shown analytically for a small limit cycle

surrounding a fixed point. We may expand around it to find

βi(t) = a(t)vi + ā(t)v̄i , (4.50)

all N except N ∈ {−4,−2, 1, 2}, where there are zero eigenvalues. We further found the metric for the
anti-symmetric matrix model. In certain intervals within the range N ∈ (−4, 5) it has both positive and
negative eigenvalues, but numerical searches reveal no spooky fixed points in these intervals.
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Figure 4.7: The plot of 1012(F (t) − F0)/ε3, where F0 is the value at the spooky fixed
point, for the cyclic solution found in section 4.3 for N = 4.476.

where vi and v̄i are the eigenvectors corresponding to the complex eigenvalues of the Ja-

cobian matrix at the spooky fixed point. While Gijv
iv̄j vanishes, Gijv

ivj 6= 0. Therefore,

(4.44) implies that dF/dt 6= 0 for a small limit cycle.

4.4 Calculating the Hopf constant

In this appendix we compute the Hopf constant a at two loops. Introducing rescaled

couplings gi = 720(8π)2ε gi, the beta functions at the critical value N = Ncrit = 4.475 in

units of ε become

βg1 = −2g1 +
(
2339.99g1 + 4273.55g2 + 3840.g3 + 4325.08g4

)
g1 + 2768.04g2

2 + 2592.g2
4 + 4608.g2g4

βg2 = −2g2 +
(
509.966g1 + 2962.93g2 + 6748.16g3 + 113.519g4

)
g1 +

(
3456.g3 + 360.299g4

)
g4

+
(
2308.94g2 + 11232.3g3 − 421.438g4

)
g2

βg3 = −2g3 +
(
42g1 + 221.912g2 + 576.g3 − 241.337g4

)
g1 + 10704.4g2

3 − 209.942g2
4 − 772.278g3g4

+
(
629.906g2 + 4074.01g3 − 135.923g4

)
g2

βg4 = −2g4 +
(
226.417g1 + 73.3524g2 + 1708.55g4

)
g1 − 618.547g2

2 +
(
1583.3g2 + 3840.g3 + 1066.11g4

)
g4

These beta functions have a fixed point at

g∗(Ncrit) = 10−4 · (3.48916,−4.64792, 3.04945,−1.08745) . (4.51)
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Letting V = (v1, v2, v3, v3) be the matrix of eigenvectors vi of the stability matrix
(
∂βgi
∂gj

)
evaluated at this fixed point,

V −1

(
∂βgi

∂gj

)
V = diag (2,−1.57495,−0.153965i, 0.153965i) . (4.52)

One can check that these eigenvalues change on varying N . In particular, the real parts

of the complex eigenvalues change linearly with N for N close to Ncrit. Changing to

variables t1 = v1 · g , t2 = v2 · g , t3 = <[v3 · g ], t4 = =[v3 · g ], we get the equations

βt1 = 2t1 − 3006.27t21 − 635.361t22 − 4.22379t23 + 4.22379t24 + 7.65924t3t4

βt2 = −1.57495t2 + (−638.903t1 + 1471.36t2 − 96.8862t3 + 72.0709t4) t2+

+1.0131t23 − 0.34628t24 − 1.37241t3t4

βt3 = −0.153965t4 + (231.430t4 − 3006.27t3) t1 + (−31746.2t2 + 1284.37t3 − 347.122t4) t2

−49.5972t23 + 492.731t24 + 178.686t3t4

βt4 = 0.153965t3 + (−231.43t3 − 3006.27t4) t1 + (638.003t2 + 730.144t4 − 82.7131t3) t2

+8.73689t23 + 823.772t24 + 153.731t3t4 . (4.53)

We wish to study the RG flow in the manifold that is tangent to the center eigenspace.

We cannot simply set t1 and t2 to zero, since this plane is not invariant under the RG flow:

the t23, t24, and t3t3 terms in βt1 and βt2 generate a flow in t1 and t2. But by introducing

new variables with t1 and t2 suitably shifted,

u1 = t1 − 1.77501t23 + 4.3762t4t3 + 1.77501t24, (4.54)

u2 = t2 − 0.709414t23 + 0.676770t4t3 + 0.286027t24 , (4.55)

the t23, t24, and t3t3 terms in βu1 and βu2 cancel out. While βu1 and βu2 do couple to t3

and t4 at third order, one can introduce new variables yet again and shift u1 and u2 by

cubic terms in t3 and t4 to remove this third order coupling. This procedure may be

iterated indefinitely to obtain a coordinate expansion of the center manifold to arbitrary
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order, in accordance with the center manifold theorem. We will content ourselves with

the cubic approximation of the center manifold, which consists of the surface u1 = u2 = 0,

since this approximation suffices to determine the Hopf constant. Eliminating t1 and t2

in favour of u1 and u2 in the equations for βt3 and βt4 , setting u1 and u2 to zero, and

discarding unreliable quartic terms gives

βt3 = −49.5972t23 + 178.686t4t3 + 492.731t24 − 0.153965t4

−4425.01
(
1.t33 − 2.81386t4t

2
3 − 0.947101t24t3 + 0.0703961t34

)
βt4 = 8.73689t23 + 153.731t4t3 + 0.153965t3 + 823.772t24

−469.468
(
1.t33 + 7.98654t4t

2
3 − 27.8962t24t3 − 10.9216t34

)
. (4.56)

From these equations the Hopf constant can be directly obtained by the use of equation

(3.4.11) in [180] or by the equivalent formula in [181]. We find that

a ≈ 6204790 (4.57)

so that Hopf’s theorem guarantees the existence of a periodic orbit that is IR-attractive

in the center manifold, implying that if we fine-tune the couplings in the vicinity of Ncrit,

there is a cyclic solution to the beta functions that comes back precisely to itself.
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4.5 Other bifurcations

Since the classic review by Kogut and Wilson [140] on the ε expansion and renor-

malization group (RG) flow, the general properties of RG flows have been the subject of

active research. In the cases usually considered, once a theory starts flowing, it ends up at

a fixed point where it is described by some conformal field theory (CFT). From a general

point of view, the equations describing instances of RG flow form systems of autonomous

differential equations, and the properties of such systems and the kinds of flows they ad-

mit are well understood [180, 182, 141, 183]. In particular, dynamical systems can exhibit

flows more peculiar than that between distinct fixed points, and Kogut and Wilson spec-

ulated in 1974 on the possibility of limit cycles as well as ergodic and turbulent behaviour

in RG flow. Since then, however, a number of monotonicity theorems have been proven

that severely restrict the RG flow of unitary quantum field theories (QFTs). The first

such theorem was Zamolodchikov’s c-theorem [184], which in two dimensions establishes

a function that interpolates between central charges at CFTs and decreases monotoni-

cally along RG flow. Analogous theorems were proven in four dimensions (a-theorem)

[153, 150] and three dimensions (F -theorem) [161, 160, 162]. The monotonicity implied

by these theorems excludes the possibility of limit cycles, except for a loophole pointed

out in [185, 155]: multi-valued c functions. This loophole had in fact been previously

realized in certain deformed Wess-Zumino-Witten models [186, 187, 188], although these

models required coupling constants to pass between infinity and minus infinity in order to

realize cyclic RG flow. There are also examples of cyclics RG flow in quantum mechanics

[189, 142, 147, 144, 190, 191].

Recently, ref. [5] put forward a QFT of interacting symmetric traceless matrices

transforming under the action of the O(N) group, while allowing N to assume non-

integer values. O(N) models for non-integer N , an idea widely used in polymer physics

[192], had been previously given a formal definition in [156], which demonstrated the

non-unitarity of these models. Hence, the c, a, F -theorems are no longer valid and do not

constrain the RG flow, and consequently ref. [5] was able to show that the model studied

therein possesses a closed limit cycle for N slightly above 4.475. The main tool used to
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make this discovery was Hopf’s theorem [158], which guarantees the existence of a limit

cycle in the vicinity of the codimension-one bifurcation known as the Andronov-Hopf

bifurcation.

Turning to dynamical systems parameterized by two real numbers, codimension-two

bifurcations can be used to prove the occurrence of yet other kinds of flow. Specifically,

R.Bogdanov [193] and F.Takens [194] have established powerful theorems by which, from

properties of autonomous differential equations known only to second order in the dy-

namical variables, one can deduce the existence of homoclinic orbits, ie. flow curves

that connect a fixed point to itself. In addition to mild genericity conditions, the condi-

tions that must be satisfied in order for the theorems to apply can be checked merely by

studying the stability of fixed points, despite the fact that homoclinic orbits signal global

bifurcations [180] since they arise when a limit cycles collides with a saddle point.

An interesting fact about homoclinic orbits is that they can be used to diagnose

chaos. In applications of the theory of dynamical systems to physics, chaotic behavior

[195] occurs in many instances, such as in turbulence [196, 197], meteorology [198] and

even in scattering amplitudes in string theory [199]. Usually, chaotic behaviour is proven

via numerical investigations of concrete systems. One of the few analytical tools that

can hint at the emergence of chaos is a theorem due to Shilnikov [200] that, for systems

possessing homoclinic orbits, stipulates conditions by which to show they are chaotic.

Therefore, one important step towards uncovering chaotic RG flow is to establish the

existence of homoclinic RG flow.

Brief previous mention of homoclinic RG flow can be found in [201, 202], which study

non-linear sigma models and QCD4 in the Veneziano limit. These references, however,

mention the phenomenon solely for the purpose of pointing out its impossibility in those

contexts.

In this short letter, we study a QFT with global O(N)×O(M) symmetry. Examining

the RG flow of the theory as a function of M and N , we determine the regime where the

flow is non-monotonic. In this regime, we are able to establish the locations of a number of

Bogdanov-Takens bifurcations, by which we are able to conclude that the theory exhibits
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homoclinic RG flow. In other words, the model contains fixed point with the peculiar

property that a deformation by a relevant operator induces a flow that leads back to

the original point: an RG flow where the IR and UV theories are one and the same.

Homoclinic RG flow can be thought of as interpolating between the familiar type of RG

flow (where a system flows from one fixed point to another) and the more exotic RG limit

cycles (like limit cycles, homoclinic orbits are closed). In unitary QFTs, homoclinic RG

flows are still forbidden by c, a, F -theorems, but a fixed point situated in a homoclinic

orbit could possibly be described by a standard CFT, in contrast to fixed points that give

rise to limit cycles by undergoing a Hopf bifurcation, and which require operators with

complex scaling dimensions.

4.6 The model

The approach we consider in this short letter could be used in any two-parameteric

family of theories. But we present just the very first example, where such phenomenon

emerges. Thus, we consider an N = 1 supersymmetric model of interacting scalar su-

perfields Φi
ab that are invariant under the action of an O(N)×O(M) group in d = 3− ε

dimensions. The superfields are traceless-symmetric matrices with respect to the action

of an O(N) group and vectors under the action of an O(M) group. There are four singlet

marginal operators

O1 = tr
[
ΦiΦiΦjΦj

]
, O2 = tr

[
ΦiΦjΦiΦj

]
,

O3 = tr
[
ΦiΦi

]2
, O4 = tr

[
ΦiΦj

]
tr
[
ΦiΦj

]
, (4.58)

and so the full action is

S =

ˆ
ddxd2θ

[
tr ΦiD2

αΦi +
∑
i

giOi

]
. (4.59)

The RG flow of this model is gradient, meaning that there exists a function F of the

couplings and a four-by-four matrix Gij such that the beta functions of the theory satisfy
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the equation

βi = µ
dgi
dµ

= Gij
∂F

∂gj
. (4.60)

If Gij is positive or negative definite, this equation implies that F changes monoton-

ically with the RG flow, so that cyclic and homoclinic flow lines are impossible. By

explicit computation to leading order in perturbation theory, we find that the metric has

determinant

detG =
1

4
(M − 1)2(M + 2)2×

×(N − 3)(N − 2)2(N + 1)2(N + 4)2(N + 6) . (4.61)

We list the beta functions and the components of the metric in appendix C. The zeroes

in detG occur because of linear relations among the four operator of the theory at special

values of M and N , and their presence indicates that eigenvalues change sign as N and

M are varied. Indeed one can check that the metric is sign-indefinite if M ∈ (−2, 1) or

N ∈ (−6, 3), so that unusual RG flows are possible in this regime, and operators may

develop complex scaling dimensions at real fixed points, which, in the terminology of [5],

are then termed ”spooky” (see fig. (4.8)). At integer values of N and M , such operators

are identically zero owing to the linear relations between the operators. The situation

is closely analogous to the occurrence of evanescent operators at non-integer spacetime

dimensions [203, 204, 205, 206, 207, 157].

In the following, we will allow M and N to assume general real values. This means we

are dealing with a two-parameter autonomous system of ordinary differential equations.

Such systems can exhibit a rich variety of flows as compared with one-parameter systems.

The possible codimension-two bifurcations can be classed into five types [182, 180] –

Bautin, Bogdanov-Takens, cusp, double-Hopf, and zero-Hopf – which signal different

kinds of flow not present in generic one-parameter systems. As we shall now see, some of

these possibilities are realized by the QFT (4.59).
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Figure 4.8: The values of M and N for which spooky fixed points appear. The appearance
of vertical lines is due to finite numeric resolution.

4.7 Bogdanov-Takens Bifurcation

A Bogdanov-Takens bifurcation occurs generically when, at a fixed point, two eigen-

values of the stability matrix
(
∂βi
∂gj

)
tend to zero as two bifurcation parameters M and N

are appropriately tuned. The following equations must then be satisfied:

βi(gi, N,M) = 0 , det

(
∂βi
∂gj

)
(gi, N,M) = 0 , (4.62)

tr
[∧3

(
∂βi
∂gj

)]
≡ det

(
∂βi
∂gj

)
tr

[(
∂βi
∂gj

)−1
]

= 0 . (4.63)

Written in the form (4.62), we see that the conditions for a BT bifurcation are polynomial

equations in gi, M , and N , and so by Bézout’s theorem there exist at most a finite

number of points that satisfy these conditions. We refer to such points as Bogdanov-

Takens (BT) points. For the QFT we are studying perturbatively, it can be verified that

the beta functions exhibit several such points. Their existence can be checked to high

numerical accuracy with the use of standard programs, e.g. PyDSTool [208]. Higher-loop
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contributions will provide corrections to the precise locations of these points, but as long

as we take ε to be sufficiently small, higher-order corrections will not alter the number or

qualitative behaviour of BT points.

While two eigenvalues tend to zero as we approach a BT point, right at the BT point

itself we do not have a pair of eigenvectors with zero eigenvalues for the reason that in

this same limit, the two respective eigenvectors become linearly dependent. Rather, the

stability matrix at a BT point has a Jordan block of size two with zero eigenvalue (see

(4.67) in appendix 4.11). This means that the theory at the BT point possesses two

operators O1,2 such that the generator D of dilatations acts in the following way

DO1 = dO1 , DO2 = dO2 +O1 . (4.64)

The possibility of indecomposable representations of the conformal group was extensively

studied in [209, 210]. The upshot is that the BT theory constitutes a logarithmic CFT

containing generalized marginal operators O1,2. In consequence, BT theories are non-

unitary and we have

〈O2(0)O2(x)〉 =
kO log |x|
|x|2d

, 〈O1(0)O2(x)〉 =
kO

|x|2d
.

The conditions (4.62) are not entirely sufficient to guarantee a BT bifurcation. One

must also require smoothness, and a set of inequalities that are generically true. Viola-

tions of the inequalities typically require fine-tuning of additional parameters and signal

bifurcations of codimension higher than two. In appendix 4.11 we give the precise state-

ment of the Bogdanov-Takens bifurcation theorem, and we explicitly check that it applies

to an example of a BT point in the QFT we are studying, situated at M ≈ 0.2945 and

N ≈ 4.036. What this means is that we can transform the beta functions near the BT
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0.3464 δM - 10.37 δM 2

0.3464 δM - 5.150 δM 2

0.3464 δM - 0.2853 δM 2

Figure 4.9: Bifurcation diagram around the Bogdanov-Takens bifurcation at (M,N) =
(M∗, N∗) = (0.2945, 4.036). δM = M −M∗, δN = N −N∗. The blue curve represents a
saddle node bifurcation, the green curve represents a Hopf bifurcation, and the red curve
represents a saddle homoclinic bifurcation. At the origin, these three codimension-one
bifurcations coalesce.

point into a particularly simple form, known as Bogdanov normal form:


η̇1 = η2 ,

η̇2 = δ1 + δ2η1 + η2
1 + sη1η2 +O

(
|η|3
)
,

η̇i = λiηi for i > 2 ,

(4.65)

where s = −1, and δ1,2 are functions of N and M that vanish right at the BT point.

By bringing the system into normal form, we can use the equations (4.65) to determine

the behaviour of the system for small enough δ1 and δ2. In particular, we can constrain

ourselves to studying the surface where only η1 and η2 are non-zero, noting that the

dynamics in the transverse directions η3 and η4 are quite simple. Depending on the

values of δ1 and δ2, the flow of η1,2 falls into different topological types. The classification

can be found in Kuznetsov’s textbook [211] and amounts to the following. In the vicinity

of the BT point at δ1 = δ2 = 0, there are four regimes with qualitatively different flows:

– Regime 1○: The flow has no fixed point.

In the other three regimes, the flow has two fixed-points, which we will label left and

right. The right point is always a saddle point.

– Region 2○: The left point is unstable, and all flowlines starting near it terminate at
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IR-repulsive limit cycle, marked in
cyan, separates the two fixed points.

-0.015 -0.010 -0.005 0.005
y3

-0.0004

-0.0003

-0.0002

-0.0001

y4

δM = 2.774·10-4 δN = 8.992·10-5④

RG flow in region 4○. In passing from
region 3○ to 4○ the limit cycle collided
with the red fixed point in a homo-
clinic bifurcation.

Figure 4.10: The topologically distinct types of RG flow in the vicinity of the Bogdanov-
Takens bifurcation at M = M∗ = 0.2945 and N = N∗ = 4.036. The variables y3 and y4

are linear combinations of the four coupling constants gi, with precise definitions given
in appendix (4.11), and δM = M −M∗, δN = N −N∗.
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Figure 4.11: Flow diagram for a dynamical system containing a homoclinic orbit (marked
in black), ie. a flowline that starts and ends at the same point. The system is described
by equations (4.76) with parameters δ1 = −0.000453178 and δ2 = −0.0440214. The red
and green dots indicate fixed points. The green dot is a ”spooky” fixed point. The theory
at the red dot is a homoclinic CFT.

the right fixed point.

– Region 3○: The left point is now stable, and a repulsive limit cycle separates the

two fixed points.

– Region 4○: The left point is still stable, but the limit cycle has disappeared. Some

flowlines starting near the right fixed point terminate at the left fixed point.

In the case of the BT point at (M,N) ≈ (0.2945, 4.036), the locations of these four

adjoining regimes, as computed in appendix (4.65), is shown in figure 4.9. And the RG

flow in each regimes is depicted in figure 4.10.

The four regimes are separated by different codimension-one bifurcations. Region

1○ is demarcated from regions 2○ and 4○ by a saddle-node bifurcation happening at

δ1 = 1
4
δ2

2. Regions 2○ and 3○ are separated by an Andronov-Hopf bifurcation along the

the half-curve δ1 = 0, δ2 < 0. And regions 3○ and 4○ are separated by a saddle homoclinic

bifurcation along δ1 = − 6
25
δ2

2 + . . ., δ2 < 0.

A saddle-node bifurcation corresponds to the collision and disappearance of two equi-
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libria in dynamical systems. The phenomenon has been observed in a number of cases of

RG flow, it happens for instance in in the critical O(N) model [212], in prismatic models

[3], and in QCD4 [202, 213, 93, 214].

An Andronov-Hopf bifurcation represents a change of stability at a fixed point that has

complex eigenvalues. The flow near the fixed point changes between spiraling inwards and

spiraling outwards and gives birth to a limit cycle. In the context of RG, this bifurcation

was recently studied in [5].

The most interesting and new phenomenon associated to the model of the present

paper happens along the homoclinic bifurcation line. Here the flow exhibits what is

known as a homoclinic orbit.

4.8 Homoclinic RG flow

A homoclinic orbit is a flowline that connects a stable and an unstable direction of

a saddle point. Figure (4.11) depicts the kind of homoclinic orbit generated by a BT

bifurcation, with the saddle point marked by a red dot. The homoclinic orbit is seen

to envelop another fixed point marked in green. In a QFT context, the green point is

”spooky”: the couplings are real, but the eigenvalues of the stability matrix
(
∂βi
∂gj

)
have

non-zero imaginary parts. In contrast to such spooky points, and to complex CFTs

[93, 177], the red saddle point is associated to real couplings and real eigenvalues of

the stability matrix. These eigenvalues are small and have opposite signs: λ1,−λ2〈1.

The positive eigenvalue corresponds to a slightly relevant operator O1 with dimension

∆1 = d + λ1 > d, and the negative eigenvalue to a slightly irrelevant operator O2 with

dimension ∆2 = d + λ2 < d. In this sense, the red saddle point corresponds to a real

CFT.

Standard RG lore states that if we perturb a system in the direction of a relevant

operator, then we expect for the system to either lose conformality altogether or to flow

to a different CFT. In the terminology of dynamical systems, standard RG trajectories are

heteroclinic orbits. The classical example is the Wilson-Fischer fixed point: by carefully

perturbing a Gaussian theory in 4− ε dimension we flow to a weakly coupled interacting
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CFT, which in three dimensions interpolates to the Ising model. Homoclinic bifurcations

provide exotic counterexamples to this general picture: if we perturb the system in the

direction of a relevant operator, we come back to the original fixed point, which tentatively

we can term a homoclinic CFT. Such RG behaviour obviously violates the F -theorem so

that homoclinic fixed points must be non-unitary, as is generally the case for CFTs with

symmetry groups of non-integer rank [156].

If we tune the bifurcation parameters so as to approach the BT point along the saddle

homoclinic bifurcation (the red curve in figure 4.9), then the homoclinic orbit shrinks to

zero and vanishes. In this limit, the red homoclinic CFT and the green spooky fixed

point merge and become a logarithmic CFT.

4.9 Zero-Hopf Bifurcations: The Road to Chaos

The Bogdanov-Takens bifurcation is not the only codimension-two bifurcation that

can be observed to take place in the model (4.59). The theory also possesses two points

in the space of gi, M , and N where the stability matrix has a pair of purely imaginary

eigenvalues and one zero eigenvalue. Such fixed points indicate what is known as a

Zero-Hopf (ZH) or a Fold-Hopf bifurcation. This type of bifurcation was classified in

[215] and can be divided into six sub-types. In the notation of [180], the model has a

type I ZH bifurcation at (M,N) ≈ (0.8447,−1.807) and a type IIa ZH bifurcation at

(M,N) ≈ (−3.816, 1.188). At a type I bifurcation point, a saddle-node bifurcation is

incident to a pitchfork bifurcation, and there are no nearby cyclic orbits. At a type

IIa point, a saddle-node bifurcation is again incident to a pitchfork bifurcation, but

additionally a Hopf bifurcation is also incident to the point, except that the stability

coefficient of the associated limit cycle (what was referred to as the Hopf constant in [5])

exactly vanishes in a quadratic approximation, so that cubic fluctuations or higher decide

the fate of the cyclic flow near a type IIa point.

Generally, ZH bifurcation points are of particular interest because it is known that

in their vicinity what is known as a Shilnikov homoclinic orbit may develop and render

the system chaotic [211, 200]. Recently it was proven in [216] that the presence of
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ZH bifurcations of type III guarantees the existence of a Shilnikov orbit and a nearby

infinite set of saddle periodic orbits. This nontrivial invariant set can be embedded in an

attracting domain, thus implying Shilnikov chaos.

The ZH points of the model in the present paper are not of type III, and we cannot

claim that the system is chaotic. It may be worthwhile to investigate if there exist other

models that meet the simple criteria for the assured appearance of chaos.

4.10 Future Outlook

The approach suggested and adopted in [141, 202, 5] of studying the beta functions

and renormalization of QFTs from the general perspective of dynamical systems provides

a method of understanding the full range of possible RG flows. A powerful tool to this

end is offered by Bogdanov’s and Taken’s bifurcation theorem [158], which lists a simple

set of conditions that guarantee the existence of a homoclinc RG orbit, and which can

be checked already at first order in perturbation theory.

In this short letter we have presented a QFT that satisfies these conditions, namely

a supersymmetric model with global symmetry group O(N) × O(M), where N and M

play the role of the bifurcation parameters of the system. We determined a number of

parameter values where a BT bifurcation takes place and investigated the nearby RG

flow to uncover the presence of homoclinic orbits, where the perturbation of a fixed point

by a relevant operator induces an RG flow that returns to its starting point along an

irrelevant direction.

There are several bifurcation theorems that give simple criteria for other novel kinds

of RG flows [180, 211, 182]. Some of these theorems allow for the determination of the

onset of chaotic flow based on straightforward computations around fixed points [216]. It

would be interesting to find out if QFTs give birth to chaos when N becomes fractional.
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4.11 Transformation to Normal Form

At M = M∗ ≈ 0.2945 and N = N∗ ≈ 4.036, there exists an RG fixed point g∗ such

that stability matrix

M j
i =

∂βi
∂gj

∣∣∣∣
g∗

(4.66)

has a zero eigenvalue of multiplicity two in addition to two non-zero eigenvalues: λ1 = 2

and λ2 ≈ −2.357. This implies the existence of a matrix V =
(
~v1, ~v2, ~v3, ~v4

)ᵀ
such that

V −1MV =



λ1 0 0 0

0 λ2 0 0

0 0 0 λ3

0 0 0 0


(4.67)

where ~vi are (generalized) unit eigenvectors, and λ3 ≈ 7.555 is a generalized eigenvalue.

That is,

M~v1,2 = λ1,2~v1,2, M~v3 = 0, M~v4 = λ3~v3 .

By a change of variables from ~g to ~h = V −1(~g − ~g∗), we obtain differential equations

where h1, and h2 do not mix linearly with h3 and h4:

βh1,2 = λ1,2h1,2 +O(h2) . (4.68)

Consider now the case when M = M∗ + δM and N = N∗ + δM , where δM and δN

are each suppressed by a small parameter α〈1. That is, δM, δN ∼ α. If we adopt the h

variables, h1 and h2 will now mix linearly with each other and with h3 and h4, and their

beta functions will contain constant terms. We can write

dh1

dt
= B0,1 + A1,1h1 +B1,2h2 +B1,3h3 +B1,4h4 +O(h2)
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dh2

dt
= B0,0 +B2,1h1 + A2,2h2 +B2,3h3 +B2,4h4 +O(h2) ,

for some coefficients Ai,j and Bi,j, where the coefficients Bi,j are all suppressed in α.

Introducing new variables

y1 = h1 + C1,0 + C1,3h3 + C1,4h4 , (4.69)

y2 = h1 + C2,0 + C2,3h3 + C2,4h4 , (4.70)

we can choose the six coefficients Ci,j such that ẏ1,2 do not contain constant terms nor

mix linearly with h3 and h4. This means that, studying only the RG flow near the origin

so that cubic terms and higher can be disregarded, the surface y1 = y2 = 0 is an invariant

manifold. On this surface, we can define variables y3 = h3 and y4 = λ3h4, whose RG flow

to quadratic order in the dynamic variables is governed by the differential equations

dy3

dt
= a00 + a10y3 + a01y4 +

1

2
a20y

2
3 + a11y3y4 +

1

2
a02y

2
4 , (4.71)

dy4

dt
= b00 + b10y3 + b01y4 +

1

2
b20y

2
3 + b11y3y4 +

1

2
b02y

2
4 . (4.72)

For the specific BT point we are considering, omitting higher order terms in α, the values

of the various coefficients are given by

a00 = 12.75 δN + 2.618 δM, a10 = 46.93 δN − 8.164 δM

a01 = 1, a20 = 0.6040

a11 = −2.268, a02 = −0.9708

b00 = 19.49 δN − 6.753 δM − 638.9 δN2

+99.89 δM2 − 71.61 δN δM

b10 = −51.76 δN + 17.38 δM

b01 = −18.05 δN − 0.4165 δM

b20 = 2.775, b11 = −0.7935, b02 = −1.868 . (4.73)
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We now restrict attention to the case when δN and δM are tuned such that b00 ∼ α2, for

the reason that this will turn out to be the regime where the existence of a homoclinic

orbit can be reliably established. Working merely to leading order in α and to quadratic

order in the dynamical variables, we perform a reparametrization from t to τ via

dτ =− 1

2

b20

a20 + b11

(
1− 2a11 + b02

2

dy3

dt

)−1

dt (4.74)

and change to variables η1 and η2 given by

η1 = 2
a20 + b11

b20

(
(a20 + b11)y3 + a01 + b01 − a00a11 − a00b02

)
η2 = −4

(a20 + b11)3

b2
20

× (4.75)

×
(

1− 2a11 + b02

2

(
y3 +

a10b01 − a00a11 − a00b02

a20 + b11

))dy3

dt

where for dy3

dt
one should substitute the RHS of (4.71). In these new variables, the dif-

ferential equations of the dynamical system are brought into the normal form introduced

by Bogdanov:

η̇3 = η4 ,

η̇4 = δ1 + δ2η3 + η2
3 + η3η4 ,

(4.76)

where we have omitted terms of cubic order and higher in η, and the parameters δ1 and

δ2 are given by

δ1 =
8(a20 + b11)4

b3
20

(
b00 − a00b01 +

a2
00b02

2
+

+

(
a10 + b01 − a00(a11 + b02)

)
(a00b11 − b10)

a20 + b11

+

(
a10 + b01 − a00(a11 + b02)

)2
b20

2(a20 + b11)2

)
,

δ2 =
4(a20 + b11)

b2
20

(
(a20 + b11)(b10 − a00b11)−

(
a10 + b01 − a00(a11 + b02)

)
b20

)
.

The transformations by which we arrived at the equations (4.76) can be applied more

generally to dynamical systems where the stability matrix contains a Jordan block with
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zero eigenvalues, as long as the following conditions are met:

λ3 6= 0 , b20 6= 0 , a20 + b11 6= 0 . (4.77)

This fact is known as a the Bogdanov-Takens bifurcation theorem [193, 194]. The

precise formulation of the theorem is this:

Suppose we have a system of differential equations

~̇x = ~f(~x, ~α), ~x ∈ Rn, ~α ∈ R2, (4.78)

where ~f is smooth, and suppose further that ~f(0, 0) = 0 and that the stabililty ma-

trix
(
∂ ~f
∂~x

) ∣∣∣
~x=~α=0

has a Jordan cell of size two with zero eigenvalues: λ1,2 = 0 and

other eigenvalues λ3, . . . , λn with non-zero real parts. Assume that the map (~x, ~α) 7−→(
~f(~x, ~α), tr

(
∂fi
∂xj

)
, det

(
∂fi
∂xj

))
is smooth and that the non-degeneracy conditions (4.77)

are satisfied. Then there exist a smooth invertible variable transformation, a direction-

preserving time reparametrization, and a smooth invertible change of parameters that

together reduce the system to the normal form (4.65), where δ1,2 are functions of ~α and

s = ±1.

Furthermore, there is a theorem stating that the suppressed terms of cubic order and

higher in (4.65) do not change the local topology of the flow. But the topology of the

flow of the normal form system, omitting cubic and higher terms, is well understood. In

particular, it is known that depending on the values of δ1 and δ2, the flow near the origin

can be divided into four distinct regions. As described in section 4.7, these four regions

are separated by codimension-one bifurcations located on the curve δ1 = 1
4
δ2

2 and, for

δ2 < 0, on the curves δ1 = 0 and δ1 = − 6
25
δ2

2. For the specific BT point at M ≈ 0.2945

and N ≈ 4.036, we can translate these equations into relations between δM and δN ,

whereby we arrive at the picture of figure 4.9.
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4.12 Bifurcation Conditions

When working to two-loop level, the beta functions have the property that βi + εgi is

a homogeneous function of degree three. Hence, by Euler’s theorem,

gj
∂(βi + εgi)

∂gj
= 3(βi + εgi) . (4.79)

By evaluating this equation on an RG fixed point ~g∗, one finds that

M i
j

∣∣
~g=~g∗

g∗i = 2εg∗j , (4.80)

where M i
j =

∂βj
∂gi

is the stability matrix defined in (4.66). Hence, for any non-trivial fixed

point, the stability matrix has an eigenvalue λ1 = 2ε equal to two. This fact allows for

simplifications in the conditions for bifurcations to occur.

Consider the determinant det (M − λ). Since it is a fourth order polynomial in λ, we

can write

det (M − λ) = λ4 + Aλ3 +Bλ2 + Cλ+D , (4.81)

where A, B, C, and D are M - and N -dependent polynomials in the coupling constants.

Specifially

A = −TrM , B = Mij,ij , C = −Mi,i , D = detM ,

where Mi,j and Mij,kl are the first and second minors of the stability matrix. But when

evaluated on a fixed point, we also have the following factorization in terms of eigenvalues

det (M∗ − λ) = (λ− 2)(λ− λ2)(λ− λ3)(λ− λ4) .

By expanding out the factors on the RHS, we can relate A, B, and C to the eigenvalues.

A saddle-node bifurcation occurs when at a fixed point we have a zero-eigenvalue:
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λ2 = 0. In this case, one finds that

A = −2− λ3 − λ4 , B = 2(λ3 + λ4) + λ3λ4 ,

C = −2λ3λ4 , (4.82)

from which one can derive the equation

2B + C = −4(A+ 2) . (4.83)

Of course we also have the equation D = 0, but the condition (4.83) is easier to check

numerically on account of the many terms in the determinant.

At a Hopf bifurcation, we have a conjugate pair of imaginary eigenvalues:

λ3 = iχ , λ4 = −iχ , (4.84)

where χ is a real number. Consequently we find that

A = −2− λ2 , B − 2λ2 + χ2 , C = −(2 + λ2)χ2 .

From these equations, we derive the condition

C = A(B + 4 + 2A) . (4.85)

At a Bogdanov-Takens bifurcation, there are two zero eigenvalues: λ3 = λ4 = 0.

From this, one obtains the conditions

B = −2(A+ 2) , C = 0 . (4.86)

We have a Zero-Hopf bifurcation when

λ2 = 0 , λ3 = iχ , λ4 = −iχ , (4.87)
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with χ a real number. In this case

A = −2 , C = −2B . (4.88)
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Appendices

A The beta functions up to four loops of O(N) matrix

models

In the main text we presented the large N beta functions for the matrix models we

have studied. In this appendix we list the full beta functions for any N up to four-loops.

Letting µ denote the renormalization scale, we take the beta function associated to a

coupling gi to be given by

βgi = µ
dgi
dµ

= −2εgi +
1

6!(8π)2
β̃(2)
gi

+
1

(6!)2(8π)4
β̃(4)
gi

+O(g6) , (A.1)

where we have separated out the two-loop contribution β
(2)
gi and the four-loop contribution

β
(4)
gi . The beta functions have been computed by use of the formulas for sextic theories

in d = 3− ε dimension listed in section 4.1.

A.1 Beta functions for the O(N)2 matrix model

β̃(2)
g1

= 24(100 + 24N + 3N2)g2
1 + 384(9 + 4N)g1g2 + 3840g1g3 + 64(32 +N2)g2

2,

β̃(2)
g2

= 144(8 + 3N)g2
1 + 96(38 + 4N +N2)g1g2 + 2304(1 +N)g1g3

+128(8 + 7N)g2
2 + 384(18 +N2)g2g3,

β̃(2)
g3

= 168g2
1 + 96(3 + 2N)g1g2 + 1152g1g3 + 32(21 + 2N +N2)g2

2

+768(1 + 2N)g2g3 + 192(22 + 3N2)g2
3 (A.2)

β̃(4)
g1

= −288
(

47952 + 4780π2 +N4(17 + π2) +N3(372 + 25π2) + 8N(3102 + 277π2) +N2(5248

+412π2)
)
g3

1 − 576
(

64992 + 6860π2 + 6N3(104 + 7π2) + 8N(4728 + 415π2) +N2(5928 + 465π2)
)
g2

1g2
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−1152
(

48N(274 + 27π2) +N2(2824 + 225π2) + 4(7640 + 891π2)
)
g2

1g3

−384
(

3N4(10 + π2) + 18N3(12 + π2) + 48N(884 + 83π2) + 112(867 + 94π2) +N2(10836

+773π2)
)
g1g

2
2 − 13824

(
3984 + 448π2 + 2N3(20 + π2) +N2(92 + 7π2) + 8N(292 + 31π2)

)
g1g2g3

−4608
(

5936− 8N4 + 720π2 +N2(372 + 45π2)
)
g1g

2
3 −

512

3

(
N3(960 + 46π2) + 64(900 + 97π2)

+N2(1704 + 137π2) + 16N(2124 + 203π2)
)
g3

2 − 9216
(

4N4 + 384(9 + π2) +N2(248 + 21π2)
)
g2

2g3,

(A.3)

β̃(4)
g2

= −432
(

20400 + 2260π2 + 2N3(90 + 7π2) + 12N(940 + 91π2) +N2(1740 + 151π2)
)
g3

1

−288
(

3N4(10 + π2) + 6N3(56 + 5π2) + 16(6408 + 683π2) +N2(11184 + 995π2) +N(46896 + 4516π2)
)
g2

1g2

−1728
(
N3(248 + 22π2) +N2(1380 + 109π2) + 8N(1510 + 127π2) + 4(4132 + 401π2)

)
g2

1g3

−384
(

2N3(534 + 49π2) +N2(5148 + 443π2) + 8(8922 + 923π2) +N(48384 + 4444π2)
)
g1g

2
2

−4608
(

2N4(6 + π2) + 6N3(8 + π2) + 6N(948 + 77π2) +N2(2748 + 197π2) + 2(8112 + 841π2)
)
g1g2g3

−27648(1 +N)
(
N2(62 + 3π2) + 2(532 + 51π2)

)
g1g

2
3

−128
(

95152 + 10024π2 + 36N3(6 + π2) + 2N4(36 + 7π2) + 24N(1264 + 113π2) +N2(14804

+1179π2)
)
g3

2 − 768
(

2N4π2 +N5π2 + 134N2(12 + π2) + 16N3(102 + 7π2) + 8(4308 + 433π2)

+8N(4584 + 437π2)
)
g2

2g3 − 13824
(

4816 + 512π2 +N4(18 + π2) +N2(644 + 57π2)
)
g2g

2
3

(A.4)

β̃(4)
g3

= −432
(

2760 + 380π2 +N2(210 + 23π2) + 4N(270 + 31π2)
)
g3

1

−576
(

7308 + 776π2 +N3(78 + 8π2) +N2(483 + 45π2) + 6N(766 + 83π2)
)
g2

1g2

−576
(
− 48N3 − 8N4 + 6N(836 + 81π2) + 6(1984 + 189π2) +N2(1676 + 207π2)

)
g2

1g3

−768
(

8772 + 894π2 +N4(6 + π2) +N3(36 + 5π2) + 10N(336 + 31π2) +N2(1269 + 140π2)
)
g1g

2
2

−2304
(

6096 + 550π2 + 2N3(84 + 17π2) +N2(432 + 59π2) +N(6312 + 554π2)
)
g1g2g3

−1152
(

18N3π2 + 15N4π2 + 96N(35 + 3π2) + 8N2(443 + 36π2) + 8(1876 + 177π2)
)
g1g

2
3
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−384
(

41328 + 4192π2 + 2N4(54 + 19π2) +N3(216 + 38π2) + 8N(1536 + 125π2)

+3N2(3932 + 323π2)
)
g2

2g3 −
128

3

(
49104 + 4784π2 + 4N4π2 +N5π2 + 12N2(487 + 42π2)

+N3(2136 + 281π2) + 12N(4552 + 425π2)
)
g3

2 − 3456(1 + 2N)
(
N4π2 + 112(32 + 3π2)

+4N2(88 + 7π2)
)
g2g

2
3 − 1152

(
N6π2 +N4(424 + 34π2) + 32(826 + 85π2) +N2(6864 + 620π2)

)
g3

3

(A.5)

A.2 Beta functions for the anti-symmetric matrix model

β̃(2)
g1

= 6(112− 3N + 3N2)g2
1 + 384(−1 + 2N)g1g2 + 3840g1g3 + 32(64−N +N2)g2

2

(A.6)

β̃(2)
g2

= 54(−1 + 2N)g2
1 + 24(68−N +N2)g1g2 + 576(−1 + 2N)g1g3 + 224(−1 + 2N)g2

2

+192(36−N +N2)g2g3 (A.7)

β̃(2)
g3

= 42g2
1 + (−24 + 48N)g1g2 + 576g1g3 + 8(40−N +N2)g2

2 + 384(−1 + 2N)g2g3

+96(44− 3N + 3N2)g2
3 (A.8)

β̃(4)
g1

= −9
(
− 4N3(17 + π2) + 2N4(17 + π2) + 32(3209 + 293π2)−N(10928 + 861π2)+

N2(10962 + 863π2)
)
g3

1 − 72(−1 + 2N)
(
− 3N(104 + 7π2) + 3N2(104 + 7π2)

+4(4896 + 413π2)
)
g2

1g2 − 288
(
−N(2824 + 225π2) +N2(2824 + 225π2) + 4(7804 + 945π2)

)
g2

1g3

−48
(

198048 + 21616π2 − 6N3(10 + π2) + 3N4(10 + π2)

+2N2(10479 + 746π2)−N(20928 + 1489π2)
)
g1g

2
2 − 3456(−1 + 2N)

(
−N(20 + π2) +N2(20 + π2)

+8(292 + 31π2)
)
g1g2g3 − 2304

(
8N3 − 4N4 − 3N(124 + 15π2) +N2(368 + 45π2)

+32(371 + 45π2)
)
g1g

2
3

−128

3
(−1 + 2N)

(
33984 + 3248π2 −N(480 + 23π2) +N2(480 + 23π2)

)
g3

2

−4608
(
− 4N3 + 2N4 + 768(9 + π2)−N(248 + 21π2) +N2(250 + 21π2)

)
g2

2g3 (A.9)
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β̃(4)
g2

= −27(−1 + 2N)
(

5760 + 557π2 −N(90 + 7π2) +N2(90 + 7π2)
)
g3

1 − 18
(
− 6N3(10 + π2)

+3N4(10 + π2) + 34N2(579 + 52π2)−N(19656 + 1765π2) + 4(49956 + 5437π2)
)
g2

1g2

−216(−1 + 2N)
(

9536 + 830π2 −N(124 + 11π2) +N2(124 + 11π2)
)
g2

1g3

−48(−1 + 2N)
(

39744 + 3739π2

−N(534 + 49π2) +N2(534 + 49π2)
)
g1g

2
2 − 288

(
− 8N3(6 + π2) + 4N4(6 + π2) + 3N2(3608 + 259π2)

−N(10800 + 773π2) + 4(25284 + 2719π2)
)
g1g2g3 − 3456(−1 + 2N)

(
−N(62 + 3π2) +N2(62 + 3π2)

+4(532 + 51π2)
)
g1g32 − 32

(
− 2N3(36 + 7π2) +N4(36 + 7π2)− 4N(3656 + 291π2)+

+N2(14660 + 1171π2)

+4(38180 + 4109π2)
)
g3

2 − 48(−1 + 2N)
(
− 2N3π2 +N4π2 − 32N(102 + 7π2) + 3N2(1088 + 75π2)

+32(4584 + 437π2)
)
g2

2g3 − 3456
(
− 2N3(18 + π2) +N4(18 + π2) + 64(301 + 32π2)− 2N(644 + 57π2)

+N2(1306 + 115π2)
)
g2g

2
3 (A.10)

β̃(4)
g3

= −27
(

2760 + 422π2 −N(210 + 23π2) +N2(210 + 23π2)
)
g3

1 − 18(−1 + 2N)
(
− 2N(39 + 4π2)

+N2(78 + 8π2) + 75(96 + 11π2)
)
g2

1g2 − 72
(

16724 + 8N3 − 4N4 + 1647π2 + 3N2(592 + 69π2)

−N(1780 + 207π2)
)
g2

1g3 − 12
(
− 8N3(6 + π2) + 4N4(6 + π2) + 256(402 + 43π2) + 3N2(3184 + 351π2)

−N(9528 + 1049π2)
)
g1g

2
2 − 288(−1 + 2N)

(
5952 + 518π2 −N(84 + 17π2) +N2(84 + 17π2)

)
g1g2g3

−144
(
− 30N3π2 + 15N4π2 + 224(253 + 24π2)−N(7088 + 567π2) +N2(7088 + 582π2)

)
g1g

2
3

−4

3
(−1 + 2N)

(
− 2N3π2 +N4π2 − 24N(178 + 23π2) +N2(4272 + 553π2) + 8(24672 + 2359π2)

)
g3

2

−96
(

75984 + 7828π2 − 2N3(54 + 19π2) +N4(54 + 19π2) + 3N2(3914 + 327π2)

−2N(5844 + 481π2)
)
g2

2g3

−432(−1 + 2N)
(
− 2N3π2 +N4π2 + 448(32 + 3π2)− 8N(88 + 7π2) +N2(704 + 57π2)

)
g2g

2
3

−144
(
− 3N5π2 +N6π2 +N4(848 + 71π2) + 256(826 + 85π2)−N3(1696 + 137π2)−
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16N(1716 + 155π2) + 4N2(7076 + 637π2)
)
g3

3 (A.11)

A.3 Beta functions for the symmetric traceless matrix model

β̃(2)
g1

= 6
2400− 1200N + 250N2 + 51N3 + 3N4

N2
g2

1 + 384
2N2 + 10N − 35

N
g1g2 + 3840g1g3

+864
−20 + 5N +N2

N
g1g4 + 32(62 +N +N2)g2

2 + 4608g2g4 + 2592g2
4

β̃(2)
g2

= 18
−150 + 35N + 6N2

N
g2

1 + 24
480− 120N + 66N2 + 9N3 +N4

N2
g1g2

+576
−10 + 5N + 2N2

N
g1g3 + 216

80− 20N +N2

N2
g1g4 + 32

−132 + 39N + 14N2

N
g2

2

+192(34 +N +N2)g2g3 + 288
−40 + 3N +N2

N
g2g4 + 3456g3g4 + 324

−24 + 2N +N2

N
g2

4

β̃(2)
g3

= 42g2
1 + 576g1g3 + 24

−30 + 7N + 2N2

N
g1g2 −

1080

N
g1g4 + 384

−6 + 3N + 2N2

N
g2g3

−288
−24 + 3N +N2

N2
g2g4 + 96(38 + 3N + 3N2)g2

3

+8
288− 36N + 30N2 + 5N3 +N4

N2
g2

2 −
3456

N
g3g4 − 324

−16 + 2N +N2

N2
g2

4 (A.12)

β̃(2)
g4

= 24
−200− 75N2 + 15N3 + 3N4

N3
g2

1 + 192
10− 5N +N2

N2
g1g2

+12
160− 120N + 34N2 + 15N3 + 3N4

N2
g1g4 − 32

62 +N +N2

N
g2

2 + 384
−15 + 3N +N2

N
g2g4

+3840g3g4 + 6
−704 + 60N + 28N2 + 3N3 +N4

N
g2

4 (A.13)

β̃(4)
g1

= − 9

N4

(
2N8(17 + π2) + 4N7(389 + 26π2) + 38400(1252 + 135π2)− 19200N(2159 + 225π2)

−60N4(7338 + 455π2)− 1200N3(4896 + 587π2) +N6(38822 + 3167π2) + 800N2(30564 + 3215π2)

+N5(279004 + 28019π2)
)
g3

1 −
216

N3

(
2N6(104 + 7π2) + 4320N(522 + 55π2) + 10N3(−1416 + 131π2)

+N5(4264 + 331π2)− 960(3344 + 375π2) + 5N4(7096 + 681π2)− 40N2(16616 + 1977π2)
)
g2

1g2

−288

N2

(
1920(388 + 45π2) + 30N2(1184 + 171π2) +N4(2824 + 225π2)− 120N(3628 + 405π2)

+N3(29128 + 2817π2)
)
g2

1g3 −
54

N3

(
12N6(95 + 7π2)− 20N3(9940 + 471π2) + 3N5(6608 + 561π2)
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−320N2(9175 + 1104π2)− 1280(13166 + 1485π2) + 640N(17947 + 1890π2)

+N4(137468 + 13785π2)
)
g2

1g4

− 48

N2

(
3N6(10 + π2) + 6N5(82 + 7π2) + 9504(756 + 85π2)− 2160N(1581 + 172π2) + 2N4(10971

+763π2) + 2N2(37896 + 6847π2) +N3(177600 + 16271π2)
)
g1g

2
2 −

3456

N

(
2N4(20 + π2)

+N3(244 + 17π2)− 24(2372

+275π2) +N2(4108 + 447π2) + 2N(8588 + 975π2)
)
g1g2g3 −

1728

N2

(
518304 + 58320π2+

N2(−3072 + 41π2) + 2N4(555 + 49π2)− 48N(4834 + 525π2) +N3(10782 + 1037π2)
)
g1g2g4

−2304
(
− 8N3 − 4N4 +N2(384 + 45π2) +N(388 + 45π2) + 6(1852 + 225π2)

)
g1g

2
3

−13824

N

(
− 47(388 + 45π2) +N2(1120 + 117π2) +N(4844 + 540π2)

)
g1g3g4

−108

N2

(
301N5 + 41N6 +N4(10882 + 1053π2)− 4N2(26366 + 1755π2)

+128(41992 + 4725π2) +N3(98224 + 9801π2)− 16N(140912 + 15255π2)
)
g1g

2
4

−128

3N

(
N4(960 + 46π2) + 108N(2220 + 241π2) +N3(4848 + 343π2)− 324(3352 + 375π2)

+7N2(7584 + 749π2)
)
g3

2 − 4608
(

6424 + 4N3 + 2N4 + 726π2 + 3N(80 + 7π2) +N2(242 + 21π2)
)
g2

2g3

−288

N

(
N4(120 + 7π2) +N3(660 + 43π2) + 6N2(4426 + 437π2) + 24N(4957 + 534π2)

−48(12638 + 1413π2)
)
g2

2g4 − 20736
(

3368 + 378π2 +N(44 + 3π2) +N2(44 + 3π2)
)
g2g3g4

−1296

N

(
N4(32 + 3π2) +N3(96 + 9π2)− 896(188 + 21π2) + 12N(2440 + 261π2)

+N2(7184 + 716π2)
)
g2g

2
4 − 4478976(9 + π2)g3g

2
4 −

1944

N

(
36N3 + 12N4 + 96N(75 + 8π2)−

192(242 + 27π2) +N2(2028 + 203π2)
)
g3

4 (A.14)

β̃(4)
g2

= − 27

N5

(
2N8(90 + 7π2) + 24000N(20 + 9π2)− 96000(28 + 9π2)− 3200N2(1443 + 170π2)

−5N5(8372 + 209π2) +N7(3750 + 323π2)− 100N4(6542 + 785π2) + 400N3(7120 + 797π2)

+N6(28350 + 3133π2)
)
g3

1 −
18

N4

(
3N8(10 + π2)− 309600N(32 + 3π2) + 86400(212 + 23π2)

+N7(732 + 66π2)− 8N4(13443 + 482π2) +N6(25770 + 2294π2)− 120N3(29800 + 3209π2)
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+240N2(46680 + 4993π2) +N5(200436 + 19313π2)
)
g2

1g2 −
216

N3

(
− 7200(88 + 7π2)

+N6(248 + 22π2) + 600N(832 + 63π2)

+N5(3132 + 251π2) + 10N3(2672 + 359π2)− 40N2(6504 + 677π2) + 3N4(8852 + 717π2)
)
g2

1g3

−162

N4

(
32000(92 + 9π2)− 16000N(104 + 9π2) +N6(1418 + 155π2)

+320N2(4644 + 521π2) +N5(12998

+1497π2)− 20N3(19900 + 2381π2)−N4(42584 + 3431π2)
)
g2

1g4

− 48

N3

(
2N6(534 + 49π2) + 1620N(2044

+193π2)− 2160(3060 + 319π2) +N5(11898 + 1033π2)− 72N2(14522 + 1613π2) + 3N3(32656 + 4997π2)

+N4(91914 + 8441π2)
)
g1g

2
2 −

288

N2

(
4N6(6 + π2)

+16N5(15 + 2π2) + 720(1400 + 139π2) + 5N4(2184 + 149π2)

−180N(2568 + 229π2) +N3(52944 + 4095π2) +N2(47952 + 6716π2)
)
g1g2g3

−216

N3

(
− 36N3(626 + 7π2)

+2N6(69 + 8π2) + 9N5(194 + 19π2)− 11520(358 + 37π2) + 480N(4018 + 381π2)

+N4(15348 + 1549π2)− 8N2(53892 + 6641π2)
)
g1g2g4

−3456

N

(
(−10 + 5N + 2N2)(N(62 + 3π2) +N2(62 + 3π2) + 6(334 + 33π2)

)
g1g

2
3

−2592

N2

(
N4(492 + 35π2) + 160(988 + 99π2)− 2N2(2248 + 179π2) +N3(3084 + 227π2)

−20N(3176 + 291π2)
)
g1g3g4 −

162

N3

(
36N4(163 + 17π2) +N6(172 + 21π2)

+7N5(182 + 27π2) + 1600N(1028

+99π2)− 640(6016 + 621π2)− 24N2(9098 + 1363π2)− 2N3(17432 + 1635π2)
)
g1g

2
4

− 32

N2

(
N6(36 + 7π2)

+N5(288 + 50π2) + 2N4(7186 + 545π2) + 8N3(8863 + 756π2)

+216(11996 + 1265π2)− 54N(13992 + 1337π2)

+N2(30720 + 5671π2)
)
g3

2 −
48

N

(
13N5π2 + 2N6π2 + 8N4(816 + 53π2)− 720(2872

+295π2) + 16N2(15324 + 1499π2) +N3(22656 + 1637π2) + 36N(17072 + 1737π2)
)
g2

2g3

−288

N2

(
2N4(771 + 59π2)− 144N(2041 + 200π2)− 4N2(9261 + 824π2) +N3(9918 + 829π2) + 144(7988 + 839π2)

)
g2

2g4
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−3456
(

2N3(18 + π2) +N4(18 + π2) + 2N(608 + 55π2) +N2(1234 + 111π2) + 8(2095 + 228π2)
)
g2g

2
3

−1728

N

(
2N4(24 + π2) +N3(192 + 11π2)

+6N(3168 + 281π2)− 48(3112 + 319π2) +N2(5952 + 481π2)
)
g2g3g4

−324

N2

(
N6(2 + π2) + 2N5(5 + 3π2)

+N4(1628 + 171π2)− 16N2(3517 + 339π2) + 192(7024 + 735π2)− 32N(9160 + 933π2)

+N3(9376 + 974π2)
)
g2g

2
4 − 20736

(
N(62 + 3π2) +N2(62 + 3π2) + 6(334 + 33π2)

)
g2

3g4

−2592

N

(
N4(28 + 3π2) + 198N(32 + 3π2) +N3(84 + 9π2) +N2(2572 + 249π2)− 8(7960 + 813π2)

)
g3g

2
4

−972

N2

(
20N5 + 4N6 +N4(146 + 21π2) + 4N3(170 + 27π2)− 32N(1082 + 117π2) + 128(1526 + 159π2)

−2N2(4736 + 513π2)
)
g3

4 (A.15)

β̃(4)
g3

= − 9

N6

(
432000π2 + 72000N2(8 + 3π2) + 2400N4(214 + 35π2)− 600N5(312 + 41π2)

+N8(630 + 69π2)

−2N6(1200 + 137π2) +N7(7110 + 813π2)
)
g3

1 −
18

N5

(
28800N(2 + 3π2) + 4N8(39 + 4π2)

−14400(112 + 27π2)

−7200N2(292 + 27π2) + 6N7(361 + 34π2) + 240N3(4272 + 427π2)− 20N4(11754 + 869π2)

+2N6(8379 + 883π2) +N5(516 + 1189π2)
)
g2

1g2 +
72

N4

(
56N7 + 4N8 +N4(2220− 519π2) + 1200N(−32 + 9π2)

−1200(136 + 27π2)

+240N3(614 + 39π2)− 300N2(896 + 75π2)−N6(1576 + 207π2)−N5(12524 + 1179π2)
)
g2

1g3

+
162

N5

(
N6(302 + π2)− 4800N(2 + 3π2) + 19200(14 + 3π2) + 1600N2(215 + 18π2)− 480N3(321 + 31π2)

+20N4(587 + 74π2) +N5(5174 + 314π2)
)
g2

1g4

− 12

N4

(
4N8(6 + π2) + 48N7(7 + π2)− 8640N(212 + 19π2)

+12960(352 + 35π2) + 16N4(−1119 + 188π2)− 192N3(3093 + 241π2) + 3N6(3440 + 367π2)

+144N2(16952 + 1693π2) +N5(55992 + 4967π2)
)
g1g

2
2 −

288

N3

(
2880N(35 + 3π2) + 2N6(84 + 17π2)
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−360(440 + 39π2) + 24N3(770 + 69π2) +N5(1116 + 169π2)− 6N2(10352 + 953π2)

+N4(10956 + 985π2)
)
g1g2g3

−216

N4

(
3N6(40 + π2) + 9N5(78 + π2) + 3840(191 + 18π2)− 960N(317 + 27π2)− 24N3(2503 + 192π2)

+96N2(3303 + 352π2)−N4(15564 + 995π2)
)
g1g2g4 −

144

N2

(
66N5π2 + 15N6π2 + 600(112 + 9π2)

+16N4(443 + 33π2)− 60N(1120 + 87π2) + 6N2(5216 + 567π2) +N3(20528 + 1377π2)
)
g1g

2
3

+
864

N3

(
84N5 + 12N6 +N4(148− 27π2) +N3(1628 + 57π2) + 80(956 + 81π2)− 20N(2552 + 207π2)

+2N2(9808 + 1017π2)
)
g1g3g4 −

162

N4

(
3N5(−208 + 7π2) +N6(−94 + 9π2) + 1920(368 + 33π2)

−480N(632 + 51π2)− 24N3(1022 + 81π2)− 2N4(5156 + 357π2) + 16N2(14228 + 1707π2)
)
g1g

2
4

− 4

3N3

(
21N7π2 + 2N8π2 + 17280N(465 + 41π2) + 576N3(433 + 80π2)− 432N2(1464 + 205π2)

+4N6(2136 + 277π2)− 2592(9552 + 971π2) + 12N4(28836 + 2929π2) +N5(59568 + 5281π2)
)
g3

2

− 96

N2

(
N6(54 + 19π2) + 4N5(81 + 19π2)− 108N(1264 + 103π2)

+540(1112 + 109π2) + 15N2(2064 + 281π2)

+6N3(5540 + 431π2) + 2N4(5655 + 454π2)
)
g2

2g3

− 72

N3

(
2N6(24 + π2) + 24N2(492 + π2) +N5(384 + 19π2)

−N4(2952 + 35π2)− 1728(1150 + 117π2)− 6N3(4492 + 271π2) + 144N(3942 + 367π2)
)
g2

2g4

−432

N
(−6 + 3N + 2N2)

(
2N3π2 +N4π2 +N(704 + 52π2) +N2(704 + 53π2) + 4(3232 + 309π2)

)
g2g

2
3

−1728

N2

(
27N3(4 + π2) + 4N4(3 + 2π2)− 174N(104 + 9π2)

+168(580 + 57π2)− 3N2(1720 + 137π2)
)
g2g3g4

−324

N3

(
4N6 +N5(50 + π2)−N4(1060 + 91π2) + 16N2(1289 + 133π2)− 2N3(3704 + 339π2)

+16N(9704 + 975π2)− 64(9968 + 1017π2)
)
g2g

2
4 − 144

(
3N5π2 +N6π2 +N4(848 + 65π2)

+N3(1696 + 125π2) + 4N(6016 + 555π2) + 24(6664 + 711π2) +N2(24912 + 2282π2)
)
g3

3

−864

N

(
− 57056 + 752N − 368N2

−5472π2 + 84Nπ2 + 9N3π2 + 3N4π2
)
g2

3g4 +
432

N2

(
20N5 + 4N6 −N4(52 + 9π2)− 2N3(212 + 27π2)

+10N2(1580 + 153π2) + 4N(10064 + 963π2)− 16(17792 + 1755π2)
)
g3g

2
4 −

486

N3

(
N6(−8 + π2)
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−10N4(34 + 3π2)

+N5(−40 + 6π2)− 16N3(94 + 13π2)− 512(400 + 41π2) + 64N(632 + 71π2) + 8N2(1354 + 163π2)
)
g3

4

(A.16)

β̃(4)
g4

= − 9

N5

(
− 13824000 + 6912000N +N8(360 + 22π2)− 2400N4(448 + 43π2) + 9600N3(395

+49π2)− 60N5(1672 + 65π2)− 3200N2(2352 + 275π2) +N7(6660 + 489π2) +N6(41220 + 4241π2)
)
g3

1

− 72

N4

(
172800(14 + π2)− 14400N(68 + 3π2)− 2N4(14844 + 131π2) +N6(1848 + 191π2)

+480N2(2120 + 243π2)

+5N5(3504 + 415π2)− 120N3(3640 + 423π2)
)
g2

1g2 −
10368

N3

(
800N + 20N3(17 + 3π2)

−200(28 + 3π2)

+3N4(32 + 5π2)− 5N2(392 + 51π2)
)
g2

1g3 −
18

N4

(
670N7 + 41N8 + 38400(320 + 27π2)

−9600N(467 + 27π2)

−6N4(32878 + 417π2) +N6(14413 + 801π2)− 120N3(17800 + 1731π2) + 240N2(22264 + 2481π2)

+N5(95816 + 8415π2)
)
g2

1g4 −
3456

N2

(
3N3(−28 + π2) +N4(−4 + 3π2) + 240(52 + 5π2)

+2N2(−148 + 9π2)

−40N(152 + 15π2)
)
g1g2g3 −

576

N2

(
960(94 + 9π2)− 240N(262 + 27π2) + 6N2(728 + 153π2)

+N4(1160 + 153π2) +N3(6392 + 801π2)
)
g1g3g4 −

48

N3

(
51840N(15 + π2)

−34560(57 + 5π2) +N6(48 + 7π2)

+N5(228 + 43π2) + 18N4(346 + 101π2) + 4N3(2526 + 1579π2)− 8N2(54528 + 6997π2)
)
g1g

2
2

−432

N3

(
7N6(16 + π2) + 10N5(102 + 7π2)− 1920(296 + 27π2) + 480N(521 + 39π2) + 8N3(437 + 221π2)

+N4(5556 + 727π2)− 4N2(28812 + 3317π2)
)
g1g2g4 −

108

N3

(
2514N5 + 318N6 + 88N3(−241 + 18π2)

−5120(289 + 27π2) + 7N4(1084 + 99π2) + 320N(2350 + 189π2)− 16N2(16366 + 1557π2)
)
g1g

2
4+

+
128

3N2

(
− 63504(10 + π2) +N4(528 + π2) + 324N(532 + 53π2) +N3(3120 + 163π2) + 8N2(4314

+337π2)
)
g3

2
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+
4608

N

(
6424 + 4N3 + 2N4 + 726π2 + 3N(80 + 7π2) +N2(242 + 21π2)

)
g2

2g3

−144

N2

(
N6(2 + π2) +N5(12 + 7π2)

+9408(88 + 9π2)− 6N2(3476 + 93π2) +N4(2134 + 239π2)− 48N(4495 + 429π2)

+N3(12708 + 1351π2)
)
g2

2g4

−6912

N

(
N4(4 + π2) + 4N3(6 + π2)− 72(184 + 21π2) + 3N2(308 + 39π2) +N(2488 + 306π2)

)
g2g3g4

−2592

N2

(
68224 + 12N5 + 2N6 + 7104π2 − 224N2(15 + π2) +N4(126 + 11π2) +N3(644 + 57π2)

−16N(1043 + 93π2)
)
g2g

2
4 − 2304

(
− 8N3 − 4N4 +N2(384 + 45π2) +N(388 + 45π2)+

+6(1852 + 225π2)
)
g2

3g4

−864

N

(
27N3(8 + π2) + 9N4(8 + π2) + 4N2(808 + 99π2)− 32(2584 + 297π2) +N(8096 + 972π2)

)
g3g

2
4

−108

N2

(
13N5 + 5N6 +N4(1198 + 45π2) + 4N3(1723 + 63π2)− 8N2(6253 + 414π2)−

32N(5692 + 459π2) + 128(6388 + 675π2)
)
g3

4 (A.17)

B The F -function and metric for the symmetric trace-

less model

Working up to the two-loop order, we find that the F -function which enters the

gradient flow expression (4.42) is given by F = F (1) + F (2), where

F (1) = − ε

576N3

×
[ (

2N2
(
48g2

(
4g3N

5 + (10g3 + 3g4)N4 + 3 (6g3 + 5g4)N3 + 6 (4g3 − 7g4)N2

−72 (g3 + 2g4)N + 288g4) + 4g2
2

(
N6 + 6N5 + 45N4 + 124N3 − 168N2 − 720N + 1296

)
+3
((

16g2
3 + 3g2

4

)
N6 +

(
32g2

3 + 15g2
4

)
N5 + 24

(
6g2

3 + g2
4

)
N4 + 4

(
32g2

3 + 48g4g3 + 15g2
4

)
N3

+96
(
2g2

3 + 4g4g3 − 5g2
4

)
N2 − 192g4 (8g3 + 7g4)N + 3072g2

4

))
+12g1N

(
9g4N

6 + (80g3 + 63g4)N5 + (272g3 − 42g4)N4 − 120 (2g3 + 7g4)N3

−240 (4g3 − g4)N2 + 4g2

(
2N6 + 15N5 + 11N4 − 140N3 + 720N − 720

)
+ 960 (g3 + 4g4)N − 3840g4

)
+3g2

1

(
N8 + 14N7 + 83N6 + 46N5 − 960N4 + 4800N2 − 9600N + 9600

)) ]
(B.1)
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and F (2) may be written in terms of the 3-point functions in the free theory in d = 3

[163, 164]:

F (2) ∼ Cijkg
igjgk , 〈Oi(x)Oj(y)Ok(z)〉 =

Cijk
|x− y|3|x− z|3|y − z|3 . (B.2)

Explicitly, we find

F (2) =
3

13271040N5π2

×
[(

3N12 + 93N11 + 1717N10 + 13103N9 + 15072N8 − 227572N7 − 326400N6

+2596800N5 − 758400N4 − 12288000N3 + 29952000N2 − 40704000N + 29184000
)
g3

1

+
16

3
Ng2

(
27
(
6N10 + 109N9 + 878N8 + 1885N7 − 10882N6 − 28000N5 + 122880N4 + 28800N3

−672000N2 + 1411200N − 1094400
)
g2

1 + 9N
(
N10 + 15N9 + 405N8 + 3493N7 + 8634N6

−30684N5 − 102504N4 + 351168N3 + 408960N2 − 2194560N + 1969920
)
g2g1

+8N2
(
26N8 + 219N7 + 1446N6 + 5399N5 − 714N4 − 57456N3 + 30240N2 + 343440N − 443232

)
g2

2

)
+192N2g3

(
2
((
N8 + 7N7 + 181N6 + 757N5 + 1990N4 + 3832N3 − 7296N2 − 27504N + 49248

)
g2

2

+12N
(
6N6 + 21N5 + 118N4 + 253N3 + 270N2 + 348N − 1368

)
g3g2 + 4N2

(
3N6 + 9N5

+71N4 + 127N3 + 402N2 + 340N + 456
)
g2

3

)
N2 + 12g1

((
2N8 + 17N7 + 174N6 + 773N5

+162N4 − 6176N3 + 240N2 + 28080N − 27360
)
g2 + 2N

(
15N6 + 66N5 + 196N4 + 421N3

−570N2 − 2100N + 2280
)
g3

)
N + 3

(
29N8 + 310N7 + 997N6 − 1612N5 − 10020N4

+15600N3 + 38400N2 − 112800N + 91200
)
g2

1

)
− 18N

(
−N2 − 2N + 8

)
g4

((
N8 + 6N7 + 47N6

+198N5 + 1428N4 + 7416N3 − 32512N2 − 121344N + 311296
)
g2

4N
2 + 32

((
N6 + 7N5 + 113N4

+629N3 − 1470N2 − 7920N + 16416
)
g2

2 + 24N
(
N4 + 4N3 + 41N2 + 114N − 456

)
g3g2

+48N2
(
3N2 + 3N + 38

)
g2

3

)
N2 + 96

((
N6 + 6N5 + 46N4 + 225N3 − 728N2 − 3192N + 7296

)
g2

+2N
(
5N4 + 15N3 + 86N2 + 228N − 1216

)
g3

)
g4N

2 + 192g1

((
7N6 + 65N5 + 52N4 − 964N3 − 650N2

+7680N − 9120
)
g2 + +2N

(
27N4 + 141N3 − 190N2 − 1140N + 1520

)
g3

)
N + 3

(
3N8 + 24N7

+325N6 + 2364N5 − 100N4 − 41712N3 − 10240N2 + 318720N − 389120
)
g1g4N + 3

(
21N8 + 294N7

+1599N6 + 30N5 − 27920N4 + 209600N2 − 499200N + 486400
)
g2

1

]
(B.3)
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The metric Gij is given by

G11 =
1

192N3

(
N8 + 14N7 + 83N6 + 46N5 − 960N4 + 4800N2 − 9600N + 9600

)
,

G12 = G21 =
1

24N2

(
2N6 + 15N5 + 11N4 − 140N3 + 720N − 720

)
,

G13 = G23 =
1

6N

(
5N4 + 17N3 − 15N2 − 60N + 60

)
,

G14 = G41 =
1

32N2
(N − 2)(N + 4)

(
3N4 + 15N3 − 20N2 − 120N + 160

)
,

G22 =
1

72N

(
N6 + 6N5 + 45N4 + 124N3 − 168N2 − 720N + 1296

)
,

G23 = G32 =
1

6

(
2N4 + 5N3 + 9N2 + 12N − 36

)
,

G24 = G42 =
1

4N
(N − 2)(N + 4)

(
N2 + 3N − 12

)
,

G33 =
1

6
N3
(
N4 + 2N3 + 9N2 + 8N + 12

)
, G34 = G43 = (N − 2)N3(N + 4),

G44 =
1

32N
(N − 2)2(N + 4)2

(
N2 +N + 16

)
. (B.4)

At this order it is independent of the couplings gi and is proportional to the matrix of

two-point functions (4.43) in the free theory in d = 3.

C Beta Functions of O(M) × O(N) Supersymmetric

Model

The beta functions of the four coupling constants admit of loop expansions

βi = −εgi + β
(2)
i +O(g5) , (C.1)

where β
(2)
i denotes the two-loop contributions, which are cubic in the couplings. By

explicit computation, we find that these are given by

β
(2)
1 =

1

8π2N2

(
32g2

1g4N(−40− 8M + 8N + 7MN + 8N2) + 16g2
1g3N(−80− 24M + 30N+

+4MN + 7N2 + 4MN2) + 16g1g
2
3N

2(32 + 2M +N +MN +N2 +MN2) + 64g1g2g4N(−32−
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−4M + 16N + 2MN + 5N2 + 2MN2) + 4g2
2g3N(−256− 64M + 72N + 10MN + 19N2 + 2MN2)+

+64g1g
2
4N

2(22− 2M +MN +MN2) + 16g1g2g3N(−144− 40M + 42N + 17MN+

+21N2 + 5MN2) + 128g1g3g4N
2(3 + 5M +N +N2) + g3

2(896 + 128M − 352N − 48MN−

−12N2 − 12MN2 + 7N3 + 2MN3) + 96g2
2g4(−8 +N)N + 4g2

1g2(928 + 224M − 392N−

−100MN − 2N2 + 11MN2 + 23N3 + 7MN3 + 4N4) + 768g2g3g4N
2

+4g3
1(352 + 96M − 152N − 44MN + 10N3 + 3MN3 +MN4) + 16g2g

2
3N

2(16 + 7M +N +N2)

+2g1g
2
2(1600 + 320M − 656N − 136MN + 32N2 + 10MN2 + 50N3 + 10MN3 + 5N4 + 2MN4)

)
,

β
(2)
2 =

1

8π2N2

(
64g1g2g4N(−80− 16M + 16N + 5MN + 7N2) + 16g2g

2
3N

2(48 + 9M + 2N+

+MN + 2N2 +MN2) + 16g2
1g3N(−128− 32M + 32N + 12MN + 14N2 + 3MN2)+

+128g2g3g4N
2(9 + 5M +N +N2) + 16g1g2g3N(−272− 72M + 82N + 15MN + 24N2 + 6MN2)+

+192g2
1g4N(−12− 2M + 4N +N2) + 16g2

2g4N(−176− 40M + 58N + 14MN + 17N2 + 11MN2)+

+32g1g
2
3N

2(16 + 7M +N +N2) + 4g2
2g3N(−576− 160M + 176N + 54MN + 74N2 + 17MN2)+

+64g2g
2
4N

2(22− 2M +MN +MN2) + 8g3
1(288 + 64M − 112N − 24MN − 6N2 + 3MN2+

+5N3 + 2MN3 +N4) + 1536g1g3g4N
2 + 2g1g

2
2(3968 + 1024M − 1600N − 416MN−

−56N2 − 22MN2 + 85N3 + 17MN3 + 11N4) + 4g2
1g2(1856 + 448M − 736N − 176MN−

−22N2 − 5MN2 + 43N3 + 8MN3 + 3N4 + 2MN4)+

+g3
2(2816 + 768M − 1152N − 320MN + 12N2 − 12MN2 + 69N3 + 30MN3 + 7N4 + 5MN4)

)
,

β
(2)
3 =

1

8π2N3

(
32g2

3g4N
3(18 + 14M + 7N + 7N2) + 96g2

1g4N(8 + 2N2 +MN2)+

+384g1g2g4N(4 +N2) + 24g3
3N

3(16 + 2M + 2N +MN + 2N2 +MN2) + 64g2g3g4N
2(−20−

−4M + 10N + 2MN + 5N2 + 2MN2) + 16g1g
2
3N

2(−52− 14M + 26N + 7MN + 14N2 + 7MN2)+

+128g1g3g4N
2(−10− 2M + 5N +MN + 5N2) + 8g2g

2
3N

2(−104− 28M + 52N + 14MN + 38N2+

+7MN2) + 64g3g
2
4N

3(22− 2M +MN +MN2) + 16g1g2g3N(208 + 56M − 48N − 12MN+

+12N2 + 3MN2 + 8N3 +MN3 + 2N4) + 96g2
2g4N(8 +N2) + 8g2

1g3N(208 + 56M − 48N−
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−12MN + 12N2 + 6MN2 + 4N3 + 3MN3 +MN4) + 8g3
1(−96− 16M + 24N + 4MN − 20N2−

−10MN2 + 6N3 + 2MN3 +N4 +MN4) + 4g2
2g3N(416 + 112M − 96N − 24MN + 18N2+

+6MN2 + 12N3 + 4MN3 + 2N4 +MN4) + g3
2(−768− 128M + 192N + 32MN − 96N2 + 32N3+

+4MN3 + 7N4 + 2MN4) + 2g1g
2
2(−1152− 192M + 288N + 48MN − 176N2 − 40MN2+

+70N3 + 10MN3 + 21N4 + 2MN4) + 4g2
1g2(−576− 96M + 144N + 24MN − 104N2 − 40MN2+

+34N3 + 13MN3 + 11N4 + 3MN4)

)
,

β
(2)
4 =

1

8π2N3

(
8g2

1g3N(80 + 16M − 12N + 4N2 + 2MN2 + 3N3 +N4)

+224g1g
2
4N

2(−4− 2M + 2N +MN + 2N2) + 16g1g
2
3N

2(−16− 2M + 8N +MN + 7N2)

+96g3
4N

3(8− 2M +MN +MN2) + 64g2g3g4N
2(−14− 4M + 7N + 2MN + 6N2 +MN2)

+224g2g
2
4N

2(−4− 2M + 2N +MN +N2 +MN2) + 32g2
3g4N

3(22 +N +MN +N2 +MN2)

+64g1g3g4N
2(−14− 4M + 7N + 2MN + 2N2 + 2MN2)

+8g2g
2
3N

2(−32− 4M + 16N + 2MN + 9N2 + 2MN2) + 24g3
3N

3(4 + 2M +N +N2)

+16g1g2g3N(80 + 16M − 12N + 7N2 + 2MN2 +N3) + 224g3g
2
4N

3(2M +N +N2)

+4g2
2g3N(160 + 32M − 24N + 17N2 + 7MN2 + 4N3 +N4)

+32g1g2g4N(96 + 36M − 24N − 12MN + 2N2 − 2MN2 + 4N3 +MN3 +N4)

+4g3
1(−160− 48M + 40N + 12MN + 4N2 + 2MN2 + 4N3 +MN3 + 2N4)

+2g1g
2
2(−960− 288M + 240N + 72MN − 88N2 − 20MN2 + 39N3 + 7MN3 + 13N4)

+16g2
1g4N(96 + 36M − 24N − 12MN − 4N2 − 2MN2 + 2N3 + 3MN3 +MN4)

+8g2
1g2(−240− 72M + 60N + 18MN − 8N2 −MN2 + 6N3 + 2MN3 +N4 +MN4)

+8g2
2g4N(192 + 72M − 48N − 24MN + 10N2 + 2MN2 + 6N3 + 4MN3 +N4 +MN4)

+g3
2(−640− 192M + 160N + 48MN − 96N2 − 24MN2 + 36N3 + 12MN3 + 10N4 + 5MN4)

)
.

It can be checked that there exists a function F of the couplings such that the beta-
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functions can be cast in the form

βi = Gij
∂F

∂gj
(C.2)

where the metric has the components

G11 =
MN4 + 3MN3 + 2N3 − 2MN2 − 4N2 − 12MN − 24N + 24M + 48

2N2
,

G12 =
N4 +MN3 + 4N3 − 2MN2 − 4N2 − 12MN − 24N + 24M + 48

2N2
,

G13 =2
MN2 +N2 +MN + 2N − 2M − 4

N
, G14 = 2

2N2 +MN + 2N − 2M − 4

N
,

G22 =
MN4 +N4 + 4MN3 + 6N3 − 4MN2 − 8N2 − 24MN − 48N + 48M + 96

4N2
,

G23 =
MN2 + 3N2 + 2MN + 4N − 4M − 8

N
, G24 = 2

MN2 +N2 +MN + 2N − 2M − 4

N
,

G33 =
MN3 +N3 +MN2 +N2 + 4N

N
, G34 = 2(N2 +N + 2M) ,

G44 =2(4− 2M +MN +MN2) .

Taking the determinant of this metric, one arrives at (4.61).
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