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ABSTRACT OF THE DISSERTATION

Aspects of Supersymmetric Conformal Field Theories in Various Dimensions

by

Emily M. Nardoni
Doctor of Philosophy in Physics
University of California San Diego, 2018

Professor Kenneth Intriligator, Chair

In this dissertation we study properties of superconformal field theories (SCFTs) that
arise from a variety of constructions. We begin with an extended review of various techniques in
supersymmetry that are relevant throughout the work. In Chapter 3, we discuss aspects of theories
with superpotentials given by Arnold’s A, D, E singularities, particularly the novelties that arise
when the fields are matrices. We focus on four-dimensional .#” = 1 variants of supersymmetric
QCD, with U(N,) or SU(N,) gauge group, Ny fundamental flavors, and adjoint matter fields
X and Y appearing in Wy p £(X,Y) superpotentials. We explore these issues by considering
various deformations of the Wy p g superpotentials, and the resulting RG flows and IR theories.

In Chapter 4, we examine the infrared fixed points of four-dimensional .#” = 1 supersymmetric

Xvi



SU(2) gauge theory coupled to an adjoint and two fundamental chiral multiplets. We focus on a
particular RG flow that leads to the .4 = 2 Argyres-Douglas theory Hy, and a further deformation
to an .#" = 1 SCFT with low a central charge. Then for the latter half of the dissertation we
turn our attention to 4d SCFTs that arise from compactifications of M5-branes. In Chapter
6, we field-theoretically construct 4d .4#” = 1 quantum field theories by compactifying the 6d
(2,0) theories on a Riemann surface with genus g and n punctures, where the normal bundle
decomposes into a sum of two line bundles with possibly negative degrees p and g. In Chapter
7, we study the 't Hooft anomalies of the SCFTs that arise from these compactifications. In
general there are two independent contributions to the anomalies: there is a bulk term obtained
by integrating the anomaly polynomial of the world-volume theory on the M5-branes over the
Riemann surface, and there is a set of contributions due to local data at the punctures. Using
anomaly inflow in M-theory, we describe how this general structure arises for cases when the
four-dimensional theories preserve .4 = 2 supersymmetry, and derive terms that account for the

local data at the punctures.
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Chapter 1

Introduction

1.1 Outlook

The framework of Quantum Field Theory (QFT) encompasses the mathematical structure
of a wide variety of physical systems, including systems of particle physics, general relativity,
statistical physics, and the early universe. QFT unifies Einstein’s theory of relativity with quantum
mechanics, permitting us to describe the physics of the very small and the very fast in one unified
framework. In QFT the fundamental object is a field that is valued at every point in spacetime, and
particles are excitations of these fundamental fields. One reason we must switch to thinking about
fields rather than particles is that in relativistic processes, particles can be created or destroyed.
When particle number is not conserved, we need a theory that can describe more than single
particle dynamics. Another fundamental reason for a quantum theory of fields is that we need to
construct laws of nature that are local, which requires taking into account the fact that information
travels at a finite speed. QFT provides a natural framework for doing this.

Symmetry is the main organizing principle and tool for studying QFT. A symmetry of a

physical system is a transformation of the system that does not change the results of any possible



experiments. An eloquent way to state this is that physics should not depend on the physicist.!
The more symmetry we have at our disposal, the better our handle on the properties of a theory.
In QFT, fields are classified by how they transform under the symmetries of the physical system
under consideration.

A related and important fact is that symmetries imply conservation laws. In particular,
Noether’s theorem tells us that continuous symmetries have corresponding conserved quantities.
For example, a reasonable symmetry one might impose is the following: Say I do an experiment
standing at a particular position in space, and then take a step to the right by a meter. If there is
no other difference between where I started and where I ended (e.g., there is no wind at either
location, and so on), then the results of doing the same experiment at the second location should be
exactly the same as at the first location. In other words, we expect that the laws of physics should
be invariant under spatial translations. In this case, momentum conservation is the corresponding
conservation law due to Noether’s theorem as applied to the symmetry of spatial translations.
Similarly, requiring that the laws of physics are invariant under translations in time yields the law
of energy conservation.

An important set of QFTs are those with Poincaré symmetry. A key consequence of
relativity is that time and space should be put on equal footing, into the more general concept
of spacetime. Poincaré invariance is the requirement that physics is invariant under isometries
(distance-preserving maps) of Minkowski spacetime—the flat spacetime relevant to special
relativity. This is a requirement for relativistic quantum field theories: that the laws of physics
should take the same form in all inertial frames of reference. Again, physics should not depend
on the physicist. For example, in a relativistic framework energy and momentum conservation are
derived together from general spacetime translation invariance (a subset of Poincaré invariance),
and can be seen as packaged into one conserved object known as the energy-momentum tensor.

An idea which has proven itself useful time and time again in the study of QFT is

!'As stated by Anthony Zee in the excellent Quantum Field Theory in a Nutshell.



to study theories with extra symmetries as a testing ground for ideas in more general QFTs.
With this in mind, we will focus our attention in this dissertation mainly on QFTs with two
additional symmetries beyond Poincaré invariance: conformal symmetry, and supersymmetry.
The Haag-Lopuszanski-Sohnius theorem [1] states that supersymmetry is the only extension of
Poincaré symmetry as a spacetime symmetry in a consistent QFT.> Supersymmetry involves the
addition of fermionic (anticommuting) generators, the supercharges, to the Poincaré algebra. In
theories with supersymmetry, fermions and bosons are related by a symmetry transformation, and
representations of the supersymmetry algebra—usually called supersymmetry multiplets—have
equal numbers of fermions and bosons. The addition of supersymmetry often allows us to solve
aspects of these theories exactly.

To explain the utility of conformal symmetry, we need to introduce the concept of the
renormalization group. The renormalization group (RG) is a framework that tells you how a
theory looks at different distance scales. Couplings in a QFT determine the strength of the force
of an interaction between fields, and the RG equations tell you how the couplings change, or
run, as a function of the distance scale. This framework gives a precise way for how high energy
degrees of freedom can be accounted for by an effective theory at lower energies.

Here it is worth taking an aside to explain what we mean by scale, which requires a
diversion into dimensional analysis. The fundamental dimensions we use to measure physical
quantities are length, time, and mass. For example, in S.I. units length is measured in units
of meters, time in seconds, and mass in kilograms. In nature there are three fundamental
dimensionful constants: the speed of light ¢ with dimensions of length/time, which according to
Einstein’s theory of relativity must be measured to be the same in any inertial frame of reference;
Planck’s (reduced) constant /i with dimensions of mass- length? / time, which controls the scale at
which quantum effects become important; and Newton’s gravitational constant G with dimensions

of length? / (mass - time?), which tells us about the scale of gravitational effects. High energy

~More specifically as a symmetry of the S-matrix, assuming (among other things) analyticity of the S-matrix.



physicists commonly use natural units, in which we redefine ¢ = # = 1. Then, for instance,
velocities will be given as numbers in units of the speed of light. This restricts the units of length
equal to the units of time, equal to the units of inverse mass, equal to the units of inverse energy.

2 as well

For example, in natural units the mass m of a particle is equal to its rest energy E = mc
as its inverse Compton wavelength mc/h. So, in natural units we have some choices as to which
units we care to keep track of. Particle physicists typically choose to use units of energy, with
length and time both given in units of inverse energy. So truly, when we refer to large energy
scales we are referring as well to small length scales, and vice versa. End aside.

Back to the renormalization group. Generically, at very long distance scales quantum field
theories become scale invariant—they reach a point at which the physics looks the same even if we
change the length scale, known as a fixed point of the renormalization group. At such a fixed point
in the space of couplings, the couplings no longer run with scale. In general, this scale invariance
at a fixed point is enhanced to conformal invariance.> Conformal symmetry is the largest possible
non-supersymmetric spacetime symmetry of an interacting field theory compatible with Poincaré
invariance. A very useful picture of QFT is as a flow under the renormalization group between
conformal field theories (CFTs) in various limits. Our perspective is that by studying CFT, we
can start to map out the space of more general QFTs. Said another way: by focusing on CFTs, we
essentially aim to map out the end points of RG flows between more general theories.

There are various possibilities for how QFTs can behave at different energy scales. One
possibility is that at long distances, the strength of the coupling decreases. Such a theory is said to
be infrared (IR) free. This is, for example, the case for quantum electrodynamics (QED). In QED,
vacuum polarization renormalizes the electric charge e(r)—the coupling constant for QED, which
as we stress is really best not thought of as a constant—to smaller values at bigger distances. At
distances r greater than the inverse mass of the electron, the coupling settles onto a constant. In

this limit, the potential energy between two separated static test sources goes like V (r) ~ €?/r,

3For unitary QFTs in d = 2 this is proven [2], in d = 4 this is argued but not rigorously proven.



which is the Coulomb potential we learn about in high school. At the other end of the scale, for
small enough distances the coupling diverges in what is known as a Landau pole, at which point

the theory needs modification.

A(p)

M
/\Landau

Figure 1.1: The coupling A as a function of energy scale u plotted for an infrared free theory
that breaks down at 4 ~ Apandau-

Another possibility is that at short distances, the strength of the coupling decreases. Such
a theory is called asymptotically free, or ultraviolet (UV) free. This is the case, for instance, for
quantum chromodynamics (QCD)—the theory of the strong interactions that act on quarks and
gluons. At long distances / low energies the quarks are strongly coupled, and we only can observe
composite objects with no color charge. This is called confinement. But at high energies, the
theory consists of weakly coupled quarks and gluons.

There are various possibilities for the strongly coupled regime in an asymptotically free
theory (the small u part of Figures 1.2 and 1.3). In the case of QCD, it is thought that as the
coupling keeps getting stronger in the infrared, the theory will dynamically generate a mass scale
Aqcp by the strong interactions. So, for energies much less than Agcp ~ 300 MeV the theory
is strongly coupled (confines), and for energies much bigger than Agcp the theory is weakly
coupled.

Another interesting possibility is that in the strongly coupled regime, the coupling will flow
to a fixed point where it no longer changes with scale. At large distances, the physics is completely

independent of the scale. Interestingly, an asymptotically free gauge theory with enough matter
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Figure 1.2: The coupling A as a function of energy scale u for an asymptotically free theory
that develops a dynamical scale at it ~ Agcp.

A(p)

u

Figure 1.3: The coupling A as a function of energy scale u for an asymptotically free theory

that develops an interacting fixed point at low energies.
content might flow to an interacting CFT at low energies. There exist many examples of nontrivial,
interacting CFTs in various dimensions—especially using supersymmetry!

It is natural at this point to mention that the idea of the renormalization group leads
naturally to the idea of duality. As we just saw in some examples, the UV and IR physics of a
quantum field theory might look very different. Two physical systems that look different at short
distances might behave the same way at long distances. Two such theories are said to be infrared
dual to one another, or to lie in the same universality class. Interestingly, a single CFT fixed point
generically describes the long distance physics of many different physical systems. In this way,
understanding CFTs can teach us about the universal features of a wide variety of quantum field
theories.

Most of the QFTSs that we will discuss in this thesis have both conformal invariance and



supersymmetry, i.e. are superconformal quantum field theories (SCFTs). When an interacting
supersymmetric fixed point exists, we can use superconformal symmetry to derive some exact
results about the theory. Broadly speaking, one can view this thesis as a study of special classes
of SCFTs in various dimensions, with the broader goal of understanding general phenomena in

quantum field theory.

1.2 Outline

The rest of this dissertation is organized as follows. In Chapter 2 we give an extended
introduction to some of the technical aspects of SCFTs that we will utilize throughout. We first
review properties of supersymmetric gauge theories, and then review some useful properties
superconformal field theories, mainly focusing on the four-dimensional case.

In Chapter 3 we discuss aspects of theories with superpotentials given by Arnold’s A,D, E
singularities, particularly the novelties that arise when the fields are matrices. We focus on 4d
A" =1 variants of susy QCD, with U(N,) or SU(N,) gauge group, Ny fundamental flavors,
and adjoint matter fields X and Y appearing in Wy p £(X,Y) superpotentials. The 4d Wy p g
SQCD-type theories RG flow to superconformal field theories, and there are proposed duals in the
literature for the Wy, , Wp, , and WE, cases. The Wp,,,, and Wg, duals rely on a conjectural, quantum
truncation of the chiral ring. We explore these issues by considering various deformations of the
Wy p g superpotentials, and the resulting RG flows and IR theories. Rather than finding supporting
evidence for the quantum truncation and Wp,, and Wg, duals, we note some challenging evidence
to the contrary.

In Chapter 4 we explore the infrared fixed points of four-dimensional .#” = 1 supersym-
metric SU (2) gauge theory coupled to an adjoint and two fundamental chiral multiplets under
all possible relevant deformations and F-term couplings to gauge-singlet chiral multiplets. We

find 35 fixed points, including the .4~ = 2 Argyres-Douglas theories Hy and H;. The theory with



minimal central charge a is identical to the mass-deformed Hj theory, and the one with minimal ¢
has the smallest a among the theories with U(1) flavor symmetry. We examine the RG flow to
the mass-deformed H theory.

In the latter half of the dissertation we turn our attention to a class of 4d SCFTs that arise
from compactifications of M5-branes. In Chapter 5 we give an introduction to the 4d theories of
Class ., which are constructed by compactifying the 6d (2,0) theories on a Riemann surface
with genus g and n punctures.

In Chapter 6, we field-theoretically construct 4d .4~ = 1 quantum field theories of Class
., where the normal bundle decomposes into a sum of two line bundles with possibly negative
degrees p and g. Previously the only available field-theoretic constructions required the line bundle
degrees to be nonnegative, although supergravity solutions were constructed in the literature
for the zero-puncture case for all p and g. Here, we provide field-theoretic constructions and
computations of the central charges of 4d .#" = 1 SCFTs that are the IR limit of M5-branes
wrapping a surface with general p or ¢ negative, for general genus g and number of maximal
punctures n.

In Chapter 7, we study the ’t Hooft anomalies of the SCFTs that arise from these com-
pactifications. In general there are two independent contributions to the anomalies: there is a
bulk term obtained by integrating the anomaly polynomial of the world-volume theory on the
MS5-branes over the Riemann surface, and there is a set of contributions due to local data at the
punctures. Using anomaly inflow in M-theory, we describe how this general structure arises for
cases when the four-dimensional theories preserve .#” = 2 supersymmetry, and derive terms that

account for the local data at the punctures.



Chapter 2

Technical Introduction

Here we collect some of the main facts and methods that will be useful to us in our study
of superconformal field theories. This material can be found in a myriad of textbooks and reviews,
some of the most useful of which (in the author’s opinion) we will mention when they are relevant.
We make no attempt to be comprehensive, and instead utilize this chapter as a depository for
a variety of useful facts. Our focus will be largely on QFTs in four dimensions, with some

additional comments on other dimensions.

2.1 Supersymmetry: The Basics

We begin with a brief review of the supersymmetry algebra and its irreducible representa-

tions. Useful references for this material are the classic textbooks [3, 4].

2.1.1 The supersymmetry algebra

The four-dimensional supersymmetry algebra is an extension of the Poincaré algebra of

spacetime symmetries by .#” anti-commuting generators,

(04,01Py =20" P88, AB=1,.. 4. @.1)



The Q4 are complex anti-commuting spinors with spinor indices ¢, ¢& = 1,2, and in particular
transform nontrivially under the Lorentz group. The index u runs over four-dimensional spacetime.

-

o.. = (1,0") for ¢ the usual Pauli matrices. The Poincaré algebra is a subalgebra of the

o
supersymmetry algebra; the other nonzero commutators between the supercharges and the
Poincaré€ generators involve the Lorentz boosts M. We refer the reader to the textbooks for a
discussion of the full algebra.

The .4 = 1 supersymmetry algebra possesses an internal global U(1) symmetry known
as an R-symmetry. This can be seen from the fact that when .4~ = 1 the supersymmetry algebra
(2.1) is invariant under multiplication of the Q’s by a phase. Denoting the generator of the U(1)
R-symmetry by R, we have that

R, Qu] = —Qu:  [R,Qf] =0, (2.2)
such that the Q’s have R-charge —1, and the Q"’s have R-charge +1. n.b. that the R-symmetry is
generally not part of the supersymmetry algebra, although the algebra can include the R-symmetry
as an extension (which is the case, as we will see, for superconformal algebras).

A theory with .#" > 1 is said to have extended supersymmetry.! In four dimensions the
smallest spinor representation (either a Weyl or Majorana spinor) has four real degrees of freedom,
such that the actual number of supercharges is Ny = 4.4". For example, the 4d .#" = 1 algebra
has four supercharges. A 4d theory with .4 supersymmetries generally has a corresponding
global R-symmetry of U (./#"), corresponding to the rotation of the Q’s by a U (.#") matrix.

In d spacetime dimensions, the supercharges are promoted to spinors of SO(d — 1, 1). The
general d-dimensional algebra has the same structure as in four dimensions, with the Pauli matrices
o promoted to Dirac matrices I'* that satisfy the Clifford algebra in d dimensions, {I'*,I"V} =
2n*Y for n the spacetime metric. For example, in d = 6 the smallest spinor representation

has 8 real degrees of freedom, so a 6d QFT with .4 -extended supersymmetry has Np = 8.4

'In this case the supersymmetry algebra can contain central charges, corresponding to additional terms on the
right-hand-side of (2.1). We will not discuss this possibility further here.
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supercharges.

2.1.2 Irreducible representations of supersymmetry in 4d

In general, one characterizes the irreducible representations (irreps) of supersymmetry
on asymptotic single particle states via Casimir operators—operators that commute with all the
supersymmetry generators. One such Casimir operator is P> = PH Py, which is also used to
construct representations of the Poincaré algebra. Because P? is a Casimir, particles in the same
irrep have the same mass. For example, for a particle of mass m one can go to the rest frame
Py = (m,0), from which it follows that P> = m?.

The single particle states of a supersymmetric theory fall into irreps of the supersymmetry
algebra called supermultiplets. Supermultiplets are in general reducible representations of the
Poincaré algebra, and therefore correspond to a collection of particles in the usual sense. Particles
in the same supermultiplet must have equal masses and lie in the same representation of the gauge
group, so must have the same electric charges, weak isospin, and color degrees of freedom. Each
supermultiplet contains an equal number of fermionic and bosonic degrees of freedom. Note that
since the R-symmetry does not commute with the supersymmetry generators, component fields
of a supermultiplet do not all carry the same R charge.

First consider the case of massive particles, where P> = m?. The nonzero anticommutators
simplify to {Q%, Q1P } = 2m8y 4P, which is precisely the Clifford algebra. Denote the lowest
weight state—the Clifford vacuum of spin s—by |Q;). This is annihilated by Q4 which acts as
a lowering operator. QTO.CB acts as a raising operator. Then, generally there are 2.4” creation and
annihilation operators.

Next consider the case of massless particles. We can pick a frame in which P, =
(E,0,0,E), such that P> = 0. The anticommutators simplify in this case to {Q1, QTB } =4E§48,
which is the Clifford algebra with only .4 raising operators. To construct representations we

choose a Clifford vacuum |Q;,) of fixed helicity &, and construct representations by acting with

11



the raising operators.

It will be useful to enumerate a selection of massless multiplets in four dimensions.
Denote the gauge group by G. Let a' denote a raising operator. Then, the state a'|Q) has helicity
h+1/2. As we mentioned, there are .4” such creation operators for massless states. An irrep
will in general have a total of 2*¥" states. However, we might need to add the CPT conjugate to
construct a full CPT eigenstate such that the multiplet will actually include 2 - 2" states.

We begin with the case of .4#” = 1, where we denote the R-symmetry generator of the
U(1)g as R_y—;. We normalize such that the R-charge of the gluino Ay is 1, and that of the gluon
is 0. Note that in general the fermion component y of a chiral superfield ® has R[y| = R[¢] — 1,
for ¢ the bosonic component (since it is obtained by the action with a Q). The components of
a massless ./~ = 1 vector multiplet V are given in Table 2.1, and the components of a massless

A =1 chiral multiplet ® in a representation r of the gauge group are given in Table 2.2.

Table 2.1: .4 = 1 vector multiplet V. This multiplet consists of two massless susy irreps
(|Q),a’|Q)) paired to make a CPT eigenstate, for a total of 2 x 2! = 4 states.

‘ G ‘RJyzl ‘ states
adj [ 1 | {[Qi2),a'[Q-1)}
adj 0 {a®|Q2),1Q 1)}

Weyl fermion Ay
massless spin 1~ Ay

Table 2.2: .#" = 1 chiral multiplet ®. This multiplet also has 2 x 2! = 4 states.

|G| Ry | states
r| RQ) | {IQ0),a"1Q_2)}
R(Q)—1 | {a"Q0o),|Q_;/2)}

complex scalar Q

Weyl fermion vy | r

An .4 =2 theory has an R-symmetry U (2)g ~ U (1)g x SU(2)g, with generators that we
denote by R 4, and I, a = 1,2, 3 respectively. We use a basis for the Cartan subalgebra of the
R-symmetry labeled by (R( en, PP ) We can fix an .4~ = 1 subalgebra in the .#" = 2 algebra,
such that the .4 = 1 R-symmetry is given by
453

1
Ry—1=ZRy—+ I

3 3 (2.3)

12



With this choice, the linear combination

J=R y_,—2I (2.4)
commutes with the .#” = 1 subalgebra, and is a flavor symmetry from the .4#” = 1 point of view.
The components of a massless ./~ = 2 vector multiplet are given in Table 2.3, and the components
of a massless .4 = 2 hypermultiplet in a representation r of the gauge group are given in Table
24.

Table 2.3: (4" = 2 vector multiplet) = V @& ®. This has 2 x 22 = 8 states. Note that R —; (A}) =
R_y—1(¢) — 1, since these come from the .#” = 1 chiral multiplet. A, and A/, form an SU (2)g
doublet.

G | Ry—» L |Ry—_ states
Weyl fermion Ay | adj 1/2 1 {aﬂQo),ayQ_l)}

N =
1
Weyl fermion A | adj | 1 -1/2| —1/3 | {a}|Qo),al|Q 1)}
0
2

vector field A, | adj 0 0 | {ala|Q),|Q 1}
complex scalar ¢ | adj 0 2/3 {|QO>,aIa;|Q,1)}

Table 2.4: (/" =2 hypermultiplet) = ® @ ®. This has 2 x 22 = 8 states. Note that R y— (Wa) =
R y—1(Q) — 1, since these come from the .#” = 1 chiral multiplet. A and Q' form an SU(2)g

doublet.
G| Ry— I Ry states
. _ _ 7.7
Weyl fermion  yy | r 1 0 1/3 [ {a1ay|Q_12),[Q_12)}
Weyl fermion 117; F 1 0 1/3 {aIagQ_l/z), 1Q_12)}
complex scalar Q | r 0 1/2 2/3 [ {a1|Q_1/2),a2|Q_12)}
complex scalar Q7 | 7 0 —1/2 | =2/3 | {a1|Q_1)2),a2|Q_12)}

An ¥ = 4 theory has an R-symmetry? SU(4)g ~ SO(6)g. We list the components of an

N =4 vector multiplet in Table 2.5.

The R-symmetry is SU(.#) and not U (.#") in this case because for .#” = 4, a U(1) decouples and becomes an
outer automorphism. This can be seen at the level of the commutation relations, since [Q8,R4] = 0.
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Table 2.5: .4 = 4 vector multiplet = ®® ® @ P P V. This has 2* states, and is self-conjugate.
The scalars ¢ are in the rank 2 antisymmetric (6) representation of SU(4)g. The four aiT Q1)

states with helicity —1/2 form the 4, and the other four of helicity 1/2 form the 4.

R v states
Ao | 1 )
Weyl fermions vy | —1/3 | 8 {a;(|Q_1>,aja}aZ|Q_1>} 4,3 of SU (4)

Vo | —1/3
Vo | —1/3 )
ol | 23 )
0> | 23

real scalars @3 | 2/3 6 {a;raj.|Q_1>} 6 of SU(4)x
ot | 273
o> | 273
0% | 23 )

vector field Ay | 0 | 2{|Q_1),ajabaja}|Q_1)}

2.2 Some Properties of Supersymmetric Gauge Theories

2.2.1 _# =1 supersymmetric actions and the power of holomorphy

Here we will be rather schematic, just pointing out some particular features of 4" =1
supersymmetric actions to emphasize. Consider a 4d .#” = 1 theory of massless chiral and vector
multiplets. It is useful to add an auxiliary field to each: add a complex field F to the chiral
multiplet, and a real field D to the vector multiplet, to furnish superfields with components

o: Q. vy, F' (2.5)

Ve Ay, Ag, D (2.6)
The F component of a chiral superfield and D component of a vector superfield transform by a
total derivative under an .4/~ = 1 supersymmetry transformation.

We can write a supersymmetry and gauge invariant action for chiral superfields as an
integral over superspace,

S— / dhx d*0 K(®F, 5TV ®) + / d*x d20 W(®) + h.c. 2.7

The superpotential W (®) is a holomorphic function of the chiral superfields and has R-charge 2.
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K is the Kéhler potential, a vector superfield that yields the kinetic terms upon expansion into
components. Terms proportional to [ d*@ are known as D-terms, and terms proportional to [ d*
are known as F-terms. Here g is the gauge coupling.

We can write the .4 = 1 super Yang-Mills action in terms of the field strength chiral

superfield Wy. Wy, is constructed out of the vector superfield V¢, with components

W A%, Ff, D 2.8)

The gauge invariant supersymmetric action for pure super Yang-Mills is

1
Ssym =g _Im [r / d*x d*0 TtW *We | . (2.9)
Here, Wozt is the supersymmetric completion of F2 4 iF F. Tis the complex holomorphic gauge
coupling,
0 4mi
T=—+—. 2.10
ozt e (2.10)

It is nontrivial that supersymmetry combines the gauge coupling g and the 0-angle? into a single
holomorphic quantity.

D-terms receive both perturbative and nonperturbative quantum corrections. The quantum
corrections to F-terms, however, are highly constrained because they must maintain holomorphy
in the chiral superfields. Because of this, the superpotential is not renormalized to any order in
perturbation theory. This fact is known as a nonrenormalization theorem. Of course, the more
supersymmetry a theory as, the more nonrenormalization theorems apply.

A nice related trick if I want to write an effective theory below some scale is to think
of the UV couplings as the lowest components of background chiral superfields. Then, the low
energy effective superpotential is constrained by holomorphy in the UV coupling constants. The
use of holomorphy to obtain exact superpotentials was first exploited in [5]—for a nice review

and more references, see [6].

3n.b. that 6 in (2.10) is not the same as the superspace coordinate in (2.9).
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2.2.2 NSVZ [B-function

Recall that the one-loop renormalization of the gauge coupling g in a general Lagrangian

field theory with gauge group G is

_ ds(u) g (1
Blg)=u d = @ |3 —C(adj) — ZC ry ——ZC ) (2.11)

Here ry is the gauge group representation of the fermlons, and ry, is the representation of the
complex scalar bosons. The quantity in parenthesis is the one-loop coefficient, which we will
refer to as by. C(r) is the quadratic Casimir in the representation r, which satisfies
Tr, T°T? = C(r) 5. (2.12)
C(adj) is equal to the dual Coxeter number of the group; e.g. for G = SU(N), C(adj) =
For a theory with .4 = 1 supersymmetry, the vector multiplet contributes an additional
—2/3C(adj) to the one loop B-function, and a chiral multiplet in a representation r¢ has one

Weyl fermion and one complex boson. Then, the RHS of (2.11) reduces to

3
B(g).y—1 = —<f7>2

Since 7 in (2.10) is a holomorphic quantity, its running under the renormalization group

[3C(adj) — C(Ro)] . (2.13)

must preserve holomorphy. Then we have that the one-loop running coupling is
dt 1672 dg by A
2mi =—by=—5— = Tl—loop = =—1 2.14
g~ T TS dinp t=toop = 5 M\ @19
with A the complex dynamically generated holomorphic scale of the theory, and b the one-loop -

function coefficient. Because this must be holomorphic, the S-function for 7 is one-loop exact—it
is only corrected nonperturbatively by n-instanton corrections. In particular, the combination
Abo _ ‘uboe2m‘r(u) (2.15)
is not corrected at any order in perturbation theory.
The exact NSVZ (for Novikov, Shifman, Vainshtein, and Zakharov) -function [7] is

given as

ﬁ<g):_(4é;r)2 — £C(ad) (3C adj) ZC ’j) 1_7’1)> 2.16)
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Y; is the anomalous dimension of a matter field in a representation r; of the gauge group.

Importantly, the one- and two-loop B-function coefficients are scheme independent.

2.2.3 Moduli space of vacua

The scalar potential V in a supersymmetric theory takes the form
1

V=I|F*+ S0, (2.17)
where
ow

A supersymmetric vacuum is a zero of the scalar potential V, and vice versa; a zero of the scalar
potential is also a supersymmetric vacuum. Therefore, supersymmetric vacua are the set of scalar
field vacuum expectation values which simultaneously solve the F- and D-terms. Note that all
expectation values of ® for which dW /d® = 0 correspond to supersymmetric, global minima of
the potential.

Classical supersymmetric gauge theories often have a classical moduli space of degenerate
vacua. The classical moduli space of a theory is given by the space of all scalar vacuum expectation
values satisfying the D-term equations, modulo gauge equivalence and the classical F-terms.

The moduli space can always be given a gauge-invariant description in terms of the space
of expectation values of gauge-invariant polynomials X, in the fields, subject to any classical
relations. This is because setting the potential to zero and modding out by the gauge group is
equivalent to modding out by the complexified gauge group—holomorphy of the superpotential
promotes a global symmetry group of the theory to a complexified symmetry group of the
superpotential.* The gauge invariant polynomials correspond to matter fields left massless after
the Higgs mechanism, and are classical moduli, W (X;) = 0 [8]. Note that vacua with different
expectation values of the fields are physically inequivalent; in particular, the masses of the vector

bosons depend on the (X,). The classical degeneracy can be lifted in the quantum theory by a

4 Although, note that the Kihler potential is only invariant under the real symmetry group.
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dynamically generated effective superpotential, Weg(X,).

2.2.4 A short introduction to anomalies in QFT

Classically, invariance under a continuous global symmetry group G implies the existence
of conserved currents. If the symmetry is anomalous, then there are quantum corrections that
make the currents no longer conserved. Then, the quantum effective action varies as

5 S = / A9DH 2. (2.19)
When G is a gauge symmetry, the anomaly indicates a fundamental inconsistency in the theory.
Such an anomaly is often called an ABJ (for Adler-Bell-Jackiw) anomaly. For G a global
symmetry, anomalies do not indicate any inconsistency, but rather often have interesting physical
consequences. These are called 't Hooft anomalies.

The anomaly is related to an (n+ 1)-gon diagram with external insertions of the symmetry
current. A well-known example is the chiral anomaly in 4d SU(N) gauge theory. In this case,
0Ay, = Dy A, and the nonconservation of the current j# is evident in the (n+ 1)-gon Feynman

diagram (a triangle with three gauge currents) proportional to TrF"! = TrF3:

One interesting physical consequence of 't Hooft anomalies is ’t Hooft anomaly matching
[9]. The argument due to 't Hooft goes as follows: Consider an asymptotically free, anomaly-free
gauge theory with G global symmetry and chiral fermions. In the asymptotically free regime
compute the triangle anomaly for three G currents. Assuming this is nonzero, denote this by AY"
Now gauge G, and add some massless gauge-singlet spectator fields with only G gauge
couplings such that their G anomaly cancels AYV: AS = —AYV Since we’ve assumed that the

original gauge theory confines, we can study the IR effective theory of the massless excitations
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below the strong coupling scale. At an IR scale less than the scale of strong interactions, if G is
not spontaneously broken (so that we can assume there are no massless Nambu-Goldstone bosons)
its anomaly must still vanish. This is due to the fact that we started with a consistent theory to
begin with, by assumption. Therefore, the G anomaly at this scale must cancel A’ = —AS. The
IR anomaly corresponds to a set of massless bound states which have the same anomaly as the
original fields. Therefore, AR = AUV, Now we can take the limit that the gauge coupling goes
to zero to decouple the spectators. The result that A’ = AUV still holds, and so is true for the
original theory with G global symmetry and no spectators.

For a nice review of anomalies in gauge theories, see [10, 11]. We will have quite a bit

more to say about anomalies in Chapter 7.

2.3 Superconformal Field Theories

For a supersymmetric theory with conformal symmetry, the supersymmetry algebra is
extended to the superconformal algebra. Importantly, the superconformal algebra includes the

R-symmetry as a bosonic subalgebra.

2.3.1 A word on conformal symmetry

To orient ourselves, we first discuss some aspects of conformal field theories (without
supersymmetry) in various dimensions. The conformal algebra in d dimensions is so0(d,2). It
is generated by Lorentz rotations / boosts, translations, special conformal transformations, and
dilatations. Local operators in a unitary CFT must organize into unitary irreducible representations,
commonly called conformal multiplets, of the conformal algebra. States are labeled by their
scaling dimension A and their SO(d) weights. The structure of the multiplet is completely labeled
by the conformal primary operator, corresponding to the lowest weight state.

Unitarity require that all states have positive norm, which yields bounds on allowed CFT
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representations. Unitarity bounds take the form A > f(j;) for j; the |d/2]| weights of SO(d), and
where (A, j;) are the quantum numbers of the primary [12, 13]. When the inequality is saturated,
some states—called null states—have zero norm, such that the multiplet is “short”. For example,
a free scalar field is at the bottom of a short multiplet. In that case, A saturates an inequality, with
A(O)=(d-2)/2, O = gauge-invariant, spin 0. (2.20)

Ind =4,80(4) ~SU(2) x SU(2), and so representations are labeled by two half-integer

spins ji, jo. In this case, that the unitarity bounds are given by (schematically)

A> f(j1)+f(j2)- (2.21)

See [12] for the derivation and description of these bounds.

2.3.2 A tour of SCFTs in various dimensions

With the addition of supersymmetry, conformal symmetry is enhanced to superconformal
symmetry. Superconformal algebras exist in dimensions d < 6 [14]. The supersymmetry genera-
tors transform as spinors of SO(d,2). Superconformal algebras with Ny > 16 supercharges in
d = 4,6 do not admit a stress tensor multiplet, and so for unitary SCFTs we restrict to Ng < 16 in
these dimensions. In d = 3 SCFTs with Ny > 16 exist, but are necessarily free [15]. The case
d =5 is special because there is a unique superconformal algebra, .4#" = 1 with Np = 8.

The bosonic subalgebra of the superconformal algebra in d dimensions is so(d,2) x R,
where R is the R-symmetry algebra. We are interested in representations that are unitary
irreducible representations of so(d) x s0(2) x R, which is the maximal compact subalgebra.
These are completely specified by the lowest (or depending on your convention, highest) weights.
As in the non-supersymmetric case, each unitary irrep of the superconformal group contains
a unique operator of lowest scaling dimension, known as a superconformal primary, and the
multiplet is completely specified by the quantum numbers of the primaries. Superconformal

multiplets for d > 2 are comprehensively enumerated in [15].
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2.3.3 Facts about fixed points

Here, we review a myriad of useful facts about SCFTs which will come up repeatedly
throughout the rest of this dissertation.

Conformal field theories in even spacetime dimensions have Weyl anomalies. The confor-
mal anomaly of the trace of the stress tensor 7y, on a curved background is given by (schemati-
cally)

(Tj') ~ a(Buler) + Y cil;. (2.22)
Here, (Euler) refers to the d-dimensional Euler densit;/, and /; the local Weyl invariants. The
dimensionless coefficients a, ¢; are known as the central charges of the CFT. In 2d there are no /;
and a is commonly called ¢, which corresponds to the Virasoro central charge; in four dimensions
there is one /;; and in six dimensions there are two.

As we review below, in superconformal theories the a central charge is related to the ’t
Hooft anomalies for the superconformal R-symmetry. This follows from the fact that 7,y is in

the same multiplet as the R-symmetry current.

4dd 1V =1

The conformal anomaly of the trace of the four-dimensional energy momentum tensor on
a curved background in four dimensions is
(1)) = —Tlﬂz [a(Euler) — c(Weyl)?], (2.23)
where
(Weyl)? = (Ruvpo)® —2(Ruv)* + %RZ, (Euler) = (Ruvpo)® —4(Ruv)* +R%.  (2.24)
For an .4 = 1 superconformal theory, the superconformal algebra places the R-symmetry
current in the same multiplet as the stress tensor and supersymmetry currents. From this it follows

that the central charges a and c are related to the "t Hooft anomalies of the superconformal U (1)g

symmetry as [16]
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32( 32(

Further, all 3-point functions among elements of this supermultiplet are determined by a and c.

a= 3TrR%,_, — TrR w=1), €= 9TrR?;_, —STIR y—1) . (2.25)
The anomaly-free condition for the R-symmetry is closely tied with the condition for a
fixed point. In particular, the requirement that the U (1)g symmetry be free from ABJ anomalies
is precisely the condition that the NSVZ exact B-function vanish. Explicitly, the R-symmetry
current Ry, (the lowest component of the supercurrent superfield containing the stress tensor and
supersymmetry currents) satisfies
IuRM = 481 <3C adj) ZC ri)( ) F;vng (2.26)
Comparing with (2.16), the expression in parenthesm is precisely the numerator of the NSVZ
B-function.
The ’t Hooft anomalies for the superconformal U (1)g symmetry for a vector and chiral
multiplet are
V: TR y_ =TR,_, = |G| (2.27)
®: TR - = (RQ)— 1|, TR = (R(Q)—1)|r| (2.28)
where r is the representation of ®. These are easily computed by adding the contributions of the
fermions in Tables 2.1 and 2.2. Then, for a theory with n&l) A =1 vector multiplets and ngjl)

A =1 chiral multiplets, the a central charge is

a= 332 2n") + 0l (R(Q) ~ 1)(3(R(Q) —1)> 1)) . (2.29)

If the theory has a flavor symmetry G with generators 7%, the flavor central charge kg is defined
kg8 = —3TtR 4 _T°T. (2.30)

For scalar chiral primary operators ¢, the R-charge and dimension are proportional to one another:

A(O) = %R(ﬁ) > 1. (2.31)

The inequality comes from the unitarity bound Ay > (d —2)/2 given in (2.20).
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4dd NV =2

An 4 =2 SCFT has an R-symmetry U (1)g x SU(2)g, with generators R 4 _, and I*
(a=1,2,3) respectively. We use a basis for the Cartan subalgebra of the R-symmetry labeled by
(R y—»,I%). The R-charge assignment for free .4#" = 2 vector multiplets and hypermultiplets is

given in Tables 2.3 and 2.4, which we repeat in a convenient form in Table 2.6.

Table 2.6: R-charge assignments for ./ = 2 multiplets.

Ryo,\P |t o0 -1 Ryo\P |37 0 —3
0 A'u -1 Yo _
1 Ao Al 0 0 ol
2 ¢ 1 v

With this charge assignment, the nonzero anomaly coefficients for an .4~ = 2 vector
multiplet and hypermultiplet are
N =2vector: TiR y_p =TrR?,_, = (1+1)|G| =2|G],
TR B = (1224112961 =126
N =2hyper: TR y—p =TiR>,_, = (—1—1)|r| = =2|r],
TiR 15 = (—1(0)* — 1(0)?)|r| = 0.
(Note that due to the dagger, f[/; contributes —1 rather than 1). Then, for a theory with n, vectors

and nj, hypers we have

ny

TR y—y = TtRy_, =2(ny—my), TR yol3 = 5 (2.33)
The central charges a and c are related to the anomaly coefficients as [17]
TR, _, = TiR y—o =48(a—c¢), TR y_ol’I"’ =28 (2a — ). (2.34)
The flavor central charge kg for a global symmetry G with generators 7¢ is
k8™ = —2TrR 4, TT?. (2.35)

Using n, and ny, to represent the number of free vector multiplets and free hypermultiplets, the
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central charges of an .4~ = 2 superconformal theory can be written
1
= 5 t5m),e= o5 (ny 4 2my). (2.36)

As we discussed previously, we can fix an .4~ = 1 subalgebra in the .4 = 2 algebra,

a

such that the .4~ = 1 R-symmetry is given by (2.3). With this choice, the linear combination
J =R y_p — 215 commutes with this .4#” = 1 subalgebra, and thus is a flavor symmetry from
the 4" =1 point of view. (2.3) is the unique .#* = 1 R-symmetry that has the properties of a
superconformal U (1)g when the theory has enhanced .4~ = 2 supersymmetry.

For scalar chiral primary operators ¢, using (2.3) and (2.31) (and / 3 = () we can relate

the dimension and R-charge of & as

A(O) = %R > 1. (2.37)

The inequality is saturated only for free fields.

4d ¥ =4

An ./ =4 SCFT has R-symmetry SU(4)g ~ SO(6)g. The 't Hooft anomalies for an

A = 4 massless vector multiplet can be written
N =4vector: TiR y_; =0, TYR,3/1/Z1 = 8/9(N2 —1), (2.38)
in terms of the .4 = 1 subalgebra (2.3). The N? — 1 factor comes from the dimension of the

adjoint. Then, we see that

N2 —1
YR

a=«c¢c=

(2.39)

2.3.4 The a-theorem, and a-maximization

In two dimensions the RG flow is a gradient flow, meaning that the a central charge
satisfies a gradient condition along the flow. This is Zamolodchikov’s a-theorem [18], usually
called the c-theorem since in 2d there is only one central charge.

In four dimensions, the a-theorem states that the endpoints of all unitary RG flows must
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satisfy

ayy > aR. (2.40)
The four-dimensional a-theorem was conjectured in [19], analyzed in [20], and proven in [21, 22].
Note that in 4d ¢ > 0, since it appears as the coefficient of a 2-point function, but that ¢ does not
satisfy a similar a-theorem. Also, note that @ > 0 in both 2d and 4d, with @ = 0 if and only if the
theory has no local degrees of freedom [18, 23].

The intuition of there being a quantity that monotonically decreases along nontrivial RG
flows comes from the idea that along a flow, relevant deformations lift some of the massless
degrees of freedom. Indeed, for a free conformal theory, a and ¢ are given by the free field content,
and therefore decrease as more fields are integrated out at lower energies.

The a central charge of a 4d .4~ = 1 SCFT is completely determined by the U(1)g ’t
Hooft anomalies as in (2.25). In cases where the U(1)g can mix with additional U(1) global
flavor symmetries, the exact superconformal R-symmetry is determined by a-maximization [24],
which requires locally maximizing (2.25) over all possible U (1)g symmetries. In particular, one
can parameterize the most general possible R-symmetry as

Ryriat = Ro + Z &iF; (2.41)
for F; the generators of other U(1)’s in the theory. Tl;e result of a-maximization is that the values

of the & such that Ry, at the fixed point is the correct U (1)g are those that locally maximize

3
Guial = 35 (3TrR: 0 — TrRyial) - (2.42)
This follows from showing that [24]
d Atrial 3 2 82atrial 27
= —(9TtR;; | F; — TrF;) =0, = —TrRya FiF; < 0. (2.43)
88,' 32< trial ™ l) 8e,~8j 16 wial Tt

Note that any flavor symmetry that satisfies TrF; = O (such as non-Abelian flavor symmetries)
does not mix with the superconformal U(1)g, since by (2.43) R commutes with such an F;.
Cases with accidental symmetries or irrelevant interactions require special care: one

then maximizes (2.25) over R-symmetries that are not obvious from the original description.
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One situation where such enhanced symmetries are evident is when a gauge-invariant operator
saturates, or seemingly violates, an SCFT unitarity bound. For instance, for scalar chiral primary
operators &' we must satisfy (2.31). Apparent violations instead actually saturate the inequality,
with an accidental symmetry U(1),s which only acts on the IR-free-field composite operator.
Then, this accidental U (1) mixes with the U(1)g in (2.41). See [25] for how a-maximization is

modified in such cases.

2.3.5 Chiral ring

Chiral operators are operators that are annihilated by the supercharges of one chirality. A
chiral superfield has a chiral operator as its lowest component. As we’ve already reviewed, in
theories with four supercharges chiral primary operators have dimension proportional to their
U(1)g charge, which is hence additive. The product of two chiral operators is again a chiral
operator. Then, their OPEs have a ring structure, known as the chiral ring. In the ring, chiral
operators are considered modulo operators of the form {Qz, ... }—i.e. two chiral operators are
considered equivalent if they differ by a Q:; exact term.

In terms of a microscopic Lagrangian description, the chiral ring consists of gauge-
invariant composites formed from the microscopic chiral superfields. Superpotentials lead to
chiral ring relations, since dpW is not a primary, and is thus set to zero in the ring. Ring relations

can also come from the finiteness of the chiral operators as matrices in a representation of the

gauge group.

2.3.6 4d ./ =1 superconformal index

The Witten index [26] is defined as Tr(—1)%, where the Witten operator (—1)F distin-
guishes bosons from fermions: (—1)% [boson) = +1|boson), and (—1) |[fermion) = —1|fermion).

The idea of an index for a superconformal theory is essentially as a Witten index in radial
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quantization. Consider a supercharge Q with {Q, 0T} = 2A for A some conserved charge. Then,
one can generally define an index
I[] = Tr(—1)F e PAeHidi (2.44)
where the ¢; are charges that commute with the supercharges Q, Q'. The trace is over states of
the theory quantized on 3 x R. The necessity of the compact manifold S° is due to the fact
that one can rarely compute the Witten index in flat space, since supersymmetric theories have
a moduli space of vacua. The index (2.44) will only receive contributions from A = 0 since
states with A > 0 come in boson-fermion pairs. As an alternative formulation, one can define a
superconformal index as a supersymmetric partition function on S x S'.
The superconformal index for an .4~ = 1 theory was first defined by Romelsberger, and
can be written [27, 28]
I(p,q) = Te(—1)F pit it R iiek/2 (2.45)
where (1, j2) are the spins of the Lorentz group SO(4) ~ SU(2) x SU(2), and R is the U(1)g
charge. When the theory has a global symmetry with Cartan generator f, we include a fugacity y
such that there is a term y/ included in the product.
Equivalently, it is useful to use

t
p =1x, q=-, (2.46)
X
to rewrite

I(t,x) = Tr(—1)F RT272x201 (2.47)

Note that this convention differs from some conventions—including the one used in Chapter 4 of
this thesis—by a rescaling # — 3. As an aside, one can similarly define the .#” = 2 index as

I(p,q,t) y— = Tr(—1 )ijl +j2+Ri,4/:2qj2—j1 +R.4/:2t13—R<,4/:2 (2.48)

with I and R 4 _, the Cartan generators. For the rest of this subsection we will continue our

focus on the ./ =1 case.

The index can be determined first on single particle states as
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i
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Here G is the gauge group, and F is a flavor symmetry group. The first term represents the
contribution for gauge fields from the vector multiplet, and the second set of terms sums the
contribution of chiral matter fields in representations r; of the corresponding groups. In the sum,
the first term of the numerator represents the contribution of a chiral scalar with R-charge R;,
while the second represents the contribution of the fermionic descendent of its anti-chiral partner.
This expression depends on the symmetry group elements g € G, and h € F. From (2.49), we can

determine the index for all gauge singlet operators via the plethystic exponential
= 1
I(t,x,h) = / du(g)exp (Z —i(t”,x",h”,g")) (2.50)
G n=1"
where du(g) is the G-invariant measure. This formulation of the .#” = 1 index is nicely summa-

rized in [29].

The index has an expansion of the form

%5 (%) X (B
I(t,x,h) = Zni(i _ﬁ’;C;()l%_ i;E—)l)' (2.51)

1

Here the n; are integer coefficients, and the x; are SU(2) characters for the spin j representation.
For example, for low spin j we have
n@=1 n@=:+z', pE=1+I+" (2.52)
To see the operator spectrum from the index, it is convenient to consider the reduced index (called
the corrected index in [30])
L= (1—tx)(1—tx ) (I (t,x,h) — 1). (2.53)
This is an infinite series in ¢ from which one can read off the quantum numbers of operators in the
theory, up to the ambiguity of recombination of short multiplets into long multiplets.
Part of the utility of the index comes from the fact that the superconformal index is
constant under continuous variations of the theory that preserve superconformal invariance. For
example, the index is invariant under renormalization group flow. One can compute the index

in the UV, RG flow to the IR, and if superconformal symmetry is preserved then compute the
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infrared index, taking into account the fact that the U (1)g charge preserved at the IR fixed point
might need modification. One then has a recipe to evaluate the superconformal index at a low

energy fixed point given the index in the UV.
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Chapter 3

Deformations of Wy p p SCFTs

We discuss aspects of theories with superpotentials given by Arnold’s A, D, E singularities,
particularly the novelties that arise when the fields are matrices. We focus on 4d .#” = 1 variants
of susy QCD, with U(N,) or SU(N,) gauge group, Ny fundamental flavors, and adjoint matter
fields X and Y appearing in Wy p £ (X,Y) superpotentials. Many of our considerations also apply
in other possible contexts for matrix-variable Wy p g. The 4d Wy p g SQCD-type theories RG
flow to superconformal field theories, and there are proposed duals in the literature for the Wy, ,
Wp,, and W, cases. As we review, the Wp_ . and Wg, duals rely on a conjectural, quantum
truncation of the chiral ring. We explore these issues by considering various deformations of the
Wa p g superpotentials, and the resulting RG flows and IR theories. Rather than finding supporting
evidence for the quantum truncation and Wp,,,, and Wg, duals, we note some challenging evidence

to the contrary.

3.1 Introduction

The simply-laced Lie groups, Ay, Dy, and Eg, E7, and Eg (“ADE”) relate to, and classify,
far-flung things in physical mathematics. The Platonic solids are classified by the discrete sub-

groups I'g C SU(2)—cyclic, dihedral, tetrahedral, octahedral, and icosahedral—which connect
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to the ADE Lie algebras via the McKay correspondence’. Another connection is in Arnold’s
simple surface singularities, which follow an ADE classification [31]:
Wa, =X wp,, =X 4 XY, (3.1)
We, =Y+ X4, Wg, =Y +YX3, W =Y>+X". (3.2)
These have resolutions, via lower order deformations, associated with the corresponding ADE
Cartan, with the adjacency of the singularities that of the ADE Cartan matrix.

In two dimensions, the ADE groups arise in the classification of minimal models and
their partition functions [32]. The 2d .#” = 2 minimal models with ¢ < 1 are given by Landau-
Ginzburg theories with the Wg—4 p £ superpotentials (3.2) [33, 34, 35]. The chiral ring of the
We 2d 4 =2 SCFT is related to the ADE group’s Cartan, with rg = rank(G) chiral primary
operators. Deforming the theory by adding these chiral ring elements to the superpotential,
W — W + AW, the deformation parameters can be associated with expectation values in the
adjoint of G. The deformation leads to multiple vacua, where the ADE group breaks into a
subgroup. This breaking pattern is in accord with adjoint Higgsing, preserving the rank rs and
corresponding to deleting a node from the extended Dynkin diagram, e.g.

Dy, sky+2 = Dyy 12 +Apys E7; — E¢ +Aqy, E¢ — Ds +Aj. (3.3)

The generic deformation gives G — rg Ay, giving Tr(—1)F

= rg susy vacua. The solitons
of the integrable AW deformations also exhibit the ADE structure, e.g. [36].

A related connection with ADE groups is via local Calabi-Yau geometries: when the
defining hypersurface has a singularity (3.2), there are (collapsed) cycles corresponding to the
ADE Dynkin diagram nodes, with intersections given by the group’s Cartan matrix. String theory
on these backgrounds can yield the corresponding ADE gauge groups in spacetime [37]. In this

context, the geometric resolutions of the local singularities corresponding to AW deformations

lead to adjoint Higgsing of the corresponding group.

I'The irreducible representations R; of I' correspond to the nodes of the extended Dynkin diagram for G, with
Rr =Y ;a;jR; for R the fundamental of SU(2) and C;; = 28;; — a;; the ADE Cartan matrix.
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Figure 3.1: Deforming the Wy p g 2d .#” = 2 SCFTs corresponds to adjoint Higgsing of the
ADE group, hence cutting the Dynkin diagrams, as illustrated here for the flows in (3.3). This
gives the vacua associated with 1d representations of the F'-terms.

3.1.1 The chiral ring of Wy p £(X,Y) for matrix fields X and Y

We are interested in an ADE classification that arises in the context of a family of 4d
A4 =1 SCFTs [38]. Before delving into specifics, we highlight a difference in comparison with
(3.2): now X and Y are matrices, with

Wa, =Tr(X*'+7?),  Wp,,, = Tr(X* ! +Xx7?), (3.4)

We, =Tr(Y2 +X%), Wg, =Tr(Y3 +YX3), Wg, = Tr(Y> +X°). (3.5)
The fact that matrices allow non-zero, nilpotent solutions to the equations of motion, and can
have [X,Y] # 0, makes for important differences—even classically.

Recall that in theories with four supercharges, chiral primary operators have dimension
proportional to their U (1)g charge, which is hence additive, and their OPEs yield the chiral ring.
In terms of a microscopic, Lagrangian description, the chiral ring consists of gauge-invariant
composites formed from the microscopic chiral superfields. Superpotentials lead to chiral ring
relations, since dyW ~ QZQXK is not a primary, and is thus set to zero in the ring; for instance
the LG theories (3.2) then have rg—4 p g elements.

We are here interested in aspects of the chiral rings for theories with matrix X and Y
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superpotentials (3.5), and their W — W + AW deformations. Our focus is on the application to
4d ./ =1 QFTs and renormalization group (RG) flows, but much of the analysis also applies to
other possible contexts—for instance, in 2d or 3d— where one could also consider theories with
the superpotentials (3.5) with matrix fields.

If the fields X and Y are N, x N, matrices, the superpotentials (3.5) have a GL(N,,C)
symmetry under which X and Y transform in the adjoint representation: X — M~ 'XM, Y —
M~'YM for M € GL(N,,C). Then, we can decide whether or not to gauge a subgroup of this
symmetry, say SU (N,) or U(N,). If we do not gauge, (3.5) will leave unlifted a large space of flat
directions. For instance, consider the matrix variable Ay superpotential in (3.5), whose F-term
chiral ring relations, dyW = dyW = 0, are given by

Wa,:  Fx~kW~X=0, F~dW~Y=0. (3.6)
Y is massive and could be integrated out, setting ¥ = 0; we merely included it here to make the
ADE cases in (3.5) more uniform. For k = 1 and any N, X is also massive, and there is a unique
supersymmetric vacuum at X =Y = 0. For k > 1 and N, = 1, (3.6) gives isolated vacua at X = 0,
and resolving the singularity by lower order AW shows that there are Tr(—1)" = rg = k such
vacua. For both k > 1 and N, > 1, on the other hand, X¥ = 0 has a non-compact moduli space of
flat direction solutions with nilpotent X; for example, X could contain a block v(o] +io») for
arbitrary complex v.

In our context, SU (N,) or U(N,) is gauged, and the nilpotent matrix solutions of (3.6) are

lifted by the gauge D-term potential: supersymmetric vacua must have

Vp=0: [X,X']+[Y,Y"]+ other matter field contributions = 0. (3.7)
The “other matter field contributions” are for example the contributions from Ny fundamentals
and anti-fundamentals Q, é in variants of SQCD, which we need not consider for the moment;
i.e. we consider the theory at Q = O = 0. For the Ay case, (3.7) gives [X,XT] = 0, implying X
and X' can be simultaneously diagonalized; then nilpotent solutions are eliminated, and (3.6)

implies that the vacua are all at X = 0.
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The D and E cases, with N, > 1, have more matrix-related novelties since generally
[X,Y] # 0. For the D-series, the F-terms in the undeformed case are
Wny : Fx~X4v?2=0, F~{X,Y}=0. (3.8)
The 1d representations are the same as in the N. = 1 case, giving rp,,, = k+2 chiral ring elements.
For matrices X and Y, the chiral-ring relations (3.8) lead to a qualitative difference between k odd
and k even. For k odd, (3.8) imply that Y3 ~ Y X* ~ —YX¥ = 0, and thus there are 3k independent
chiral ring elements formed from X and Y, given by
k odd : O,=X"y" =1,k j=1,2,3. (3.9)
For k even, Y”"=3 = 0 in the ring, so there are chiral ring elements with allowed values of j that
do not truncate, i.e. they do not have a maximum value independent of N,.
Likewise, for Wg, the chiral ring relations
W, : Fx~X>=0, Fy~Y?>=0, (3.10)
allow for rg, = 6 chiral ring elements with 1d representations, {1, X, Y, X 2 XY, X%y }. For
N, > 1, one can form, for example, Tr(X Y)é with arbitrary ¢ as independent chiral ring elements,
so the ring does not truncate. Similarly, for Wg,, the chiral ring relations
W, : Fx ~X*Y +XYX+YX?=0, Fy~Y>+X>~0, (3.11)
lead to rg, = 7 chiral ring elements when N, = 1, while for N > 1 the classical chiral ring is not
truncated. For Wg,, the chiral ring relations
We, : Fx~X*=0, F~Y?>=0, (3.12)
lead to rg; = 8 chiral ring elements for 1d representations (X t=lyj=1l for ¢ = 1,...,4and j=1,2),

but the classical chiral ring does not truncate for matrix representations.

3.1.2 Wy p g in 4d SQCD with fundamental plus adjoint matter

We consider ADE superpotentials in the context of 4d .4~ = 1 SCFTs, with gauge group
SU(N.) or U(N,), X and Y adjoint chiral superfields, and Ny (anti)fundamental flavors Q (and
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Q). The possible interacting SCFTs were classified in [38] as

W;=0, Wy=TrY?>, W;=TiXY>,  Wp=Tr> (3.13)
along with (3.5). The reappearance of Arnold’s ADE classification in this context [38] was
unexpected. Some interesting ideas and conjectures for a geometric explanation of the Wy p g in
this context appeared in [39], in connection with matrix models and the construction of [40]. We
will not further explore these interesting ideas here.

The IR phase of the theory depends on Ny and N,. It is convenient to consider these
theories in the Veneziano limit of large N, and Ny, with the ratio

x = N¢/Ny (3.14)
held fixed; the IR phase then only depends on x. The 9] theory is (or is not) asymptotically free for
x> 1 (or for x < 1), and RG flows to an interacting (or free electric) theory. Larger x values means
that the theory is more asymptotically free, and hence the original “electric” description is more
strongly coupled in the IR. The asymptotically free theories are expected” to be in the interacting
SCFT conformal phase for all Ny < 2N, (i.e. x > %) for the A cases, and for all Ny < N, (i.e.
x > 1) for the 5, D and E cases. For the Wy p £ theories (3.5), on the other hand, there are more
possible IR phases.

In the Wy, case, the adjoints are massive and can be integrated out. The resulting IR
theory is SQCD, which has the duality [42], with “magnetic” gauge group SU(Ny —N,). The
dual reveals the bottom of the conformal window, and the existence of the IR-free magnetic phase
for % <x < I;forx > 1, the theory generates a dynamical superpotential [43]. The Wy,_, theories
were considered in [44, 45], where a duality was proposed and checked. Following [46, 47] we
write the Wy, duality in a way that will generalize to some cases:

(some cases) Wg: SU(N;) <+ SU(aGgNyg — N), with ay, =k. (3.15)

Superpotential deformations of Wy, were considered in [48], where the fact that a4, = k was

2This can be seen e.g. for the A theories with N '+ >0 as in [41]: a superpotential deformation leads to .4 =2
SQCD, and all the mutually non-local, massless monopole and dyon points in the moduli space collapse to the origin
in the original theory. This has no free-field interpretation.
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shown to tie in with the fact that upon a generic AW deformation, Arnold’s A; singularity is
resolved as
Ax — KAy, (3.16)
since the low-energy theory in each of the k vacua has the SU (n;) <+ SU(Ny — n;) duality of [42].
The IR phases and relevance of the Wy, theories were clarified in [25] using a-maximization [24],
including accounting for accidental symmetries.
A duality of the form (3.15) for the case of two adjoint chiral superfields X and Y, with
Wp, ., as in (3.5), was proposed in [49], with
op,.,, = 3k. (3.17)
The IR phases and relevance of the superpotential terms were clarified in [38], where it was also
noted how the ap, ., value (3.17) can be understood / derived from AW deformations; this will be
discussed much further, and clarified, in the present chapter.
More recently, a duality for the case of Wg, was proposed in [46], with
o, = 30. (3.18)
The value (3.18) was moreover shown in [47] to be compatible with the superconformal index in
the Veneziano limit>, and it was argued [46, 47] that the Wg, and W, theories cannot have duals
of the simple form (3.15); it is not yet know if these theories have duals. A motivating goal of
our work was to obtain some additional insight into the value (3.18), and its connection with the

flows in Fig. 3.2.

3.1.3 WA,D,E + AW RG flows

Possible flows between these fixed points are illustrated in Figure 3.2, taken from [38].

We here emphasize that this figure is somewhat incomplete: the AW superpotential deformations

3The exact matching of the electric and magnetic indices beyond this limit requires mathematical identities which
have only been demonstrated explicitly for the Wy, SQCD duality case [29, 50]; the needed identities are conjectural
for the Ag~1, Di+2, and E7 dualities.
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Figure 3.2: Flows among the fixed points of SQCD with two adjoints.

give additional vacua, with a richer IR structure than is indicated in the figure. Indeed, even
the 1d (N. = 1) representations of the chiral ring of the deformed Wy p g + AW superpotentials
give rank rG—4 p g vacua, as in the examples (3.3). The two-matrix D and E cases with N, > 1
give additional vacua. Incidentally, much as in 2d, there are BPS solitons—here domain walls—
interpolating between the vacua; we will not discuss them further here.
To illustrate the multiple vacua and possibility for additional vacua, consider Wp, ,, with
U(N,) gauge group for N. > 1. The generic AW deformation gives* [51, 38]
Diin — (k+2)AM + E(k—l)J A (3.19)
The 1d and 2d labels refer to the dimension of the representation of the (deformed) chiral ring. The
higher-dimensional representations of the chiral ring are the new elements of the matrix-variable
superpotentials. The gauge group is then broken as [38]
k+2 [3(k=1)] k2 Lak=1)]
UN)—=TJum) ] vy with  Yom+ Y 203 =N.. (3.20)
i=1 j=1 i=1 j=1

For k odd, the low-energy theory is SQCD for each factor, with N flavors for the U (n;) groups

4We use the standard notation for the floor and ceiling functions, |x| and [x], respectively. So, for k odd,
[3(k—1)] =[3(k—1)]=3(k—1);forkeven, [} (k—1)] = L(k—2)and [ (k—1)] = %.
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and 2Ny flavors for the U (n?d ) groups, and then the duality of [42] in each factor fits with the
value (3.17) [38].

We will discuss even vs. odd Dy, and the duality of [49] in much more detail in what
follows. We will also report on our attempt to understand the duality [47]—and the value

(3.18)—by considering various AW deformations, similar to (3.19) and (3.20).

3.1.4 W, p g flat direction flows

The Wy p £ theories can also be deformed by moving away from the origin, on the moduli
space of supersymmetric vacua. There are fundamental matter flat directions associated with
expectation values for the Q and Q matter fields (e.g. (On,) = <§Nf> # 0), and adjoint flat
directions associated with expectation values (X) and/or (Y), as well as mixed directions where
both fundamentals and adjoints receive expectation values. We will here primarily focus on the
purely adjoint flat directions.

For X and Y adjoints of SU(N,) gauge group, there are certain flat directions which exist
for special values of N, that do not exist for the U (N,) case. For example, for Wy, there are flat
directions when N, = kn for integer n; along such flat directions,

SU (kn) — U(n)* /U (1), (3.21)
where in the low-energy theory each U (n) factor is a decoupled copy of SQCD with N flavors.
As we will review in Section 3.3.4, this gives another check of &y, = k in the duality (3.15). We
will discuss similar checks of o, ., = 3k, for the case of k odd. As we will emphasize, the Deyen
case is quite different from Dq4q; similar series of flat directions for Deyen and E7 have a more
subtle story.

For the cases where the classical chiral ring does not truncate—namely, Wp, ., for k even
and Wg,—we show that there are classically unlifted flat directions given by matrix solutions to
the F- and D-terms of the undeformed theories. We argue that these flat directions are not lifted

or removed by any dynamics, and they thus present a possible challenge for the proposed duals
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for these theories.

3.1.5 Outline

The outline of the rest of this chapter is as follows. In Section 3.2 we review some
technical details, including a review of the known and conjectured dualities for the 4d Wy p g
SCFTs, and a discussion of their moduli spaces of vacua—especially with respect to higher-
dimensional vacua. In Section 3.3 we review some aspects of the W and Wy, theories to set the
stage for subsequent analysis.

In Section 3.4, we consider the Wp, _, theories. First, we study a matrix-related classical
moduli space of supersymmetric vacua present for the Deyen theory, which poses a puzzle
for duality for Deyen, and argue that these flat directions are not lifted by quantum effects.
We demonstrate that these flat directions seem to violate the a-theorem, and discuss possible
resolutions to this puzzle. We then study SU (N, )-specific flat directions of the Dy, theories,
reviewing that such flat directions provide a nontrivial check of the D,qq duality, and then showing
that they lead to puzzles for the conjectured Deyen duality. Next, we study RG flows from the
Wp, ., SCFTs via relevant superpotential deformations, again finding nontrivial checks of duality
for D44, and more hurdles for Deyen. We conclude Section 3.4 with comments on hints as to how
these puzzles might be resolved.

In Section 3.5, we similarly analyze the Wg, SCFT. We study matrix-related flat directions
and SU (N, )-specific flat directions of the E7 theory, which turn out to be analogous to the puzzling
Deyen flat directions. We then study some AW RG flows from the Wg, SCFT, noting some features
in the resulting higher-dimensional vacuum structure that are new to the E-series. Finally, we
conclude in Section 3.6 with comments on future directions, and some discussion of how the
present work might be applied to the Wg, and Wg, SCFTs. In an appendix, we explore additional

E-series RG flows.
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3.2 Technical Review

3.2.1 The a-theorem, and a-maximization

As we reviewed in Chapter 2, the 4d a-theorem [19, 52, 21] implies that the endpoints of
all RG flows must satisfy

ayyv > ajR. (3.22)
In superconformal theories, a is related to the ’t Hooft anomalies for the superconformal U (1)g

symmetry as [16] (we rescale to a convenient normalization):
a(R) = 3TrR> — TrR. (3.23)
In cases where U (1)g can mix with U(1)f global flavor symmetries, the exact superconformal
R-symmetry is determined by a-maximization [24], by locally maximizing (3.23) over all possible
U (1)g symmetries. Cases with accidental symmetries or irrelevant interactions require special
care: one then maximizes (3.23) over R-symmetries that are not obvious from the original
description. One such situation is when a gauge-invariant operator saturates, or seemingly

violates, an SCFT unitarity bound, e.g. for scalar chiral primary operators &
3

A(O) = ER(ﬁ) > 1. (3.24)
The inequality is saturated for free chiral superfields, and apparent violations instead actually
saturate the inequality, with an accidental symmetry U(1), which only acts on the IR-free-
field composite operator. See [25] for how a-maximization is modified in such cases, and its
application to the A SCFTs. See [38] for additional applications to the other theories in Fig. 3.2,
and additional discussion.

The a-theorem (3.22) requires, for example, that a decreases when a fundamental flavor

is given a mass and integrated out,

ascrr(Ne,Ny¢) > ascrr(Ne, Ny — 1), (3.25)

where SCFT refers to any of the SCFTs in Fig. 3.2. In the Veneziano limit, (3.25) for this RG
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flow requires (recall x = N./Ny) [38]
d

e (x"a(x)/N7) <0. (3.26)
Upon computing a(x) for the SCFTs in Fig 3.2, it is verified that x2a(x) /N]% is indeed monotoni-
cally decreasing for small x, but then flattens out when x is sufficiently large, e.g. at x ~ 13.8 for
the Wg, SCFTs [38]. The a-theorem implies that some new dynamical effect must kick in for x at
or before the problematic range where (3.26) is violated.

One such effect, for sufficiently large x, is that a dynamical superpotential could be
generated, and the theory is no longer conformal; this is referred to as the stability bound. For Wy,
theories, the stability bound is x < Xgbility = k [43, 44, 48]. Another effect, which can occur for
x < Xstability 18 that the theory could develop non-obvious accidental symmetries. In cases with
known duals, such accidental symmetries can be evident in the dual description, where it is seen
that some superpotential terms—or the dual gauge interaction—become irrelevant when x,j,. is
too large (Xyuqg is too small). It is satisfying that the a-theorem condition (3.26) is indeed satisfied

in the Wy, theories [25] and the Wp, , theories [38] upon taking such accidental symmetries into

account.

3.2.2 Duality for the 4d SCFTs

Recall that the chiral ring consists of gauge-invariant composites, e€.g. meson, baryon,
and glueball operators, formed from the microscopic chiral superfields: here X and Y, the
fundamentals and anti-fundamentals Q, é, and the gauge field strength fermionic chiral superfields
W, subject to classical and quantum relations. Such theories, with adjoint(s) X (or X and Y, or
similarly, other two-index representations, e.g. in the examples in [53]) only have a known dual if
the chiral ring of products of the adjoint(s) truncates. Here, truncate means that the number of

independent elements in the ring is independent® of N.. An example of an untruncated case is the

SThere is a classical chiral ring relation that the adjoint-valued operator X can be expressed in terms of products
of lower powers X/~ and the u 7 =TrX/. To see this, write the characteristic polynomial P(x,u;) = det(x — X) =
xlNVe — xNe=ly; 4 ..., and note that P(x,u;)|—x = 0. Thus one can write any gauge invariant TrX* = 2, (uy,...,uy,)
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A theory, for which a basis of adjoint-valued products is given by © iX)=x"forj=1,... N
such theories do not have a known dual. A truncated case is Wy, where ©;(X) = X/~!, for
j=1,.. k.

More generally, suppose that a truncated case has a basis of elements ©;(X,Y), with
Jj=1,...,0; these are holomorphic products without traces, so gauge-invariant chiral ring
elements are formed by taking traces or contracting with Q and Q. One can form dressed quarks
0) =09; (X,Y)Q, which can then be used to construct gauge-invariant operators, such as the
aNJ% mesonic operators

M;=00;0, j=1,..a (3.27)
(We suppress flavor indices: each M; = (M;) . zis in the (Nf,Ny) of SU(Ny)r x SU(Ny)g). For

ff
SU(N,) there are also baryonic operators, built out of the dressed quarks:

o
Bllida) — Ql(ll).“Ql(O&), Z l;=N,. (3.28)
j=1

As shown in [46], the many constraints on any possible dual—including matching of the
chiral operators, invariance under the same global symmetries, "t Hooft anomaly matching, and
matching of the superconformal index [47]—essentially determines the dual (assuming it is of a
similar form) to have gauge group SU (N,), with N, = aN 't — N, again with Ny flavors g and g in
the (anti)fundamental of the gauge group, and adjoint fields we denote by X, ¥. The ratio (3.14)
of the dual theory is

£=N./Ny=o—x. (3.29)
The electric mesons (3.27) map to elementary operators of the dual theory, which couple in Wy,

to a corresponding mesonic composite operator in the magnetic theory. Magnetic baryons map to

for some polynomial &. As shown in [54], such relations can be modified by instantons for sufficiently large ¢.
See e.g. [54, 55], and references therein, for examples of chiral ring relations involving the adjoint-valued gaugino
and gauge field chiral superfield Wy, including the glueball operator S ~ TrWo W% and generalizations. Relations
involving Wy, and S will not be discussed in this current work.
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electric baryons as

~
A

Bli-ta) oy plile) [ = o, — 1, (3.30)
The truncation of the ring to o generators is a necessary ingredient for these classes of conjectured
dualities. The chiral ring of the electric theory truncates classically in the Ay and Dygq cases, and
has been conjectured to truncate quantum mechanically in the Deyen [49] and E7 [46] cases.

The Wy p  theories are understood in terms of the RG flows in Fig. 3.2, starting from
the top, W = O theories. If x > 1 the gauge coupling is asymptotically free, so it is a relevant
deformation of the UV-free fixed point, driving the RG flow of the top arrow in Fig. 3.2
into the O SCFT. Deforming by WX’ W5, or Wp gives flows, as in the figure, that are also all
relevant for x > 1 (the A case can be defined down to x > %). Generally, as long as the gauge
coupling is asymptotically free, its negative contribution to anomalous dimensions drives the
cubic superpotential terms to be relevant. The A= Ay, and D— Dy 42, and E— E, flows with
non-cubic terms in W (X,Y) only occur if x > xpi, such that the negative anomalous dimension
from the gauge interactions is large enough to drive the W (X,Y) terms relevant; the values of x,
were obtained using a-maximization for Wy, in [25] and in [38] for the other Ws—4 p £ theories.
Duality, if it is known and applicable, clarifies the IR phase structure of the theories for x > xp;p,
where the magnetic dual becomes more weakly coupled. The fixed point theories whose duals are

known or conjectured all have a similar phase structure [25, 38, 46]:

Table 3.1: Conjectured phases of theW, p g SCFTs.

x<1 free electric
1 < x < Xmin (K .D.E ) electric
Xmin <X < & —Xmin  (Ax,Dys2,E,) conformal window
O—Xpin <x<a—1 (X,ﬁ,ﬁ) magnetic
o—1<x<a free magnetic
o< x no vacuum
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3.2.3 Moduli spaces of vacua of the theories

Recall that, as we reviewed in Chapter 2, 4d .4~ = 1 theories with W = 0 have a classical
moduli space of vacua .#,;, given by expectation values of the microscopic matter fields, subject
to the D-term conditions (3.7) and modulo gauge equivalence. Alternatively, .Z,; is given by
expectation values of gauge invariant composite, chiral superfield operators, modulo classical
chiral ring relations (see for instance [8]). When W # 0, one also imposes the F'-term chiral ring
relations. The quantum moduli space .#, can be (fully or partially) lifted if Wy, is generated, or
deformed for a specific Ny as in [56] or variants®; the constraints of symmetries and holomorphy
often exactly determine the form of such effects, and with sufficient matter (e.g. sufficiently small
x) this implies that Wy,,, = 0 and .Z; = .#,.

We will here focus on vacua with Q = Q = 0, with non-zero expectation values for the
adjoints, X and Y; such vacua preserve the SU (Ny)r x SU (Ny)g global flavor symmetry. The N, x
N, matrices X and Y are decomposed into multiple copies of a set of basic, irreducible solutions
of the D- and F-flatness conditions. We refer to such a basic vacuum solution representation as
being d-dimensional if X and Y are represented as d x d matrices, which cannot be decomposed
into smaller matrices.

For the A and Ay theories and their AW deformations, we can set Y = 0 and the D-terms
give [X,X T] =0. Thus, X and X7 can be simultaneously diagonalized by an appropriate gauge
choice, and all vacuum solutions are d = 1 dimensional, represented by eigenvalues on the
diagonal of X. More generally, vacua with [X, Y] = 0 allow for simultaneously diagonalizing X,
Xt, Y, and Y7, so the representations are d = 1 dimensional. For cases other than A and Ay in Fig.
3.2, there are generally also d > 1 dimensional vacua, where [X,Y] # 0. In such cases, we cannot
in general fully diagonalize neither X nor Y. We can use the gauge freedom to e.g. diagonalize

the real part of X (or Y), and then impose the D-term to get an adjoint-worth of constraints on the

OThere are exotic examples of classical flat directions that are lifted by, for example, confinement (see e.g. [57]);
this can only occur if a gauge group remains unbroken and strong there.
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remaining three real adjoints. We indeed find examples of vacua where neither X nor Y can be
fully diagonalized.

The independent representations for X and Y vacuum solutions can be characterized by
the independent solutions for the Casimir’ products of X and Y. For example, if the F-terms imply
that [X3,¥] =0, [Y%,X] = 0 then we use the eigenvalues X> = x*1,, Y2 = y?1, to label the vacua.
In some cases we find there are no such Casimirs (other than the zero F-terms themselves); then
different X and Y eigenvalues give different vacuum solutions. In general, a d > 1 dimensional
representation is not reducible if: [X,Y] # 0, the eigenvectors of X and Y collectively span at
least a d-dimensional space, and X and Y do not share an eigenvector corresponding to a zero
eigenvalue.

Consider a general Wy p g theory, deformed by a generic AW. Let i run over the vacuum
solutions, and d; be their dimension. There are always precisely rg = rank(G) different d; = 1
dimensional (diagonalized) vacuum solutions for X and Y, as with the original, N, = 1 Landau-
Ginzburg theories (3.2). For the D and E cases, with N, > 1, there are d; > 1 dimensional vacuum
solutions. In all cases, the full N, X N, matrix expectation values of X and Y decompose into

blocks, with n; copies of the i’th representation, such that

Ne =Y nid;. (3.31)

The vacua are given by all such partitions of N, into the n;, subject to quantum stability
constraints (to be discussed). The non-zero X and Y Higgs U(N,) or SU (N, ), with the unbroken
gauge group depending on the n;.

It turns out that if there are n copies of a d-dimensional vacuum, there will be an unbroken
U(n)p C U(N,), where U(n)p can be regarded as coming from breaking a U(dn) C U(N,) as
U(dn) — U(n)? — U(n)p. The U(n)? factors each have Ny flavors, so the diagonally embedded
U(n)p has dNy flavors. If both adjoints receive a mass from the superpotential F-terms, the

low-energy U(n)p will then be SQCD with dN flavors. This factor then has a dual gauge

"Casimir here means matrices commuting with X and Y, not the U (N,.) or SU(N,.) Casimir traces.
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group U(dNy —n)p, with dN flavors (with SU (Ny) g enhanced to SU (dNy)r r as an accidental
symmetry in the IR limit). By the dual analog of the electric Higgsing, this low-energy U (dNy —
n)p can be embedded in a U(d’N + —dn) with Ny flavors. For example, consider the case
of n copies of a 2d vacuum, with (X) breaking U(2n) — U(n) x U(n), and then (Y) in the
bifundamental breaking to U (n)p. Duality maps this process as follows:
U(2n) — U(n) xU(n) — U(n)p
l l (3.32)
U(4Ny—2n) — U(Q2Ny—n)xU(2Ny—n) — U(@2Ny—n)p

The low-energy theory for such a vacuum is denoted as A%d if all the adjoints are massive, where
the 2d superscript indicates that it comes from a 2d representation, and thus has 2N (or more
generally, dNy) flavors. Applying such considerations for all d; vacua in (3.31) suggests that the

dual theory has & given by

a2y d. (3.33)

This relation indeed works for the A and the Dyqq theories, but not for Deyey or Eg 7 3.
For Wp, ,,, the generic deformation has k +2 1d vacuum solutions, and L%(k —1)]2d
representations. If there are n; copies of the i’th 1d solution, and n?d copies of the j’th 2d solution,

then U (N,) is broken as in (3.20). For odd k, (3.33) indeed gives a = 3k.

3.3 Example and Review: A and Aj; One-Adjoint Cases

3.3.1 A — A flow and A, duality

Consider SU (N.) SQCD with N chiral superfields Q(Q) in the (anti)fundamental of the

gauge group, and adjoint chiral superfields X and Y with superpotential

t
Ik pexkl %TrYz. (3.34)

=170
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The Y field is massive and can be integrated out; this is the O — A RG flow in Fig. 3.2. The 1;,
coupling, if relevant, drives the A A; RG flow in Fig. 3.2; if irrelevant, the IR theory is instead
an A SCFT. For k = 1, #x = mx 1s an X mass term and is always relevant; then both X and Y can
be integrated out and the IR A theory is ordinary SQCD. For k = 2, #; is marginally relevant as
long as the matter content is within the asymptotically free range, thanks to the gauge coupling.
For k > 2, the #;, coupling is relevant only if x > x,’g‘i“ [25].

The chiral ring of the A; theory truncates classically, and we may write the k generators

@;=x/"1 j=1,. k (3.35)

There are then kNJ% meson operators (3.27), with o4, = k, and baryonic operators (3.28).

The A theory (t; = 0) does not have a known dual description. The magnetic description
of the Ay SCFT [44, 45, 48] has gauge group SU (N,) with N, = kNy — N, so £ = N./N; =k —x.
The dual has Ny (anti)fundamentals ¢(§), adjoints X,Y, and k gauge singlets M ;j transforming in

the bifundamental of the SU(Ny) x SU (Ny), with superpotential

Wi — ki—"lTer“ + %Tﬂ?z + % ,i MR g, (3.36)
We can rescale X and X to set 7y = #;, = 1, and 1 is a scale that appears in the scale matching of the
electric and magnetic theories. The kN]% mesonic gauge invariant operators (3.27) of the electric
theory map to elementary gauge-singlets M; in the dual. The other gauge-invariant, composite
operators in the chiral ring of the electric theory—i.e. the generalized baryons (3.28), operators
TrX/~!, and glueball-type operators composed from Wy—all map directly to the corresponding
composite gauge-invariant chiral operators in the magnetic dual theory. Both theories have the
same anomaly free global symmetries, SU(Ny) x SU(Ny) x U(1)p x U(1)g, and the "t Hooft
anomalies properly match [44, 45, 48].

The A theories have a quantum moduli space of vacua, Wy, = 0, for all Ny and N.. The

Ay theories, however, generate Wy, # 0 if kNy < N.. For example, SQCD (Wj,) for Ny < N,

has Wy, # 0 [43], giving a 0Q — o runaway instability for massless flavors or Tr(—1)" = N,
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gapped susy vacua for massive flavors. We are here interested in cases with massless flavors and
Wayn(M ) = 0, so we restrict to kN > N, i.e. x < Xability = k; this is the vacuum stability bound
(44, 45]. For kNy < N, the quantum theory Ay has a moduli space of vacua, where the M; mesons
have expectation values. The classical constraints on this moduli space, e.g. rank(My) < N,
are recovered in the magnetic dual description from its stability bound, £ < k, since the M

expectation value gives masses via (3.36) to the dual quarks ¢, g.

3.3.2 Wy, +AW deformations and Ay — Ay RG flows

The Ay, theories of different k are connected by RG flows upon resolving the A, singularity
(3.34) by lower order AW deformations. The generic deformation, for instance by a mass term
AW = %mXTrX 2 leads to an RG flow with k vacuum solutions for (X), with X massive in each,
hence k copies of SQCD in the IR—i.e. Ay — kA;.

We now consider a partial resolution, by tuning the superpotential couplings such that
some of the eigenvalues coincide. We first consider the U (N, ) case, which is simpler because we

don’t have to worry about imposing the tracelessness of X. Consider the deformation
L "
Wetee = Wa, + AW, AW = Py i—lTrX’+ . (3.37)
(The #;_ deformation is trivial in the chiral ring, and it can be shifted away by shifting X, at the
expense of inducing lower order terms. Such items affect the RG flow, so we keep #;,_| non-zero
here.) The F-terms of (3.37) have a discrete set of solutions for the eigenvalues of X, with one
solution at X = 0 and (k — k') solutions at non-zero values of (X).

The vacua are given by all possible partitions of N, into the possible vacuum eigenvalues;

in such a vacuum, the electric gauge group is broken as
k=K' k=K'
U(Nc)Ak — U(”O)Ak/ X H U(n,‘)Al, N, =ng+ Z n;. (3.38)
i=1 i=1

The subscripts denote the low-energy theory, obtained by expanding (3.37) around the corre-
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sponding vacuum, X = (X) + 6X. The vacua at (X) = 0 have the most relevant term in (3.37)
given by W, ~ Tr(8X)F+! = Wa,, - The vacua at (X) # 0 have a mass term for the low-energy
adjoint, Wj,,, ~ Tr(8X)? = Wj,. We write this breaking pattern as
A — Ap + (k—K)A;. (3.39)
By further tuning the #; parameters in the deformation (3.37), we could cause some or all of the
(k— k") SQCD vacua to coincide, e.g leading to
Ay = Ay +Ai_p: ie. U(Ne)a, — U(no)a, X U(Ne —no)a, - (3.40)
Quantum mechanically, the vacuum stability condition—needed to have Wy,,, = 0—requires each
U(n)a, vacuum in (3.38) to have kNy > n [44, 45, 48].
In the magnetic dual, we deform by the dual analog of the perturbations in (3.37). The

(X)=0and W/, (X) =0, thus

vacuum solutions of the deformed electric and dual theories, W/ mag

elec
appropriately match, so if the electric breaking pattern is as in (3.39) or (3.40), it will have the
corresponding pattern in the magnetic dual. Each vacuum gauge group in the low-energy theories
maps under duality as [44, 45, 48]

U(”)Ak HU(ka—n)Z; (3.41)
and the stability bound in the electric theory ensures that kNy —n > 0. The theories on the UV

and IR sides of (3.38) thus map in the dual as
k—k’

U(kNf—Ne)z- — U(K'Ny —no);; x [TU Ny —ni)5 (3.42)
i=1
For the case in (3.40) the map is
U(kNp—Ne)z — U(K'Ny—ny) i X U((k—K)Ny—Ng+np) i (3.43)

The two sides of the RG flow arrow in (3.42) properly fit together as a dual description
of the flow associated with the AW deformation, since (K'Ny —ng) + Zi:lkl (Nf—n;) =kNy—
Zf:_g/ n; = kNy — N,. This demonstrates that the value oy, = k (see Section 3.2.2) ties in with the
fact that the A; deformation breaking patterns (e.g. as in (3.39)) have matching sum on the two

sides. This matching gives a check on the duality [48]—a perspective which we utilize throughout
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the present work.

As an aside, we note that the a-theorem (3.22) applies for any choice of the IR vacuum; i.e.
for any fixed choice of how to distribute the N, eigenvalues of X among solutions to W/(X) =0
(subject to the stability bounds). Regarding a as counting a suitably defined “number of degrees of
freedom” of the QFT, one might wonder if a hypothetical stronger statement holds: if ayy is also
larger than the sum ) ; ajg ; over all IR vacua. These examples demonstrate that the hypothetical
stronger statement is false. There are so many vacua from the many partitions of N, that it is

straightforward to explicitly verify that } ;a;z ; can be larger than ayy .

3.3.3 Comments on SU(N,) vs U(N;) RG flows

It is standard that the local® dynamics of 4d U (N,) and SU(N,) are the same: the overall
U (1) factor in U(N,) is IR-free anyway in 4d (although that is not the case in 3d and lower). The
original dualities of [42, 44, 45, 48, 49] etc. were written in terms of SU(N,), with U(1)p as a
global symmetry. Since U(1)p is anomaly free, one can gauge it on both sides of the duality,
leading to U(N,;) — U(aNy — N,) dualities. For the theories with adjoint matter, the U (N.)
version of the theories are simpler, in that we do not need to impose the tracelessness of the
adjoints. The adjoints X of the SU(N.) vs U (N,) theories are related by Xy (y,) = Xsy(n,) +Xo1n.
where TrXgy(y,) = 0 and X is an SU (N,) singlet. In the purely SU(N,) theory, it is standard to
eliminate Xy by including a Lagrange multiplier A,: Wy, = TrX**!/(k+ 1) — A, TrX. Then A,
pairs up with Xy, giving it a mass, and the vacua have Xy = 0. The Wy = 0O chiral ring relation
here gives X¥ = Aly,.

Upon deforming Wy p £ — Wa p £ + AW, the TrXgy (n,) = Tr¥sy(n,) = 0 constraints com-
plicate the SU(N,) theories compared with U(N,). This is particularly the case if we are in-
terested in AW flows as in Fig. 3.2 which have some X and Y dynamics remaining in the

IR, rather than flowing all the way down to just decoupled copies of SQCD. We can enforce

80f course the global dynamics and observables distinguish the different center of U (N,) vs SU(N,).
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TrXsy(n,) = Tr¥sy(n,) = O via Lagrange multipliers, which shifts the eigenvalues of X and Y
along the flow away from the preferred U (N,) origin at X =Y = 0. Such a shift will induce the
more general, relevant AW deformations which were tuned to zero for the U (N, ) case, unless the
reintroduced AW terms are subtracted off by a tuned choice of coefficients in the initial AW. We
will see that there are subtleties—especially for the D and E cases—from the d > 1 dimensional
vacuum representations.

Consider for example the flow A3 — A, +A|. For U(N,), we get the enhanced A, in the
IR (vs the generic 3A1) by taking k' = 2 in (3.37):

1 t 1
W = ZTrX4 + §2TrX3 + ETﬂ/z. (3.44)

For the SU (N, ) version of this flow, we add the Lagrange multiplier A, to eliminate Xy, shifting
the X eigenvalues. But simply doing this shift in (3.44) would induce the TrX? term, giving
instead A3 — 3A;. To get A3 — Ay + A, we must add to (3.44) the remaining ,,., terms in

(3.37),

1 t 1 t
W= ZTrx4 + ngrX3 + ETrYZ + ElTrXZ — A, TeX — A, TrY, (3.45)

with 71 tuned in terms of the multiplicities ng,n; of eigenvalues in the A; and A; solutions. For
fixed ¢, vacua with other partitions N, = n{) + n’1 will instead have 3A; in the IR.

It is not immediately apparent if this procedure works in the D and E cases to shift higher-
dimensional representations in just the right way to be able to map any U (N, ) deformation into a
corresponding SU (N, ) one. The chiral ring algebra that determines how one labels the higher-
dimensional vacua is sensitive to additional deformation terms in both X and Y, with [X,Y] # 0.
While such a shift maps between the 1d U(N,) and SU(N,) solutions, the higher-dimensional
solutions can differ; indeed, we will see examples of this later on. Additional subtleties arise
when there are multiple ways to perform the shift between the 1d solutions of SU(N,) and U (N, ).
We find cases in the D- and E-series where different deformation shifts agree for the 1d solutions

but result in different Casimirs along the flow, thus affecting the labeling of higher-dimensional
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vacua. We will explore these issues with examples in Sections 3.4.5 and 3.5.4.

3.3.4 SU(N,) flat direction deformations

The ADE SCFTs, for SU(N,) gauge group and special values of N, have flat directions
that are not present for U(N,). These are discussed for the A; case in [48]. Adding a Lagrange
multiplier term A, TrX to (3.34), there is a flat direction of supersymmetric vacua when N. = km

for integer m, labeled by arbitrary complex A,:

wl,,

041,
(x) =AMk : (3.46)

o*1,,

where @ = 27i/k

is a k’th root of unity and the off-diagonals are zero. This flat direction breaks
SU(N,) — SU(m)* x U(1)k~1. In each vacuum the adjoints are massive, so in the IR we end up
with k copies of SQCD. The magnetic A theory has an analogous flat direction, along which the

low-energy theory matches to that of the k copies of SQCD via Seiberg duality:

SUGKm) 220 SU@m)k x U 1)+
| | (3.47)
SU(k(Ny—m)) —  SUNy—m)*x U(1)k!

This gives yet another check that the Ay duality has N. = aN 't — N¢, with o = k.

3.4 The Wp, , Fixed Points and Flows

The Wp, ., SCFTs are the IR endpoints of the RG flow from the D SCFT, and correspond
to the superpotential (with ¥ normalized to set the coefficient of the first term to 1)

Ix

e Tex*+, (3.48)

Wp,,, = TIXY? +
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Such theories were first studied in [49]. The TrXY?2 term in (3.48) is always relevant and drives
the RG flow O — D, while the second term in (3.48) gives the D — Dy2 RG flow. For k =1,
Wp, = Wy,, since then (3.48) contains the (relevant) X-mass term TrX 2 and integrating out X
yields W, ~ TryY* ~ Wy,. For k = 2, the superpotential (3.48) is cubic, and hence relevant
as long as the gauge group is asymptotically free, i.e. x > 1. For k > 2, the D — Dy .y flow

min

associated with the coupling #; is relevant only if x > XDyra? where xBin

p.t was determined via
k+2

a-maximization in [38],

in
Dy

— L\ /10-34k+ 192 k<5
{ 3v2 (3.49)

< gk+1) k large

For relevant #;, we can normalize X to set #; = 1 at the IR Dy, SCFT. For x < xBi" _ # — 0 in

Dii2
the IR and the theory stays at the D SCFT. We will here assume that x > x}gj{if
The F-terms of the undeformed Dy, superpotential (3.48) are given by
Y2+ Xk =0, (3.50)
{X,Y}=0. (3.51)

For k odd, it follows from (3.50) and (3.51) (as explained after (3.8)) that the chiral ring classically
truncates to the 3k generators (3.9). As in the A case, there is a stability bound: we must require
X < Xstability in order to avoid Wyy,, which would lead to a runaway potential for the generalized
mesons. For x < Xgpility, there is instead a moduli space of supersymmetric vacua with Wg,,, = 0.
As we will review (at least for odd k) xgpbiliy = 3k, which is related to the fact that the chiral ring

has 3k elements.

3.4.1 Previously proposed dualities for Wp, ,

A dual description of the Dy, theories was proposed in [49], and many of the usual, non-
trivial checks were verified—for instance matching of the global symmetries, 't Hooft anomaly
matching, and mapping of the chiral ring operators. As reviewed in Section 3.2.2, the conjectured

duals have gauge group SU (ap,,,Ny — N.) with op, ,, = 3k (3.17), and matter content consisting
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of Ny (anti)fundamentals ¢(§), adjoints X,Y, and 3k gauge singlet mesons M; ; which map to the
composite meson operators of the electric theory as

My=0x"7'Y7Tl, =1,k j=1,2,3. (3.52)
The dual theory has superpotential

. 1 . 1 &3 o
mag _ 2 k+1 ~Gk—l3—
= J:

A detailed calculation, via a-maximization, is needed to determine the x,,,;,;, (3.29) values for the
various non-cubic terms in (3.53) to be relevant rather than irrelevant [38].

The above dual, with op,,, = 3k mesonic operators (3.52), requires the chiral ring
truncation (3.9), which is only evident from the classical F'-terms for k odd. It was conjectured in
[49] that quantum effects make the even k theories similar to odd k, with a quantum truncation of
the chiral ring, in order for the duality to hold for both even and odd k. It is as-yet unknown if
and how such a quantum truncation occurs for the even k case, and thus the status of the duality
remains uncertain for even k. The fact that e.g. the 't Hooft anomaly matching checks work
irrespective of whether k is even or odd can be viewed as evidence that the duality also applies
for Deyen, or perhaps just a coincidence following merely from the fact that these checks are
meaningful for odd k.

In addition to the usual checks of duality, the proposed chiral ring truncation and duality
for Deven were used in [49] to predict a duality for an SU (N,) X SU (N.) quiver gauge theory with
(anti)fundamentals and an adjoint for each node, and (anti)bifundamentals between. This latter
duality was later re-derived, and confirmed, by considering deformations of the more solid, odd k
Dy theories [58]. But it was also noted in [58] that the Dy duality implies some other dualities
that are clearly only applicable for k£ odd, with fields appearing in the superpotentials with powers
like X**1/2 The fractional power for k even suggests an incomplete description, which is
missing some additional degrees of freedom. The status of the Deyen duality thus remained (and it

still remains) inconclusive.
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A powerful, more recent check of dualities is to verify that the superconformal indices of
the electric and magnetic theories match; see e.g. [29, 50]. In [47], the superconformal indices
for the electric and magnetic dual Dy, theories are verified to indeed match in the Veneziano
limit for both even and odd k. The matching beyond the Veneziano limit provides a physical
basis for a conjectural mathematical identity. It was moreover noted in [47] that the conjectural
quantum truncation of the k even chiral ring should be verifiable via the the index, by expanding
it to the appropriate order in the fugacities and checking if the contributions from operators that
are eliminated by the quantum constraints are indeed cancelled by those of other operators. It was
noted, however, that this check is complicated by the fact that there are many possible contributing
operators, so it was not yet completed.

One of the original arguments for the Deyen quantum truncation is based on the fact that
one can RG flow from Dygq — Deven Via appropriate AW deformation, e.g. Dyy — Dyt +Aj.
Another, similar argument [38] uses the connection between the stability bound and the chiral
ring truncation. The duality suggests that the original electric theory has an instability, e.g.
via Wy, # 0 leading to a runaway vacuum instability, when 3kN; — N, < 0, i.e. for x > 3k,
and we expect RG flows to reduce the stability bound in the IR. Flowing, for instance, from
Do — Dyy1 +A; for k odd, the UV Dy, theory has a truncated chiral ring and stability bound,
which suggests that the IR (even) Dy theory should also have a stability bound, and hence chiral
ring truncation. We will analyze such RG flows in detail here, and show that there are subtleties.

In summary, the evidence that the duality holds for Dyqq is compelling, while the evidence
for Deyen 1s mixed, with aspects that are not understood. Our analysis here fails to find evidence
for the quantum truncation of the chiral ring for Deyepn, and instead points out additional hurdles

for the conjectured duality.
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3.4.2 Matrix-related flat directions at the origin
A 2d line of flat directions for Deyen

We consider the moduli space of vacuum solutions of (3.50) and (3.51), and the D-term
constraints (3.7), taking X,Y # 0 with Q = Q = 0. The 1d versions of these equations, where we
replace the matrices with 1d eigenvalue variables X — x, Y — y, are only solved at x =y = 0,
corresponding to the Dy > singularity at the origin of the moduli space of the undeformed Wp, ,
theory. Now consider d > 1 dimensional representations of the solutions of (3.50)-(3.51) and
(3.7). The second F-term shows that [X 2y ]=0,s0X 2 is a Casimir. Likewise, it follows from
(3.50) that [Y27X] =0, so Y? is also a Casimir; the representation must have X% = led, and
Y% =y?1,. For D44, (3.51) would then imply that X is also a Casimir, so there can not be a
non-trivial d > 1 dimensional representation. For Deyep, on the other hand, the F-terms, D-terms,
and Casimir conditions are solved by the 2-dimensional solutions

keven: X =xo03, Y =yoq, y2 -I—thk =0. (3.54)
This gives a moduli space of supersymmetric vacua, passing through the origin. Modding out
by gauge transformations, which take x — —x and y — —y, the moduli space can be labeled by
x? and y? satisfying (3.54), which allows for an additional Z; /2 phase for x%. Since X and Y in
(3.54) are traceless, this flat direction is present for either SU (N;) or U (N,).

More generally, Deyen has vacua with multiple copies of the 2d vacuum solution (3.54),
with the remaining eigenvalues of X and Y at the origin. There can be |N,/2| copies of the 2d
representation, giving a moduli space of supersymmetric vacua labelled by )ci2 and yl-2 satisfying
(3.54), fori=1,...,[N./2]|. The SU(Ny)r x SU(Ny)g global symmetries are unbroken along
this subspace, so it can be distinguished from the mesonic or baryonic directions where the Q or
0 7 have expectation value. The classically unbroken gauge symmetry is enhanced when various

x; are either zero or equal to each other. Consider, for example, N, = 2n, with all n of the x;
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non-zero and equal. In this direction of the moduli space, by a similarity transformation we have

B(X)B!
<X> =x1,R 03 u) xo03®1,

Wy =y,e0 "8 6 01, (3.55)
Consider the Higgsing in stages: first, (X) breaks U (2n) — U(n) x U(n), and then (Y) breaks
U(n) x U(n) — U(n)p, the diagonally embedded subgroup (for simplicity, we write the gauge
groups as U (m), and corresponding expressions apply if we work in terms of SU (m) groups). This
breaking pattern leaves five uneaten U (n)p adjoints from X and Y, four of which get a mass from
the Wp, , superpotential (3.48). The low-energy U (n)p along this moduli space has a massless
adjoint matter field and Wp,,,, = 0; i.e. itisa U(n)p A theory. Giving general expectation values
to the adjoint matter field of the low-energy A theory corresponds to unequal expectation values
of the x; in the n copies of the 2d vacuum (3.54), leading to the more generic breaking pattern
U(2n) — U(n)p — U(1)". Note also that the low-energy U (n)p A theory, along the moduli space
(3.55) has NJIJ’W = 2N flavors, since the fundamentals decompose as 2n — (n,1) + (1,n) — 2-n;
the enhanced flavor symmetry arises as an accidental symmetry. In summary, there is a (classical)
flat direction
Diyo—even — A, with U(Ne) > U(|Ne/2])p and NP =2Ny, (3.56)
50 x'7 = Nl NI = (N./2)/(2Ny) = x/4.

We have not found a mechanism for this classical moduli space to be lifted by a dynamical
superpotential or removed by quantum effects. The low-energy U(|N,/2]); theory with 2Ny
flavors clearly has W,,,, = 0, and unmodified quantum moduli space. The original theory can have
additional effects e.g. from instantons in the broken part of the group (see [59, 60] for discussion
and examples), from the last step of the breaking U (N,) — U(|N./2])?> = U(|N./2])p in (3.56).
Indeed, for x above the stability bound, there can be a W,,,, which leads to runaway expectation
values for the mesonic operators. But holomorphy, the U(1)g symmetry, and the condition that
Wy, must lead to a potential that, by asymptotic freedom, goes to zero far from the origin of the

moduli space, precludes any Wy, that only lifts the 2d flat directions (3.54) without generating a
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runaway Wy, for the mesonic operators. As usual, the low-energy theory along the flat direction
is less asymptotically free than the theory at the origin, and the theory is more weakly coupled
for vacua farther from the origin on the moduli space. The original Deyen theory at the origin
is asymptotically free for Ny < N, while the low-energy U(|N./2]); theory far along the flat
direction is IR-free if Ny > (N./2), i.e. if x < 2. In that case, the IR spectrum consists of the
IR-free U(|N¢/2]); gauge fields and matter.

We now consider if this Deye, flat direction is compatible with the conjectural, dual
U(3kNy — N¢)p,.., theory. That theory has an analogous moduli space of vacua where the
dual adjoints X,Y satisfy F-term equations analogous to (3.50)-(3.51), with copies of the 2d
representation (3.54). Chiral ring elements like TrX" should indeed map to similar elements
in the dual, e.g. TrX" < TrX". The moduli space of eigenvalues of the 2d representation is
1(3kNy — N,)-dimensional, along which the gauge group is broken to U (| 1 (3kN; —N,)]) 1 The
dimensions of the two moduli spaces differ, which is a contradiction with the conjectural dual
unless some quantum effect eliminates the difference (as indeed happens with the mesonic
directions of the moduli space, where the classical constraints on the rank of the meson matrices
arise from quantum effects in the dual). In addition to the moduli spaces differing, the low-energy
theories on the flat directions of the two conjectured duals, i.e. U(|N./2])z and U(|3kNy/2 —
N¢/2]), are not in any clear way dual to each other; there is no known dual for the W; SCFTs.

As in the electric theory, we do not yet see a mechanism for quantum effects to modify
the classical dimensions of these moduli spaces. Note that the low-energy U ([3kNy/2 —N./2])z
theory is IR-free if x > 3k — 2, which is non-overlapping with the range x < 2 where the corre-
sponding electric theory is IR-free; this at least avoids an immediate, sharp contradiction with
the duality, since two theories cannot have a different IR-free spectrum in the same region of the
moduli space. As a concrete example, consider the case k = 2, i.e. Wp,, and take N, even. The

electric Wp, superpotential (3.48) is relevant as long as the gauge group is asymptotically free, for

x > 1. The stability bound suggested by the conjectural U (6N; — N,) dual is x < 6. The electric
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theory has the flat direction to the low-energy U (N, /2); theory, which is IR-free if x < 2. The
dual theory has a flat direction to a low-energy U (3Ny — N./2) ; theory with 2Ny flavors, which
is IR-free if x > 4.

This Deyen flat direction is related to the fact that the chiral ring of the Deye, theory does
not classically truncate; one can think of it as coming from the massless degrees of freedom
present in the non-truncated ring. Its existence provides us with a new way to rephrase the puzzle
of how the truncation occurs: does some quantum effect lift this flat direction? If not, the flat

direction seems inconsistent with duality.

A puzzle for the Wp, ., flat directions (3.54): apparent a-theorem violations

The supersymmetric flat direction discussed in the previous subsection has another puzzle,
independent of the conjectured duality: it leads to naive violations of the a-theorem (3.22) for
sufficiently large x. The exact agcrr is evaluated by using the relation (3.23) between a and
the ’t Hooft anomalies for the superconformal U(1)g symmetry, along with a-maximization
(when needed) and accounting for all accidental symmetries. The values of agcrr for the Wp,
theories were analyzed in [38], following the Wy, analysis in [25] with regard to the crucial
role of including the effect of accidental symmetries in a-maximization. One type of accidental
symmetry, when gauge invariant chiral operators hit the unitarity bound and decouple, is readily
apparent in the electric theory. Dualities reveal other types of accidental symmetries, e.g. those
where the analog of the #; coupling in (3.48) for the magnetic dual is irrelevant, or where the
magnetic gauge coupling is irrelevant (the free-magnetic phase); such accidental symmetries
are—as far as we know—unseen without knowing the dual.

We consider Aa for the RG flow associated with the flat direction in (3.56). We compute
ayy (x) corresponding to the Dy, theory with gauge group SU(N,) and Ny flavors as in [38],
and ajg(x) corresponding to an A theory with gauge group SU (N¢/2) and 2Ny flavors as in [25],

including as there the effects of all mesons hitting the unitarity bound and becoming IR-free. We
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plot the results for the cases k = 2 and k = 4, working in the Veneziano limit of large N and Ny,

with x fixed. (U(N,) vs SU(N,) is a subleading difference in this limit.)
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(a) Wp, = A (k=2). (b) Wp, — A (k = 4).

Figure 3.3: (ayy —air)/ N]% plotted for x in the conformal window. The Wp, theory is IR-free
for x < 1. The Wp, theory requires x > 3.14 for the TrX 3 term in Wp, to be relevant, while the
corresponding term in the Brodie dual is relevant if x < 8.93. The A theory is asymptotically
free in both plotted domains.

As we can see in Figures 3.3a and 3.3b, both the k = 2 and the k = 4 flat direction RG
flows seem to violate the a-theorem for sufficiently large x. For the Wp, case, the conformal
window where both the electric and magnetic theories are asymptotically free is 1 < x < 5, and
the cubic #; term in (3.48), or its magnetic analog, is relevant in this entire x range. As seen in Fig.
3.3a, the a-theorem is seemingly violated for x > 4, within the conformal window. For Wp,, the
situation is plotted in Fig. 3.3b: the flat direction seemingly violates the a-theorem for x > 8.31.
This is within the expected Wp, conformal window (i.e. below 3k — £, &~ 8.93 beyond which
duality suggests that the theory is instead in the 5mag phase, and also below x = 11, where duality
suggests the IR-free magnetic phase).

Of course, we do not believe that there will be violations of the a-theorem, so the puzzle
of these apparent violations must somehow be resolved. We also note that the apparent violations
first occur for x still below the values where mesons involving ¥3 would first hit the unitarity

bound (this occurs first at x = 5 for k = 2, and at x = 9.33 for k = 4). Thus, the calculation of ayy
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is not affected by the issue of whether or not such mesons should be included—we’ve removed
them in the plots above, which would be correct if Brodie duality is correct for Deyen and the
quantum truncation indeed occurs.

We see two possible resolutions to the puzzle of the apparent a-theorem violations. 1)
These classical flat directions are somehow lifted by quantum effects, in a way that we do not yet
understand. 2) Some additional degrees of freedom make the calculation of @ wrong, e.g. giving
a larger value for ayy for the Wp_ . theory. We do not yet know the resolution.

Option 1) could also resolve the conflict with Brodie-duality, discussed in the previous
subsection. As we discussed there, asymptotic freedom, along with holomorphy and the R-
symmetry, suggests that Wy, = 0, but perhaps another mechanism could remove the flat
directions—at least for x large enough to be in the problematic range. The existence of the
classical flat direction fits with the classically untruncated chiral ring, and it sharpens the issue of

if, and how, the chiral ring for the Deyep theory is quantumly truncated.

Additional evidence that the Wp,_ . — A flat directions aren’t lifted

We here present additional arguments against any quantum barrier to the Wp,,, — W flat
directions. The idea is to explore more of the full moduli space of supersymmetric vacua, going
along Q-flat directions, until the low-energy theory is IR-free.

Consider an even Dy, theory at the origin, with Ny < N, such that the theory is asymptot-
ically free. Going along a Q-flat direction by giving a vev to a flavor, (Qf) = (v,0,...,0) = (Q/),
gives a low-energy theory that is less asymptotically free. The gauge group is Higgsed SU (N,) —
SU (N, — 1), under which the adjoints decompose X — X+ F.+F.+s, for X an adjoint and
sy a singlet (and likewise for Y). Then, the number of light flavors in the low-energy theory is
Ny —1+2 = N¢+1, where the —1 is for the eaten flavor and the +2 is from additional light
flavors, Fy . Expanding the superpotential under this decomposition gives, for instance for Wp,,

an IR superpotential of the form
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1. .o . " . " . .

Wp, = Tr <§X3 + XV + XEF,+ XFyFy + YE F + YEFy + 5. FoFy + s, FyFy (3.57)
+ snyFy + syFny + si + sxsi) .

Along the above flat direction, the 1-loop beta function coefficient changes by by = N. — Ny —

(Ne —1) = (Ny+1) = by — 2 s0, as usual, the low-energy theory is less asymptotically free. We

iterate this procedure, giving expectation values to n flavors of Q and Q, and thus reducing

Ne — Ne —n, with Ny — Ny +n and by — by — 2n, until the low-energy theory is no longer

asymptotically free, i.e. n > (N. —Ny)/2. Then X decomposes as

s! F!

X — ' ' (3.58)
sy | FY
Flo. B X

with X adjoints of an unbroken SU (N, — n), and similarly for Y.

At this point, we can take X and ¥ in the low-energy SU (N, — n) theory to have an
expectation value with m < (N. — n) /2 copies of the 2d vev (3.54), resulting in the A flat direction
where SU (N, —n) — SU (m)p x SU (N, —n —2m). By choice of n, the intermediate SU (N, —n)
theory is already IR-free, and so the X and ¥ expectation values make the low-energy theory
even more weakly coupled; thus, the terms in W}, (e.g. in (3.58)) involving the singlets and
fundamentals are irrelevant and can be ignored. The number of flavors of the low-energy SU (m)p
theory is 2(Ny+n —r), where Ny + n flavors came from the # iterations of Q-Higgsing, r < n is
the number of the Fy , flavors that receive a mass from (X), (¥) in the superpotential, and the 2
comes from Higgsing SU (2m) — SU (m) x SU (m) — SU (m)p. By taking m sufficiently small
and n sufficiently large, the low-energy SU (m)p W theory will have a 1-loop beta function of non-
asymptotically free sign, so the theory will be IR-free and thus weakly coupled. Because every
interaction is IR-free in this region of the moduli space, quantum effects from the intermediate

or low-energy theory cannot lift or remove the Wp,,, — W5 flat direction. As remarked earlier,
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Figure 3.4: Using the Q-flat directions to bypass the strong coupling regime.

any possible effects from the Higgsed, original gauge theory at the origin (e.g. instantons in the
broken part of the group) must moreover slope to zero for vacua farther from the origin on the
classical moduli space (3.54).

In sum, as illustrated in Fig. 3.4, we use the Q-flat directions to bypass any hypothetical
quantum barrier to the flat directions (3.54) by going to a region of moduli space where the

theory is IR-free. This suggests that the Wp,,,, — W; moduli space is indeed present in the full,

quantum theory. As discussed in the previous subsection, there would then have to be some
missing contribution to a for the Deyep theory to avoid the apparent a-theorem violation along

this moduli space for sufficiently large x.

3.4.3 SU(N,)-specific (as opposed to U (N,)) flat directions

For SU(N,), one includes Lagrange multipliers A, A, to impose TrX = TrY = 0:
t
Wp,+2 = TrXY2 + H—leer“ — A, TrX — A, TrY. (3.59)
For Dyqq4, and N, = 2m + kn for m,n integers, there is a flat direction labeled by A, [49]
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a)kfl ln
(3.60)

0,
where ® = e2™/*. The gauge group is Higgsed as SU (2m + kn) — SU (m)? x SU (n)* x U (1)¥+1.
The SU (n)k theories are, in the IR, k decoupled copies of SQCD, each with Ny flavors. The
low-energy SU (m)? sector includes SQCD, with N '+ massless flavors, along with bifundamentals
F and F coming from the adjoint X of the original theory at the origin, with a low-energy
superpotential Wy,,, ~ Tr(FF )(k“)/ 2. All other components from X and Y are either eaten in
the Higgsing, or get a mass from the superpotential (3.59) along the flat direction (3.60). This
low-energy theory is depicted in Fig. 3.5, where as usual adjoints are arrows that start and end on
the same node of the quiver diagram, and dotted adjoints depict those that get a mass term from
the superpotential. Brodie duality along this flat direction is then compatible with a duality in
[53] (see Section 8 there) for the SU (m)? factor, and with Seiberg duality for the SU (n) factors:

SU(2m + kn) LD SU(m) x SU(m) x SU(n)k x U(1)k+!

l i (3.61)
SU3kNy — (2m+kn)) —  SU(kN;—m)? x SU(Ny —n)k x U (1)1
where horizontal arrows are the flat direction (3.60) and vertical arrows are the duality.

The low-energy SU(m)? theory has a further flat direction, where F has non-zero ex-
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pectation value, breaking to SU(m)p [53]. The low-energy SU(m)p has an adjoint A, with
superpotential W TrA'S corresponding to an A;_ 1)/, theory with 2N flavors. The duality of

the low-energy Wy (e-1)/2 theory along this flat direction then reduces to that of [44]. We summarize

k—1

these flat directions in Figure 3.5. In sum, for D,qq, Brodie duality along the flat direction (3.60)

is nicely consistent with other dualities.

~ ktl
Wiow «~ Tr(FF) 2 Wiow =Way, 1),

(a) SU(m) x SU (m) sector.

(1) (k)

(b) SU (n) sector.

Figure 3.5: Flat directions for Dygq, N, = 2m + kn, integrating out massive fields (denoted by
dotted lines) and fields eaten by the Higgs mechanism (not shown).

We now consider the analogous flat directions (3.60) for the puzzling Deyen cases, which
again exist for N, = 2m+ kn and are parameterized by arbitrary A,. As in the D,qq case, the gauge
group is Higgsed SU (2m +kn) — SU (m)? x SU (n)* x U(1)**!, where the SU (m)? and SU (n)*
decouple from each other at low energies. But the Deye, case differs from Dyqq in two respects.
First, the SU (m)? sector has massless bifundamentals F and F, with W,,,(FF) = 0. Similarly,
the SU (n)k sector reduces at low-energy to k/2 decoupled copies of SU(n)> which each have,

in addition to Ny flavors, massless bifundamentals with Wiow (F F ) = 0. For example, for k = 2,
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N, =2(m+n), and expanding (3.59) along the flat direction (3.60) gives
t _
Wt (my2 O gTrAiJ + TrAIAL ) + 200 P TrA 1Ay — MTrA L + 6 TiA B

+(1—=2,A, = —A,) (3.62)

t )‘ 1/k
Wy (2 2 §2TrAf;73 +TrAx 347+ (t—’“> (2TrA7 3+ TrA23) — A TrA, 3
2

1/k
t
+ EZTrA;4 +TrA 44T 4 — (t—x) (2 TrA7 4+ TrAS ;) — A TrAy 4
, ; ,

+Tr(Ax3 +Ava) B E. (3.63)
Subscripts x, y refer to which SU (2m + 2n) adjoint X, Y the field comes from, the A » are SU (m)
adjoints, and the A3 4 are SU (n) adjoints. Both of these IR superpotentials reduce to Wy, (FF) =0
upon integrating out the massive adjoints. The SU (m) x SU (m) theories with bifundamentals
and Wy,,,,(FF) = 0 do not have a known dual. Indeed, they have a flat direction where F gets an
expectation value and Higgses SU (m) x SU (m) — SU (m)p, where the low-energy SU (m)p is an
A theory, with massless adjoint 2~ (coming from F) and 2Ny fundamentals, with W,,,(:Z") = 0.
More generally, for even k > 2, since @ = e2mi/k in (3.60), there will be k/2 massless
bifundamental pairs. The low-energy SU (n)* theory then reduces to k/2 decoupled SU (n)?
quiver gauge theories, where the i’th node couples to the (k/2 +i)’th node via a pair of massless
bifundamental fields. Each SU(n)? theory has a flat direction to an SU(n)p A theory. The
low-energy theories along these flat direction are as depicted in Figure 3.6.
The conclusion is that, for Deyen, we end up with (k/2+1) A theories corresponding to
nodes with 2Ny flavors®. The A theories along the flat direction are puzzling, as in Section 3.4.2:
we have not found a quantum mechanism for lifting these flat directions, and have not found how

to make these flat directions compatible with Brodie’s proposed duality.

9For N. = 2m, there is a similar generalization of these flat directions parameterized by both A, and Ay, with

(X) o< (Y) o< ( 1(')” fi ), which again leads to a low-energy SU (m)p A theory with 2N '+ flavors.
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Wiow =0 Wiow =0
(a) SU (m) x SU (m) sector, Higgses to Wy

Wiow =0 Wiow =0
(b) SU (n)* sector, Higgses to k/2 decoupled W; theories.

Figure 3.6: Flat directions for Deyen, with N, = 2m + kn. Again we integrate out massive fields
(denoted by dotted lines), and those eaten by the Higgs mechanism (not shown).

3.4.4 D;,> RG flows from relevant AW deformations

In this subsection, we consider RG flows from the Wp, , SCFTs upon deforming by
relevant AW. As in the previous subsections, we find that cases involving only D,qq are nicely
compatible with the duality of [49], while those involving Deye, €xhibit subtleties. For simplicity,
we mostly consider U (N, ), with brief discussion of the more complicated SU(N,) version in
Section 3.4.5.

We begin with the class of AW deformation RG flows D> — Dy 5, which is relevant

for k' < k (taking x > B > B0 as in (3.49)):

k

ti ;

W=Trxy*+ Y ﬁTrX’“, (3.64)
i=k'

67



which yields the F-terms

k
Y2+ Y ux'=0 (3.65)
i=k'
{x,y}=0. (3.66)

The solution X =Y = 0 corresponds to the Dy, theory at the origin. There are also (k — k')
1d solutions with non-zero X-eigenvalue, corresponding to A;’s. The representation theory of
(3.65)-(3.66) was discussed in [51, 38]. Taking X and Y to be matrices, it follows from (3.65)-
(3.66) that X2 and Y? are Casimirs (proportional to the unit matrix), so we may rewrite the first
F-term as (y* + O\x/2) ()1 + P(k=1)/2] (x?)X = 0, where the subscripts on P and Q denote the
degrees of the polynomials in x>. There are 2d representations of the second F-term, taking
X = x0p, Y = yoy; then a non-zero solution for X requires Pj(;_1) 2 (x*) = 0. Hence, there are
| (k—1)/2] independent such solutions for x?, and then y? is uniquely fixed!?. If X and Y have n;
copies of such a vacuum, where j =1,...,|(k—1)/2] labels the value of x%, then the non-zero
X and Y values break SU (2n;) — SU (n) x SU (nj) — SU (n;)p, where the low-energy SU (n;)p
theory has 2Ny flavors. Expanding W (X,Y) in such vacua, the X and Y adjoints have mass terms
and the low-energy theory is SQCD; we label such vacua as A%d. In sum, the AW deformation

(3.64) leads to vacua

p— /_
Dii» — Dyio+ (k—K)A; + Qk—lJ — F‘ 1DA%¢ (3.67)

2 2
The N, X N, matrices X and Y are decomposed into blocks, distributed among these vacua, with
ngo eigenvalues at the origin, n; at the i’th A; node, and n?d in the j’th A%d node, with N, =

no+Yni+2); n?d. The gauge group is Higgsed in the electric and dual magnetic descriptions

10y —» —x or y — —y is a gauge rotation so does not give additional vacua.
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(for x in the conformal window) as:

U(N) Uo) [TUC) 1 U(nj)
= j=
| | (3.68)
k—k' [55]- VTﬂ
UQBkNy—N:) —  UGBKNy—no) [JUNy—m) U(2Ns —n3?)
i=1 j=1

The down arrows are Brodie duality for the Dy, U(N,) theory in the UV, and Brodie or Seiberg
duality for each approximately decoupled low-energy gauge group factor in the IR. Comparing
the UV (LHS) and the IR (RHS) of the dual theories in the lower row of (3.68), the IR theory only
properly matches the dual Higgsing pattern of the UV theory if N, = g + ¥; ; +2Y j ﬁ%d. This
equality holds if and only if k and k" are both odd; this is a non-trivial check of Brodie duality for
Dogd — Dodq . But if either k or k" is even, there is a mismatch of 2N between N. = 3kN r— N
on the LHS and its IR decomposition on the RHS of (3.68), and a mismatch of 4N if both k and
k' are even.

We now consider the RG flow Dy » — Ay, by adding AW = = TrY 2 to the superpotential
in (3.64). There is then a low-energy Ay theory at the origin, X =Y = 0, along with (k—k") A;’s
corresponding to the 1d solutions of the vacuum equations with eigenvalues y = 0, Zf;é‘/ tippxt =
0, along with two more A; theories at y = £/ —Zi.‘:k, tixi, x = =", As always, these 1d
solutions of the F-term equations match the rank of the ADE group: k+ 2 in the UV matches
the IR sum k' + (k — k') + 2. In addition, there are 2d representations of the D- and F-terms,
with Casimirs Y2 = y*1 and Zi'(:k’ ;X' = f(x)1. The 2d vacua may thus be parameterized as
X = —51+x101, Y = yo3, and the F-terms have [ (k — 1)/2] solutions for x1, each of which
determines f(x;) and specifies the 2d vacuum. In each such vacuum, the low-energy theory is
SQCD (both X and Y have mass terms) with the X and Y expectation values breaking SU (Znﬁd ) —

SU(n;) x SU(n;) — SU(n;)p, with 2Ny flavors in the low-energy theory. In sum, the full
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(classical) structure of the vacua from such deformations is
k—1
Dy — Ay + (k—K +2)A; + {TJ A, (3.69)

k1/2

Taking N, = ng + Zk K424 Z d , the deformation results in the following Higgsing in

the electric and magnetic descriptions:

o~ k—K'+2 155 y
U(N,) AL Uno)x [] Um)x [T U@
i=1 j=1
l | . (3.70)
k—K'+2 L4

U(3kNy—N,) — U(K'Ny—no) H U(Ny—n;) ﬁ U(2Ns—n}?)

N
I
—_
~.
I
—_

Again, the down arrows are duality in the UV theory on the LHS, and in each of the low-energy
decoupled IR theories on the RHS. Again, for odd k the UV and the IR groups properly fit
together, while for even k there is a mismatch in the dual gauge group of 2Ny.

In summary, whenever the RG flows only involve D44, there is a successful, non-trivial
check that the deformation maps properly between the UV and IR theories. On the other hand,
whenever we flow to/from a Deye, theory, there is a mismatch in the dual gauge groups pre and
post deformation. An especially peculiar mismatch arises if we flow through an intermediate
Dy/—even theory, first deforming by Y5~ #;X"*! as in (3.67), and then deforming by 3Tr¥? as in
(3.69), which gives

Diyo — Ap+(k—K +2)A; + QEJ — [k _W + V _IJ)A%”Z. (3.71)

2 2 2

For k' even, Lk/’lj (k/ 17 = —1, and the number of 2d vacua in (3.71) differs from that in
(3.69) for flowing directly with both Zk o iX i+1 and 5TrY 2 deformations together. Perhaps the
conjectured quantum truncation of the chiral ring for Deyen eliminates these puzzling mismatches
in the higher dimensional representations for these flows, but we have not yet succeeded in

showing how. We leave this as a challenge for future understanding.
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3.4.5 The SU(N,) version of the RG flows

The above analysis was for U(N,). To adapt it for SU(N,), we write Xy (y,) = Xsy(w,) +
Xoly,, where TrXgy (y,) = 0, and likewise for ¥, and can eliminate the unwanted Xo and ¥y fields
via Lagrange multipliers, as in Section 3.3.3. The complication is that if we want to keep the
enhanced Dy, or Ay singularities as in (3.67) or (3.69), we need to add lower order AW terms,
beyond those already present for the U(N,) version of the RG flows. These extra terms are
needed in order to re-tune, to zero, the corresponding AW relevant deformations which would
be generated by adding the Lagrange multiplier constraint terms, and which would generically
further deform the RG flow to merely multiple A; vacua. For flows starting at Dy, as in (3.48),
the needed deformations are included in

k-1 :

L3,
AW C Z Trx’+1 + Z Tlrxl“)ur 5 “LTry? — A, TeX — A/ TrY. (3.72)

For generic couplings in (3.72), the RG flow leads to vacua as
k—1
Diir — (k+2)A + {TJ A3 (3.73)

which is the same for SU (N, ) and U (N,). One can now tune the couplings in (3.72) to enhance
to an Ay or Dy, singularity, and then the flow involves Higgsing as in e.g. (3.68), but with all
U (N) factors replaced with SU(N). The tuning shifts of the couplings in (3.72) are complicated,
and depend on how many eigenvalues ng are in the enhanced Dy, or Ay vacua. We have verified
that, despite these technical complications, the vacuum structure is qualitatively similar to that of
the U(N,) case, replacing U (n) — SU (n) everywhere in Section 3.4.4.

Interestingly, there can be several options in performing the wanted shift, and these can
result in different Casimirs along the flow. We illustrate this for the example Ds — D3, and
note that there are similar versions for other D flows. The first way to enhance to D3 is via a
tuned addition of the {my, A} deformations to (3.64), where the needed shift of these couplings

depends on the {#3,#,,7;} couplings in (3.64), as well as the multiplicities of the eigenvalues in
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the vacua. The Casimirs along the flow are then Y2 and X3 +6X% +1,X. Much as in (3.67),
we indeed find one A%d vacuum. Another option for Ds — D3 + ... is to add only the 5 TrX 2y
deformation in (3.72), with the other AW couplings set to zero. Then X 2 and Y? are Casimirs,
but X and Y no longer anticommute as they did in the U (N,) case, and so a 2d solution is now
of the form X = x;01 —ix303,Y = y101 +iy303. We again find one 2d representation of the
F- and D-terms, which reduces to the U(N,) 2d solution as u; — 0. Different sets of lower
order deformations in the chiral ring lead to different Casimirs along the flow, but nevertheless

non-trivially give the same counting for the higher-dimensional vacua.

3.4.6 The Dygq — Deven RG flow and the hypothetical D, theory

even

As discussed in the previous subsections, the Deyen theories have some puzzles, whereas
the Dyq4q theories appear to be under control. This suggests trying to understand the Deyep, theories
via RG flows from the understood UV case: Dygq — Deven- Indeed, the idea of embedding Deyen
in Dygq Was the basis for the original conjecture [49] that quantum effects somehow make the
troubling Deyen theories similar to the nice Dyqq theories. In this subsection, we examine the
Dodq — Deven RG flow more carefully, and note that this flow has its own subtleties.

As seen in (3.67), the AW RG flow from Dy » — Dy, comes with jumping number of
A%d representations, from the floor and ceiling functions, which is only straightforward for the
Doda — Dodar cases. We here further discuss the relation and difference between Dyqq — Dodd
VS Dodgd — Deven. Consider starting from the Dy, SCFT, with k odd, and deforming by AW.
To simplify the discussion, we consider U (N,) (as opposed to SU(N,)) and start with the AW
deformation considered in (3.67) with k' = k — 2: Dy 2 — Dy +2A; +A?3. The low-energy Dy
theory is at X =Y =0, the 24 theories are at X having eigenvalues x4+ with ¥ = 0, and the A%d

theory has (X,Y) values at (xp4,y24) given by:
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(0,0)
(x7y) = (xi,O) thzi +ti_1x+ +1_p =0, (3.74)

(¥2a,y2a)  te(x24)* +1k2 =0, (y24)* +1x—1(x20) " = 0.

If we start at the Dy, theory (as opposed to 5), we can set f, = 1, and #,_1 and #;,_, are the AW
deformation parameters.

We now try to tune the superpotential couplings to collide the Dy, singularity with an A4
singularity, to get an enhanced Dy | singularity. This can be accomplished by tuning #;_, — 0 in
(3.74), which brings one of the A singularities (x4 or x_) to the origin. Note that #;_, — 0 also
brings x4 and y,, to the origin. We denote this enhancement as Dy + A —i—A%d — D;< 41> Where
the prime distinguishes the theory from the even Dy theory that one would obtain by flowing
directly from the D theory. We can formally obtain that latter theory, Dy, directly from the
D fixed point, by taking #; — 0 along with #,_» — 0 in (3.74); this brings one of the x to the
origin and the other to infinity, and then the last equation in (3.74) gives the line of A%d solutions
(3.54) where Deyen — X, since (3.74) is satisfied for all x,; when #;, = 0. The two procedures are

indicated in the Figure 3.7.

A
0Aq O A

ODgio2 — ODy, ‘A%d =
0A;

(a) The 2d vacuum and an A both collapse to the origin.

0 Djiy

T ¥
gAl i OAl
ODgy2 —> (ODy A3d =
A + ! 0Dy
oA

(b) One A goes to the origin while the other goes off to infinity, and the 2d vacuum becomes a degenerate
line of 2d representations as in (3.54).

Figure 3.7: We enhance the k odd Dy, singularity to a Dy singularity in one of two ways.

The two procedures suggest that perhaps there are actually two types of Deyen theories.

One is the DL, theory of Figure 3.7a, which can actually be obtained from the RG flow
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Dodd — Dlyepn» and which therefore inherits the simpler properties of Dogq. The other is the
mysterious Deyen theory of Figure 3.7b, which actually is not obtained from RG flow from Dqq,
but instead only from D — Deyen, since it requires #; = 0 and the D,qq theory had t; = 1. The
latter, Deyen theory has the puzzles, discussed in the previous subsections, associated with the
Deven — A moduli space of vacua and the non-truncated chiral ring.

We have thus considered the possibility that Brodie duality actually only applies to the
simpler D, theory, which inherits the truncated chiral ring from D44, and does not apply to the
Deven theory. However, this scenario also has challenges. If we take seriously the idea that a D}, 4
(for k odd) theory is made by bringing together Dy + A +A%d , this seems to suggest that the
chiral ring of the D; 1 theory contains (3k — I)NJ% mesonic operators, where the —NJ% are those in
the Ay singularity, which decouples from D; 41 in the IR. On the other hand, assuming that Brodie
duality applies to D, 1> we would have expected 3(k — 1)N]% mesonic operators. The D), 1 theory
has an extra ZNJ% mesonic operators. Perhaps then, in collapsing the A; and A%d theories to the Dy,
theory at the origin, a slightly modified version of Brodie duality applies, with oy, = 3k+2.
We have also tried to cure the apparent a-theorem violations by adding the ZN% mesons to the UV
Deyen theory. But the results did not look promising: the extra operators seem to become free at

too large x to cure the apparent wrong sign of Aa. It is still possible that some modified version of

Brodie duality resolves these puzzles, and we invite the interested reader to try.

3.5 The Wg, Fixed Point and Flows

The Wg, SCFT arises as the IR limit of a relevant superpotential deformation to the E

SCFT, with corresponding superpotential
1
Wi, = §TrY3 +5 TrY X3, (3.75)
The TrYX? term is a relevant deformation to the E fixed point for x > xgn ~ 4.12, where xg;in

was determined via a-maximization in [38]; here we will assume that x > x}?;“.
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The F-terms of the undeformed E; superpotential in (3.75) are given by
Y2 +s51X° =0, (3.76)
XY +XYX +YX*=0, (3.77)
from which it follows that the chiral ring does not truncate classically. We may write the generators

of the classical chiral ring in a basis

O, =X",

O = YX",

O3 = XYX",

O = YXYX"; n=0,1,.. (3.78)

3.5.1 Previously proposed dualities for Wg,

In [46], it was pointed out that for the W, theories the condition (3.26) is violated for
x 2 27, so some new dynamics is needed there, or at smaller x. The dual theory proposed in [46]
resolves this apparent a-theorem violation, since it implies different IR phases for x = 26.11 [46].
The duality of [46] requires that the chiral ring truncates, similar to the conjecture in [49] for
Deven, as

YX®+bXYX> =0 in the chiral ring (3.79)

for some constant b. It is not yet known if the proposed quantum constraint (3.79) is correct, or
how it arises. Imposing (3.79), the chiral ring of the electric theory is truncated to 30 independent
generators, listed for reference in Table 3.2. The resulting IR dual description of the E7 fixed
point has gauge group SU (g, Ny — N.) with oz, = 30, and the usual duality map reviewed in

Section 3.2.2. The dual theory has superpotential'! [46]

1 . o 30 o
Wpnes §TrY3 +5 TP X + ) M;G0s-;(X.¥)q. (3.80)

J=1

T As in [46], we scale the factors of 1 to unity.
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In addition to the usual tests of duality—’t Hooft anomaly matching, that the charge assignment
for the magnetic fields under the global symmetry is consistent with the duality map—it was
verified in [47] that the superconformal index of the dual theories agrees, at least in the Veneziano
limit (away from that limit, the duality and agreement of their superconformal indices suggests
new mathematical identities).

As we discuss in the following subsections, we find similar puzzles for the E7 theories as
with the Deyen theories. In the following, we mirror our analysis of the Wp, , theories for Wg,; as
such, we will be brief when analysis or discussion is similar to what has already been discussed
in Section 3.4. Much as we found for Deyen, We fail to find evidence for this truncation, and point

out additional hurdles for the conjectured duality.

Table 3.2: We list the 30 independent generators ®;, j=1,...,30 of the proposed E7 chiral ring,
where N is the polynomial degree.

j N 0 i N 0
1 1 1 16 11 Yx*
2 2 X 17 11 Xvx3
3 3 Y 18 12 Xx°
4 4 Xx? 19 12 YXYX?
5 5 YX 20 13 YX°
6 5 XY 21 13 Xyx*
7 6 X3 2 14 X’
8 7 YX? 23 14 YXvx3
9 7 XYX |24 15 vXx°©
0 8 x* 25 16 Xx?
11 8 YXY |26 16 YXrx*
12 9 vx3 27 17 YX’
13 9 Xvrx? |28 18 X°
14 10 X° 29 19 yx8
15 10 YXYX |30 21 YXx°
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3.5.2 Matrix-related flat directions at the origin

We consider the moduli space of vacuum solutions of (3.76)-(3.77) with D-term con-
straints (3.7), setting Q = O = 0. The only 1d solution corresponds to the E; singularity at
the origin. (3.76) shows that Y2 and X> are Casimirs, yielding Casimir conditions X3 = x*1,
and Y? = y?1, for a d-dimensional representation. There is a line of d = 2 solutions to these

conditions analogous to (3.54),

X =x , Y =yo

¥ 45160 = 0. (3.81)
for @ = ¢*™/3. As X and Y are not traceless, this flat direction is present for only U (N:)'2.

In general, E7 has vacua with multiple copies of the solution (3.81), with the remaining
eigenvalues of X and Y at the origin, giving a moduli space of supersymmetric vacua labeled by
y? and x} satisfying (3.81), fori = 1,...,|N./2|. These vacua Higgs the gauge group in a way
that turns out to be analogous to the Deyep case discussed in 3.4.2. In particular, for N. = 2n with n
copies of the 2d vacuum (3.54) and unequal expectation values of the yiz,x?, the resulting breaking
pattern is U(2n) — U(n)p — U(1)". In summary, much as in (3.56), there is a (classical) flat
direction:

E;—A,  with U(N.) = U(INe/2])p and N¥ =2Ny, (3.82)
so x/oW = Nlow /N Jlf’w = (Nc/2)/(2Ns) = x/4. If we assume that Kutasov-Lin’s duality [46] holds,
then we are led to a puzzle similar to that of the Deye, theories: the moduli spaces of the electric
theory and its dual differ, and the low-energy theories on the flat directions of the two conjectured
duals, SU(N,/2); and SU(15Ny — N, /2), are not clearly related. This flat direction is related to

the classical nontruncation of the E7 chiral ring, and again provides us with a way to sharpen the

12For special cases of (3.81) there will be SU(N,) flat directions; for example, when there are equal multiplicities
of X, wX, and w*X along the line given in (3.81). In that case, one could check the proposed SU(N,) duality along
the corresponding flat directions.
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puzzle of how the truncation occurs by asking what lifts the flat direction.

Independent of the conjectured duality [46], the deformation (3.82) seemingly violates
the a-theorem (3.22) for sufficiently large x. As in Section 3.4.2, we compute ayy (x) for the Wg,
theory, with gauge group U(N,) and Ny flavors, as in [38]. Likewise, ajg(x) for the A theory,
with gauge group U (N,/2) and 2N flavors, is computed as in [25]. We include the effects of all
mesons hitting the unitarity bound assuming that the chiral ring is quantumly truncated, such
that all the operators listed in Table 3.2 are taken into account, and work in the Veneziano limit.
We plot until the bottom of the conformal window—which occurs before the electric E7 theory’s

stability bound, x < 30 as predicted by duality—such that we expect the a-theorem to hold in the

whole range plotted.
150+
= 100
& 50f
5
& 0
-50+ \
l5l - l10l - l15l - l20l - l25l
x=Ng/N¢

Figure 3.8: (ayy — air) /N% for Wg, in the UV and A in the IR. The E; deformation term in the
UV theory is relevant for x 2> 4.12, while the corresponding term in Kutasov-Lin dual is relevant
if x < 26.11. The A theory is UV-free in this whole range.

As seen Figure 3.8, this flat direction seems to violate the a-theorem in the conformal
window for x 2 23.39. Unlike the Deyen case, this violation occurs for x larger than the value
where the mesons removed by the proposed quantum constraint 3.79 would hit the unitarity bound
and become free; the first such meson that would be nonzero involves the operator Y X 6 which
would become free at x = 21. To understand the effect that these would-be mesons would have on
the computation of a for this flat direction, we have performed the same check as in Figure 3.8,

but without imposing the proposed constraint. It turns out that this is not enough; the effect of
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including these operators in the ring is only to push the range of the apparent a-theorem violation
to x 2> 23.44.

The apparent violation of the a-theorem for these flat directions must of course be
somehow resolved. As in the discussion in Section 3.4.2, either these flat directions are lifted
in a way we don’t understand, or some additional degrees of freedom make the calculation of
a incorrect—perhaps in the UV W, theory. The arguments made in Section 3.4.2 would also
apply here, and suggest that the former is not the solution. Since the calculation of a in Figure 3.8

already took into account the proposed Wg, duality, we are left with a puzzle.

3.5.3 SU(N,)-specific (as opposed to U (N,)) flat directions
We now study SU (N,) flat directions of the Wg, theory, imposing the tracelessness of the
adjoints with Lagrange multipliers A, A,:
1
W, = §TrY3 +5 TtV X2 — A, TrX — A, TrY. (3.83)

When N, = 2m+ 3n for m,n integers, there is a flat direction labeled by A,

0,
1 O

X) = (f”—l) ol, ,

0?1,

31,
(3.84)
-1,,
1,
V) = (&)? 0, ,
0,
0,

2mi/3

where 0 = ¢ and off-diagonals are zero. (3.84) is the special case of k = 3 in (3.60).
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Along this flat direction, the gauge group is Higgsed SU (2m+3n) — SU (m)? x SU (n)? x
U(1)*. The low-energy SU (m)? sector includes Ny massless flavors, along with bifundamentals
F,F and adjoints A,A, coming from the adjoint X of the original theory at the origin, with a
low-energy superpotential that is cubic in the massless fields (written in Figure 3.9a). Thus,
each SU (m) node corresponds to a Wy, theory plus extra flavors from the bifundamentals. The
low-energy SU (n)* sector includes N '+ massless flavors along with three pairs of bifundamentals
Fi2, Fy3, F13, and their conjugates, coming from the adjoint Y of the original theory at the origin.
There is an IR superpotential for these fields W, « Tr(F12F23F13 + F12F23F13), which corre-
sponds to making a loop around the quiver diagram shown in Figure 3.9b. All other components
from X and Y are either eaten in the Higgsing, or get a mass from the superpotential (3.83), such
that the SU (m)? and SU (n)? sectors decouple from each other at low energies. These low-energy
theories are summarized in the left-most quiver diagrams in Figure 3.9.

We can then go along a further flat direction of the low-energy SU (m)? theory, where
we give an arbitrary vev to the massless F, such that SU (m); x SU(m), breaks to the diagonal
subgroup SU(m)p. The low-energy SU(m)p has an adjoint that remains massless, and IR
superpotential Wj,,,, = 0 from integrating out the massive fields, such that this node corresponds
toanA theory with 2N massless flavors. This IR theory is depicted on the RHS of Figure 3.9a.

The low-energy SU(n)? sector has a similar series of flat directions, where one of the
massless bifundamentals has non-zero expectation value, depicted by the arrows in Figure 3.9b.
For example, giving a vev first to F>3 breaks SU(n)? — SU(n)p x SU(n), resulting in an IR
theory with one massless adjoint 2~ charged under SU (n)p and one massless bifundamental
pair coming from Fi3, F>. Identifying the indices appropriately, these massless fields have an IR
superpotential Wj,,, -~ Tr(Z F) pFi p)- At this stage there is another flat direction where Fyp has
a non-zero expectation value, Higgsing SU (n) x SU (n)p — SU (n)p, where the remaining node
corresponds to SQCD with 3Ny massless flavors.

Again, it is not known if the A theory in 3.9a at low-energies has a dual. On the other hand,
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Wiow « Tr(A3 — A3 + (A2 — A1) FF) Wiow =0
(a) SU(m); x SU(m); sector, Higgses to Wy.

Wiow ~ Tr(FiaFasFi3 + FioFasFis) Wiow « Te(XFipFip) SQCD
(b) SU(n); x SU(n), x SU(n)3 sector, Higgses to SQCD.

Figure 3.9: Flat directions for E7, N, = 2m + 3n, integrating out massive fields (denoted by
dotted lines) and fields eaten by the Higgs mechanism (not shown). The subscripts label the
gauge groups and their matter.

the low-energy SQCD theory in 3.9b has a dual given by Seiberg duality. So we can consider, for
example, N, = 3n (m = 0), which along the flat direction of 3.9b breaks to SU (n) SQCD with 3N i
flavors, and thus has a Seiberg dual with gauge group SU (n)p — SU(3Ny — n)p. The dual theory
must also have moduli corresponding to the flat direction of the electric theory. Extrapolating
back to the origin along these dual flat directions, to try to un-Higgs the SU (3Ny —n)p dual by
reversing the process analogous to 3.9b, suggests a dual gauge group of SU(9N; —3n) on the
magnetic side at the origin. This disagrees with the dual gauge group of Kutasov-Lin, which
maps SU (3n) — SU(30N; — 3n). That latter theory has a flat direction, corresponding to 3.9b
where instead SU (30N —3n) — SU(10Ny —n)p.

To summarize, these flat directions pose puzzles for the proposed Wg, duality, both in the
A theory of 3.9a, and in the SQCD theory of 3.9b. We have not found a quantum mechanism for

lifting these flat directions.
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3.5.4 Case studies in £7 RG flows from AW deformations

In this subsection, we deform the Wg, SCFT (3.75) by several examples of relevant AW
for cases where the resulting IR theory is under better control in terms of duality. We study
how the vacuum structure matches between the UV and IR electric and magnetic descriptions,
focusing on the apparent puzzles of the UV E7 theory.

These examples demonstrate several new features, as compared with the Ay and Dy »
series. One difference is that the deformed chiral ring admits d > 2 dimensional representations.
Further, we explore cases in which enhancements of the singularities in the IR of an RG flow (via
tuning couplings of the deformations) do not preserve the number of higher-dimensional vacua.
Interestingly, for some RG flows the SU (N,) version of a flow with the same 1d vacuum structure
as the corresponding U (N,) flow has a different set of higher-dimensional vacua. Furthermore, we

explicitly construct some RG flows for which the AW deformations are not apparently relevant.

E; — Aj: 3d vacua

We begin with the RG flow E7 — A; flow for gauge group U (N,), taking x > xfi™:

W= %TrY3 +5TrY X2 + %TrXZ, (3.85)

which yields the F-terms
Y2 +5X3=0 (3.86)
si(YX?+XYX +X*Y) +1X =0. (3.87)

There are seven 1d solutions to (3.86)-(3.87): two coincident at X =Y = 0, corresponding to the
Aj theory, and five solutions with nonzero X and Y eigenvalues, corresponding to A; theories;
as always, the 1d solutions correspond, as in Arnold’s ADE singularity resolutions, to adjoint
Higgsing of the G = ADE, preserving rg. Taking X and Y to be matrices, it follows from (3.86)-
(3.87) that X3 «~ Y2 are Casimirs along the flow, so that we may write X> = x’1, and Y2 = y?1,

for a d-dimensional representation. There is a 2d as well as a 3d representation that solve the
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F-terms, D-terms (3.7), and Casimir conditions,

1 |l1|2 . .
Xoq == —(G]+ZG3), You = S5 (3.88)
2\ Is1] ;
011
5]
X34 = 5| 000, (3.89)
S1
000 1 00

These solutions are nilpotent (recall the discussion in Section 3.2.2); these vacua are inherently

nondiagonalizable, with the D-terms satisfied via [X,X '] = —[V,YT]. Expanding (3.85) in these

vacua, the adjoints have mass terms, and so the low-energy theories are SQCD with extra massless

flavors. The AW deformation in (3.85) thus gives the RG flow

E7 — Ay +5A1 + A A (+...0). (3.90)

The (+...?) indicate that there might be additional d > 3 dimensional vacuum solutions, beyond

the ones that we found here'3. In the following we will assume that there are no such additional
vacua in (3.90), but we do not have a proof that this is the case.

If there are ng eigenvalues at the origin, n; in the i’th A; node, n? in the A%d node, and

3 in the A?d node, such that N. = ng+ Z?:l ni+2n%? + 3034 then the gauge group is Higgsed

in the electric and proposed magnetic descriptions (for x in the conformal window):

U(no) TTU (i) x U(n*?) x U (n?)

N 5
UGN, —N) Y N - )[TUWNy—ni) xU(2N; —n**) x U(3Ny —n)
i=1

Il )
._:

(3.91)
The down arrows are Kutasov-Lin duality for the E7 U(N,) theory in the UV, and Kutasov

3We use the SU(N) or U (N) symmetry to gauge fix one real adjoint’s worth of components in X, X, ¥, and Y7,
and the remaining entries are constrained by the D- and F'-terms, along with any Casimir conditions. We did not
find an analytic way to construct, or exclude, higher-dimensional solutions beyond scanning computationally. Even

gauge-fixing, scanning the solution space is harder for larger d, and so in (3.90) we only completed the scan for
d <3.
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or Seiberg duality for the approximately decoupled low-energy gauge group factors in the IR.
Comparing the UV and IR of the dual theories of the lower row of (3.91) as we did for the
D-series, there is a mismatch in the dual gauge groups of 10Ny. Indeed, it is immediately evident
that (3.33) is not satisfied for @ = 30, since there are precisely 7 vacua with d; = 1, and 23 # Zdiz
for integers d; > 1. Something new is needed, beyond simply decoupled copies of SQCD in the
various d;-dimensional vacua.

To recover the SU (N,) version of this flow, we must deform the superpotential (3.85) by
the operators TrY2, TrXY, TrX, TrY, (the latter two with Lagrange multipliers) whose coefficients
are shifted appropriately. The 2d representation for the deformed superpotential smoothly matches
onto the U (N,) solution in (3.88) upon taking the coefficients of the lower order deformations
to zero. The analogous check for the 3d representations in (3.89) turns out to be technically
challenging, and while we expect that it also matches, such that the SU(N,) version of the flow
will match onto (3.91), we have not verified this. (For reasons that will become apparent in

Section 3.5.4, this can be a subtle issue in the E-series.)

E7 — Ds: Disappearing vacua?

We here consider the flow E7 — Ds for U(N,) gauge group, which corresponds to the

superpotential (normalizing the couplings in the UV E7 theory to unity)

W= Tr%y3 +TrY X +4TeXY? + %Trx“. (3.92)

The F-terms of (3.92) are given by
Y24+ X3 +0{X,Y} =0, (3.93)
YX2+XYX + XY 4172 +06X3 =0. (3.94)

The 1d vacuum structure along this flow consists of the Ds theory at X =Y =0, and 2 A;’s
away from the origin. To study higher-dimensional vacua we note that there are no simple
Casimirs of (3.93)-(3.94), except of course the F-terms themselves. There is a 2d solution to

the F-terms (3.93)-(3.94) and D-terms (3.7) of the form X = xo1 + x303, Y = ygl + y303, where
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{x0,x3,y0,y3} are determined functions of the couplings #; and ;. Then, the RG flow leads to
vacua

U(N,), ¢t generic: E;— Ds+2A;1+A3 (+...2). (3.95)
As in (3.90) and the associated footnote, there might additionally be d > 3 vacua, indicated here
with (4...?). Performing the same check as in (3.91), assuming Kutasov-Lin duality for the UV

U(N.) E7 theory, there is a mismatch in the UV and IR dual gauge groups, this time of 15Ny:

vw,) U(no)liU(n,-)  U(n*)

i l . (3.96)

2
UGN, —N) 28 U(ONy —ng LUy =) X U(2N; —n)

The flow (3.95) is for generic deformations 71, #; in (3.92). There are special values of the
coupling #, for which the 2d representation “goes away’ because X or Y becomes proportional
to the identity, or proportional to each other—in either case, the solution is then accounted for
by 1d vacua. This possibility does not occur for the Dy, RG flows. The resulting flows are
summarized by (for the rest of this subsection we refrain from putting the (+. .. ?), but note that

everywhere there is the possibility of d > 2 dimensional vacua):

6
U(N,), t2=n1(7+2V6) or 5t1E 612;. E; — Ds+A (3.97)
UN,), t=t ori(1£V6):  E;— Ds+24, (3.98)

For the flow (3.97), the eigenvalues corresponding to the 1d and 2d A; singularities in (3.95) come
together, enhancing to an A; singularity. Labeling the multiplicities of X and Y’s eigenvalues
as in (3.96), then for the enhancement (3.97) the eigenvalues rearrange such that the electric
theory is Higgsed U (N,) — U(ng) x U(ny +ny +2n*?). For the case (3.98), the eigenvalues
corresponding to the A%d theory in (3.95) match onto copies of the eigenvalues corresponding to
the 1d A1 theories, such that in the IR the vacua are D5 4 2A;. In this case, the eigenvalues in the

electric version of the flow rearrange such that U (N,) — U (ng) x U (ny +n?) x U (ny +n??).
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This feature that a 2d representation can “go away” is also present in the SU (N,) version
of the flow (3.92). As was the case for the D-series flows discussed in Section 3.4.5, there are
multiple sets of deformations AW that one can add to (3.92) to recover the same 1d vacuum
structure as in (3.95) for SU(N..) gauge group'*. For instance, one possibility is

AW = v TrX?Y + V3—2T1rx3 +V3TrXY +vgTrX % 4+ vsTrY 2 — L, TrX — A, TrY. (3.99)
Surprisingly, there are three 2d vacua for the flow (3.92) plus (for instance) ((3.99)): one which
matches continuously onto the U (N,) 2d vacuum when the couplings of the lower order defor-
mations are taken to zero, and two which do not. The additional two 2d vacua have the property
that X and Y become proportional to each other in the limit that the couplings of the additional
deformations (e.g., the v; and A,, 4, in ((3.99))) vanish. In other words, these additional vacua
vanish precisely when we cannot perform the shift of the SU(N,) flow to the preferred U (N,)
origin—i.e., when we can only flow down to decoupled A; theories in the IR. In sum, the vacua
of this flow are

SU(N,), t;generic: E;— Ds+2A;+3A3, (3.100)
However, as with our similar previous examples, using the known duals of the IR theories in
(3.100) does not fit with the ag, = 30 of Kutasov-Lin duality, essentially because (3.33) is not
satisfied: here it is because 0tg, # Ops + 2064, +3 X 2206A1, ie. 30 £9+2+12.

Analogously to the U (N,) flow (3.95), one of the 2d vacua in (3.100) reduces to 1d vacua
in special cases. The difference here is that the other two 2d vacua in (3.100) remain:

SU(N.), th=1;(1£2V6): E;— Ds+A;+24% (3.101)

SU(N:), ta=t; or tj(1£V6): E;— Ds+24; 424 (3.102)

This feature that the 2d vacua can “disappear” for particular values of the couplings is reminiscent
of the wall crossing phenomena for BPS states. There are hints that this is a general phenomenon

in the E-series. For instance, there is a similar effect in the Eg — D¢ flow, as we discuss in

4There are at least three possible sets of deformations, and we’ve explicitly checked that two of these (including
((3.99))) yield the same 2d vacuum structure.
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Appendix A.2.3. It is presently unclear to us how to this phenomenon fits with proposed duals,

and we leave such an exploration for future work.

E7; — Ag: A seemingly irrelevant deformation

As expected from Arnold’s singularities and deformations, there are RG flows correspond-
ing to adjoint Higgsing of G = A, D, E. For some of these Higgsing patterns, the corresponding
AW deformation is not immediately apparent. A general treatment of how to deform and resolve
the ADE singularities by giving expectations values to the Cartan elements is described in [61],
and this formalism is applied in [62] to several of the resolutions of present interest to us. We
adapted those constructions to obtain the deformations of this section.

We here consider the AW deformation which leads to the RG flow E7 — Ag. This is given
by AW ~ TrX . At first glance, this AW seems irrelevant at the W, SCFT, since it scales with a
higher U (1)g charge than the terms in (3.75), but we know that such a flow should be possible
(for instance, we can cut the E£7 Dynkin diagram to recover the Ag diagram, as demonstrated
for other cases in Figure 3.1). The resolution to this puzzle is that only a special shift of the
deformation couplings will recover the Ag singularity in the IR—even for the U (N, ) case. The
clearest way to see the enhancement of the Ag singularity is through a change of variables. Since
the change of variables is already complicated in the U (N,) case, we will only consider this flow
for U(N,) gauge group here. We analyze other E-series flows whose AW deformations seem
irrelevant in this sense in Appendix A.2.

We start with Wg, plus AW deformations,
_ 1 3 3 2 I, 2 1 2
W = §TrY + 51 TrY X" + 4T XY~ + ?TrY + ZTeXY + ETrX . (3.103)
It follows from the F-terms of (3.103) that there are seven 1d vacua in the IR, corresponding to
seven A theories (we will discuss higher-dimensional vacua below). It is useful to next linearly

shift the fields X — X +n, Y — Y 4+ m, where we choose m and n as functions of the couplings in

(3.103) to cancel the linear terms in X and ¥ which result from the change of variables. Dropping
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constants, the superpotential can then be rewritten as

1 t t /1
W= gTrY3 LTIV X2 + 4 TeXY2 £ 6V X2 + §3TrX3 4 %TrYz +tsTrXY + gTer, (3.104)
where the #;’s are defined in terms of the couplings in (3.103) and m,n. We then implement the

following change of variables for all #; # 0:

yoy- Yy Tsiye 35

7 f 96t} (3.105)

Such a change of variables is holomorphic, and has the property that the new field variable U
is single-valued in terms of the variable being replaced (Y). (3.105) shifts around the R-charges
of the fields, but causes no problems; in particular, the metric in the scalar potential acts to
compensate and keep the actual vacua the same. Rewriting (3.104) in terms of U and X will
result in many terms, including the terms TrX’ and TrU? which we identify as corresponding to
the Ag theory and which are now apparently relevant from the perspective of the UV theory, plus
eight even more relevant deformations.

So far, all we’ve accomplished is to rewrite the flow E7 — 7A; in a complicated way. At
this point, however, one can show that there is a unique shift of the couplings {1,,#3,24,1s,%} in
terms of 71,51, such that all of the coefficients to terms more relevant than those which we will
identify with the Ag theory vanish. Implementing this shift, (3.104) becomes

15 34357 T2 1176495‘1*T 56 40353607s?T w9 Tn

W=_-TtU’ - T ——1ITrUx° - rX? — —~TrU2X*
3 961; 921619 26542081 41y
240153 823543 4¢ 49s7 16807s}
“:1 TrUXS — —?T X8+ 2L — s%T UxX* - ’;1 Trx?  (3.106)
192 36864t 7 48t 4608t
T U”.
343y

Studying the F-terms of this superpotential and expanding (3.106) in the vacua, there is one
vacuum at the origin corresponding to the Ag theory, and one away from the origin corresponding
to an A theory. Thus, we have recovered the desired flow.

We have also studied the 2d vacuum structure of this RG flow.!> For generic values of the

ISWe have not as of writing attempted to find d > 2 dimensional vacua for this flow.
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couplings in (3.104), there are nine 2d vacua which we can parameterize as X = xol +x303, ¥ =
yol +y303, such that the generic AW deformations lead to the vacua
E; — TA; +9A (+...7). (3.107)
However, all of these 2d vacua “go away” in the enhancement to the Ag theory, in the sense
described in Section 3.5.4. In particular, of the 18 eigenvalue pairs corresponding to the A%d’s in
(3.107), 15 come to the origin to form the Ag theory in the shift to (3.106), while the remaining 3
become copies of the shifted A; theory. Thus, the 1d and 2d vacuum structure of this flow appears
to be
E7 — Ag+Ay, (3.108)
where the multiplicities of the eigenvalues corresponding to the 2d vacua of (3.107) have redis-

tributed appropriately.

3.6 Conclusions, Future Directions, and Open Questions

3.6.1 Recap: puzzles and open questions for the D¢yen, and E7 theories

The ADE SCFTs have a rich structure of vacua, and deformations. The fact that the fields
X and Y are matrices introduces many novelties, as we have here illustrated—but not yet fully
understood. It is natural to expect that the higher-dimensional representations of the F- and
D-terms have dimensions d; given by some G = A, D, E group theory quantities, e.g. the Dynkin
indices n; as with the McKay correspondence. But we find that d; # n; in general, and we do not
yet know how to analytically find the d; and associated representations.

Our analysis of the E-series shows that even associating a fixed set of representations
with the deformation flow can be subtle. For example, the case studies of Section 3.5.4 give
the following puzzle: we can RG flow from the Wg, SCFT via different AW deformations, to

decoupled copies of SQCD (A1) at low energies, and for different routes seemingly get different

89



numbers of higher-dimensional representations in the IR. It will be interesting to understand how
the proposed duality [46] fits in with this picture. The present work has raised several additional
hurdles for the conjectured Deyen and E7 dualities, and it will be interesting to see how all of these

puzzles are resolved.

3.6.2 Future directions: aspects of the Wg, and Wg, theories

The superpotentials that drive the RG flow from 0O—E— Eg g are (3.5):
1
W, = §TrY3 n iTrx“. (3.109)
1
Wi, = STrY + %TrX5. (3.110)

The TrX* and TrX? terms are relevant for x¢ ~ 2.44 and x“8 ~ 7.28, respectively [38]. As
reviewed in Section 3.1.1, the chiral rings of these theories do not classically truncate, and are
especially rich since X and Y decouple in the F-terms (3.10) and (3.12). As shown in [46, 47],
the W, theories cannot have a dual of the form reviewed following (3.15). It is unknown if there
is a dual of some different form.

The a-theorem condition (3.26) is violated for sufficiently large x for both theories [38],
showing that some new quantum effects must arise for large x. One possibility is that a Wy, is
generated, and the theory is no-longer conformal, for some x > Xgapiliy. Another possibility is
that there is some unknown dual description which becomes IR-free for large x. There are other
reasons to expect that there might be some description of the IR physics of (3.109) and (3.110)
in terms of dual variables: we can flow, for instance, Eq — D5, and we expect that the stability
bound is reduced xaax > x‘B:‘X along RG flow. It is also pointed out in [46, 47] that in Eg the
number of operators at a given value of R grows with R-charge, but somehow the theory must
find a way to preserve unitarity.

We have studied a few aspects of the moduli space and AW deformations of the Wg, and

Wi, SCFTs, looking for clues in formulating a dual description of the theories, but finding puzzles
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(similar to Deyen and Wg,). We here briefly report on some of our findings.

The undeformed W, and W, theories have a variety of flat directions similar to those
discussed for the Wp, , and Wg, theories in Sections 3.4.2 and 3.5.2. In particular, both have
2d and 3d nilpotent flat directions (of course, a flat direction of Eg is also a flat direction of Eg,
since X3 = 0 = X* = 0). The 2d vacuum solutions are of the form X,; = x(03 + i01), Yog =
—x(io3 + 01) where arbitrary complex x labels the flat direction. There are several 3d flat

directions of these theories, again labeled by x, for instance

0 0 1 000

X3¢=x1 00 0 [, Y3a=x] 1 0 0 [, (3.111)
010 00O
011 00O

Xz¢0=x]1 000 |, seg=x| 1 0 0 |- (3.112)
00O 1 00

As with the Deyen and E7 cases, these (classical) flat directions are surely related to the classical
nontruncation of the ring. We expect, as with those cases, that some dynamics must alter these
flat directions, at least for sufficiently large x, to avoid apparent violations of the a-theorem. It
would be interesting to understand this further.

For SU(N,), as opposed to U(N,), upon imposing the tracelessness of the adjoints by
adding Lagrange multiplier terms to (3.109) and (3.110), these theories have SU (N,) flat direc-
tions for particular values of N,, similar to those discussed in Section 3.3.4, 3.4.3, and 3.5.3.
The WE, theory has a flat direction for N. = 3m and/or N, = 2n, while Eg has a flat direction
for N. = 2n, for integer m and n. We expect low-energy A theories along these classical flat
directions; it would be interesting if one can obtain insights about the theory at the origin from
these flat directions.

We now briefly comment on the RG flows from some AW deformations of the Wg, and

WE, SCFTs. Consider e.g. the flow Eg — Ds, obtained by adding AW = TrXY 2 to (3.109). The
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1d vacua correspond to the Ds theory at the origin, and an A theory away from the origin. The
F-terms imply that [Y2,X] = 0, and [X2,Y] = [X3,Y] =0, so that d > 1 dimensional solutions to
the F-terms must actually satisfy X> = 0. It is then straightforward to show that there are no 2d
or 3d solutions that satisfy the F-terms and D-terms, so that the vacua along the flow are just the
1d vacua (up to possible d > 3 representations, again as in the discussion around (3.90))
E¢ — Ds+ A (+...7). (3.113)
While we do not yet know of a dual description of the Wg, SCFT, in the IR of this flow Brodie
duality and Seiberg duality map the low-energy gauge groups as
Uno) x U(n) “2 U(ON; —no) x U(Ns—ny), Ne=no+ny. (3.114)
Perhaps understanding the IR limits of such flows will yield hints pointing towards a dual
description of the W, ,Wg, theories. We invite the interested reader to try. Some additional

comments on E-series flows are provided in Appendix A.2.
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Chapter 4

Landscape of Simple Superconformal Field

Theories in 4d

We explore the infrared fixed points of four-dimensional .4~ = 1 supersymmetric SU (2)
gauge theory coupled to an adjoint and two fundamental chiral multiplets under all possible
relevant deformations and F-term couplings to gauge-singlet chiral multiplets. We find 35 fixed
points, including the .4~ = 2 Argyres-Douglas theories Hy and H;. The theory with minimal
central charge a is identical to the mass-deformed Hj theory, and the one with minimal ¢ has
the smallest @ among the theories with U (1) flavor symmetry. We also find a “next to minimal”
4 =1 SCFT with a chiral operator &' with relation &' 3 — 0. In addition, we find 30 candidate
fixed point theories possessing unphysical operators—including one with (a,c) ~ (0.20,0.22)—

that need further investigation.

4.1 Introduction

Conformal field theory (CFT) is an important object in theoretical physics, which displays

the physics of the low energy fixed point of some gauge theories and also of critical phenomena
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in condensed matter theories. One interesting question of CFT is to find the “minimal” interacting
theory. In four dimensions, a measure of minimality is the a central charge, the coefficient to the
Euler density term of the trace anomaly. This is because of the a-theorem [19, 21], ayy > ajr
for all unitary renormalization group (RG) flows. A related quantity is the ¢ central charge, the
coefficient to the two-point function of the stress-energy tensor.

In supersymmetric theories, these are tractable because of their relation to 't Hooft
anomalies of the superconformal R-symmetry [16], which are in turn determined by the a-
maximization technique [24]. The central charge ¢ of any unitary interacting .4 = 2 SCFT
satisfies ¢ > % [63]. The theory that saturates the bound is the simplest Argyres-Douglas theory
[64, 65], denoted as Hy or (A,A») in the literature. Hy also has the smallest known value of a for
an interacting .4~ = 2 theory.

In 4" =1 theories, no analytic bound on the central charges is known so far. However,
the numerical bootstrap program [66] suggests that the SCFT with the minimal central charge has
a chiral operator ¢ with chiral ring relation 0? =0 [67, 68, 69], and a bound of ¢ > 1/9~0.11
[69]. The minimal theory thus far known in the literature has a = % ~(0.34 and ¢ = % ~ (.35,
and was constructed via a deformation of the Hy theory [70, 71]. We will denote this theory as
Hg. (See also a recent work on 3d 4" = 4 theory [72].)

In the work [73], we initiate a classification of .4 = 1 SCFT in four dimensions obtained
from Lagrangian theories. We explore the space of RG flows and fixed points that originate
from the simple starting point of supersymmetric SU(2) gauge theory with one adjoint and
a pair of fundamental chiral multiplets. From this minimal matter content, we consider all
the possible relevant deformations, including deformations by coupling gauge-singlet chiral
multiplets. Among the fixed points we obtain, two have enhanced .#” = 2 supersymmetry: the
Argyres-Douglas theories Hy and Hj, as already found in [74, 75, 76]. The others are .4 =1

supersymmetric, including the Hy theory as a minimal theory in terms of a. We verify that

these are “good” theories in the sense that there is no unitary-violating operator by utilizing the
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superconformal indices [28, 27].

In addition, in [73] we find a number of candidate fixed points which have an accidental
global symmetry in the infrared and some unphysical operators, thus we refer to them as “bad”
theories. Remarkably, these include theories with even smaller central charges than those of H;.
The minimal one, which we denote as .7y, has a ~ 0.20, and ¢ ~ 0.22. Although we are not able
to conclude that these bad theories are really physical by the present techniques, we scope their
properties.

In the present chapter, we review a particular subset of the flows in this landscape. We

refer the reader to [73] for a description of the full landscape of fixed points and flows.

4.2 A Landscape of Simple SCFTs

We systematically enumerate a large set of superconformal fixed points via the following

procedure:

1. Start with some fixed point theory 7.

2. Find the set of all the relevant chiral operators of .7, which we will call Z 5. Let us also

denote .7 C X as the set of operators with R-charge less than 4/3.
3. Consider the fixed points {.75} obtained by the deformation 6W = & for all 0 € Z 5.

4. Consider the fixed points {.7;} given by adding an additional gauge-singlet chiral field M
and the superpotential coupling OW = M0 for all 0 € /5.

5. For each of the new fixed point theories obtained in previous steps, check if it has an
operator O, that decouples. Remove it by introducing a flip field X and a superpotential

coupling 8W =X 0.
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6. For each new fixed point, repeat the entire procedure. Terminate if there is no new fixed

point.

We employ the a-maximization procedure [24] and its modification [77] to compute the super-
conformal R-charges at each step. Beyond a-maximization, we check whether the theory passes
basic tests as a viable unitary SCFT: one is the Hofman-Maldacena bounds for .4#” = 1 SCFTs,
% < ‘E’ < % [23]; the other one is the superconformal index. Some of the candidate fixed points
have trivial index, or violate the unitarity constraints [78, 30].

We perform this procedure for one-adjoint SQCD with SU(2) gauge group and with two
fundamental chiral multiplets (Ny = 1). When there is no superpotential, this theory flows to
an interacting SCFT g , as discussed in [41] (also see [79]), and a free chiral multiplet Tr¢2.
To pick up only the interacting piece, we add the additional singlet X and the superpotential
Wp = XTr¢?.

Starting from T, we apply the deformation procedure, and find 35 non-trivial distinct
fixed points. These theories pass every test we have checked, so we call them “good” theories.

There are an additional 30 distinct theories that pass almost all of our checks, except that
there is a term in the index that signals a violation of unitarity. The existence of such a term
implies that either the theory does not flow to an SCFT in the IR, or the answers we obtained
were incorrect because we failed to take into account an accidental symmetry. In fact, these
“bad” theories also have an accidental U(1) symmetry which is not visible at the level of the
superpotential, but is evident by the existence of the corresponding conserved current term present
in the index. At present we do not know how to account for this accidental symmetry, and so
cannot say for certain if these flows will lead to SCFTs or not.

Interestingly, 6 of these “bad” theories appear to have central charges lower than that
of Hy. Denote the lowest one .7. This is a hint that there might be a minimal SCFT in this
landscape.

We have plotted a, c for the “good” theories without this interesting complication in Figure
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Figure 4.1: The central charges of the 35 “good” theories. The ratios a/c all lie within the range
(0.8246,0.9895). The mean value of a/c is 0.8733 with standard deviation 0.03975.

4.1. We see that the distribution of a vs ¢ are concentrated near the line of a/c ~ 0.87. Of the
“good” theories, H;j has the smallest value of a. .7 has the smallest value of @ among any theory
with a U(1) flavor symmetry. H; has the smallest value of a among any theory with an SU(2)
flavor symmetry !. Below we examine each of these “minimal” theories in turn, as well as the
lowest central charge theory 7, and the second-to-lowest a central charge “good” theory with
no flavor symmetry, which we denote .7;,. We summarize the structure of RG flows among these
special theories in Figure 4.2.

The superconformal indices of these theories can be computed using the Lagrangian
description. We define the index as (see Chapter 2 for more details, and note the  — ¢ notation
change)

F(t,y;x) = Tr(—l)Ft3(r+2j1)y2j2xf ) 4.1)

where (i, jo) are the spins of the Lorentz group and r the U (1) R-charge. When the theory has a

global symmetry with Cartan generator f, we also include the fugacity x for it. For each of these
special theories, we give the first few terms in the reduced superconformal index

Ji(t,y) = (1= /y)(1 =) (I (t,y) — 1), (4.2)

which removes the conformal descendant contributions coming from spacetime derivatives. If

IThere are two theories with 3 conserved currents with smaller a, but we do not find any evidence for the SU(2)
symmetry.
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Figure 4.2: A subset of the fixed points that can be obtained from SU(2) Ny = 1 adjoint SQCD
with singlets. Note that the graph is not arranged vertically by decreasing a central charge,
because the deformations we consider involve coupling in the singlet fields.

the reduced index contains a term X y;(y) with R < 2+2j or a term (—1)> 1Ry ;(y) with

2+2j <R <6+2j, it violates the unitarity constraint [78, 30].

The coefficient of 5y° allows us to read off the number of marginal operators minus the
number of conserved currents [78]. The superpotential F-terms W /d ¢ = 0 for the fields ¢ allow
us to read off the classical chiral ring, and quantum modifications can be argued from the index
We will see that the chiral rings we study in this chapter are subject to the quantum corrections

The superconformal index turns out to be a useful tool to study the fully quantum corrected chiral

rings of our models.
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Table 4.1: The R-charges of the chiral multiplets at various fixed points. The .7, theory has 3
chiral multiplets labeled M, which we denote as M 3.

[Tields | % Mo [ ] Tu [ ]
g | Y5 ~0924 [ 11/12]1/2] 1/4 |78
p 75#%:0.471 5/12 | 1/2] 3/4 |1/8
o | U051 | 16 |1/4] 1/4 | 1/4
o . L1 GEL] 1
x |22V g0 | 53 32| 32 |32
X _ R

4.3 9 —Minimal ¢, Minimal a with U(1)

Let us begin with the .7 SCFT which is obtained via a deformation of g ,

W, = XTre* + Troqq, (4.3)
and has irrational central charges
0 — 81108 + 1465+/1465 ~ 03451
0 397488 ’ (4.4)
o = 29088 +1051+/1465 ~ 0.3488.
0 198744

The IR R-charges of the fields of the 7 and all other theories discussed below are given in Table
4.1. This theory has the second smallest value of a, and the smallest value of ¢ among the 35
“g00d” fixed points we enumerate.?

The chiral ring of the theory can be easily studied: the F-term conditions from (4.3)
are simply Tr¢? =0, g¢ = 0 and X¢ + ¢g*> = 0. The first equation truncates the chiral ring by
setting > = 0. The second and third equations lead to the classical generators of the chiral ring:
0' = Trqg, Tr¢Gg and X, with relation 0”2 ~ XTr¢44.

This theory has an anomaly free U (1) flavor symmetry that mixes with R. The reduced

The theory with smaller ¢ than Hj; was also noticed by Sergio Benvenuti. We thank him for informing us on this.
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index is given as

fr(t,y;x) _ l3‘28X12 _ t3.45x—2X2(y) + t4'19X8 _ t6 (4 5)

—|—t6'56x24+t7'46x20—|—t8'27x_10+..

A

where we assigned the flavor charges for the fugacity x as f, =1, f3 =7, fo = —2, fx = 4. Here
and below y(a) denotes the character for the SU(2) flavor symmetry of dimension s =2;+ 1.
This index allows us to read off the quantum modified chiral ring: the terms #>-28x!2 and r*1%x% in
the index come from the chiral operators Tr¢ GG and Trqg respectively; the second term denotes
the fermionic operator € = Tr¢W,,. We see that the operator X (which would contribute 7>-19x*
to the index if it exists) is absent from the chiral ring. We can read off the chiral ring relation

0" = Oy - (Tr¢Gg) = 0 from the absence of the terms £3-38x16 and —%73 y, (y)x1.

4.4 Hy;—Minimal a

The Hy fixed point can be obtained from .7 by adding the MTr¢Gg term. This superpo-
tential is indeed a simplified version of the one considered in [74].

At the Hy fixed point we further deform by a mass term M?,

Wy = XTr9® + Trogq + MTroGG+ M. (4.6)
This flows to the Hy theory with the central charges
263 271
» = —— ~(0.3424 » = —— ~().3529. 4.7
“H; = 768 ' T 768 @7

The Hy SCFT has been studied in [70, 71] as a deformation of the Hy Argyres-Douglas theory.
Utilizing the UV Lagrangian description presented here, we are able to confirm various predictions
about H.

Classically, the F-terms of (4.6) imply that M, X, and &’ = Trqq generate the chiral ring,
with relations M? ~ 0 and €"? ~ 0. The superconformal index for the Hj theory can be computed

to give a reduced index

To(t,y) = — 1)+t 1T T+ (4.8)
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From this we see that the two generators M and ¢ contribute the 7> and * respectively, while X
is not a generator. We also find that the operator &y, = Tr(¢W,) contributes to t3 x2(y). From the
coefficients of 19,1713, we find M2 = M &' = "> = 0 in the chiral ring. The term ¢’ comes from
(ﬁ’a)z. There is a relation for & of the form MOy = 0’0, = 0 which can be read from the

absence of the terms —f 7 x2(y) and —t3 x2(y). These relations support the analysis of [70, 71].

4.5 H;{—Minimal a with SU(2)

The flow to H; in our setup is a simplified version of the flow considered in [75], and was

also considered in [80]. From H; the H; SCFT is then obtained via a mass deformation to the

singlet,
Wy: = XTr¢” + MTrqg + M>. (4.9)
The central charges are
927 1023
» = —— ~(0.4526 » = —— ~(.4995. 4.10
“Hi = 2048 T 2048 (*-10)

Classically, the F-terms imply that the chiral ring is generated by M, X, 0> = Trdqq, Oy = Trdqq,
O_, = Trdgq, with relations M2 =MO;,=X0;=0, and ﬁg ~ O>0_,. The last relation descends
from that of the Higgs branch of the H; theory.

The reduced index is

I(t,y;:a) = 1% (x3(a) — () +1°

15
2

“ 4.11)
— %3 (a)+17 (14 x5(a))+1% +...
We see the theory has the SU(2) current from the —%y3(a) term, which is visible at the level of
the superpotential. There are generators M, X and &; satisfying the relations M? = X2 = 0 and

ﬁ’g ~ 00 _,. There are also fermionic operators &y = Tr(¢Wy,) with relations MOy = X Oy = 0.
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4.6 Discussion

One goal of this program is to search for and study minimal .4#” = 1 SCFTs. One feature
of the low-central charge SCFTs we have examined here is that there is a chiral operator satisfying
a relation of the form 0" ~ 0 for n = 2,3. Another feature is that the central charges of the SCFTs
considered here lie in a narrow range of a/c. It would be interesting to pursue the reasons for this,
and search for other .4 = 1 SCFTs with truncated chiral rings.

A common property of the RG flows in this landscape is that some operators that are
irrelevant at high-energy can be relevant in the IR—such operators are called dangerously
irrelevant. As such this is an interesting arena for studying RG flows along the lines of [81].

At present, the status of the “bad” theories is unclear, because it is not clear how to account
for the accidental symmetry in the a-maximization procedure and thus check if the corrected
theory would flow to an interacting SCFT. One way forward would be to identify the fermionic
multiplet that contributes to the unitary-violating terms in the index and decouple it, as we naively
did for the .7, theory. It would be interesting to resolve this question and understand how the
accidental symmetry arises. This would settle whether one of these theories is indeed a new

candidate minimal .4~ = 1 theory, or strengthen the case for minimality of the Hjj theory.
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Chapter 5

Interlude: An Introduction to the Theories

of Class .&7

In this chapter we review the construction of a class of four-dimensional SCFTs by com-
pactification from six dimensions. These constructions will provide the arena for the remainder

of this thesis.

5.1 Introduction

A large class of four-dimensional quantum field theories can be studied by compactifying
six-dimensional .4~ = (2,0) superconformal field theories over a punctured Riemann surface
with a partial topological twist. The SCFTs that result from this procedure are known as theories
of class . (for “six”"). Generically, these theories are strongly coupled and do not have a known
Lagrangian description, and yet many of their properties can be inferred by utilizing their origin
in six dimensions and the compactification scheme.

These constructions have been revolutionary in that they provide a partial classification

scheme for four-dimensional .4/~ =2 SCFT’s, and bring to bear new geometric tools for studying
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them [82, 83, 84]. Soon after their introduction, it was demonstrated that these constructions can
be generalized to study the space of four-dimensional .#" = 1 SCFT’s [85, 86, 87, 88, 89, 78].

An important ingredient in the construction is a partial topological twist [90, 91], which
is needed to preserve some supercharges in the compactification of the six-dimensional theory.
Depending on the choice of twist, various amount of supersymmetry can be preserved in four
dimensions. .4~ = 2 theories of class . were first constructed and classified in [82, 84] (building
on earlier work by [92]). A large class of .4~ =1 SCFTs and their dualities were studied via mass
deformations of .4 = 2 theories in [85, 86, 87]. Later, it was demonstrated that .4/~ = 1 SCFTs
could be directly constructed from compactifications of six-dimensional theories on a Riemann
surface with a partial topological twist [89, 88]. We refer to these theories as BBBW theories, for
the authors Bah, Beem, Bobev, Wecht.

A strong piece of evidence for the existence of these superconformal theories is the
explicit construction of their large-N gravity duals. The gravity duals for the .4 = 2 theories
corresponding to M5-branes wrapped on Riemann surfaces without punctures were constructed
in [83], which are holographically dual to the Maldacena-Nuniez supergravity solutions [93]. The
duals for the .4#” = 1 theories were constructed in [89, 88] (without punctures) and in [94] (with

punctures).

5.2 4d SCFTs from 6d

Generically, putting a QFT on a curved background breaks supersymmetry. A partial
topological twist allows us to preserve some supersymmetry in the IR. In the twist, one turns
on a background gauge field valued in the six-dimensional SO(5)g symmetry, and tunes it to
cancel the background curvature on the Riemann surface. We identify an abelian subgroup of the

six-dimensional R-symmetry as

U(1); xU(1)_ CSU(2)4 x SU(2)_ C SO(5)g, (5.1)

104



where the U (1) are Cartans of the SO(5)g. Then, embed the holonomy group of the Riemann
surface U (1), in the six-dimensional R-symmetry group by identifying the U(1); generator R,

as a linear combination of the U (1) generators J,

R, = P1 Ji+ P2
P1+p2 p1+p2

J_. (5.2)

This fixes the parameters (py, p2) in terms of the Euler characteristic y of the surface as
Prtpr+x(Een) =0,  with  —x(Z,,) =2(g—1)+n. (5.3)
This procedure in general preserves four supercharges in four dimensions, and breaks the bosonic
symmetries of the six-dimensional theory as
SO(1,5) xSO(5)g — SO(1,3) xU(1)+ xU(1)_. (5.4)
When one of (p1, p2) is zero, eight supercharges will be preserved, and one of the U(1) 1 will be
enhanced to SU(2) 1 to furnish the .4 = 2 R-symmetry of the four-dimensional theory.

The six-dimensional (2,0) theories are labeled by a choice of gauge algebra g, which
follows an ADE classification. The su(N) = Ay_; and s0(2N) = Dy cases have a description in
terms of M5-branes. In this dissertation we will focus on the Ay_; theories, in which case the
six-dimensional theory arises as the effective world-volume theory of N coincident M5-branes.
Then, the amount of supersymmetry that is preserved in the IR depends on the way the MS-branes
are embedded in a Calabi-Yau threefold CY3. From this perspective, the Riemann surface is
described by a holomorphic curve %, , in CY3. Generally, the Calabi-Yau threefold is a U(2)
bundle over %gﬂ, whose determinant line bundle is fixed to the canonical bundle of the surface.
We choose to twist the Cartan of the SU(2) bundle, such that the U(2) bundle decomposes into a
sum of two line bundles .Z] and .%, with integer degrees (p1, p2) as!
2 —A0

J (5.5)
Con

!Often these parameters are called (p,q) in the literature, but here we reserve the (p,q) labels to specify the
R-symmetry of locally .4 = 2 preserving punctures.
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In this language, the topological twist involves embedding the holonomy group U (1), of
the Riemann surface in the SO(5) structure group of the normal bundle to the M5-branes. The
U (1) global symmetries in (5.1) correspond to phase rotations of the two line bundles. Requiring
that the first Chern class of the Calabi-Yau threefold vanish is equivalent to the condition (5.3).
If one of the two line bundles is trivial, the threefold decomposes as CY3 = CY; x C, and the
background preserves eight supercharges.?

The four-dimensional theories of class .% also have a description in terms of a generalized
quiver gauge theory. To take the Ay_; case, one geometrically decomposes the curve €, into 3-
punctured spheres connected by tubes via pair-of-pants decompositions. S-duality relates different
degeneration limits of the curve. The low energy effective description of N coincident MS-branes
wrapping a 3-punctured sphere is known as the 7 theory, which is a strongly coupled ./ =2
SCFT with an SU(N)? global symmetry [82]. Gauging subgroups of these global symmetries via
AN =1 or A4 =2 vector multiplets (the tubes) corresponds geometrically to “gluing” punctures
to form Riemann surfaces with general Euler characteristic. The classification of these four-
dimensional building blocks, or “tinkertoys”, has been carried out in [95, 96, 97, 98, 99]. As
we discuss in some detail in the next chapter, similar field-theoretic constructions have recently
been obtained for theories whose geometries have negative line bundle degrees p; and p;
[100, 101, 102]. Such a field-theoretic approach can be useful in providing a different perspective
on the properties of the theories of class ..

Much of the richness of class .’ comes from the punctures on the Riemann surface. From
the perspective of the parent six-dimensional (2,0) theory, punctures are 1/2-BPS codimension-2
defects, specified by an embedding p : su(2) — g. Such embeddings are labeled by nilpotent
orbits of the Lie algebra g [103]. Regular defects correspond to singular boundary conditions
to Hitchin’s equation on the Riemann surface, which have been classified for Ay_; in [83], for

Dy in [104], and have been discussed for other types of regular defects including twisted lines

’In the special case that the Riemann surface is a 2-torus (g = 1), .#" = 4 supersymmetry can be preserved by
fixing the normal bundle to the M5-brane world-volume to be trivial.
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(possible when the ADE group admits an outer-automorphism) in [105, 103, 106, 107]. The
generalization to ./~ = 1 Hitchin’s equations was first discussed in [108]. In the present work, we
will only discuss regular (also called “tame”) defects, and omit discussion of irregular (“wild”)
punctures corresponding to higher order poles.>

When the (2,0) theories describe the effective world-volume theory of M5-branes, punc-
tures correspond to points where the M5-branes branch out to infinity [109]. The punctures
correspond to boundaries of the Riemann surface, and boundary conditions are needed for the
M5-branes; this leads to global symmetries. In the Type IIA limit where we shrink the M-theory
circle, the degrees of freedom at the puncture are associated to the intersection of D4/D6 branes
[92].

At large N, one can look at AdSs dual solutions of M-theory corresponding to the near
horizon limit of N MS5-branes wrapping a Riemann surface [83, 94]. In these solutions, the new
degrees of freedom are associated to additional M5-branes that are localized at the punctures
(see [109]). These branes are extended along a direction normal to the Riemann surface, and end
at monopole sources of a U(1) connection of an S bundle over the surface. This connection is
associated to the topological twist in the field theory construction. A single M5-brane corresponds
to a simple puncture, which can be analyzed in the probe approximation [83, 110]. In the full
backreacted solution, the connection forms in the Ricci flat background pick up monopole sources.

To summarize, we require the following data in order to specify a theory of class .7: a
choice of g =ADE; the Euler characteristic } of the Riemann surface; a choice of twist, i.e. the
(p1,p2) that satisfy (5.3); and local data associated with the punctures. From this perspective,
the class . construction allows us to organize a large space of four-dimensional SCFTs in a

geometric way.

3The Argyres-Douglas theories discussed in the previous chapter in fact have a Class .# description in terms of a
sphere with one regular and one irregular puncture, but we will not further discuss this description here.
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Chapter 6

4d SCFTs from Negative Degree Line
Bundles

We construct 4d .4~ = 1 quantum field theories by compactifying the (2,0) theories on a
Riemann surface with genus g and n punctures, where the normal bundle decomposes into a sum
of two line bundles with possibly negative degrees p and ¢.! Until recently, the only available field-
theoretic constructions required the line bundle degrees to be nonnegative, although supergravity
solutions were constructed in the literature for the zero-puncture case for all p and g. Here, we
provide field-theoretic constructions and computations of the central charges of 4d .4#” = 1 SCFTs
that are the IR limit of MS5-branes wrapping a surface with general p or g negative, for general

genus g and number of maximal punctures n.

6.1 Overview and Summary of Results

We here consider M5-branes wrapping a genus g Riemann surface with n maximal

punctures ¢, ,, where the surface is embedded in a Calabi-Yau 3-fold alla (5.5). The BBBW

I'Note that in this chapter, in order to match the original work we (regrettably) deviate from the notation in Chapter
5, where p and g were referred to as p; and q;.

109



supergravity solutions are valid for all p and ¢; however, there is only an explicit field theory
construction for the case of p and g nonnegative.”> Our main goal at present is to understand such
a construction for the case where one of the line bundle degrees is negative. Our construction
requires a more general building block than the 7}y theory. The necessary ingredient was provided
in [100], which introduced a generalization of the 7y theory denoted T]\(,m) for m a positive integer
(and whose features we will review in Section 6.2.1). The field-theoretic constructions in [100]
utilizing T]\(,m) building blocks provided the first generalized quiver field theories with p,g < 0.

In the present work, we explicitly construct 4d .4~ =1 field theories that result from
compactifying the (2,0) theories on a surface with negative p or g, thereby providing field theoretic
constructions for the duals of the BBBW gravity solutions obtained by gluing Tl\(]m) building
blocks. We further generalize to the case of M5-branes wrapped on Riemann surfaces with
maximal punctures, yielding formulae for the (trial) central charges of the resulting SCFTs that
depend only on geometric data.

The organization of this chapter is as follows. In Section 6.2, we provide the field-theoretic
construction of the 4d .#” = 1 SCFTs that are dual to the BBBW gravity solutions for negative
p or g. We begin by reviewing the definition of the TA(,m) theories as formulated in [100]. Then,
we glue together (2g — 2) copies of the T]\(,m) theories, yielding a genus g > 1 surface with no
punctures and possibly negative p or g, thus providing an inherently field-theoretic construction
of 4d .4 =1 field theories that arise as the IR limit of M5-branes wrapped on a surface with
negative normal bundle degrees. We compute the central charges and operator dimensions for
these theories, and find that they match precisely onto the BBBW formulae.

In Section 6.3, we study the genus zero case, which requires closing punctures on chains
of TA(,m) theories. We consider the simplest case of a single T]\(,m) theory whose SU (N) flavor
groups are Higgsed, which can yield theories with twist |z| > 2, and find that the trial central

charges match onto the BBBW results. There will be corrections to these values from operators

2Similar constructions were recently considered in [101].
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Figure 6.1: A UV generalized quiver description for the TA(,m) theories. The blue color of
the SU(N )4 g c flavor groups corresponds to punctures with sign o g = +1. The red boxes

correspond to closed 0 = —1 punctures. The singlets M;i) are the leftover components of the

fluctuations of the M) about the vevs.

whose R-charges were shifted in the Higgsing procedure. We comment on these corrections, but
leave their complete analysis to future work.

Having reviewed the machinery to close punctures in Section 6.3, in Section 6.4 we
construct theories of genus g and n maximal punctures from TZ\(,mi) building blocks. With these
general constructions, we are able to compute the central charges for the torus as well. We

conclude with a brief discussion of future directions.

6.2 Constructing the BBBW Duals from 7" Building Blocks

6.2.1 T." review

The TI\(]m) theories constructed in [100] are strongly coupled 4d .4#” = 2 SCFTs. They
have a natural description as being of class .7, arising as the low-energy limit of wrapping N
M5-branes (the (2,0) theories of type Ay_1) on a sphere with three punctures, 6 3. The sphere is
embedded in a Calabi-Yau 3-fold, which decomposes into a sum of two line bundles as in (5.5).
For our purposes, the novelty of this construction is that the degrees p and ¢ of the line bundles
are allowed to be negative, parameterized by a nonnegative integer m:
": p=m+1, g=-m 6.1)
For m = 0, this construction reduces to the Ty theory.

These theories preserve a U (1) x U(1)_ global symmetry which derives from the parent
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N = (2,0) SO(5)g symmetry, as well as an SU(N)? global symmetry associated to the three
punctures® which we denote SU(N)4 x SU(N)p x SU(N)c. Each puncture is labeled by a sign
04.8,c = *1; in the notation of [100], +1 is blue-colored and -1 is red-colored, and in diagrams
we’ll take +1 to be unshaded and —1 to be shaded. Denoting the generators of U (1) x U(1)—
by J4, the exact superconformal R-symmetry is given by the linear combination (see Appendix

B.1 for more on our conventions)
1—¢ I+¢
Ry—_i(e)= 3 Jy+ TJ_' (6.2)

The °t Hooft anomalies for the TA(,m) theories are given in Appendix B.3, in equation (B.12), and
the chiral operators of the Tl\(,m) theories are listed in Table 6.1. The ¢; are adjoint chiral multiplets;

the ,u()

jl and MJ(.I) are singlets; the t; are moment-map operators (i.e., chiral operators at the bottom

of would-be .4 = 2 current multiplets) of the m symmetry groups SU(N); that are gauged in

the construction of the theories; the us p ¢ are moment-map operators of the leftover SU(N)a g.c

flavor symmetries; and Q(Q) are (anti)trifundamentals of the SU (N)4 x SU (N)p x SU (N )¢ flavor

symmetry. The singlets are coupled in a superpotential

m N—1

Wsinglets = Z Z ,UJ(I)MJ(I) (6.3)
i=1 j=1

that arises from the construction of the TA(,m) theories by gluing m+ 1 copies of the Ty theory—see
[100] for more details. We summarize the resulting UV generalized quiver description for the
TA(,m) theories in Figure 6.1.

The superpotential (6.3) yields chiral ring relations for the chiral operators. For example,
(@)

while naively one might worry that the singlets u ; could violate the unitarity bound due to
their negative J_ charge, the F-terms for the M](-i) imply that the ,u](-i) are in fact trivial in the ring.
As checked in [100], none of the gauge-invariant chiral operators that are nontrivial in the ring

decouple*.

3This is taking the punctures to be maximal; to construct building blocks with generic three punctures whose
flavor symmetries are non-maximal, one can use results in [111], [112], [95], [103].

41f the dimension of a chiral operator & appears to violate the unitarity bound R(&) < 2/3 (the R-charge of
a chiral operator is proportional to its dimension in theories with four supercharges), then & is in fact free, and
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Table 6.1: Operators of the (unshaded) TA(,m) theories.

SU(N)i | SU(N)a | SUWN)g | SUWN)c | (J4,J-)
0 O 0 O (N—1,0)
0 0 0l 0l (N—1,0)
¢ (1<i<m) adj (0,2)
i (1<i<m) adj (2,0)
A ad.] (270)
UB adj (270)
) Uc adj (270)
p (1<j<N-1) (2,-2J)
M) (1<j<N-1) (0,2j+2)

6.2.2 Gluing procedure

The gluing procedure corresponds to decomposing the geometry into pairs of pants, where

each can be associated with T]\(,m)

theories, and gauging subgroups of the flavor symmetries
associated to the punctures. We will label the ith block by T]\(,mi), where the m; are in general
different.

Before we do the general case, let us first illustrate the procedure of gluing two T]\(,mi), i=
1,2 theories with either an .4 = 1 or .4#” = 2 vector multiplet, as in [100]. Label the degrees of
the blocks as

(mi—f—l, —mi) o, =+1

T(ml)

N : (Piy%') = (64)

(—mj, mi+1)  oc;=-1
since p; and g; switch roles for an unshaded versus shaded block. We gauge an SU (N) flavor
symmetry of the two T}\(,mi) theories, leading to a superpotential for the moment-map operators of
the gauged block,

W=Tru u". (6.5)

For instance, 1t could be chosen to derive from 4 in Table 6.1 for one block, and pt~ to come

from py for the other block. In order to write a superpotential of this form, when gluing with an

an accidental U(1) symmetry acts on ¢. One must account for the decoupling of these free operators, e.g. in
computations of a and ¢ [77].
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Figure 6.2: Options for gluing 2 TA(,mi ) blocks to form a genus 2 surface. Shaded triangles

correspond to Tj\(,m') theories with o; = —1, while unshaded triangles have o; = +1. Shaded
circular nodes correspond to .4 = 1 vector multiplets, while unshaded circular nodes correspond
to ./ = 2 vector multiplets.

A =1 vector the (J,J_) charge assignment of one of the TI\(,mi) blocks must be flipped such that
(1~ has Jy charges given by (J4,J_) = (0,2). In general, two blocks of the same color/shading
should be glued by an .#” = 2 vector, while two blocks of differing colors/shadings should be
glued by an 4" = 1 vector.

The result of this procedure is a four-punctured sphere € 4, where the total degrees p and

q of the embedding space satisfy p+¢g=2g—2+n =2.

6.2.3 Construction of €,~1 ,—0 and computation of a and c

Here, we glue together (2g — 2) copies of the Tl\(,mi) theories, i = 1,...,2g — 2, yielding a
genus g > 1 surface ‘Kg(f)’q) with no punctures and possibly negative degrees p and ¢. (The sphere
and torus cases are constructed separately in later sections.) We consider the general case of
¢ (shaded) blocks with 6; = —1, and ¢, (unshaded) blocks with 6; = +1, glued together with
n; (shaded) .4 = 1 vector multiplets and n; .4 = 2 (unshaded) vector multiplets. Given the

geometries we wish to construct, these parameters satisfy

O+0=2(g—1), m+m=3(g-1). (6.6)
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Label the degrees of the blocks as in (6.4). Then, the total degrees p and g of the space in which

the genus g surface is embedded are given by

p=Y mi- Y mi+bl, p+qg=2g-2. (6.7)
{G[:+1} {65271}
The sum over {o; = +1} runs over the ¢, unshaded nodes, while the sum over 6; = —1 runs over

the ¢; shaded nodes. As an example, the options for forming a genus 2 surface in this manner are
shown in Figure 6.2.
We now compute the central charges a and ¢ for these configurations. For a general 4d

A =1 SCFT, the central charges a and ¢ are determined by the "t Hooft anomalies [16],

3

=% (3TtR* —TtR), c= 1 (9TtR® — 5TtR) . (6.8)

32

a

For quivers made from TA(,m) building blocks, in the absence of accidental symmetries, the ./ =1

superconformal R-symmetry R = R(¢€) takes the form (see Appendix B.1 for conventions)

R(e) = %(1 —8)]4_—1—%(1 +é€)J_. (6.9)
Then, the exact superconformal R-symmetry at an IR fixed point is determined by a-maximization
with respect to € [24].

The contributions to a and ¢ of the various components of our constructions can be

computed using the ’t Hooft anomalies given in Appendix B.3, substituted into equations (6.8)

and (6.9). The contribution of the i’th T,") block is given by [100]

@y (€) :63—4(1\/— 1)(1—¢) (BN*(1+€)* —3N(2e* +e+1) —2(3e* +3e +2))

3
—miz5E (3N°(e* —1) —3e? +2N +1) (6.10)
= (€) +mit (€).
For convenience, we’ve defined % (¢€) as the piece of a_ i) (€) that’s independent of m;, and
N
27| (€) as the piece proportional to m;. Our convention is that these formulae as written correspond

to an unshaded (o; = +1) block, while taking € — —¢€ (equivalently, swapping J and J_) yields

the formulae for a shaded block. The contributions of an .4 =2 and .4 = 1 vector multiplet are
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a/_z(e)—%(Nz—l)e(% —1)+%(N2—1) 6.11)
6
ay_i|= ﬁ(NZ— 1). (6.12)

Here, the convention for a_s_, (&) is that as written we’re gluing two unshaded flavor groups”;
gluing two shaded flavor groups with an .4 = 2 vector corresponds to taking € — —¢&. Then,

a(€) for this class of theories is given by a sum over these pieces,

a(e) = (e)+oi(e) Y, mi+lidp(—e)+(—e) Y, m;
{oi=+1} {Gf—l} (6.13)
3
3= l)ay—(e) +30ay =

Maximizing with respect to € yields

N+N?— \/zz +N(1+N)(N(1+N) +22(4+3N(1+N)))

€= 6.14
3(1+N+N?)z ’ (©6.14)
where we’ve written the answer in terms of the twist parameter z,
P—9
=—, p=(&—1)(1+2), g=(g—1)(1-2). (6.15)
Py (g—=1)(1+2) (g—=1)(1-2)

€ in (6.14) matches the value computed in [89], as expected. The argument of the square root
is always positive for the valid ranges of the parameters, N > 2, g > 2. € is singular only for
q = p = g — 1, and re-maximizing with respect to € for this special point yields € = 0.

Substituting € into (6.13), and performing the similar computation for ¢, we find

3Our conventions appropriately account for this, e.g. by not including an absolute value in the definition of n, in
(6.6).
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Figure 6.3: a as a function of the twist z for quivers constructed from 2g — 2 glued T,\(,m" ) blocks,
plotted for g = 11 and various N.

) 45(\/1111‘)’%1:’21))% {_NS(l+N)3+3Z3(1+N+N2)(3+N(1+N)(7+3N(1+N)))
+(ZHNI+N)(N(+N) + (43N +N)2) 2.
(6.16)
W-1(g-1)

= BTN+ N2 {—N3(1+N)3+z2(l+N+N2)(6+N(1+N)(17+9N(1+N)))

+(N*(14+N)?+22(1+N+N?)(2+3N(1 +N))

: \/z2 +N(1+N)(N(1+N)+22(4+3N(1+N))).
(6.17)
We plot a as a function of z for various values of N in Figure 6.6. These results precisely match
the values of a and c that were computed by BBBW in [89] via integrating the anomaly eight-form
of the M5-brane theory over 6, . We emphasize that we’ve found this same result with a field
theoretic construction. It is worth highlighting that it is nontrivial that the dependence on the m;
in (6.13) cancels to yield central charges (6.16) and (6.17) that depend only on the topological

data z and g (and choice of N).
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6.2.4 Operator dimensions and large-N

With € fixed in (6.14), the dimensions of chiral operators can be determined by A(&) =

%R(ﬁ’ ), using R(€) defined in (6.2). The dimensions of operators are then given by

\S1[O¥}

Alu] = 3(1-e), Alg] = 3(1+¢)

AlQ] =3(N—-1)(1—¢g), Al =2(1+€)k, k=3,...,N (6.18)

[NS][N]

AM)=3(1+e)(1+)), j=1,....N—1.
Again, we use a convention where taking € — —¢ yields the R-charge of the operator correspond-
ing to a shaded node; e.g. A[¢](€) corresponds to the adjoint chiral field in the .4 = 2 vector
multiplet of an unshaded node, while A[@](—¢€) corresponds to the adjoint chiral of a shaded node.
The p are the various moment map operators of the TA(,m" ) blocks, detailed in Table 6.1.
We can construct gauge-invariant operators out of Q and é that correspond to M2-brane

operators wrapping the surface ¢, o, as described in [89]. Schematically, these are

2g—2 2g—2

om=[]Q.  Om=1]]Q (6.19)
i=1 i=1
From (6.18), the dimensions of these operators are
~ 3
A[ﬁMz] = A[ﬁMz] = 4_1<N_ 1) [(Zg - 2) +8(£1 —52)] (6.20)

for € given in (6.14), and where 0 < |¢; — ¢,| < 2g — 2. None of these operators decouple.

|€| in (6.14) ranges from 0 at z =0, to -L_ at large z and N. In particular, the new range

V3
of € accessible for negative p and g versus the previously studied case of p,q > 0 [89] is the
range % <lg| < \/Lg In this range of €, no operators violate the unitarity bound; thus, assuming
no accidental IR symmetries, a and ¢ are given by (6.16) and (6.17). We note that a and ¢

given in (6.16), (6.17) are always positive and nonimaginary, and always (for g > 1) satisfy the

Hofman-Maldacena bounds for .4/ = 1 SCFTs [23],

| Q

1
-<-< (6.21)
2" ¢

(NS RON)
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At large N, the leading-order term of a = ¢ in (6.16) scales as N>, and is given by

(1-g)(1-92° = (1+32)*?)
4872

arge-N = (6.22)

This reproduces equation (2.22) in [89].

6.3 ©,—0.—o from the Higgsed Tjém)

6.3.1 Constructing Higgsed T, A(,m) theories

In this section, we review the procedure of closing the three maximal punctures of the
Tj\(,m) theory. The Higgsing procedure we review below was detailed in [100], and also utilized in
[75] (where the |z| = 2 case was first studied) and [101].

First, switch the color of the punctures to be opposite the color of the background TJ\(,'")
(i.e. flip the colors of the SU(N)a p ¢ flavor groups in Figure 6.1 from blue to red), and couple
in three extra chiral fields My p ¢ that transform in the adjoint of the SU(N)4 g ¢ flavor groups,
respectively. The superpotential contains terms that couple these adjoints to the moment map

operators U .c,

W O uaMy + usMs + picMe. (6.23)
Next, Higgs each of the flavor groups SU(N) p ¢ via a nilpotent vev®
01
0 1
(Mp) = (Mp) = (Mc) = : (6.24)
0 1
0

®In general, one could consider a nilpotent vev corresponding to an SU(2) embedding p : SU(2) — SU(N)
labeled by a partition of N, with the residual flavor symmetry given by the commutant of the embedding—see [112]
for more details. Here, we consider only the principal embedding.
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M;™

Figure 6.4: UV quiver for the TA(,'") theory with o; = +1, Higgsing the SU (N) flavor nodes. The
rightmost figure depicts a shorthand we use throughout, for reference.

A vev of this form corresponds to the principle embedding of SU (2) into SU (N), completely break-
ing each SU(N)4 g c flavor group. The adjoint representation of SU(N) decomposes into a sum
of spin-j irreducible representations of SU(2), such that the components of My g ¢ corresponding
to fluctuations about the vev are labeled by the spin j and the o3-eigenvalue m = —j,...,j (e.g.
see relevant discussion in [112] and [100]). The only components that don’t decouple are those

with m = — j, which we’ll denote as M (4.8.C)

; below. After decoupling operators, the remaining

superpotential is
N—1
(4) ,(4) (B),,(B) (©),,(C)
WO ZI(M]. u Pl O ) (6.25)
j:
The UV quiver is depicted in 6.4.

The Higgsing shifts the R-charges

Jy=Jp, Jo—Jd— Y 2m" (6.26)
i=A,B,C

for m") the weights of the SU (2) representations. The resulting R-charges of operators are given
in Table 6.2. Note that the trifundamental Q’s have decomposed into N singlets, with R-charges
shifted due to (6.26).

Geometrically, closing the punctures reduces the degrees of the normal bundle; starting

with p=m+1, g = —m asin (6.1), we flow to a theory with
p=m+1, q=—m-—3, m>0
(6.27)
=>z=-m—2.
Note that this construction only yields 4d theories with |z| > 2, since starting with a TA(,m) theory

with 0 = £1 results in z = F(m+2) for m > 0.
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Table 6.2: Operators in the Higgsed Ty theory.

SUM) 0T
QU0 GOW O (o y < N1 (N—1,-2(s+1+u))
i (i<1<m) adj (0,2)
" (i<1<m) adj (2,0)
T (L<j<N-1) (2,-2j)
u (1<j<N-1) (2,-2)
M (1<j<N-1) (0,2j+2)
M(A,B,C) . .
. (1<j<N-1) (0,2j+2)

6.3.2 Computation of a;,;,; and c;;;

Next, we compute a and ¢ for the Higgsed T]\(,m) theories, assuming a flow to an IR fixed
point. The central charges can be computed from the ’t Hooft anomalies for the TJ\(,m) theory given
in Appendix B.3, adding in the contribution from Higgsing the SU(N) p ¢ symmetries of the
three punctures given in (B.11). The contribution to a from closing a single puncture can be
expressed as

ap(€) = 63—4 (26 —6€° +3N* (e~ 1)(e+1)* +N(1 +(2—3€)e) + N*(2 — e +3¢%)) . (6.28)

With these ingredients, we find that € is given by

. N+N?>+/Z2Z+ N1 +N)(N(1 +N) +22(4 +3N(1 +N)))

3(1+N+N?)z (029

and the central charges a and c are given by
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1
Atrial = 48(1 +N+N2)2Z2

_(1 +N)? —Z2(1+N+N?)(9+3N(1+N)(74+3N(1+N)))
(2N +N)N(1+N)+22(443N(1 +N))))3/2},

N A +NP 4+ (Z+N1+N)(N(1+N) +22(4+3N(1+N))))

—Z(1+N+N?) [6+N(1 +N)(17+9N(1+N))

(N—1)

trial 48(1+N+N2)222

—\/Z2+ N +N)(N(1+N)+22(4+3N(1 +N)))}

(6.30)
These match the BBBW results, given in (B.4) of Appendix B.2 with k¥ = 1 and g = 0. However,

as we discuss in the next section, this is not the whole story, and there will be field theory
corrections from operators in the theory hitting the unitarity bound. For this reason, we explicitly

include the label a;,i47, Ctriai-

6.3.3 Comments on ruling out g = 0 SCFTs

For the Higgsed TA(,m) theory, the chiral operators are summarized in Table 6.2. |g| runs
from %, / % for N = 2 and large-z, to %(1 ++/13) for z =2 and large-N. For instance, the singlets
0, é have dimension

AJQUW®]) = AIGWIW) = 2 (1 —£)(N — 1) = 2(s+ 1 +u)(1 +£)),
_N—l <sty< N—-1
—2 S8, LU~ —2 .

(6.31)

We generically find that some operators decouple, and at finite-N there will be field theory
corrections to the central charges (6.30), and thus corrections to the BBBW results. We will not
discuss these corrections in general, and instead briefly point out some features in the |z| = 2,3
cases.

Our construction does not reach |z| = 0,1. The case of |z| =2, i.e. m =0, is studied
field-theoretically in [75], where they find that the central charges violate the Hofman-Maldacena

bounds due to accidental symmetries from the decoupled operators along the flow to the IR SCFT.
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For z=3,i.e. m= 1, and N > 2, the operator Tru? decouples. Q, Q operators with

—21+NMA4N(Q2N -3)—11)+(N—1)/9+4N(1+N)(9+7N(1 +N))
2(9+10N(1+N)++/9+4N(1+N)(9+7TN(1 +N))

|s+1+u| > (6.32)

violate the unitarity bound. For instance, for N = 2 and z = 3, the three operators Q(“)(’ )(®) with
s+1t+u=1/2, and one with 3/2 would have R-charges that unitarity. In general, the decoupling
of these operators could lead to violations of the Hofman-Maldacena bounds, but we do not

pursue this direction here’.

6.4 General ¢,, from T]\(,mi> Building Blocks

6.4.1 Computing g;,;,; and c;,;, for g # 1

Now we consider the most general case of constructing a genus g surface with » maximal
punctures from TI\(,mi) building blocks, and computing a;,iq; and c;,iq;. One useful way to arrange
this computation is to glue in chains of T]\(,mi) theories to the n = 0 cases we constructed in Section
6.2.3. The result will be a genus g surface where the number of punctures depends on how many
chains we add. Then, we can close arbitrarily many of these punctures via the Higgsing procedure
discussed in Section 6.3.

Let us begin with the class of theories we considered in Section 6.2.3: start with ¢;
T,\(,mi)(c,- = —1) blocks, and ¢, T]\(,m")(oi = +1) blocks, glued with n; 4" =1 vectors, and n;
AN =2 vectors, where /] + ¢, =2g—2and n; +np, =3(g—1).

Next, glue in some number of additional TI\(,mi) blocks such that we do not change the
genus of the surface. In particular, introduce ¢} T]\(,mi) (0; = —1) blocks and ¢ TI\(,mi) (0i=+1)
blocks. This will require that we introduce ¢| + ¢, vectors to glue in these chains, where the

number of additional ./#” = 2 vectors r is given by £, — ¢}. These ¢| + ¢, blocks also introduce

A discussion of the chiral operators in the ring of these theories on a sphere and their decoupling is given in
[101], as well as some discussion on which geometries do not flow to SCFTs in the IR.
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Figure 6.5: A genus 2, single-puncture example of a possible generalization of the diagrams

in Figure 6.2. In our notation, these all have n;,; = 1, ng;y = —1, and £y + > = 2,n; +ny =

0+ 0, = n +ny =3,hy = 2. All three diagrams have the same IR central charges.
6’1 + Z’z punctures to the surface, of various colors. As in Section 6.3, we can close each of these
punctures by flipping their color, coupling in an adjoint chiral field, and letting the adjoint take
a nilpotent expectation value that breaks the SU(N) flavor group of the puncture. In particular,
let us close A of the 6; = —1 punctures, and h; of the 6; = +1 punctures. This will leave us
with n(-) = ¢} — hy minus punctures, and nlt) = ¢}, — hy plus punctures. An example of this
construction applied to a genus 2 surface that results in one plus puncture is given in Figure 6.5.

The total degrees p and ¢ for the surface will be given by

p=Y mi— Y mi+(L+86)—h,

{oi=+1} {oi=—1}
g=— Y, mi+ Y, mi+{1+0))—hy, (6.33)
{G,'=+1} {O','Z*l}

p+q=28—2+n") +nH) = _y.
The sum over {0; = +1} runs over the ¢, + ¢} plus nodes, while the sum over {o; = —1} runs
over the ¢; + ¢} minus nodes. Below, we write out answers in terms of z = (p —¢q)/(p+q), the
combinations
Nior = n-) +n(+), Ngif = n=) — n(+), (6.34)
and the Euler characteristic of the surface, y = —2g +2 — n;,;. Summing the contributions to the

trial central charges, we find a(¢€) is given by

ale) = —%(N— | (14 N) (21101 + naige(1 — 36))

(6.35)
+x (2+3(1 —)N(1+N) —z& (1+3N(1+N) +3e*(1+N+N?))) |,
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Figure 6.6: a as a function of the twist z for the g = 2,n,,, = 1 theories represented in Figure
6.5, plotted for N = 3,4,5.

and c(¢€) is given by

1
ce)=—=(N—-1)|—-4—(1 +N)(9N—58+9nd,~f83) + 110t (1 —N(5+9N))
64 '
(6.36)
+ 2 (1 =9e*N(1+N) +z¢ (—5+9e* —IN(1+N)(1—¢€%))) |.
Maximizing with respect to €, we find that € is given by
B 1
3(xz(1+N+N2)—ngir(1+N))
AN(1+N)+ <ndif(1 +N) ((1+N)(naif —4Nzx) —2x2) (6.37)

1/2
+%2(N2(1+N)2+z2(1+N(1+N)(4+3N(1+N>)))> ]

For nyo = ng;r=0, these formulae reproduce (6.16) and (6.17); for g = n;oy = nyir = 0 they
reproduce (6.30).

At large-N, € computed in (6.37) matches the BBBW result listed in (B.6). Then, the
leading order piece of a and c in a large-N expansion is given by

N(2¢ =2+ ntor) (922 —14(1 +3Z2)3/2>
9622

Qlarge-N = (6.38)
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This is simply our result (6.22) with (2g —2) — (2g — 2+ ny,). Thus at large N, the central
charges depend on the Riemann surface only through the Euler characteristic ¥ = —2g+ 2 — ny.

We highlight that these answers depend only on topological data: the total number of
punctures 7,4, the difference between the number of plus and minus punctures ng; ¢, the twist z
defined in terms of the normal line bundle degrees p and ¢, and the genus g of the surface (or
equivalently, the Euler characteristic). It is satisfying that the computation organized such that the

other parameters dropped out, leaving the (relatively) nice expressions (6.35)-(6.37).

6.4.2 Comments on operators

Deferring a detailed analysis of the chiral operators of this class of theories to the future,
we point out one interesting feature in the chain operators O}, 51\42. For illustration, consider
the theories in Figure 6.5. There will be N? fundamentals (and anti-fundamental) operators of the
form (QQQQQ)ES)(I), where _(1\7_2—1) <s,t < (N—;l) label the N operators and yield a shift in the
J_ charges of these operators as in Table 6.2, and ¢ runs from 1,...,N is an index for the SU(N)
flavor symmetry of the remaining puncture. If we close the remaining puncture, then there will
be N° degenerate chain operators that should correspond to M2-branes wrapping the surface.

More generally, for a class of theories constructed from gluing /1 Higgsed shaded flavor
groups and A, Higgsed unshaded flavor groups such that all the punctures are closed, there will

be gauge-invariant chain operators

2¢—2+h1+h
T (oot —(Nz_ I)Ssi,tisNT_l (6.39)

o50) (s ) (11) ()
i=1

as well as the corresponding operators constructed from the é’s. The R-charges of these operators

will be given by
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hy
R (ﬁ“')m(% ><fl>~~(fhz>> = <(N— 1)(hy+£62) — 21y ;s,) (1—¢)

| =
/-~

" (6.40)
+ ((N— 1)(2g—2+m —51)—2/122&) (1+£)>.
i=1

Thus, this field-theoretic analysis suggests a degeneracy of possible M2-brane operators®.

6.4.3 Computing qg,,;,; and c;,;, for the torus

Up to this point, we’ve considered g # 1. The case of M5-branes compactified on the
2-torus is special because the torus admits a flat metric, implying that the maximal amount of
supersymmetry can be preserved by fixing the normal bundle to the M5-brane worldvolume to be
trivial. The singular behavior at g = 1 in the computation of a and c is related to the fact that the
M>5-brane tension causes the volume of the torus to shrink. In our constructions, this means that
we should get a 4d .#" = 4 field theory in the IR when ¢ = 1 and z = 0.

One can formulate a nonsingular construction that preserves only .4” = 1 supersymmetry
by taking the torus to have line bundles of equal and opposite degrees fibered over it, i.e. taking
p = —q. Letting g =1 and p = —¢ in (6.33) means that we should require the total number of
punctures be zero. In the construction detailed in Section 6.4.1, the simplest generalized quiver
that this could correspond to is closing one of the punctures on a T]\(,m) block, and then gluing the
other two.

Redoing the computation of Section 6.4.1 for the torus, we find

. 1 [T+3N(1+N)
s=1 e=—3 (4D
and
N—1)(1+3N(1+N))3/?
e—1: q=PVZDUANUEN)T (6.42)

48v/1+N + N2

Indeed, (6.42) matches the BBBW result that we’ve written in (B.7), where our definition of p

8This degeneracy of operators was noted independently in [101].
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matches their |z|.

6.5 Future Directions

There are many directions one can think about based on the present work, some of which
we will list below.

First, we note that the authors of [101] study the chiral rings of these theories (much as
[113] and [114] studied the chiral rings of the 7} theory in detail). It would be further interesting
to study the moduli space of vacua of the 4d .#” = 1 SCFTs realized by our constructions.

In the present work we don’t discuss possible confinement of the gauge theories that result
from the gluing procedure. However, as shown in [100], when two T]\(,m) blocks with the same
m and opposite shading are glued with an .4~ = 1 vector multiplet, the gauge node confines. It
would be interesting to study the structure of confinement for our general constructions, as well
as to understand how various duality maps of T]\(,m) theories (discussed in [100], and [101]) act on
our constructions.

It would be interesting to obtain a field-theoretic construction of the N =2, g=n=20
theories with |z| = 0, 1. While these theories do not have a conformal phase, it could be useful to
study the IR dynamics from the field theory side’.

Also, it is shown in [110] that the BBBW solutions with rational central charges allow
probe M5-branes to break into multiple M5-branes at special points; in particular, when a and ¢
at large-N (given in (6.22)) are rational. It would be interesting to understand field-theoretically

what happens at these special points in our constructions.

9The author is grateful to Ibrahima Bah for pointing out this possibility.
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Chapter 7

Structure of Anomalies of 4d SCFTs from

MS-branes, and Anomaly Inflow

We study the 't Hooft anomalies of four-dimensional superconformal field theories that
arise from M5-branes wrapped on a punctured Riemann surface. In general there are two
independent contributions to the anomalies. There is a bulk term obtained by integrating the
anomaly polynomial of the world-volume theory on the M5-branes over the Riemann surface; this
contribution knows about the punctures only through its dependence on the Euler characteristic
of the surface. The second set of contributions comes from local data at the punctures; these
terms are independent from the bulk data of the surface. Using anomaly inflow in M-theory,
we describe the general structure of the anomalies for cases when the four-dimensional theories
preserve ./~ = 2 supersymmetry. In particular, we show how to account for the local data from
the punctures. We additionally discuss the anomalies corresponding to (p,q) punctures in .4~ = 1

theories.

130



7.1 Introduction

"t Hooft anomalies provide a robust measure of the degrees of freedom in quantum field
theories. In general, the anomalies for a given theory in even spacetime dimensions d can be
encoded in a (d + 2)-form polynomial known as the anomaly polynomial, which depends on
the various curvature forms associated to the dynamical or background gauge and gravity fields.
If the gauge or gravity field is dynamical, its anomalies should vanish or else the theory is
inconsistent. Otherwise, the anomaly doesn’t lead to an inconsistency, but often has interesting
physical consequences. We refer to anomalies in background gauge or gravity fields as "t Hooft
anomalies. For a review, see [115, 10].

In the last ten years, there has been a proliferation of new classes of four-dimensional
Superconformal Field Theories (SCFT’s), dubbed class ., that are inherently strongly coupled
and admit no known Lagrangian description. These theories can emerge from the low energy
limit of six-dimensional .4~ = (2,0) SCFT’s wrapped on a punctured Riemann surface, which in
certain cases describe the low energy dynamics of M5-branes. These constructions have been
revolutionary in that they provide a partial classification scheme for four-dimensional .4~ = 2
SCFT’s, and bring to bear new geometric tools for studying them [82, 83, 84]. Soon after their
introduction, it was demonstrated that these constructions can be generalized to study the space
of four-dimensional .4#” = 1 SCFT’s [85, 86, 87, 88, 89, 78].

The basic set-up of class .7 theories was reviewed in Chapter 5. An important ingredient
in the construction is a partial topological twist [90, 91], which is needed to preserve some
supercharges in the compactification of the six-dimensional theory. Depending on the choice of
twist, various amount of supersymmetry can be preserved in four dimensions.

Anomalies are particularly important observables for the theories of class .7, as they
provide a measure of various degrees of freedom in these inherently strongly coupled field

theories. The anomalies for .#” = 2 class .# theories can be obtained, in some cases, by using
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S-duality [82, 83, 95] and anomaly matching on the moduli space [103, 116]. In the special case
of .4~ =1 theories we can use Seiberg duality as well as anomaly matching on the moduli space
to obtain them [111, 117, 112].

In the cases where they are known, the anomaly polynomials of class . theories have two
contributions which are independent and must be stated separately. The first is the contribution
from the bulk Riemann surface, which we denote /(X ,). This depends only on the genus g and
number of punctures n through the Euler characteristic 2g —2 +n, and on the anomaly polynomial
of the UV six-dimensional theory. The second set of contributions come from new degrees of
freedom localized at the punctures; these are related to the consistent boundary conditions for the
six-dimensional theory at these locations. A contribution of a puncture to the anomalies of the
four-dimensional theory is denoted as I(P). The total six-form anomaly polynomial 167 for the

class . theory takes the form

n
I =1I6(Zg0)+ Y Is(P). (7.1)
i=1
Since the theories of class .# are defined by the compactification of a six-dimensional
theory, there should exist a prescription for directly computing their anomaly polynomials from
the geometric construction. Indeed, in the case of theories obtained by compactifying on a smooth

Riemann surface without punctures, integrating the anomaly polynomial /g of the six-dimensional

theory over the surface can yield the polynomial of the four-dimensional theory [118, 891!, i.e.
7 = / Is. (7.2)
Zg

This prescription requires shifting the curvature of the background R-symmetry gauge field with
the curvature form of the Riemann surface, implementing the topological twist. The integration
of the eight-form polynomial over the surface picks out the terms that are linear in the surface’s
curvature form, and therefore proportional to its volume form.

In the presence of punctures this prescription fails; we cannot obtain the full anomaly

I'This procedure fails when there are accidental symmetries. This problem is most commonly encountered when
compactifying on a Riemann surface with vanishing Euler characteristic—see for example [119].
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polynomial of class .¥ theories by simply shifting the background curvature and integrating.
There can be additional terms in the anomaly polynomial of the six-dimensional theory, and
the integration over the Riemann surface cannot account for the additional data localized at the
punctures.

Our primary goal in this chapter is to develop new tools for computing the anomaly
polynomial from first principles—i.e. from the six-dimensional theory, the compactification
scheme, and from the punctured Riemann surface. We will argue that this general form (7.1)
follows from anomaly inflow in M-theory on the M5-branes wrapping the punctured Riemann
surface.

Our strategy is motivated by the holographic duals of class . theories from punctured
Riemann surfaces [83, 94] (see [110] for probe analysis). In the gravity duals, the topological
twists are manifested by non-trivial S'-bundles over the Riemann surface. The connections on
these bundles are related to the shifts of the background R-symmetry in the twist, and their
curvatures F are proportional to the volume form of the Riemann surface. In the presence of a
puncture, F' picks up monopole sources that encode the new degrees of freedom associated to the
puncture. These monopoles are end points of additional M5-branes localized at the puncture and
extended along a direction normal to the surface. This gives a strong hint that in computing 12",
we need to enrich the shifting prescription of the background gauge field of the R-symmetry to
account for these sources. Moreover, in integrating the eight-form anomaly polynomial, there
is an additional interval that is normal to the branes along which the monopole sources sit. We
indeed recover all of these features in the anomaly inflow analysis.

We can summarize our main result from the inflow analysis for the case of .4~ =2 SCFTs
as follows. For simplicity, in this discussion we will restrict to the case of N M5-branes wrapping
a single-punctured surface X, ;. If there are n punctures, we repeat the same step procedure for

each of them.

e Given X, 1, add an interval [u] with coordinate p in the range [0,1] to obtain the space

133



LLL] X Zg,l-

e Along [u] we add monopole sources for F localized at the puncture on the surface, and
at u = u? (the a labels the different sources). In the region near the monopole, there is
a U(1), symmetry induced on the brane that ends on it. These U(1),’s are related to the
local data at the puncture. The curvatures for the background gauge fields for these U (1),’s,

which we denote F¢, can and do appear in the anomaly polynomial.

e The general solution for the curvature in the presence of the sources, F , 1s constructed. It
has a term proportional to the volume form of the Riemann surface, new terms that are
proportional to the volume forms of spheres S2 surrounding the a’th monopole in the space

(1] x Xg 1, and terms that are proportional to the F¢’s.

e We argue that 16‘7 can be obtained by integrating a nine-form, o, on the space [u] x Xg 1.

The form is given schematically as

o =d |Whs(F) +N*If | (7.3)
where I3 (f ) is the anomaly eight-form of the world-volume theory on the flat M5-branes
with the R-symmetry curvature form shifted by F. The form Ié’ depends on the local

puncture data. Its dependence on the curvature forms is fixed up to some coefficients that

we will study and determine in [120].

e The integral of Iy over [u] x X, | is a sum of boundary terms. The one at u = 1 reproduces
exactly the bulk term, Is(X, 1) in (7.1)—the form Ié’ does not contribute here. There are
also terms that come from the internal boundaries, S2, which depend only on the charge
of the monopole and on the p“. These terms account for the puncture data. The u“ and
monopole charges must be quantized; we study them and their quantization conditions

further in [120].

The structure of the rest of this chapter is as follows. In Section 7.2, we describe general
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features of the anomalies of of four-dimensional field theories preserving .4~ =2 or A4 = 1
supersymmetry from M5-branes wrapped on Riemann surfaces. Readers familiar with the class
. construction and anomalies can skip to Section 7.3.

In Section 7.3 we take a field-theory detour. Focusing on the case where the four-
dimensional field theory preserves .4~ = 1 supersymmetry, we derive the anomalies corresponding
to a large class of locally .4~ = 2 preserving punctures in geometries in which the bulk preserves
A = 1. We additionally discuss an illuminating way of parameterizing the anomaly coefficients
we obtain in terms of an .#” = 1 generalization of an effective number of vector multiplets and
hypermultiplets. This section and the inflow computation that follows may be read independently
of one another.

In the remainder of the chapter, we turn to a computation of the class . anomalies by
anomaly inflow in 11d supergravity in the presence of M5-branes, focusing on the case where the
four-dimensional theory preserves .4 = 2. We begin with a review of inflow for flat M5-branes
in Section 7.4 (originally discussed in [121, 122, 123]). In Section 7.5 we compute the anomaly
eight-form of the M5-branes in the curved background, which we argue contains boundary terms
when the Riemann surface has punctures. Integrating the eight-form over the surface, we are able
to derive directly from first principles the structure of the class .’ anomalies laid out in (7.1).
The local puncture contributions to the anomalies of the four-dimensional theories come from the

new boundary terms in the integration.

7.2 Structure of Class . Anomalies

This section serves as an extended introduction to the four-dimensional theories obtained
by compactifying the six-dimensional (2,0) theories on a Riemann surface, setting notation and
focusing attention on the main points of interest in the rest of the chapter. The experienced reader

can skip to Section 7.3.
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7.2.1 Anomalies of the (2,0) theories

The six-dimensional .4 = (2,0) theories are labeled by an ADE Lie algebra: Ay_; =
su(N),Dy = s0(2N), or ¢¢ 7. The six-dimensional (2,0) superconformal algebra is 0sp(4(8). Its
bosonic subgroup is SO(2,6) x SO(5)g, corresponding respectively to the conformal group and
R-symmetry group. These theories arise from decoupling limits of string theory constructions
[124, 125, 126].

The focus of the present work is the anomalies of the four-dimensional class .# theories,
which can be understood by tracking the anomaly polynomial of their parent six-dimensional
theories in the compactification on the surface. The six-dimensional (2,0) theories cannot be
written down in terms of the usual path integral of local fields, which makes understanding their
properties a challenge. However, as anomalies are inherently topological quantities, they are
accessible even for these mysterious theories.

The interacting Ay _ theory is the effective world-volume theory of N coincident M5-
branes, and the Dy-type theories are realized on the world-volume of N coincident M5-branes at
an R’ /7, orbifold fixed point. In these cases, the derivation of six-dimensional (2,0) anomalies
can be understood in terms of inflow for M5-branes in 11d supergravity. As the M5-brane world-
volume is six-dimensional, the anomalies will involve eight-dimensional characteristic classes,
packaged in an eight-form anomaly polynomial which encodes anomalous diffeomorphisms of
the world-volume of the M5-branes and their normal bundle. The idea of the inflow analysis is
that in the presence of the M5-branes, the total anomaly from zero modes on the world-volume
and inflow from the bulk should vanish in order for the theory to be consistent. Using these
methods (which we review in Section 7.4), the anomaly eight-form for a single M5-brane is

derived as [123, 121]

Pa(NW) — pa(TW) £+ (py (TW) — pr (NW))?] (7.4)

k1] = —
sl1] 48 4

NW and TW are the normal bundle and tangent bundle to the M5-brane world-volume W,
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Table 7.1: Rank, dimension, and Coxeter numbers for the simply-laced Lie groups. Note the
useful group theory identity dg = rg(hg+1).

G rg d(; hG
Av_1 |[N—=1] N*—1 N
Dy N N(2N—-1) | 2N -2
Eq 6 78 12
E 7 133 18
Eg 8 248 30

respectively, and p; are the Pontryagin classes, reviewed in Appendix C.1. (7.4) is also the
anomaly polynomial for a single, free (2,0) tensor multiplet. The tensor multiplet is the only
(2,0) superconformal multiplet that describes free fields, containing a self-dual three-form, as
well as Weyl fermions in the spinor representation of SO(5)g, and real scalars in the fundamental
of SO(5)g.

For a general six-dimensional (2,0) theory of type g = ADE, the eight-form anomaly

polynomial takes the form

dghg
24

The values of rg,dg, hg for the ADE groups are listed for reference in Table 7.1. Here, the normal

Llg] = rgls[1] + P2(NW). (7.5)
bundle NW can be thought of as an SO(5) bundle coupled to the six-dimensional R-symmetry.
This result was obtained for Ay_; in [122] via inflow with multiple MS5-branes, and
conjectured for all g = ADE in [127] using purely field-theoretic reasoning. It was verified for
Dy in [128] with an inflow analysis, and verified for all g =ADE in [129] via anomaly matching
on the tensor branch. An exact calculation of the a-anomaly for (2,0) theories via a similar
field-theoretic derivation was given in [130]. The famous N scaling at large N was first noticed
in the context of black hole calculations of the thermal free energy [131], and was computed for

the central charges via AdS/CFT [132].
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7.2.2 Structure of class . anomalies

As we emphasized in the introduction, the anomalies of class .¥” have two contributions

which are independent and must be stated separately:

I =I5(Sen) + Y I6(P). (7.6)
=1

1

Here, we’ll give a more complete discussion of this point.

The bulk piece Is(X, ) is always obtained by integrating the eight-form anomaly polyno-
mial (7.5) over the Riemann surface with a given Euler characteristic y = —2¢ + 2 — n, and with
the appropriate topological twist (5.3), as in (7.2) [89, 88, 118]. This piece will be proportional
to , since the terms in Ig[g| that survive the integral are linear in the curvature two-form on the
Riemann surface.

The second class of terms are due to the punctures. Deriving these contributions from a
six-dimensional perspective is more subtle. These pieces depend on local data which add degrees
of freedom to the theory, leading to global symmetries. In this note we’ll be interested in the
anomalies of a class of punctures dubbed regular punctures, which we review below. For more
details on the anomalies of regular punctures, see Appendix C.2.

A regular puncture is labeled by an embedding p : su(2) — g. For g = Ay_1, the choice
of embedding is 1-to-1 with a partition of N, and is therefore labeled by a Young diagram Y.
For a Young diagram with n; columns of height 4;, the field theory will have an unbroken flavor
symmetry G associated to the puncture. G corresponds to the commutant of the embedding p,
given as

G=S§ (7.7)

HU(”i)

The case of the maximal flavor symmetry G = SU (N) is known as a maximal (or full) puncture,

and the case of the minimal flavor symmetry G = U(1) is known as a minimal (or simple)
puncture.

The form of Is(P;) can be derived from string dualities utilizing the generalized quiver
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descriptions of the four-dimensional theories [103]. One can derive the contributions to the
anomaly polynomial from non-maximal punctures by Higgsing the associated flavor symmetry
and keeping track of the multiplets which decouple [116]. In Section 7.5, we will show that the
form of the I¢(P;) follows directly from inflow of M5-branes in the presence of punctures on the
Riemann surface, and demonstrate that in fact the puncture anomalies can also be derived directly
by integrating I3[g], in a way that we will make precise.

The additive structure of the anomalies (7.6) is motivated by the TQFT structure of the
class . theories. Both the .#" =1 and .4 = 2 class ./ SCFTs admit a formulation in the
language of a 2d topological quantum field theory [133, 134, 135, 136, 78]. The superconformal
index is then computed as an n-point correlation function of the TQFT living on the n-punctured
Riemann surface, with punctures corresponding to operator insertions. Thus, the theories are
organized topologically by specifying bulk information and local puncture information.

One should note, however, that even though the anomaly polynomial has a simple ad-
ditive structure, quantities of interest such as the central charges are still nontrivial and don’t
follow immediately from topological arguments. For instance, in the .4 = 1 case there is an
additional U (1) flavor symmetry that mixes with the U(1)g symmetry. Given an R-symmetry,
the anomaly polynomial encodes all the mixed anomalies with the global symmetries. However,

a-maximization is required to specify the exact superconformal R-symmetry.

Anomalies for ./ =2 SCFTs

Here, we review the anomalies for the four-dimensional .4~ = 2 SCFTs which we will
match onto in an inflow computation in Section 7.5.
The anomaly polynomial of a four-dimensional .#” = 2 superconformal theory with a

flavor symmetry G and SU (2)g x U(1)g symmetry has the form?

“More generally, the term kgcy (Fi )ca(Fg) should be written in terms of the instanton number n(Fg ), normalized
such that for SU(N) n(Fsy(y)) = c2(Fsy(v))—e.g. see [116].
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I =(ny—ny) ("’1(? )’ alf 1)11; 1(T4)) —mer(F)ea(B) +koer (F)ea(Fe). (1.8)

This expression follows from the definition of the anomaly polynomial for four-dimensional Weyl
fermions, as reviewed in Appendix C.1, and the .4~ = 2 superconformal algebra [17]. In (7.8), F}
(F») is the field strength for the background gauge field of the U (1)g (SU(2)g) bundle, and Fg is
the field strength of the flavor symmetry bundle. The flavor central charge kg is defined in the
Introduction. More generally, additional flavor symmetries would contribute additional terms in
(7.8).

The parameters n, and ny, are related to the central charges of the SCFT as a = ﬁ (5ny+ny),

and ¢ = % (2n, 4 ny). If the theory is free, then n, and n;, denote the number of vector multiplets
and hypermultiplets respectively; otherwise, we regard n, and nj as an effective number of
vector and hypermultiplets. Even for interacting field theories, this notation serves as a useful
bookkeeping device.

The R-symmetry of the .4 = 2 theories is identified as SU(2)+ x U(1)_ when p; =0,
and as U(1)+ x SU(2)_ when p; is zero. Denoting the generators of the U(1)+ as J+ and the

SU(2)r x U(1)g generators by I* and R_y—, respectively, this corresponds to the identification
p1=0: J.=2P, J =Ry,
(7.9)
p2=0:  Ji=Ry_, J_=2P.
As summarized in (7.6), the theories of class . have two contributions to their anomalies:
contributions from the bulk, and local contributions from the punctures. For the .4~ = 2 theories,

as suggested by [83] it is convenient to write these in terms of an effective number of vector and

hypermultiplets (n,,n;) as
n

ny=m(Zgn)+ Y m(P),  np=nu(Zen)+ Y nu(P). (7.10)
i=1 i=1

These terms were computed explicitly in [83, 95], with the help of a result in [137]. The bulk
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terms are given by>

4 4
1y (Zen) = —% (rG—I— §dgh(;) o mp(Sen) = —% <§dGhG) . (7.11)

The puncture contributions 7, ;(F;) for the Ay_; case are reviewed in Appendix C.2. As explained

there, these terms depend on the details of the Young diagrams corresponding to the punctures.
Together, the bulk contribution (7.11), and the puncture contributions (C.16) and (C.17)

determine the full anomaly polynomial of the four-dimensional .#” =2 class .#” SCFTs. Plugging

into (7.8), this gives

3 (T4 4
Io(Zn) = JEC [((c;) RS pfé >> ro—ctey (r(;+§dghg)] : (7.12)
+\3 4
1Py = ()~ () (YL - 2N Cicies hocten(Fe). (13)

Here, we’ve chosen py = 0 as our .4 = 2 limit, with ¢] = ¢;(U(1)4) and ¢; = c»(SU(2)-).
The terms proportional to (cfr)3 and cfrcz_ are 't Hooft anomalies for the background R-symmetry.
The ¢ p1(T*) pieces encode the mixed gauge-gravity anomalies. The last piece in Ig(P;) couples
the global symmetry G; preserved by the puncture with the U(1)g symmetry, and will have a
separate term for each factor in the puncture flavor symmetry (7.7). The anomaly coefficients

TR y— = TrRi,/:2 and TrR JV:2132 are readily determined from (7.13) using (2.33) and (2.35).

General structure of ./ = 1 class . anomalies

The .#" = 1 theories of class . preserve a U (1), x U(1)_ global symmetry which derives
from the 4" = (2,0) SO(5)g symmetry as in (5.1). A combination of the U(1)+ generators J+

corresponds to a flavor symmetry .%, and we can pick an R-symmetry Ry, given as
1

1
Rozi(ﬁjur), 9:5(J+—r). (7.14)

The exact superconformal R-symmetry R ,_; is

3Note that in much of the literature, the term proportional to the 7 in y = —(2g¢ —2 +n) is instead grouped with
the puncture contribution to the anomalies. The grouping we use here emphasizes the fact that the whole term
proportional to ¥ comes from global considerations. E.g. regardless of the types of punctures, this term only depends
on their total number.
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1 1
RJV:](E):R()—f-é‘y:§<J++J7)—§8(J+—J7), (715)

where € is determined by a-maximization [24]. When p; =0, € is fixed to be % and the generators

J1 are identified as in (7.9). In this case, we identify an .4~ = 1 subalgebra in ./" =2 as

1 4. 1. 2
Ry—1=3Ry=+ §I3 =3/ 37 (7.16)

and U (1)_ is enhanced to SU(2)_. Similarly, when p, =0, € = —% and U (1) is enhanced to
SU(2) 4.

The ’t Hooft anomalies for the four-dimensional class .7 theories are encoded in a six-
form anomaly polynomial. It follows from [16] and the definition of the anomaly polynomial
discussed in Appendix C.1 that the anomaly polynomial for a four-dimensional theory with a

U(1)4+ xU(1)_ global symmetry takes the form

I = éTr el +7-c7) - %Tr (el +I-c) ] pr(TY). (7.17)
Here, ¢ = ¢ (U (1)) are the first Chern classes of the U (1) bundles. There could be additional
flavor symmetries, which will mix with the R-symmetry and give additional terms in (7.17).

As discussed in Section 7.2.2, the anomaly polynomials for the .4~ = 1 class . theories
will decompose into background contributions from the bulk which can be computed directly by

integrating Ig[g] for the six-dimensional theory over the Riemann surface, and local contributions

from the punctures. The bulk contribution to 16‘5” is

c : ey 4 (e 2
I6(Egn) = —X(lz—H) {<( 16) — 11?214(1T )> rg— ——1o- (21) (rc—kgdch(;)}

N \ P (7.18)
_x(l—Z) (Cl) _C1P1(T) , 9 (C1> r _|_£_ld h
5 ¢ 2 G 5 G+ zdcha ) -
We’ve written the answer in terms of the twist parameter z, defined
Z:pl—pz, PL+pr=28—24n=—x(Een) (7.19)
P1tp2

This result for the bulk anomalies follows from the analysis in [89]. In the next section, we’ll give

a discussion of the contributions of punctures to the anomalies of the .4 = 1 class . theories.
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7.3 Anomalies of (p,q) Punctures in Class .

In this section, we study the anomalies of a large class of allowed punctures in the .4 =1
class . SCFTs which carry a (p,q) We present new results for the anomalies of (p,q) punctures.

This section can be read independently of sections 7.4 and 7.5.

7.3.1 Anomalies of (p,q) punctures

When the bulk preserves .4~ = 1, there are punctures that can locally preserve .4 =2
supersymmetry. In this case the local degrees of freedom preserve .4~ = 2 supersymmetry,
and therefore there is a local .4/~ = 2 R-symmetry action. This action is identified with the
background J1 symmetries in a nontrivial way, with different choices labeled by (p,q). For a
given background with fixed J, there is an infinite family of inequivalent (p,q)-labeled punctures.
The existence of these (p,q) punctures has been demonstrated in the gravity duals [94], with the
(p,q) restricted to co-prime integers, but as of yet they have not been understood in general from
a field theory perspective.

We identify the generators of the SU (2)g x U (1)g symmetry locally near a (p, q) puncture

as

Py -9y, =2, P, (7.20)

P—dq P—q q—p q—7p

Ry—=

Once R 4 —, is fixed as a general linear combination of J4, we can fix /3 by identifying the flavor
symmetry (R_y—, —2I3) with the combination (J+ —J_). Then, we can refine the statement
of Chapter 5 of what local data is required to specify a .4 = 1 theory of class .. When the

Riemann surface has punctures that locally preserve .4~ = 2, one must specify:

e A choice of embedding p : su(2) — g =ADE, determining the flavor symmetry at the

puncture, and

e A choice of (p,q), determining the R-symmetry locally at the puncture as (7.20).
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The (p,q) punctures are a generalization of the notion of “colored” punctures that appear
in field theory, e.g. in [117, 111, 112, 138]. Punctures in theories in which the bulk spacetime
preserves ./~ = 1 supersymmetry have an additional Z,-valued label ¢ = £1 called the “color”,
which corresponds to the fact that we can choose one of the two normal directions to the M5-
branes at the location of the puncture. In the gravity dual, the puncture corresponds to D4 branes
ending on D6 branes, and the choice of ¢ corresponds to the choice of a plane transverse to the
D4’s along which the D6’s are extended. In the more general framework of (p,q) punctures,

these choices correspond to

:+1 9 - 70
o < (p,q) = (p,0) 721)

c=-1 < (pg)=(049).
For 0 = +1 the geometry locally preserves a U(1); x SU(2)_ bundle, while for 6 = —1 a
U(1)- x SU(2) bundle is preserved. The overall normalization in (7.20) was fixed by matching
onto these two limiting cases.

For general (p,q) punctures, the anomaly coefficients can be computed with the local
twist (7.20). We’ll express the answer for the anomaly coefficients in terms of a local twist
parameter Z, defined analogously to (7.19) as

P—q

p=1 (7.22)
pP+q

When ¢ =0, Z=1, and when p =0, Z = —1, such that Z reduces to the ¢ = +£1 label in these
limits. The result is that a puncture corresponding to a flavor symmetry G with a (p,q) twist

yields the following contribution to the anomaly polynomial of the four-dimensional theory:

k
I5(P.2) = (1+2) {a@ () =aPerpi(rt) —alle () + ?Gcfcz(p@]
1 3 2 3 2k (7.23)
+(1-3) [a(_)(cl_) —a(_)cl_pl(T4) —a(_)cl_ (c7) +?Gcl_cz(FG)} .
(i)

The coefficients a’ are given by
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ay __ﬁ (nh(Pi)(1+2)2+2nv( )(1_4Z+ )) (7.24)

1
o = () —ma(B)), o) = 2 (a1 2P+ 2 (P)(1+2))
and a"” (2) = agi) (—2). The effective number of vector multiplets n,(P;) and hypermultiplets
ny(P;) in the Ay_; case are given in (C.16) and (C.17). The flavor central charge terms are as
given in (7.23) for our current definition of (p,q) punctures, but one can imagine a case where the
c2(Fg) also splits. The rules for this splitting are not clear, and will not be further discussed here.

Is(P;,2) reduces to the answer already known for punctures with Z = +1. For example,

the contribution of a maximal puncture with Z = —1 in the Ay_ case reduces to

2 +\3 + 4
(N2 1) ((cl) Cdmm (CI)2>+2NCT62(FSU(N))7 (7.25)

16(Pmaxal):_ 3 12 1

which matches n,(Pnax) = —d/2 and nj(Pmax) = 0.

7.3.2 Effective n,,n; for .4/ = 1 theories

It was conjectured in [112] that even when the bulk doesn’t preserve .4 = 2 supersymme-
try, an .4~ = 1 analogue of n, and nj, can be defined. In this section, we check this proposal for
A =1 class . theories with general (p,q) punctures. To do so, we’ll use the convenient basis of
(Ro,-%) defined in (7.14) for the four-dimensional global symmetries. When the .4 = 1 theory
is derived from an .4~ = 2 theory, Ry and .# are related to the .4 = 2 R-symmetry generators as
Ro=R y_—/2+ 15, F =—R y_p/2+ L. It will be further useful to express results in terms of
the twist parameters z and Z, as defined in (7.19) and (7.22).

The proposal of [112] is that the anomaly coefficients for the .4 = 1 class .¥ theories

can be written in the form

TrRg = n, — ny, TrRO =n,— %

a A A 3 A Ay
Tr.# = — (A, — Ap), Tr.%> = —f, + — 1 (7.26)

TtR.Z2 = —%, TtR3.F = %
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These parameters are defined such that when it is possible to identify the .4 = 1 subalgebra
as part of an .#" = 2 algebra, n, and ny, are precisely the effective number of free vector and
hypermultiplets of the .4~ = 2 theory. The 7, and 7, parameters are defined analogously for the
anomalies involving an odd power of the flavor symmetry .%, and should be loosely interpreted
as the .4/~ = 1 version of an effective number vector and hypermultiplets.

We find that (7.26) is true only for Z = 41 punctures, and requires some modification for
more general (p,q) punctures. Writing the anomalies in terms of (n,, 7, ny, 7y ), we find that the

A =1 class . anomaly coefficients take the form

TI‘R() =ny —np, TrF = ( I’lh)
n 3 o, A
TrRSZ_Zh+nv+§Z5—(Pi>a TrF3=Z—nV+EZz,-5+(E-), (7.27)
i i
TtRoF? = — 1. TtFRE = 2.
4 4

Relative to the .4 = 2 class . theories, the n, and nj, parameters have additional local terms.

They break into separate bulk and local contributions as

nup = Mup(Zgn) + Y, [nvn(P) + 6-(P)] (7.28)
i=1

nv,h —iny, h Z ny, h + 6+( )} (729)

The bulk pieces n, (X, ,) are the same as in the .#” = 2 case, which we repeat here for clarity:

1y (Zen) = —% (rG + gd(;hg) o mp(Sen) = —% (gdghg> . (7.30)
The local pieces n,,,(P;) are reviewed in Appendix C.2 for the Ay_; case, and depend on the data
of the Young diagram associated to the flavor symmetry at the puncture. In effect, the parameters
f, , special to the .4 = 1 theories are a twisted version of the ./ = 2 parameters.

The deviation from the conjecture (7.26) lies in the 04 (P;) terms, which written in terms

of the (p,q) parameters are given as

82 (P) = L (m () 20, (R). @31)

When either p or ¢ is zero, (7.27) matches onto (7.26), and we recover the known answer for
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the effective (n,,ny, Ay, ;). Otherwise, these represent new contributions to the anomalies. For
nonzero p and g, they contribute extra effective vector multiplets and hypermultiplets to the theory
that depend on local puncture data, due to their appearance in (7.28) and (7.29). Additionally,
they contribute new terms to the cubic anomalies, such that (7.27) deviates from (7.26). This
result can be stated as the fact that we require more than four parameters to label the anomalies of

theories with (p,q) punctures.

Discussion

For the moment, let’s get some intuition as to the meaning of the (n,,ny, i, A,) parameters
for the cases where 84 (P;) = 0. Consider two class .7 theories that each have an SU(N) flavor
symmetry. By gauging a diagonal subgroup of the SU(N) x SU(N) symmetries with either
an .4/ =1 or .4 = 2 vector multiplet, we glue the two punctures associated with the flavor
symmetries. Then, we can isolate the contribution of the .4#” =1 or .4#” = 2 vector multiplet to

the anomalies as [112]

N =1vector: n,=N>—1, n,=0, A, =0, =0
(7.32)

N =2 vector : nV:NZ—l, ny =0, ﬁv:NZ_lu fip = 0.

These precisely correspond to subtracting the contributions of two maximal punctures of different
colors (for .4 =1 gluing) or of the same color (for .4~ = 2 gluing).

Another simple example is to consider the Ay_1 (2,0) theory compactified on a sphere
with two maximal punctures and one minimal puncture. This is the 7y theory with one puncture
partially closed, and corresponds to the theory of N? free hypermultiplets H' = (@', 0'), i =
1,...,N in the bifundamental representation of the SU (N) x SU (N) flavor symmetry. For instance,
with N = 2 the theory is Lagrangian, and one can explicitly check that the matter content is
four .4 = 2 hypermultiplets, or eight .4 = 1 chiral multiplets. The contribution of these

hypermultiplets to the anomaly is

(N,N) hypermultiplets : n, =0, n,=N?, A,=0, A,=N? (7.33)
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as expected. In both of these cases, the 7, ;, parameters have a natural interpretation in terms of
splitting the .4~ = 2 multiplets into .4/~ = 1 components.

As a final example, consider the case when the Riemann surface has n(*) maximal
punctures with Z = 1, and n(~) maximal punctures with Z = —1. Denote the total number of
punctures as 1, = n{t) +n(7), and let ngif = n=) —n+). Then, (n,,#,,ny,Ay) reduce to the

known results (see e.g. [102])

4 d 2
ny = —%(FG + gdchc) - Tanm, n, = _?%dGhGa
(7.34)
ﬁ:%(i’ +4—th)—d—Gn- ﬁ:zz_%dh
v =75 re+3dche) — = ndif, =3 dche.

In all of these cases, there is an interpretation of the (n,,ny,#,,/A;) parameters in the
generalized quiver description of the .4/~ = 1 theory. The generalized quiver description is also
useful in understanding colored punctures with non-maximal flavor symmetry by Higgsing an
operator in the adjoint of the flavor symmetry group with a nilpotent vev, as discussed in the
context of .4 = 2 theories in [139], and in the context of .4~ = 1 class .¥ theories in [112].
For general (p,q) punctures with 81 # 0, however, we do not currently have a field theory
interpretation in terms of a generalized quiver. The fact that the anomalies for the (p, ) punctures
take the form (7.27) implies that there is no straightforward field-theoretic interpretation of
gluing (p, q) punctures. It would be further interesting to understand the operation of closing
maximal punctures via nilpotent Higgsing from the perspective of the anomaly polynomial for the
A =1 class . theories, as was discussed for the ./ = 2 theories in [116]. The additional U(1)
symmetry in the ./~ = 1 case that mixes with the R-symmetry naively complicates the problem.

We leave these interesting questions to upcoming work.

7.4 Inflow for Flat M5-branes: A Review

The anomalies of the (2,0) theories of type Ay—1 and Dy can be obtained by inflow

in 11d supergravity in the presence of M5-branes. The eight-form anomaly polynomial (7.5)
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encodes anomalous diffeomorphisms of the six-dimensional world-volume of the M5-branes
and their normal bundle. Here, we will restrict our attention to the Ay_; case, for which the
four-dimensional class .7 theories have a description as the low energy limit of N coincident
M5-branes wrapped on a punctured Riemann surface. Our goal will be to describe the inflow
procedure for this class of theories, and in particular derive new terms in the anomaly eight-form
for the M5-branes when the Riemann surface has punctures. Before we get there, we will take
some time to review the standard inflow mechanism for M5-branes. In Section 7.5 we will extend

this analysis to the main problem of interest.

7.4.1 Anomaly inflow

A QFT that admits chiral fields coupled to gauge or gravity fields may have anomalies. In
even spacetime dimensions d, consistent anomalies are encoded in a (d 4 2)-form I, known as
the anomaly polynomial. 1;, is a polynomial in the dynamical or background gauge and gravity

fields*, and is related to the anomalous variation of the quantum effective action as

8. = 27 / . (7.35)
My
Here, I[(ll) is a d-form obtained from /;,, via the descent procedure [141, 115, 142],
0 0 1
Lo =al?, 810, =arlh. (7.36)

0 indicates the gauge variation, and the superscripts indicate the order of the quantity in the gauge
variation parameter.

In string theory, gauge theories can be obtained by considering the decoupling limit
of extended objects—such as branes—in a gravitational background. Gauge transformations
and/or diffeomorphisms restricted on the branes induce global symmetries. If effective degrees
of freedom of the world-volume theory on the branes are chiral (possible when the world-

volume is even-dimensional), then the induced global symmetries can be anomalous. Since

4The anomaly polynomial can also involve differential forms on the space of couplings of the theory, as was
recently pointed out in the context of class .7 theories in [140].
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diffeomorphisms in the full gravitational theory must be preserved, the action of the gravitational
theory in the presence of the brane sources must be anomalous in order to cancel the anomalies
of the world-volume theory.

In inflow, the anomaly is canceled by a term in the bulk effective action whose variation
is localized on the brane [143, 144]. Such a coupling implies a source in the equations of motion,
modifying the Bianchi identity for the (D — p — 1)-form field strength dHp_,_| = dp—, (for
D-dimensional spacetime). The anomalous variation of the effective action can be written in
terms of the descent of a (p + 3)-form anomaly polynomial 7,3 as in (7.35), where the integral
will be over the (p + 1)-dimensional world-volume. This procedure was first explained in [144],
while a detailed study of the role played by consistent versus covariant anomalies appeared in
[145]. An extension to Green-Schwarz anomaly cancellation appeared in [146]. Such anomalous
terms in the presence of Dp-branes were understood in [147, 148, 149]. For a review of D-brane
and I-brane (intersecting D-brane) inflow, including an extended discussion on regularizing the
delta function sources in this context, see [150].

In the context of M-theory, the (5+1)-dimensional M5-brane carries a chiral tensor
multiplet, which has a one-loop anomaly; this is canceled by inflow from the bulk. The origin
of the anomaly in M-theory comes from topological terms in the supergravity action, which
have an anomalous variation in the presence of the M5-branes. Because the M5-brane acts as
a magnetic source for the C3 potential of M-theory, inflow can be understood as a result of the
modified Bianchi identity (schematically) dG4 = 5. For a nice review of anomaly cancellation

in M-theory, see [151].

7.4.2 MS5-brane inflow

Now, we review the inflow analysis for flat M5-branes in 11d supergravity. Anomaly
inflow for a single flat M5-brane was first discussed in [152], and the computation was done in

[123] and [121]. Inflow for N flat M5-branes was computed in [122]. We will use the details and
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notation reviewed in this section as a jumping off point in the computation in Section 7.5.

The eleven-dimensional supergravity action is given by

1 1 1 ,
S:—/ o[ R—=|G4|* ) — /c AGy NGy — /C A IR, 7.37
22 V g( 2| 4|) 2 3ANGa NGy — Uy, | C3ALR (7.37)

C; is the three-form gauge field, G4 = dC3 the four-form field strength, and ys, the M2-brane
tension. The integrals are over eleven-dimensional spacetime, M.

The couplings satisfy

1 21 27 21
_ _ - 738
2 @ M agy B (7.38)

(2ml))0°
and we fix 27/, = 1 such that uy, = uy, = 27. The eight-form Iénf is a polynomial function of

the spacetime curvature R on M,

1 1

T (pz(R) -2 (m(R))Z) : (7.39)

with conventions for the Pontryagin classes given in Appendix C.1.
Diffeomorphisms in the bulk are anomalous in the presence of M5-branes. For an M5-
brane with six-dimensional world-volume W, the tangent bundle to M splits as
TM|w, = TWe ©NW, (7.40)
with TWg an SO(1,5) bundle, and NWy an SO(5) bundle. Diffeomorphisms of M, that map
We — We induce SO(1,5) diffeomorphisms of the world-volume (gravitational anomalies) and
SO(5) gauge transformations of the normal bundle (gauge anomalies).
The M5-branes magnetically source the four-form flux G4, modifying the Bianchi identity
for G4 as’
dGy=N&,  85=38(")...80°)dy' A---ndy>. (7.41)
Here, the y* coordinates parameterize the transverse space to the M5-branes, which sit at y* = 0.
Terms in the bulk action (7.37) are singular due to (7.41), leading to inflow towards the world-

volume that should be canceled by anomalies carried by degrees of freedom on the M5-branes.

>The source appears with units given as dG; = 2K121 UysN Ss; in units where 274, = 1, 21(12l Uys = 1.
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A proper treatment requires that we smooth out the delta functions at the positions of the M5-
branes [121]. We will need to replace the delta functions with bump functions, and impose
regularity and gauge invariance of the field strength. This will imply a particular form of the
gauge transformation of Cs. For this discussion we restrict to the case of a single brane.

To implement the smoothing of the source, parameterize the transverse directions to the

M5-brane by an $* whose volume form is

41

The $* are isotropic coordinates on the S* fibers of the sphere bundle over the M5-brane world-

1 \
m@:(_fwmﬂwAdyAdedWy)Afwrzdgywﬁm: (7.42)

volume. We smear the charge over the radial direction with a smooth function p(r) that satisfies
p(0) = —1 and p(r — o) = 0, such that the Bianchi identity (7.41) is

dGs =dp(r) Nes. (7.43)
The four-form ey is a closed, global angular form that is gauge invariant under SO(5) transforma-
tions of the normal bundle and restricts to dQ4 when the SO(5) connection is taken to be trivial.

Denoting the SO(5) gauge field as F°, e, takes the form

1 2 1
€4 = 74 (DQ4 - 47‘5‘abcdeFab /\D)/’\C /\D)”\d)’}e + 4TgabcdeFab /\chy\e) : (744)

Here DQ, refers to d€24 with ordinary derivatives replaced with covariant derivatives, and V4
refers to the area of the §%, V4 = 872 /3. This is normalized such that integrating e4 over the S*
gives unity®. Note that de;, = 0 ensures that d>G4 = 0.
(7.43) requires that the relationship between G4 and C3 is modified to
Gy =dCs—dp ne. (7.45)
(0)

Here, e5” is a two-form related to e4 by the standard descent procedure,
e4 = dego), 56%0) = egl). (7.46)
Requiring gauge invariance of G4 then implies that C3 has an anomalous variation,

5Cy = —dp Ael). (7.47)

®Our conventions in this section follow [121], except that their normalization is such that Is, efpem =2,
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In order to compute the variation of the action in the presence of the MS5-branes, G4 and

(3 need to replaced with quantities that are smooth and non-singular in the neighborhood of the
branes. It follows from (7.47) that the correct replacement is

G = G-pel), Gy —d (c3 . peg°>) . (7.48)

Now we have the pieces to compute the variation of the bulk action and the anomaly due

to the brane source. There are two terms in the bulk action that can lead to an anomaly: the

linear coupling C3 A Iénf (Green-Schwarz), and the C3 A G4 A G4 (Chern-Simons) terms. From the

decomposition of the tangent bundle (7.40), it follows that Ié“f can be written as

L o1 (TWe) — pr (W) 2. (7.49)

1
I = — — | po(TWe) + pr(NWg) — 1

48
The variation of Iénf is given by the descent formalism as
= ar™® s — g™, (7.50)
We will need to regulate the integrals by removing a neighborhood of radius € around the
MS5-brane. Denote by D¢ (W) the total space of the disc bundle with base Wy and with fibers the
discs of radius €. First one computes the variation outside the disc with the shifted non-singular
forms (7.48). Then, take the size of the disc to zero. The total space of the S* sphere bundle over
We which forms the boundary of My /D¢ (Ws) will be denoted as Se(Ws).
Then, the variation of the linear term leads to

oS / inf(1) inf(1)
—=— dp N Nlg = I . 7.51
2 &0 S mey T W © (70

The other source of anomalies in the bulk action is the Chern-Simons term, improved to take into

account (7.48) as

SICS L. (0)
Ses 2 Cs — A(Ga—pes) A (Ga— pes). 7.52
o 6el—r>r(l)/Mn/D£(W6)< 3—pes ) (G4 —peq) N (Gy— pey) (7.52)
Its variation leads to
8Scs 1 (1) s(1
—— ANegNeg = (NW, IC 7.53
2 6 Js.om ey  NeaNey = / [p2(NWs) ] (7.53)

where the second equality is due to a result of Bott-Catteneo [153], and [p2 (NW6)](1) refers to
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the six-form related to p,(NWs) by descent. In both (7.51) and (7.53) we have integrated by
parts, and we’ve dropped the boundary terms in writing the final answers. A difference between
this case and the case when the internal space has punctures will be that the punctures lead to
boundaries, and the boundary terms in the integration by parts will need to be evaluated. We’ll
return to this point in the next section.

Combining this contribution with the contribution from the C3 A Ié“f term, the anomaly

eight-form for a single M5-brane is then

. 1 1
B[] ="+ 15" = o pz<NW6>—p2<TW6>+Z<p1(TW6>—p1<NW6>>2 : (7.54)

This is precisely the result we quoted in (7.4). For N M5-branes, the Green-Schwarz term is linear
in C5 and thus also linear in N, and the Chern-Simons term is cubic in C3 and thus also cubic in
N (we take p(r = 0) = —N). Anomaly cancellation then requires that I3[N] for N M5-branes is

given by

p2(NWs)
24

To obtain the anomaly polynomial for the six-dimensional Ay_; theories, we must also subtract

K[N] = ISS[N] + IIM[N] = (N* - N) +NLJ1]. (7.55)
off an overall U (1) corresponding to the center of mass motion of the branes, which amounts to

subtracting I3[1] from (7.55).

7.5 Class . Anomalies from Inflow

We finally turn to the main problem of interest: anomaly inflow for cases where the
MS5-branes wrap a holomorphic curve € .

As we emphasized in the previous section, anomaly inflow in a gravitational theory can
be understood as accounting for sources of connection forms in the variation of the action. In
the presence of punctures, the total space will have internal boundaries. The logic we will
employ is as follows. We can account for boundary conditions for the M5-branes by considering

additional sources at the boundaries. These sources model the branching off of the M5-branes
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at the punctures. This is consistent with the M-theory description of punctures as transverse
M5-branes that intersect the Riemann surface at a point. Accounting for these sources, the inflow

procedure yields additional contributions to the anomalies of the world-volume theory.

7.5.1 Inflow for curved M5-branes

As we reviewed in Section 7.4.2, in the presence of an M5-brane the tangent bundle to
the full eleven-dimensional spacetime splits into the tangent bundle and normal bundle to the
world-volume, as (7.40). When the M5-branes wrap a holomorphic curve ‘5&”, the tangent bundle
over the branes further splits as

TWs=TM'> ST, .. (7.56)
Since the Riemann surface is embedded in a C¥3 that is a sum of two line bundles, the SO(5)
normal bundle over the branes reduces to a sum of two SO(2) bundles,
NWg=S0(2);: ®SO0(2)_. (7.57)
The structure group of the normal bundle restricted to the flat four-dimensional spacetime is
covered by U(1)4 x U(1)_, which correspond to the global symmetries in the field theory in
(5.4). We will reduce the curvature as SO(2) x SO(2) C SO(5) (or SO(2) x SO(3) C SO(5) for
the .4~ = 2 preserving case), and then use relations between the Pontryagin classes of real bundles
and the Chern roots of their complexified covers—see Appendix C.1 for relevant formulae.

The curvature for the normal bundle NWg has two contributions: one from the Riemann
surface, and the other from the four-dimensional spacetime M 1.3 Then, the roots of the normal
bundle, which we’ll denote as n, can be written as

ny =ty +2c1(U(1)4), (7.58)
where ¢; (U(1)4) is the first Chern class of the U(1). symmetries of class ., and 7 is the

contribution of the curvature of the SO(2). bundles over the Riemann surface. The Calabi-Yau
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condition, or the topological twist, restricts the 71 as

P4 4i=0, /E =% (Zom). (7.59)
g.n

In these expressions, 7 is the curvature of the tangent bundle of the Riemann surface. It will be

useful to introduce the connection one-forms A4 and their curvatures, F., as
A 1 1
I+ =—dAyL = —F;. (7.60)
2r 2
If one of the contributions 71 is trivial, the compactification preserves eight supercharges
and the four-dimensional quantum field theory preserves .4~ = 2 supersymmetry. Without loss of
generality, we choose our .#” = 2 limit to be 7_ = 0, in which case the U(1)_ symmetry enhances

to an SU(2)_ R-symmetry. In this limit, we have the following parametrization:
f+:%E%, n+:%+2c1+, i=0, n*=—dc,. (7.61)
Here we have dropped the (+) subscript on F since 7_ is trivial, and we are utilizing a shorthand

notation

cf =a(U(l)y), ¢ =c(SU(2)-). (7.62)
In this chapter, we aim to simply discuss how to account for punctures in the inflow
computation above. For that it is sufficient to restrict to systems with eight supercharges. The
inflow analysis for systems with four supercharges can be discussed in the same way, however

the reduction is reasonably more involved. Further details and the analysis for systems with four

supercharges will appear elsewhere [120].

Angular forms

Now, we explain how to construct the angular form e4 that appears in the Bianchi identity
(7.43) to reflect the restricted U(1) x SU(2) isometry manifest on the four-sphere transverse to

the M5-branes.

When the M5-branes are curved, the normal bundle is reduced. The magnetic source for
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G4 must be suitably modified to reflect this. The source can be written alla (7.43) as
dGy = dp(r) NdQ4(SY) (7.63)
where dp (r) is the smoothing of 83(r)r*dr. Here, the angular form dQ4(S*) is for a four-sphere
$* that is not maximally symmetric.
This volume form depends on the normal bundle. If the twist preserves eight supercharges,
the normal bundle of the branes has a U(1) x SU(2) structure group and therefore only a U(1) x
SU(2) isometry is manifest on the four-sphere. The connection of the U(1) has a nontrivial
component over the Riemann surface, while the connection of the SU (2) over the surface is trivial

in order to preserve the SU(2) symmetry. A metric over the four-sphere can be chosen as

ds2(§4) — d‘uz

et u?)do* + p*ds*(Sg), (7.64)

with u the interval [0, 1]. The gauge invariant volume form is then
1
DQ, = szdu ADPADQy, Do =d —Ay—A, (7.65)
4

where Vj is the area of the four-sphere, V; = 872 /3, and DQ; is the gauge-invariant volume form
of the round two-sphere Sé given as
DQ, = %sabcz)y“ ADYPS¢, Dy = dy* — Ay, 23“1@“)2 =1. (7.66)
a—
A% is the connection for an SO(3) bundle over the branes, with corresponding field strength
F = dA™ — A% NA, (7.67)
The connection Ay is the contribution over the flat four-dimensional space, and A is the contribu-
tion over the Riemann surface. The corresponding curvatures are
dA =F, dAy =Fy. (7.68)
While the angular form (7.65) is gauge invariant, it is not closed. The most general closed
and gauge invariant angular form can be written as
Eyi=—d [qu) A (,u2D§22 - h(u)F29> + (apAg + aA) A eﬂ (7.69)

3Vy
where we have introduced an arbitrary function 4(u) and arbitrary constants (ay,a,). The SO(3)
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forms are given as

1 1
Ft = Esach“”yﬁ & =DQ, —F,  d(DQ,)=F= Esach“” ADYS.  (7.70)

One choice of h(u) and the a’s corresponds to taking the SO(5) gauge invariant angular form
in (7.44) and reducing it so that only an SO(2) x SO(3) is manifest. This choice corresponds to

h(u) =1and ay = a, =0.

Overview of the computation

Before going forward with the details, we pause to summarize the steps necessary to carry
out the inflow analysis in the presence of punctures. The details of the computation will follow in

the rest of this section.

1. At the locations of the punctures, the connection one-form A over the Riemann surface is
not defined. Motivated by the work in gravity [83, 94], we allow for explicit sources for the
connection localized at the punctures. The symmetries of the sources allow us to account

for the local puncture data.

2. Sources for the curvatures ' = dA induce sources for the four-form flux G4. We explain
how to account for these additional sources such that G4 is non-singular at the locations of

the punctures.

3. We compute the anomalies by varying the action. An important difference from the usual
case reviewed in (7.51) and (7.53) is the fact that with punctures there are additional
boundaries, and boundary terms in the integration by parts contribute to the variation. In

fact, the boundary terms will entirely account for the new contributions from the punctures.

4. Integrating the anomaly polynomial for the world-volume theory over the Riemann surface,
we compare with the known answer (7.13). The symmetries of step (1) manifest as global

symmetries in the four-dimensional field theory.
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A quick note on notation

The computation that follows requires the definition of various differential forms, and so
before we dive in we’ll take a moment to point out some features of our notation to facilitate ease
of reading.

In general, a numerical subscript denotes the degree of the form, which we will often
write explicitly for forms of degree greater than one. Then, the exterior derivative of a k-form
is a (k+ 1)-form; e.g. d f; refers to a form of degree k + 1. The only exception to this notation
is when we write the angular two-form on a two-sphere as dQ), = %chdﬁa Ad$P$¢. While this
expression utilizes Einstein summation notation, for clarity we will explicitly write any sums over
indices that label branes or punctures.

We will use the letter e—either capital or lowercase, and possibly with identifying
superscripts—to denote a gauge-invariant angular form. For instance, the angular form d€2; on
the two-sphere will be promoted to the gauge-invariant e?.

When an object satisfies the descent equations, we will use a superscript in parenthesis
to denote the order of the object in the gauge variation parameter. For example, if a k-form fj
satisfies descent, we will write

fe=dfl, 8% =df, (7.71)

Another notation we will frequently use is to put square brackets around a k-form, with the (0)

or (1) superscript outside the square brackets. Such an object refers respectively to the k — 1 or
k — 2 form related to the k-form by descent—for example,

RRENN (1.72)

This notation is useful when the main object of interest is the k-form. For further review on the

descent procedure and our conventions regarding characteristic classes, refer to Appendix C.1.
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7.5.2 Sources for connection forms

When the Riemann surface has punctures, the curvature form is not well-defined on them.
The connection one-forms A+ are singular at the punctures, and suitable boundary conditions are
needed. We propose that in order to account for punctures in the inflow computation we should

add magnetic sources for the curvature forms F., as

dF. =21 Z S(X—Xo)dfE Ndx! Ndx?. (7.73)
The (x',x?) are coordinates on the Rﬁe_rrllann surface and Xy, is the location of a puncture with
label o. The functions f; depend on the transverse coordinates and encode the boundary data for
the connection one-forms. The allowed choices of f; are constrained by supersymmetry. The
supersymmetric analysis that constrains the f’s will be presented elsewhere [120].

For the time being, we restrict to cases with one puncture, @ = 1, and reductions that
preserve eight supercharges. For each brane that wraps the Riemann surface, we can turn on a
source term. We write

dF =218(x— %) Y df*(n) Adx' ndx*,  df*=k*S (u—p)du, (7.74)
where a labels the different brajles and the constant k¢ is either zero or one. More general f*
could be obtained by smearing the delta function source.

Each source corresponds to a monopole located at (X =X, = u®). In M-theory, this
source is a co-dimension three object whose world-volume we denote as Wg. The tangent bundle
of M-theory near the source decomposes as

TMi|w, = TWg BNWs, (7.75)
where TWs is the curvature bundle on the source and NWg is an SO(3) normal bundle. The
diffeomorphisms of M-theory induce an SO(3) gauge symmetry on the world-volume of the
source. The background geometry where the source lives splits the u direction from the (x1,x;)
directions, and therefore only a U (1) subgroup of this SO(3) gauge symmetry group is preserved,

which we will call U(1),. Near the source we can pick coordinates (R, 7,,¢%) where R,
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is the overall radial coordinate, 7, is an interval [—1,1], and @“ parameterizes the S! whose
diffeomorphisms induce the U (1), gauge symmetry. The explicit coordinate transformation is
given in Appendix C.3.

This description of the sources is consistent with the picture in the holographic duals
[83, 94]. In these solutions, there are additional M5-branes that are localized at the punctures.
These branes are extended along a direction normal to the Riemann surface and end at monopole
sources of a U(1) connection of an S! bundle over the surface, which here corresponds to the A
connection. The location of the monopole sources along the u interval are denoted here as u%’.
The global symmetry that the four-dimensional field theory sees will be related to the precise
values of the u“.

Analogously to (7.43), we must smear the charge at each monopole over the radial

direction. The gauge invariant and closed source for F' can be written as
dF =Y dp.(Ra) NéS, (7.76)
where the gauge invariant and closed angulgr form near the source is given as
€5 = %d [T D@* + a,A”], Do =de® —A“. (7.77)

In particular, ¢¢ is closed, with ¢% = de?”)

. The constant a, here is arbitrary. The special case that
¢ derives from the restriction of the full SO(3)-invariant angular form corresponds to a, = 0. The
one-form A is the connection of the U (1), over the flat four-dimensional space with curvature
F% = dA®8. To smooth out the source, we have excised a ball around the source of size € and
replaced the delta functions with bump forms dp,(R,) that satisfy

Pa(Ry — o0) — 0, pa(e) =k € Z. (7.78)
In particular, note that the k“ are quantized (to be further discussed in a moment).

The Bianchi identity (7.76) for F is solved by

F=dA-Y dpa(R)nef”. (7.79)

"The u interval is the y interval in the backreacted systems in [83].
8The contribution of A% along the sphere is set to zero in order to preserve the SU (2) symmetry.
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The first term dA is the flux associated to the holonomy of the Riemann surface, which contributes
to the Euler characteristic. In particular, the background curvature of the tangent bundle of the

surface £, discussed around (7.59), still satisfies

dA = —2nf, / dA = =27t (S,.1). (7.80)
z"g.l

The second set of terms in (7.79) depend explicitly on data at the monopoles.
The gauge transformation induced by the U(1),’s leads to

§AY=dr?,  8¢"=2%  sA=-Y e Vdp,. (7.81)
From the gauge transformation, we see how to shift A and F' suih that they are non-singular at
the sources, as

A—A=A-Ype{Y F - F=daA (7.82)
a

A and F are the well-defined forms that will need to be used instead of A and F in computing the
variation of the action.

It is further convenient to split F into two pieces, as
~ 1 0 1
F=Fy— 3 ;pa(aa —1,)F%, Fy=dA— ; (dpa A e‘l’( )+ Epadra /\D(p“) . (7.83)

Fy is the gauge-invariant volume form of the Riemann surface. The F; are the curvature forms
for the U (1), symmetries, whose coefficients in F depend on the interval 7, and the smearing
function p,(R,) centered at each monopole.
The boundary conditions for the background curvature and connection near the puncture
are
R,—0: dA —0, and A — c,do“, (7.84)
for some constant ¢,. As R* goes to zero, the connection is flat. This can be seen by looking at
the background metric near the puncture [94]. This choice of boundary conditions allows us to
write several integral identities that will be useful to the computation of anomalies later in this

section, which we give in Appendix C.3.
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The curvature form F satisfies a quantization condition. In particular, the flux of F' through

the sphere S2 surrounding a monopole at ¢ is quantized, as

1
/ Foiicz (7.85)
27T

Punctures that preserve different amounts of flavor symmetry in the four-dimensional field theory

will correspond to different M5-brane profiles [83, 110], and different choices of flux k“.

Multiple punctures

When there are n punctures on the Riemann surface, there is a source for each brane at
the location of each puncture that must be smoothed. Then, there will be a U (1) gauge symmetry
induced on each source world-volume, such that €5 also receives an index o labeling the puncture.

These sources can be written as

dF = Z deaa o) Ny (7.86)

a=la=

The non-singular form F will then also receive a separate contribution from each puncture,
F=F- %ggpa,a(aa,a — Ta,)F*Y, (7.87)
where the gauge-invariant volume form of the Riemann surface is given by
Fo=dA— ZZ <dpaome1 >+ 5Pa. adraa/\DgD““). (7.88)

The background curvature dA integrates to the Euler characteristic on the n-punctured Riemann

surface, as

/ dA = 27y (Sen) = 27(2 — 2+ n). (7.89)
Yon

Because each source is localized by the (smoothed) delta functions, it suffices to understand the
one-puncture case in order to generalize to the n-puncture case. For ease of reading, we will

continue the calculation for a single puncture.
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Consistent sources for G4

The sources for F' induce sources for G4. Since the gauge invariant angular form in (7.65)
has an explicit dependence on F', G4 cannot be closed in the presence of sources for F. It needs
to be further improved.

To understand the sources induced for G4, we temporarily turn off the connections on the
four-dimensional space. Then, the closed magnetic sources for G4 in the presence of N M5-branes

are
1 s 1 3 1
- —A)+=(as— ) F ) AdQ+ — Y KENdQy, .
dGy V4dp(r)/\(/,t dun(de )+3(a w) )/\a’ 2+V4za: SNdQy (7.90)

dK§ = % (as—u*)dp(r) Adpa(RY) Ndt, Ndg“. (7.91)
The K5 terms are needed to close the source term for G4 in presence of the monopoles. We
observe that consistency of the sources requires the M5-branes wrapped on the Riemann surface to
branch off at the punctures. This is consistent with the probe analysis for punctures in holography
[83, 110].

In the presence of the monopole sources for F', the most general closed, gauge invariant,
and global source for G4 is given as
dGy = dp(r) NEy. (7.92)
Our convention is p(0) = —N and p (r — o0) = 0. The angular four-form E4 is obtained by taking
E4 in (7.69) and replacing the connection A and the curvature F' with the global and non-singular
forms A and F. This substitution will naturally include K¥.
Now, G4 can be written as
G4 =dC3 —dp NE? (7.93)
where we have
Ey=dE",  SE =aE". (7.94)

Similar to Ey4, in these forms we substitute (A, F) with (A, F). Since G4 is gauge invariant and
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53(0) transforms non-trivially, we must have

5Cy = —dp NELY. (7.95)

This suggests that we shift the potential and the flux in the action as
C;—C=C—pEY,  G4— Gy=dCs. (7.96)
In addition to the condition that G4 integrates over the S*-bundle to N, we also have the

quantization condition that
/ Gy = fu(u?) € Z. (7.97)
52,82

Here f,(u®) is some function of the monopole locations 1. This is then a quantization condition

for the u“.

7.5.3 Variation of the action

The variation of the action has two terms, given as

s 1 ~ ~
— =5/ C3/\G4/\G4—6/~ Cy NI, (7.98)
2m 6 Jiy, My

We will find that we need to improve I (Fy, F) to I (Fy, F) = Ii". We've excised small regions
around the M5-branes (r < €) and around the monopoles (R < &%) from M;; to obtain M 11- The
variation of the action is computed by integrating over M, and then taking the €’s to zero. In
the region near r = €, we split the eleven-dimensional manifold as M| = [r] x M'3 x Mg, where
the six-dimensional part is the total space of the S* bundle over the Riemann surface with balls
surrounding the monopoles removed, as per the discussion around (7.85). The boundary of each
ball is a sphere of radius €%, which we have denoted as S2. In particular, M and its boundary split
as

Mo =Sy xS x [] xZg1,  IMg=Y Sy x5 xSz (7.99)
a

The manifold has a boundary component labeled by a for each brane.

In this section, we will compute the variation from the Chern-Simons and linear terms in
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turn, and evaluate their contributions to the anomalies. As we discussed in the introduction, the
final answer can be repackaged as a nine-form (7.3), which integrated over [} x Lo 1 gives the
anomalies of the four-dimensional theory. After computing the variation, we will comment on

how this simple form comes out of the analysis.

General features

Before getting into the details, we summarize the main features of the computation of the
variation. We find that the variation of the action splits into a bulk contribution to the integral and

a boundary contribution that depends on local puncture data, as

E__/mezg‘, [18 ] _/mesg [18 } . (7.100)

Each of these pieces receives contributions from both the linear and Chern-Simons terms in (7.98).
We can understand these two contributions to the anomaly independently.
The bulk contribution comes from an integral over the bulk spacetime in the variation of

the action, of the form

oS (1)
% 5 / oAbk — / [zgulk} . (7.101)
2 M\ 3%, M13x%,

AP s a ten-form computed from (7.98), whose explicit expression will be given later. From

(7.101) we reconstruct the eight-form polynomial Ig"ﬂk

, which corresponds to the anomaly for the
MS5-branes branes wrapped on the surface.

The statement of class .7 is that the bulk anomaly polynomial is derived by integrating
the anomaly polynomial for the six-dimensional world-volume theory over the Riemann surface.
Indeed, we find that integrating Ié’“”‘ over the Riemann surface matches onto the bulk contribution

Is(Xg,1) in (7.6). In particular, the integrand Abulk

is proportional to the gauge invariant volume
form on the full space M3 x M6, which is proportional to du A dA. By the relations in (C.22)
and (C.23), the integral vanishes for any term with a p,, such that without loss of generality we

can fix F = dA. Thus, the terms in the anomaly polynomial for the four-dimensional theory
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coming from I}g’“]k will have no dependence on the local puncture data, and will be proportional to
the Euler characteristic of the surface.

The puncture contribution to the anomalies comes from a boundary term in the variation
of the bulk action, which is non-vanishing because 1\716 has internal boundaries of the form

S(}) X S%z x 82. In particular, the variation has a contribution of the form

oS (1)
e 3/ d (Bde> :/ by — _/ [Igdy} ) (7.102)
27 M3 %M M'3x M M13xS2

The integrand B®® is a nine-form that will be explicitly given later. The eight-form Ig Y packages
the anomalies from the new degrees of freedom that arise due to the punctures. These degrees of
freedom live at the intersection of the eight-dimensional monopole source and the world-volume
of the M5-branes. Then from (7.102), we can directly compute the contribution to the anomaly

six-form of the four-dimensional theory as’

1s(P)) D = —Z/ BhYY. (7.104)
a Sy xSHxS3

Variation of Chern-Simons term

The variation of the Chern-Simons term reduces to

Ses _ 11, <pE§1)> Ad <pE3(O)> Nd <p53(0)) (7.105)

2m My

6
_1 3 W) A AT 2 (U AFO A E
_6/[r]dp /mez% [Ez NEgnEy—Zd (B nEY AE) | (7.106)

In evaluating the variation, we dropped terms involving C3. The integrand factorizes in its r

There is a subtlety with regards to the order in which we perform the descent in these expressions. The anomalies
for the four-dimensional theory are given by first reconstructing g, and then integrating over the Riemann surface.
Thus, e.g. for the bulk term we should reconstruct 18" from [12"](!) in terms of natural six-dimensional quantities:
the roots 7. Then to derive the anomalies of the four-dimensional theory, we decompose 1. over the M3 x Yot
base, and integrate. However, if we wish to compute the four-dimensional bulk anomalies directly from

lo(Ze1)))) = [ A, (7.103)
Mg

we must be careful with the order in which we decompose over the base versus apply the descent formalism. Varying
with respect to F and Fy separately will give a different answer than varying with respect to ny. This ordering shows
itself in extra constraints on the descent parameters for reducible terms in the anomaly.
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dependence and therefore we can pull out the overall p dependence. Since p vanishes as r — oo,

the only contribution comes from r = € where we have
/ dp® = —N>. (7.107)
[r]

We also needed to integrate by parts, which lead to a boundary term that—unlike the flat branes
case—can be nonvanishing.

We group the variation as in (7.100). First we will discuss the bulk term, given by

[Ibulk} o _N
Cs.8 6 Jspxsani

E\V NEyNE;. (7.108)
In general, the anomaly will depend on the choice of the function A(ut) in (7.69). In this chapter
we will not analyze the general case, and will instead fix them to match onto the reduction of the
SO(5) bundle to SO(2) x SO(3), with h(u) = 1 and ay = a; = 0.

Expanding the integrand of (7.108), the only terms that survive are proportional to the
volume form on M'3 x Mg, and therefore to d u AdA. The coefficient is a polynomial in the
pa’s. By the relations in (C.22) and (C.23), the integral vanishes for any term with a p,, and
therefore in evaluating the bulk terms we can fix F = dA without loss of generality. In other
words, the bulk term does not see the monopoles and we can simply evaluate the integral with
(Egl),E}) — (Eél),E4> In this case, we reconstruct Igglg as

putk _ N 2N ’
125 = NW, 7.109
cS8 — 24 nyn_ 24 p2( 6) ( )
The bulk anomaly contribution to the anomaly polynomial of the four-dimensional theory can

then be computed from (7.109) as
bulk bulk 2N : dA + 2N ’

Icse = Css——T Er AL ZTX(Zg,1)CI+C£- (7.110)

Recall that the relation of the roots of the normal bundle n. to the Chern roots of the U(1), x
SU(2)_ is given in (7.61).

The story will be similar for general A(1) and ag,ay, When we compute (7.108), we will

find that the only terms that survive the integral over [1] x 4 | will be proportional to dA, such

that we can still replace F = dA. Then, n, is independent of ( and can be pulled out of the
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integral. The effect will be to simply multiply the answer for Igg“g by a function of ay and a;.
These constants can be fixed by regularity and matching conditions. We do not consider this more
general case here.

The boundary term is given by

bd (0)
[ICSyg} _ Z/sma 5 B0 5 By, (7.111)

We need explicit expressions for the E’s in order to compute the boundary contributions, which
requires a more detailed discussion of the angular forms than we will give in this chapter. Instead,
here we simply highlight the form of the answer. For general choice of 4(1) and ag,ay, (7.111)
will allow us to reconstruct the eight-form

Jbdy 3

CS 8 =N Z€

for some function /| (u?) (which will also depend on the values of ay,ay). Recall that the u“—

i (7.112)
which are quantized—are constants corresponding to the locations of the monopole sources. The
roots ny are restricted to the spheres surrounding the sources.

In (7.112), the only terms in . that can contribute are those proportional Fp—the gauge
invariant volume form on the Riemann surface defined in (7.83). Then, without loss of generality
we can replace F — Fyin ny. It follows from (C.25) that u will be fixed to u“ in each term
of the sum over the branes (which we’ve already implemented in (7.112)). Integrating over the

boundaries Sﬁ, the contribution to the four-dimensional anomalies will take the form

Jbd bd 3 _
CSy6 = /Szlcsys =N ZCT% £(u), (7.113)

a
where the coefficient £(u?) depends on the p“. We will not comment further on the exact form of

this coefficient.

Variation of linear term

Next we evaluate the variation of the linear term. For this, we need to first reduce Ié“f

in (7.39) and then restrict to the case with eight supercharges. Under the decomposition of the
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curvature bundle, we have
p1(R) = p1(TH) +#* +n% +n? (7.114)
p2(R) = po(TH) + pi (TH) (* + 13 +n?) + 2 (. +n*) +nin”. (7.115)
The relation of the roots of the normal bundle, n., to the Chern roots of the U (1), x SU(2)_
given in (7.61). The curvature of the Riemann surface is given as 7, which satisfies (7.80).
In evaluating the linear term, we will need to replace F' with its global extension F given

in (7.82). We reduce the eight-form while only keeping terms that can be non-trivial in the action,

leading to
~ 4 ~ 2
o 1;—2 (% +2c1+> - 91—6 (p1(T*) —4cy ) A (%—I—ZCT) : (7.116)
The variation of the linear term goes as
—5/C AT = —5/G4A““‘f /G4 AdlM™) /d(pE§°)> Adl™(7.117)
— /[ /Mlmzﬁ N <E3(O) Aig‘f“))] . (7.118)

Analogously to the contribution from the Chern-Simons term, the variation of the linear
term has a bulk contribution and a boundary contribution due to the monopoles. The bulk term is

determined by

[Ibulk} m_ _N / B A ;mf( )
S:bxséx[/.t]

In evaluating this bulk contribution we can drop all terms proportional to the p,’s, since the

(7.119)

integral with the volume form on M5 vanishes with them. Again, we can simply replace E, with
E4 and F with dA. Since the polynomial Ié“f has no dependence on the angular coordinates, it
follows that the only contribution from Ej is actually the volume form of the transverse four-
sphere. This expression is independent of any choice for () in (7.69). We can then reconstruct
the bulk contribution simply as

Ry =NI". (7.120)

Integrating over the Riemann surface, we compute the contribution to the six-form anomaly
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polynomial of the class . theory as

o) o () pi(Th) ey
Jbulk _ / Jhulk _ _%( 81 N 1/ _ -1 172 ). 7.121
L6 Eg,l LS8 2 3 12 + 3 ( )

The boundary contribution is determined by
1
[Edgy —NZ/ i (7.122)

In evaluating this boundary term we note that Ié“f has no legs along the S é) X ng directions, and

(0)

so the integral is non-vanishing only for terms in E; ™ that have legs along the circle and sphere
directions. This expression is uniquely fixed by the volume of form of the transverse four-sphere
in dl:%(o) = 54, as 53(0) — %d(p Ad€). Thus, we have that
(1)
Jbd f(1
[LSY} =N Lk ay3ginit (7.123)

Finf(1)

To compute the contribution to the four-dimensional anomalies, we need to expand I, 7,
and keep terms proportional to Fy since these are the only ones that will not integrate to zero. In
this computation we will take a, = 0 in (7.77)—i.e. we consider the case that ¢5 derives from the

SO(3)-invariant angular form. We compute

_ (1
o) SRy ([(e)® efp(T?)  erey W
6 221 3 12 3

(7.124)

2 o (1) 1
et | 2| F o) 5] ).
a a,b
We have written this expression in terms of the first Chern classes of the U(1), symmetries,
FO=22m)c1(U(1),) =2(27m)c. (7.125)
Next, we integrate over the boundary spheres. From the integral identities given in (C.25), we

have that

h) 52 =

54 2 3

Any terms that are odd in 7, integrate to zero. The final answer for the boundary contribution of

K(), [ 05 (Pt (py7) = — Bk (7,126

the linear term to the anomalies of the four-dimensional theory is

pdy () epi(TY)  cfey a 21
I = —Z { ( 3 5t + (k)3 (¢ )12 . (7.127)
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This answer is expressed in terms of the quantized k“ fluxes of the sources, and the locations u¢

of the monopoles along the transverse direction to the surface.

7.5.4 Total 4d anomaly from inflow

We now have all the pieces to give the total anomaly polynomial for the class . theory
on the branes. First, we note a simple way to reformulate the results.
We collect the terms that contribute to the anomalies of the world-volume theory on the

branes as

~ N3 ~ ~
I = NI + 2 pa(NW), Y=Y (N (u“)31é“f+N3€(u“)pz(NW6)) o (7.128)

where recall that " is —1/48(pa(R) — 1/4(p1(R))?), with p; »(R) given as (7.114)-(7.115), and
n4 is a function of F. The function # (1) (from (7.112)) is determined by the local data at the
punctures, which we will not determine here. The terms linear in N came from the linear term in
the action, and the terms cubic in N from the Chern-Simons term.

We showed that integrating Ig“lk over the Riemann surface gives the contributions to
the anomalies of the four-dimensional theory whose coefficients are proportional to the Euler
characteristic of the surface, . These terms do not see the monopole sources. Integrating Ig dy
over the boundaries S2 gives the contributions to the anomalies of the four-dimensional theory
whose coefficients depend on the local data of the punctures—in particular the locations of the
monopoles 1 and the fluxes through spheres surrounding the sources, k°.

These results can be conveniently repackaged in terms of the integration of a nine-form Iy

over the space [i] X X, ;. Define
lo = d [i3 1" 4+ N3 £ (1) pa (N W) | (7.129)

where f(u) is related to /() as /(i) = f(u) 4+ p>/24. Then, the contributions to the class .&”
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anomalies, Igy , are derived simply as!0

e =
[:u]ng,l )

The bulk contributions to the four-dimensional anomalies, 16(2&1 ), come from the bound-

Rk /S LY =1 (7.130)

g1

ary terms in the integration evaluated at g = 0 and u = 1. The puncture contributions, Is(P),
come from the integration over the boundary spheres S2. From this perspective, the total anomaly
polynomial for the class . theory naturally reproduces

I =1Is(Ze1) +16(P). (7.131)
These expressions validate the general expectation of the structure of anomalies of class .

theories as described in (7.6).

Class . anomaly

Now, we give some discussion of the contributions to the class .# anomalies. The bulk

terms were computed in (7.110) and (7.121), which together yield

Z(Zgl) (Cl+)3 Cfrpl(7 4) CI+C2_ 4.3 4 -
I(X, )= 257 — + - = . 132

Indeed, I5(X, 1) is of the form described in (7.2) where we integrate the polynomial from the
M5-branes given in (7.55). The difference between the result of this computation and the anomaly
polynomial of the Ay_1 (2,0) theory is due to an overall free tensor multiplet that decouples from
the dynamics of the M5-branes.

As we discussed, the terms that depend on the local puncture data can be given as

bd
Is(P) = /Szlg y (7.133)
with IE dy given in (7.128). An important feature of these terms is that there are independent
contributions from each monopole source, and moreover, there are no mixed terms between

sources due to the integrals over p,pp vanishing for a # b.

We explicitly computed the contribution of the linear term as

10This construction requires the boundary condition that £(1) = £(0).
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cH3 o 4y ot
16(P) ») _gZ(“a>3ka (( g) o 1p11§T ) 132 ) _%Z(“a)3(ka>3c_1'_(c?)2~ (7.134)

a a

This gives the general form of the answer that one obtains from inflow. This answer depends
on the u“, which correspond to the locations of the monopoles along the u direction, and the
charges k“ of the monopoles. More work must be done to actually match onto the known answer

for the Class . theory. In particular, we must address the following:

e How to fix the precise form of the angular form Ey4, as well as the free parameters agy, d;.
The possible choices are intimately related to regularity conditions on the flux in various

limits.

e How the parameters k¢, u“ encode the data of the punctures in field theory. In particular, for
the case of regular punctures these should be associated to the data of the Young diagram
that corresponds to the flavor symmetry preserved in the CFT. One can hope to extend this

analysis to the case of irregular punctures.

e The relation of the U(1), symmetries to the flavor symmetry that emerges at the puncture

in the CFT.

e What are the decoupled modes of the system? In particular, the inflow result includes

modes that decouple with respect to the low energy CFT.

These issues will be addressed in the upcoming [120].

7.6 Conclusions

7.6.1 Summary

In Section 7.3, we studied the anomalies of the .4 = 1 four-dimensional theories that

derive from MS5-branes wrapped on a punctured Riemann surface. When the bulk preserves
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A =1, the R-symmetry locally at a puncture can preserve ./~ = 2 supersymmetry with a local
twist of the R-symmetry generators labeled by integers (p,q). We derived the anomalies of these
(p,q)-labeled punctures, and discussed an illuminating parameterization of the anomalies in terms
of an .4~ = 1 version of an effective number of vector and hypermultiplets.

In Sections 7.4 and 7.5, we turned to the problem of computing the anomalies of the
N =2 theories of class . from inflow for M5-branes wrapped on a punctured Riemann surface.
The punctures lead to boundaries on the internal space. In general, one expects the fluxes to have
additional sources on the boundaries. In our analysis, we motivated the addition of monopole
sources at the locations of the punctures for the connection form on the Riemann surface. These
appear as delta functions on the right-hand-side of the Bianchi identity for the associated curvature
F, which had to be appropriately smoothed.

The M5-branes magnetically source the M-theory flux G4. The sources for the connection
form on the surface induce additional sources for G4. Compatibility conditions between these
sources require additional M5-branes that intersect the original ones at the punctures and end
on the monopole sources. This is consistent with the picture in AAS/CFT. When the branes are
backreacted, there is an AdSs spacetime that emerges in the near-horizon limit of the branes.
The connection forms in a Ricci flat background pick up such monopole sources in the work of
[83, 94].

Our analysis captures the anomaly contributions from the additional degrees of freedom
at the intersection of these sources. We describe a well-defined way to derive these anomaly
contributions by integrating the eight-form anomaly polynomial of the world-volume theory over
the boundaries, whose coefficients depend on local data at the puncture. In particular, this local
data is captured by the flux through the boundary spheres surrounding the monopole sources, and

the locations of the sources along an interval transverse to the branes.
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7.6.2 Outlook

In this chapter we have focused on four-dimensional field theories that preserve .4 =2
supersymmetry. The generalization to the .#” = 1 theories will follow the steps we’ve laid out
here, but with some interesting additional complications. In particular, in the .4 = 1 case the
normal bundle to the M5-branes decomposes as SO(2)4 x SO(2)_ C SO(5). The field strengths
for each SO(2)4 will have sources at the punctures, whose profile in the normal directions can be
more involved. We present the analysis for the .4/~ = 1 story in the upcoming [120].

The .4 = 1 theories of Class . are even more rich than their .4~ = 2 counterparts. One
feature is that different kinds of punctures can be present in the .4~ = 1 class . construction.
One example are the class of (p,q)-labeled punctured we discussed in Section 7.3. It would be
interesting to understand these anomalies from an inflow analysis. More generally, the landscape
of .4 =1 preserving punctures in these geometries is much less understood than their ./ = 2
counterparts, and would be interesting to study further.

In the region near the puncture, the M-theory system can be reduced to Type I1A string
theory, and the degrees of freedom at the puncture are associated to the intersection of D4/D6
branes [92]. From this perspective, the contributions from the punctures should be related to
I-branes, as discussed in [147]. Such intersections are also related to D6/D8 brane intersections,
which appear in the classification of (1,0) theories [154]. It would be interesting to explore these
connections in the future.

Throughout this chapter, we have only discussed theories which have their origin from
the (2,0) theories in six dimensions. One could also consider starting from theories with less
supersymmetry, such as six-dimensional (1,0) SCFTs (with a recently proposed classification in
[155, 156, 157]). These are far more numerous, and their compactifications are less understood
than their (2,0) counterparts. One large class of such constructions—dubbed class .#;—involve
N M5-branes on an Ay singularity of M-theory compactified on a punctured Riemann surface

[158, 159, 160, 119]. It would be very interesting to extend the inflow analysis we considered
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here in the class . context to these theories.

As a specific example, 't Hooft anomalies for four-dimensional theories that result from
compactifications of the six-dimensional E-string theory on a punctured Riemann surface were
computed in [161]. There, the contributions of the punctures to the anomalies were obtained by
studying boundary conditions of the E-string theory at the punctures, and adding up the anomalies
from chiral fields living on the boundary. It would be interesting to understand these contributions

from the perspective we’ve advocated here.
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Appendix A

WA,D,E SCFTs

A.1 ADE Facts

Here we collect some facts about the ADE theories.

Table A.1: Some relevant data corresponding to the ADE Lie groups. £ is the Coxeter number,
and & the dual Coxeter number.

G Dynkin Diagram h(=h) Exponents [,% a®
Ak O—0—+++-0—0
UG 1) k+1 1,2, ..k k
Disa o—&@—@/\i
S0k 14) 2k+1) | 1,3,5,...2k+1,k+1 | 3k

Es o—o—i—o—o 12 1,4,5,7,8,11 ?
E; o—o—i—o—o—o 18 1,5,7,9,11,13,17 30
Eg o—o—i—o—o—o—o 30 1,7,11,13,17,19,23,29 | ?
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*/,=(degree of invariant polynomials of the Lie algebra)— 1. Eigenvalues of the adjacency
matrix of the associated Dynkin diagram are 2 cos(xl,/h). The I, are 1-1 with the rank(G) chiral

ring generators for the case when the fields are not matrix valued:

k+1
Ag: ljZ%R(@)j)—{—l fOI‘@j:{l,x,xz,...,xk_l}

Diia: 1j=(k+1)R(©;)+1 for ®; = {1,x,x%, ... x* 1y} (A.1)

E7: l]:9R(®])+l f0r®j:{17x7x27x3ax47y’xy}

# number of generators of (supposedly truncated) chiral ring.

A.2 RG Flows Whose Deformations Seem Irrelevant

We briefly consider (as in Section 3.5.4) some cases where the AW’s, corresponding to
some ADE adjoint Higgsing pattern, are not immediately apparent. We focus on recovering the
desired 1d vacuum structure for U (N,) flows, leaving a full analysis of the higher-dimensional
structure for future work. The cases studied in Sections A.2.1 and A.2.2 are analogous to

singularity resolutions studied in [62].

A21 Eg— As

We start with the deformed Eg superpotential,

W= %TrY3 n 2TrX4 LT X2 4 5Ty ?, (A2)

whose F-terms are
Y2 +1X% 426 =0 (A.3)
sX>+1{X,Y} =0. (A4)

For 1d representations, X = x1,Y = yl, (A.3) and (A.4) yield vacua which correspond to the

following IR theories (as usual, seen by expanding (A.2) in each vacuum):
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(0,0) & As

(x,y) = (0,—2n) - A (A.5)

2 2
(i L;l<t2_g),_z<tz_%)) oo
\

2
For the special value of , = %‘ for nonzero s, the two eigenvalues on the last line of

(A.5) collapse to the origin to enhance the A3 singularity. This is more clearly seen by changing

2
variables Y = %(Z —X 2). Then, for the special value of 1, = %‘, (A.2) rewritten in terms of the

X,Z fields,
s (1 3 22 4 57 6 2
W = 3 (gTrZ —TrZ° X~ 4+ TrZX ) - gTrX + sTrZ”. (A.6)
1 1

The F-terms of (A.6) then yield the 1d vacua As +A;.

To find higher dimensional representations of vacua for this flow, we note that (A.3)
and (A.4) implies [X2,Y] = 0. Since [V?,X] «~ [X,Y], Y? is not a Casimir; instead we use
Y2 4+ 26Y = f(y)1. Parameterizing 2d solutions by ¥ = yg1 + y; 07 and X = x03, ¥’s Casimir
condition fixes yg, so that the F-terms for 2d vacua simplify to

(=13 +y} +1x*)1=0 (A7)

x(sx* = 2t11) 03 = 0. (A.8)

(A.8) fixes the eigenvalue x, and the first fixes yj, such that we indeed have a 2-dimensional
vacuum (only one, as gauge symmetry relates x — —x and y; — —yj). This vacuum exists both
for generic f,, and for 1, shifted to give the A5 theory. In sum, the flow (A.2) has the following 1d

and 2d vacua:

1 generic: Eg — Az +3A; +AF (+...9) (A.9)
t2
n=-L: Eg—As+A +A¥ (+...9). (A.10)
S
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A22 E;— Dg

Here, we start with the E; superpotential deformed by the D-series term TrXY?,

1
We, +AW = §Tﬂ/3 +sTrYX> +1TrXY?. (A.11)
There are two sets of 1-dimensional vacuum solutions for X and Y, corresponding to the eigen-
values (x =0,y =0), and (x = %,y = —225—7’;) Expanding near the origin appears to just give

Wigw «~ TIXY? = W5. Consider though the following sequence of variable changes:

1 s 5
X=U—=Y, Y=—(Z-U"). A.12
In terms of the U, Z fields, (A.11) becomes
5
§ 1 8 6 2,4 1 22 3,2 Vo4
W:108t7 (—ZTrU +TrZU® —TrZ°U —ETr(ZU) +TrZ°U —ZTrZ
st 7 5 2773 2 3
—I—W(—TrU +3TrZU> —2TeZ“U° — TrtUZU“Z + TrZ U) (A.13)

+% (—TrU6 +2TrZU* — %TrZzUz — %Tr(UZ)Z) + % <TrU22 — TrUS) :

We’ve organized the terms in (A.13) by increasing relevance from the perspective of the UV
fixed point—the most relevant terms in the IR limit of the flow are those in the last parentheses,
such that the D¢ theory resides at the origin. There is a 1d solution to the F-terms of (A.13)
corresponding to an A; theory, such that for all # # 0 we recover the 1d vacua:

E7 — Dg+A; (+...9) (A.14)

where here the (+. .. ?) refers to the unexplored possibility of d > 1 dimensional vacuum solutions.

A.23 Eg — D7

We start by deforming the Eg theory with a D-series deformation and E7 deformation,

1
W = gTr1/3 + %TrXS 4TIV X3 + 1, TrX Y2, (A.15)
From the 1d F-terms of this superpotential, there is one eigenvalue pair at the origin and two

away from the origin. As in the previous subsection, there is naively some ambiguity in iden-

tifying the solution at the origin, since each of Tr¥ X3, TrX>, and TrXY? appear to be marginal
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deformations of the UV theory, but the eigenvalue decomposition suggests that the theory at the
origin corresponds to Dg. Then, the 1d vacua of (A.15) are Dg + 2A;.

There is a particular shift of the coefficients #, = % = t, that brings one of the nonzero
A eigenvalue pairs to the origin. A change of variables clarifies what is happening: take

Y=U- SZTSIXZ’ such that (A.15) becomes

1 3 2s 2,2 4S2 4 853 6 4St2 3
W==-TtU°>——TrU° X"+ —TrUX" — TrX°+ (6 ——— | TriUX
3 511 2507 37563 ts
——|Hh——= Tt X"+ —TrU"X. A.16
5t ( ! 5t ) AT 4s . ( )

The 1d F-terms of (A.16) still yield one zero eigenvalue pair and two nonzero eigenvalue pairs,
but if we now shift #, = t,, then the Dg theory at the origin is enhanced to a D7 theory, while
only one nonzero (1d) vacuum remains, in which both X and U receive masses. In sum, the shift
t, = t, results in the 1d vacua D7 4+ Aj.

We now study higher-dimensional representations of vacuum solutions to the F-terms

of (A.15) and D-terms (3.7). For generic values of the couplings, there is a 2d vacuum (letting

s=1)
X =xol+x303, Y =yol+y303,
X0 = tl(—gtlz +4), x3= %(952 —46)' 2 (37 — 212), (A.17)
Yo = %zl (=27t} + 4563, —2013), y3 = %(9t12 — 46321} — 1), (A.18)

Then, for generic values of #; and #,, the 1d and 2d vacua of this flow are
Eg — Dg+2A, +A¥ (+...9). (A.19)
As is evident in (A.18), there exist special values of #; for which the 2d vacua “go away" in the

sense of Section 3.5.4, e.g.

512
= Tl =t,: Eg—D;+A (+...7) (A.20)
3t?
r2:71 or 17: Eg— Dg+24A; (+...7) (A.21)
92
ty = T] : Eg — Dg+As (+...7) (A.22)
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In all cases above, the (+...7) refers to d > 2 dimensional vacua. The special case (A.20)
corresponds precisely to the shift 7, already discussed, in which the Dg singularity is enhanced to
a D7 singularity. In this case, one of the two eigenvalues corresponding to an A%d in (A.18) goes
the origin, and the other becomes a copy of the eigenvalues corresponding to the remaining A
theory. In (A.21), the eigenvalues corresponding to the A%d theories in (A.18) become copies of
the eigenvalues corresponding to the 1d A; theories. For the shift in (A.22), the two A; theories

as well as the A%d theory in (A.18) are enhanced to an A, theory.
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Appendix B

Relevant Formulae for Gluing

Negative-Degree Line Bundles

B.1 Conventions and Main 7y Formulae

The Ty theory is .4~ = 2 supersymmetric with global symmetries SU(2)g x U(1)g x
SU(N)3. We use a basis for the Cartan subalgebra of the .#" = 2 R-symmetry SU (2)g x U(1)g
labeled by (I3,R y—>). The R-symmetry of an .4 = 1 subalgebra is given in (2.3). We can
rewrite these in terms of the generators J.,J_ of the U(1); x U(1)_ symmetry preserved by
the .4~ = 1 theories of class ., using R y—» =J_, and I} = %JJF. With these conventions, for
example, the adjoint field in the .4~ = 2 vector multiplet has (J+,J_) = (0,2).

The (J+,J—) charges of chiral operators of the Ty theory are The 4 p ¢ are moment-map

Table B.1: (J,J_) charges of chiral operators of the Ty theory.

‘ (J-HJ—)
w | (0,26)
0,0 | (N—1,0)
Ha B, (2,0)
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operators in the adjoint of (one of) the SU(N)4 x SU(N)p x SU(N)¢ flavor symmetry groups,

and the Q(é) transform in the trifundamental(anti-trifundamental) of the SU(N)4 x SU(N)p X

SU(N)¢ symmetry. The u; are Coulomb branch operators of dimension &, with k =3,... N.
The IR superconformal R-charge for operators of the Ty theory of color 6; = %1 is given

by maximizing the following combination of R-charges with respect to €:

1 1
R(S) = (ERJV—Q +I3) + o;€ (ERL/V—Z —[3)

B.1
) 1 (B.1)
= 5(1 — GiS)J+ -+ 5(1 + Gie).]_.

B.2 Relevant BBBW Results

In [89], Bah, Beem, Bobev, and Wecht (BBBW) compute a and ¢ of the IR .4#” =1 SCFTs
obtained from compactifying the 6d (2,0) theories on a Riemann surface €, where the surface is
embedded in a Calabi-Yau three-fold that decomposes into a sum of line bundles as in (5.5). These
are computed by integrating the anomaly eight-form of the M5-brane theory over the surface %,
and matching with the anomaly six-form, which is related to the anomalous divergence of the 4d
A =1 R-current by the descent procedure.

Due to the presence of an additional global symmetry U(1) 4, the superconformal R-
symmetry takes the form

R=K+eZ, (B.2)

where € is a real number determined by a-maximization. For the (2,0) theory of type Ay_1, € is

found to be
n+xg
- B.
EEEICEE (B.3)
and the central charges a and ¢ are found (for g # 1) to be
3 3 )
+ K —k(1+ 94+21n-+9 z
Cl:(g—l)(N—l)C n ( 77)(22 n 77) :
48(1+1n)°z B4
c=( _1)(1\/_1)€3+K’73_K(1+Tl)(6—KC+17n+9n2)12 '
— ¢ 48(1+ )22 :
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7N and § are defined as

N=N+N), =02+ (1 +4n+302)2 (B.5)
z is the twist parameter defined in terms of the degrees of the line bundles p and ¢ as in (6.15),
and k = 1 for the sphere and k¥ = —1 for a hyperbolic Riemann surface. In the large N limit,

these simplify to

14+ xV1+4322
Elarge-N = 3—Z
3 [ 1-922+Kk(1+32%)3/2 (B0
Glarge-N = Clarge-N = (1 —g)N 4872 '

The computation for g = 1 requires special care, as one can preserve ./ = 4 supersymmetry in
the IR by fixing the normal bundle to the M5-brane worldvolume theory to be trivial. However,
taking p = —¢q preserves only .4~ = 1 supersymmetry in the IR. Redoing the computation for this
special value, BBBW find that for the Ay_ theory on the torus,
I /1+3n
ELRETN (B.7)

LD+ (V- 1)(2+3n) VT3

48 VvIi+n ’ 48 V1i+n ’
where at large-N,
V3
Qlarge-N — Clarge-N — 1_6|Z|N3- (B.8)
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B.3 ’t Hooft Anomalies for Gluing T]\(,m) Building Blocks

The ’t Hooft anomaly coefficients for a single Ty block are given by

Ty coefficients
T, 3 0
J_J2 (N—1)(=3N —2)
J2J 1(N—1)(4N* —5N —6) (B.9)
J. J? 0
J+SU(N) p.c 0
J_SUN); 5c —N

An ./ = 2 vector multiplet contains two fermions with (J4,J_) = (1,1) and (—1, 1), so the only
nonzero anomaly coefficients are

N =2vector: J_=J>=J2J =2(N*-1). (B.10)
Consider Higgsing an SU (N) flavor group on a Ty block by giving a nilpotent vev to the adjoint
chiral multiplet, (M) = p(0o3), where the SU (N flavor corresponds to a maximal puncture whose
color is opposite the background color. This can be computed! by shifting J_ — J_ —2p(03)
and summing the contribution from the remaining N — 1 singlets M;, j=1,...,N —1 whose

R-charges are shifted to (J4,J_) = (0,2 +2j). This results in the following contribution to the

I'The author is grateful to Prarit Agarwal for explaining this computation in more detail.
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block being Higgsed:

from Higgsing
I, J3 1-N
J_,J3 N?—1
J3J N?—1 (B.11)
JJ? 1(1—N)(4N? +4N +3)
JiSU(N); pe 0
T SUN)] 0

(m)

The ’t Hooft anomaly coefficients for a single TNm block are computed in [100] by summing the
contributions of (m+ 1) Ty blocks—m of which have a Higgsed flavor group—and m ./ =2

vector multiplets, yielding

TI\(,m) coefficients
T, J3 m(1—N)
J_J2 (N—1)(m—3N —2)
J3J 1(N—1)(4N* —5N — 6 +m(4N? + 4N +3)) (B.12)
JoJ? Im(3+N —4N3)
JiSU(N); ¢ 0
J_SUNY -N

Taking m = 0 reproduces the 7y ’t Hooft anomalies.

Given these anomaly coefficients, we can compute the contribution to the central charges,

using
a(e) = 33—2 (3TrR(8)3 —TrR(¢))
_ 63_4(% [(1 —e)’ 1+ (1+)* 2 +3(1—e)*(1+e)J7J-+3(1—e)(1+&)°J 02| (B.13)

—(l—e)J+—(1+£)J>.
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Appendix C

Class . Anomaly Conventions

C.1 Anomaly Polynomials and Characteristic Classes

As reviewed in the main text, anomalies are encoded in a (d +2)-form anomaly polynomial

I, that is related to the anomalous variation of the quantum effective action as

ésseffzzn/ W, (C.1)
My
where

Ly =al?, 810, =arll. (C2)

Anomalies for chiral fields in even d = 2n dimensions are related to index theorems in two higher
dimensions [141]. For example, the Atiyah-Singer index theorem for a chiral spin-1/2 fermion in
d + 2 dimensions relates the index density of the Dirac operator to characteristic classes of the
curvatures, which in turn are related to the (d + 2)-form anomaly polynomial as

Igy2 = index(if) = [A(R)ch(F)] . ,- (C.3)
The (d +2) subscript in (C.3) instructs us to extract the (d 4 2)-form contribution in the expansion

of the curvatures. ch(F) is the Chern character, defined for a complex bundle in terms of the
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corresponding field strength F as

ch(F) = Tre'"/ %) = dim(r) + ¢1 (F) + %(c1 (F)>=2¢3(F))+... (C.4)

The Chern classes c; are 2k-forms that are polynomials in F of degree k. For reference, the first

two Chern classes take the form
1
2(2m)?
1

Our notation is such that if the Chern roots of an SU (N)-bundle are given by A;, c2(F) = —3 ¥, A%

1(F) = " TeF,  oo(F) =

- [Tr(F?) — (TeF)?] . (C.5)

A(R) is the A-roof genus, a function of the curvature R of the spacetime tangent bundle

with leading terms

N 7p1(R)? —4p2(R)
AR)=1-2p1(R) + S0 T (C.6)

The py are the Pontryagin classes, 4k-forms that are 2k-order polynomials in R. For reference,

the first two Pontryagin classes for a real vector bundle with curvature R are
1 1

pi(R)=—> (M)zTr(R ), (C.7)
pa(R) = %@ [(Tr(Rz))z — 2Tr(R4)] . (C.8)

For a real bundle with a complex cover, the Pontryagin classes can be related to the Chern classes.

For an SO(N) bundle E, p;(E) and p>(E) can be written in terms of the Chern roots A; as

p(E)=Y A% pAE)=Y A7A;. (C.9)
i i<j
Another useful set of identities relates the Pontryagin classes of a vector bundle which is

the Whitney sum of two vector bundles, E = E| & E», to the Pontryagin classes of the constituent

Ei; as
pi(E) = pi(E1) + p1(E2) (C.10)
p2(E) = p2(Er) + p2(E2) + p1(E1) i1 (Ez). (C.11)
From (C.3), it follows that the six-form anomaly polynomial for one four-dimensional
Weyl fermion with U(1) charge ¢ is
A q

Is = [A(T")ch(qF)] g = —c1(F)* - %CI(F)pl(T4)- (C.12)

190



Here, F is the field strength of the U(1) bundle, and 7* is the spacetime tangent bundle. More
generally, a four-dimensional theory with a U (1) R-symmetry and anomaly coefficients TrR> and
TrR (n.b. that R here does not refer to the curvature!) has the corresponding six-form anomaly

polynomial:
TrR3 TtR
lo = —c—c1(F)’ = S a1 (F)p(T%). (C.13)

F here is field strength of the U(1) bundle coupled to the R-symmetry. I is then related to the

anomalous divergence of the R-symmetry current by the descent procedure.

C.2 Anomalies for Regular ./~ = 2 Punctures

A regular .4/ = 2 puncture is labeled by an embedding p : su(2) — g. For g = An_1,
the choice of p is 1-to-1 with a partition of N, i.e. a Young diagram Y with N boxes. In this
appendix, we review the contributions of punctures from the six-dimensional (2,0) g = Ay_
theories compactified on a Riemann surface X , with genus g and n total punctures.

Let Y have some number of columns of height /;, and some number of rows of length /;,

corresponding to a partition of N
N=Yhn=Y1 (C.14)
i J
Let n; be the number of columns of height 4; that appear in the sum. Then, the theory has an
unbroken flavor symmetry

G=S , (C.15)

[[U(m)
i
which corresponds to the commutant of the embedding p.
We also assign a pole structure to the puncture [82], which can be read off of the Young
diagram. Denote the pole structure by a set of N integers p;, i = 1,...,N. Label each of the N
boxes in the Young diagram sequentially with a number from 1 to NV, starting with 1 in the upper

left corner and increasing from left to right across a row. Then, p; = i—(height of ith box). For
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instance, p; = 1 —1 =0 always.

For example, a “maximal” puncture is labeled by a Young diagram with 1 row of length
¢y = N, or alternatively, N columns each of height 4<j<y = 1. This is commonly denoted
Y =[1,...,1]. The unbroken flavor symmetry is G = SU(N), and the pole structure is p; =
i—1=(0,1,2,...,N—1). As another example, a “minimal” or “simple” puncture is labeled by a
Young diagram with 1 row of length 2 and N — 2 rows of length 1, or alternatively, 1 column of
height N — 1 and 1 column of height 1, denoted Y = [N — 1, 1]. The unbroken flavor symmetry is
G =S[U(1)xU(1)] =U(1), and the pole structure is p; = (0,1, 1,...,1).

The effective number of vector multiplets that a regular puncture labeled by a Young

diagram Y contributes to the theory is [83, 95]

N
n,(Py) = ;(r(;—|—4d(;h(;> ZZk—l (C.16)

and the effective number of hypermultiplets is

N
np(Py) = [Zez— 1] —% <rG+4dghG) Z (2k—1)p (C.17)

For example, the maximal puncture contributes
1

nv(Pmax): _E(Nz_l)v nh(Pmax> =0, (C.18)
and the minimal puncture contributes
1 1
1y (Prin) = —8(4N3 —6N?>—N+3), ny(Puin) = —8(4N3 —6N? —4N). (C.19)

An SU (n;) flavor group factor corresponds in the Young diagram to a nonzero difference
of n; = ¢; — ¢; | between the lengths of two rows. Then, the associated flavor central charge can

be written

kst (et ) =2 Y, bn. (C.20)

n<i
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C.3 Integral Identities

It is useful for us to understand integral properties of F that are implied by (7.80) and
(7.84). Recall that we describe the transverse space to the branes by the metric (7.64), where u is
the interval [0, 1], and that we use coordinates x!'> on the Riemann surface. Near each puncture,
we subtract a small ball B> of size £ centered at the a’th monopole. Explicitly, the coordinate
transformation near each ball is given by
(W—u?=R3(1—-12), (x1)?=(Rut)?cos?9?,  (x*)* = (Ry7,)%sin’ @, (C.21)
where ¢ is the circle coordinate for the unbroken U (1)“ at each source. We define M3 as the
space [{t] X X, with the balls B3 subtracted.

With p as given in (C.21), it follows that for any function i(u) and n > 0,

as 8“—>O:/M3h(,u)du/\p:}dA:O, /Mﬁ(,u)d,u/\pc’]Fo:O, (C.22)
/M h(u)dp Ad(tupa) A =0, (C.23)
When no power of p, appears in the integrand, we have that
as el =0 /M h{(p)dp A Fo = 211 (2g1) / h(w)du. (C.24)
The boundary of the balls B is a sphere S2. Integrating over the boundary S2, we also
have that
[ waa =0, [ h(u)dznde(pu) (pn)" = 4mBu kY THE). (€25

These integrals are useful when evaluating the anomaly.
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