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ABSTRACT OF THE DISSERTATION

Aspects of Supersymmetric Conformal Field Theories in Various Dimensions

by

Emily M. Nardoni

Doctor of Philosophy in Physics

University of California San Diego, 2018

Professor Kenneth Intriligator, Chair

In this dissertation we study properties of superconformal field theories (SCFTs) that

arise from a variety of constructions. We begin with an extended review of various techniques in

supersymmetry that are relevant throughout the work. In Chapter 3, we discuss aspects of theories

with superpotentials given by Arnold’s A,D,E singularities, particularly the novelties that arise

when the fields are matrices. We focus on four-dimensional N = 1 variants of supersymmetric

QCD, with U(Nc) or SU(Nc) gauge group, N f fundamental flavors, and adjoint matter fields

X and Y appearing in WA,D,E(X ,Y ) superpotentials. We explore these issues by considering

various deformations of the WA,D,E superpotentials, and the resulting RG flows and IR theories.

In Chapter 4, we examine the infrared fixed points of four-dimensional N = 1 supersymmetric
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SU(2) gauge theory coupled to an adjoint and two fundamental chiral multiplets. We focus on a

particular RG flow that leads to the N = 2 Argyres-Douglas theory H0, and a further deformation

to an N = 1 SCFT with low a central charge. Then for the latter half of the dissertation we

turn our attention to 4d SCFTs that arise from compactifications of M5-branes. In Chapter

6, we field-theoretically construct 4d N = 1 quantum field theories by compactifying the 6d

(2,0) theories on a Riemann surface with genus g and n punctures, where the normal bundle

decomposes into a sum of two line bundles with possibly negative degrees p and q. In Chapter

7, we study the ’t Hooft anomalies of the SCFTs that arise from these compactifications. In

general there are two independent contributions to the anomalies: there is a bulk term obtained

by integrating the anomaly polynomial of the world-volume theory on the M5-branes over the

Riemann surface, and there is a set of contributions due to local data at the punctures. Using

anomaly inflow in M-theory, we describe how this general structure arises for cases when the

four-dimensional theories preserve N = 2 supersymmetry, and derive terms that account for the

local data at the punctures.
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Chapter 1

Introduction

1.1 Outlook

The framework of Quantum Field Theory (QFT) encompasses the mathematical structure

of a wide variety of physical systems, including systems of particle physics, general relativity,

statistical physics, and the early universe. QFT unifies Einstein’s theory of relativity with quantum

mechanics, permitting us to describe the physics of the very small and the very fast in one unified

framework. In QFT the fundamental object is a field that is valued at every point in spacetime, and

particles are excitations of these fundamental fields. One reason we must switch to thinking about

fields rather than particles is that in relativistic processes, particles can be created or destroyed.

When particle number is not conserved, we need a theory that can describe more than single

particle dynamics. Another fundamental reason for a quantum theory of fields is that we need to

construct laws of nature that are local, which requires taking into account the fact that information

travels at a finite speed. QFT provides a natural framework for doing this.

Symmetry is the main organizing principle and tool for studying QFT. A symmetry of a

physical system is a transformation of the system that does not change the results of any possible
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experiments. An eloquent way to state this is that physics should not depend on the physicist.1

The more symmetry we have at our disposal, the better our handle on the properties of a theory.

In QFT, fields are classified by how they transform under the symmetries of the physical system

under consideration.

A related and important fact is that symmetries imply conservation laws. In particular,

Noether’s theorem tells us that continuous symmetries have corresponding conserved quantities.

For example, a reasonable symmetry one might impose is the following: Say I do an experiment

standing at a particular position in space, and then take a step to the right by a meter. If there is

no other difference between where I started and where I ended (e.g., there is no wind at either

location, and so on), then the results of doing the same experiment at the second location should be

exactly the same as at the first location. In other words, we expect that the laws of physics should

be invariant under spatial translations. In this case, momentum conservation is the corresponding

conservation law due to Noether’s theorem as applied to the symmetry of spatial translations.

Similarly, requiring that the laws of physics are invariant under translations in time yields the law

of energy conservation.

An important set of QFTs are those with Poincaré symmetry. A key consequence of

relativity is that time and space should be put on equal footing, into the more general concept

of spacetime. Poincaré invariance is the requirement that physics is invariant under isometries

(distance-preserving maps) of Minkowski spacetime—the flat spacetime relevant to special

relativity. This is a requirement for relativistic quantum field theories: that the laws of physics

should take the same form in all inertial frames of reference. Again, physics should not depend

on the physicist. For example, in a relativistic framework energy and momentum conservation are

derived together from general spacetime translation invariance (a subset of Poincaré invariance),

and can be seen as packaged into one conserved object known as the energy-momentum tensor.

An idea which has proven itself useful time and time again in the study of QFT is

1As stated by Anthony Zee in the excellent Quantum Field Theory in a Nutshell.
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to study theories with extra symmetries as a testing ground for ideas in more general QFTs.

With this in mind, we will focus our attention in this dissertation mainly on QFTs with two

additional symmetries beyond Poincaré invariance: conformal symmetry, and supersymmetry.

The Haag-Lopuszanski-Sohnius theorem [1] states that supersymmetry is the only extension of

Poincaré symmetry as a spacetime symmetry in a consistent QFT.2 Supersymmetry involves the

addition of fermionic (anticommuting) generators, the supercharges, to the Poincaré algebra. In

theories with supersymmetry, fermions and bosons are related by a symmetry transformation, and

representations of the supersymmetry algebra—usually called supersymmetry multiplets—have

equal numbers of fermions and bosons. The addition of supersymmetry often allows us to solve

aspects of these theories exactly.

To explain the utility of conformal symmetry, we need to introduce the concept of the

renormalization group. The renormalization group (RG) is a framework that tells you how a

theory looks at different distance scales. Couplings in a QFT determine the strength of the force

of an interaction between fields, and the RG equations tell you how the couplings change, or

run, as a function of the distance scale. This framework gives a precise way for how high energy

degrees of freedom can be accounted for by an effective theory at lower energies.

Here it is worth taking an aside to explain what we mean by scale, which requires a

diversion into dimensional analysis. The fundamental dimensions we use to measure physical

quantities are length, time, and mass. For example, in S.I. units length is measured in units

of meters, time in seconds, and mass in kilograms. In nature there are three fundamental

dimensionful constants: the speed of light c with dimensions of length/time, which according to

Einstein’s theory of relativity must be measured to be the same in any inertial frame of reference;

Planck’s (reduced) constant h̄ with dimensions of mass· length2 / time, which controls the scale at

which quantum effects become important; and Newton’s gravitational constant G with dimensions

of length3 / (mass · time2), which tells us about the scale of gravitational effects. High energy

2More specifically as a symmetry of the S-matrix, assuming (among other things) analyticity of the S-matrix.
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physicists commonly use natural units, in which we redefine c = h̄ = 1. Then, for instance,

velocities will be given as numbers in units of the speed of light. This restricts the units of length

equal to the units of time, equal to the units of inverse mass, equal to the units of inverse energy.

For example, in natural units the mass m of a particle is equal to its rest energy E = mc2, as well

as its inverse Compton wavelength mc/h̄. So, in natural units we have some choices as to which

units we care to keep track of. Particle physicists typically choose to use units of energy, with

length and time both given in units of inverse energy. So truly, when we refer to large energy

scales we are referring as well to small length scales, and vice versa. End aside.

Back to the renormalization group. Generically, at very long distance scales quantum field

theories become scale invariant—they reach a point at which the physics looks the same even if we

change the length scale, known as a fixed point of the renormalization group. At such a fixed point

in the space of couplings, the couplings no longer run with scale. In general, this scale invariance

at a fixed point is enhanced to conformal invariance.3 Conformal symmetry is the largest possible

non-supersymmetric spacetime symmetry of an interacting field theory compatible with Poincaré

invariance. A very useful picture of QFT is as a flow under the renormalization group between

conformal field theories (CFTs) in various limits. Our perspective is that by studying CFT, we

can start to map out the space of more general QFTs. Said another way: by focusing on CFTs, we

essentially aim to map out the end points of RG flows between more general theories.

There are various possibilities for how QFTs can behave at different energy scales. One

possibility is that at long distances, the strength of the coupling decreases. Such a theory is said to

be infrared (IR) free. This is, for example, the case for quantum electrodynamics (QED). In QED,

vacuum polarization renormalizes the electric charge e(r)—the coupling constant for QED, which

as we stress is really best not thought of as a constant—to smaller values at bigger distances. At

distances r greater than the inverse mass of the electron, the coupling settles onto a constant. In

this limit, the potential energy between two separated static test sources goes like V (r)∼ e2/r,

3For unitary QFTs in d = 2 this is proven [2], in d = 4 this is argued but not rigorously proven.
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which is the Coulomb potential we learn about in high school. At the other end of the scale, for

small enough distances the coupling diverges in what is known as a Landau pole, at which point

the theory needs modification.

ΛLandau
μ

λ(μ)

Figure 1.1: The coupling λ as a function of energy scale µ plotted for an infrared free theory
that breaks down at µ ∼ ΛLandau.

Another possibility is that at short distances, the strength of the coupling decreases. Such

a theory is called asymptotically free, or ultraviolet (UV) free. This is the case, for instance, for

quantum chromodynamics (QCD)—the theory of the strong interactions that act on quarks and

gluons. At long distances / low energies the quarks are strongly coupled, and we only can observe

composite objects with no color charge. This is called confinement. But at high energies, the

theory consists of weakly coupled quarks and gluons.

There are various possibilities for the strongly coupled regime in an asymptotically free

theory (the small µ part of Figures 1.2 and 1.3). In the case of QCD, it is thought that as the

coupling keeps getting stronger in the infrared, the theory will dynamically generate a mass scale

ΛQCD by the strong interactions. So, for energies much less than ΛQCD ∼ 300 MeV the theory

is strongly coupled (confines), and for energies much bigger than ΛQCD the theory is weakly

coupled.

Another interesting possibility is that in the strongly coupled regime, the coupling will flow

to a fixed point where it no longer changes with scale. At large distances, the physics is completely

independent of the scale. Interestingly, an asymptotically free gauge theory with enough matter
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ΛQCD
μ

λ(μ)

Figure 1.2: The coupling λ as a function of energy scale µ for an asymptotically free theory
that develops a dynamical scale at µ ∼ ΛQCD.

μ

λ(μ)

Figure 1.3: The coupling λ as a function of energy scale µ for an asymptotically free theory
that develops an interacting fixed point at low energies.

content might flow to an interacting CFT at low energies. There exist many examples of nontrivial,

interacting CFTs in various dimensions—especially using supersymmetry!

It is natural at this point to mention that the idea of the renormalization group leads

naturally to the idea of duality. As we just saw in some examples, the UV and IR physics of a

quantum field theory might look very different. Two physical systems that look different at short

distances might behave the same way at long distances. Two such theories are said to be infrared

dual to one another, or to lie in the same universality class. Interestingly, a single CFT fixed point

generically describes the long distance physics of many different physical systems. In this way,

understanding CFTs can teach us about the universal features of a wide variety of quantum field

theories.

Most of the QFTs that we will discuss in this thesis have both conformal invariance and
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supersymmetry, i.e. are superconformal quantum field theories (SCFTs). When an interacting

supersymmetric fixed point exists, we can use superconformal symmetry to derive some exact

results about the theory. Broadly speaking, one can view this thesis as a study of special classes

of SCFTs in various dimensions, with the broader goal of understanding general phenomena in

quantum field theory.

1.2 Outline

The rest of this dissertation is organized as follows. In Chapter 2 we give an extended

introduction to some of the technical aspects of SCFTs that we will utilize throughout. We first

review properties of supersymmetric gauge theories, and then review some useful properties

superconformal field theories, mainly focusing on the four-dimensional case.

In Chapter 3 we discuss aspects of theories with superpotentials given by Arnold’s A,D,E

singularities, particularly the novelties that arise when the fields are matrices. We focus on 4d

N = 1 variants of susy QCD, with U(Nc) or SU(Nc) gauge group, N f fundamental flavors,

and adjoint matter fields X and Y appearing in WA,D,E(X ,Y ) superpotentials. The 4d WA,D,E

SQCD-type theories RG flow to superconformal field theories, and there are proposed duals in the

literature for the WAk , WDk , and WE7 cases. The WDeven and WE7 duals rely on a conjectural, quantum

truncation of the chiral ring. We explore these issues by considering various deformations of the

WA,D,E superpotentials, and the resulting RG flows and IR theories. Rather than finding supporting

evidence for the quantum truncation and WDeven and WE7 duals, we note some challenging evidence

to the contrary.

In Chapter 4 we explore the infrared fixed points of four-dimensional N = 1 supersym-

metric SU(2) gauge theory coupled to an adjoint and two fundamental chiral multiplets under

all possible relevant deformations and F-term couplings to gauge-singlet chiral multiplets. We

find 35 fixed points, including the N = 2 Argyres-Douglas theories H0 and H1. The theory with
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minimal central charge a is identical to the mass-deformed H0 theory, and the one with minimal c

has the smallest a among the theories with U(1) flavor symmetry. We examine the RG flow to

the mass-deformed H0 theory.

In the latter half of the dissertation we turn our attention to a class of 4d SCFTs that arise

from compactifications of M5-branes. In Chapter 5 we give an introduction to the 4d theories of

Class S , which are constructed by compactifying the 6d (2,0) theories on a Riemann surface

with genus g and n punctures.

In Chapter 6, we field-theoretically construct 4d N = 1 quantum field theories of Class

S , where the normal bundle decomposes into a sum of two line bundles with possibly negative

degrees p and q. Previously the only available field-theoretic constructions required the line bundle

degrees to be nonnegative, although supergravity solutions were constructed in the literature

for the zero-puncture case for all p and q. Here, we provide field-theoretic constructions and

computations of the central charges of 4d N = 1 SCFTs that are the IR limit of M5-branes

wrapping a surface with general p or q negative, for general genus g and number of maximal

punctures n.

In Chapter 7, we study the ’t Hooft anomalies of the SCFTs that arise from these com-

pactifications. In general there are two independent contributions to the anomalies: there is a

bulk term obtained by integrating the anomaly polynomial of the world-volume theory on the

M5-branes over the Riemann surface, and there is a set of contributions due to local data at the

punctures. Using anomaly inflow in M-theory, we describe how this general structure arises for

cases when the four-dimensional theories preserve N = 2 supersymmetry, and derive terms that

account for the local data at the punctures.
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Chapter 2

Technical Introduction

Here we collect some of the main facts and methods that will be useful to us in our study

of superconformal field theories. This material can be found in a myriad of textbooks and reviews,

some of the most useful of which (in the author’s opinion) we will mention when they are relevant.

We make no attempt to be comprehensive, and instead utilize this chapter as a depository for

a variety of useful facts. Our focus will be largely on QFTs in four dimensions, with some

additional comments on other dimensions.

2.1 Supersymmetry: The Basics

We begin with a brief review of the supersymmetry algebra and its irreducible representa-

tions. Useful references for this material are the classic textbooks [3, 4].

2.1.1 The supersymmetry algebra

The four-dimensional supersymmetry algebra is an extension of the Poincaré algebra of

spacetime symmetries by N anti-commuting generators,

{QA
α ,Q

†B
α̇
}= 2σ

µ

αα̇
Pµδ

AB, A,B = 1, . . . ,N . (2.1)
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The QA
α are complex anti-commuting spinors with spinor indices α , α̇ = 1,2, and in particular

transform nontrivially under the Lorentz group. The index µ runs over four-dimensional spacetime.

σ
µ

αα̇
= (1,σ i) for σ i the usual Pauli matrices. The Poincaré algebra is a subalgebra of the

supersymmetry algebra; the other nonzero commutators between the supercharges and the

Poincaré generators involve the Lorentz boosts Mµν . We refer the reader to the textbooks for a

discussion of the full algebra.

The N = 1 supersymmetry algebra possesses an internal global U(1) symmetry known

as an R-symmetry. This can be seen from the fact that when N = 1 the supersymmetry algebra

(2.1) is invariant under multiplication of the Q’s by a phase. Denoting the generator of the U(1)

R-symmetry by R, we have that

[R,Qα ] =−Qα , [R,Q†
α̇
] = Q†

α̇
, (2.2)

such that the Q’s have R-charge −1, and the Q†’s have R-charge +1. n.b. that the R-symmetry is

generally not part of the supersymmetry algebra, although the algebra can include the R-symmetry

as an extension (which is the case, as we will see, for superconformal algebras).

A theory with N > 1 is said to have extended supersymmetry.1 In four dimensions the

smallest spinor representation (either a Weyl or Majorana spinor) has four real degrees of freedom,

such that the actual number of supercharges is NQ = 4N . For example, the 4d N = 1 algebra

has four supercharges. A 4d theory with N supersymmetries generally has a corresponding

global R-symmetry of U(N ), corresponding to the rotation of the Q′s by a U(N ) matrix.

In d spacetime dimensions, the supercharges are promoted to spinors of SO(d−1,1). The

general d-dimensional algebra has the same structure as in four dimensions, with the Pauli matrices

σ µ promoted to Dirac matrices Γµ that satisfy the Clifford algebra in d dimensions, {Γµ ,Γν}=

2ηµν for η the spacetime metric. For example, in d = 6 the smallest spinor representation

has 8 real degrees of freedom, so a 6d QFT with N -extended supersymmetry has NQ = 8N

1In this case the supersymmetry algebra can contain central charges, corresponding to additional terms on the
right-hand-side of (2.1). We will not discuss this possibility further here.
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supercharges.

2.1.2 Irreducible representations of supersymmetry in 4d

In general, one characterizes the irreducible representations (irreps) of supersymmetry

on asymptotic single particle states via Casimir operators—operators that commute with all the

supersymmetry generators. One such Casimir operator is P2 = PµPµ , which is also used to

construct representations of the Poincaré algebra. Because P2 is a Casimir, particles in the same

irrep have the same mass. For example, for a particle of mass m one can go to the rest frame

Pµ = (m,~0), from which it follows that P2 = m2.

The single particle states of a supersymmetric theory fall into irreps of the supersymmetry

algebra called supermultiplets. Supermultiplets are in general reducible representations of the

Poincaré algebra, and therefore correspond to a collection of particles in the usual sense. Particles

in the same supermultiplet must have equal masses and lie in the same representation of the gauge

group, so must have the same electric charges, weak isospin, and color degrees of freedom. Each

supermultiplet contains an equal number of fermionic and bosonic degrees of freedom. Note that

since the R-symmetry does not commute with the supersymmetry generators, component fields

of a supermultiplet do not all carry the same R charge.

First consider the case of massive particles, where P2 = m2. The nonzero anticommutators

simplify to {QA
α ,Q

†B
α̇
}= 2mδαα̇δ AB, which is precisely the Clifford algebra. Denote the lowest

weight state—the Clifford vacuum of spin s—by |Ωs〉. This is annihilated by QA
α , which acts as

a lowering operator. Q†B
α̇

acts as a raising operator. Then, generally there are 2N creation and

annihilation operators.

Next consider the case of massless particles. We can pick a frame in which Pµ =

(E,0,0,E), such that P2 = 0. The anticommutators simplify in this case to {QA
1 ,Q

†B
1 }= 4Eδ AB,

which is the Clifford algebra with only N raising operators. To construct representations we

choose a Clifford vacuum |Ωh〉 of fixed helicity h, and construct representations by acting with
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the raising operators.

It will be useful to enumerate a selection of massless multiplets in four dimensions.

Denote the gauge group by G. Let a† denote a raising operator. Then, the state a†|Ωh〉 has helicity

h+1/2. As we mentioned, there are N such creation operators for massless states. An irrep

will in general have a total of 2N states. However, we might need to add the CPT conjugate to

construct a full CPT eigenstate such that the multiplet will actually include 2 ·2N states.

We begin with the case of N = 1, where we denote the R-symmetry generator of the

U(1)R as RN =1. We normalize such that the R-charge of the gluino λα is 1, and that of the gluon

is 0. Note that in general the fermion component ψ of a chiral superfield Φ has R[ψ] = R[φ ]−1,

for φ the bosonic component (since it is obtained by the action with a Q). The components of

a massless N = 1 vector multiplet V are given in Table 2.1, and the components of a massless

N = 1 chiral multiplet Φ in a representation r of the gauge group are given in Table 2.2.

Table 2.1: N = 1 vector multiplet V . This multiplet consists of two massless susy irreps
(|Ω〉,a†|Ω〉) paired to make a CPT eigenstate, for a total of 2×21 = 4 states.

G RN =1 states
Weyl fermion λα adj 1 {|Ω1/2〉,a†|Ω−1〉}

massless spin 1 Aµ adj 0 {a†|Ω1/2〉, |Ω−1〉}

Table 2.2: N = 1 chiral multiplet Φ. This multiplet also has 2×21 = 4 states.

G RN =1 states
complex scalar Q r R(Q) {|Ω0〉,a†|Ω−1/2〉}
Weyl fermion ψα r R(Q)−1 {a†|Ω0〉, |Ω−1/2〉}

An N = 2 theory has an R-symmetry U(2)R 'U(1)R×SU(2)R, with generators that we

denote by RN =2 and Ia, a = 1,2,3 respectively. We use a basis for the Cartan subalgebra of the

R-symmetry labeled by
(
RN =2, I3). We can fix an N = 1 subalgebra in the N = 2 algebra,

such that the N = 1 R-symmetry is given by

RN =1 =
1
3

RN =2 +
4
3

I3. (2.3)
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With this choice, the linear combination

J = RN =2−2I3 (2.4)

commutes with the N = 1 subalgebra, and is a flavor symmetry from the N = 1 point of view.

The components of a massless N = 2 vector multiplet are given in Table 2.3, and the components

of a massless N = 2 hypermultiplet in a representation r of the gauge group are given in Table

2.4.

Table 2.3: (N = 2 vector multiplet) = V⊕Φ. This has 2×22 = 8 states. Note that RN =1(λ
′
α) =

RN =1(φ)−1, since these come from the N = 1 chiral multiplet. λα and λ ′α form an SU(2)R

doublet.

G RN =2 I3 RN =1 states
Weyl fermion λα adj 1 1/2 1 {a†

1|Ω0〉,a†
2|Ω−1〉}

Weyl fermion λ ′α adj 1 -1/2 −1/3 {a†
2|Ω0〉,a†

1|Ω−1〉}
vector field Aµ adj 0 0 0 {a†

1a†
2|Ω0〉, |Ω−1}

complex scalar φ adj 2 0 2/3 {|Ω0〉,a†
1a†

2|Ω−1〉}

Table 2.4: (N = 2 hypermultiplet) = Φ⊕Φ̄. This has 2×22 = 8 states. Note that RN =1(ψα) =
RN =1(Q)−1, since these come from the N = 1 chiral multiplet. A and Q̃† form an SU(2)R

doublet.

G RN =2 I3 RN =1 states
Weyl fermion ψα r −1 0 −1/3 {a†

1a†
2|Ω−1/2〉, |Ω−1/2〉}

Weyl fermion ψ̃
†
α̇

r̄ 1 0 1/3 {a†
1a†

2|Ω−1/2〉, |Ω−1/2〉}
complex scalar Q r 0 1/2 2/3 {a1|Ω−1/2〉,a2|Ω−1/2〉}
complex scalar Q̃† r̄ 0 −1/2 −2/3 {a1|Ω−1/2〉,a2|Ω−1/2〉}

An N = 4 theory has an R-symmetry2 SU(4)R ' SO(6)R. We list the components of an

N = 4 vector multiplet in Table 2.5.

2The R-symmetry is SU(N ) and not U(N ) in this case because for N = 4, a U(1) decouples and becomes an
outer automorphism. This can be seen at the level of the commutation relations, since [QB

α ,R
A
A] = 0.
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Table 2.5: N = 4 vector multiplet = Φ⊕Φ⊕ Φ̄⊕V . This has 24 states, and is self-conjugate.
The scalars φ I are in the rank 2 antisymmetric (6) representation of SU(4)R. The four a†

i |Ω−1〉
states with helicity −1/2 form the 4, and the other four of helicity 1/2 form the 4̄.

RN =1 states
λα 1





4, 4̄ of SU(4)R
Weyl fermions ψα −1/3 8 {a†

i |Ω−1〉,a†
i a†

ja
†
k |Ω−1〉}

ψα −1/3
ψ̃α −1/3
φ 1 2/3





6 of SU(4)R

φ 2 2/3
real scalars φ 3 2/3 6 {a†

i a†
j |Ω−1〉}

φ 4 2/3
φ 5 2/3
φ 6 2/3

vector field Aµ 0 2 {|Ω−1〉,a†
1a†

2a†
3a†

4|Ω−1〉}

2.2 Some Properties of Supersymmetric Gauge Theories

2.2.1 N = 1 supersymmetric actions and the power of holomorphy

Here we will be rather schematic, just pointing out some particular features of N = 1

supersymmetric actions to emphasize. Consider a 4d N = 1 theory of massless chiral and vector

multiplets. It is useful to add an auxiliary field to each: add a complex field F to the chiral

multiplet, and a real field D to the vector multiplet, to furnish superfields with components

Φ
i : Qi, ψ

i
α , F i (2.5)

V a : Aa
µ , λ

a
α , Da (2.6)

The F component of a chiral superfield and D component of a vector superfield transform by a

total derivative under an N = 1 supersymmetry transformation.

We can write a supersymmetry and gauge invariant action for chiral superfields as an

integral over superspace,

S =
∫

d4x d4
θ K(Φ†,egT aV a

Φ)+
∫

d4x d2
θ W (Φ)+h.c. (2.7)

The superpotential W (Φ) is a holomorphic function of the chiral superfields and has R-charge 2.
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K is the Kähler potential, a vector superfield that yields the kinetic terms upon expansion into

components. Terms proportional to
∫

d4θ are known as D-terms, and terms proportional to
∫

d2θ

are known as F-terms. Here g is the gauge coupling.

We can write the N = 1 super Yang-Mills action in terms of the field strength chiral

superfield Wα . Wα is constructed out of the vector superfield V a, with components

W a
α : λ

a
α , Fa

µν , Da. (2.8)

The gauge invariant supersymmetric action for pure super Yang-Mills is

SSY M =
1

8π
Im
[

τ

∫
d4x d2

θ TrW αWα

]
. (2.9)

Here, W 2
α is the supersymmetric completion of F2 + iFF̃ . τ is the complex holomorphic gauge

coupling,

τ =
θ

2π
+

4πi
g2 . (2.10)

It is nontrivial that supersymmetry combines the gauge coupling g and the θ -angle3 into a single

holomorphic quantity.

D-terms receive both perturbative and nonperturbative quantum corrections. The quantum

corrections to F-terms, however, are highly constrained because they must maintain holomorphy

in the chiral superfields. Because of this, the superpotential is not renormalized to any order in

perturbation theory. This fact is known as a nonrenormalization theorem. Of course, the more

supersymmetry a theory as, the more nonrenormalization theorems apply.

A nice related trick if I want to write an effective theory below some scale is to think

of the UV couplings as the lowest components of background chiral superfields. Then, the low

energy effective superpotential is constrained by holomorphy in the UV coupling constants. The

use of holomorphy to obtain exact superpotentials was first exploited in [5]—for a nice review

and more references, see [6].
3n.b. that θ in (2.10) is not the same as the superspace coordinate in (2.9).
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2.2.2 NSVZ β -function

Recall that the one-loop renormalization of the gauge coupling g in a general Lagrangian

field theory with gauge group G is

β (g)≡ µ
dg(µ)

dµ
=− g3

(4π)2

[
11
3

C(adj)− 2
3 ∑

f
C(r f )−

1
3 ∑

b
C(rb)

]
. (2.11)

Here r f is the gauge group representation of the fermions, and rb is the representation of the

complex scalar bosons. The quantity in parenthesis is the one-loop coefficient, which we will

refer to as b0. C(r) is the quadratic Casimir in the representation r, which satisfies

TrrT aT b =C(r)δ ab. (2.12)

C(adj) is equal to the dual Coxeter number of the group; e.g. for G = SU(N), C(adj) = N.

For a theory with N = 1 supersymmetry, the vector multiplet contributes an additional

−2/3C(adj) to the one loop β -function, and a chiral multiplet in a representation rΦ has one

Weyl fermion and one complex boson. Then, the RHS of (2.11) reduces to

β (g)N =1 =−
g3

(4π)2 [3C(adj)−C(RΦ)] . (2.13)

Since τ in (2.10) is a holomorphic quantity, its running under the renormalization group

must preserve holomorphy. Then we have that the one-loop running coupling is

2πi
dτ

d ln µ
=−b0 =

16π2

g3
dg

d ln µ
⇒ τ1−loop =

b0

2πi
ln
(

Λ

µ

)
(2.14)

with Λ the complex dynamically generated holomorphic scale of the theory, and b0 the one-loop β -

function coefficient. Because this must be holomorphic, the β -function for τ is one-loop exact—it

is only corrected nonperturbatively by n-instanton corrections. In particular, the combination

Λ
b0 = µ

b0e2πiτ(µ) (2.15)

is not corrected at any order in perturbation theory.

The exact NSVZ (for Novikov, Shifman, Vainshtein, and Zakharov) β -function [7] is

given as

β (g) =− g3

(4π)2


 1

1− g2C(adj)
8π2



(

3C(adj)−∑
j

C(r j)(1− γ j)

)
. (2.16)
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γ j is the anomalous dimension of a matter field in a representation r j of the gauge group.

Importantly, the one- and two-loop β -function coefficients are scheme independent.

2.2.3 Moduli space of vacua

The scalar potential V in a supersymmetric theory takes the form

V = |F |2 + 1
2

DaDa, (2.17)

where

F =
∂W
∂Φ

. (2.18)

A supersymmetric vacuum is a zero of the scalar potential V , and vice versa; a zero of the scalar

potential is also a supersymmetric vacuum. Therefore, supersymmetric vacua are the set of scalar

field vacuum expectation values which simultaneously solve the F- and D-terms. Note that all

expectation values of Φ for which ∂W/∂Φ = 0 correspond to supersymmetric, global minima of

the potential.

Classical supersymmetric gauge theories often have a classical moduli space of degenerate

vacua. The classical moduli space of a theory is given by the space of all scalar vacuum expectation

values satisfying the D-term equations, modulo gauge equivalence and the classical F-terms.

The moduli space can always be given a gauge-invariant description in terms of the space

of expectation values of gauge-invariant polynomials Xr in the fields, subject to any classical

relations. This is because setting the potential to zero and modding out by the gauge group is

equivalent to modding out by the complexified gauge group—holomorphy of the superpotential

promotes a global symmetry group of the theory to a complexified symmetry group of the

superpotential.4 The gauge invariant polynomials correspond to matter fields left massless after

the Higgs mechanism, and are classical moduli, W (Xr) = 0 [8]. Note that vacua with different

expectation values of the fields are physically inequivalent; in particular, the masses of the vector

bosons depend on the 〈Xr〉. The classical degeneracy can be lifted in the quantum theory by a

4Although, note that the Kähler potential is only invariant under the real symmetry group.
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dynamically generated effective superpotential, Weff(Xr).

2.2.4 A short introduction to anomalies in QFT

Classically, invariance under a continuous global symmetry group G implies the existence

of conserved currents. If the symmetry is anomalous, then there are quantum corrections that

make the currents no longer conserved. Then, the quantum effective action varies as

δSeff =
∫

λ
aDµ ja

µ . (2.19)

When G is a gauge symmetry, the anomaly indicates a fundamental inconsistency in the theory.

Such an anomaly is often called an ABJ (for Adler-Bell-Jackiw) anomaly. For G a global

symmetry, anomalies do not indicate any inconsistency, but rather often have interesting physical

consequences. These are called ’t Hooft anomalies.

The anomaly is related to an (n+1)-gon diagram with external insertions of the symmetry

current. A well-known example is the chiral anomaly in 4d SU(N) gauge theory. In this case,

δAµ = Dµλ , and the nonconservation of the current jµ is evident in the (n+1)-gon Feynman

diagram (a triangle with three gauge currents) proportional to TrFn+1 = TrF3:

d = 4: ∝ TrF3

One interesting physical consequence of ’t Hooft anomalies is ’t Hooft anomaly matching

[9]. The argument due to ’t Hooft goes as follows: Consider an asymptotically free, anomaly-free

gauge theory with G global symmetry and chiral fermions. In the asymptotically free regime

compute the triangle anomaly for three G currents. Assuming this is nonzero, denote this by AUV .

Now gauge G, and add some massless gauge-singlet spectator fields with only G gauge

couplings such that their G anomaly cancels AUV : AS =−AUV . Since we’ve assumed that the

original gauge theory confines, we can study the IR effective theory of the massless excitations
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below the strong coupling scale. At an IR scale less than the scale of strong interactions, if G is

not spontaneously broken (so that we can assume there are no massless Nambu-Goldstone bosons)

its anomaly must still vanish. This is due to the fact that we started with a consistent theory to

begin with, by assumption. Therefore, the G anomaly at this scale must cancel AIR =−AS. The

IR anomaly corresponds to a set of massless bound states which have the same anomaly as the

original fields. Therefore, AIR = AUV . Now we can take the limit that the gauge coupling goes

to zero to decouple the spectators. The result that AIR = AUV still holds, and so is true for the

original theory with G global symmetry and no spectators.

For a nice review of anomalies in gauge theories, see [10, 11]. We will have quite a bit

more to say about anomalies in Chapter 7.

2.3 Superconformal Field Theories

For a supersymmetric theory with conformal symmetry, the supersymmetry algebra is

extended to the superconformal algebra. Importantly, the superconformal algebra includes the

R-symmetry as a bosonic subalgebra.

2.3.1 A word on conformal symmetry

To orient ourselves, we first discuss some aspects of conformal field theories (without

supersymmetry) in various dimensions. The conformal algebra in d dimensions is so(d,2). It

is generated by Lorentz rotations / boosts, translations, special conformal transformations, and

dilatations. Local operators in a unitary CFT must organize into unitary irreducible representations,

commonly called conformal multiplets, of the conformal algebra. States are labeled by their

scaling dimension ∆ and their SO(d) weights. The structure of the multiplet is completely labeled

by the conformal primary operator, corresponding to the lowest weight state.

Unitarity require that all states have positive norm, which yields bounds on allowed CFT
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representations. Unitarity bounds take the form ∆≥ f ( ji) for ji the bd/2c weights of SO(d), and

where (∆, ji) are the quantum numbers of the primary [12, 13]. When the inequality is saturated,

some states—called null states—have zero norm, such that the multiplet is “short”. For example,

a free scalar field is at the bottom of a short multiplet. In that case, ∆ saturates an inequality, with

∆(O) = (d−2)/2, O = gauge-invariant, spin 0. (2.20)

In d = 4, SO(4)' SU(2)×SU(2), and so representations are labeled by two half-integer

spins j1, j2. In this case, that the unitarity bounds are given by (schematically)

∆≥ f ( j1)+ f ( j2). (2.21)

See [12] for the derivation and description of these bounds.

2.3.2 A tour of SCFTs in various dimensions

With the addition of supersymmetry, conformal symmetry is enhanced to superconformal

symmetry. Superconformal algebras exist in dimensions d ≤ 6 [14]. The supersymmetry genera-

tors transform as spinors of SO(d,2). Superconformal algebras with NQ > 16 supercharges in

d = 4,6 do not admit a stress tensor multiplet, and so for unitary SCFTs we restrict to NQ ≤ 16 in

these dimensions. In d = 3 SCFTs with NQ > 16 exist, but are necessarily free [15]. The case

d = 5 is special because there is a unique superconformal algebra, N = 1 with NQ = 8.

The bosonic subalgebra of the superconformal algebra in d dimensions is so(d,2)×R,

where R is the R-symmetry algebra. We are interested in representations that are unitary

irreducible representations of so(d)× so(2)×R, which is the maximal compact subalgebra.

These are completely specified by the lowest (or depending on your convention, highest) weights.

As in the non-supersymmetric case, each unitary irrep of the superconformal group contains

a unique operator of lowest scaling dimension, known as a superconformal primary, and the

multiplet is completely specified by the quantum numbers of the primaries. Superconformal

multiplets for d > 2 are comprehensively enumerated in [15].
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2.3.3 Facts about fixed points

Here, we review a myriad of useful facts about SCFTs which will come up repeatedly

throughout the rest of this dissertation.

Conformal field theories in even spacetime dimensions have Weyl anomalies. The confor-

mal anomaly of the trace of the stress tensor Tµν on a curved background is given by (schemati-

cally)
〈
T µ

µ

〉
∼ a(Euler)+∑

i
ciIi. (2.22)

Here, (Euler) refers to the d-dimensional Euler density, and Ii the local Weyl invariants. The

dimensionless coefficients a,ci are known as the central charges of the CFT. In 2d there are no Ii

and a is commonly called c, which corresponds to the Virasoro central charge; in four dimensions

there is one I1; and in six dimensions there are two.

As we review below, in superconformal theories the a central charge is related to the ’t

Hooft anomalies for the superconformal R-symmetry. This follows from the fact that Tµν is in

the same multiplet as the R-symmetry current.

4d N = 1

The conformal anomaly of the trace of the four-dimensional energy momentum tensor on

a curved background in four dimensions is

〈T µ

µ 〉=−
1

16π2

[
a(Euler)− c(Weyl)2], (2.23)

where

(Weyl)2 = (Rµνρσ )
2−2(Rµν)

2 +
1
3

R2, (Euler) = (Rµνρσ )
2−4(Rµν)

2 +R2. (2.24)

For an N = 1 superconformal theory, the superconformal algebra places the R-symmetry

current in the same multiplet as the stress tensor and supersymmetry currents. From this it follows

that the central charges a and c are related to the ’t Hooft anomalies of the superconformal U(1)R

symmetry as [16]
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a =
3

32
(
3TrR3

N =1−TrRN =1
)
, c =

1
32
(
9TrR3

N =1−5TrRN =1
)
. (2.25)

Further, all 3-point functions among elements of this supermultiplet are determined by a and c.

The anomaly-free condition for the R-symmetry is closely tied with the condition for a

fixed point. In particular, the requirement that the U(1)R symmetry be free from ABJ anomalies

is precisely the condition that the NSVZ exact β -function vanish. Explicitly, the R-symmetry

current Rµ (the lowest component of the supercurrent superfield containing the stress tensor and

supersymmetry currents) satisfies

∂µRµ =
1

48π3

(
3C(adj)−∑

j
C(r j)(1− γ j)

)
Fa

µν F̃a
µν . (2.26)

Comparing with (2.16), the expression in parenthesis is precisely the numerator of the NSVZ

β -function.

The ’t Hooft anomalies for the superconformal U(1)R symmetry for a vector and chiral

multiplet are

V : TrRN =1 = TrR3
N =1 = |G| (2.27)

Φ : TrRN =1 = (R(Q)−1)|r|, TrR3
N =1 = (R(Q)−1)3|r| (2.28)

where r is the representation of Φ. These are easily computed by adding the contributions of the

fermions in Tables 2.1 and 2.2. Then, for a theory with n(1)v N = 1 vector multiplets and n(1)
φ

N = 1 chiral multiplets, the a central charge is

a =
3
32

[
2n(1)v +n(1)

φ
(R(Q)−1)(3(R(Q)−1)2−1)

]
. (2.29)

If the theory has a flavor symmetry G with generators T a, the flavor central charge kG is defined

kGδ
ab =−3TrRN =1T aT b. (2.30)

For scalar chiral primary operators O , the R-charge and dimension are proportional to one another:

∆(O) =
3
2

R(O)≥ 1. (2.31)

The inequality comes from the unitarity bound ∆O ≥ (d−2)/2 given in (2.20).
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4d N = 2

An N = 2 SCFT has an R-symmetry U(1)R× SU(2)R, with generators RN =2 and Ia

(a = 1,2,3) respectively. We use a basis for the Cartan subalgebra of the R-symmetry labeled by

(RN =2, I3). The R-charge assignment for free N = 2 vector multiplets and hypermultiplets is

given in Tables 2.3 and 2.4, which we repeat in a convenient form in Table 2.6.

Table 2.6: R-charge assignments for N = 2 multiplets.

RN =2 \ I3 1
2 0 −1

2
0 Aµ

1 λα λ ′α
2 φ

RN =2 \ I3 1
2 0 −1

2
-1 ψα

0 Q Q̃†

1 ψ̃
†
α̇

With this charge assignment, the nonzero anomaly coefficients for an N = 2 vector

multiplet and hypermultiplet are

N = 2 vector : TrRN =2 = TrR3
N =2 = (1+1)|G|= 2|G|,

TrRN =2I2
3 = (1(1/2)2 +1(−1/2)2)|G|= 1/2|G|,

N = 2 hyper : TrRN =2 = TrR3
N =2 = (−1−1)|r|=−2|r|,

TrRN =2I2
3 = (−1(0)2−1(0)2)|r|= 0.

(2.32)

(Note that due to the dagger, ψ̃
†
α̇

contributes −1 rather than 1). Then, for a theory with nv vectors

and nh hypers we have

TrRN =2 = TrR3
N =2 = 2(nv−nh), TrRN =2I2

3 =
nv

2
. (2.33)

The central charges a and c are related to the anomaly coefficients as [17]

TrR3
N =2 = TrRN =2 = 48(a− c), TrRN =2IaIb = 2δ

ab(2a− c). (2.34)

The flavor central charge kG for a global symmetry G with generators T a is

kGδ
ab =−2TrRN =2T aT b. (2.35)

Using nv and nh to represent the number of free vector multiplets and free hypermultiplets, the
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central charges of an N = 2 superconformal theory can be written

a =
1

24
(nh +5nv) , c =

1
12

(nh +2nv) . (2.36)

As we discussed previously, we can fix an N = 1 subalgebra in the N = 2 algebra,

such that the N = 1 R-symmetry is given by (2.3). With this choice, the linear combination

J = RN =2− 2I3 commutes with this N = 1 subalgebra, and thus is a flavor symmetry from

the N = 1 point of view. (2.3) is the unique N = 1 R-symmetry that has the properties of a

superconformal U(1)R when the theory has enhanced N = 2 supersymmetry.

For scalar chiral primary operators O , using (2.3) and (2.31) (and I3 = 0) we can relate

the dimension and R-charge of O as

∆(O) =
1
2

RN =2 ≥ 1. (2.37)

The inequality is saturated only for free fields.

4d N = 4

An N = 4 SCFT has R-symmetry SU(4)R ' SO(6)R. The ’t Hooft anomalies for an

N = 4 massless vector multiplet can be written

N = 4 vector : TrRN =1 = 0, TrR3
N =1 = 8/9(N2−1), (2.38)

in terms of the N = 1 subalgebra (2.3). The N2− 1 factor comes from the dimension of the

adjoint. Then, we see that

a = c =
N2−1

4
. (2.39)

2.3.4 The a-theorem, and a-maximization

In two dimensions the RG flow is a gradient flow, meaning that the a central charge

satisfies a gradient condition along the flow. This is Zamolodchikov’s a-theorem [18], usually

called the c-theorem since in 2d there is only one central charge.

In four dimensions, the a-theorem states that the endpoints of all unitary RG flows must
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satisfy

aUV > aIR. (2.40)

The four-dimensional a-theorem was conjectured in [19], analyzed in [20], and proven in [21, 22].

Note that in 4d c > 0, since it appears as the coefficient of a 2-point function, but that c does not

satisfy a similar a-theorem. Also, note that a≥ 0 in both 2d and 4d, with a = 0 if and only if the

theory has no local degrees of freedom [18, 23].

The intuition of there being a quantity that monotonically decreases along nontrivial RG

flows comes from the idea that along a flow, relevant deformations lift some of the massless

degrees of freedom. Indeed, for a free conformal theory, a and c are given by the free field content,

and therefore decrease as more fields are integrated out at lower energies.

The a central charge of a 4d N = 1 SCFT is completely determined by the U(1)R ’t

Hooft anomalies as in (2.25). In cases where the U(1)R can mix with additional U(1) global

flavor symmetries, the exact superconformal R-symmetry is determined by a-maximization [24],

which requires locally maximizing (2.25) over all possible U(1)R symmetries. In particular, one

can parameterize the most general possible R-symmetry as

Rtrial = R0 +∑
i

εiFi (2.41)

for Fi the generators of other U(1)’s in the theory. The result of a-maximization is that the values

of the εi such that Rtrial at the fixed point is the correct U(1)R are those that locally maximize

atrial =
3
32
(
3TrR3

trial−TrRtrial
)
. (2.42)

This follows from showing that [24]
∂atrial

∂εi
=

3
32

(9TrR2
trialFi−TrFi) = 0,

∂ 2atrial

∂εiε j
=

27
16

TrRtrialFiFj < 0. (2.43)

Note that any flavor symmetry that satisfies TrFi = 0 (such as non-Abelian flavor symmetries)

does not mix with the superconformal U(1)R, since by (2.43) R commutes with such an Fi.

Cases with accidental symmetries or irrelevant interactions require special care: one

then maximizes (2.25) over R-symmetries that are not obvious from the original description.

25



One situation where such enhanced symmetries are evident is when a gauge-invariant operator

saturates, or seemingly violates, an SCFT unitarity bound. For instance, for scalar chiral primary

operators O we must satisfy (2.31). Apparent violations instead actually saturate the inequality,

with an accidental symmetry U(1)O which only acts on the IR-free-field composite operator.

Then, this accidental U(1) mixes with the U(1)R in (2.41). See [25] for how a-maximization is

modified in such cases.

2.3.5 Chiral ring

Chiral operators are operators that are annihilated by the supercharges of one chirality. A

chiral superfield has a chiral operator as its lowest component. As we’ve already reviewed, in

theories with four supercharges chiral primary operators have dimension proportional to their

U(1)R charge, which is hence additive. The product of two chiral operators is again a chiral

operator. Then, their OPEs have a ring structure, known as the chiral ring. In the ring, chiral

operators are considered modulo operators of the form {Q†
α̇
, . . .}—i.e. two chiral operators are

considered equivalent if they differ by a Q†
α̇

exact term.

In terms of a microscopic Lagrangian description, the chiral ring consists of gauge-

invariant composites formed from the microscopic chiral superfields. Superpotentials lead to

chiral ring relations, since ∂ΦW is not a primary, and is thus set to zero in the ring. Ring relations

can also come from the finiteness of the chiral operators as matrices in a representation of the

gauge group.

2.3.6 4d N = 1 superconformal index

The Witten index [26] is defined as Tr(−1)F , where the Witten operator (−1)F distin-

guishes bosons from fermions: (−1)F |boson〉=+1|boson〉, and (−1)F |fermion〉=−1|fermion〉.

The idea of an index for a superconformal theory is essentially as a Witten index in radial
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quantization. Consider a supercharge Q with {Q,Q†}= 2∆ for ∆ some conserved charge. Then,

one can generally define an index

I[µi] = Tr(−1)Fe−β∆e−µiqi (2.44)

where the qi are charges that commute with the supercharges Q,Q†. The trace is over states of

the theory quantized on S3×R. The necessity of the compact manifold S3 is due to the fact

that one can rarely compute the Witten index in flat space, since supersymmetric theories have

a moduli space of vacua. The index (2.44) will only receive contributions from ∆ = 0 since

states with ∆ > 0 come in boson-fermion pairs. As an alternative formulation, one can define a

superconformal index as a supersymmetric partition function on S3×S1.

The superconformal index for an N = 1 theory was first defined by Römelsberger, and

can be written [27, 28]

I(p,q) = Tr(−1)F p j1+ j2+R/2q j2− j1+R/2 (2.45)

where ( j1, j2) are the spins of the Lorentz group SO(4) ' SU(2)×SU(2), and R is the U(1)R

charge. When the theory has a global symmetry with Cartan generator f , we include a fugacity y

such that there is a term y f included in the product.

Equivalently, it is useful to use

p = tx, q =
t
x
, (2.46)

to rewrite

I(t,x) = Tr(−1)FtR+2 j2x2 j1. (2.47)

Note that this convention differs from some conventions—including the one used in Chapter 4 of

this thesis—by a rescaling t→ t3. As an aside, one can similarly define the N = 2 index as

I(p,q, t)N =2 = Tr(−1)F p j1+ j2+RN =2q j2− j1+RN =2tI3−RN =2 (2.48)

with I3 and RN =2 the Cartan generators. For the rest of this subsection we will continue our

focus on the N = 1 case.

The index can be determined first on single particle states as
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i(t,x,h,g) =
2t2− t(x+ x−1)

(1− tx)(1− tx−1)
χadj(g)+∑

i

tRi χrF,i(h)χrG,i(g)− t2−Ri χr̄F,i(h)χr̄G,i(g)
(1− tx)(1− tx−1)

. (2.49)

Here G is the gauge group, and F is a flavor symmetry group. The first term represents the

contribution for gauge fields from the vector multiplet, and the second set of terms sums the

contribution of chiral matter fields in representations ri of the corresponding groups. In the sum,

the first term of the numerator represents the contribution of a chiral scalar with R-charge Ri,

while the second represents the contribution of the fermionic descendent of its anti-chiral partner.

This expression depends on the symmetry group elements g ∈G, and h ∈ F . From (2.49), we can

determine the index for all gauge singlet operators via the plethystic exponential

I(t,x,h) =
∫

G
dµ(g)exp

(
∞

∑
n=1

1
n

i(tn,xn,hn,gn)

)
(2.50)

where dµ(g) is the G-invariant measure. This formulation of the N = 1 index is nicely summa-

rized in [29].

The index has an expansion of the form

I(t,x,h) = ∑
i

ni
tαi χ ji(x)χrF,i(h)
(1− tx)(1− tx−1)

. (2.51)

Here the ni are integer coefficients, and the χ j are SU(2) characters for the spin j representation.

For example, for low spin j we have

χ1(z) = 1, χ2(z) = z+ z−1, χ3(z) = 1+ z2 + z−2. (2.52)

To see the operator spectrum from the index, it is convenient to consider the reduced index (called

the corrected index in [30])

Ir = (1− tx)(1− tx−1)(I(t,x,h)−1). (2.53)

This is an infinite series in t from which one can read off the quantum numbers of operators in the

theory, up to the ambiguity of recombination of short multiplets into long multiplets.

Part of the utility of the index comes from the fact that the superconformal index is

constant under continuous variations of the theory that preserve superconformal invariance. For

example, the index is invariant under renormalization group flow. One can compute the index

in the UV, RG flow to the IR, and if superconformal symmetry is preserved then compute the
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infrared index, taking into account the fact that the U(1)R charge preserved at the IR fixed point

might need modification. One then has a recipe to evaluate the superconformal index at a low

energy fixed point given the index in the UV.
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Chapter 3

Deformations of WA,D,E SCFTs

We discuss aspects of theories with superpotentials given by Arnold’s A,D,E singularities,

particularly the novelties that arise when the fields are matrices. We focus on 4d N = 1 variants

of susy QCD, with U(Nc) or SU(Nc) gauge group, N f fundamental flavors, and adjoint matter

fields X and Y appearing in WA,D,E(X ,Y ) superpotentials. Many of our considerations also apply

in other possible contexts for matrix-variable WA,D,E . The 4d WA,D,E SQCD-type theories RG

flow to superconformal field theories, and there are proposed duals in the literature for the WAk ,

WDk , and WE7 cases. As we review, the WDeven and WE7 duals rely on a conjectural, quantum

truncation of the chiral ring. We explore these issues by considering various deformations of the

WA,D,E superpotentials, and the resulting RG flows and IR theories. Rather than finding supporting

evidence for the quantum truncation and WDeven and WE7 duals, we note some challenging evidence

to the contrary.

3.1 Introduction

The simply-laced Lie groups, Ak, Dk, and E6, E7, and E8 (“ADE”) relate to, and classify,

far-flung things in physical mathematics. The Platonic solids are classified by the discrete sub-

groups ΓG ⊂ SU(2)—cyclic, dihedral, tetrahedral, octahedral, and icosahedral—which connect
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to the ADE Lie algebras via the McKay correspondence1. Another connection is in Arnold’s

simple surface singularities, which follow an ADE classification [31]:

WAk = Xk+1, WDk+2 = Xk+1 +XY 2, (3.1)

WE6 = Y 3 +X4, WE7 = Y 3 +Y X3, WE8 = Y 3 +X5. (3.2)

These have resolutions, via lower order deformations, associated with the corresponding ADE

Cartan, with the adjacency of the singularities that of the ADE Cartan matrix.

In two dimensions, the ADE groups arise in the classification of minimal models and

their partition functions [32]. The 2d N = 2 minimal models with ĉ < 1 are given by Landau-

Ginzburg theories with the WG=A,D,E superpotentials (3.2) [33, 34, 35]. The chiral ring of the

WG 2d N = 2 SCFT is related to the ADE group’s Cartan, with rG = rank(G) chiral primary

operators. Deforming the theory by adding these chiral ring elements to the superpotential,

W →W +∆W , the deformation parameters can be associated with expectation values in the

adjoint of G. The deformation leads to multiple vacua, where the ADE group breaks into a

subgroup. This breaking pattern is in accord with adjoint Higgsing, preserving the rank rG and

corresponding to deleting a node from the extended Dynkin diagram, e.g.

Dk1+k2+2→ Dk1+2 +Ak2, E7→ E6 +A1, E6→ D5 +A1. (3.3)

The generic deformation gives G→ rG A1, giving Tr(−1)F = rG susy vacua. The solitons

of the integrable ∆W deformations also exhibit the ADE structure, e.g. [36].

A related connection with ADE groups is via local Calabi-Yau geometries: when the

defining hypersurface has a singularity (3.2), there are (collapsed) cycles corresponding to the

ADE Dynkin diagram nodes, with intersections given by the group’s Cartan matrix. String theory

on these backgrounds can yield the corresponding ADE gauge groups in spacetime [37]. In this

context, the geometric resolutions of the local singularities corresponding to ∆W deformations

lead to adjoint Higgsing of the corresponding group.

1The irreducible representations Ri of ΓG correspond to the nodes of the extended Dynkin diagram for G, with
RF = ∑ j ai jR j for RF the fundamental of SU(2) and Ci j = 2δi j−ai j the ADE Cartan matrix.
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· · · · · ·
Dk1+k2+2

−→ · · · · · ·
Ak2 Dk1+2

E7

−→
E6 A1

E6

−→
A1 D5

Figure 3.1: Deforming the WA,D,E 2d N = 2 SCFTs corresponds to adjoint Higgsing of the
ADE group, hence cutting the Dynkin diagrams, as illustrated here for the flows in (3.3). This
gives the vacua associated with 1d representations of the F-terms.

3.1.1 The chiral ring of WA,D,E(X ,Y ) for matrix fields X and Y

We are interested in an ADE classification that arises in the context of a family of 4d

N = 1 SCFTs [38]. Before delving into specifics, we highlight a difference in comparison with

(3.2): now X and Y are matrices, with

WAk = Tr(Xk+1 +Y 2), WDk+2 = Tr(Xk+1 +XY 2), (3.4)

WE6 = Tr(Y 3 +X4), WE7 = Tr(Y 3 +Y X3), WE8 = Tr(Y 3 +X5). (3.5)

The fact that matrices allow non-zero, nilpotent solutions to the equations of motion, and can

have [X ,Y ] 6= 0, makes for important differences—even classically.

Recall that in theories with four supercharges, chiral primary operators have dimension

proportional to their U(1)R charge, which is hence additive, and their OPEs yield the chiral ring.

In terms of a microscopic, Lagrangian description, the chiral ring consists of gauge-invariant

composites formed from the microscopic chiral superfields. Superpotentials lead to chiral ring

relations, since ∂XW ∼ Q2
∂X K is not a primary, and is thus set to zero in the ring; for instance

the LG theories (3.2) then have rG=A,D,E elements.

We are here interested in aspects of the chiral rings for theories with matrix X and Y
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superpotentials (3.5), and their W →W +∆W deformations. Our focus is on the application to

4d N = 1 QFTs and renormalization group (RG) flows, but much of the analysis also applies to

other possible contexts—for instance, in 2d or 3d— where one could also consider theories with

the superpotentials (3.5) with matrix fields.

If the fields X and Y are Nc×Nc matrices, the superpotentials (3.5) have a GL(Nc,C)

symmetry under which X and Y transform in the adjoint representation: X → M−1XM, Y →

M−1Y M for M ∈ GL(Nc,C). Then, we can decide whether or not to gauge a subgroup of this

symmetry, say SU(Nc) or U(Nc). If we do not gauge, (3.5) will leave unlifted a large space of flat

directions. For instance, consider the matrix variable Ak superpotential in (3.5), whose F-term

chiral ring relations, ∂XW = ∂YW = 0, are given by

WAk : FX ∼ ∂XW ∼ Xk = 0, FY ∼ ∂YW ∼ Y = 0. (3.6)

Y is massive and could be integrated out, setting Y = 0; we merely included it here to make the

ADE cases in (3.5) more uniform. For k = 1 and any Nc, X is also massive, and there is a unique

supersymmetric vacuum at X = Y = 0. For k > 1 and Nc = 1, (3.6) gives isolated vacua at X = 0,

and resolving the singularity by lower order ∆W shows that there are Tr(−1)F = rG = k such

vacua. For both k > 1 and Nc > 1, on the other hand, Xk = 0 has a non-compact moduli space of

flat direction solutions with nilpotent X ; for example, X could contain a block v(σ1 + iσ2) for

arbitrary complex v.

In our context, SU(Nc) or U(Nc) is gauged, and the nilpotent matrix solutions of (3.6) are

lifted by the gauge D-term potential: supersymmetric vacua must have

VD = 0 : [X ,X†]+ [Y,Y †]+other matter field contributions = 0. (3.7)

The “other matter field contributions” are for example the contributions from N f fundamentals

and anti-fundamentals Q, Q̃ in variants of SQCD, which we need not consider for the moment;

i.e. we consider the theory at Q = Q̃ = 0. For the Ak case, (3.7) gives [X ,X†] = 0, implying X

and X† can be simultaneously diagonalized; then nilpotent solutions are eliminated, and (3.6)

implies that the vacua are all at X = 0.
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The D and E cases, with Nc > 1, have more matrix-related novelties since generally

[X ,Y ] 6= 0. For the D-series, the F-terms in the undeformed case are

WDk+2 : FX ∼ Xk +Y 2 = 0, FY ∼ {X ,Y}= 0. (3.8)

The 1d representations are the same as in the Nc = 1 case, giving rDk+2 = k+2 chiral ring elements.

For matrices X and Y , the chiral-ring relations (3.8) lead to a qualitative difference between k odd

and k even. For k odd, (3.8) imply that Y 3 ∼Y Xk ∼−Y Xk = 0, and thus there are 3k independent

chiral ring elements formed from X and Y , given by

k odd : Θ` j = X `−1Y j−1, `= 1, . . . ,k; j = 1,2,3. (3.9)

For k even, Y m≥3 6= 0 in the ring, so there are chiral ring elements with allowed values of j that

do not truncate, i.e. they do not have a maximum value independent of Nc.

Likewise, for WE6 the chiral ring relations

WE6 : FX ∼ X3 = 0, FY ∼ Y 2 = 0, (3.10)

allow for rE6 = 6 chiral ring elements with 1d representations, {1, X , Y , X2, XY , X2Y }. For

Nc > 1, one can form, for example, Tr(XY )` with arbitrary ` as independent chiral ring elements,

so the ring does not truncate. Similarly, for WE7 , the chiral ring relations

WE7 : FX ∼ X2Y +XY X +Y X2 = 0, FY ∼ Y 2 +X3 ∼ 0, (3.11)

lead to rE7 = 7 chiral ring elements when Nc = 1, while for Nc > 1 the classical chiral ring is not

truncated. For WE8 , the chiral ring relations

WE8 : FX ∼ X4 = 0, FY ∼ Y 2 = 0, (3.12)

lead to rE8 = 8 chiral ring elements for 1d representations (X `−1Y j−1 for `= 1, . . . ,4 and j = 1,2),

but the classical chiral ring does not truncate for matrix representations.

3.1.2 WA,D,E in 4d SQCD with fundamental plus adjoint matter

We consider ADE superpotentials in the context of 4d N = 1 SCFTs, with gauge group

SU(Nc) or U(Nc), X and Y adjoint chiral superfields, and N f (anti)fundamental flavors Q (and
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Q̃). The possible interacting SCFTs were classified in [38] as

WÔ = 0, WÂ = TrY 2, WD̂ = TrXY 2, WÊ = TrY 3 (3.13)

along with (3.5). The reappearance of Arnold’s ADE classification in this context [38] was

unexpected. Some interesting ideas and conjectures for a geometric explanation of the WA,D,E in

this context appeared in [39], in connection with matrix models and the construction of [40]. We

will not further explore these interesting ideas here.

The IR phase of the theory depends on N f and Nc. It is convenient to consider these

theories in the Veneziano limit of large Nc and N f , with the ratio

x = Nc/N f (3.14)

held fixed; the IR phase then only depends on x. The Ô theory is (or is not) asymptotically free for

x > 1 (or for x≤ 1), and RG flows to an interacting (or free electric) theory. Larger x values means

that the theory is more asymptotically free, and hence the original “electric” description is more

strongly coupled in the IR. The asymptotically free theories are expected2 to be in the interacting

SCFT conformal phase for all N f < 2Nc (i.e. x > 1
2) for the Â cases, and for all N f < Nc (i.e.

x > 1) for the Ô, D̂ and Ê cases. For the WA,D,E theories (3.5), on the other hand, there are more

possible IR phases.

In the WA1 case, the adjoints are massive and can be integrated out. The resulting IR

theory is SQCD, which has the duality [42], with “magnetic” gauge group SU(N f −Nc). The

dual reveals the bottom of the conformal window, and the existence of the IR-free magnetic phase

for 2
3 ≤ x≤ 1; for x > 1, the theory generates a dynamical superpotential [43]. The WAk>1 theories

were considered in [44, 45], where a duality was proposed and checked. Following [46, 47] we

write the WAk duality in a way that will generalize to some cases:

(some cases) WG : SU(Nc)↔ SU(αGN f −Nc), with αAk = k. (3.15)

Superpotential deformations of WAk were considered in [48], where the fact that αAk = k was

2This can be seen e.g. for the Â theories with N f > 0 as in [41]: a superpotential deformation leads to N = 2
SQCD, and all the mutually non-local, massless monopole and dyon points in the moduli space collapse to the origin
in the original theory. This has no free-field interpretation.
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shown to tie in with the fact that upon a generic ∆W deformation, Arnold’s Ak singularity is

resolved as

Ak→ kA1, (3.16)

since the low-energy theory in each of the k vacua has the SU(ni)↔ SU(N f −ni) duality of [42].

The IR phases and relevance of the WAk theories were clarified in [25] using a-maximization [24],

including accounting for accidental symmetries.

A duality of the form (3.15) for the case of two adjoint chiral superfields X and Y , with

WDk+2 as in (3.5), was proposed in [49], with

αDk+2 = 3k. (3.17)

The IR phases and relevance of the superpotential terms were clarified in [38], where it was also

noted how the αDk+2 value (3.17) can be understood / derived from ∆W deformations; this will be

discussed much further, and clarified, in the present chapter.

More recently, a duality for the case of WE7 was proposed in [46], with

αE7 = 30. (3.18)

The value (3.18) was moreover shown in [47] to be compatible with the superconformal index in

the Veneziano limit3, and it was argued [46, 47] that the WE6 and WE8 theories cannot have duals

of the simple form (3.15); it is not yet know if these theories have duals. A motivating goal of

our work was to obtain some additional insight into the value (3.18), and its connection with the

flows in Fig. 3.2.

3.1.3 WA,D,E +∆W RG flows

Possible flows between these fixed points are illustrated in Figure 3.2, taken from [38].

We here emphasize that this figure is somewhat incomplete: the ∆W superpotential deformations

3The exact matching of the electric and magnetic indices beyond this limit requires mathematical identities which
have only been demonstrated explicitly for the WA1 SQCD duality case [29, 50]; the needed identities are conjectural
for the Ak>1, Dk+2, and E7 dualities.
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Figure 3.2: Flows among the fixed points of SQCD with two adjoints.

give additional vacua, with a richer IR structure than is indicated in the figure. Indeed, even

the 1d (Nc = 1) representations of the chiral ring of the deformed WA,D,E +∆W superpotentials

give rank rG=A,D,E vacua, as in the examples (3.3). The two-matrix D and E cases with Nc > 1

give additional vacua. Incidentally, much as in 2d, there are BPS solitons—here domain walls—

interpolating between the vacua; we will not discuss them further here.

To illustrate the multiple vacua and possibility for additional vacua, consider WDk+2 with

U(Nc) gauge group for Nc > 1. The generic ∆W deformation gives4 [51, 38]

Dk+2→ (k+2)A1d
1 +

⌊
1
2
(k−1)

⌋
A2d

1 . (3.19)

The 1d and 2d labels refer to the dimension of the representation of the (deformed) chiral ring. The

higher-dimensional representations of the chiral ring are the new elements of the matrix-variable

superpotentials. The gauge group is then broken as [38]

U(Nc)→
k+2

∏
i=1

U(ni)
b 1

2 (k−1)c
∏
j=1

U(n2d
j ) with

k+2

∑
i=1

ni +
b 1

2 (k−1)c
∑
j=1

2n2d
j = Nc. (3.20)

For k odd, the low-energy theory is SQCD for each factor, with N f flavors for the U(ni) groups

4We use the standard notation for the floor and ceiling functions, bxc and dxe, respectively. So, for k odd,
b 1

2 (k−1)c= d 1
2 (k−1)e= 1

2 (k−1); for k even, b 1
2 (k−1)c= 1

2 (k−2) and d 1
2 (k−1)e= k

2 .
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and 2N f flavors for the U(n2d
j ) groups, and then the duality of [42] in each factor fits with the

value (3.17) [38].

We will discuss even vs. odd Dk+2 and the duality of [49] in much more detail in what

follows. We will also report on our attempt to understand the duality [47]—and the value

(3.18)—by considering various ∆W deformations, similar to (3.19) and (3.20).

3.1.4 WA,D,E flat direction flows

The WA,D,E theories can also be deformed by moving away from the origin, on the moduli

space of supersymmetric vacua. There are fundamental matter flat directions associated with

expectation values for the Q and Q̃ matter fields (e.g. 〈QN f 〉 = 〈Q̃N f 〉 6= 0), and adjoint flat

directions associated with expectation values 〈X〉 and/or 〈Y 〉, as well as mixed directions where

both fundamentals and adjoints receive expectation values. We will here primarily focus on the

purely adjoint flat directions.

For X and Y adjoints of SU(Nc) gauge group, there are certain flat directions which exist

for special values of Nc that do not exist for the U(Nc) case. For example, for WAk there are flat

directions when Nc = kn for integer n; along such flat directions,

SU(kn)→U(n)k/U(1), (3.21)

where in the low-energy theory each U(n) factor is a decoupled copy of SQCD with N f flavors.

As we will review in Section 3.3.4, this gives another check of αAk = k in the duality (3.15). We

will discuss similar checks of αDk+2 = 3k, for the case of k odd. As we will emphasize, the Deven

case is quite different from Dodd; similar series of flat directions for Deven and E7 have a more

subtle story.

For the cases where the classical chiral ring does not truncate—namely, WDk+2 for k even

and WE7—we show that there are classically unlifted flat directions given by matrix solutions to

the F- and D-terms of the undeformed theories. We argue that these flat directions are not lifted

or removed by any dynamics, and they thus present a possible challenge for the proposed duals
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for these theories.

3.1.5 Outline

The outline of the rest of this chapter is as follows. In Section 3.2 we review some

technical details, including a review of the known and conjectured dualities for the 4d WA,D,E

SCFTs, and a discussion of their moduli spaces of vacua—especially with respect to higher-

dimensional vacua. In Section 3.3 we review some aspects of the WÂ and WAk theories to set the

stage for subsequent analysis.

In Section 3.4, we consider the WDk+2 theories. First, we study a matrix-related classical

moduli space of supersymmetric vacua present for the Deven theory, which poses a puzzle

for duality for Deven, and argue that these flat directions are not lifted by quantum effects.

We demonstrate that these flat directions seem to violate the a-theorem, and discuss possible

resolutions to this puzzle. We then study SU(Nc)-specific flat directions of the Dk+2 theories,

reviewing that such flat directions provide a nontrivial check of the Dodd duality, and then showing

that they lead to puzzles for the conjectured Deven duality. Next, we study RG flows from the

WDk+2 SCFTs via relevant superpotential deformations, again finding nontrivial checks of duality

for Dodd, and more hurdles for Deven. We conclude Section 3.4 with comments on hints as to how

these puzzles might be resolved.

In Section 3.5, we similarly analyze the WE7 SCFT. We study matrix-related flat directions

and SU(Nc)-specific flat directions of the E7 theory, which turn out to be analogous to the puzzling

Deven flat directions. We then study some ∆W RG flows from the WE7 SCFT, noting some features

in the resulting higher-dimensional vacuum structure that are new to the E-series. Finally, we

conclude in Section 3.6 with comments on future directions, and some discussion of how the

present work might be applied to the WE6 and WE8 SCFTs. In an appendix, we explore additional

E-series RG flows.
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3.2 Technical Review

3.2.1 The a-theorem, and a-maximization

As we reviewed in Chapter 2, the 4d a-theorem [19, 52, 21] implies that the endpoints of

all RG flows must satisfy

aUV > aIR. (3.22)

In superconformal theories, a is related to the ’t Hooft anomalies for the superconformal U(1)R

symmetry as [16] (we rescale to a convenient normalization):

a(R) = 3TrR3−TrR. (3.23)

In cases where U(1)R can mix with U(1)F global flavor symmetries, the exact superconformal

R-symmetry is determined by a-maximization [24], by locally maximizing (3.23) over all possible

U(1)R symmetries. Cases with accidental symmetries or irrelevant interactions require special

care: one then maximizes (3.23) over R-symmetries that are not obvious from the original

description. One such situation is when a gauge-invariant operator saturates, or seemingly

violates, an SCFT unitarity bound, e.g. for scalar chiral primary operators O:

∆(O) =
3
2

R(O)≥ 1. (3.24)

The inequality is saturated for free chiral superfields, and apparent violations instead actually

saturate the inequality, with an accidental symmetry U(1)O which only acts on the IR-free-

field composite operator. See [25] for how a-maximization is modified in such cases, and its

application to the Â SCFTs. See [38] for additional applications to the other theories in Fig. 3.2,

and additional discussion.

The a-theorem (3.22) requires, for example, that a decreases when a fundamental flavor

is given a mass and integrated out,

aSCFT (Nc,N f )> aSCFT (Nc,N f −1), (3.25)

where SCFT refers to any of the SCFTs in Fig. 3.2. In the Veneziano limit, (3.25) for this RG
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flow requires (recall x≡ Nc/N f ) [38]
d
dx

(
x−2a(x)/N2

f
)
< 0. (3.26)

Upon computing a(x) for the SCFTs in Fig 3.2, it is verified that x−2a(x)/N2
f is indeed monotoni-

cally decreasing for small x, but then flattens out when x is sufficiently large, e.g. at x≈ 13.8 for

the WE6 SCFTs [38]. The a-theorem implies that some new dynamical effect must kick in for x at

or before the problematic range where (3.26) is violated.

One such effect, for sufficiently large x, is that a dynamical superpotential could be

generated, and the theory is no longer conformal; this is referred to as the stability bound. For WAk

theories, the stability bound is x < xstability = k [43, 44, 48]. Another effect, which can occur for

x < xstability, is that the theory could develop non-obvious accidental symmetries. In cases with

known duals, such accidental symmetries can be evident in the dual description, where it is seen

that some superpotential terms—or the dual gauge interaction—become irrelevant when xelec is

too large (xmag is too small). It is satisfying that the a-theorem condition (3.26) is indeed satisfied

in the WAk theories [25] and the WDk+2 theories [38] upon taking such accidental symmetries into

account.

3.2.2 Duality for the 4d SCFTs

Recall that the chiral ring consists of gauge-invariant composites, e.g. meson, baryon,

and glueball operators, formed from the microscopic chiral superfields: here X and Y , the

fundamentals and anti-fundamentals Q, Q̃, and the gauge field strength fermionic chiral superfields

Wα , subject to classical and quantum relations. Such theories, with adjoint(s) X (or X and Y , or

similarly, other two-index representations, e.g. in the examples in [53]) only have a known dual if

the chiral ring of products of the adjoint(s) truncates. Here, truncate means that the number of

independent elements in the ring is independent5 of Nc. An example of an untruncated case is the

5There is a classical chiral ring relation that the adjoint-valued operator XNc can be expressed in terms of products
of lower powers X `<Nc and the u j ≡ TrX j. To see this, write the characteristic polynomial P(x,u j)≡ det(x−X) =
xNc − xNc−1u1 + . . . , and note that P(x,u j)|x=X = 0. Thus one can write any gauge invariant TrX ` = P`(u1, . . . ,uNc)
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Â theory, for which a basis of adjoint-valued products is given by Θ j(X) = X j−1, for j = 1, . . . ,Nc;

such theories do not have a known dual. A truncated case is WAk , where Θ j(X) = X j−1, for

j = 1, . . . ,k.

More generally, suppose that a truncated case has a basis of elements Θ j(X ,Y ), with

j = 1, . . . ,α; these are holomorphic products without traces, so gauge-invariant chiral ring

elements are formed by taking traces or contracting with Q and Q̃. One can form dressed quarks

Q( j) ≡ Θ j(X ,Y )Q, which can then be used to construct gauge-invariant operators, such as the

αN2
f mesonic operators

M j = Q̃Θ jQ, j = 1, . . . ,α. (3.27)

(We suppress flavor indices: each M j = (M j) f , f̃ is in the (N f ,N f ) of SU(N f )L×SU(N f )R). For

SU(Nc) there are also baryonic operators, built out of the dressed quarks:

B(l1,...,lα ) = Ql1
(1)...Q

lα
(α)

,
α

∑
j=1

l j = Nc. (3.28)

As shown in [46], the many constraints on any possible dual—including matching of the

chiral operators, invariance under the same global symmetries, ’t Hooft anomaly matching, and

matching of the superconformal index [47]—essentially determines the dual (assuming it is of a

similar form) to have gauge group SU(Ñc), with Ñc = αN f −Nc, again with N f flavors q and q̃ in

the (anti)fundamental of the gauge group, and adjoint fields we denote by X̂ ,Ŷ . The ratio (3.14)

of the dual theory is

x̂≡ Ñc/N f = α− x. (3.29)

The electric mesons (3.27) map to elementary operators of the dual theory, which couple in Wdual

to a corresponding mesonic composite operator in the magnetic theory. Magnetic baryons map to

for some polynomial P`. As shown in [54], such relations can be modified by instantons for sufficiently large `.
See e.g. [54, 55], and references therein, for examples of chiral ring relations involving the adjoint-valued gaugino
and gauge field chiral superfield Wα , including the glueball operator S∼ TrWαW α and generalizations. Relations
involving Wα and S will not be discussed in this current work.
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electric baryons as

B(l1,...,lα )↔ B̂(l̂1,...,l̂α ), l̂ j = αN f − l j. (3.30)

The truncation of the ring to α generators is a necessary ingredient for these classes of conjectured

dualities. The chiral ring of the electric theory truncates classically in the Ak and Dodd cases, and

has been conjectured to truncate quantum mechanically in the Deven [49] and E7 [46] cases.

The WA,D,E theories are understood in terms of the RG flows in Fig. 3.2, starting from

the top, W = 0 theories. If x > 1 the gauge coupling is asymptotically free, so it is a relevant

deformation of the UV-free fixed point, driving the RG flow of the top arrow in Fig. 3.2

into the Ô SCFT. Deforming by WÂ, WD̂, or WÊ gives flows, as in the figure, that are also all

relevant for x > 1 (the Â case can be defined down to x > 1
2). Generally, as long as the gauge

coupling is asymptotically free, its negative contribution to anomalous dimensions drives the

cubic superpotential terms to be relevant. The Â→ Ak, and D̂→ Dk+2, and Ê→ Er flows with

non-cubic terms in W (X ,Y ) only occur if x > xmin, such that the negative anomalous dimension

from the gauge interactions is large enough to drive the W (X ,Y ) terms relevant; the values of xmin

were obtained using a-maximization for WAk in [25] and in [38] for the other WG=A,D,E theories.

Duality, if it is known and applicable, clarifies the IR phase structure of the theories for x > xmin,

where the magnetic dual becomes more weakly coupled. The fixed point theories whose duals are

known or conjectured all have a similar phase structure [25, 38, 46]:

Table 3.1: Conjectured phases of theWA,D,E SCFTs.

x≤ 1 free electric
1 < x≤ xmin (Â, D̂, Ê) electric

xmin < x < α− x̂min (Ak,Dk+2,Er) conformal window
α− x̂min ≤ x < α−1 (Â, D̂, Ê) magnetic

α−1≤ x≤ α free magnetic
α < x no vacuum
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3.2.3 Moduli spaces of vacua of the theories

Recall that, as we reviewed in Chapter 2, 4d N = 1 theories with W = 0 have a classical

moduli space of vacua Mcl , given by expectation values of the microscopic matter fields, subject

to the D-term conditions (3.7) and modulo gauge equivalence. Alternatively, Mcl is given by

expectation values of gauge invariant composite, chiral superfield operators, modulo classical

chiral ring relations (see for instance [8]). When W 6= 0, one also imposes the F-term chiral ring

relations. The quantum moduli space Mqu can be (fully or partially) lifted if Wdyn is generated, or

deformed for a specific N f as in [56] or variants6; the constraints of symmetries and holomorphy

often exactly determine the form of such effects, and with sufficient matter (e.g. sufficiently small

x) this implies that Wdyn = 0 and Mcl
∼= Mqu.

We will here focus on vacua with Q = Q̃ = 0, with non-zero expectation values for the

adjoints, X and Y ; such vacua preserve the SU(N f )L×SU(N f )R global flavor symmetry. The Nc×

Nc matrices X and Y are decomposed into multiple copies of a set of basic, irreducible solutions

of the D- and F-flatness conditions. We refer to such a basic vacuum solution representation as

being d-dimensional if X and Y are represented as d×d matrices, which cannot be decomposed

into smaller matrices.

For the Â and Ak theories and their ∆W deformations, we can set Y = 0 and the D-terms

give [X ,X†] = 0. Thus, X and X† can be simultaneously diagonalized by an appropriate gauge

choice, and all vacuum solutions are d = 1 dimensional, represented by eigenvalues on the

diagonal of X . More generally, vacua with [X ,Y ] = 0 allow for simultaneously diagonalizing X ,

X†, Y , and Y †, so the representations are d = 1 dimensional. For cases other than Â and Ak in Fig.

3.2, there are generally also d > 1 dimensional vacua, where [X ,Y ] 6= 0. In such cases, we cannot

in general fully diagonalize neither X nor Y . We can use the gauge freedom to e.g. diagonalize

the real part of X (or Y ), and then impose the D-term to get an adjoint-worth of constraints on the

6There are exotic examples of classical flat directions that are lifted by, for example, confinement (see e.g. [57]);
this can only occur if a gauge group remains unbroken and strong there.
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remaining three real adjoints. We indeed find examples of vacua where neither X nor Y can be

fully diagonalized.

The independent representations for X and Y vacuum solutions can be characterized by

the independent solutions for the Casimir7 products of X and Y . For example, if the F-terms imply

that [X3,Y ] = 0, [Y 2,X ] = 0 then we use the eigenvalues X3 = x31d, Y 2 = y21d to label the vacua.

In some cases we find there are no such Casimirs (other than the zero F-terms themselves); then

different X and Y eigenvalues give different vacuum solutions. In general, a d > 1 dimensional

representation is not reducible if: [X ,Y ] 6= 0, the eigenvectors of X and Y collectively span at

least a d-dimensional space, and X and Y do not share an eigenvector corresponding to a zero

eigenvalue.

Consider a general WA,D,E theory, deformed by a generic ∆W . Let i run over the vacuum

solutions, and di be their dimension. There are always precisely rG ≡ rank(G) different di = 1

dimensional (diagonalized) vacuum solutions for X and Y , as with the original, Nc = 1 Landau-

Ginzburg theories (3.2). For the D and E cases, with Nc > 1, there are di > 1 dimensional vacuum

solutions. In all cases, the full Nc×Nc matrix expectation values of X and Y decompose into

blocks, with ni copies of the i’th representation, such that

Nc = ∑
i

nidi. (3.31)

The vacua are given by all such partitions of Nc into the ni, subject to quantum stability

constraints (to be discussed). The non-zero X and Y Higgs U(Nc) or SU(Nc), with the unbroken

gauge group depending on the ni.

It turns out that if there are n copies of a d-dimensional vacuum, there will be an unbroken

U(n)D ⊂U(Nc), where U(n)D can be regarded as coming from breaking a U(dn) ⊂U(Nc) as

U(dn)→U(n)d →U(n)D. The U(n)d factors each have N f flavors, so the diagonally embedded

U(n)D has dN f flavors. If both adjoints receive a mass from the superpotential F-terms, the

low-energy U(n)D will then be SQCD with dN f flavors. This factor then has a dual gauge

7Casimir here means matrices commuting with X and Y , not the U(Nc) or SU(Nc) Casimir traces.
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group U(dN f −n)D, with dN f flavors (with SU(N f )L,R enhanced to SU(dN f )L,R as an accidental

symmetry in the IR limit). By the dual analog of the electric Higgsing, this low-energy U(dN f −

n)D can be embedded in a U(d2N f − dn) with N f flavors. For example, consider the case

of n copies of a 2d vacuum, with 〈X〉 breaking U(2n)→ U(n)×U(n), and then 〈Y 〉 in the

bifundamental breaking to U(n)D. Duality maps this process as follows:

U(2n) → U(n)×U(n) → U(n)D
y y

U(4N f −2n) → U(2N f −n)×U(2N f −n) → U(2N f −n)D

(3.32)

The low-energy theory for such a vacuum is denoted as A2d
1 if all the adjoints are massive, where

the 2d superscript indicates that it comes from a 2d representation, and thus has 2N f (or more

generally, dN f ) flavors. Applying such considerations for all di vacua in (3.31) suggests that the

dual theory has α given by

α
?
= ∑

i
d2

i . (3.33)

This relation indeed works for the Ak and the Dodd theories, but not for Deven or E6,7,8.

For WDk+2 , the generic deformation has k+ 2 1d vacuum solutions, and b1
2(k− 1)c 2d

representations. If there are ni copies of the i’th 1d solution, and n2d
j copies of the j’th 2d solution,

then U(Nc) is broken as in (3.20). For odd k, (3.33) indeed gives α = 3k.

3.3 Example and Review: Â and Ak One-Adjoint Cases

3.3.1 Â→ Ak flow and Ak duality

Consider SU(Nc) SQCD with N f chiral superfields Q(Q̃) in the (anti)fundamental of the

gauge group, and adjoint chiral superfields X and Y with superpotential

WAk =
tk

k+1
TrXk+1 +

mY

2
TrY 2. (3.34)

46



The Y field is massive and can be integrated out; this is the Ô→ Â RG flow in Fig. 3.2. The tk

coupling, if relevant, drives the Â→ Ak RG flow in Fig. 3.2; if irrelevant, the IR theory is instead

an Â SCFT. For k = 1, tk = mX is an X mass term and is always relevant; then both X and Y can

be integrated out and the IR A1 theory is ordinary SQCD. For k = 2, tk is marginally relevant as

long as the matter content is within the asymptotically free range, thanks to the gauge coupling.

For k > 2, the tk coupling is relevant only if x > xmin
k [25].

The chiral ring of the Ak theory truncates classically, and we may write the k generators

Θ j = X j−1, j = 1, . . . ,k. (3.35)

There are then kN2
f meson operators (3.27), with αAk = k, and baryonic operators (3.28).

The Â theory (tk = 0) does not have a known dual description. The magnetic description

of the Ak SCFT [44, 45, 48] has gauge group SU(Ñc) with Ñc = kN f −Nc, so x̂≡ Ñc/N f = k− x.

The dual has N f (anti)fundamentals q(q̃), adjoints X̂ ,Ŷ , and k gauge singlets M j transforming in

the bifundamental of the SU(N f )×SU(N f ), with superpotential

W mag
Ak

=
t̂k

k+1
TrX̂k+1 +

m̂Y

2
TrŶ 2 +

tk
µ2

k

∑
j=1

M jq̃X̂k− jq. (3.36)

We can rescale X and X̂ to set tk = t̂k = 1, and µ is a scale that appears in the scale matching of the

electric and magnetic theories. The kN2
f mesonic gauge invariant operators (3.27) of the electric

theory map to elementary gauge-singlets M j in the dual. The other gauge-invariant, composite

operators in the chiral ring of the electric theory—i.e. the generalized baryons (3.28), operators

TrX j−1, and glueball-type operators composed from Wα—all map directly to the corresponding

composite gauge-invariant chiral operators in the magnetic dual theory. Both theories have the

same anomaly free global symmetries, SU(N f )× SU(N f )×U(1)B×U(1)R, and the ’t Hooft

anomalies properly match [44, 45, 48].

The Â theories have a quantum moduli space of vacua, Wdyn = 0, for all N f and Nc. The

Ak theories, however, generate Wdyn 6= 0 if kN f < Nc. For example, SQCD (WA1) for N f < Nc

has Wdyn 6= 0 [43], giving a Q̃Q→ ∞ runaway instability for massless flavors or Tr(−1)F = Nc
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gapped susy vacua for massive flavors. We are here interested in cases with massless flavors and

Wdyn(M j) = 0, so we restrict to kN f > Nc, i.e. x < xstability = k; this is the vacuum stability bound

[44, 45]. For kN f < Nc, the quantum theory Ak has a moduli space of vacua, where the M j mesons

have expectation values. The classical constraints on this moduli space, e.g. rank(Mk) ≤ Nc,

are recovered in the magnetic dual description from its stability bound, x̂ < k, since the Mk

expectation value gives masses via (3.36) to the dual quarks q, q̃.

3.3.2 WAk +∆W deformations and Ak→ Ak′<k RG flows

The Ak theories of different k are connected by RG flows upon resolving the Ak singularity

(3.34) by lower order ∆W deformations. The generic deformation, for instance by a mass term

∆W = 1
2mX TrX2, leads to an RG flow with k vacuum solutions for 〈X〉, with X massive in each,

hence k copies of SQCD in the IR—i.e. Ak→ kA1.

We now consider a partial resolution, by tuning the superpotential couplings such that

some of the eigenvalues coincide. We first consider the U(Nc) case, which is simpler because we

don’t have to worry about imposing the tracelessness of X . Consider the deformation

Welec =WAk +∆W, ∆W =
k−1

∑
i=k′

ti
i+1

TrX i+1. (3.37)

(The tk−1 deformation is trivial in the chiral ring, and it can be shifted away by shifting X , at the

expense of inducing lower order terms. Such items affect the RG flow, so we keep tk−1 non-zero

here.) The F-terms of (3.37) have a discrete set of solutions for the eigenvalues of X , with one

solution at X = 0 and (k− k′) solutions at non-zero values of 〈X〉.

The vacua are given by all possible partitions of Nc into the possible vacuum eigenvalues;

in such a vacuum, the electric gauge group is broken as

U(Nc)Ak →U(n0)Ak′ ×
k−k′

∏
i=1

U(ni)A1, Nc = n0 +
k−k′

∑
i=1

ni. (3.38)

The subscripts denote the low-energy theory, obtained by expanding (3.37) around the corre-
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sponding vacuum, X = 〈X〉+δX . The vacua at 〈X〉 = 0 have the most relevant term in (3.37)

given by Wlow ∼ Tr(δX)k′+1 =WAk′ . The vacua at 〈X〉 6= 0 have a mass term for the low-energy

adjoint, Wlow ∼ Tr(δX)2 =WA1 . We write this breaking pattern as

Ak→ Ak′+(k− k′)A1. (3.39)

By further tuning the ti parameters in the deformation (3.37), we could cause some or all of the

(k− k′) SQCD vacua to coincide, e.g leading to

Ak→ Ak′+Ak−k′ : i.e. U(Nc)Ak →U(n0)Ak′ ×U(Nc−n0)Ak−k′ . (3.40)

Quantum mechanically, the vacuum stability condition—needed to have Wdyn = 0—requires each

U(n)Ak vacuum in (3.38) to have kN f > n [44, 45, 48].

In the magnetic dual, we deform by the dual analog of the perturbations in (3.37). The

vacuum solutions of the deformed electric and dual theories, W ′elec(X) = 0 and W ′mag(X̂) = 0, thus

appropriately match, so if the electric breaking pattern is as in (3.39) or (3.40), it will have the

corresponding pattern in the magnetic dual. Each vacuum gauge group in the low-energy theories

maps under duality as [44, 45, 48]

U(n)Ak ↔U(kN f −n)Ãk
(3.41)

and the stability bound in the electric theory ensures that kN f −n > 0. The theories on the UV

and IR sides of (3.38) thus map in the dual as

U(kN f −Nc)Ãk
→U(k′N f −n0)Ãk′

×
k−k′

∏
i=1

U(N f −ni)Ã1
. (3.42)

For the case in (3.40) the map is

U(kN f −Nc)Ãk
→U(k′N f −n0)Ãk′

×U((k− k′)N f −Nc +n0)Ãk−k′
. (3.43)

The two sides of the RG flow arrow in (3.42) properly fit together as a dual description

of the flow associated with the ∆W deformation, since (k′N f − n0)+∑
k−k′
i=1 (N f − ni) = kN f −

∑
k−k′
i=0 ni = kN f −Nc. This demonstrates that the value αAk = k (see Section 3.2.2) ties in with the

fact that the Ak deformation breaking patterns (e.g. as in (3.39)) have matching sum on the two

sides. This matching gives a check on the duality [48]—a perspective which we utilize throughout
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the present work.

As an aside, we note that the a-theorem (3.22) applies for any choice of the IR vacuum; i.e.

for any fixed choice of how to distribute the Nc eigenvalues of X among solutions to W ′(X) = 0

(subject to the stability bounds). Regarding a as counting a suitably defined “number of degrees of

freedom” of the QFT, one might wonder if a hypothetical stronger statement holds: if aUV is also

larger than the sum ∑i aIR,i over all IR vacua. These examples demonstrate that the hypothetical

stronger statement is false. There are so many vacua from the many partitions of Nc that it is

straightforward to explicitly verify that ∑i aIR,i can be larger than aUV .

3.3.3 Comments on SU(Nc) vs U(Nc) RG flows

It is standard that the local8 dynamics of 4d U(Nc) and SU(Nc) are the same: the overall

U(1) factor in U(Nc) is IR-free anyway in 4d (although that is not the case in 3d and lower). The

original dualities of [42, 44, 45, 48, 49] etc. were written in terms of SU(Nc), with U(1)B as a

global symmetry. Since U(1)B is anomaly free, one can gauge it on both sides of the duality,

leading to U(Nc)→ U(αN f −Nc) dualities. For the theories with adjoint matter, the U(Nc)

version of the theories are simpler, in that we do not need to impose the tracelessness of the

adjoints. The adjoints X of the SU(Nc) vs U(Nc) theories are related by XU(Nc) = XSU(Nc)+X01Nc ,

where TrXSU(Nc) = 0 and X0 is an SU(Nc) singlet. In the purely SU(Nc) theory, it is standard to

eliminate X0 by including a Lagrange multiplier λx: WAk = TrXk+1/(k+ 1)−λxTrX . Then λx

pairs up with X0, giving it a mass, and the vacua have X0 = 0. The WX = 0 chiral ring relation

here gives Xk = λx1Nc .

Upon deforming WA,D,E →WA,D,E +∆W , the TrXSU(Nc) = TrYSU(Nc) = 0 constraints com-

plicate the SU(Nc) theories compared with U(Nc). This is particularly the case if we are in-

terested in ∆W flows as in Fig. 3.2 which have some X and Y dynamics remaining in the

IR, rather than flowing all the way down to just decoupled copies of SQCD. We can enforce

8Of course the global dynamics and observables distinguish the different center of U(Nc) vs SU(Nc).
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TrXSU(Nc) = TrYSU(Nc) = 0 via Lagrange multipliers, which shifts the eigenvalues of X and Y

along the flow away from the preferred U(Nc) origin at X = Y = 0. Such a shift will induce the

more general, relevant ∆W deformations which were tuned to zero for the U(Nc) case, unless the

reintroduced ∆W terms are subtracted off by a tuned choice of coefficients in the initial ∆W . We

will see that there are subtleties—especially for the D and E cases—from the d > 1 dimensional

vacuum representations.

Consider for example the flow A3→ A2 +A1. For U(Nc), we get the enhanced A2 in the

IR (vs the generic 3A1) by taking k′ = 2 in (3.37):

W =
1
4

TrX4 +
t2
3

TrX3 +
1
2

TrY 2. (3.44)

For the SU(Nc) version of this flow, we add the Lagrange multiplier λx to eliminate X0, shifting

the X eigenvalues. But simply doing this shift in (3.44) would induce the TrX2 term, giving

instead A3 → 3A1. To get A3 → A2 +A1, we must add to (3.44) the remaining tm<2 terms in

(3.37),

W =
1
4

TrX4 +
t2
3

TrX3 +
1
2

TrY 2 +
t1
2

TrX2−λxTrX−λyTrY, (3.45)

with t1 tuned in terms of the multiplicities n0,n1 of eigenvalues in the A2 and A1 solutions. For

fixed t1, vacua with other partitions Nc = n′0 +n′1 will instead have 3A1 in the IR.

It is not immediately apparent if this procedure works in the D and E cases to shift higher-

dimensional representations in just the right way to be able to map any U(Nc) deformation into a

corresponding SU(Nc) one. The chiral ring algebra that determines how one labels the higher-

dimensional vacua is sensitive to additional deformation terms in both X and Y , with [X ,Y ] 6= 0.

While such a shift maps between the 1d U(Nc) and SU(Nc) solutions, the higher-dimensional

solutions can differ; indeed, we will see examples of this later on. Additional subtleties arise

when there are multiple ways to perform the shift between the 1d solutions of SU(Nc) and U(Nc).

We find cases in the D- and E-series where different deformation shifts agree for the 1d solutions

but result in different Casimirs along the flow, thus affecting the labeling of higher-dimensional
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vacua. We will explore these issues with examples in Sections 3.4.5 and 3.5.4.

3.3.4 SU(Nc) flat direction deformations

The ADE SCFTs, for SU(Nc) gauge group and special values of Nc, have flat directions

that are not present for U(Nc). These are discussed for the Ak case in [48]. Adding a Lagrange

multiplier term λxTrX to (3.34), there is a flat direction of supersymmetric vacua when Nc = km

for integer m, labeled by arbitrary complex λx:

〈X〉= λ
1/k
x




ω1m

ω21m

. . .

ωk1m



, (3.46)

where ω = e2πi/k is a k’th root of unity and the off-diagonals are zero. This flat direction breaks

SU(Nc)→ SU(m)k×U(1)k−1. In each vacuum the adjoints are massive, so in the IR we end up

with k copies of SQCD. The magnetic Ak theory has an analogous flat direction, along which the

low-energy theory matches to that of the k copies of SQCD via Seiberg duality:

SU(km)
λx 6=0−→ SU(m)k×U(1)k−1

y y

SU(k(N f −m)) → SU(N f −m)k×U(1)k−1

(3.47)

This gives yet another check that the Ak duality has Ñc = αN f −Nc, with α = k.

3.4 The WDk+2 Fixed Points and Flows

The WDk+2 SCFTs are the IR endpoints of the RG flow from the D̂ SCFT, and correspond

to the superpotential (with Y normalized to set the coefficient of the first term to 1)

WDk+2 = TrXY 2 +
tk

k+1
TrXk+1. (3.48)
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Such theories were first studied in [49]. The TrXY 2 term in (3.48) is always relevant and drives

the RG flow Ô→ D̂, while the second term in (3.48) gives the D̂→ Dk+2 RG flow. For k = 1,

WD3
∼=WA3 , since then (3.48) contains the (relevant) X-mass term TrX2, and integrating out X

yields Wlow ∼ TrY 4 ∼WA3 . For k = 2, the superpotential (3.48) is cubic, and hence relevant

as long as the gauge group is asymptotically free, i.e. x > 1. For k > 2, the D̂→ Dk+2 flow

associated with the coupling tk is relevant only if x > xmin
Dk+2

, where xmin
Dk+2

was determined via

a-maximization in [38],

xmin
Dk+2

{
= 1

3
√

2

√
10−34k+19k2 k < 5

< 9
8(k+1) k large

. (3.49)

For relevant tk, we can normalize X to set tk = 1 at the IR Dk+2 SCFT. For x < xmin
Dk+2

, tk→ 0 in

the IR and the theory stays at the D̂ SCFT. We will here assume that x > xmin
Dk+2

.

The F-terms of the undeformed Dk+2 superpotential (3.48) are given by

Y 2 + tkXk = 0, (3.50)

{X ,Y}= 0. (3.51)

For k odd, it follows from (3.50) and (3.51) (as explained after (3.8)) that the chiral ring classically

truncates to the 3k generators (3.9). As in the Ak case, there is a stability bound: we must require

x < xstability in order to avoid Wdyn, which would lead to a runaway potential for the generalized

mesons. For x < xstability, there is instead a moduli space of supersymmetric vacua with Wdyn = 0.

As we will review (at least for odd k) xstability = 3k, which is related to the fact that the chiral ring

has 3k elements.

3.4.1 Previously proposed dualities for WDk+2

A dual description of the Dk+2 theories was proposed in [49], and many of the usual, non-

trivial checks were verified—for instance matching of the global symmetries, ’t Hooft anomaly

matching, and mapping of the chiral ring operators. As reviewed in Section 3.2.2, the conjectured

duals have gauge group SU(αDk+2N f −Nc) with αDk+2 = 3k (3.17), and matter content consisting
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of N f (anti)fundamentals q(q̃), adjoints X̂ ,Ŷ , and 3k gauge singlet mesons M` j which map to the

composite meson operators of the electric theory as

M` j = Q̃X `−1Y j−1Q, `= 1, ...,k; j = 1,2,3. (3.52)

The dual theory has superpotential

W mag
Dk+2

= TrX̂Ŷ 2 +
1

k+1
TrX̂k+1 +

1
µ4

k

∑
`=1

3

∑
j=1

M` jq̃X̂k−`Ŷ 3− jq. (3.53)

A detailed calculation, via a-maximization, is needed to determine the x̂min (3.29) values for the

various non-cubic terms in (3.53) to be relevant rather than irrelevant [38].

The above dual, with αDk+2 = 3k mesonic operators (3.52), requires the chiral ring

truncation (3.9), which is only evident from the classical F-terms for k odd. It was conjectured in

[49] that quantum effects make the even k theories similar to odd k, with a quantum truncation of

the chiral ring, in order for the duality to hold for both even and odd k. It is as-yet unknown if

and how such a quantum truncation occurs for the even k case, and thus the status of the duality

remains uncertain for even k. The fact that e.g. the ’t Hooft anomaly matching checks work

irrespective of whether k is even or odd can be viewed as evidence that the duality also applies

for Deven, or perhaps just a coincidence following merely from the fact that these checks are

meaningful for odd k.

In addition to the usual checks of duality, the proposed chiral ring truncation and duality

for Deven were used in [49] to predict a duality for an SU(Nc)×SU(N′c) quiver gauge theory with

(anti)fundamentals and an adjoint for each node, and (anti)bifundamentals between. This latter

duality was later re-derived, and confirmed, by considering deformations of the more solid, odd k

Dk+2 theories [58]. But it was also noted in [58] that the Dk+2 duality implies some other dualities

that are clearly only applicable for k odd, with fields appearing in the superpotentials with powers

like X (k+1)/2. The fractional power for k even suggests an incomplete description, which is

missing some additional degrees of freedom. The status of the Deven duality thus remained (and it

still remains) inconclusive.
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A powerful, more recent check of dualities is to verify that the superconformal indices of

the electric and magnetic theories match; see e.g. [29, 50]. In [47], the superconformal indices

for the electric and magnetic dual Dk+2 theories are verified to indeed match in the Veneziano

limit for both even and odd k. The matching beyond the Veneziano limit provides a physical

basis for a conjectural mathematical identity. It was moreover noted in [47] that the conjectural

quantum truncation of the k even chiral ring should be verifiable via the the index, by expanding

it to the appropriate order in the fugacities and checking if the contributions from operators that

are eliminated by the quantum constraints are indeed cancelled by those of other operators. It was

noted, however, that this check is complicated by the fact that there are many possible contributing

operators, so it was not yet completed.

One of the original arguments for the Deven quantum truncation is based on the fact that

one can RG flow from Dodd→ Deven via appropriate ∆W deformation, e.g. Dk+2→ Dk+1 +A1.

Another, similar argument [38] uses the connection between the stability bound and the chiral

ring truncation. The duality suggests that the original electric theory has an instability, e.g.

via Wdyn 6= 0 leading to a runaway vacuum instability, when 3kN f −Nc < 0, i.e. for x > 3k,

and we expect RG flows to reduce the stability bound in the IR. Flowing, for instance, from

Dk+2→ Dk+1 +A1 for k odd, the UV Dk+2 theory has a truncated chiral ring and stability bound,

which suggests that the IR (even) Dk+1 theory should also have a stability bound, and hence chiral

ring truncation. We will analyze such RG flows in detail here, and show that there are subtleties.

In summary, the evidence that the duality holds for Dodd is compelling, while the evidence

for Deven is mixed, with aspects that are not understood. Our analysis here fails to find evidence

for the quantum truncation of the chiral ring for Deven, and instead points out additional hurdles

for the conjectured duality.
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3.4.2 Matrix-related flat directions at the origin

A 2d line of flat directions for Deven

We consider the moduli space of vacuum solutions of (3.50) and (3.51), and the D-term

constraints (3.7), taking X ,Y 6= 0 with Q = Q̃ = 0. The 1d versions of these equations, where we

replace the matrices with 1d eigenvalue variables X → x, Y → y, are only solved at x = y = 0,

corresponding to the Dk+2 singularity at the origin of the moduli space of the undeformed WDk+2

theory. Now consider d > 1 dimensional representations of the solutions of (3.50)-(3.51) and

(3.7). The second F-term shows that [X2,Y ] = 0, so X2 is a Casimir. Likewise, it follows from

(3.50) that [Y 2,X ] = 0, so Y 2 is also a Casimir; the representation must have X2 = x21d , and

Y 2 = y21d . For Dodd, (3.51) would then imply that X is also a Casimir, so there can not be a

non-trivial d > 1 dimensional representation. For Deven, on the other hand, the F-terms, D-terms,

and Casimir conditions are solved by the 2-dimensional solutions

k even : X = xσ3, Y = yσ1, y2 + tkxk = 0. (3.54)

This gives a moduli space of supersymmetric vacua, passing through the origin. Modding out

by gauge transformations, which take x→−x and y→−y, the moduli space can be labeled by

x2 and y2 satisfying (3.54), which allows for an additional Zk/2 phase for x2. Since X and Y in

(3.54) are traceless, this flat direction is present for either SU(Nc) or U(Nc).

More generally, Deven has vacua with multiple copies of the 2d vacuum solution (3.54),

with the remaining eigenvalues of X and Y at the origin. There can be bNc/2c copies of the 2d

representation, giving a moduli space of supersymmetric vacua labelled by x2
i and y2

i satisfying

(3.54), for i = 1, . . . ,bNc/2c. The SU(N f )L× SU(N f )R global symmetries are unbroken along

this subspace, so it can be distinguished from the mesonic or baryonic directions where the Q f or

Q̃ f̃ have expectation value. The classically unbroken gauge symmetry is enhanced when various

xi are either zero or equal to each other. Consider, for example, Nc = 2n, with all n of the xi
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non-zero and equal. In this direction of the moduli space, by a similarity transformation we have

〈X〉= x1n⊗σ3
B〈X〉B−1

−→ xσ3⊗1n

〈Y 〉= y1n⊗σ1
B〈Y 〉B−1

−→ yσ1⊗1n. (3.55)

Consider the Higgsing in stages: first, 〈X〉 breaks U(2n)→U(n)×U(n), and then 〈Y 〉 breaks

U(n)×U(n)→U(n)D, the diagonally embedded subgroup (for simplicity, we write the gauge

groups as U(m), and corresponding expressions apply if we work in terms of SU(m) groups). This

breaking pattern leaves five uneaten U(n)D adjoints from X and Y , four of which get a mass from

the WDk+2 superpotential (3.48). The low-energy U(n)D along this moduli space has a massless

adjoint matter field and Wlow = 0; i.e. it is a U(n)D Â theory. Giving general expectation values

to the adjoint matter field of the low-energy Â theory corresponds to unequal expectation values

of the xi in the n copies of the 2d vacuum (3.54), leading to the more generic breaking pattern

U(2n)→U(n)D→U(1)n. Note also that the low-energy U(n)D Â theory, along the moduli space

(3.55) has Nlow
f = 2N f flavors, since the fundamentals decompose as 2n→ (n,1)+(1,n)→ 2 ·n;

the enhanced flavor symmetry arises as an accidental symmetry. In summary, there is a (classical)

flat direction

Dk+2=even→ Â, with U(Nc)→U(bNc/2c)D and Nlow
f = 2N f , (3.56)

so xlow = Nlow
c /Nlow

f = (Nc/2)/(2N f ) = x/4.

We have not found a mechanism for this classical moduli space to be lifted by a dynamical

superpotential or removed by quantum effects. The low-energy U(bNc/2c)Â theory with 2N f

flavors clearly has Wdyn = 0, and unmodified quantum moduli space. The original theory can have

additional effects e.g. from instantons in the broken part of the group (see [59, 60] for discussion

and examples), from the last step of the breaking U(Nc)→U(bNc/2c)2→U(bNc/2c)D in (3.56).

Indeed, for x above the stability bound, there can be a Wdyn which leads to runaway expectation

values for the mesonic operators. But holomorphy, the U(1)R symmetry, and the condition that

Wdyn must lead to a potential that, by asymptotic freedom, goes to zero far from the origin of the

moduli space, precludes any Wdyn that only lifts the 2d flat directions (3.54) without generating a
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runaway Wdyn for the mesonic operators. As usual, the low-energy theory along the flat direction

is less asymptotically free than the theory at the origin, and the theory is more weakly coupled

for vacua farther from the origin on the moduli space. The original Deven theory at the origin

is asymptotically free for N f < Nc, while the low-energy U(bNc/2c)Â theory far along the flat

direction is IR-free if N f > (Nc/2), i.e. if x < 2. In that case, the IR spectrum consists of the

IR-free U(bNc/2c)Â gauge fields and matter.

We now consider if this Deven flat direction is compatible with the conjectural, dual

U(3kN f −Nc)Deven theory. That theory has an analogous moduli space of vacua where the

dual adjoints X̂ ,Ŷ satisfy F-term equations analogous to (3.50)-(3.51), with copies of the 2d

representation (3.54). Chiral ring elements like TrXn should indeed map to similar elements

in the dual, e.g. TrXn ↔ TrX̂n. The moduli space of eigenvalues of the 2d representation is

1
2(3kN f −Nc)-dimensional, along which the gauge group is broken to U(b1

2(3kN f −Nc)c)Â. The

dimensions of the two moduli spaces differ, which is a contradiction with the conjectural dual

unless some quantum effect eliminates the difference (as indeed happens with the mesonic

directions of the moduli space, where the classical constraints on the rank of the meson matrices

arise from quantum effects in the dual). In addition to the moduli spaces differing, the low-energy

theories on the flat directions of the two conjectured duals, i.e. U(bNc/2c)Â and U(b3kN f /2−

Nc/2c), are not in any clear way dual to each other; there is no known dual for the WÂ SCFTs.

As in the electric theory, we do not yet see a mechanism for quantum effects to modify

the classical dimensions of these moduli spaces. Note that the low-energy U(b3kN f /2−Nc/2c)Â

theory is IR-free if x > 3k−2, which is non-overlapping with the range x < 2 where the corre-

sponding electric theory is IR-free; this at least avoids an immediate, sharp contradiction with

the duality, since two theories cannot have a different IR-free spectrum in the same region of the

moduli space. As a concrete example, consider the case k = 2, i.e. WD4 , and take Nc even. The

electric WD4 superpotential (3.48) is relevant as long as the gauge group is asymptotically free, for

x > 1. The stability bound suggested by the conjectural U(6N f −Nc) dual is x < 6. The electric

58



theory has the flat direction to the low-energy U(Nc/2)Â theory, which is IR-free if x < 2. The

dual theory has a flat direction to a low-energy U(3N f −Nc/2)Â theory with 2N f flavors, which

is IR-free if x > 4.

This Deven flat direction is related to the fact that the chiral ring of the Deven theory does

not classically truncate; one can think of it as coming from the massless degrees of freedom

present in the non-truncated ring. Its existence provides us with a new way to rephrase the puzzle

of how the truncation occurs: does some quantum effect lift this flat direction? If not, the flat

direction seems inconsistent with duality.

A puzzle for the WDeven flat directions (3.54): apparent a-theorem violations

The supersymmetric flat direction discussed in the previous subsection has another puzzle,

independent of the conjectured duality: it leads to naive violations of the a-theorem (3.22) for

sufficiently large x. The exact aSCFT is evaluated by using the relation (3.23) between a and

the ’t Hooft anomalies for the superconformal U(1)R symmetry, along with a-maximization

(when needed) and accounting for all accidental symmetries. The values of aSCFT for the WDk+2

theories were analyzed in [38], following the WAk analysis in [25] with regard to the crucial

role of including the effect of accidental symmetries in a-maximization. One type of accidental

symmetry, when gauge invariant chiral operators hit the unitarity bound and decouple, is readily

apparent in the electric theory. Dualities reveal other types of accidental symmetries, e.g. those

where the analog of the tk coupling in (3.48) for the magnetic dual is irrelevant, or where the

magnetic gauge coupling is irrelevant (the free-magnetic phase); such accidental symmetries

are—as far as we know—unseen without knowing the dual.

We consider ∆a for the RG flow associated with the flat direction in (3.56). We compute

aUV (x) corresponding to the Dk+2 theory with gauge group SU(Nc) and N f flavors as in [38],

and aIR(x) corresponding to an Â theory with gauge group SU(Nc/2) and 2N f flavors as in [25],

including as there the effects of all mesons hitting the unitarity bound and becoming IR-free. We
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plot the results for the cases k = 2 and k = 4, working in the Veneziano limit of large Nc and N f ,

with x fixed. (U(Nc) vs SU(Nc) is a subleading difference in this limit.)
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Figure 3.3: (aUV −aIR)/N2
f plotted for x in the conformal window. The WD4 theory is IR-free

for x≤ 1. The WD6 theory requires x > 3.14 for the TrX5 term in WD6 to be relevant, while the
corresponding term in the Brodie dual is relevant if x < 8.93. The Â theory is asymptotically
free in both plotted domains.

As we can see in Figures 3.3a and 3.3b, both the k = 2 and the k = 4 flat direction RG

flows seem to violate the a-theorem for sufficiently large x. For the WD4 case, the conformal

window where both the electric and magnetic theories are asymptotically free is 1 < x < 5, and

the cubic tk term in (3.48), or its magnetic analog, is relevant in this entire x range. As seen in Fig.

3.3a, the a-theorem is seemingly violated for x≥ 4, within the conformal window. For WD6 , the

situation is plotted in Fig. 3.3b: the flat direction seemingly violates the a-theorem for x≥ 8.31.

This is within the expected WD6 conformal window (i.e. below 3k− x̂min ≈ 8.93 beyond which

duality suggests that the theory is instead in the D̂mag phase, and also below x = 11, where duality

suggests the IR-free magnetic phase).

Of course, we do not believe that there will be violations of the a-theorem, so the puzzle

of these apparent violations must somehow be resolved. We also note that the apparent violations

first occur for x still below the values where mesons involving Y 3 would first hit the unitarity

bound (this occurs first at x = 5 for k = 2, and at x = 9.33 for k = 4). Thus, the calculation of aUV
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is not affected by the issue of whether or not such mesons should be included—we’ve removed

them in the plots above, which would be correct if Brodie duality is correct for Deven and the

quantum truncation indeed occurs.

We see two possible resolutions to the puzzle of the apparent a-theorem violations. 1)

These classical flat directions are somehow lifted by quantum effects, in a way that we do not yet

understand. 2) Some additional degrees of freedom make the calculation of a wrong, e.g. giving

a larger value for aUV for the WDeven theory. We do not yet know the resolution.

Option 1) could also resolve the conflict with Brodie-duality, discussed in the previous

subsection. As we discussed there, asymptotic freedom, along with holomorphy and the R-

symmetry, suggests that Wexact = 0, but perhaps another mechanism could remove the flat

directions—at least for x large enough to be in the problematic range. The existence of the

classical flat direction fits with the classically untruncated chiral ring, and it sharpens the issue of

if, and how, the chiral ring for the Deven theory is quantumly truncated.

Additional evidence that the WDeven → Â flat directions aren’t lifted

We here present additional arguments against any quantum barrier to the WDeven →WÂ flat

directions. The idea is to explore more of the full moduli space of supersymmetric vacua, going

along Q-flat directions, until the low-energy theory is IR-free.

Consider an even Dk+2 theory at the origin, with N f < Nc such that the theory is asymptot-

ically free. Going along a Q-flat direction by giving a vev to a flavor, 〈Q f 〉= (v,0, ...,0) = 〈Q̃ f 〉,

gives a low-energy theory that is less asymptotically free. The gauge group is Higgsed SU(Nc)→

SU(Nc− 1), under which the adjoints decompose X → X̌ +Fx + F̃x + sx for X̌ an adjoint and

sx a singlet (and likewise for Y ). Then, the number of light flavors in the low-energy theory is

N f − 1+ 2 = N f + 1, where the −1 is for the eaten flavor and the +2 is from additional light

flavors, Fx,y. Expanding the superpotential under this decomposition gives, for instance for WD4 ,

an IR superpotential of the form
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WD4 = Tr
(

1
3

X̌3 + X̌Y̌ 2 + X̌ F̃xFx + X̌ F̃yFy + Y̌ F̃yFx + Y̌ F̃xFy + sxFxF̃x + sxFyF̃y (3.57)

+ syFxF̃y + syFyF̃x + s3
x + sxs2

y

)
.

Along the above flat direction, the 1-loop beta function coefficient changes by b1 = Nc−N f →

(Nc−1)− (N f +1) = b1−2 so, as usual, the low-energy theory is less asymptotically free. We

iterate this procedure, giving expectation values to n flavors of Q and Q̃, and thus reducing

Nc → Nc− n, with N f → N f + n and b1 → b1− 2n, until the low-energy theory is no longer

asymptotically free, i.e. n > (Nc−N f )/2. Then X decomposes as

X −→




s1
x F1

x

. . . ...

sn
x Fn

x

F̃1
x ... F̃n

x X̌




(3.58)

with X̌ adjoints of an unbroken SU(Nc−n), and similarly for Y .

At this point, we can take X̌ and Y̌ in the low-energy SU(Nc− n) theory to have an

expectation value with m≤ (Nc−n)/2 copies of the 2d vev (3.54), resulting in the Â flat direction

where SU(Nc−n)→ SU(m)D×SU(Nc−n−2m). By choice of n, the intermediate SU(Nc−n)

theory is already IR-free, and so the X̌ and Y̌ expectation values make the low-energy theory

even more weakly coupled; thus, the terms in Wlow (e.g. in (3.58)) involving the singlets and

fundamentals are irrelevant and can be ignored. The number of flavors of the low-energy SU(m)D

theory is 2(N f +n− r), where N f +n flavors came from the n iterations of Q-Higgsing, r ≤ n is

the number of the Fx,y flavors that receive a mass from 〈X̌〉,〈Y̌ 〉 in the superpotential, and the 2

comes from Higgsing SU(2m)→ SU(m)×SU(m)→ SU(m)D. By taking m sufficiently small

and n sufficiently large, the low-energy SU(m)D WÂ theory will have a 1-loop beta function of non-

asymptotically free sign, so the theory will be IR-free and thus weakly coupled. Because every

interaction is IR-free in this region of the moduli space, quantum effects from the intermediate

or low-energy theory cannot lift or remove the WDeven →WÂ flat direction. As remarked earlier,
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〈Q〉, 〈Q̃〉

〈X〉, 〈Y 〉

b 1
−→

0

???

Figure 3.4: Using the Q-flat directions to bypass the strong coupling regime.

any possible effects from the Higgsed, original gauge theory at the origin (e.g. instantons in the

broken part of the group) must moreover slope to zero for vacua farther from the origin on the

classical moduli space (3.54).

In sum, as illustrated in Fig. 3.4, we use the Q-flat directions to bypass any hypothetical

quantum barrier to the flat directions (3.54) by going to a region of moduli space where the

theory is IR-free. This suggests that the WDeven →WÂ moduli space is indeed present in the full,

quantum theory. As discussed in the previous subsection, there would then have to be some

missing contribution to a for the Deven theory to avoid the apparent a-theorem violation along

this moduli space for sufficiently large x.

3.4.3 SU(Nc)-specific (as opposed to U(Nc)) flat directions

For SU(Nc), one includes Lagrange multipliers λx,λy to impose TrX = TrY = 0:

WDk+2 = TrXY 2 +
tk

k+1
TrXk+1−λxTrX−λyTrY. (3.59)

For Dodd, and Nc = 2m+ kn for m,n integers, there is a flat direction labeled by λx [49]
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〈X〉=
(

λx

tk

) 1
k




0m

0m

1n

. . .

ωk−11n




,

〈Y 〉= (λx)
1
2




1m

−1m

0n

. . .

0n




,

(3.60)

where ω = e2πi/k. The gauge group is Higgsed as SU(2m+ kn)→ SU(m)2×SU(n)k×U(1)k+1.

The SU(n)k theories are, in the IR, k decoupled copies of SQCD, each with N f flavors. The

low-energy SU(m)2 sector includes SQCD, with N f massless flavors, along with bifundamentals

F and F̃ coming from the adjoint X of the original theory at the origin, with a low-energy

superpotential Wlow ∼ Tr(FF̃)(k+1)/2. All other components from X and Y are either eaten in

the Higgsing, or get a mass from the superpotential (3.59) along the flat direction (3.60). This

low-energy theory is depicted in Fig. 3.5, where as usual adjoints are arrows that start and end on

the same node of the quiver diagram, and dotted adjoints depict those that get a mass term from

the superpotential. Brodie duality along this flat direction is then compatible with a duality in

[53] (see Section 8 there) for the SU(m)2 factor, and with Seiberg duality for the SU(n) factors:

SU(2m+ kn)
〈X〉,〈Y 〉−→ SU(m)×SU(m)×SU(n)k×U(1)k+1

y y

SU(3kN f − (2m+ kn)) −→ SU(kN f −m)2×SU(N f −n)k×U(1)k+1

(3.61)

where horizontal arrows are the flat direction (3.60) and vertical arrows are the duality.

The low-energy SU(m)2 theory has a further flat direction, where F has non-zero ex-
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pectation value, breaking to SU(m)D [53]. The low-energy SU(m)D has an adjoint Ã, with

superpotential W v TrÃ
k+1

2 corresponding to an A(k−1)/2 theory with 2N f flavors. The duality of

the low-energy WA(k−1)/2 theory along this flat direction then reduces to that of [44]. We summarize

these flat directions in Figure 3.5. In sum, for Dodd, Brodie duality along the flat direction (3.60)

is nicely consistent with other dualities.

m m
〈F 〉

mD

Wlow v Tr(FF̃ )
k+1
2 Wlow = WA(k−1)/2

(a) SU(m)×SU(m) sector.

n

(1)

... n

(k)

(b) SU(n)k sector.

Figure 3.5: Flat directions for Dodd, Nc = 2m+ kn, integrating out massive fields (denoted by
dotted lines) and fields eaten by the Higgs mechanism (not shown).

We now consider the analogous flat directions (3.60) for the puzzling Deven cases, which

again exist for Nc = 2m+kn and are parameterized by arbitrary λx. As in the Dodd case, the gauge

group is Higgsed SU(2m+ kn)→ SU(m)2×SU(n)k×U(1)k+1, where the SU(m)2 and SU(n)k

decouple from each other at low energies. But the Deven case differs from Dodd in two respects.

First, the SU(m)2 sector has massless bifundamentals F and F̃ , with Wlow(FF̃) = 0. Similarly,

the SU(n)k sector reduces at low-energy to k/2 decoupled copies of SU(n)2 which each have,

in addition to N f flavors, massless bifundamentals with Wlow(FF̃) = 0. For example, for k = 2,
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Nc = 2(m+n), and expanding (3.59) along the flat direction (3.60) gives

WSU(m)2 ⊃ t2
3

TrA3
x,1 +TrAx,1A2

y,1 +2λ
1/2
x TrAx,1Ay,1−λxTrAx,1 + t2TrAx,1FxF̃x

+(1→ 2,Ay→−Ay) (3.62)

WSU(n)2 ⊃ t2
3

TrA3
x,3 +TrAx,3A2

y,3 +

(
λx

t2

)1/k (
t2TrA2

x,3 +TrA2
y,3
)
−λxTrAx,3

+
t2
3

TrA3
x,4 +TrAx,4A2

y,4−
(

λx

t2

)1/k (
t2TrA2

x,4 +TrA2
y,4
)
−λxTrAx,4

+Tr(Ax,3 +Ax,4)FyF̃y. (3.63)

Subscripts x,y refer to which SU(2m+2n) adjoint X ,Y the field comes from, the A1,2 are SU(m)

adjoints, and the A3,4 are SU(n) adjoints. Both of these IR superpotentials reduce to Wlow(FF̃)= 0

upon integrating out the massive adjoints. The SU(m)× SU(m) theories with bifundamentals

and Wlow(FF̃) = 0 do not have a known dual. Indeed, they have a flat direction where F gets an

expectation value and Higgses SU(m)×SU(m)→ SU(m)D, where the low-energy SU(m)D is an

Â theory, with massless adjoint X (coming from F̃) and 2N f fundamentals, with Wlow(X ) = 0.

More generally, for even k > 2, since ω = e2πi/k in (3.60), there will be k/2 massless

bifundamental pairs. The low-energy SU(n)k theory then reduces to k/2 decoupled SU(n)2

quiver gauge theories, where the i’th node couples to the (k/2+ i)’th node via a pair of massless

bifundamental fields. Each SU(n)2 theory has a flat direction to an SU(n)D Â theory. The

low-energy theories along these flat direction are as depicted in Figure 3.6.

The conclusion is that, for Deven, we end up with (k/2+1) Â theories corresponding to

nodes with 2N f flavors9. The Â theories along the flat direction are puzzling, as in Section 3.4.2:

we have not found a quantum mechanism for lifting these flat directions, and have not found how

to make these flat directions compatible with Brodie’s proposed duality.

9For Nc = 2m, there is a similar generalization of these flat directions parameterized by both λx and λy, with

〈X〉 ∝ 〈Y 〉 ∝

(
1m 0
0 −1m

)
, which again leads to a low-energy SU(m)D Â theory with 2N f flavors.
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m m
〈F 〉

mD

Wlow = 0 Wlow = 0

(a) SU(m)×SU(m) sector, Higgses to WÂ

(1) n n
〈F(1)〉

nD

...
...

...

(
k
2

)
n n

〈F(k/2)〉
nD

Wlow = 0 Wlow = 0

(b) SU(n)k sector, Higgses to k/2 decoupled WÂ theories.

Figure 3.6: Flat directions for Deven, with Nc = 2m+ kn. Again we integrate out massive fields
(denoted by dotted lines), and those eaten by the Higgs mechanism (not shown).

3.4.4 Dk+2 RG flows from relevant ∆W deformations

In this subsection, we consider RG flows from the WDk+2 SCFTs upon deforming by

relevant ∆W . As in the previous subsections, we find that cases involving only Dodd are nicely

compatible with the duality of [49], while those involving Deven exhibit subtleties. For simplicity,

we mostly consider U(Nc), with brief discussion of the more complicated SU(Nc) version in

Section 3.4.5.

We begin with the class of ∆W deformation RG flows Dk+2→ Dk′+2, which is relevant

for k′ < k (taking x > xmin
Dk+2

> xmin
Dk′+2

as in (3.49)):

W = TrXY 2 +
k

∑
i=k′

ti
i+1

TrX i+1, (3.64)
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which yields the F-terms

Y 2 +
k

∑
i=k′

tiX i = 0 (3.65)

{X ,Y}= 0. (3.66)

The solution X = Y = 0 corresponds to the Dk′+2 theory at the origin. There are also (k− k′)

1d solutions with non-zero X-eigenvalue, corresponding to A1’s. The representation theory of

(3.65)-(3.66) was discussed in [51, 38]. Taking X and Y to be matrices, it follows from (3.65)-

(3.66) that X2 and Y 2 are Casimirs (proportional to the unit matrix), so we may rewrite the first

F-term as (y2 +Qbk/2c(x2))1+Pb(k−1)/2c(x2)X = 0, where the subscripts on P and Q denote the

degrees of the polynomials in x2. There are 2d representations of the second F-term, taking

X = xσ2, Y = yσ1; then a non-zero solution for X requires Pb(k−1)/2c(x2) = 0. Hence, there are

b(k−1)/2c independent such solutions for x2, and then y2 is uniquely fixed10. If X and Y have n j

copies of such a vacuum, where j = 1, . . . ,b(k−1)/2c labels the value of x2
j , then the non-zero

X and Y values break SU(2n j)→ SU(n j)×SU(n j)→ SU(n j)D, where the low-energy SU(n j)D

theory has 2N f flavors. Expanding W (X ,Y ) in such vacua, the X and Y adjoints have mass terms

and the low-energy theory is SQCD; we label such vacua as A2d
1 . In sum, the ∆W deformation

(3.64) leads to vacua

Dk+2 −→ Dk′+2 +(k− k′)A1 +

(⌊
k−1

2

⌋
−
⌈

k′−1
2

⌉)
A2d

1 . (3.67)

The Nc×Nc matrices X and Y are decomposed into blocks, distributed among these vacua, with

n0 eigenvalues at the origin, ni at the i’th A1 node, and n2d
j in the j’th A2d

1 node, with Nc =

n0 +∑i ni +2∑ j n2d
j . The gauge group is Higgsed in the electric and dual magnetic descriptions

10x→−x or y→−y is a gauge rotation so does not give additional vacua.
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(for x in the conformal window) as:

U(Nc)
〈X〉,〈Y 〉−→ U(n0)

k−k′

∏
i=1

U(ni)

b k−1
2 c−

⌈
k′−1

2

⌉

∏
j=1

U(n2d
j )

y y

U(3kN f −Nc) −→ U(3k′N f −n0)
k−k′

∏
i=1

U(N f −ni)

b k−1
2 c−

⌈
k′−1

2

⌉

∏
j=1

U(2N f −n2d
j )

(3.68)

The down arrows are Brodie duality for the Dk+2 U(Nc) theory in the UV, and Brodie or Seiberg

duality for each approximately decoupled low-energy gauge group factor in the IR. Comparing

the UV (LHS) and the IR (RHS) of the dual theories in the lower row of (3.68), the IR theory only

properly matches the dual Higgsing pattern of the UV theory if Ñc = ñ0 +∑i ñi +2∑ j ñ2d
j . This

equality holds if and only if k and k′ are both odd; this is a non-trivial check of Brodie duality for

Dodd→ Dodd’. But if either k or k′ is even, there is a mismatch of 2N f between Ñc = 3kN f −Nc

on the LHS and its IR decomposition on the RHS of (3.68), and a mismatch of 4N f if both k and

k′ are even.

We now consider the RG flow Dk+2→ Ak′ , by adding ∆W = mY
2 TrY 2 to the superpotential

in (3.64). There is then a low-energy Ak′ theory at the origin, X = Y = 0, along with (k− k′) A1’s

corresponding to the 1d solutions of the vacuum equations with eigenvalues y = 0, ∑
k−k′
i=0 ti+k′xi =

0, along with two more A1 theories at y = ±
√
−∑

k
i=k′ tix

i, x = −mY
2 . As always, these 1d

solutions of the F-term equations match the rank of the ADE group: k+2 in the UV matches

the IR sum k′+(k− k′)+ 2. In addition, there are 2d representations of the D- and F-terms,

with Casimirs Y 2 = y21 and ∑
k
i=k′ tiX

i = f (x)1. The 2d vacua may thus be parameterized as

X = − v
21+ x1σ1, Y = yσ3, and the F-terms have b(k− 1)/2c solutions for x1, each of which

determines f (x1) and specifies the 2d vacuum. In each such vacuum, the low-energy theory is

SQCD (both X and Y have mass terms) with the X and Y expectation values breaking SU(2n2d
j )→

SU(n j)× SU(n j) → SU(n j)D, with 2N f flavors in the low-energy theory. In sum, the full
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(classical) structure of the vacua from such deformations is

Dk+2 −→ Ak′+(k− k′+2)A1 +

⌊
k−1

2

⌋
A2d

1 . (3.69)

Taking Nc = n0 +∑
k−k′+2
i=1 +∑

b(k−1)/2c
j=1 2n2d

j , the deformation results in the following Higgsing in

the electric and magnetic descriptions:

U(Nc)
〈X〉,〈Y 〉−→ U(n0)×

k−k′+2

∏
i=1

U(ni)×
b k−1

2 c
∏
j=1

U(n2d
j )

y y

U(3kN f −Nc) −→ U(k′N f −n0)
k−k′+2

∏
i=1

U(N f −ni)
b k−1

2 c
∏
j=1

U(2N f −n2d
j )

. (3.70)

Again, the down arrows are duality in the UV theory on the LHS, and in each of the low-energy

decoupled IR theories on the RHS. Again, for odd k the UV and the IR groups properly fit

together, while for even k there is a mismatch in the dual gauge group of 2N f .

In summary, whenever the RG flows only involve Dodd, there is a successful, non-trivial

check that the deformation maps properly between the UV and IR theories. On the other hand,

whenever we flow to/from a Deven theory, there is a mismatch in the dual gauge groups pre and

post deformation. An especially peculiar mismatch arises if we flow through an intermediate

Dk′=even theory, first deforming by ∑
k−1
i=k′ tiX

i+1 as in (3.67), and then deforming by v
2TrY 2 as in

(3.69), which gives

Dk+2 −→ Ak′+(k− k′+2)A1 +

(⌊
k−1

2

⌋
−
⌈

k′−1
2

⌉
+

⌊
k′−1

2

⌋)
A2d

1 . (3.71)

For k′ even, bk′−1
2 c− dk′−1

2 e = −1, and the number of 2d vacua in (3.71) differs from that in

(3.69) for flowing directly with both ∑
k−1
i=k′ tiX

i+1 and v
2TrY 2 deformations together. Perhaps the

conjectured quantum truncation of the chiral ring for Deven eliminates these puzzling mismatches

in the higher dimensional representations for these flows, but we have not yet succeeded in

showing how. We leave this as a challenge for future understanding.
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3.4.5 The SU(Nc) version of the RG flows

The above analysis was for U(Nc). To adapt it for SU(Nc), we write XU(Nc) = XSU(Nc)+

X01Nc , where TrXSU(Nc) = 0, and likewise for Y , and can eliminate the unwanted X0 and Y0 fields

via Lagrange multipliers, as in Section 3.3.3. The complication is that if we want to keep the

enhanced Dk′+2 or Ak′ singularities as in (3.67) or (3.69), we need to add lower order ∆W terms,

beyond those already present for the U(Nc) version of the RG flows. These extra terms are

needed in order to re-tune, to zero, the corresponding ∆W relevant deformations which would

be generated by adding the Lagrange multiplier constraint terms, and which would generically

further deform the RG flow to merely multiple A1 vacua. For flows starting at Dk+2 as in (3.48),

the needed deformations are included in

∆W ⊂
k−1

∑
i=1

ti
i+1

TrX i+1 +
b k

2c
∑
i=0

ui

i+1
TrX i+1Y +

mY

2
TrY 2−λxTrX−λyTrY. (3.72)

For generic couplings in (3.72), the RG flow leads to vacua as

Dk+2→ (k+2)A1 +

⌊
k−1

2

⌋
A2d

1 , (3.73)

which is the same for SU(Nc) and U(Nc). One can now tune the couplings in (3.72) to enhance

to an Ak′ or Dk′+2 singularity, and then the flow involves Higgsing as in e.g. (3.68), but with all

U(N) factors replaced with SU(N). The tuning shifts of the couplings in (3.72) are complicated,

and depend on how many eigenvalues n0 are in the enhanced Dk′+2 or Ak′ vacua. We have verified

that, despite these technical complications, the vacuum structure is qualitatively similar to that of

the U(Nc) case, replacing U(n)→ SU(n) everywhere in Section 3.4.4.

Interestingly, there can be several options in performing the wanted shift, and these can

result in different Casimirs along the flow. We illustrate this for the example D5 → D3, and

note that there are similar versions for other D flows. The first way to enhance to D3 is via a

tuned addition of the {mY ,λx} deformations to (3.64), where the needed shift of these couplings

depends on the {t3, t2, t1} couplings in (3.64), as well as the multiplicities of the eigenvalues in
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the vacua. The Casimirs along the flow are then Y 2 and t3X3 + t2X2 + t1X . Much as in (3.67),

we indeed find one A2d
1 vacuum. Another option for D5→ D3 + . . . is to add only the u1

2 TrX2Y

deformation in (3.72), with the other ∆W couplings set to zero. Then X2 and Y 2 are Casimirs,

but X and Y no longer anticommute as they did in the U(Nc) case, and so a 2d solution is now

of the form X = x1σ1− ix3σ3,Y = y1σ1 + iy3σ3. We again find one 2d representation of the

F- and D-terms, which reduces to the U(Nc) 2d solution as u1 → 0. Different sets of lower

order deformations in the chiral ring lead to different Casimirs along the flow, but nevertheless

non-trivially give the same counting for the higher-dimensional vacua.

3.4.6 The Dodd→ Deven RG flow and the hypothetical D′even theory

As discussed in the previous subsections, the Deven theories have some puzzles, whereas

the Dodd theories appear to be under control. This suggests trying to understand the Deven theories

via RG flows from the understood UV case: Dodd→ Deven. Indeed, the idea of embedding Deven

in Dodd was the basis for the original conjecture [49] that quantum effects somehow make the

troubling Deven theories similar to the nice Dodd theories. In this subsection, we examine the

Dodd→ Deven RG flow more carefully, and note that this flow has its own subtleties.

As seen in (3.67), the ∆W RG flow from Dk+2→ Dk′+2 comes with jumping number of

A2d
1 representations, from the floor and ceiling functions, which is only straightforward for the

Dodd→ Dodd’ cases. We here further discuss the relation and difference between Dodd→ Dodd

vs Dodd→ Deven. Consider starting from the Dk+2 SCFT, with k odd, and deforming by ∆W .

To simplify the discussion, we consider U(Nc) (as opposed to SU(Nc)) and start with the ∆W

deformation considered in (3.67) with k′ = k−2: Dk+2→ Dk +2A1 +A2d
1 . The low-energy Dk

theory is at X = Y = 0, the 2A1 theories are at X having eigenvalues x± with Y = 0, and the A2d
1

theory has (X ,Y ) values at (x2d,y2d) given by:
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(x,y) =





(0,0)

(x±,0) tkx2
±+ tk−1x±+ tk−2 = 0,

(x2d,y2d) tk(x2d)
2 + tk−2 = 0, (y2d)

2 + tk−1(x2d)
k−1 = 0.

(3.74)

If we start at the Dk+2 theory (as opposed to D̂), we can set tk = 1, and tk−1 and tk−2 are the ∆W

deformation parameters.

We now try to tune the superpotential couplings to collide the Dk singularity with an A1

singularity, to get an enhanced Dk+1 singularity. This can be accomplished by tuning tk−2→ 0 in

(3.74), which brings one of the A1 singularities (x+ or x−) to the origin. Note that tk−2→ 0 also

brings x2d and y2d to the origin. We denote this enhancement as Dk +A1 +A2d
1 → D′k+1, where

the prime distinguishes the theory from the even Dk+1 theory that one would obtain by flowing

directly from the D̂ theory. We can formally obtain that latter theory, Dk+1, directly from the

D̂ fixed point, by taking tk→ 0 along with tk−2→ 0 in (3.74); this brings one of the x± to the

origin and the other to infinity, and then the last equation in (3.74) gives the line of A2d
1 solutions

(3.54) where Deven→ Â, since (3.74) is satisfied for all x2d when tk = 0. The two procedures are

indicated in the Figure 3.7.

−→Dk+2 Dk

A1

A1

A2d
1 ≡

A1

D′
k+1

(a) The 2d vacuum and an A1 both collapse to the origin.

−→Dk+2 Dk

A1

A1

A2d
1

↑
∞

≡
Dk+1

A1

↑∞

(b) One A1 goes to the origin while the other goes off to infinity, and the 2d vacuum becomes a degenerate
line of 2d representations as in (3.54).

Figure 3.7: We enhance the k odd Dk singularity to a Dk+1 singularity in one of two ways.

The two procedures suggest that perhaps there are actually two types of Deven theories.

One is the D′even theory of Figure 3.7a, which can actually be obtained from the RG flow

73



Dodd → D′even, and which therefore inherits the simpler properties of Dodd. The other is the

mysterious Deven theory of Figure 3.7b, which actually is not obtained from RG flow from Dodd,

but instead only from D̂→ Deven, since it requires tk = 0 and the Dodd theory had tk = 1. The

latter, Deven theory has the puzzles, discussed in the previous subsections, associated with the

Deven→ Â moduli space of vacua and the non-truncated chiral ring.

We have thus considered the possibility that Brodie duality actually only applies to the

simpler D′even theory, which inherits the truncated chiral ring from Dodd, and does not apply to the

Deven theory. However, this scenario also has challenges. If we take seriously the idea that a D′k+1

(for k odd) theory is made by bringing together Dk +A1 +A2d
1 , this seems to suggest that the

chiral ring of the D′k+1 theory contains (3k−1)N2
f mesonic operators, where the−N2

f are those in

the A1 singularity, which decouples from D′k+1 in the IR. On the other hand, assuming that Brodie

duality applies to D′k+1, we would have expected 3(k−1)N2
f mesonic operators. The D′k+1 theory

has an extra 2N2
f mesonic operators. Perhaps then, in collapsing the A1 and A2d

1 theories to the Dk

theory at the origin, a slightly modified version of Brodie duality applies, with αD′k+2
= 3k+2.

We have also tried to cure the apparent a-theorem violations by adding the 2N2
f mesons to the UV

Deven theory. But the results did not look promising: the extra operators seem to become free at

too large x to cure the apparent wrong sign of ∆a. It is still possible that some modified version of

Brodie duality resolves these puzzles, and we invite the interested reader to try.

3.5 The WE7 Fixed Point and Flows

The WE7 SCFT arises as the IR limit of a relevant superpotential deformation to the Ê

SCFT, with corresponding superpotential

WE7 =
1
3

TrY 3 + s1TrY X3. (3.75)

The TrY X3 term is a relevant deformation to the Ê fixed point for x > xmin
E7
≈ 4.12, where xmin

E7

was determined via a-maximization in [38]; here we will assume that x > xmin
E7

.
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The F-terms of the undeformed E7 superpotential in (3.75) are given by

Y 2 + s1X3 = 0, (3.76)

X2Y +XY X +Y X2 = 0, (3.77)

from which it follows that the chiral ring does not truncate classically. We may write the generators

of the classical chiral ring in a basis

Θ(1,n) = Xn,

Θ(2,n) = Y Xn,

Θ(3,n) = XY Xn,

Θ(4,n) = Y XY Xn; n = 0,1, ... (3.78)

3.5.1 Previously proposed dualities for WE7

In [46], it was pointed out that for the WE7 theories the condition (3.26) is violated for

x& 27, so some new dynamics is needed there, or at smaller x. The dual theory proposed in [46]

resolves this apparent a-theorem violation, since it implies different IR phases for x& 26.11 [46].

The duality of [46] requires that the chiral ring truncates, similar to the conjecture in [49] for

Deven, as

Y X6 +bXY X5 = 0 in the chiral ring (3.79)

for some constant b. It is not yet known if the proposed quantum constraint (3.79) is correct, or

how it arises. Imposing (3.79), the chiral ring of the electric theory is truncated to 30 independent

generators, listed for reference in Table 3.2. The resulting IR dual description of the E7 fixed

point has gauge group SU(αE7N f −Nc) with αE7 = 30, and the usual duality map reviewed in

Section 3.2.2. The dual theory has superpotential11 [46]

W mag
E7
v 1

3
TrŶ 3 + ŝ1TrŶ X̂3 +

30

∑
j=1

M jq̃Θ30− j(X̂ ,Ŷ )q. (3.80)

11As in [46], we scale the factors of µ to unity.
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In addition to the usual tests of duality—’t Hooft anomaly matching, that the charge assignment

for the magnetic fields under the global symmetry is consistent with the duality map—it was

verified in [47] that the superconformal index of the dual theories agrees, at least in the Veneziano

limit (away from that limit, the duality and agreement of their superconformal indices suggests

new mathematical identities).

As we discuss in the following subsections, we find similar puzzles for the E7 theories as

with the Deven theories. In the following, we mirror our analysis of the WDk+2 theories for WE7 ; as

such, we will be brief when analysis or discussion is similar to what has already been discussed

in Section 3.4. Much as we found for Deven, we fail to find evidence for this truncation, and point

out additional hurdles for the conjectured duality.

Table 3.2: We list the 30 independent generators Θ j, j = 1, ...,30 of the proposed E7 chiral ring,
where N is the polynomial degree.

j N Θ j j N Θ j
1 1 1 16 11 Y X4

2 2 X 17 11 XY X3

3 3 Y 18 12 X6

4 4 X2 19 12 Y XY X2

5 5 Y X 20 13 Y X5

6 5 XY 21 13 XY X4

7 6 X3 22 14 X7

8 7 Y X2 23 14 Y XY X3

9 7 XY X 24 15 Y X6

10 8 X4 25 16 X8

11 8 Y XY 26 16 Y XY X4

12 9 Y X3 27 17 Y X7

13 9 XY X2 28 18 X9

14 10 X5 29 19 Y X8

15 10 Y XY X 30 21 Y X9
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3.5.2 Matrix-related flat directions at the origin

We consider the moduli space of vacuum solutions of (3.76)-(3.77) with D-term con-

straints (3.7), setting Q = Q̃ = 0. The only 1d solution corresponds to the E7 singularity at

the origin. (3.76) shows that Y 2 and X3 are Casimirs, yielding Casimir conditions X3 = x31d ,

and Y 2 = y21d for a d-dimensional representation. There is a line of d = 2 solutions to these

conditions analogous to (3.54),

X = x




ω 0

0 ω2


 , Y = yσ1

y2 + s1x3 = 0. (3.81)

for ω = e2πi/3. As X and Y are not traceless, this flat direction is present for only U(Nc)
12.

In general, E7 has vacua with multiple copies of the solution (3.81), with the remaining

eigenvalues of X and Y at the origin, giving a moduli space of supersymmetric vacua labeled by

y2
i and x3

i satisfying (3.81), for i = 1, . . . ,bNc/2c. These vacua Higgs the gauge group in a way

that turns out to be analogous to the Deven case discussed in 3.4.2. In particular, for Nc = 2n with n

copies of the 2d vacuum (3.54) and unequal expectation values of the y2
i ,x

3
i , the resulting breaking

pattern is U(2n)→U(n)D→U(1)n. In summary, much as in (3.56), there is a (classical) flat

direction:

E7→ Â, with U(Nc)→U(bNc/2c)D and Nlow
f = 2N f , (3.82)

so xlow = Nlow
c /Nlow

f = (Nc/2)/(2N f ) = x/4. If we assume that Kutasov-Lin’s duality [46] holds,

then we are led to a puzzle similar to that of the Deven theories: the moduli spaces of the electric

theory and its dual differ, and the low-energy theories on the flat directions of the two conjectured

duals, SU(Nc/2)Â and SU(15N f −Nc/2), are not clearly related. This flat direction is related to

the classical nontruncation of the E7 chiral ring, and again provides us with a way to sharpen the

12For special cases of (3.81) there will be SU(Nc) flat directions; for example, when there are equal multiplicities
of X , ωX , and ω2X along the line given in (3.81). In that case, one could check the proposed SU(Nc) duality along
the corresponding flat directions.
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puzzle of how the truncation occurs by asking what lifts the flat direction.

Independent of the conjectured duality [46], the deformation (3.82) seemingly violates

the a-theorem (3.22) for sufficiently large x. As in Section 3.4.2, we compute aUV (x) for the WE7

theory, with gauge group U(Nc) and N f flavors, as in [38]. Likewise, aIR(x) for the Â theory,

with gauge group U(Nc/2) and 2N f flavors, is computed as in [25]. We include the effects of all

mesons hitting the unitarity bound assuming that the chiral ring is quantumly truncated, such

that all the operators listed in Table 3.2 are taken into account, and work in the Veneziano limit.

We plot until the bottom of the conformal window—which occurs before the electric E7 theory’s

stability bound, x < 30 as predicted by duality—such that we expect the a-theorem to hold in the

whole range plotted.

5 10 15 20 25
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x=Nc/Nf
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V
-
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R
)
/
N
f2

Figure 3.8: (aUV −aIR)/N2
f for WE7 in the UV and Â in the IR. The E7 deformation term in the

UV theory is relevant for x& 4.12, while the corresponding term in Kutasov-Lin dual is relevant
if x. 26.11. The Â theory is UV-free in this whole range.

As seen Figure 3.8, this flat direction seems to violate the a-theorem in the conformal

window for x & 23.39. Unlike the Deven case, this violation occurs for x larger than the value

where the mesons removed by the proposed quantum constraint 3.79 would hit the unitarity bound

and become free; the first such meson that would be nonzero involves the operator Y X6, which

would become free at x = 21. To understand the effect that these would-be mesons would have on

the computation of a for this flat direction, we have performed the same check as in Figure 3.8,

but without imposing the proposed constraint. It turns out that this is not enough; the effect of
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including these operators in the ring is only to push the range of the apparent a-theorem violation

to x& 23.44.

The apparent violation of the a-theorem for these flat directions must of course be

somehow resolved. As in the discussion in Section 3.4.2, either these flat directions are lifted

in a way we don’t understand, or some additional degrees of freedom make the calculation of

a incorrect—perhaps in the UV WE7 theory. The arguments made in Section 3.4.2 would also

apply here, and suggest that the former is not the solution. Since the calculation of a in Figure 3.8

already took into account the proposed WE7 duality, we are left with a puzzle.

3.5.3 SU(Nc)-specific (as opposed to U(Nc)) flat directions

We now study SU(Nc) flat directions of the WE7 theory, imposing the tracelessness of the

adjoints with Lagrange multipliers λx,λy:

WE7 =
1
3

TrY 3 + s1TrY X3−λxTrX−λyTrY. (3.83)

When Nc = 2m+3n for m,n integers, there is a flat direction labeled by λy,

〈X〉=
(

λy

s1

) 1
3




0m

0m

ω1n

ω21n

ω31n




,

〈Y 〉= (λy)
1
2




−1m

1m

0n

0n

0n




,

(3.84)

where ω = e2πi/3 and off-diagonals are zero. (3.84) is the special case of k = 3 in (3.60).
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Along this flat direction, the gauge group is Higgsed SU(2m+3n)→ SU(m)2×SU(n)3×

U(1)4. The low-energy SU(m)2 sector includes N f massless flavors, along with bifundamentals

F, F̃ and adjoints A1,A2 coming from the adjoint X of the original theory at the origin, with a

low-energy superpotential that is cubic in the massless fields (written in Figure 3.9a). Thus,

each SU(m) node corresponds to a WA2 theory plus extra flavors from the bifundamentals. The

low-energy SU(n)3 sector includes N f massless flavors along with three pairs of bifundamentals

F12,F23,F13, and their conjugates, coming from the adjoint Y of the original theory at the origin.

There is an IR superpotential for these fields Wlow v Tr(F12F23F̃13 + F̃12F̃23F13), which corre-

sponds to making a loop around the quiver diagram shown in Figure 3.9b. All other components

from X and Y are either eaten in the Higgsing, or get a mass from the superpotential (3.83), such

that the SU(m)2 and SU(n)3 sectors decouple from each other at low energies. These low-energy

theories are summarized in the left-most quiver diagrams in Figure 3.9.

We can then go along a further flat direction of the low-energy SU(m)2 theory, where

we give an arbitrary vev to the massless F , such that SU(m)1×SU(m)2 breaks to the diagonal

subgroup SU(m)D. The low-energy SU(m)D has an adjoint that remains massless, and IR

superpotential Wlow = 0 from integrating out the massive fields, such that this node corresponds

to an Â theory with 2N f massless flavors. This IR theory is depicted on the RHS of Figure 3.9a.

The low-energy SU(n)3 sector has a similar series of flat directions, where one of the

massless bifundamentals has non-zero expectation value, depicted by the arrows in Figure 3.9b.

For example, giving a vev first to F23 breaks SU(n)3 → SU(n)D× SU(n), resulting in an IR

theory with one massless adjoint X charged under SU(n)D and one massless bifundamental

pair coming from F13, F̃12. Identifying the indices appropriately, these massless fields have an IR

superpotential Wlow v Tr(X F1DF̃1D). At this stage there is another flat direction where F1D has

a non-zero expectation value, Higgsing SU(n)×SU(n)D→ SU(n)D, where the remaining node

corresponds to SQCD with 3N f massless flavors.

Again, it is not known if the Â theory in 3.9a at low-energies has a dual. On the other hand,
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m1 m2

〈F 〉
mD

Wlow v Tr(A3
2 −A3

1 + (A2 −A1)FF̃ ) Wlow = 0

(a) SU(m)1×SU(m)2 sector, Higgses to WÂ.

n1

n2n3

〈F23〉
n1 nD

〈F1D〉
n′
D

Wlow v Tr(F12F23F̃13 + F̃12F̃23F13) Wlow v Tr(XF1DF̃1D) SQCD

(b) SU(n)1×SU(n)2×SU(n)3 sector, Higgses to SQCD.

Figure 3.9: Flat directions for E7, Nc = 2m+ 3n, integrating out massive fields (denoted by
dotted lines) and fields eaten by the Higgs mechanism (not shown). The subscripts label the
gauge groups and their matter.

the low-energy SQCD theory in 3.9b has a dual given by Seiberg duality. So we can consider, for

example, Nc = 3n (m = 0), which along the flat direction of 3.9b breaks to SU(n) SQCD with 3N f

flavors, and thus has a Seiberg dual with gauge group SU(n)D→ SU(3N f −n)D. The dual theory

must also have moduli corresponding to the flat direction of the electric theory. Extrapolating

back to the origin along these dual flat directions, to try to un-Higgs the SU(3N f −n)D dual by

reversing the process analogous to 3.9b, suggests a dual gauge group of SU(9N f −3n) on the

magnetic side at the origin. This disagrees with the dual gauge group of Kutasov-Lin, which

maps SU(3n)→ SU(30N f −3n). That latter theory has a flat direction, corresponding to 3.9b

where instead SU(30N f −3n)→ SU(10N f −n)D.

To summarize, these flat directions pose puzzles for the proposed WE7 duality, both in the

Â theory of 3.9a, and in the SQCD theory of 3.9b. We have not found a quantum mechanism for

lifting these flat directions.
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3.5.4 Case studies in E7 RG flows from ∆W deformations

In this subsection, we deform the WE7 SCFT (3.75) by several examples of relevant ∆W

for cases where the resulting IR theory is under better control in terms of duality. We study

how the vacuum structure matches between the UV and IR electric and magnetic descriptions,

focusing on the apparent puzzles of the UV E7 theory.

These examples demonstrate several new features, as compared with the Ak and Dk+2

series. One difference is that the deformed chiral ring admits d > 2 dimensional representations.

Further, we explore cases in which enhancements of the singularities in the IR of an RG flow (via

tuning couplings of the deformations) do not preserve the number of higher-dimensional vacua.

Interestingly, for some RG flows the SU(Nc) version of a flow with the same 1d vacuum structure

as the corresponding U(Nc) flow has a different set of higher-dimensional vacua. Furthermore, we

explicitly construct some RG flows for which the ∆W deformations are not apparently relevant.

E7→ A2: 3d vacua

We begin with the RG flow E7→ A2 flow for gauge group U(Nc), taking x > xmin
E7

:

W =
1
3

TrY 3 + s1TrY X3 +
t1
2

TrX2, (3.85)

which yields the F-terms

Y 2 + s1X3 = 0 (3.86)

s1(Y X2 +XY X +X2Y )+ t1X = 0. (3.87)

There are seven 1d solutions to (3.86)-(3.87): two coincident at X = Y = 0, corresponding to the

A2 theory, and five solutions with nonzero X and Y eigenvalues, corresponding to A1 theories;

as always, the 1d solutions correspond, as in Arnold’s ADE singularity resolutions, to adjoint

Higgsing of the G = ADE, preserving rG. Taking X and Y to be matrices, it follows from (3.86)-

(3.87) that X3 v Y 2 are Casimirs along the flow, so that we may write X3 = x31d and Y 2 = y21d

for a d-dimensional representation. There is a 2d as well as a 3d representation that solve the
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F-terms, D-terms (3.7), and Casimir conditions,

X2d =
1
2

√
|t1|2
|s1|

(σ1 + iσ3), Y2d =
1
2

√√√√ |s1|t3/2
1

s2
1(t
∗
1)

1/2 (σ1− iσ3) (3.88)

X3d =

√
t1

2s1




0 1 1

0 0 0

0 0 0



, Y3d =−

√
t1

2s1




0 0 0

1 0 0

1 0 0




(3.89)

These solutions are nilpotent (recall the discussion in Section 3.2.2); these vacua are inherently

nondiagonalizable, with the D-terms satisfied via [X ,X†] =−[Y,Y †]. Expanding (3.85) in these

vacua, the adjoints have mass terms, and so the low-energy theories are SQCD with extra massless

flavors. The ∆W deformation in (3.85) thus gives the RG flow

E7→ A2 +5A1 +A2d
1 +A3d

1 (+ . . .?). (3.90)

The (+ . . .?) indicate that there might be additional d > 3 dimensional vacuum solutions, beyond

the ones that we found here13. In the following we will assume that there are no such additional

vacua in (3.90), but we do not have a proof that this is the case.

If there are n0 eigenvalues at the origin, ni in the i’th A1 node, n2d in the A2d
1 node, and

n3d in the A3d
1 node, such that Nc = n0 +∑

5
i=1 ni +2n2d +3n3d , then the gauge group is Higgsed

in the electric and proposed magnetic descriptions (for x in the conformal window):

U(Nc)
〈X〉,〈Y 〉−→ U(n0)

5

∏
i=1

U(ni)×U(n2d)×U(n3d)

y y

U(30N f −Nc)
〈X̂〉,〈Ŷ 〉−→ U(2N f −n0)

5

∏
i=1

U(N f −ni)×U(2N f −n2d)×U(3N f −n3d)

.

(3.91)

The down arrows are Kutasov-Lin duality for the E7 U(Nc) theory in the UV, and Kutasov

13We use the SU(N) or U(N) symmetry to gauge fix one real adjoint’s worth of components in X , X†, Y , and Y †,
and the remaining entries are constrained by the D- and F-terms, along with any Casimir conditions. We did not
find an analytic way to construct, or exclude, higher-dimensional solutions beyond scanning computationally. Even
gauge-fixing, scanning the solution space is harder for larger d, and so in (3.90) we only completed the scan for
d ≤ 3.
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or Seiberg duality for the approximately decoupled low-energy gauge group factors in the IR.

Comparing the UV and IR of the dual theories of the lower row of (3.91) as we did for the

D-series, there is a mismatch in the dual gauge groups of 10N f . Indeed, it is immediately evident

that (3.33) is not satisfied for α = 30, since there are precisely 7 vacua with di = 1, and 23 6= ∑d2
i

for integers di > 1. Something new is needed, beyond simply decoupled copies of SQCD in the

various di-dimensional vacua.

To recover the SU(Nc) version of this flow, we must deform the superpotential (3.85) by

the operators TrY 2, TrXY, TrX , TrY , (the latter two with Lagrange multipliers) whose coefficients

are shifted appropriately. The 2d representation for the deformed superpotential smoothly matches

onto the U(Nc) solution in (3.88) upon taking the coefficients of the lower order deformations

to zero. The analogous check for the 3d representations in (3.89) turns out to be technically

challenging, and while we expect that it also matches, such that the SU(Nc) version of the flow

will match onto (3.91), we have not verified this. (For reasons that will become apparent in

Section 3.5.4, this can be a subtle issue in the E-series.)

E7→ D5: Disappearing vacua?

We here consider the flow E7→ D5 for U(Nc) gauge group, which corresponds to the

superpotential (normalizing the couplings in the UV E7 theory to unity)

W = Tr
1
3

Y 3 +TrY X3 + t1TrXY 2 +
t2
4

TrX4. (3.92)

The F-terms of (3.92) are given by

Y 2 +X3 + t1{X ,Y}= 0, (3.93)

Y X2 +XY X +X2Y + t1Y 2 + t2X3 = 0. (3.94)

The 1d vacuum structure along this flow consists of the D5 theory at X = Y = 0, and 2 A1’s

away from the origin. To study higher-dimensional vacua we note that there are no simple

Casimirs of (3.93)-(3.94), except of course the F-terms themselves. There is a 2d solution to

the F-terms (3.93)-(3.94) and D-terms (3.7) of the form X = x01+ x3σ3, Y = y01+ y3σ3, where
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{x0,x3,y0,y3} are determined functions of the couplings t1 and t2. Then, the RG flow leads to

vacua

U(Nc), ti generic : E7→ D5 +2A1 +A2d
1 (+ . . .?). (3.95)

As in (3.90) and the associated footnote, there might additionally be d > 3 vacua, indicated here

with (+ . . .?). Performing the same check as in (3.91), assuming Kutasov-Lin duality for the UV

U(Nc) E7 theory, there is a mismatch in the UV and IR dual gauge groups, this time of 15N f :

U(Nc)
〈X〉,〈Y 〉−→ U(n0)

2

∏
i=1

U(ni)×U(n2d)

y y

U(30N f −Nc)
〈X̂〉,〈Ŷ 〉−→ U(9N f −n0)

2

∏
i=1

U(N f −ni)×U(2N f −n2d)

. (3.96)

The flow (3.95) is for generic deformations t1, t2 in (3.92). There are special values of the

coupling t2 for which the 2d representation “goes away” because X or Y becomes proportional

to the identity, or proportional to each other—in either case, the solution is then accounted for

by 1d vacua. This possibility does not occur for the Dk+2 RG flows. The resulting flows are

summarized by (for the rest of this subsection we refrain from putting the (+. . . ?), but note that

everywhere there is the possibility of d > 2 dimensional vacua):

U(Nc), t2 = t1(7±2
√

6) or 5t1
(−6∓

√
6)

(−6±
√

6)
: E7→ D5 +A2 (3.97)

U(Nc), t2 = t1 or t1(1±
√

6) : E7→ D5 +2A1 (3.98)

For the flow (3.97), the eigenvalues corresponding to the 1d and 2d A1 singularities in (3.95) come

together, enhancing to an A2 singularity. Labeling the multiplicities of X and Y ’s eigenvalues

as in (3.96), then for the enhancement (3.97) the eigenvalues rearrange such that the electric

theory is Higgsed U(Nc)→U(n0)×U(n1 + n2 + 2n2d). For the case (3.98), the eigenvalues

corresponding to the A2d
1 theory in (3.95) match onto copies of the eigenvalues corresponding to

the 1d A1 theories, such that in the IR the vacua are D5 +2A1. In this case, the eigenvalues in the

electric version of the flow rearrange such that U(Nc)→U(n0)×U(n1 +n2d)×U(n2 +n2d).
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This feature that a 2d representation can “go away” is also present in the SU(Nc) version

of the flow (3.92). As was the case for the D-series flows discussed in Section 3.4.5, there are

multiple sets of deformations ∆W that one can add to (3.92) to recover the same 1d vacuum

structure as in (3.95) for SU(Nc) gauge group14. For instance, one possibility is

∆W = v1TrX2Y +
v2

3
TrX3 + v3TrXY + v4TrX2 + v5TrY 2−λxTrX−λyTrY. (3.99)

Surprisingly, there are three 2d vacua for the flow (3.92) plus (for instance) ((3.99)): one which

matches continuously onto the U(Nc) 2d vacuum when the couplings of the lower order defor-

mations are taken to zero, and two which do not. The additional two 2d vacua have the property

that X and Y become proportional to each other in the limit that the couplings of the additional

deformations (e.g., the vi and λx,λy in ((3.99))) vanish. In other words, these additional vacua

vanish precisely when we cannot perform the shift of the SU(Nc) flow to the preferred U(Nc)

origin—i.e., when we can only flow down to decoupled A1 theories in the IR. In sum, the vacua

of this flow are

SU(Nc), ti generic : E7→ D5 +2A1 +3A2d
1 . (3.100)

However, as with our similar previous examples, using the known duals of the IR theories in

(3.100) does not fit with the αE7 = 30 of Kutasov-Lin duality, essentially because (3.33) is not

satisfied: here it is because αE7 6= αD5 +2αA1 +3×22αA1 , i.e. 30 6= 9+2+12.

Analogously to the U(Nc) flow (3.95), one of the 2d vacua in (3.100) reduces to 1d vacua

in special cases. The difference here is that the other two 2d vacua in (3.100) remain:

SU(Nc), t2 = t1(7±2
√

6) : E7→ D5 +A2 +2A2d
1 (3.101)

SU(Nc), t2 = t1 or t1(1±
√

6) : E7→ D5 +2A1 +2A2d
1 (3.102)

This feature that the 2d vacua can “disappear” for particular values of the couplings is reminiscent

of the wall crossing phenomena for BPS states. There are hints that this is a general phenomenon

in the E-series. For instance, there is a similar effect in the E8 → D6 flow, as we discuss in
14There are at least three possible sets of deformations, and we’ve explicitly checked that two of these (including

((3.99))) yield the same 2d vacuum structure.
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Appendix A.2.3. It is presently unclear to us how to this phenomenon fits with proposed duals,

and we leave such an exploration for future work.

E7→ A6: A seemingly irrelevant deformation

As expected from Arnold’s singularities and deformations, there are RG flows correspond-

ing to adjoint Higgsing of G = A,D,E. For some of these Higgsing patterns, the corresponding

∆W deformation is not immediately apparent. A general treatment of how to deform and resolve

the ADE singularities by giving expectations values to the Cartan elements is described in [61],

and this formalism is applied in [62] to several of the resolutions of present interest to us. We

adapted those constructions to obtain the deformations of this section.

We here consider the ∆W deformation which leads to the RG flow E7→ A6. This is given

by ∆W ∼ TrX7. At first glance, this ∆W seems irrelevant at the WE7 SCFT, since it scales with a

higher U(1)R charge than the terms in (3.75), but we know that such a flow should be possible

(for instance, we can cut the E7 Dynkin diagram to recover the A6 diagram, as demonstrated

for other cases in Figure 3.1). The resolution to this puzzle is that only a special shift of the

deformation couplings will recover the A6 singularity in the IR—even for the U(Nc) case. The

clearest way to see the enhancement of the A6 singularity is through a change of variables. Since

the change of variables is already complicated in the U(Nc) case, we will only consider this flow

for U(Nc) gauge group here. We analyze other E-series flows whose ∆W deformations seem

irrelevant in this sense in Appendix A.2.

We start with WE7 plus ∆W deformations,

W =
1
3

TrY 3 + s1TrY X3 + t1TrXY 2 +
T2

2
TrY 2 +T3TrXY +

T4

2
TrX2. (3.103)

It follows from the F-terms of (3.103) that there are seven 1d vacua in the IR, corresponding to

seven A1 theories (we will discuss higher-dimensional vacua below). It is useful to next linearly

shift the fields X → X +n, Y →Y +m, where we choose m and n as functions of the couplings in

(3.103) to cancel the linear terms in X and Y which result from the change of variables. Dropping
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constants, the superpotential can then be rewritten as

W =
1
3

TrY 3 + s1TrY X3 + t1TrXY 2 + t2Y X2 +
t3
3

TrX3 +
t4
2

TrY 2 + t5TrXY +
t6
2

TrX2, (3.104)

where the ti’s are defined in terms of the couplings in (3.103) and m,n. We then implement the

following change of variables for all t1 6= 0:

Y =U− 3t1
7

X− 7s1

t1
X2− 343s2

1

96t3
1

X3. (3.105)

Such a change of variables is holomorphic, and has the property that the new field variable U

is single-valued in terms of the variable being replaced (Y ). (3.105) shifts around the R-charges

of the fields, but causes no problems; in particular, the metric in the scalar potential acts to

compensate and keep the actual vacua the same. Rewriting (3.104) in terms of U and X will

result in many terms, including the terms TrX7 and TrU2 which we identify as corresponding to

the A6 theory and which are now apparently relevant from the perspective of the UV theory, plus

eight even more relevant deformations.

So far, all we’ve accomplished is to rewrite the flow E7→ 7A1 in a complicated way. At

this point, however, one can show that there is a unique shift of the couplings {t2, t3, t4, t5, t6} in

terms of t1,s1, such that all of the coefficients to terms more relevant than those which we will

identify with the A6 theory vanish. Implementing this shift, (3.104) becomes

W =
1
3

TrU3− 343s2
1

96t3
1

TrU2X3 +
117649s4

1

9216t6
1

TrUX6− 40353607s6
1

2654208t9
1

TrX9− 7s1

4t1
TrU2X2

+
2401s3

1
192t4

1
TrUX5− 823543s5

1

36864t7
1

TrX8 +
4t1
7

TrU2X− 49s2
1

48t2
1

TrUX4− 16807s4
1

4608t5
1

TrX7 (3.106)

− 48t3
1

343s1
TrU2.

Studying the F-terms of this superpotential and expanding (3.106) in the vacua, there is one

vacuum at the origin corresponding to the A6 theory, and one away from the origin corresponding

to an A1 theory. Thus, we have recovered the desired flow.

We have also studied the 2d vacuum structure of this RG flow.15 For generic values of the

15We have not as of writing attempted to find d > 2 dimensional vacua for this flow.
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couplings in (3.104), there are nine 2d vacua which we can parameterize as X = x01+ x3σ3, Y =

y01+ y3σ3, such that the generic ∆W deformations lead to the vacua

E7→ 7A1 +9A2d
1 (+ . . .?). (3.107)

However, all of these 2d vacua “go away” in the enhancement to the A6 theory, in the sense

described in Section 3.5.4. In particular, of the 18 eigenvalue pairs corresponding to the A2d
1 ’s in

(3.107), 15 come to the origin to form the A6 theory in the shift to (3.106), while the remaining 3

become copies of the shifted A1 theory. Thus, the 1d and 2d vacuum structure of this flow appears

to be

E7→ A6 +A1, (3.108)

where the multiplicities of the eigenvalues corresponding to the 2d vacua of (3.107) have redis-

tributed appropriately.

3.6 Conclusions, Future Directions, and Open Questions

3.6.1 Recap: puzzles and open questions for the Deven and E7 theories

The ADE SCFTs have a rich structure of vacua, and deformations. The fact that the fields

X and Y are matrices introduces many novelties, as we have here illustrated—but not yet fully

understood. It is natural to expect that the higher-dimensional representations of the F- and

D-terms have dimensions di given by some G = A,D,E group theory quantities, e.g. the Dynkin

indices ni as with the McKay correspondence. But we find that di 6= ni in general, and we do not

yet know how to analytically find the di and associated representations.

Our analysis of the E-series shows that even associating a fixed set of representations

with the deformation flow can be subtle. For example, the case studies of Section 3.5.4 give

the following puzzle: we can RG flow from the WE7 SCFT via different ∆W deformations, to

decoupled copies of SQCD (A1) at low energies, and for different routes seemingly get different
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numbers of higher-dimensional representations in the IR. It will be interesting to understand how

the proposed duality [46] fits in with this picture. The present work has raised several additional

hurdles for the conjectured Deven and E7 dualities, and it will be interesting to see how all of these

puzzles are resolved.

3.6.2 Future directions: aspects of the WE6 and WE8 theories

The superpotentials that drive the RG flow from Ô→ Ê→ E6,8 are (3.5):

WE6 =
1
3

TrY 3 +
s
4

TrX4. (3.109)

WE8 =
1
3

TrY 3 +
s
5

TrX5. (3.110)

The TrX4 and TrX5 terms are relevant for xE6
min ≈ 2.44 and xE8

min ≈ 7.28, respectively [38]. As

reviewed in Section 3.1.1, the chiral rings of these theories do not classically truncate, and are

especially rich since X and Y decouple in the F-terms (3.10) and (3.12). As shown in [46, 47],

the WE6,8 theories cannot have a dual of the form reviewed following (3.15). It is unknown if there

is a dual of some different form.

The a-theorem condition (3.26) is violated for sufficiently large x for both theories [38],

showing that some new quantum effects must arise for large x. One possibility is that a Wdyn is

generated, and the theory is no-longer conformal, for some x > xstability. Another possibility is

that there is some unknown dual description which becomes IR-free for large x. There are other

reasons to expect that there might be some description of the IR physics of (3.109) and (3.110)

in terms of dual variables: we can flow, for instance, E6→ D5, and we expect that the stability

bound is reduced xmax
E6

> xmax
D5

along RG flow. It is also pointed out in [46, 47] that in E6 the

number of operators at a given value of R grows with R-charge, but somehow the theory must

find a way to preserve unitarity.

We have studied a few aspects of the moduli space and ∆W deformations of the WE6 and

WE8 SCFTs, looking for clues in formulating a dual description of the theories, but finding puzzles
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(similar to Deven and WE7). We here briefly report on some of our findings.

The undeformed WE6 and WE8 theories have a variety of flat directions similar to those

discussed for the WDeven and WE7 theories in Sections 3.4.2 and 3.5.2. In particular, both have

2d and 3d nilpotent flat directions (of course, a flat direction of E6 is also a flat direction of E8,

since X3 = 0⇒ X4 = 0). The 2d vacuum solutions are of the form X2d = x(σ3 + iσ1), Y2d =

−x(iσ3 + σ1) where arbitrary complex x labels the flat direction. There are several 3d flat

directions of these theories, again labeled by x, for instance

X3d = x




0 0 1

0 0 0

0 1 0



, Y3d = x




0 0 0

1 0 0

0 0 0



, (3.111)

X3d′ = x




0 1 1

0 0 0

0 0 0



, Y3d′ = x




0 0 0

1 0 0

1 0 0



. (3.112)

As with the Deven and E7 cases, these (classical) flat directions are surely related to the classical

nontruncation of the ring. We expect, as with those cases, that some dynamics must alter these

flat directions, at least for sufficiently large x, to avoid apparent violations of the a-theorem. It

would be interesting to understand this further.

For SU(Nc), as opposed to U(Nc), upon imposing the tracelessness of the adjoints by

adding Lagrange multiplier terms to (3.109) and (3.110), these theories have SU(Nc) flat direc-

tions for particular values of Nc, similar to those discussed in Section 3.3.4, 3.4.3, and 3.5.3.

The WE6 theory has a flat direction for Nc = 3m and/or Nc = 2n, while E8 has a flat direction

for Nc = 2n, for integer m and n. We expect low-energy Â theories along these classical flat

directions; it would be interesting if one can obtain insights about the theory at the origin from

these flat directions.

We now briefly comment on the RG flows from some ∆W deformations of the WE6 and

WE8 SCFTs. Consider e.g. the flow E6→ D5, obtained by adding ∆W = TrXY 2 to (3.109). The
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1d vacua correspond to the D5 theory at the origin, and an A1 theory away from the origin. The

F-terms imply that [Y 2,X ] = 0, and [X2,Y ] = [X3,Y ] = 0, so that d > 1 dimensional solutions to

the F-terms must actually satisfy X2 = 0. It is then straightforward to show that there are no 2d

or 3d solutions that satisfy the F-terms and D-terms, so that the vacua along the flow are just the

1d vacua (up to possible d > 3 representations, again as in the discussion around (3.90))

E6→ D5 +A1 (+ . . .?). (3.113)

While we do not yet know of a dual description of the WE6 SCFT, in the IR of this flow Brodie

duality and Seiberg duality map the low-energy gauge groups as

U(n0)×U(n1)
duality−→ U(9N f −n0)×U(N f −n1), Nc = n0 +n1. (3.114)

Perhaps understanding the IR limits of such flows will yield hints pointing towards a dual

description of the WE6 ,WE8 theories. We invite the interested reader to try. Some additional

comments on E-series flows are provided in Appendix A.2.
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Chapter 4

Landscape of Simple Superconformal Field

Theories in 4d

We explore the infrared fixed points of four-dimensional N = 1 supersymmetric SU(2)

gauge theory coupled to an adjoint and two fundamental chiral multiplets under all possible

relevant deformations and F-term couplings to gauge-singlet chiral multiplets. We find 35 fixed

points, including the N = 2 Argyres-Douglas theories H0 and H1. The theory with minimal

central charge a is identical to the mass-deformed H0 theory, and the one with minimal c has

the smallest a among the theories with U(1) flavor symmetry. We also find a “next to minimal”

N = 1 SCFT with a chiral operator O with relation O3 = 0. In addition, we find 30 candidate

fixed point theories possessing unphysical operators—including one with (a,c)' (0.20,0.22)—

that need further investigation.

4.1 Introduction

Conformal field theory (CFT) is an important object in theoretical physics, which displays

the physics of the low energy fixed point of some gauge theories and also of critical phenomena
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in condensed matter theories. One interesting question of CFT is to find the “minimal” interacting

theory. In four dimensions, a measure of minimality is the a central charge, the coefficient to the

Euler density term of the trace anomaly. This is because of the a-theorem [19, 21], aUV > aIR

for all unitary renormalization group (RG) flows. A related quantity is the c central charge, the

coefficient to the two-point function of the stress-energy tensor.

In supersymmetric theories, these are tractable because of their relation to ’t Hooft

anomalies of the superconformal R-symmetry [16], which are in turn determined by the a-

maximization technique [24]. The central charge c of any unitary interacting N = 2 SCFT

satisfies c≥ 11
30 [63]. The theory that saturates the bound is the simplest Argyres-Douglas theory

[64, 65], denoted as H0 or (A1,A2) in the literature. H0 also has the smallest known value of a for

an interacting N = 2 theory.

In N = 1 theories, no analytic bound on the central charges is known so far. However,

the numerical bootstrap program [66] suggests that the SCFT with the minimal central charge has

a chiral operator O with chiral ring relation O2 = 0 [67, 68, 69], and a bound of c≥ 1/9' 0.11

[69]. The minimal theory thus far known in the literature has a = 263
768 ' 0.34 and c = 271

768 ' 0.35,

and was constructed via a deformation of the H0 theory [70, 71]. We will denote this theory as

H∗0 . (See also a recent work on 3d N = 4 theory [72].)

In the work [73], we initiate a classification of N = 1 SCFT in four dimensions obtained

from Lagrangian theories. We explore the space of RG flows and fixed points that originate

from the simple starting point of supersymmetric SU(2) gauge theory with one adjoint and

a pair of fundamental chiral multiplets. From this minimal matter content, we consider all

the possible relevant deformations, including deformations by coupling gauge-singlet chiral

multiplets. Among the fixed points we obtain, two have enhanced N = 2 supersymmetry: the

Argyres-Douglas theories H0 and H1, as already found in [74, 75, 76]. The others are N = 1

supersymmetric, including the H∗0 theory as a minimal theory in terms of a. We verify that

these are “good” theories in the sense that there is no unitary-violating operator by utilizing the
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superconformal indices [28, 27].

In addition, in [73] we find a number of candidate fixed points which have an accidental

global symmetry in the infrared and some unphysical operators, thus we refer to them as “bad”

theories. Remarkably, these include theories with even smaller central charges than those of H∗0 .

The minimal one, which we denote as TM, has a' 0.20, and c' 0.22. Although we are not able

to conclude that these bad theories are really physical by the present techniques, we scope their

properties.

In the present chapter, we review a particular subset of the flows in this landscape. We

refer the reader to [73] for a description of the full landscape of fixed points and flows.

4.2 A Landscape of Simple SCFTs

We systematically enumerate a large set of superconformal fixed points via the following

procedure:

1. Start with some fixed point theory T .

2. Find the set of all the relevant chiral operators of T , which we will call RT . Let us also

denote ST ⊂RT as the set of operators with R-charge less than 4/3.

3. Consider the fixed points {TO} obtained by the deformation δW = O for all O ∈RT .

4. Consider the fixed points {TO} given by adding an additional gauge-singlet chiral field M

and the superpotential coupling δW = MO for all O ∈ST .

5. For each of the new fixed point theories obtained in previous steps, check if it has an

operator Od that decouples. Remove it by introducing a flip field X and a superpotential

coupling δW = XOd .
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6. For each new fixed point, repeat the entire procedure. Terminate if there is no new fixed

point.

We employ the a-maximization procedure [24] and its modification [77] to compute the super-

conformal R-charges at each step. Beyond a-maximization, we check whether the theory passes

basic tests as a viable unitary SCFT: one is the Hofman-Maldacena bounds for N = 1 SCFTs,

1
2 ≤ a

c ≤ 3
2 [23]; the other one is the superconformal index. Some of the candidate fixed points

have trivial index, or violate the unitarity constraints [78, 30].

We perform this procedure for one-adjoint SQCD with SU(2) gauge group and with two

fundamental chiral multiplets (N f = 1). When there is no superpotential, this theory flows to

an interacting SCFT T̂ , as discussed in [41] (also see [79]), and a free chiral multiplet Trφ 2.

To pick up only the interacting piece, we add the additional singlet X and the superpotential

WT̂ = XTrφ 2.

Starting from T̂ , we apply the deformation procedure, and find 35 non-trivial distinct

fixed points. These theories pass every test we have checked, so we call them “good” theories.

There are an additional 30 distinct theories that pass almost all of our checks, except that

there is a term in the index that signals a violation of unitarity. The existence of such a term

implies that either the theory does not flow to an SCFT in the IR, or the answers we obtained

were incorrect because we failed to take into account an accidental symmetry. In fact, these

“bad” theories also have an accidental U(1) symmetry which is not visible at the level of the

superpotential, but is evident by the existence of the corresponding conserved current term present

in the index. At present we do not know how to account for this accidental symmetry, and so

cannot say for certain if these flows will lead to SCFTs or not.

Interestingly, 6 of these “bad” theories appear to have central charges lower than that

of H∗0 . Denote the lowest one TM. This is a hint that there might be a minimal SCFT in this

landscape.

We have plotted a,c for the “good” theories without this interesting complication in Figure
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Figure 4.1: The central charges of the 35 “good” theories. The ratios a/c all lie within the range
(0.8246,0.9895). The mean value of a/c is 0.8733 with standard deviation 0.03975.

4.1. We see that the distribution of a vs c are concentrated near the line of a/c ∼ 0.87. Of the

“good” theories, H∗0 has the smallest value of a. T0 has the smallest value of a among any theory

with a U(1) flavor symmetry. H∗1 has the smallest value of a among any theory with an SU(2)

flavor symmetry 1. Below we examine each of these “minimal” theories in turn, as well as the

lowest central charge theory TM, and the second-to-lowest a central charge “good” theory with

no flavor symmetry, which we denote Tµ . We summarize the structure of RG flows among these

special theories in Figure 4.2.

The superconformal indices of these theories can be computed using the Lagrangian

description. We define the index as (see Chapter 2 for more details, and note the t→ t3 notation

change)

I (t,y;x) = Tr(−1)Ft3(r+2 j1)y2 j2x f , (4.1)

where ( j1, j2) are the spins of the Lorentz group and r the U(1) R-charge. When the theory has a

global symmetry with Cartan generator f , we also include the fugacity x for it. For each of these

special theories, we give the first few terms in the reduced superconformal index

Ir(t,y) = (1− t3/y)(1− t3y)(I (t,y)−1) , (4.2)

which removes the conformal descendant contributions coming from spacetime derivatives. If

1There are two theories with 3 conserved currents with smaller a, but we do not find any evidence for the SU(2)
symmetry.
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W = Xφ2

T̂(a, c) = (0.453,0.499)

T0(0.345,0.349)

H0

(
43
120 ,

11
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)

H∗
0

(
263
768 ,

271
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)

H1

(
11
24 ,

1
2

)

H∗
1

(
927
2048 ,
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)

TM
(
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2048 ,
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2048

)

Tµ

M1φqq̃ +M3φqq +M1M3

(
711
2048 ,

807
2048

)

φqq

Mφq̃q̃

M2

Mqq̃

M2

φqq + X̂φq̃q̃

φqq + X̂M

Figure 4.2: A subset of the fixed points that can be obtained from SU(2) N f = 1 adjoint SQCD
with singlets. Note that the graph is not arranged vertically by decreasing a central charge,
because the deformations we consider involve coupling in the singlet fields.

the reduced index contains a term tRχ j(y) with R < 2+ 2 j or a term (−1)2 j+1tRχ j(y) with

2+2 j ≤ R < 6+2 j, it violates the unitarity constraint [78, 30].

The coefficient of t6y0 allows us to read off the number of marginal operators minus the

number of conserved currents [78]. The superpotential F-terms ∂W/∂ϕ = 0 for the fields ϕ allow

us to read off the classical chiral ring, and quantum modifications can be argued from the index.

We will see that the chiral rings we study in this chapter are subject to the quantum corrections.

The superconformal index turns out to be a useful tool to study the fully quantum corrected chiral

rings of our models.
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Table 4.1: The R-charges of the chiral multiplets at various fixed points. The Tµ theory has 3
chiral multiplets labeled M, which we denote as M1,2,3.

fields T0 H∗0 H∗1 Tµ TM

q 543−
√

1465
546 ' 0.924 11/12 1/2 1/4 7/8

q̃ 75−
√

1465
78 ' 0.471 5/12 1/2 3/4 1/8

φ
3+
√

1465
273 ' 0.151 1/6 1/4 1/4 1/4

M · 1 1 (3
4 ,1,

5
4) 1

X 2(270−
√

1465)
273 ' 1.70 5/3 3/2 3/2 3/2

X̂ · · · · 3/2

4.3 T0 —Minimal c, Minimal a with U(1)

Let us begin with the T0 SCFT which is obtained via a deformation of T̂ ,

WT0 = XTrφ 2 +Trφqq, (4.3)

and has irrational central charges

aT0 =
81108+1465

√
1465

397488
' 0.3451,

cT0 =
29088+1051

√
1465

198744
' 0.3488.

(4.4)

The IR R-charges of the fields of the T0 and all other theories discussed below are given in Table

4.1. This theory has the second smallest value of a, and the smallest value of c among the 35

“good” fixed points we enumerate.2

The chiral ring of the theory can be easily studied: the F-term conditions from (4.3)

are simply Trφ 2 = 0, qφ = 0 and Xφ + q2 = 0. The first equation truncates the chiral ring by

setting φ 2 = 0. The second and third equations lead to the classical generators of the chiral ring:

O ′ ≡ Trqq̃, Trφ q̃q̃ and X , with relation O ′2 ∼ XTrφ q̃q̃.

This theory has an anomaly free U(1) flavor symmetry that mixes with R. The reduced

2The theory with smaller c than H∗0 was also noticed by Sergio Benvenuti. We thank him for informing us on this.
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index is given as

Ir(t,y;x) = t3.28x12− t3.45x−2
χ2(y)+ t4.19x8− t6

+ t6.56x24 + t7.46x20 + t8.27x−10 + . . . ,
(4.5)

where we assigned the flavor charges for the fugacity x as fq = 1, fq̃ = 7, fφ =−2, fX = 4. Here

and below χs(a) denotes the character for the SU(2) flavor symmetry of dimension s = 2 j+1.

This index allows us to read off the quantum modified chiral ring: the terms t3.28x12 and t4.19x8 in

the index come from the chiral operators Trφ q̃q̃ and Trqq̃ respectively; the second term denotes

the fermionic operator Oα = TrφWα . We see that the operator X (which would contribute t5.10x4

to the index if it exists) is absent from the chiral ring. We can read off the chiral ring relation

O ′2 = Oα · (Trφ q̃q̃) = 0 from the absence of the terms t8.38x16 and −t6.73χ2(y)x10.

4.4 H∗0 —Minimal a

The H0 fixed point can be obtained from T0 by adding the MTrφ q̃q̃ term. This superpo-

tential is indeed a simplified version of the one considered in [74].

At the H0 fixed point we further deform by a mass term M2,

WH∗0 = XTrφ 2 +Trφqq+MTrφ q̃q̃+M2. (4.6)

This flows to the H∗0 theory with the central charges

aH∗0 =
263
768
' 0.3424, cH∗0 =

271
768
' 0.3529. (4.7)

The H∗0 SCFT has been studied in [70, 71] as a deformation of the H0 Argyres-Douglas theory.

Utilizing the UV Lagrangian description presented here, we are able to confirm various predictions

about H∗0 .

Classically, the F-terms of (4.6) imply that M,X , and O ′ ≡ Trqq̃ generate the chiral ring,

with relations M2 ∼ 0 and O ′2 ∼ 0. The superconformal index for the H∗0 theory can be computed

to give a reduced index

Ir(t,y) = t3− t
7
2 χ2(y)+ t4 + t7 + t

17
2 + . . . (4.8)

100



From this we see that the two generators M and O contribute the t3 and t4 respectively, while X

is not a generator. We also find that the operator Oα = Tr(φWα) contributes to t
7
2 χ2(y). From the

coefficients of t6, t7, t8, we find M2 = MO ′ = O ′2 = 0 in the chiral ring. The term t7 comes from

(Oα)
2. There is a relation for Oα of the form MOα = O ′Oα = 0 which can be read from the

absence of the terms −t
13
2 χ2(y) and −t

15
2 χ2(y). These relations support the analysis of [70, 71].

4.5 H∗1 —Minimal a with SU(2)

The flow to H1 in our setup is a simplified version of the flow considered in [75], and was

also considered in [80]. From H1 the H∗1 SCFT is then obtained via a mass deformation to the

singlet,

WH∗1 = XTrφ 2 +MTrqq̃+M2. (4.9)

The central charges are

aH∗1 =
927

2048
' 0.4526, cH∗1 =

1023
2048

' 0.4995. (4.10)

Classically, the F-terms imply that the chiral ring is generated by M, X , O2 ≡ Trφqq, O0 ≡ Trφqq̃,

O−2≡ Trφ q̃q̃, with relations M2 = MOi = XOi = 0, and O2
0 ∼O2O−2. The last relation descends

from that of the Higgs branch of the H1 theory.

The reduced index is

Ir(t,y;a) = t3 + t
15
4 (χ3(a)−χ2(y))+ t

9
2

− t6
χ3(a)+ t

15
2 (1+χ5(a))+ t

33
4 + . . .

(4.11)

We see the theory has the SU(2) current from the −t6χ3(a) term, which is visible at the level of

the superpotential. There are generators M, X and Oi satisfying the relations M2 = X2 = 0 and

O2
0 ∼O2O−2. There are also fermionic operators Oα =Tr(φWα) with relations MOα =XOα = 0.
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4.6 Discussion

One goal of this program is to search for and study minimal N = 1 SCFTs. One feature

of the low-central charge SCFTs we have examined here is that there is a chiral operator satisfying

a relation of the form On ∼ 0 for n = 2,3. Another feature is that the central charges of the SCFTs

considered here lie in a narrow range of a/c. It would be interesting to pursue the reasons for this,

and search for other N = 1 SCFTs with truncated chiral rings.

A common property of the RG flows in this landscape is that some operators that are

irrelevant at high-energy can be relevant in the IR—such operators are called dangerously

irrelevant. As such this is an interesting arena for studying RG flows along the lines of [81].

At present, the status of the “bad” theories is unclear, because it is not clear how to account

for the accidental symmetry in the a-maximization procedure and thus check if the corrected

theory would flow to an interacting SCFT. One way forward would be to identify the fermionic

multiplet that contributes to the unitary-violating terms in the index and decouple it, as we naively

did for the TM theory. It would be interesting to resolve this question and understand how the

accidental symmetry arises. This would settle whether one of these theories is indeed a new

candidate minimal N = 1 theory, or strengthen the case for minimality of the H∗0 theory.
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Chapter 5

Interlude: An Introduction to the Theories

of Class S

In this chapter we review the construction of a class of four-dimensional SCFTs by com-

pactification from six dimensions. These constructions will provide the arena for the remainder

of this thesis.

5.1 Introduction

A large class of four-dimensional quantum field theories can be studied by compactifying

six-dimensional N = (2,0) superconformal field theories over a punctured Riemann surface

with a partial topological twist. The SCFTs that result from this procedure are known as theories

of class S (for “six”). Generically, these theories are strongly coupled and do not have a known

Lagrangian description, and yet many of their properties can be inferred by utilizing their origin

in six dimensions and the compactification scheme.

These constructions have been revolutionary in that they provide a partial classification

scheme for four-dimensional N = 2 SCFT’s, and bring to bear new geometric tools for studying
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them [82, 83, 84]. Soon after their introduction, it was demonstrated that these constructions can

be generalized to study the space of four-dimensional N = 1 SCFT’s [85, 86, 87, 88, 89, 78].

An important ingredient in the construction is a partial topological twist [90, 91], which

is needed to preserve some supercharges in the compactification of the six-dimensional theory.

Depending on the choice of twist, various amount of supersymmetry can be preserved in four

dimensions. N = 2 theories of class S were first constructed and classified in [82, 84] (building

on earlier work by [92]). A large class of N = 1 SCFTs and their dualities were studied via mass

deformations of N = 2 theories in [85, 86, 87]. Later, it was demonstrated that N = 1 SCFTs

could be directly constructed from compactifications of six-dimensional theories on a Riemann

surface with a partial topological twist [89, 88]. We refer to these theories as BBBW theories, for

the authors Bah, Beem, Bobev, Wecht.

A strong piece of evidence for the existence of these superconformal theories is the

explicit construction of their large-N gravity duals. The gravity duals for the N = 2 theories

corresponding to M5-branes wrapped on Riemann surfaces without punctures were constructed

in [83], which are holographically dual to the Maldacena-Nuńez supergravity solutions [93]. The

duals for the N = 1 theories were constructed in [89, 88] (without punctures) and in [94] (with

punctures).

5.2 4d SCFTs from 6d

Generically, putting a QFT on a curved background breaks supersymmetry. A partial

topological twist allows us to preserve some supersymmetry in the IR. In the twist, one turns

on a background gauge field valued in the six-dimensional SO(5)R symmetry, and tunes it to

cancel the background curvature on the Riemann surface. We identify an abelian subgroup of the

six-dimensional R-symmetry as

U(1)+×U(1)− ⊂ SU(2)+×SU(2)− ⊂ SO(5)R, (5.1)
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where the U(1)± are Cartans of the SO(5)R. Then, embed the holonomy group of the Riemann

surface U(1)h in the six-dimensional R-symmetry group by identifying the U(1)h generator Rh

as a linear combination of the U(1)± generators J±,

Rh =
p1

p1 + p2
J++

p2

p1 + p2
J−. (5.2)

This fixes the parameters (p1, p2) in terms of the Euler characteristic χ of the surface as

p1 + p2 +χ(Σg,n) = 0, with −χ(Σg,n) = 2(g−1)+n. (5.3)

This procedure in general preserves four supercharges in four dimensions, and breaks the bosonic

symmetries of the six-dimensional theory as

SO(1,5)×SO(5)R→ SO(1,3)×U(1)+×U(1)−. (5.4)

When one of (p1, p2) is zero, eight supercharges will be preserved, and one of the U(1)± will be

enhanced to SU(2)± to furnish the N = 2 R-symmetry of the four-dimensional theory.

The six-dimensional (2,0) theories are labeled by a choice of gauge algebra g, which

follows an ADE classification. The su(N) = AN−1 and so(2N) = DN cases have a description in

terms of M5-branes. In this dissertation we will focus on the AN−1 theories, in which case the

six-dimensional theory arises as the effective world-volume theory of N coincident M5-branes.

Then, the amount of supersymmetry that is preserved in the IR depends on the way the M5-branes

are embedded in a Calabi-Yau threefold CY3. From this perspective, the Riemann surface is

described by a holomorphic curve Cg,n in CY3. Generally, the Calabi-Yau threefold is a U(2)

bundle over Cg,n, whose determinant line bundle is fixed to the canonical bundle of the surface.

We choose to twist the Cartan of the SU(2) bundle, such that the U(2) bundle decomposes into a

sum of two line bundles L1 and L2 with integer degrees (p1, p2) as1

C2 L1⊕L2

Cg,n

(5.5)

1Often these parameters are called (p,q) in the literature, but here we reserve the (p,q) labels to specify the
R-symmetry of locally N = 2 preserving punctures.
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In this language, the topological twist involves embedding the holonomy group U(1)h of

the Riemann surface in the SO(5) structure group of the normal bundle to the M5-branes. The

U(1)± global symmetries in (5.1) correspond to phase rotations of the two line bundles. Requiring

that the first Chern class of the Calabi-Yau threefold vanish is equivalent to the condition (5.3).

If one of the two line bundles is trivial, the threefold decomposes as CY3 = CY2×C, and the

background preserves eight supercharges.2

The four-dimensional theories of class S also have a description in terms of a generalized

quiver gauge theory. To take the AN−1 case, one geometrically decomposes the curve Cg,n into 3-

punctured spheres connected by tubes via pair-of-pants decompositions. S-duality relates different

degeneration limits of the curve. The low energy effective description of N coincident M5-branes

wrapping a 3-punctured sphere is known as the TN theory, which is a strongly coupled N = 2

SCFT with an SU(N)3 global symmetry [82]. Gauging subgroups of these global symmetries via

N = 1 or N = 2 vector multiplets (the tubes) corresponds geometrically to “gluing” punctures

to form Riemann surfaces with general Euler characteristic. The classification of these four-

dimensional building blocks, or “tinkertoys”, has been carried out in [95, 96, 97, 98, 99]. As

we discuss in some detail in the next chapter, similar field-theoretic constructions have recently

been obtained for theories whose geometries have negative line bundle degrees p1 and p2

[100, 101, 102]. Such a field-theoretic approach can be useful in providing a different perspective

on the properties of the theories of class S .

Much of the richness of class S comes from the punctures on the Riemann surface. From

the perspective of the parent six-dimensional (2,0) theory, punctures are 1/2-BPS codimension-2

defects, specified by an embedding ρ : su(2)→ g. Such embeddings are labeled by nilpotent

orbits of the Lie algebra g [103]. Regular defects correspond to singular boundary conditions

to Hitchin’s equation on the Riemann surface, which have been classified for AN−1 in [83], for

DN in [104], and have been discussed for other types of regular defects including twisted lines

2In the special case that the Riemann surface is a 2-torus (g = 1), N = 4 supersymmetry can be preserved by
fixing the normal bundle to the M5-brane world-volume to be trivial.
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(possible when the ADE group admits an outer-automorphism) in [105, 103, 106, 107]. The

generalization to N = 1 Hitchin’s equations was first discussed in [108]. In the present work, we

will only discuss regular (also called “tame”) defects, and omit discussion of irregular (“wild”)

punctures corresponding to higher order poles.3

When the (2,0) theories describe the effective world-volume theory of M5-branes, punc-

tures correspond to points where the M5-branes branch out to infinity [109]. The punctures

correspond to boundaries of the Riemann surface, and boundary conditions are needed for the

M5-branes; this leads to global symmetries. In the Type IIA limit where we shrink the M-theory

circle, the degrees of freedom at the puncture are associated to the intersection of D4/D6 branes

[92].

At large N, one can look at AdS5 dual solutions of M-theory corresponding to the near

horizon limit of N M5-branes wrapping a Riemann surface [83, 94]. In these solutions, the new

degrees of freedom are associated to additional M5-branes that are localized at the punctures

(see [109]). These branes are extended along a direction normal to the Riemann surface, and end

at monopole sources of a U(1) connection of an S1 bundle over the surface. This connection is

associated to the topological twist in the field theory construction. A single M5-brane corresponds

to a simple puncture, which can be analyzed in the probe approximation [83, 110]. In the full

backreacted solution, the connection forms in the Ricci flat background pick up monopole sources.

To summarize, we require the following data in order to specify a theory of class S : a

choice of g=ADE; the Euler characteristic χ of the Riemann surface; a choice of twist, i.e. the

(p1, p2) that satisfy (5.3); and local data associated with the punctures. From this perspective,

the class S construction allows us to organize a large space of four-dimensional SCFTs in a

geometric way.

3The Argyres-Douglas theories discussed in the previous chapter in fact have a Class S description in terms of a
sphere with one regular and one irregular puncture, but we will not further discuss this description here.
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Chapter 6

4d SCFTs from Negative Degree Line

Bundles

We construct 4d N = 1 quantum field theories by compactifying the (2,0) theories on a

Riemann surface with genus g and n punctures, where the normal bundle decomposes into a sum

of two line bundles with possibly negative degrees p and q.1 Until recently, the only available field-

theoretic constructions required the line bundle degrees to be nonnegative, although supergravity

solutions were constructed in the literature for the zero-puncture case for all p and q. Here, we

provide field-theoretic constructions and computations of the central charges of 4d N = 1 SCFTs

that are the IR limit of M5-branes wrapping a surface with general p or q negative, for general

genus g and number of maximal punctures n.

6.1 Overview and Summary of Results

We here consider M5-branes wrapping a genus g Riemann surface with n maximal

punctures Cg,n, where the surface is embedded in a Calabi-Yau 3-fold alla (5.5). The BBBW

1Note that in this chapter, in order to match the original work we (regrettably) deviate from the notation in Chapter
5, where p and q were referred to as p1 and q1.
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supergravity solutions are valid for all p and q; however, there is only an explicit field theory

construction for the case of p and q nonnegative.2 Our main goal at present is to understand such

a construction for the case where one of the line bundle degrees is negative. Our construction

requires a more general building block than the TN theory. The necessary ingredient was provided

in [100], which introduced a generalization of the TN theory denoted T (m)
N for m a positive integer

(and whose features we will review in Section 6.2.1). The field-theoretic constructions in [100]

utilizing T (m)
N building blocks provided the first generalized quiver field theories with p,q < 0.

In the present work, we explicitly construct 4d N = 1 field theories that result from

compactifying the (2,0) theories on a surface with negative p or q, thereby providing field theoretic

constructions for the duals of the BBBW gravity solutions obtained by gluing T (m)
N building

blocks. We further generalize to the case of M5-branes wrapped on Riemann surfaces with

maximal punctures, yielding formulae for the (trial) central charges of the resulting SCFTs that

depend only on geometric data.

The organization of this chapter is as follows. In Section 6.2, we provide the field-theoretic

construction of the 4d N = 1 SCFTs that are dual to the BBBW gravity solutions for negative

p or q. We begin by reviewing the definition of the T (m)
N theories as formulated in [100]. Then,

we glue together (2g− 2) copies of the T (m)
N theories, yielding a genus g > 1 surface with no

punctures and possibly negative p or q, thus providing an inherently field-theoretic construction

of 4d N = 1 field theories that arise as the IR limit of M5-branes wrapped on a surface with

negative normal bundle degrees. We compute the central charges and operator dimensions for

these theories, and find that they match precisely onto the BBBW formulae.

In Section 6.3, we study the genus zero case, which requires closing punctures on chains

of T (m)
N theories. We consider the simplest case of a single T (m)

N theory whose SU(N) flavor

groups are Higgsed, which can yield theories with twist |z| ≥ 2, and find that the trial central

charges match onto the BBBW results. There will be corrections to these values from operators

2Similar constructions were recently considered in [101].
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Figure 6.1: A UV generalized quiver description for the T (m)
N theories. The blue color of

the SU(N)A,B,C flavor groups corresponds to punctures with sign σA,B,C =+1. The red boxes
correspond to closed σ =−1 punctures. The singlets M(i)

j are the leftover components of the
fluctuations of the M(i) about the vevs.

whose R-charges were shifted in the Higgsing procedure. We comment on these corrections, but

leave their complete analysis to future work.

Having reviewed the machinery to close punctures in Section 6.3, in Section 6.4 we

construct theories of genus g and n maximal punctures from T (mi)
N building blocks. With these

general constructions, we are able to compute the central charges for the torus as well. We

conclude with a brief discussion of future directions.

6.2 Constructing the BBBW Duals from T (m)
N Building Blocks

6.2.1 T (m)
N review

The T (m)
N theories constructed in [100] are strongly coupled 4d N = 2 SCFTs. They

have a natural description as being of class S , arising as the low-energy limit of wrapping N

M5-branes (the (2,0) theories of type AN−1) on a sphere with three punctures, C0,3. The sphere is

embedded in a Calabi-Yau 3-fold, which decomposes into a sum of two line bundles as in (5.5).

For our purposes, the novelty of this construction is that the degrees p and q of the line bundles

are allowed to be negative, parameterized by a nonnegative integer m:

T (m)
N : p = m+1, q =−m. (6.1)

For m = 0, this construction reduces to the TN theory.

These theories preserve a U(1)+×U(1)− global symmetry which derives from the parent
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N = (2,0) SO(5)R symmetry, as well as an SU(N)3 global symmetry associated to the three

punctures3 which we denote SU(N)A×SU(N)B×SU(N)C. Each puncture is labeled by a sign

σA,B,C =±1; in the notation of [100], +1 is blue-colored and -1 is red-colored, and in diagrams

we’ll take +1 to be unshaded and −1 to be shaded. Denoting the generators of U(1)+×U(1)−

by J±, the exact superconformal R-symmetry is given by the linear combination (see Appendix

B.1 for more on our conventions)

RN =1(ε) =
1− ε

2
J++

1+ ε

2
J−. (6.2)

The ’t Hooft anomalies for the T (m)
N theories are given in Appendix B.3, in equation (B.12), and

the chiral operators of the T (m)
N theories are listed in Table 6.1. The φi are adjoint chiral multiplets;

the µ
(i)
j and M(i)

j are singlets; the µi are moment-map operators (i.e., chiral operators at the bottom

of would-be N = 2 current multiplets) of the m symmetry groups SU(N)i that are gauged in

the construction of the theories; the µA,B,C are moment-map operators of the leftover SU(N)A,B,C

flavor symmetries; and Q(Q̃) are (anti)trifundamentals of the SU(N)A×SU(N)B×SU(N)C flavor

symmetry. The singlets are coupled in a superpotential

Wsinglets =
m

∑
i=1

N−1

∑
j=1

µ
(i)
j M(i)

j (6.3)

that arises from the construction of the T (m)
N theories by gluing m+1 copies of the TN theory—see

[100] for more details. We summarize the resulting UV generalized quiver description for the

T (m)
N theories in Figure 6.1.

The superpotential (6.3) yields chiral ring relations for the chiral operators. For example,

while naively one might worry that the singlets µ
(i)
j could violate the unitarity bound due to

their negative J− charge, the F-terms for the M(i)
j imply that the µ

(i)
j are in fact trivial in the ring.

As checked in [100], none of the gauge-invariant chiral operators that are nontrivial in the ring

decouple4.

3This is taking the punctures to be maximal; to construct building blocks with generic three punctures whose
flavor symmetries are non-maximal, one can use results in [111], [112], [95], [103].

4If the dimension of a chiral operator O appears to violate the unitarity bound R(O) < 2/3 (the R-charge of
a chiral operator is proportional to its dimension in theories with four supercharges), then O is in fact free, and
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Table 6.1: Operators of the (unshaded) T (m)
N theories.

SU(N)i SU(N)A SU(N)B SU(N)C (J+,J−)
Q � � � (N−1,0)
Q̃ �̄ �̄ �̄ (N−1,0)

φi (1≤ i≤ m) adj (0,2)
µi (1≤ i≤ m) adj (2,0)

µA adj (2,0)
µB adj (2,0)
µC adj (2,0)

µ
(i)
j (1≤ j ≤ N−1) (2,−2 j)

M(i)
j (1≤ j ≤ N−1) (0,2 j+2)

6.2.2 Gluing procedure

The gluing procedure corresponds to decomposing the geometry into pairs of pants, where

each can be associated with T (m)
N theories, and gauging subgroups of the flavor symmetries

associated to the punctures. We will label the ith block by T (mi)
N , where the mi are in general

different.

Before we do the general case, let us first illustrate the procedure of gluing two T (mi)
N , i =

1,2 theories with either an N = 1 or N = 2 vector multiplet, as in [100]. Label the degrees of

the blocks as

T (mi)
N : (pi,qi) =





(mi +1, −mi) σi =+1

(−mi, mi +1) σi =−1
(6.4)

since pi and qi switch roles for an unshaded versus shaded block. We gauge an SU(N) flavor

symmetry of the two T (mi)
N theories, leading to a superpotential for the moment-map operators of

the gauged block,

W = Trµ+
µ
−. (6.5)

For instance, µ+ could be chosen to derive from µA in Table 6.1 for one block, and µ− to come

from µA for the other block. In order to write a superpotential of this form, when gluing with an

an accidental U(1) symmetry acts on O . One must account for the decoupling of these free operators, e.g. in
computations of a and c [77].
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Figure 6.2: Options for gluing 2 T (mi)
N blocks to form a genus 2 surface. Shaded triangles

correspond to T (mi)
N theories with σi = −1, while unshaded triangles have σi = +1. Shaded

circular nodes correspond to N = 1 vector multiplets, while unshaded circular nodes correspond
to N = 2 vector multiplets.

N = 1 vector the (J+,J−) charge assignment of one of the T (mi)
N blocks must be flipped such that

µ− has J± charges given by (J+,J−) = (0,2). In general, two blocks of the same color/shading

should be glued by an N = 2 vector, while two blocks of differing colors/shadings should be

glued by an N = 1 vector.

The result of this procedure is a four-punctured sphere C0,4, where the total degrees p and

q of the embedding space satisfy p+q = 2g−2+n = 2.

6.2.3 Construction of Cg>1,n=0 and computation of a and c

Here, we glue together (2g−2) copies of the T (mi)
N theories, i = 1, ...,2g−2, yielding a

genus g > 1 surface C
(p,q)
g,0 with no punctures and possibly negative degrees p and q. (The sphere

and torus cases are constructed separately in later sections.) We consider the general case of

`1 (shaded) blocks with σi =−1, and `2 (unshaded) blocks with σi =+1, glued together with

n1 (shaded) N = 1 vector multiplets and n2 N = 2 (unshaded) vector multiplets. Given the

geometries we wish to construct, these parameters satisfy

`1 + `2 = 2(g−1), n1 +n2 = 3(g−1). (6.6)
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Label the degrees of the blocks as in (6.4). Then, the total degrees p and q of the space in which

the genus g surface is embedded are given by

p = ∑
{σi=+1}

mi− ∑
{σi=−1}

mi + `2, p+q = 2g−2. (6.7)

The sum over {σi =+1} runs over the `2 unshaded nodes, while the sum over σi =−1 runs over

the `1 shaded nodes. As an example, the options for forming a genus 2 surface in this manner are

shown in Figure 6.2.

We now compute the central charges a and c for these configurations. For a general 4d

N = 1 SCFT, the central charges a and c are determined by the ’t Hooft anomalies [16],

a =
3
32
(
3TrR3−TrR

)
, c =

1
32
(
9TrR3−5TrR

)
. (6.8)

For quivers made from T (m)
N building blocks, in the absence of accidental symmetries, the N = 1

superconformal R-symmetry R = R(ε) takes the form (see Appendix B.1 for conventions)

R(ε) =
1
2
(1− ε)J++

1
2
(1+ ε)J−. (6.9)

Then, the exact superconformal R-symmetry at an IR fixed point is determined by a-maximization

with respect to ε [24].

The contributions to a and c of the various components of our constructions can be

computed using the ’t Hooft anomalies given in Appendix B.3, substituted into equations (6.8)

and (6.9). The contribution of the i’th T (mi)
N block is given by [100]

a
T (mi)

N
(ε) =

3
64

(N−1)(1− ε)
(
3N2(1+ ε)2−3N(2ε

2 + ε +1)−2(3ε
2 +3ε +2)

)

−mi
3

32
ε
(
3N3(ε2−1)−3ε

2 +2N +1
)

≡ A0(ε)+miA1(ε).

(6.10)

For convenience, we’ve defined A0(ε) as the piece of a
T (mi)

N
(ε) that’s independent of mi, and

A1(ε) as the piece proportional to mi. Our convention is that these formulae as written correspond

to an unshaded (σi =+1) block, while taking ε →−ε (equivalently, swapping J+ and J−) yields

the formulae for a shaded block. The contributions of an N = 2 and N = 1 vector multiplet are
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aN =2(ε) =
3

32
(N2−1)ε(3ε

2−1)+
6

32
(N2−1) (6.11)

aN =1 =
6

32
(N2−1). (6.12)

Here, the convention for aN =2(ε) is that as written we’re gluing two unshaded flavor groups5;

gluing two shaded flavor groups with an N = 2 vector corresponds to taking ε →−ε . Then,

a(ε) for this class of theories is given by a sum over these pieces,

a(ε) =`2A0(ε)+A1(ε) ∑
{σi=+1}

mi + `1A0(−ε)+A1(−ε) ∑
{σi=−1}

mi

+
3
2
(`2− `1)aN =2(ε)+3`1aN =1.

(6.13)

Maximizing with respect to ε yields

ε =
N +N2−

√
z2 +N(1+N)

(
N(1+N)+ z2(4+3N(1+N))

)

3(1+N +N2)z
, (6.14)

where we’ve written the answer in terms of the twist parameter z,

z =
p−q
p+q

, p = (g−1)(1+ z), q = (g−1)(1− z). (6.15)

ε in (6.14) matches the value computed in [89], as expected. The argument of the square root

is always positive for the valid ranges of the parameters, N ≥ 2, g ≥ 2. ε is singular only for

q = p = g−1, and re-maximizing with respect to ε for this special point yields ε = 0.

Substituting ε into (6.13), and performing the similar computation for c, we find

5Our conventions appropriately account for this, e.g. by not including an absolute value in the definition of n2 in
(6.6).
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Figure 6.3: a as a function of the twist z for quivers constructed from 2g−2 glued T (mi)
N blocks,

plotted for g = 11 and various N.

a =
(N−1)(g−1)

48(1+N +N2)z2

[
−N3(1+N)3 +3z3(1+N +N2)(3+N(1+N)(7+3N(1+N)))

+
(
z2 +N(1+N)(N(1+N)+(4+3N(1+N))z2)

)3/2
]
.

(6.16)

c =
(N−1)(g−1)

48(1+N +N2)2z2

[
−N3(1+N)3 + z2(1+N +N2)(6+N(1+N)(17+9N(1+N)))

+(N2(1+N)2 + z2(1+N +N2)(2+3N(1+N))

·
√

z2 +N(1+N)
(
N(1+N)+ z2(4+3N(1+N))

)
.

]

(6.17)
We plot a as a function of z for various values of N in Figure 6.6. These results precisely match

the values of a and c that were computed by BBBW in [89] via integrating the anomaly eight-form

of the M5-brane theory over Cg,0. We emphasize that we’ve found this same result with a field

theoretic construction. It is worth highlighting that it is nontrivial that the dependence on the mi

in (6.13) cancels to yield central charges (6.16) and (6.17) that depend only on the topological

data z and g (and choice of N).
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6.2.4 Operator dimensions and large-N

With ε fixed in (6.14), the dimensions of chiral operators can be determined by ∆(O) =

3
2R(O), using R(ε) defined in (6.2). The dimensions of operators are then given by

∆[µ] = 3
2(1− ε), ∆[φ ] = 3

2(1+ ε)

∆[Q] = 3
4(N−1)(1− ε), ∆[uk] =

3
2(1+ ε)k, k = 3, . . . ,N

∆[M j] =
3
2(1+ ε)(1+ j), j = 1, . . . ,N−1.

(6.18)

Again, we use a convention where taking ε →−ε yields the R-charge of the operator correspond-

ing to a shaded node; e.g. ∆[φ ](ε) corresponds to the adjoint chiral field in the N = 2 vector

multiplet of an unshaded node, while ∆[φ ](−ε) corresponds to the adjoint chiral of a shaded node.

The µ are the various moment map operators of the T (mi)
N blocks, detailed in Table 6.1.

We can construct gauge-invariant operators out of Q and Q̃ that correspond to M2-brane

operators wrapping the surface Cg,0, as described in [89]. Schematically, these are

OM2 =
2g−2

∏
i=1

Qi, ÕM2 =
2g−2

∏
i=1

Q̃i (6.19)

From (6.18), the dimensions of these operators are

∆[OM2] = ∆[ÕM2] =
3
4
(N−1) [(2g−2)+ ε(`1− `2)] (6.20)

for ε given in (6.14), and where 0≤ |`1− `2| ≤ 2g−2. None of these operators decouple.

|ε| in (6.14) ranges from 0 at z = 0, to 1√
3

at large z and N. In particular, the new range

of ε accessible for negative p and q versus the previously studied case of p,q ≥ 0 [89] is the

range 1
3 ≤ |ε| ≤ 1√

3
. In this range of ε , no operators violate the unitarity bound; thus, assuming

no accidental IR symmetries, a and c are given by (6.16) and (6.17). We note that a and c

given in (6.16), (6.17) are always positive and nonimaginary, and always (for g > 1) satisfy the

Hofman-Maldacena bounds for N = 1 SCFTs [23],

1
2
≤ a

c
≤ 3

2
. (6.21)
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At large N, the leading-order term of a = c in (6.16) scales as N3, and is given by

alarge-N =
(1−g)(1−9z2− (1+3z2)3/2)

48z2 N3. (6.22)

This reproduces equation (2.22) in [89].

6.3 Cg=0,n=0 from the Higgsed T (m)
N

6.3.1 Constructing Higgsed T (m)
N theories

In this section, we review the procedure of closing the three maximal punctures of the

T (m)
N theory. The Higgsing procedure we review below was detailed in [100], and also utilized in

[75] (where the |z|= 2 case was first studied) and [101].

First, switch the color of the punctures to be opposite the color of the background T (m)
N

(i.e. flip the colors of the SU(N)A,B,C flavor groups in Figure 6.1 from blue to red), and couple

in three extra chiral fields MA,B,C that transform in the adjoint of the SU(N)A,B,C flavor groups,

respectively. The superpotential contains terms that couple these adjoints to the moment map

operators µA,B,C,

W ⊃ µAMA +µBMB +µCMC. (6.23)

Next, Higgs each of the flavor groups SU(N)A,B,C via a nilpotent vev6

〈MA〉= 〈MB〉= 〈MC〉=




0 1

0 1
. . . . . .

0 1

0




. (6.24)

6In general, one could consider a nilpotent vev corresponding to an SU(2) embedding ρ : SU(2)→ SU(N)
labeled by a partition of N, with the residual flavor symmetry given by the commutant of the embedding—see [112]
for more details. Here, we consider only the principal embedding.
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Figure 6.4: UV quiver for the T (m)
N theory with σi =+1, Higgsing the SU(N) flavor nodes. The

rightmost figure depicts a shorthand we use throughout, for reference.

A vev of this form corresponds to the principle embedding of SU(2) into SU(N), completely break-

ing each SU(N)A,B,C flavor group. The adjoint representation of SU(N) decomposes into a sum

of spin- j irreducible representations of SU(2), such that the components of MA,B,C corresponding

to fluctuations about the vev are labeled by the spin j and the σ3-eigenvalue m =− j, . . . , j (e.g.

see relevant discussion in [112] and [100]). The only components that don’t decouple are those

with m =− j, which we’ll denote as M(A,B,C)
j below. After decoupling operators, the remaining

superpotential is

W ⊃
N−1

∑
j=1

(
M(A)

j µ
(A)
j +M(B)

j µ
(B)
j +M(C)

j µ
(C)
j

)
. (6.25)

The UV quiver is depicted in 6.4.

The Higgsing shifts the R-charges

J+→ J+, J−→ J−− ∑
i=A,B,C

2m(i) (6.26)

for m(i) the weights of the SU(2) representations. The resulting R-charges of operators are given

in Table 6.2. Note that the trifundamental Q’s have decomposed into N3 singlets, with R-charges

shifted due to (6.26).

Geometrically, closing the punctures reduces the degrees of the normal bundle; starting

with p = m+1, q =−m as in (6.1), we flow to a theory with

p = m+1, q =−m−3, m≥ 0

⇒ z =−m−2.
(6.27)

Note that this construction only yields 4d theories with |z| ≥ 2, since starting with a T (m)
N theory

with σ =±1 results in z =∓(m+2) for m≥ 0.
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Table 6.2: Operators in the Higgsed TN theory.

SU(N) (J+,J−)
Q(s)(t)(u), Q̃(s)(t)(u) − (N−1)

2 ≤ {s, t,u} ≤ N−1
2

(
N−1,−2(s+ t +u)

)

φi (i≤ 1≤ m) adj (0,2)
µi (i≤ 1≤ m) adj (2,0)

µ
(A,B,C)
j (1≤ j ≤ N−1) (2,−2 j)

µ
(i)
j (1≤ j ≤ N−1) (2,−2 j)

M(i)
j (1≤ j ≤ N−1) (0,2 j+2)

M(A,B,C)
j (1≤ j ≤ N−1) (0,2 j+2)

6.3.2 Computation of atrial and ctrial

Next, we compute a and c for the Higgsed T (m)
N theories, assuming a flow to an IR fixed

point. The central charges can be computed from the ’t Hooft anomalies for the T (m)
N theory given

in Appendix B.3, adding in the contribution from Higgsing the SU(N)A,B,C symmetries of the

three punctures given in (B.11). The contribution to a from closing a single puncture can be

expressed as

a〈M〉(ε) =
3

64
(
2ε−6ε

3 +3N3(ε−1)(ε +1)2 +N(1+(2−3ε)ε)+N2(2− ε +3ε
3)
)
. (6.28)

With these ingredients, we find that ε is given by

ε =
N +N2 +

√
z2 +N(1+N)(N(1+N)+ z2(4+3N(1+N)))

3(1+N +N2)z
(6.29)

and the central charges a and c are given by
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atrial =
1

48(1+N +N2)2z2

[
(1+N)3− z2(1+N +N2)(9+3N(1+N)(7+3N(1+N)))

·
(
z2 +N(1+N)(N(1+N)+ z2(4+3N(1+N)))

)3/2
]
,

ctrial =
(N−1)

48(1+N +N2)2z2

[
N3(1+N)3 +

(
z2 +N(1+N)(N(1+N)+ z2(4+3N(1+N)))

)3/2

− z2(1+N +N2)

[
6+N(1+N)(17+9N(1+N))

−
√

z2 +N(1+N)(N(1+N)+ z2(4+3N(1+N)))

]]
.

(6.30)
These match the BBBW results, given in (B.4) of Appendix B.2 with κ = 1 and g = 0. However,

as we discuss in the next section, this is not the whole story, and there will be field theory

corrections from operators in the theory hitting the unitarity bound. For this reason, we explicitly

include the label atrial, ctrial .

6.3.3 Comments on ruling out g = 0 SCFTs

For the Higgsed T (m)
N theory, the chiral operators are summarized in Table 6.2. |ε| runs

from 1
3

√
19
7 for N = 2 and large-z, to 1

6(1+
√

13) for z = 2 and large-N. For instance, the singlets

Q, Q̃ have dimension

∆[Q(s)(t)(u)] = ∆[Q̃(s)(t)(u)] =
1
2
((1− ε)(N−1)−2(s+ t +u)(1+ ε)) ,

−N−1
2
≤ s, t,u≤ N−1

2
.

(6.31)

We generically find that some operators decouple, and at finite-N there will be field theory

corrections to the central charges (6.30), and thus corrections to the BBBW results. We will not

discuss these corrections in general, and instead briefly point out some features in the |z|= 2,3

cases.

Our construction does not reach |z| = 0,1. The case of |z| = 2, i.e. m = 0, is studied

field-theoretically in [75], where they find that the central charges violate the Hofman-Maldacena

bounds due to accidental symmetries from the decoupled operators along the flow to the IR SCFT.
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For z = 3, i.e. m = 1, and N > 2, the operator Trµ2 decouples. Q, Q̃ operators with

|s+ t +u| ≥ −21+N(4N(2N−3)−11)+(N−1)
√

9+4N(1+N)(9+7N(1+N))

2(9+10N(1+N)+
√

9+4N(1+N)(9+7N(1+N))
(6.32)

violate the unitarity bound. For instance, for N = 2 and z = 3, the three operators Q(s)(t)(u) with

s+ t +u = 1/2, and one with 3/2 would have R-charges that unitarity. In general, the decoupling

of these operators could lead to violations of the Hofman-Maldacena bounds, but we do not

pursue this direction here7.

6.4 General Cg,n from T (mi)
N Building Blocks

6.4.1 Computing atrial and ctrial for g 6= 1

Now we consider the most general case of constructing a genus g surface with n maximal

punctures from T (mi)
N building blocks, and computing atrial and ctrial . One useful way to arrange

this computation is to glue in chains of T (mi)
N theories to the n = 0 cases we constructed in Section

6.2.3. The result will be a genus g surface where the number of punctures depends on how many

chains we add. Then, we can close arbitrarily many of these punctures via the Higgsing procedure

discussed in Section 6.3.

Let us begin with the class of theories we considered in Section 6.2.3: start with `1

T (mi)
N (σi = −1) blocks, and `2 T (mi)

N (σi = +1) blocks, glued with n1 N = 1 vectors, and n2

N = 2 vectors, where `1 + `2 = 2g−2 and n1 +n2 = 3(g−1).

Next, glue in some number of additional T (mi)
N blocks such that we do not change the

genus of the surface. In particular, introduce `′1 T (mi)
N (σi = −1) blocks and `′2 T (mi)

N (σi = +1)

blocks. This will require that we introduce `′1 + `′2 vectors to glue in these chains, where the

number of additional N = 2 vectors n′2 is given by `′2− `′1. These `′1 + `′2 blocks also introduce

7A discussion of the chiral operators in the ring of these theories on a sphere and their decoupling is given in
[101], as well as some discussion on which geometries do not flow to SCFTs in the IR.
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Figure 6.5: A genus 2, single-puncture example of a possible generalization of the diagrams
in Figure 6.2. In our notation, these all have ntot = 1, ndi f = −1, and `1 + `2 = 2,n1 + n2 =
`′1 + `′2 = n′1 +n′2 = 3,h2 = 2. All three diagrams have the same IR central charges.

`′1 + `′2 punctures to the surface, of various colors. As in Section 6.3, we can close each of these

punctures by flipping their color, coupling in an adjoint chiral field, and letting the adjoint take

a nilpotent expectation value that breaks the SU(N) flavor group of the puncture. In particular,

let us close h1 of the σi = −1 punctures, and h2 of the σi = +1 punctures. This will leave us

with n(−) = `′1− h1 minus punctures, and n(+) = `′2− h2 plus punctures. An example of this

construction applied to a genus 2 surface that results in one plus puncture is given in Figure 6.5.

The total degrees p and q for the surface will be given by

p = ∑
{σi=+1}

mi− ∑
{σi=−1}

mi +(`2 + `′2)−h1,

q =− ∑
{σi=+1}

mi + ∑
{σi=−1}

mi +(`1 + `′1)−h2,

p+q = 2g−2+n(−)+n(+) =−χ.

(6.33)

The sum over {σi =+1} runs over the `2 + `′2 plus nodes, while the sum over {σi =−1} runs

over the `1 + `′1 minus nodes. Below, we write out answers in terms of z = (p−q)/(p+q), the

combinations

ntot ≡ n(−)+n(+), ndi f ≡ n(−)−n(+), (6.34)

and the Euler characteristic of the surface, χ =−2g+2−ntot . Summing the contributions to the

trial central charges, we find a(ε) is given by

a(ε) =− 3
64

(N−1)
[
(1+N)

(
2ntot +ndi f ε(1−3ε

2)
)

+χ
(
2+3(1− ε

2)N(1+N)− zε
(
1+3N(1+N)+3ε

2(1+N +N2)
))]

,

(6.35)
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Figure 6.6: a as a function of the twist z for the g = 2,ntot = 1 theories represented in Figure
6.5, plotted for N = 3,4,5.

and c(ε) is given by

c(ε) =− 1
64

(N−1)
[
−4− (1+N)(9N−5ε +9ndi f ε

3)+ntot (1−N(5+9N))

+χ
(
1−9ε

2N(1+N)+ zε
(
−5+9ε

2−9N(1+N)(1− ε
2)
))]

.

(6.36)

Maximizing with respect to ε , we find that ε is given by

ε =
1

3
(
χz(1+N +N2)−ndi f (1+N)

) ·
[

χN(1+N)+

(
ndi f (1+N)

(
(1+N)(ndi f −4Nzχ)−2χz

)

+χ
2 (N2(1+N)2 + z2(1+N(1+N)(4+3N(1+N)))

))1/2
]
.

(6.37)

For ntot = ndi f =0, these formulae reproduce (6.16) and (6.17); for g = ntot = ndi f = 0 they

reproduce (6.30).

At large-N, ε computed in (6.37) matches the BBBW result listed in (B.6). Then, the

leading order piece of a and c in a large-N expansion is given by

alarge-N =
N3(2g−2+ntot)

(
9z2−1+(1+3z2)3/2

)

96z2 . (6.38)
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This is simply our result (6.22) with (2g− 2)→ (2g− 2+ ntot). Thus at large N, the central

charges depend on the Riemann surface only through the Euler characteristic χ =−2g+2−ntot .

We highlight that these answers depend only on topological data: the total number of

punctures ntot , the difference between the number of plus and minus punctures ndi f , the twist z

defined in terms of the normal line bundle degrees p and q, and the genus g of the surface (or

equivalently, the Euler characteristic). It is satisfying that the computation organized such that the

other parameters dropped out, leaving the (relatively) nice expressions (6.35)-(6.37).

6.4.2 Comments on operators

Deferring a detailed analysis of the chiral operators of this class of theories to the future,

we point out one interesting feature in the chain operators OM2, ÕM2. For illustration, consider

the theories in Figure 6.5. There will be N2 fundamentals (and anti-fundamental) operators of the

form (QQQQQ)
(s)(t)
` , where − (N−1)

2 ≤ s, t ≤ (N−1)
2 label the N2 operators and yield a shift in the

J− charges of these operators as in Table 6.2, and ` runs from 1, . . . ,N is an index for the SU(N)

flavor symmetry of the remaining puncture. If we close the remaining puncture, then there will

be N3 degenerate chain operators that should correspond to M2-branes wrapping the surface.

More generally, for a class of theories constructed from gluing h1 Higgsed shaded flavor

groups and h2 Higgsed unshaded flavor groups such that all the punctures are closed, there will

be gauge-invariant chain operators

O(s1)...(sh1)(t1)...(th2) =
2g−2+h1+h2

∏
i=1

(Qi)
(s1)...(sh1)(t1)...(th2), −(N−1)

2
≤ si, ti ≤

N−1
2

(6.39)

as well as the corresponding operators constructed from the Q̃’s. The R-charges of these operators

will be given by
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R
(
O(s1)...(sh1)(t1)...(th2)

)
=

1
2

((
(N−1)(h2 + `2)−2h1

h1

∑
i=1

si

)
(1− ε)

+

(
(N−1)(2g−2+h1− `1)−2h2

h2

∑
i=1

ti

)
(1+ ε)

)
.

(6.40)

Thus, this field-theoretic analysis suggests a degeneracy of possible M2-brane operators8.

6.4.3 Computing atrial and ctrial for the torus

Up to this point, we’ve considered g 6= 1. The case of M5-branes compactified on the

2-torus is special because the torus admits a flat metric, implying that the maximal amount of

supersymmetry can be preserved by fixing the normal bundle to the M5-brane worldvolume to be

trivial. The singular behavior at g = 1 in the computation of a and c is related to the fact that the

M5-brane tension causes the volume of the torus to shrink. In our constructions, this means that

we should get a 4d N = 4 field theory in the IR when g = 1 and z = 0.

One can formulate a nonsingular construction that preserves only N = 1 supersymmetry

by taking the torus to have line bundles of equal and opposite degrees fibered over it, i.e. taking

p =−q. Letting g = 1 and p =−q in (6.33) means that we should require the total number of

punctures be zero. In the construction detailed in Section 6.4.1, the simplest generalized quiver

that this could correspond to is closing one of the punctures on a T (m)
N block, and then gluing the

other two.

Redoing the computation of Section 6.4.1 for the torus, we find

g = 1 : ε =−1
3

√
1+3N(1+N)

1+N +N2 , (6.41)

and

g = 1 : a =
p(N−1)(1+3N(1+N))3/2

48
√

1+N +N2
. (6.42)

Indeed, (6.42) matches the BBBW result that we’ve written in (B.7), where our definition of p

8This degeneracy of operators was noted independently in [101].
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matches their |z|.

6.5 Future Directions

There are many directions one can think about based on the present work, some of which

we will list below.

First, we note that the authors of [101] study the chiral rings of these theories (much as

[113] and [114] studied the chiral rings of the TN theory in detail). It would be further interesting

to study the moduli space of vacua of the 4d N = 1 SCFTs realized by our constructions.

In the present work we don’t discuss possible confinement of the gauge theories that result

from the gluing procedure. However, as shown in [100], when two T (m)
N blocks with the same

m and opposite shading are glued with an N = 1 vector multiplet, the gauge node confines. It

would be interesting to study the structure of confinement for our general constructions, as well

as to understand how various duality maps of T (m)
N theories (discussed in [100], and [101]) act on

our constructions.

It would be interesting to obtain a field-theoretic construction of the N = 2, g = n = 0

theories with |z|= 0,1. While these theories do not have a conformal phase, it could be useful to

study the IR dynamics from the field theory side9.

Also, it is shown in [110] that the BBBW solutions with rational central charges allow

probe M5-branes to break into multiple M5-branes at special points; in particular, when a and c

at large-N (given in (6.22)) are rational. It would be interesting to understand field-theoretically

what happens at these special points in our constructions.

9The author is grateful to Ibrahima Bah for pointing out this possibility.
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Chapter 7

Structure of Anomalies of 4d SCFTs from

M5-branes, and Anomaly Inflow

We study the ’t Hooft anomalies of four-dimensional superconformal field theories that

arise from M5-branes wrapped on a punctured Riemann surface. In general there are two

independent contributions to the anomalies. There is a bulk term obtained by integrating the

anomaly polynomial of the world-volume theory on the M5-branes over the Riemann surface; this

contribution knows about the punctures only through its dependence on the Euler characteristic

of the surface. The second set of contributions comes from local data at the punctures; these

terms are independent from the bulk data of the surface. Using anomaly inflow in M-theory,

we describe the general structure of the anomalies for cases when the four-dimensional theories

preserve N = 2 supersymmetry. In particular, we show how to account for the local data from

the punctures. We additionally discuss the anomalies corresponding to (p,q) punctures in N = 1

theories.
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7.1 Introduction

’t Hooft anomalies provide a robust measure of the degrees of freedom in quantum field

theories. In general, the anomalies for a given theory in even spacetime dimensions d can be

encoded in a (d + 2)-form polynomial known as the anomaly polynomial, which depends on

the various curvature forms associated to the dynamical or background gauge and gravity fields.

If the gauge or gravity field is dynamical, its anomalies should vanish or else the theory is

inconsistent. Otherwise, the anomaly doesn’t lead to an inconsistency, but often has interesting

physical consequences. We refer to anomalies in background gauge or gravity fields as ’t Hooft

anomalies. For a review, see [115, 10].

In the last ten years, there has been a proliferation of new classes of four-dimensional

Superconformal Field Theories (SCFT’s), dubbed class S , that are inherently strongly coupled

and admit no known Lagrangian description. These theories can emerge from the low energy

limit of six-dimensional N = (2,0) SCFT’s wrapped on a punctured Riemann surface, which in

certain cases describe the low energy dynamics of M5-branes. These constructions have been

revolutionary in that they provide a partial classification scheme for four-dimensional N = 2

SCFT’s, and bring to bear new geometric tools for studying them [82, 83, 84]. Soon after their

introduction, it was demonstrated that these constructions can be generalized to study the space

of four-dimensional N = 1 SCFT’s [85, 86, 87, 88, 89, 78].

The basic set-up of class S theories was reviewed in Chapter 5. An important ingredient

in the construction is a partial topological twist [90, 91], which is needed to preserve some

supercharges in the compactification of the six-dimensional theory. Depending on the choice of

twist, various amount of supersymmetry can be preserved in four dimensions.

Anomalies are particularly important observables for the theories of class S , as they

provide a measure of various degrees of freedom in these inherently strongly coupled field

theories. The anomalies for N = 2 class S theories can be obtained, in some cases, by using
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S-duality [82, 83, 95] and anomaly matching on the moduli space [103, 116]. In the special case

of N = 1 theories we can use Seiberg duality as well as anomaly matching on the moduli space

to obtain them [111, 117, 112].

In the cases where they are known, the anomaly polynomials of class S theories have two

contributions which are independent and must be stated separately. The first is the contribution

from the bulk Riemann surface, which we denote I6(Σg,n). This depends only on the genus g and

number of punctures n through the Euler characteristic 2g−2+n, and on the anomaly polynomial

of the UV six-dimensional theory. The second set of contributions come from new degrees of

freedom localized at the punctures; these are related to the consistent boundary conditions for the

six-dimensional theory at these locations. A contribution of a puncture to the anomalies of the

four-dimensional theory is denoted as I6(P). The total six-form anomaly polynomial IS
6 for the

class S theory takes the form

IS
6 = I6(Σg,n)+

n

∑
i=1

I6(Pi). (7.1)

Since the theories of class S are defined by the compactification of a six-dimensional

theory, there should exist a prescription for directly computing their anomaly polynomials from

the geometric construction. Indeed, in the case of theories obtained by compactifying on a smooth

Riemann surface without punctures, integrating the anomaly polynomial I8 of the six-dimensional

theory over the surface can yield the polynomial of the four-dimensional theory [118, 89]1, i.e.

IS
6 =

∫

Σg

I8. (7.2)

This prescription requires shifting the curvature of the background R-symmetry gauge field with

the curvature form of the Riemann surface, implementing the topological twist. The integration

of the eight-form polynomial over the surface picks out the terms that are linear in the surface’s

curvature form, and therefore proportional to its volume form.

In the presence of punctures this prescription fails; we cannot obtain the full anomaly

1This procedure fails when there are accidental symmetries. This problem is most commonly encountered when
compactifying on a Riemann surface with vanishing Euler characteristic—see for example [119].
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polynomial of class S theories by simply shifting the background curvature and integrating.

There can be additional terms in the anomaly polynomial of the six-dimensional theory, and

the integration over the Riemann surface cannot account for the additional data localized at the

punctures.

Our primary goal in this chapter is to develop new tools for computing the anomaly

polynomial from first principles—i.e. from the six-dimensional theory, the compactification

scheme, and from the punctured Riemann surface. We will argue that this general form (7.1)

follows from anomaly inflow in M-theory on the M5-branes wrapping the punctured Riemann

surface.

Our strategy is motivated by the holographic duals of class S theories from punctured

Riemann surfaces [83, 94] (see [110] for probe analysis). In the gravity duals, the topological

twists are manifested by non-trivial S1-bundles over the Riemann surface. The connections on

these bundles are related to the shifts of the background R-symmetry in the twist, and their

curvatures F are proportional to the volume form of the Riemann surface. In the presence of a

puncture, F picks up monopole sources that encode the new degrees of freedom associated to the

puncture. These monopoles are end points of additional M5-branes localized at the puncture and

extended along a direction normal to the surface. This gives a strong hint that in computing IS
6 ,

we need to enrich the shifting prescription of the background gauge field of the R-symmetry to

account for these sources. Moreover, in integrating the eight-form anomaly polynomial, there

is an additional interval that is normal to the branes along which the monopole sources sit. We

indeed recover all of these features in the anomaly inflow analysis.

We can summarize our main result from the inflow analysis for the case of N = 2 SCFTs

as follows. For simplicity, in this discussion we will restrict to the case of N M5-branes wrapping

a single-punctured surface Σg,1. If there are n punctures, we repeat the same step procedure for

each of them.

• Given Σg,1, add an interval [µ] with coordinate µ in the range [0,1] to obtain the space
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[µ]×Σg,1.

• Along [µ] we add monopole sources for F localized at the puncture on the surface, and

at µ = µa (the a labels the different sources). In the region near the monopole, there is

a U(1)a symmetry induced on the brane that ends on it. These U(1)a’s are related to the

local data at the puncture. The curvatures for the background gauge fields for these U(1)a’s,

which we denote Fa, can and do appear in the anomaly polynomial.

• The general solution for the curvature in the presence of the sources, F̃ , is constructed. It

has a term proportional to the volume form of the Riemann surface, new terms that are

proportional to the volume forms of spheres S2
a surrounding the a’th monopole in the space

[µ]×Σg,1, and terms that are proportional to the Fa’s.

• We argue that IS
6 can be obtained by integrating a nine-form, I9, on the space [µ]×Σg,1.

The form is given schematically as

I9 = d
[
µ

3I8(F̃)+N3Ip
8

]
, (7.3)

where I8(F̃) is the anomaly eight-form of the world-volume theory on the flat M5-branes

with the R-symmetry curvature form shifted by F̃ . The form Ip
8 depends on the local

puncture data. Its dependence on the curvature forms is fixed up to some coefficients that

we will study and determine in [120].

• The integral of I9 over [µ]×Σg,1 is a sum of boundary terms. The one at µ = 1 reproduces

exactly the bulk term, I6(Σg,1) in (7.1)—the form Ip
8 does not contribute here. There are

also terms that come from the internal boundaries, S2
a, which depend only on the charge

of the monopole and on the µa. These terms account for the puncture data. The µa and

monopole charges must be quantized; we study them and their quantization conditions

further in [120].

The structure of the rest of this chapter is as follows. In Section 7.2, we describe general
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features of the anomalies of of four-dimensional field theories preserving N = 2 or N = 1

supersymmetry from M5-branes wrapped on Riemann surfaces. Readers familiar with the class

S construction and anomalies can skip to Section 7.3.

In Section 7.3 we take a field-theory detour. Focusing on the case where the four-

dimensional field theory preserves N = 1 supersymmetry, we derive the anomalies corresponding

to a large class of locally N = 2 preserving punctures in geometries in which the bulk preserves

N = 1. We additionally discuss an illuminating way of parameterizing the anomaly coefficients

we obtain in terms of an N = 1 generalization of an effective number of vector multiplets and

hypermultiplets. This section and the inflow computation that follows may be read independently

of one another.

In the remainder of the chapter, we turn to a computation of the class S anomalies by

anomaly inflow in 11d supergravity in the presence of M5-branes, focusing on the case where the

four-dimensional theory preserves N = 2. We begin with a review of inflow for flat M5-branes

in Section 7.4 (originally discussed in [121, 122, 123]). In Section 7.5 we compute the anomaly

eight-form of the M5-branes in the curved background, which we argue contains boundary terms

when the Riemann surface has punctures. Integrating the eight-form over the surface, we are able

to derive directly from first principles the structure of the class S anomalies laid out in (7.1).

The local puncture contributions to the anomalies of the four-dimensional theories come from the

new boundary terms in the integration.

7.2 Structure of Class S Anomalies

This section serves as an extended introduction to the four-dimensional theories obtained

by compactifying the six-dimensional (2,0) theories on a Riemann surface, setting notation and

focusing attention on the main points of interest in the rest of the chapter. The experienced reader

can skip to Section 7.3.
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7.2.1 Anomalies of the (2,0) theories

The six-dimensional N = (2,0) theories are labeled by an ADE Lie algebra: AN−1 =

su(N),DN = so(2N), or e6,7,8. The six-dimensional (2,0) superconformal algebra is osp(4|8). Its

bosonic subgroup is SO(2,6)×SO(5)R, corresponding respectively to the conformal group and

R-symmetry group. These theories arise from decoupling limits of string theory constructions

[124, 125, 126].

The focus of the present work is the anomalies of the four-dimensional class S theories,

which can be understood by tracking the anomaly polynomial of their parent six-dimensional

theories in the compactification on the surface. The six-dimensional (2,0) theories cannot be

written down in terms of the usual path integral of local fields, which makes understanding their

properties a challenge. However, as anomalies are inherently topological quantities, they are

accessible even for these mysterious theories.

The interacting AN−1 theory is the effective world-volume theory of N coincident M5-

branes, and the DN-type theories are realized on the world-volume of N coincident M5-branes at

an R5/Z2 orbifold fixed point. In these cases, the derivation of six-dimensional (2,0) anomalies

can be understood in terms of inflow for M5-branes in 11d supergravity. As the M5-brane world-

volume is six-dimensional, the anomalies will involve eight-dimensional characteristic classes,

packaged in an eight-form anomaly polynomial which encodes anomalous diffeomorphisms of

the world-volume of the M5-branes and their normal bundle. The idea of the inflow analysis is

that in the presence of the M5-branes, the total anomaly from zero modes on the world-volume

and inflow from the bulk should vanish in order for the theory to be consistent. Using these

methods (which we review in Section 7.4), the anomaly eight-form for a single M5-brane is

derived as [123, 121]

I8[1] =
1

48

[
p2(NW )− p2(TW )+

1
4
(p1(TW )− p1(NW ))2

]
. (7.4)

NW and TW are the normal bundle and tangent bundle to the M5-brane world-volume W ,
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Table 7.1: Rank, dimension, and Coxeter numbers for the simply-laced Lie groups. Note the
useful group theory identity dG = rG(hG +1).

G rG dG hG
AN−1 N−1 N2−1 N
DN N N(2N−1) 2N−2
E6 6 78 12
E7 7 133 18
E8 8 248 30

respectively, and pk are the Pontryagin classes, reviewed in Appendix C.1. (7.4) is also the

anomaly polynomial for a single, free (2,0) tensor multiplet. The tensor multiplet is the only

(2,0) superconformal multiplet that describes free fields, containing a self-dual three-form, as

well as Weyl fermions in the spinor representation of SO(5)R, and real scalars in the fundamental

of SO(5)R.

For a general six-dimensional (2,0) theory of type g = ADE, the eight-form anomaly

polynomial takes the form

I8[g] = rGI8[1]+
dGhG

24
p2(NW ). (7.5)

The values of rG,dG,hG for the ADE groups are listed for reference in Table 7.1. Here, the normal

bundle NW can be thought of as an SO(5) bundle coupled to the six-dimensional R-symmetry.

This result was obtained for AN−1 in [122] via inflow with multiple M5-branes, and

conjectured for all g= ADE in [127] using purely field-theoretic reasoning. It was verified for

DN in [128] with an inflow analysis, and verified for all g=ADE in [129] via anomaly matching

on the tensor branch. An exact calculation of the a-anomaly for (2,0) theories via a similar

field-theoretic derivation was given in [130]. The famous N3 scaling at large N was first noticed

in the context of black hole calculations of the thermal free energy [131], and was computed for

the central charges via AdS/CFT [132].
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7.2.2 Structure of class S anomalies

As we emphasized in the introduction, the anomalies of class S have two contributions

which are independent and must be stated separately:

IS
6 = I6(Σg,n)+

n

∑
i=1

I6(Pi). (7.6)

Here, we’ll give a more complete discussion of this point.

The bulk piece I6(Σg,n) is always obtained by integrating the eight-form anomaly polyno-

mial (7.5) over the Riemann surface with a given Euler characteristic χ =−2g+2−n, and with

the appropriate topological twist (5.3), as in (7.2) [89, 88, 118]. This piece will be proportional

to χ , since the terms in I8[g] that survive the integral are linear in the curvature two-form on the

Riemann surface.

The second class of terms are due to the punctures. Deriving these contributions from a

six-dimensional perspective is more subtle. These pieces depend on local data which add degrees

of freedom to the theory, leading to global symmetries. In this note we’ll be interested in the

anomalies of a class of punctures dubbed regular punctures, which we review below. For more

details on the anomalies of regular punctures, see Appendix C.2.

A regular puncture is labeled by an embedding ρ : su(2)→ g. For g= AN−1, the choice

of embedding is 1-to-1 with a partition of N, and is therefore labeled by a Young diagram Y .

For a Young diagram with ni columns of height hi, the field theory will have an unbroken flavor

symmetry G associated to the puncture. G corresponds to the commutant of the embedding ρ ,

given as

G = S

[
∏

i
U(ni)

]
. (7.7)

The case of the maximal flavor symmetry G = SU(N) is known as a maximal (or full) puncture,

and the case of the minimal flavor symmetry G = U(1) is known as a minimal (or simple)

puncture.

The form of I6(Pi) can be derived from string dualities utilizing the generalized quiver
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descriptions of the four-dimensional theories [103]. One can derive the contributions to the

anomaly polynomial from non-maximal punctures by Higgsing the associated flavor symmetry

and keeping track of the multiplets which decouple [116]. In Section 7.5, we will show that the

form of the I6(Pi) follows directly from inflow of M5-branes in the presence of punctures on the

Riemann surface, and demonstrate that in fact the puncture anomalies can also be derived directly

by integrating I8[g], in a way that we will make precise.

The additive structure of the anomalies (7.6) is motivated by the TQFT structure of the

class S theories. Both the N = 1 and N = 2 class S SCFTs admit a formulation in the

language of a 2d topological quantum field theory [133, 134, 135, 136, 78]. The superconformal

index is then computed as an n-point correlation function of the TQFT living on the n-punctured

Riemann surface, with punctures corresponding to operator insertions. Thus, the theories are

organized topologically by specifying bulk information and local puncture information.

One should note, however, that even though the anomaly polynomial has a simple ad-

ditive structure, quantities of interest such as the central charges are still nontrivial and don’t

follow immediately from topological arguments. For instance, in the N = 1 case there is an

additional U(1) flavor symmetry that mixes with the U(1)R symmetry. Given an R-symmetry,

the anomaly polynomial encodes all the mixed anomalies with the global symmetries. However,

a-maximization is required to specify the exact superconformal R-symmetry.

Anomalies for N = 2 SCFTs

Here, we review the anomalies for the four-dimensional N = 2 SCFTs which we will

match onto in an inflow computation in Section 7.5.

The anomaly polynomial of a four-dimensional N = 2 superconformal theory with a

flavor symmetry G and SU(2)R×U(1)R symmetry has the form2

2More generally, the term kGc1(F1)c2(FG) should be written in terms of the instanton number n(FG), normalized
such that for SU(N) n(FSU(N)) = c2(FSU(N))—e.g. see [116].
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I6 =(nv−nh)

(
c1(F1)

3

3
− c1(F1)p1(T 4)

12

)
−nvc1(F1)c2(F2)+ kGc1(F1)c2(FG). (7.8)

This expression follows from the definition of the anomaly polynomial for four-dimensional Weyl

fermions, as reviewed in Appendix C.1, and the N = 2 superconformal algebra [17]. In (7.8), F1

(F2) is the field strength for the background gauge field of the U(1)R (SU(2)R) bundle, and FG is

the field strength of the flavor symmetry bundle. The flavor central charge kG is defined in the

Introduction. More generally, additional flavor symmetries would contribute additional terms in

(7.8).

The parameters nv and nh are related to the central charges of the SCFT as a= 1
24(5nv+nh),

and c = 1
12(2nv +nh). If the theory is free, then nv and nh denote the number of vector multiplets

and hypermultiplets respectively; otherwise, we regard nv and nh as an effective number of

vector and hypermultiplets. Even for interacting field theories, this notation serves as a useful

bookkeeping device.

The R-symmetry of the N = 2 theories is identified as SU(2)+×U(1)− when p1 = 0,

and as U(1)+×SU(2)− when p2 is zero. Denoting the generators of the U(1)± as J± and the

SU(2)R×U(1)R generators by Ia and RN =2 respectively, this corresponds to the identification

p1 = 0 : J+ = 2I3, J− = RN =2

p2 = 0 : J+ = RN =2, J− = 2I3.
(7.9)

As summarized in (7.6), the theories of class S have two contributions to their anomalies:

contributions from the bulk, and local contributions from the punctures. For the N = 2 theories,

as suggested by [83] it is convenient to write these in terms of an effective number of vector and

hypermultiplets (nv,nh) as

nv = nv(Σg,n)+
n

∑
i=1

nv(Pi), nh = nh(Σg,n)+
n

∑
i=1

nh(Pi). (7.10)

These terms were computed explicitly in [83, 95], with the help of a result in [137]. The bulk

140



terms are given by3

nv(Σg,n) =−
χ

2

(
rG +

4
3

dGhG

)
, nh(Σg,n) =−

χ

2

(
4
3

dGhG

)
. (7.11)

The puncture contributions nv,h(Pi) for the AN−1 case are reviewed in Appendix C.2. As explained

there, these terms depend on the details of the Young diagrams corresponding to the punctures.

Together, the bulk contribution (7.11), and the puncture contributions (C.16) and (C.17)

determine the full anomaly polynomial of the four-dimensional N = 2 class S SCFTs. Plugging

into (7.8), this gives

I6(Σg,n) =−
χ

2

[((
c+1
)3

3
− c+1 p1(T 4)

12

)
rG− c+1 c−2

(
rG +

4
3

dGhG

)]
, (7.12)

I6(Pi) = (nv(Pi)−nh(Pi))

(
(c+1 )

3

3
− c+1 p1(T 4)

12

)
−nv(Pi)c+1 c−2 + kGic

+
1 c2(FGi). (7.13)

Here, we’ve chosen p2 = 0 as our N = 2 limit, with c+1 ≡ c1(U(1)+) and c−2 ≡ c2(SU(2)−).

The terms proportional to (c+1 )
3 and c+1 c−2 are ’t Hooft anomalies for the background R-symmetry.

The c+1 p1(T 4) pieces encode the mixed gauge-gravity anomalies. The last piece in I6(Pi) couples

the global symmetry Gi preserved by the puncture with the U(1)R symmetry, and will have a

separate term for each factor in the puncture flavor symmetry (7.7). The anomaly coefficients

TrRN =2 = TrR3
N =2 and TrRN =2I2

3 are readily determined from (7.13) using (2.33) and (2.35).

General structure of N = 1 class S anomalies

The N = 1 theories of class S preserve a U(1)+×U(1)− global symmetry which derives

from the N = (2,0) SO(5)R symmetry as in (5.1). A combination of the U(1)± generators J±

corresponds to a flavor symmetry F , and we can pick an R-symmetry R0, given as

R0 =
1
2
(J++ J−), F =

1
2
(J+− J−). (7.14)

The exact superconformal R-symmetry RN =1 is

3Note that in much of the literature, the term proportional to the n in χ =−(2g−2+n) is instead grouped with
the puncture contribution to the anomalies. The grouping we use here emphasizes the fact that the whole term
proportional to χ comes from global considerations. E.g. regardless of the types of punctures, this term only depends
on their total number.
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RN =1(ε) = R0 + εF =
1
2
(J++ J−)−

1
2

ε(J+− J−), (7.15)

where ε is determined by a-maximization [24]. When p1 = 0, ε is fixed to be 1
3 , and the generators

J± are identified as in (7.9). In this case, we identify an N = 1 subalgebra in N = 2 as

RN =1 =
1
3

RN =2 +
4
3

I3 =
1
3

J++
2
3

J−, (7.16)

and U(1)− is enhanced to SU(2)−. Similarly, when p2 = 0, ε =−1
3 and U(1)+ is enhanced to

SU(2)+.

The ’t Hooft anomalies for the four-dimensional class S theories are encoded in a six-

form anomaly polynomial. It follows from [16] and the definition of the anomaly polynomial

discussed in Appendix C.1 that the anomaly polynomial for a four-dimensional theory with a

U(1)+×U(1)− global symmetry takes the form

IS
6 =

1
6

Tr
[
J+c+1 + J−c−1

]3− 1
24

Tr
[
J+c+1 + J−c−1

]
p1(T 4). (7.17)

Here, c±1 ≡ c1(U(1)±) are the first Chern classes of the U(1)± bundles. There could be additional

flavor symmetries, which will mix with the R-symmetry and give additional terms in (7.17).

As discussed in Section 7.2.2, the anomaly polynomials for the N = 1 class S theories

will decompose into background contributions from the bulk which can be computed directly by

integrating I8[g] for the six-dimensional theory over the Riemann surface, and local contributions

from the punctures. The bulk contribution to IS
6 is

I6(Σg,n) =−
χ(1+ z)

2

{((
c+1
)3

6
− c+1 p1(T 4)

24

)
rG−

c+1
(
c−1
)2

2

(
rG +

4
3

dGhG

)}

−χ(1− z)
2

{((
c−1
)3

6
− c−1 p1(T 4)

24

)
rG−

c−1
(
c+1
)2

2

(
rG +

4
3

dGhG

)}
.

(7.18)

We’ve written the answer in terms of the twist parameter z, defined

z =
p1− p2

p1 + p2
, p1 + p2 = 2g−2+n =−χ(Σg,n). (7.19)

This result for the bulk anomalies follows from the analysis in [89]. In the next section, we’ll give

a discussion of the contributions of punctures to the anomalies of the N = 1 class S theories.
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7.3 Anomalies of (p,q) Punctures in Class S

In this section, we study the anomalies of a large class of allowed punctures in the N = 1

class S SCFTs which carry a (p,q) We present new results for the anomalies of (p,q) punctures.

This section can be read independently of sections 7.4 and 7.5.

7.3.1 Anomalies of (p,q) punctures

When the bulk preserves N = 1, there are punctures that can locally preserve N = 2

supersymmetry. In this case the local degrees of freedom preserve N = 2 supersymmetry,

and therefore there is a local N = 2 R-symmetry action. This action is identified with the

background J± symmetries in a nontrivial way, with different choices labeled by (p,q). For a

given background with fixed J±, there is an infinite family of inequivalent (p,q)-labeled punctures.

The existence of these (p,q) punctures has been demonstrated in the gravity duals [94], with the

(p,q) restricted to co-prime integers, but as of yet they have not been understood in general from

a field theory perspective.

We identify the generators of the SU(2)R×U(1)R symmetry locally near a (p,q) puncture

as

RN =2 =
p

p−q
J+−

q
p−q

J−, 2I3 =
q

q− p
J+−

p
q− p

J−. (7.20)

Once RN =2 is fixed as a general linear combination of J±, we can fix I3 by identifying the flavor

symmetry (RN =2− 2I3) with the combination (J+− J−). Then, we can refine the statement

of Chapter 5 of what local data is required to specify a N = 1 theory of class S . When the

Riemann surface has punctures that locally preserve N = 2, one must specify:

• A choice of embedding ρ : su(2)→ g =ADE, determining the flavor symmetry at the

puncture, and

• A choice of (p,q), determining the R-symmetry locally at the puncture as (7.20).
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The (p,q) punctures are a generalization of the notion of “colored” punctures that appear

in field theory, e.g. in [117, 111, 112, 138]. Punctures in theories in which the bulk spacetime

preserves N = 1 supersymmetry have an additional Z2-valued label σ =±1 called the “color”,

which corresponds to the fact that we can choose one of the two normal directions to the M5-

branes at the location of the puncture. In the gravity dual, the puncture corresponds to D4 branes

ending on D6 branes, and the choice of σ corresponds to the choice of a plane transverse to the

D4’s along which the D6’s are extended. In the more general framework of (p,q) punctures,

these choices correspond to

σ =+1 ↔ (p,q) = (p,0)

σ =−1 ↔ (p,q) = (0,q).
(7.21)

For σ = +1 the geometry locally preserves a U(1)+× SU(2)− bundle, while for σ = −1 a

U(1)−×SU(2)+ bundle is preserved. The overall normalization in (7.20) was fixed by matching

onto these two limiting cases.

For general (p,q) punctures, the anomaly coefficients can be computed with the local

twist (7.20). We’ll express the answer for the anomaly coefficients in terms of a local twist

parameter ẑ, defined analogously to (7.19) as

ẑ =
p−q
p+q

. (7.22)

When q = 0, ẑ = 1, and when p = 0, ẑ = −1, such that ẑ reduces to the σ = ±1 label in these

limits. The result is that a puncture corresponding to a flavor symmetry G with a (p,q) twist

yields the following contribution to the anomaly polynomial of the four-dimensional theory:

I6(Pi, ẑ) = (1+ ẑ)
[

a(1)+

(
c+1
)3−a(2)+ c+1 p1(T 4)−a(3)+ c+1

(
c−1
)2

+
kG

3
c+1 c2(FG)

]

+(1− ẑ)
[

a(1)−
(
c−1
)3−a(2)− c−1 p1(T 4)−a(3)− c−1

(
c+1
)2

+
kG

3
c−1 c2(FG)

]
.

(7.23)

The coefficients a(i)+ are given by
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a(1)+ =− 1
24
(
nh(Pi)(1+ ẑ)2 +2nv(Pi)(1−4ẑ+ ẑ2)

)

a(2)+ =− 1
24

(nv(Pi)−nh(Pi)), a(3)+ =
1
8
(
nh(Pi)(1− ẑ)2 +2nv(Pi)(1+ ẑ2)

)
,

(7.24)

and a(i)− (ẑ) = a(i)+ (−ẑ). The effective number of vector multiplets nv(Pi) and hypermultiplets

nh(Pi) in the AN−1 case are given in (C.16) and (C.17). The flavor central charge terms are as

given in (7.23) for our current definition of (p,q) punctures, but one can imagine a case where the

c2(FG) also splits. The rules for this splitting are not clear, and will not be further discussed here.

I6(Pi, ẑ) reduces to the answer already known for punctures with ẑ =±1. For example,

the contribution of a maximal puncture with ẑ =−1 in the AN−1 case reduces to

I6(Pmax,1) =−
(N2−1)

2

((
c+1
)3

3
− c+1 p1(T 4)

12
− c+1

(
c−1
)2

)
+2Nc+1 c2(FSU(N)), (7.25)

which matches nv(Pmax) =−dG/2 and nh(Pmax) = 0.

7.3.2 Effective nv,nh for N = 1 theories

It was conjectured in [112] that even when the bulk doesn’t preserve N = 2 supersymme-

try, an N = 1 analogue of nv and nh can be defined. In this section, we check this proposal for

N = 1 class S theories with general (p,q) punctures. To do so, we’ll use the convenient basis of

(R0,F ) defined in (7.14) for the four-dimensional global symmetries. When the N = 1 theory

is derived from an N = 2 theory, R0 and F are related to the N = 2 R-symmetry generators as

R0 = RN =2/2+ I3, F =−RN =2/2+ I3. It will be further useful to express results in terms of

the twist parameters z and ẑ, as defined in (7.19) and (7.22).

The proposal of [112] is that the anomaly coefficients for the N = 1 class S theories

can be written in the form

TrR0 = nv−nh, TrR3
0 = nv−

nh

4
,

TrF =−(n̂v− n̂h), TrF 3 =−n̂v +
n̂h

4
,

TrR0F
2 =−nh

4
, TrR2

0F =
n̂h

4
.

(7.26)
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These parameters are defined such that when it is possible to identify the N = 1 subalgebra

as part of an N = 2 algebra, nv and nh are precisely the effective number of free vector and

hypermultiplets of the N = 2 theory. The n̂v and n̂h parameters are defined analogously for the

anomalies involving an odd power of the flavor symmetry F , and should be loosely interpreted

as the N = 1 version of an effective number vector and hypermultiplets.

We find that (7.26) is true only for ẑ =±1 punctures, and requires some modification for

more general (p,q) punctures. Writing the anomalies in terms of (nv, n̂v,nh, n̂h), we find that the

N = 1 class S anomaly coefficients take the form

TrR0 = nv−nh, TrF =−(n̂v− n̂h) ,

TrR3
0 =−

nh

4
+nv +

3
2 ∑

i
δ−(Pi), TrF3 =

n̂h

4
− n̂v +

1
2 ∑

i
ẑiδ+(Pi),

TrR0F2 =−nh

4
, TrFR2

0 =
n̂h

4
.

(7.27)

Relative to the N = 2 class S theories, the nv and nh parameters have additional local terms.

They break into separate bulk and local contributions as

nv,h = nv,h(Σg,n)+
n

∑
i=1

[
nv,h(Pi)+δ−(Pi)

]
, (7.28)

n̂v,h =−znv,h(Σg,n)−
n

∑
i=1

ẑi
[
nv,h(Pi)+δ+(Pi)

]
. (7.29)

The bulk pieces nv,h(Σg,n) are the same as in the N = 2 case, which we repeat here for clarity:

nv(Σg,n) =−
χ

2

(
rG +

4
3

dGhG

)
, nh(Σg,n) =−

χ

2

(
4
3

dGhG

)
. (7.30)

The local pieces nv,h(Pi) are reviewed in Appendix C.2 for the AN−1 case, and depend on the data

of the Young diagram associated to the flavor symmetry at the puncture. In effect, the parameters

n̂v,h special to the N = 1 theories are a twisted version of the N = 2 parameters.

The deviation from the conjecture (7.26) lies in the δ±(Pi) terms, which written in terms

of the (p,q) parameters are given as

δ±(Pi)≡
2pq

(p+q)2 (nh(Pi)±2nv(Pi)) . (7.31)

When either p or q is zero, (7.27) matches onto (7.26), and we recover the known answer for
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the effective (nv,nh, n̂v, n̂h). Otherwise, these represent new contributions to the anomalies. For

nonzero p and q, they contribute extra effective vector multiplets and hypermultiplets to the theory

that depend on local puncture data, due to their appearance in (7.28) and (7.29). Additionally,

they contribute new terms to the cubic anomalies, such that (7.27) deviates from (7.26). This

result can be stated as the fact that we require more than four parameters to label the anomalies of

theories with (p,q) punctures.

Discussion

For the moment, let’s get some intuition as to the meaning of the (nv,nh, n̂v, n̂h) parameters

for the cases where δ±(Pi) = 0. Consider two class S theories that each have an SU(N) flavor

symmetry. By gauging a diagonal subgroup of the SU(N)× SU(N) symmetries with either

an N = 1 or N = 2 vector multiplet, we glue the two punctures associated with the flavor

symmetries. Then, we can isolate the contribution of the N = 1 or N = 2 vector multiplet to

the anomalies as [112]

N = 1 vector : nv = N2−1, nh = 0, n̂v = 0, n̂h = 0

N = 2 vector : nv = N2−1, nh = 0, n̂v = N2−1, n̂h = 0.
(7.32)

These precisely correspond to subtracting the contributions of two maximal punctures of different

colors (for N = 1 gluing) or of the same color (for N = 2 gluing).

Another simple example is to consider the AN−1 (2,0) theory compactified on a sphere

with two maximal punctures and one minimal puncture. This is the TN theory with one puncture

partially closed, and corresponds to the theory of N2 free hypermultiplets H i = (Qi, Q̃i), i =

1, . . . ,N in the bifundamental representation of the SU(N)×SU(N) flavor symmetry. For instance,

with N = 2 the theory is Lagrangian, and one can explicitly check that the matter content is

four N = 2 hypermultiplets, or eight N = 1 chiral multiplets. The contribution of these

hypermultiplets to the anomaly is

(N, N̄) hypermultiplets : nv = 0, nh = N2, n̂v = 0, n̂h = N2, (7.33)
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as expected. In both of these cases, the n̂v,h parameters have a natural interpretation in terms of

splitting the N = 2 multiplets into N = 1 components.

As a final example, consider the case when the Riemann surface has n(+) maximal

punctures with ẑ = 1, and n(−) maximal punctures with ẑ = −1. Denote the total number of

punctures as ntot = n(+)+ n(−), and let ndi f = n(−)− n(+). Then, (nv, n̂v,nh, n̂h) reduce to the

known results (see e.g. [102])

nv =−
χ

2
(rG +

4
3

dGhG)−
dG

2
ntot , nh =−

2χ

3
dGhG,

n̂v =
zχ

2
(rG +

4
3

dGhG)−
dG

2
ndi f , n̂h =

2zχ

3
dGhG.

(7.34)

In all of these cases, there is an interpretation of the (nv,nh, n̂v, n̂h) parameters in the

generalized quiver description of the N = 1 theory. The generalized quiver description is also

useful in understanding colored punctures with non-maximal flavor symmetry by Higgsing an

operator in the adjoint of the flavor symmetry group with a nilpotent vev, as discussed in the

context of N = 2 theories in [139], and in the context of N = 1 class S theories in [112].

For general (p,q) punctures with δ± 6= 0, however, we do not currently have a field theory

interpretation in terms of a generalized quiver. The fact that the anomalies for the (p,q) punctures

take the form (7.27) implies that there is no straightforward field-theoretic interpretation of

gluing (p,q) punctures. It would be further interesting to understand the operation of closing

maximal punctures via nilpotent Higgsing from the perspective of the anomaly polynomial for the

N = 1 class S theories, as was discussed for the N = 2 theories in [116]. The additional U(1)

symmetry in the N = 1 case that mixes with the R-symmetry naively complicates the problem.

We leave these interesting questions to upcoming work.

7.4 Inflow for Flat M5-branes: A Review

The anomalies of the (2,0) theories of type AN−1 and DN can be obtained by inflow

in 11d supergravity in the presence of M5-branes. The eight-form anomaly polynomial (7.5)

148



encodes anomalous diffeomorphisms of the six-dimensional world-volume of the M5-branes

and their normal bundle. Here, we will restrict our attention to the AN−1 case, for which the

four-dimensional class S theories have a description as the low energy limit of N coincident

M5-branes wrapped on a punctured Riemann surface. Our goal will be to describe the inflow

procedure for this class of theories, and in particular derive new terms in the anomaly eight-form

for the M5-branes when the Riemann surface has punctures. Before we get there, we will take

some time to review the standard inflow mechanism for M5-branes. In Section 7.5 we will extend

this analysis to the main problem of interest.

7.4.1 Anomaly inflow

A QFT that admits chiral fields coupled to gauge or gravity fields may have anomalies. In

even spacetime dimensions d, consistent anomalies are encoded in a (d +2)-form Id+2 known as

the anomaly polynomial. Id+2 is a polynomial in the dynamical or background gauge and gravity

fields4, and is related to the anomalous variation of the quantum effective action as

δSeff = 2π

∫

Md

I(1)d . (7.35)

Here, I(1)d is a d-form obtained from Id+2 via the descent procedure [141, 115, 142],

Id+2 = dI(0)d+1, δ I(0)d+1 = dI(1)d . (7.36)

δ indicates the gauge variation, and the superscripts indicate the order of the quantity in the gauge

variation parameter.

In string theory, gauge theories can be obtained by considering the decoupling limit

of extended objects—such as branes—in a gravitational background. Gauge transformations

and/or diffeomorphisms restricted on the branes induce global symmetries. If effective degrees

of freedom of the world-volume theory on the branes are chiral (possible when the world-

volume is even-dimensional), then the induced global symmetries can be anomalous. Since

4The anomaly polynomial can also involve differential forms on the space of couplings of the theory, as was
recently pointed out in the context of class S theories in [140].
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diffeomorphisms in the full gravitational theory must be preserved, the action of the gravitational

theory in the presence of the brane sources must be anomalous in order to cancel the anomalies

of the world-volume theory.

In inflow, the anomaly is canceled by a term in the bulk effective action whose variation

is localized on the brane [143, 144]. Such a coupling implies a source in the equations of motion,

modifying the Bianchi identity for the (D− p− 1)-form field strength dHD−p−1 = δD−p (for

D-dimensional spacetime). The anomalous variation of the effective action can be written in

terms of the descent of a (p+3)-form anomaly polynomial Ip+3 as in (7.35), where the integral

will be over the (p+1)-dimensional world-volume. This procedure was first explained in [144],

while a detailed study of the role played by consistent versus covariant anomalies appeared in

[145]. An extension to Green-Schwarz anomaly cancellation appeared in [146]. Such anomalous

terms in the presence of Dp-branes were understood in [147, 148, 149]. For a review of D-brane

and I-brane (intersecting D-brane) inflow, including an extended discussion on regularizing the

delta function sources in this context, see [150].

In the context of M-theory, the (5+1)-dimensional M5-brane carries a chiral tensor

multiplet, which has a one-loop anomaly; this is canceled by inflow from the bulk. The origin

of the anomaly in M-theory comes from topological terms in the supergravity action, which

have an anomalous variation in the presence of the M5-branes. Because the M5-brane acts as

a magnetic source for the C3 potential of M-theory, inflow can be understood as a result of the

modified Bianchi identity (schematically) dG4 = δ5. For a nice review of anomaly cancellation

in M-theory, see [151].

7.4.2 M5-brane inflow

Now, we review the inflow analysis for flat M5-branes in 11d supergravity. Anomaly

inflow for a single flat M5-brane was first discussed in [152], and the computation was done in

[123] and [121]. Inflow for N flat M5-branes was computed in [122]. We will use the details and
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notation reviewed in this section as a jumping off point in the computation in Section 7.5.

The eleven-dimensional supergravity action is given by

S =
1

2κ2
11

∫ √−g
(

R− 1
2
|G4|2

)
− 1

12κ2
11

∫
C3∧G4∧G4−µM2

∫
C3∧ Iinf

8 . (7.37)

C3 is the three-form gauge field, G4 = dC3 the four-form field strength, and µM2 the M2-brane

tension. The integrals are over eleven-dimensional spacetime, M11.

The couplings satisfy

1
2κ2

11
=

2π

(2π`p)9 , µM2 =
2π

(2π`p)3 , µM5 =
2π

(2π`p)6 , (7.38)

and we fix 2π`p = 1 such that µM2 = µM5 = 2π . The eight-form Iinf
8 is a polynomial function of

the spacetime curvature R on M11,

Iinf
8 =− 1

48

(
p2(R)−

1
4
(p1(R))

2
)
, (7.39)

with conventions for the Pontryagin classes given in Appendix C.1.

Diffeomorphisms in the bulk are anomalous in the presence of M5-branes. For an M5-

brane with six-dimensional world-volume W6, the tangent bundle to M11 splits as

T M11|W6 = TW6⊕NW6, (7.40)

with TW6 an SO(1,5) bundle, and NW6 an SO(5) bundle. Diffeomorphisms of M11 that map

W6→W6 induce SO(1,5) diffeomorphisms of the world-volume (gravitational anomalies) and

SO(5) gauge transformations of the normal bundle (gauge anomalies).

The M5-branes magnetically source the four-form flux G4, modifying the Bianchi identity

for G4 as5

dG4 = Nδ5, δ5 = δ (y1) . . .δ (y5)dy1∧·· ·∧dy5. (7.41)

Here, the ya coordinates parameterize the transverse space to the M5-branes, which sit at ya = 0.

Terms in the bulk action (7.37) are singular due to (7.41), leading to inflow towards the world-

volume that should be canceled by anomalies carried by degrees of freedom on the M5-branes.

5The source appears with units given as dG4 = 2κ2
11µM5Nδ5; in units where 2π`p = 1, 2κ2

11µM5 = 1.
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A proper treatment requires that we smooth out the delta functions at the positions of the M5-

branes [121]. We will need to replace the delta functions with bump functions, and impose

regularity and gauge invariance of the field strength. This will imply a particular form of the

gauge transformation of C3. For this discussion we restrict to the case of a single brane.

To implement the smoothing of the source, parameterize the transverse directions to the

M5-brane by an S4 whose volume form is

dV5 =

(
1
4!

εabcdedŷa∧dŷb∧dŷc∧dŷd ŷe

)
∧ r4dr ≡ dΩ4∧ r4 dr. (7.42)

The ŷa are isotropic coordinates on the S4 fibers of the sphere bundle over the M5-brane world-

volume. We smear the charge over the radial direction with a smooth function ρ(r) that satisfies

ρ(0) =−1 and ρ(r→ ∞) = 0, such that the Bianchi identity (7.41) is

dG4 = dρ(r)∧ e4. (7.43)

The four-form e4 is a closed, global angular form that is gauge invariant under SO(5) transforma-

tions of the normal bundle and restricts to dΩ4 when the SO(5) connection is taken to be trivial.

Denoting the SO(5) gauge field as Fab, e4 takes the form

e4 =
1

V4

(
DΩ4−

2
4!

εabcdeFab∧Dŷc∧Dŷd ŷe +
1
4!

εabcdeFab∧Fcd ŷe
)
. (7.44)

Here DΩ4 refers to dΩ4 with ordinary derivatives replaced with covariant derivatives, and V4

refers to the area of the S4, V4 = 8π2/3. This is normalized such that integrating e4 over the S4

gives unity6. Note that de4 = 0 ensures that d2G4 = 0.

(7.43) requires that the relationship between G4 and C3 is modified to

G4 = dC3−dρ ∧ e(0)3 . (7.45)

Here, e(0)3 is a two-form related to e4 by the standard descent procedure,

e4 = de(0)3 , δe(0)3 = e(1)2 . (7.46)

Requiring gauge invariance of G4 then implies that C3 has an anomalous variation,

δC3 =−dρ ∧ e(1)2 . (7.47)

6Our conventions in this section follow [121], except that their normalization is such that
∫

S4
ethem

4 = 2.

152



In order to compute the variation of the action in the presence of the M5-branes, G4 and

C3 need to replaced with quantities that are smooth and non-singular in the neighborhood of the

branes. It follows from (7.47) that the correct replacement is

C3 → C3−ρe(0)3 , G4 → d
(

C3−ρe(0)3

)
. (7.48)

Now we have the pieces to compute the variation of the bulk action and the anomaly due

to the brane source. There are two terms in the bulk action that can lead to an anomaly: the

linear coupling C3∧ Iinf
8 (Green-Schwarz), and the C3∧G4∧G4 (Chern-Simons) terms. From the

decomposition of the tangent bundle (7.40), it follows that Iinf
8 can be written as

Iinf
8 =− 1

48

[
p2(TW6)+ p2(NW6)−

1
4
(p1(TW6)− p1(NW6))

2
]
. (7.49)

The variation of Iinf
8 is given by the descent formalism as

Iinf
8 = dIinf(0)

7 , δ Iinf(0)
7 = dIinf(1)

6 . (7.50)

We will need to regulate the integrals by removing a neighborhood of radius ε around the

M5-brane. Denote by Dε(W6) the total space of the disc bundle with base W6 and with fibers the

discs of radius ε . First one computes the variation outside the disc with the shifted non-singular

forms (7.48). Then, take the size of the disc to zero. The total space of the S4 sphere bundle over

W6 which forms the boundary of M11/Dε(W6) will be denoted as Sε(W6).

Then, the variation of the linear term leads to
δSL

2π
=− lim

ε→0

∫

M11/Dε (W6)
dρ ∧ e4∧ Iinf(1)

6 =
∫

W6

Iinf(1)
6 . (7.51)

The other source of anomalies in the bulk action is the Chern-Simons term, improved to take into

account (7.48) as

S′CS
2π

=−1
6

lim
ε→0

∫

M11/Dε (W6)

(
C3−ρe(0)3

)
∧ (G4−ρe4)∧ (G4−ρe4) . (7.52)

Its variation leads to

δS′CS
2π

=
1
6

∫

Sε (W6)
e(1)2 ∧ e4∧ e4 =

1
24

∫

W6

[p2(NW6)]
(1) ≡

∫

W6

ICS(1)
6 , (7.53)

where the second equality is due to a result of Bott-Catteneo [153], and [p2(NW6)]
(1) refers to
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the six-form related to p2(NW6) by descent. In both (7.51) and (7.53) we have integrated by

parts, and we’ve dropped the boundary terms in writing the final answers. A difference between

this case and the case when the internal space has punctures will be that the punctures lead to

boundaries, and the boundary terms in the integration by parts will need to be evaluated. We’ll

return to this point in the next section.

Combining this contribution with the contribution from the C3∧ Iinf
8 term, the anomaly

eight-form for a single M5-brane is then

I8[1] = Iinf
8 + ICS

8 =
1

48

[
p2(NW6)− p2(TW6)+

1
4
(p1(TW6)− p1(NW6))

2
]
. (7.54)

This is precisely the result we quoted in (7.4). For N M5-branes, the Green-Schwarz term is linear

in C3 and thus also linear in N, and the Chern-Simons term is cubic in C3 and thus also cubic in

N (we take ρ(r = 0) =−N). Anomaly cancellation then requires that I8[N] for N M5-branes is

given by

I8[N] = ICS
8 [N]+ Iinf

8 [N] = (N3−N)
p2(NW6)

24
+NI8[1]. (7.55)

To obtain the anomaly polynomial for the six-dimensional AN−1 theories, we must also subtract

off an overall U(1) corresponding to the center of mass motion of the branes, which amounts to

subtracting I8[1] from (7.55).

7.5 Class S Anomalies from Inflow

We finally turn to the main problem of interest: anomaly inflow for cases where the

M5-branes wrap a holomorphic curve Cg,n.

As we emphasized in the previous section, anomaly inflow in a gravitational theory can

be understood as accounting for sources of connection forms in the variation of the action. In

the presence of punctures, the total space will have internal boundaries. The logic we will

employ is as follows. We can account for boundary conditions for the M5-branes by considering

additional sources at the boundaries. These sources model the branching off of the M5-branes
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at the punctures. This is consistent with the M-theory description of punctures as transverse

M5-branes that intersect the Riemann surface at a point. Accounting for these sources, the inflow

procedure yields additional contributions to the anomalies of the world-volume theory.

7.5.1 Inflow for curved M5-branes

As we reviewed in Section 7.4.2, in the presence of an M5-brane the tangent bundle to

the full eleven-dimensional spacetime splits into the tangent bundle and normal bundle to the

world-volume, as (7.40). When the M5-branes wrap a holomorphic curve Cg,n, the tangent bundle

over the branes further splits as

TW6 = T M1,3⊕TCg,n. (7.56)

Since the Riemann surface is embedded in a CY3 that is a sum of two line bundles, the SO(5)

normal bundle over the branes reduces to a sum of two SO(2) bundles,

NW6 = SO(2)+⊕SO(2)−. (7.57)

The structure group of the normal bundle restricted to the flat four-dimensional spacetime is

covered by U(1)+×U(1)−, which correspond to the global symmetries in the field theory in

(5.4). We will reduce the curvature as SO(2)×SO(2)⊂ SO(5) (or SO(2)×SO(3)⊂ SO(5) for

the N = 2 preserving case), and then use relations between the Pontryagin classes of real bundles

and the Chern roots of their complexified covers—see Appendix C.1 for relevant formulae.

The curvature for the normal bundle NW6 has two contributions: one from the Riemann

surface, and the other from the four-dimensional spacetime M1,3. Then, the roots of the normal

bundle, which we’ll denote as n±, can be written as

n± = t̂±+2c1 (U(1)±) , (7.58)

where c1 (U(1)±) is the first Chern class of the U(1)± symmetries of class S , and t̂± is the

contribution of the curvature of the SO(2)± bundles over the Riemann surface. The Calabi-Yau
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condition, or the topological twist, restricts the t̂± as

t̂++ t̂−+ t̂ = 0,
∫

Σg,n

t̂ = χ (Σg,n) . (7.59)

In these expressions, t̂ is the curvature of the tangent bundle of the Riemann surface. It will be

useful to introduce the connection one-forms A± and their curvatures, F±, as

t̂± =
1

2π
dA± ≡

1
2π

F±. (7.60)

If one of the contributions t̂± is trivial, the compactification preserves eight supercharges

and the four-dimensional quantum field theory preserves N = 2 supersymmetry. Without loss of

generality, we choose our N = 2 limit to be t̂− = 0, in which case the U(1)− symmetry enhances

to an SU(2)− R-symmetry. In this limit, we have the following parametrization:

t̂+ =
dA
2π
≡ F

2π
, n+ =

F
2π

+2c+1 , t̂− = 0, n2
− =−4c−2 . (7.61)

Here we have dropped the (+) subscript on F since t̂− is trivial, and we are utilizing a shorthand

notation

c+1 = c1(U(1)+), c−2 = c2(SU(2)−). (7.62)

In this chapter, we aim to simply discuss how to account for punctures in the inflow

computation above. For that it is sufficient to restrict to systems with eight supercharges. The

inflow analysis for systems with four supercharges can be discussed in the same way, however

the reduction is reasonably more involved. Further details and the analysis for systems with four

supercharges will appear elsewhere [120].

Angular forms

Now, we explain how to construct the angular form e4 that appears in the Bianchi identity

(7.43) to reflect the restricted U(1)×SU(2) isometry manifest on the four-sphere transverse to

the M5-branes.

When the M5-branes are curved, the normal bundle is reduced. The magnetic source for
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G4 must be suitably modified to reflect this. The source can be written alla (7.43) as

dG4 = dρ(r)∧dΩ4(S̃4) (7.63)

where dρ(r) is the smoothing of δ 5(r)r4dr. Here, the angular form dΩ4(S̃4) is for a four-sphere

S̃4 that is not maximally symmetric.

This volume form depends on the normal bundle. If the twist preserves eight supercharges,

the normal bundle of the branes has a U(1)×SU(2) structure group and therefore only a U(1)×

SU(2) isometry is manifest on the four-sphere. The connection of the U(1) has a nontrivial

component over the Riemann surface, while the connection of the SU(2) over the surface is trivial

in order to preserve the SU(2) symmetry. A metric over the four-sphere can be chosen as

ds2(S̃4) =
dµ2

1−µ2 +(1−µ
2)dφ

2 +µ
2ds2(S2

Ω), (7.64)

with µ the interval [0,1]. The gauge invariant volume form is then

DΩ4 =
1

V4
µ

2dµ ∧Dφ ∧DΩ2, Dφ ≡ dφ −Aφ −A, (7.65)

where V4 is the area of the four-sphere, V4 = 8π2/3, and DΩ2 is the gauge-invariant volume form

of the round two-sphere S2
Ω

given as

DΩ2 =
1
2

εabcDŷa∧Dŷbŷc, Dŷa = dŷa−Aabŷb,
3

∑
a=1

(ŷa)2 = 1. (7.66)

Aab is the connection for an SO(3) bundle over the branes, with corresponding field strength

Fab = dAab−Aac∧Acb. (7.67)

The connection Aφ is the contribution over the flat four-dimensional space, and A is the contribu-

tion over the Riemann surface. The corresponding curvatures are

dA = F, dAφ = Fφ . (7.68)

While the angular form (7.65) is gauge invariant, it is not closed. The most general closed

and gauge invariant angular form can be written as

E4 =
1

3V4
d
[
µDφ ∧

(
µ

2DΩ2−h(µ)FΩ
2

)
+
(
aφ Aφ +asA

)
∧ eΩ

2

]
(7.69)

where we have introduced an arbitrary function h(µ) and arbitrary constants (aφ ,as). The SO(3)
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forms are given as

FΩ
2 =

1
2

εabcFabŷc, eΩ
2 = DΩ2−FΩ

2 , d(DΩ2) = FΩ
3 =

1
2

εabcFab∧Dŷc. (7.70)

One choice of h(µ) and the a’s corresponds to taking the SO(5) gauge invariant angular form

in (7.44) and reducing it so that only an SO(2)×SO(3) is manifest. This choice corresponds to

h(µ) = 1 and aφ = as = 0.

Overview of the computation

Before going forward with the details, we pause to summarize the steps necessary to carry

out the inflow analysis in the presence of punctures. The details of the computation will follow in

the rest of this section.

1. At the locations of the punctures, the connection one-form A over the Riemann surface is

not defined. Motivated by the work in gravity [83, 94], we allow for explicit sources for the

connection localized at the punctures. The symmetries of the sources allow us to account

for the local puncture data.

2. Sources for the curvatures F = dA induce sources for the four-form flux G4. We explain

how to account for these additional sources such that G4 is non-singular at the locations of

the punctures.

3. We compute the anomalies by varying the action. An important difference from the usual

case reviewed in (7.51) and (7.53) is the fact that with punctures there are additional

boundaries, and boundary terms in the integration by parts contribute to the variation. In

fact, the boundary terms will entirely account for the new contributions from the punctures.

4. Integrating the anomaly polynomial for the world-volume theory over the Riemann surface,

we compare with the known answer (7.13). The symmetries of step (1) manifest as global

symmetries in the four-dimensional field theory.
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A quick note on notation

The computation that follows requires the definition of various differential forms, and so

before we dive in we’ll take a moment to point out some features of our notation to facilitate ease

of reading.

In general, a numerical subscript denotes the degree of the form, which we will often

write explicitly for forms of degree greater than one. Then, the exterior derivative of a k-form

is a (k+1)-form; e.g. d fk refers to a form of degree k+1. The only exception to this notation

is when we write the angular two-form on a two-sphere as dΩ2 ≡ 1
2εabcdŷa∧dŷbŷc. While this

expression utilizes Einstein summation notation, for clarity we will explicitly write any sums over

indices that label branes or punctures.

We will use the letter e—either capital or lowercase, and possibly with identifying

superscripts—to denote a gauge-invariant angular form. For instance, the angular form dΩ2 on

the two-sphere will be promoted to the gauge-invariant eΩ
2 .

When an object satisfies the descent equations, we will use a superscript in parenthesis

to denote the order of the object in the gauge variation parameter. For example, if a k-form fk

satisfies descent, we will write

fk = d f (0)k−1, δ f (0)k−1 = d f (1)k−2. (7.71)

Another notation we will frequently use is to put square brackets around a k-form, with the (0)

or (1) superscript outside the square brackets. Such an object refers respectively to the k−1 or

k−2 form related to the k-form by descent—for example,

[ fk]
(1) ≡ f (1)k−2. (7.72)

This notation is useful when the main object of interest is the k-form. For further review on the

descent procedure and our conventions regarding characteristic classes, refer to Appendix C.1.
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7.5.2 Sources for connection forms

When the Riemann surface has punctures, the curvature form is not well-defined on them.

The connection one-forms A± are singular at the punctures, and suitable boundary conditions are

needed. We propose that in order to account for punctures in the inflow computation we should

add magnetic sources for the curvature forms F±, as

dF± = 2π

n

∑
α=1

δ (~x−~xα)d f±α ∧dx1∧dx2. (7.73)

The (x1,x2) are coordinates on the Riemann surface and ~xα is the location of a puncture with

label α . The functions f±α depend on the transverse coordinates and encode the boundary data for

the connection one-forms. The allowed choices of f±α are constrained by supersymmetry. The

supersymmetric analysis that constrains the f ’s will be presented elsewhere [120].

For the time being, we restrict to cases with one puncture, α = 1, and reductions that

preserve eight supercharges. For each brane that wraps the Riemann surface, we can turn on a

source term. We write

dF = 2πδ (~x−~x1)∑
a

d f a(µ)∧dx1∧dx2, d f a = k̂a
δ (µ−µ

a)dµ, (7.74)

where a labels the different branes and the constant ka is either zero or one. More general f a

could be obtained by smearing the delta function source.

Each source corresponds to a monopole located at (~x =~x1,µ = µa). In M-theory, this

source is a co-dimension three object whose world-volume we denote as W8. The tangent bundle

of M-theory near the source decomposes as

T M11|W8 = TW8⊕NW8, (7.75)

where TW8 is the curvature bundle on the source and NW8 is an SO(3) normal bundle. The

diffeomorphisms of M-theory induce an SO(3) gauge symmetry on the world-volume of the

source. The background geometry where the source lives splits the µ direction from the (x1,x2)

directions, and therefore only a U(1) subgroup of this SO(3) gauge symmetry group is preserved,

which we will call U(1)a. Near the source we can pick coordinates (Ra,τa,ϕ
a) where Ra
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is the overall radial coordinate, τa is an interval [−1,1], and ϕa parameterizes the S1 whose

diffeomorphisms induce the U(1)a gauge symmetry. The explicit coordinate transformation is

given in Appendix C.3.

This description of the sources is consistent with the picture in the holographic duals

[83, 94]. In these solutions, there are additional M5-branes that are localized at the punctures.

These branes are extended along a direction normal to the Riemann surface and end at monopole

sources of a U(1) connection of an S1 bundle over the surface, which here corresponds to the A

connection. The location of the monopole sources along the µ interval are denoted here as µa7.

The global symmetry that the four-dimensional field theory sees will be related to the precise

values of the µa.

Analogously to (7.43), we must smear the charge at each monopole over the radial

direction. The gauge invariant and closed source for F can be written as

dF = ∑
a

dρa(Ra)∧ ea
2, (7.76)

where the gauge invariant and closed angular form near the source is given as

ea
2 =

1
2

d [τaDϕ
a +aaAa] , Dϕ

a = dϕ
a−Aa. (7.77)

In particular, ea
2 is closed, with ea

2 = dea(0)
1 . The constant aa here is arbitrary. The special case that

ea
2 derives from the restriction of the full SO(3)-invariant angular form corresponds to aa = 0. The

one-form Aa is the connection of the U(1)a over the flat four-dimensional space with curvature

Fa = dAa8. To smooth out the source, we have excised a ball around the source of size ε and

replaced the delta functions with bump forms dρa(Ra) that satisfy

ρa(Ra→ ∞) → 0, ρa(ε) = ka ∈ Z. (7.78)

In particular, note that the ka are quantized (to be further discussed in a moment).

The Bianchi identity (7.76) for F is solved by

F = dA−∑
a

dρa(Ra)∧ ea(0)
1 . (7.79)

7The µ interval is the y interval in the backreacted systems in [83].
8The contribution of Aa along the sphere is set to zero in order to preserve the SU(2) symmetry.
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The first term dA is the flux associated to the holonomy of the Riemann surface, which contributes

to the Euler characteristic. In particular, the background curvature of the tangent bundle of the

surface t̂, discussed around (7.59), still satisfies

dA =−2π t̂,
∫

Σg,1

dA =−2πχ(Σg,1). (7.80)

The second set of terms in (7.79) depend explicitly on data at the monopoles.

The gauge transformation induced by the U(1)a’s leads to

δaAa = dλ
a, δϕ

a = λ
a, δA =−∑

a
ea(1)

0 dρa. (7.81)

From the gauge transformation, we see how to shift A and F such that they are non-singular at

the sources, as

A → Ã = A−∑
a

ρaea(0)
1 , F → F̃ = dÃ. (7.82)

Ã and F̃ are the well-defined forms that will need to be used instead of A and F in computing the

variation of the action.

It is further convenient to split F̃ into two pieces, as

F̃ = F0−
1
2 ∑

a
ρa(aa− τa)Fa, F0 = dA−∑

a

(
dρa∧ ea(0)

1 +
1
2

ρadτa∧Dϕ
a
)
. (7.83)

F0 is the gauge-invariant volume form of the Riemann surface. The Fa are the curvature forms

for the U(1)a symmetries, whose coefficients in F̃ depend on the interval τa and the smearing

function ρa(Ra) centered at each monopole.

The boundary conditions for the background curvature and connection near the puncture

are

Ra→ 0 : dA→ 0, and A→ cadϕ
a, (7.84)

for some constant ca. As Ra goes to zero, the connection is flat. This can be seen by looking at

the background metric near the puncture [94]. This choice of boundary conditions allows us to

write several integral identities that will be useful to the computation of anomalies later in this

section, which we give in Appendix C.3.
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The curvature form F̃ satisfies a quantization condition. In particular, the flux of F̃ through

the sphere S2
a surrounding a monopole at µa is quantized, as

1
2π

∫

S2
a

F̃ = ka ∈ Z. (7.85)

Punctures that preserve different amounts of flavor symmetry in the four-dimensional field theory

will correspond to different M5-brane profiles [83, 110], and different choices of flux ka.

Multiple punctures

When there are n punctures on the Riemann surface, there is a source for each brane at

the location of each puncture that must be smoothed. Then, there will be a U(1) gauge symmetry

induced on each source world-volume, such that ea
2 also receives an index α labeling the puncture.

These sources can be written as

dF =
n

∑
α=1

N

∑
a=1

dρa,α(Ra,α)∧ ea,α
2 . (7.86)

The non-singular form F̃ will then also receive a separate contribution from each puncture,

F̃ = F0−
1
2 ∑

α

∑
a

ρa,α(aa,α − τa,α)Fa,α , (7.87)

where the gauge-invariant volume form of the Riemann surface is given by

F0 = dA−∑
α

∑
a

(
dρa,α ∧ ea,α(0)

1 +
1
2

ρa,αdτa,α ∧Dϕ
a,α
)
. (7.88)

The background curvature dA integrates to the Euler characteristic on the n-punctured Riemann

surface, as
∫

Σg,n

dA =−2πχ(Σg,n) = 2π(2g−2+n). (7.89)

Because each source is localized by the (smoothed) delta functions, it suffices to understand the

one-puncture case in order to generalize to the n-puncture case. For ease of reading, we will

continue the calculation for a single puncture.
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Consistent sources for G4

The sources for F induce sources for G4. Since the gauge invariant angular form in (7.65)

has an explicit dependence on F , G4 cannot be closed in the presence of sources for F . It needs

to be further improved.

To understand the sources induced for G4, we temporarily turn off the connections on the

four-dimensional space. Then, the closed magnetic sources for G4 in the presence of N M5-branes

are

dG4 =
1

V4
dρ(r)∧

(
µ

2dµ ∧ (dφ −A)+
1
3
(
as−µ

3)F
)
∧dΩ2 +

1
V4

∑
a

Ka
3 ∧dΩ2, (7.90)

dKa
3 =

1
3
(
as−µ

3)dρ(r)∧dρa(Ra)∧dτa∧dϕ
a. (7.91)

The Ka
3 terms are needed to close the source term for G4 in presence of the monopoles. We

observe that consistency of the sources requires the M5-branes wrapped on the Riemann surface to

branch off at the punctures. This is consistent with the probe analysis for punctures in holography

[83, 110].

In the presence of the monopole sources for F , the most general closed, gauge invariant,

and global source for G4 is given as

dG4 = dρ(r)∧ Ẽ4. (7.92)

Our convention is ρ(0) =−N and ρ(r→∞) = 0. The angular four-form Ẽ4 is obtained by taking

E4 in (7.69) and replacing the connection A and the curvature F with the global and non-singular

forms Ã and F̃ . This substitution will naturally include Ka
3 .

Now, G4 can be written as

G4 = dC3−dρ ∧ Ẽ0
3 (7.93)

where we have

Ẽ4 = dẼ(0)
3 , δ Ẽ(0)

3 = dẼ(1)
2 . (7.94)

Similar to E4, in these forms we substitute (A,F) with (Ã, F̃). Since G4 is gauge invariant and
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Ẽ(0)
3 transforms non-trivially, we must have

δC3 =−dρ ∧ Ẽ(1)
2 . (7.95)

This suggests that we shift the potential and the flux in the action as

C3→ C̃3 =C3−ρẼ(0)
3 , G4→ G̃4 = dC̃3. (7.96)

In addition to the condition that G4 integrates over the S4-bundle to N, we also have the

quantization condition that
∫

S2
Ω
×S2

a

G4 ≡ fa(µ
a) ∈ Z. (7.97)

Here fa(µ
a) is some function of the monopole locations µa. This is then a quantization condition

for the µa.

7.5.3 Variation of the action

The variation of the action has two terms, given as

δS
2π

=−1
6

δ

∫

M̃11

C̃3∧ G̃4∧ G̃4−δ

∫

M̃11

C̃3∧ Ĩinf
8 . (7.98)

We will find that we need to improve Iinf
8 (Fφ ,F) to Iinf

8 (Fφ , F̃)≡ Ĩinf
8 . We’ve excised small regions

around the M5-branes (r < ε) and around the monopoles (Ra < εa) from M11 to obtain M̃11. The

variation of the action is computed by integrating over M̃11, and then taking the ε’s to zero. In

the region near r = ε , we split the eleven-dimensional manifold as M̃11 = [r]×M1,3× M̃6, where

the six-dimensional part is the total space of the S4 bundle over the Riemann surface with balls

surrounding the monopoles removed, as per the discussion around (7.85). The boundary of each

ball is a sphere of radius εa, which we have denoted as S2
a. In particular, M̃6 and its boundary split

as

M̃6 = S1
φ ×S2

Ω× [µ]×Σg,1, ∂M̃6 = ∑
a

S1
φ ×S2

Ω×S2
a. (7.99)

The manifold has a boundary component labeled by a for each brane.

In this section, we will compute the variation from the Chern-Simons and linear terms in
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turn, and evaluate their contributions to the anomalies. As we discussed in the introduction, the

final answer can be repackaged as a nine-form (7.3), which integrated over [µ]×Σg,1 gives the

anomalies of the four-dimensional theory. After computing the variation, we will comment on

how this simple form comes out of the analysis.

General features

Before getting into the details, we summarize the main features of the computation of the

variation. We find that the variation of the action splits into a bulk contribution to the integral and

a boundary contribution that depends on local puncture data, as

δS
2π

=−
∫

M1,3×Σg,1

[
Ibulk
8

](1)
−
∫

M1,3×S2
a

[
Ibdy
8

](1)
. (7.100)

Each of these pieces receives contributions from both the linear and Chern-Simons terms in (7.98).

We can understand these two contributions to the anomaly independently.

The bulk contribution comes from an integral over the bulk spacetime in the variation of

the action, of the form
δS
2π
⊃
∫

M1,3×M̃6

Abulk =−
∫

M1,3×Σg,1

[
Ibulk
8

](1)
. (7.101)

Abulk is a ten-form computed from (7.98), whose explicit expression will be given later. From

(7.101) we reconstruct the eight-form polynomial Ibulk
8 , which corresponds to the anomaly for the

M5-branes branes wrapped on the surface.

The statement of class S is that the bulk anomaly polynomial is derived by integrating

the anomaly polynomial for the six-dimensional world-volume theory over the Riemann surface.

Indeed, we find that integrating Ibulk
8 over the Riemann surface matches onto the bulk contribution

I6(Σg,1) in (7.6). In particular, the integrand Abulk is proportional to the gauge invariant volume

form on the full space M1,3× M̃6, which is proportional to dµ ∧dA. By the relations in (C.22)

and (C.23), the integral vanishes for any term with a ρa, such that without loss of generality we

can fix F̃ = dA. Thus, the terms in the anomaly polynomial for the four-dimensional theory
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coming from Ibulk
8 will have no dependence on the local puncture data, and will be proportional to

the Euler characteristic of the surface.

The puncture contribution to the anomalies comes from a boundary term in the variation

of the bulk action, which is non-vanishing because M̃6 has internal boundaries of the form

S1
φ
×S2

Ω
×S2

a. In particular, the variation has a contribution of the form

δS
2π
⊃
∫

M1,3×M̃6

d
(

Bbdy
)
=
∫

M1,3×∂M̃6

Bbdy =−
∫

M1,3×S2
a

[
Ibdy
8

](1)
. (7.102)

The integrand Bbdy is a nine-form that will be explicitly given later. The eight-form Ibdy
8 packages

the anomalies from the new degrees of freedom that arise due to the punctures. These degrees of

freedom live at the intersection of the eight-dimensional monopole source and the world-volume

of the M5-branes. Then from (7.102), we can directly compute the contribution to the anomaly

six-form of the four-dimensional theory as9

[I6(P)]
(1) =−∑

a

∫

S1
φ
×S2

Ω
×S2

a

Bbdy. (7.104)

Variation of Chern-Simons term

The variation of the Chern-Simons term reduces to

δSCS

2π
=

1
6

∫

M̃11

d
(

ρẼ(1)
2

)
∧d
(

ρẼ(0)
3

)
∧d
(

ρẼ(0)
3

)
(7.105)

=
1
6

∫

[r]
dρ

3
∫

M1,3×M̃6

[
Ẽ(1)

2 ∧ Ẽ4∧ Ẽ4−
2
3

d
(

Ẽ(1)
2 ∧ Ẽ(0)

3 ∧ Ẽ4

)]
. (7.106)

In evaluating the variation, we dropped terms involving C3. The integrand factorizes in its r

9There is a subtlety with regards to the order in which we perform the descent in these expressions. The anomalies
for the four-dimensional theory are given by first reconstructing I8, and then integrating over the Riemann surface.
Thus, e.g. for the bulk term we should reconstruct Ibulk

8 from [Ibulk
8 ](1) in terms of natural six-dimensional quantities:

the roots n±. Then to derive the anomalies of the four-dimensional theory, we decompose n± over the M1,3×Σg,1
base, and integrate. However, if we wish to compute the four-dimensional bulk anomalies directly from

[I6(Σg,1)]
(1) =

∫

M̃6

Abulk, (7.103)

we must be careful with the order in which we decompose over the base versus apply the descent formalism. Varying
with respect to F̃ and Fφ separately will give a different answer than varying with respect to n+. This ordering shows
itself in extra constraints on the descent parameters for reducible terms in the anomaly.
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dependence and therefore we can pull out the overall ρ dependence. Since ρ vanishes as r→ ∞,

the only contribution comes from r = ε where we have
∫

[r]
dρ

3 =−N3. (7.107)

We also needed to integrate by parts, which lead to a boundary term that—unlike the flat branes

case—can be nonvanishing.

We group the variation as in (7.100). First we will discuss the bulk term, given by
[
Ibulk
CS,8

](1)
=

N3

6

∫

S1
φ
×S2

Ω
×[µ]

Ẽ(1)
2 ∧ Ẽ4∧ Ẽ4. (7.108)

In general, the anomaly will depend on the choice of the function h(µ) in (7.69). In this chapter

we will not analyze the general case, and will instead fix them to match onto the reduction of the

SO(5) bundle to SO(2)×SO(3), with h(µ) = 1 and aφ = as = 0.

Expanding the integrand of (7.108), the only terms that survive are proportional to the

volume form on M1,3× M̃6, and therefore to dµ ∧ dA. The coefficient is a polynomial in the

ρa’s. By the relations in (C.22) and (C.23), the integral vanishes for any term with a ρa, and

therefore in evaluating the bulk terms we can fix F̃ = dA without loss of generality. In other

words, the bulk term does not see the monopoles and we can simply evaluate the integral with
(

Ẽ(1)
2 , Ẽ4

)
→
(

E(1)
2 ,E4

)
. In this case, we reconstruct Ibulk

CS,8 as

Ibulk
CS,8 =

N3

24
n2
+n2
− =

N3

24
p2(NW6). (7.109)

The bulk anomaly contribution to the anomaly polynomial of the four-dimensional theory can

then be computed from (7.109) as

Ibulk
CS,6 =

∫

Σg,1

Ibulk
CS,8 =−

2N3

3

∫ dA
2π
∧ c+1 c−2 =

2N3

3
χ(Σg,1) c+1 c−2 . (7.110)

Recall that the relation of the roots of the normal bundle n± to the Chern roots of the U(1)+×

SU(2)− is given in (7.61).

The story will be similar for general h(µ) and aφ ,as, When we compute (7.108), we will

find that the only terms that survive the integral over [µ]×Σg,1 will be proportional to dA, such

that we can still replace F̃ = dA. Then, n+ is independent of µ and can be pulled out of the
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integral. The effect will be to simply multiply the answer for Ibulk
CS,6 by a function of aφ and as.

These constants can be fixed by regularity and matching conditions. We do not consider this more

general case here.

The boundary term is given by
[
Ibdy
CS,8

](1)
=−N3

9 ∑
a

∫

Sφ

1×SΩ
2

Ẽ(1)
2 × Ẽ(0)

3 × Ẽ4. (7.111)

We need explicit expressions for the Ẽ’s in order to compute the boundary contributions, which

requires a more detailed discussion of the angular forms than we will give in this chapter. Instead,

here we simply highlight the form of the answer. For general choice of h(µ) and aφ ,as, (7.111)

will allow us to reconstruct the eight-form

Ibdy
CS,8 = N3

∑
a

ˆ̀(µa)n2
+n2
−
∣∣
ρa=ka (7.112)

for some function ˆ̀(µa) (which will also depend on the values of aφ ,as). Recall that the µa—

which are quantized—are constants corresponding to the locations of the monopole sources. The

roots n± are restricted to the spheres surrounding the sources.

In (7.112), the only terms in n+ that can contribute are those proportional F0—the gauge

invariant volume form on the Riemann surface defined in (7.83). Then, without loss of generality

we can replace F̃ → F0 in n+. It follows from (C.25) that µ will be fixed to µa in each term

of the sum over the branes (which we’ve already implemented in (7.112)). Integrating over the

boundaries S2
a, the contribution to the four-dimensional anomalies will take the form

Ibdy
CS,6 =

∫

S2
a

Ibdy
CS,8 = N3

∑
a

c+1 c−2 `(µa), (7.113)

where the coefficient `(µa) depends on the µa. We will not comment further on the exact form of

this coefficient.

Variation of linear term

Next we evaluate the variation of the linear term. For this, we need to first reduce Iinf
8

in (7.39) and then restrict to the case with eight supercharges. Under the decomposition of the
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curvature bundle, we have

p1(R) = p1(T 4)+ t̂2 +n2
++n2

− (7.114)

p2(R) = p2(T 4)+ p1(T 4)
(
t̂2 +n2

++n2
−
)
+ t̂2(n2

++n2
−)+n2

+n2
−. (7.115)

The relation of the roots of the normal bundle, n±, to the Chern roots of the U(1)+×SU(2)− is

given in (7.61). The curvature of the Riemann surface is given as t̂, which satisfies (7.80).

In evaluating the linear term, we will need to replace F with its global extension F̃ given

in (7.82). We reduce the eight-form while only keeping terms that can be non-trivial in the action,

leading to

Ĩinf
8 ⊃

1
192

(
F̃
2π

+2c+1

)4

− 1
96
(

p1(T 4)−4c−2
)
∧
(

F̃
2π

+2c+1

)2

. (7.116)

The variation of the linear term goes as

−δ

∫
C̃3∧ Ĩinf

8 =−δ

∫
G̃4∧ Ĩinf(0)

7 =−
∫

G̃4∧dĨinf(1)
6 =

∫
d
(

ρẼ(0)
3

)
∧dĨinf(1)

6 (7.117)

=
∫

[r]
dρ

∫

M1,3×M̃6

[
Ẽ4∧ Ĩinf(1)

6 −d
(

Ẽ(0)
3 ∧ Ĩinf(1)

6

)]
. (7.118)

Analogously to the contribution from the Chern-Simons term, the variation of the linear

term has a bulk contribution and a boundary contribution due to the monopoles. The bulk term is

determined by
[
Ibulk
L,8

](1)
= N

∫

S1
φ
×S2

Ω
×[µ]

Ẽ4∧ Ĩinf(1)
6 . (7.119)

In evaluating this bulk contribution we can drop all terms proportional to the ρa’s, since the

integral with the volume form on M̃3 vanishes with them. Again, we can simply replace Ẽ4 with

E4 and F̃ with dA. Since the polynomial Iinf
8 has no dependence on the angular coordinates, it

follows that the only contribution from E4 is actually the volume form of the transverse four-

sphere. This expression is independent of any choice for h(µ) in (7.69). We can then reconstruct

the bulk contribution simply as

Ibulk
L,8 = NIinf

8 . (7.120)

Integrating over the Riemann surface, we compute the contribution to the six-form anomaly
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polynomial of the class S theory as

Ibulk
L,6 =

∫

Σg,1

Ibulk
L,8 =−χ(Σg,1)

2
N
(
(c+1 )

3

3
− c+1 p1(T 4)

12
+

c+1 c−2
3

)
. (7.121)

The boundary contribution is determined by
[
Ibdy
L,8

](1)
= N ∑

a

∫

S1
φ
×S2

Ω

Ẽ(0)
3 ∧ Ĩinf(1)

6 . (7.122)

In evaluating this boundary term we note that Ĩinf
8 has no legs along the S1

φ
×S2

Ω
directions, and

so the integral is non-vanishing only for terms in Ẽ(0)
3 that have legs along the circle and sphere

directions. This expression is uniquely fixed by the volume of form of the transverse four-sphere

in dẼ(0)
3 = Ẽ4, as Ẽ(0)

3 →
µ3

3V4
dφ ∧dΩ2. Thus, we have that

[
Ibdy
L,8

](1)
= N ∑

a
(µa)3Ĩinf(1)

6 . (7.123)

To compute the contribution to the four-dimensional anomalies, we need to expand Ĩinf(1)
6 ,

and keep terms proportional to F0 since these are the only ones that will not integrate to zero. In

this computation we will take aa = 0 in (7.77)—i.e. we consider the case that ea
2 derives from the

SO(3)-invariant angular form. We compute

Ĩinf(1)
6 ⊃1

2
F0

2π

([
(c+1 )

3

3
− c+1 p1(T 4)

12
+

c+1 c−2
3

](1)

+∑
a

ρaτaca
1

[
(c+1 )

2

2
+

c−2
6

](1)
+∑

a,b
(ρaτaca

1)(ρbτbcb
1)

[
c+1
4

](1))
.

(7.124)

We have written this expression in terms of the first Chern classes of the U(1)a symmetries,

Fa = 2(2π)c1(U(1)a)≡ 2(2π)ca
1. (7.125)

Next, we integrate over the boundary spheres. From the integral identities given in (C.25), we

have that
∫

Sa
2

h(µ)
F0

2π
=−kah(µa),

∫

Sa
2

h(µ)
F0

2π
(ρaτa)(ρbτb) =−

1
3

δabh(µa)(ka)3. (7.126)

Any terms that are odd in τa integrate to zero. The final answer for the boundary contribution of

the linear term to the anomalies of the four-dimensional theory is

Ibdy
L,6 =−N

2 ∑
a
(µa)3

{
ka
(
(c+1 )

3

3
− c+1 p1(T 4)

12
+

c+1 c−2
3

)
+(ka)3(ca

1)
2 c+1

12

}
. (7.127)
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This answer is expressed in terms of the quantized ka fluxes of the sources, and the locations µa

of the monopoles along the transverse direction to the surface.

7.5.4 Total 4d anomaly from inflow

We now have all the pieces to give the total anomaly polynomial for the class S theory

on the branes. First, we note a simple way to reformulate the results.

We collect the terms that contribute to the anomalies of the world-volume theory on the

branes as

Ibulk
8 = NĨinf

8 +
N3

24
p2(NW6), Ibdy

8 = ∑
a

(
N(µa)3Ĩinf

8 +N3 ˆ̀(µa)p2(NW6)
)
, (7.128)

where recall that Ĩinf
8 is −1/48(p2(R)−1/4(p1(R))2), with p1,2(R) given as (7.114)-(7.115), and

n+ is a function of F̃ . The function ˆ̀(µa) (from (7.112)) is determined by the local data at the

punctures, which we will not determine here. The terms linear in N came from the linear term in

the action, and the terms cubic in N from the Chern-Simons term.

We showed that integrating Ibulk
8 over the Riemann surface gives the contributions to

the anomalies of the four-dimensional theory whose coefficients are proportional to the Euler

characteristic of the surface, χ . These terms do not see the monopole sources. Integrating Ibdy
8

over the boundaries S2
a gives the contributions to the anomalies of the four-dimensional theory

whose coefficients depend on the local data of the punctures—in particular the locations of the

monopoles µa and the fluxes through spheres surrounding the sources, ka.

These results can be conveniently repackaged in terms of the integration of a nine-form I9

over the space [µ]×Σg,1. Define

I9 = d
[
µ

3Ibulk
8 +N3 f (µ)p2(NW6)

]
, (7.129)

where f (µ) is related to ˆ̀(µ) as ˆ̀(µ) = f (µ)+µ3/24. Then, the contributions to the class S
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anomalies, IS
6 , are derived simply as10

∫

[µ]×Σg,1

I9 =
∫

Σg,1

Ibulk
8 +

∫

S2
a

Ibdy
8 = IS

6 . (7.130)

The bulk contributions to the four-dimensional anomalies, I6(Σg,1), come from the bound-

ary terms in the integration evaluated at µ = 0 and µ = 1. The puncture contributions, I6(P),

come from the integration over the boundary spheres S2
a. From this perspective, the total anomaly

polynomial for the class S theory naturally reproduces

IS
6 = I6(Σg,1)+ I6(P). (7.131)

These expressions validate the general expectation of the structure of anomalies of class S

theories as described in (7.6).

Class S anomaly

Now, we give some discussion of the contributions to the class S anomalies. The bulk

terms were computed in (7.110) and (7.121), which together yield

I6(Σg,1) =−
χ(Σg,1)

2

[
N
(
(c+1 )

3

3
− c+1 p1(T 4)

12
+

c+1 c−2
3

)
− 4

3
N3c+1 c−2

]
. (7.132)

Indeed, I6(Σg,1) is of the form described in (7.2) where we integrate the polynomial from the

M5-branes given in (7.55). The difference between the result of this computation and the anomaly

polynomial of the AN−1 (2,0) theory is due to an overall free tensor multiplet that decouples from

the dynamics of the M5-branes.

As we discussed, the terms that depend on the local puncture data can be given as

I6(P) =
∫

S2
a

Ibdy
8 , (7.133)

with Ibdy
8 given in (7.128). An important feature of these terms is that there are independent

contributions from each monopole source, and moreover, there are no mixed terms between

sources due to the integrals over ρaρb vanishing for a 6= b.

We explicitly computed the contribution of the linear term as

10This construction requires the boundary condition that f (1) = f (0).
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I6(P)⊃−
N
2 ∑

a
(µa)3ka

(
(c+1 )

3

3
− c+1 p1(T 4)

12
+

c+1 c−2
3

)
− N

24 ∑
a
(µa)3(ka)3c+1 (c

a
1)

2. (7.134)

This gives the general form of the answer that one obtains from inflow. This answer depends

on the µa, which correspond to the locations of the monopoles along the µ direction, and the

charges ka of the monopoles. More work must be done to actually match onto the known answer

for the Class S theory. In particular, we must address the following:

• How to fix the precise form of the angular form Ẽ4, as well as the free parameters aφ ,as.

The possible choices are intimately related to regularity conditions on the flux in various

limits.

• How the parameters ka,µa encode the data of the punctures in field theory. In particular, for

the case of regular punctures these should be associated to the data of the Young diagram

that corresponds to the flavor symmetry preserved in the CFT. One can hope to extend this

analysis to the case of irregular punctures.

• The relation of the U(1)a symmetries to the flavor symmetry that emerges at the puncture

in the CFT.

• What are the decoupled modes of the system? In particular, the inflow result includes

modes that decouple with respect to the low energy CFT.

These issues will be addressed in the upcoming [120].

7.6 Conclusions

7.6.1 Summary

In Section 7.3, we studied the anomalies of the N = 1 four-dimensional theories that

derive from M5-branes wrapped on a punctured Riemann surface. When the bulk preserves
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N = 1, the R-symmetry locally at a puncture can preserve N = 2 supersymmetry with a local

twist of the R-symmetry generators labeled by integers (p,q). We derived the anomalies of these

(p,q)-labeled punctures, and discussed an illuminating parameterization of the anomalies in terms

of an N = 1 version of an effective number of vector and hypermultiplets.

In Sections 7.4 and 7.5, we turned to the problem of computing the anomalies of the

N = 2 theories of class S from inflow for M5-branes wrapped on a punctured Riemann surface.

The punctures lead to boundaries on the internal space. In general, one expects the fluxes to have

additional sources on the boundaries. In our analysis, we motivated the addition of monopole

sources at the locations of the punctures for the connection form on the Riemann surface. These

appear as delta functions on the right-hand-side of the Bianchi identity for the associated curvature

F , which had to be appropriately smoothed.

The M5-branes magnetically source the M-theory flux G4. The sources for the connection

form on the surface induce additional sources for G4. Compatibility conditions between these

sources require additional M5-branes that intersect the original ones at the punctures and end

on the monopole sources. This is consistent with the picture in AdS/CFT. When the branes are

backreacted, there is an AdS5 spacetime that emerges in the near-horizon limit of the branes.

The connection forms in a Ricci flat background pick up such monopole sources in the work of

[83, 94].

Our analysis captures the anomaly contributions from the additional degrees of freedom

at the intersection of these sources. We describe a well-defined way to derive these anomaly

contributions by integrating the eight-form anomaly polynomial of the world-volume theory over

the boundaries, whose coefficients depend on local data at the puncture. In particular, this local

data is captured by the flux through the boundary spheres surrounding the monopole sources, and

the locations of the sources along an interval transverse to the branes.
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7.6.2 Outlook

In this chapter we have focused on four-dimensional field theories that preserve N = 2

supersymmetry. The generalization to the N = 1 theories will follow the steps we’ve laid out

here, but with some interesting additional complications. In particular, in the N = 1 case the

normal bundle to the M5-branes decomposes as SO(2)+×SO(2)− ⊂ SO(5). The field strengths

for each SO(2)± will have sources at the punctures, whose profile in the normal directions can be

more involved. We present the analysis for the N = 1 story in the upcoming [120].

The N = 1 theories of Class S are even more rich than their N = 2 counterparts. One

feature is that different kinds of punctures can be present in the N = 1 class S construction.

One example are the class of (p,q)-labeled punctured we discussed in Section 7.3. It would be

interesting to understand these anomalies from an inflow analysis. More generally, the landscape

of N = 1 preserving punctures in these geometries is much less understood than their N = 2

counterparts, and would be interesting to study further.

In the region near the puncture, the M-theory system can be reduced to Type IIA string

theory, and the degrees of freedom at the puncture are associated to the intersection of D4/D6

branes [92]. From this perspective, the contributions from the punctures should be related to

I-branes, as discussed in [147]. Such intersections are also related to D6/D8 brane intersections,

which appear in the classification of (1,0) theories [154]. It would be interesting to explore these

connections in the future.

Throughout this chapter, we have only discussed theories which have their origin from

the (2,0) theories in six dimensions. One could also consider starting from theories with less

supersymmetry, such as six-dimensional (1,0) SCFTs (with a recently proposed classification in

[155, 156, 157]). These are far more numerous, and their compactifications are less understood

than their (2,0) counterparts. One large class of such constructions—dubbed class Sk—involve

N M5-branes on an Ak−1 singularity of M-theory compactified on a punctured Riemann surface

[158, 159, 160, 119]. It would be very interesting to extend the inflow analysis we considered
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here in the class S context to these theories.

As a specific example, ’t Hooft anomalies for four-dimensional theories that result from

compactifications of the six-dimensional E-string theory on a punctured Riemann surface were

computed in [161]. There, the contributions of the punctures to the anomalies were obtained by

studying boundary conditions of the E-string theory at the punctures, and adding up the anomalies

from chiral fields living on the boundary. It would be interesting to understand these contributions

from the perspective we’ve advocated here.
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Appendix A

WA,D,E SCFTs

A.1 ADE Facts

Here we collect some facts about the ADE theories.

Table A.1: Some relevant data corresponding to the ADE Lie groups. h is the Coxeter number,
and ȟ the dual Coxeter number.

G Dynkin Diagram h(= ȟ) Exponents ln♣ α♠

Ak
SU(k+1)

· · · k+1 1,2, ..,k k

Dk+2
SO(2k+4)

· · ·
2(k+1) 1,3,5, . . . ,2k+1,k+1 3k

E6 12 1,4,5,7,8,11 ?

E7 18 1,5,7,9,11,13,17 30

E8 30 1,7,11,13,17,19,23,29 ?
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♣ln=(degree of invariant polynomials of the Lie algebra)−1. Eigenvalues of the adjacency

matrix of the associated Dynkin diagram are 2cos(πln/h). The ln are 1-1 with the rank(G) chiral

ring generators for the case when the fields are not matrix valued:

Ak : l j =
k+1

2
R(Θ j)+1 for Θ j = {1,x,x2, ...,xk−1}

Dk+2 : l j = (k+1)R(Θ j)+1 for Θ j = {1,x,x2, ...,xk−1,y,y2}

E7 : l j = 9R(Θ j)+1 for Θ j = {1,x,x2,x3,x4,y,xy}

(A.1)

♠number of generators of (supposedly truncated) chiral ring.

A.2 RG Flows Whose Deformations Seem Irrelevant

We briefly consider (as in Section 3.5.4) some cases where the ∆W ’s, corresponding to

some ADE adjoint Higgsing pattern, are not immediately apparent. We focus on recovering the

desired 1d vacuum structure for U(Nc) flows, leaving a full analysis of the higher-dimensional

structure for future work. The cases studied in Sections A.2.1 and A.2.2 are analogous to

singularity resolutions studied in [62].

A.2.1 E6→ A5

We start with the deformed E6 superpotential,

W =
1
3

TrY 3 +
s
4

TrX4 + t1TrY X2 + t2TrY 2, (A.2)

whose F-terms are

Y 2 + t1X2 +2t2Y = 0 (A.3)

sX3 + t1{X ,Y}= 0. (A.4)

For 1d representations, X = x1,Y = y1, (A.3) and (A.4) yield vacua which correspond to the

following IR theories (as usual, seen by expanding (A.2) in each vacuum):
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(x,y) =





(0,0) ↔ A3

(0,−2t2) ↔ A1(
±
√

4t1
s

(
t2− t2

1
s

)
,−2

(
t2− t2

1
s

))
↔ 2A1

(A.5)

For the special value of t2 =
t2
1
s , for nonzero s, the two eigenvalues on the last line of

(A.5) collapse to the origin to enhance the A3 singularity. This is more clearly seen by changing

variables Y = s
t1
(Z−X2). Then, for the special value of t2 =

t2
1
s , (A.2) rewritten in terms of the

X ,Z fields,

W =
s3

t3
1

(
1
3

TrZ3−TrZ2X2 +TrZX4
)
− s3

3t3
1

TrX6 + sTrZ2. (A.6)

The F-terms of (A.6) then yield the 1d vacua A5 +A1.

To find higher dimensional representations of vacua for this flow, we note that (A.3)

and (A.4) implies [X2,Y ] = 0. Since [Y 2,X ] v [X ,Y ], Y 2 is not a Casimir; instead we use

Y 2 + 2t2Y = f (y)1. Parameterizing 2d solutions by Y = y01+ y1σ1 and X = xσ3, Y ’s Casimir

condition fixes y0, so that the F-terms for 2d vacua simplify to

(−t2
2 + y2

1 + t1x2)1 = 0 (A.7)

x(sx2−2t1t2)σ3 = 0. (A.8)

(A.8) fixes the eigenvalue x, and the first fixes y1, such that we indeed have a 2-dimensional

vacuum (only one, as gauge symmetry relates x→−x and y1→−y1). This vacuum exists both

for generic t2, and for t2 shifted to give the A5 theory. In sum, the flow (A.2) has the following 1d

and 2d vacua:

t2 generic : E6→ A3 +3A1 +A2d
1 (+ . . .?) (A.9)

t2 =
t2
1
s

: E6→ A5 +A1 +A2d
1 (+ . . .?). (A.10)
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A.2.2 E7→ D6

Here, we start with the E7 superpotential deformed by the D-series term TrXY 2,

WE7 +∆W =
1
3

TrY 3 + sTrY X3 + tTrXY 2. (A.11)

There are two sets of 1-dimensional vacuum solutions for X and Y , corresponding to the eigen-

values (x = 0,y = 0), and (x = 5t2

9s ,y = −25t3

27s ). Expanding near the origin appears to just give

Wlow v TrXY 2 =WD̂. Consider though the following sequence of variable changes:

X =U− 1
3t

Y, Y =
s
2t
(Z−U2). (A.12)

In terms of the U,Z fields, (A.11) becomes

W =
s5

108t7

(
−1

4
TrU8 +TrZU6−TrZ2U4− 1

2
Tr(ZU2)2 +TrZ3U2− 1

4
TrZ4

)

+
s4

24t5

(
−TrU7 +3TrZU5−2TrZ2U3−TrUZU2Z +TrZ3U

)
(A.13)

+
s3

4t3

(
−TrU6 +2TrZU4− 2

3
TrZ2U2− 1

3
Tr(UZ)2

)
+

s2

4t

(
TrUZ2−TrU5

)
.

We’ve organized the terms in (A.13) by increasing relevance from the perspective of the UV

fixed point—the most relevant terms in the IR limit of the flow are those in the last parentheses,

such that the D6 theory resides at the origin. There is a 1d solution to the F-terms of (A.13)

corresponding to an A1 theory, such that for all t 6= 0 we recover the 1d vacua:

E7→ D6 +A1 (+ . . .?) (A.14)

where here the (+. . . ?) refers to the unexplored possibility of d > 1 dimensional vacuum solutions.

A.2.3 E8→ D7

We start by deforming the E8 theory with a D-series deformation and E7 deformation,

W =
1
3

TrY 3 +
s
5

TrX5 + t1TrY X3 + t2TrXY 2. (A.15)

From the 1d F-terms of this superpotential, there is one eigenvalue pair at the origin and two

away from the origin. As in the previous subsection, there is naively some ambiguity in iden-

tifying the solution at the origin, since each of TrY X3, TrX5, and TrXY 2 appear to be marginal
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deformations of the UV theory, but the eigenvalue decomposition suggests that the theory at the

origin corresponds to D6. Then, the 1d vacua of (A.15) are D6 +2A1.

There is a particular shift of the coefficients t2 =
5t2

1
4s ≡ t∗ that brings one of the nonzero

A1 eigenvalue pairs to the origin. A change of variables clarifies what is happening: take

Y =U− 2s
5t1

X2, such that (A.15) becomes

W =
1
3

TrU3− 2s
5t1

TrU2X2 +
4s2

25t2
1

TrUX4− 8s3

375t3
1

TrX6 +

(
t1−

4st2
5t1

)
TrUX3

− s
5t1

(
t1−

4st2
5t1

)
TrX5 +

5t2
1

4s
TrU2X . (A.16)

The 1d F-terms of (A.16) still yield one zero eigenvalue pair and two nonzero eigenvalue pairs,

but if we now shift t2 = t∗, then the D6 theory at the origin is enhanced to a D7 theory, while

only one nonzero (1d) vacuum remains, in which both X and U receive masses. In sum, the shift

t2 = t∗ results in the 1d vacua D7 +A1.

We now study higher-dimensional representations of vacuum solutions to the F-terms

of (A.15) and D-terms (3.7). For generic values of the couplings, there is a 2d vacuum (letting

s = 1)

X = x01+ x3σ3, Y = y01+ y3σ3,

x0 = t1(−
9
2

t2
1 +4t2), x3 =

1
2
(9t2

1 −4t2)1/2(3t2
1 −2t2), (A.17)

y0 =
1
2

t1(−27t4
1 +45t2

1 t2−20t2
2), y3 =

1
2
(9t2

1 −4t2)3/2(t2
1 − t2). (A.18)

Then, for generic values of t1 and t2, the 1d and 2d vacua of this flow are

E8→ D6 +2A1 +A2d
1 (+ . . .?). (A.19)

As is evident in (A.18), there exist special values of t2 for which the 2d vacua “go away" in the

sense of Section 3.5.4, e.g.

t2 =
5t2

1
4
≡ t∗ : E8→ D7 +A1 (+ . . .?) (A.20)

t2 =
3t2

1
2

or t2
1 : E8→ D6 +2A1 (+ . . .?) (A.21)

t2 =
9t2

1
4

: E8→ D6 +A2 (+ . . .?) (A.22)
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In all cases above, the (+. . . ?) refers to d > 2 dimensional vacua. The special case (A.20)

corresponds precisely to the shift t∗ already discussed, in which the D6 singularity is enhanced to

a D7 singularity. In this case, one of the two eigenvalues corresponding to an A2d
1 in (A.18) goes

the origin, and the other becomes a copy of the eigenvalues corresponding to the remaining A1

theory. In (A.21), the eigenvalues corresponding to the A2d
1 theories in (A.18) become copies of

the eigenvalues corresponding to the 1d A1 theories. For the shift in (A.22), the two A1 theories

as well as the A2d
1 theory in (A.18) are enhanced to an A2 theory.
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Appendix B

Relevant Formulae for Gluing

Negative-Degree Line Bundles

B.1 Conventions and Main TN Formulae

The TN theory is N = 2 supersymmetric with global symmetries SU(2)R×U(1)R×

SU(N)3. We use a basis for the Cartan subalgebra of the N = 2 R-symmetry SU(2)R×U(1)R

labeled by (I3,RN =2). The R-symmetry of an N = 1 subalgebra is given in (2.3). We can

rewrite these in terms of the generators J+,J− of the U(1)+×U(1)− symmetry preserved by

the N = 1 theories of class S , using RN =2 = J−, and I3 =
1
2J+. With these conventions, for

example, the adjoint field in the N = 2 vector multiplet has (J+,J−) = (0,2).

The (J+,J−) charges of chiral operators of the TN theory are The µA,B,C are moment-map

Table B.1: (J+,J−) charges of chiral operators of the TN theory.

(J+,J−)
uk (0,2k)

Q, Q̃ (N−1,0)
µA,B,C (2,0)
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operators in the adjoint of (one of) the SU(N)A× SU(N)B× SU(N)C flavor symmetry groups,

and the Q(Q̃) transform in the trifundamental(anti-trifundamental) of the SU(N)A×SU(N)B×

SU(N)C symmetry. The uk are Coulomb branch operators of dimension k, with k = 3, . . . ,N.

The IR superconformal R-charge for operators of the TN theory of color σi =±1 is given

by maximizing the following combination of R-charges with respect to ε:

R(ε) =
(

1
2

RN =2 + I3

)
+σiε

(
1
2

RN =2− I3

)

=
1
2
(1−σiε)J++

1
2
(1+σiε)J−.

(B.1)

B.2 Relevant BBBW Results

In [89], Bah, Beem, Bobev, and Wecht (BBBW) compute a and c of the IR N = 1 SCFTs

obtained from compactifying the 6d (2,0) theories on a Riemann surface Cg, where the surface is

embedded in a Calabi-Yau three-fold that decomposes into a sum of line bundles as in (5.5). These

are computed by integrating the anomaly eight-form of the M5-brane theory over the surface Cg,

and matching with the anomaly six-form, which is related to the anomalous divergence of the 4d

N = 1 R-current by the descent procedure.

Due to the presence of an additional global symmetry U(1)F , the superconformal R-

symmetry takes the form

R = K + εF , (B.2)

where ε is a real number determined by a-maximization. For the (2,0) theory of type AN−1, ε is

found to be

ε =
η +κζ

3(1+η)z
, (B.3)

and the central charges a and c are found (for g 6= 1) to be

a = (g−1)(N−1)
ζ 3 +κη3−κ(1+η)(9+21η +9η2)z2

48(1+η)2z2 ,

c = (g−1)(N−1)
ζ 3 +κη3−κ(1+η)(6−κζ +17η +9η2)z2

48(1+η)2z2 .

(B.4)
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η and ζ are defined as

η = N(1+N), ζ =
√

η2 +(1+4η +3η2)z2. (B.5)

z is the twist parameter defined in terms of the degrees of the line bundles p and q as in (6.15),

and κ = 1 for the sphere and κ = −1 for a hyperbolic Riemann surface. In the large N limit,

these simplify to

εlarge-N =
1+κ

√
1+3z2

3z

alarge-N = clarge-N = (1−g)N3

(
1−9z2 +κ(1+3z2)3/2

48z2

)
.

(B.6)

The computation for g = 1 requires special care, as one can preserve N = 4 supersymmetry in

the IR by fixing the normal bundle to the M5-brane worldvolume theory to be trivial. However,

taking p =−q preserves only N = 1 supersymmetry in the IR. Redoing the computation for this

special value, BBBW find that for the AN−1 theory on the torus,

ε =−1
3

√
1+3η

1+η
,

a =
|z|
48

(N−1)(1+3η)3/2
√

1+η
, c =

|z|
48

(N−1)(2+3η)
√

1+3η√
1+η

,

(B.7)

where at large-N,

alarge-N = clarge-N =

√
3

16
|z|N3. (B.8)
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B.3 ’t Hooft Anomalies for Gluing T (m)
N Building Blocks

The ’t Hooft anomaly coefficients for a single TN block are given by

TN coefficients

J+,J3
+ 0

J−,J3
− (N−1)(−3N−2)

J2
+J− 1

3(N−1)(4N2−5N−6)

J+J2
− 0

J+SU(N)2
A,B,C 0

J−SU(N)2
A,B,C −N

(B.9)

An N = 2 vector multiplet contains two fermions with (J+,J−) = (1,1) and (−1,1), so the only

nonzero anomaly coefficients are

N = 2 vector : J− = J3
− = J2

+J− = 2(N2−1). (B.10)

Consider Higgsing an SU(N) flavor group on a TN block by giving a nilpotent vev to the adjoint

chiral multiplet, 〈M〉= ρ(σ3), where the SU(N) flavor corresponds to a maximal puncture whose

color is opposite the background color. This can be computed1 by shifting J−→ J−−2ρ(σ3)

and summing the contribution from the remaining N− 1 singlets M j, j = 1, . . . ,N− 1 whose

R-charges are shifted to (J+,J−) = (0,2+2 j). This results in the following contribution to the

1The author is grateful to Prarit Agarwal for explaining this computation in more detail.
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block being Higgsed:

from Higgsing

J+,J3
+ 1−N

J−,J3
− N2−1

J2
+J− N2−1

J+J2
−

1
3(1−N)(4N2 +4N +3)

J+SU(N)2
A,B,C 0

J−SU(N)2
A,B,C 0

(B.11)

The ’t Hooft anomaly coefficients for a single T (m)
N block are computed in [100] by summing the

contributions of (m+1) TN blocks—m of which have a Higgsed flavor group—and m N = 2

vector multiplets, yielding

T (m)
N coefficients

J+,J3
+ m(1−N)

J−,J3
− (N−1)(m−3N−2)

J2
+J− 1

3(N−1)(4N2−5N−6+m(4N2 +4N +3))

J+J2
−

1
3m(3+N−4N3)

J+SU(N)2
A,B,C 0

J−SU(N)2
A,B,C −N

(B.12)

Taking m = 0 reproduces the TN ’t Hooft anomalies.

Given these anomaly coefficients, we can compute the contribution to the central charges,

using

a(ε) =
3

32
(
3TrR(ε)3−TrR(ε)

)

=
3

64

(
3
4

[
(1− ε)3J3

++(1+ ε)3J3
−+3(1− ε)2(1+ ε)J2

+J−+3(1− ε)(1+ ε)2J+J2
−

]

− (1− ε)J+− (1+ ε)J−

)
.

(B.13)
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Appendix C

Class S Anomaly Conventions

C.1 Anomaly Polynomials and Characteristic Classes

As reviewed in the main text, anomalies are encoded in a (d+2)-form anomaly polynomial

Id+2 that is related to the anomalous variation of the quantum effective action as

δSeff = 2π

∫

Md

I(1)d , (C.1)

where

Id+2 = dI(0)d+1, δ I(0)d+1 = dI(1)d . (C.2)

Anomalies for chiral fields in even d = 2n dimensions are related to index theorems in two higher

dimensions [141]. For example, the Atiyah-Singer index theorem for a chiral spin-1/2 fermion in

d +2 dimensions relates the index density of the Dirac operator to characteristic classes of the

curvatures, which in turn are related to the (d +2)-form anomaly polynomial as

Id+2 = index(i /D) =
[
Â(R)ch(F)

]
d+2. (C.3)

The (d+2) subscript in (C.3) instructs us to extract the (d+2)-form contribution in the expansion

of the curvatures. ch(F) is the Chern character, defined for a complex bundle in terms of the
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corresponding field strength F as

ch(F) = TrreiF/(2π) = dim(r)+ c1(F)+
1
2
(c1(F)2−2c2(F))+ . . . (C.4)

The Chern classes ck are 2k-forms that are polynomials in F of degree k. For reference, the first

two Chern classes take the form

c1(F) =
i

2π
TrF, c2(F) =

1
2(2π)2

[
Tr(F2)− (TrF)2] . (C.5)

Our notation is such that if the Chern roots of an SU(N)-bundle are given by λi, c2(F) =−1
2 ∑i λ 2

i .

Â(R) is the A-roof genus, a function of the curvature R of the spacetime tangent bundle

with leading terms

Â(R) = 1− 1
24

p1(R)+
7p1(R)2−4p2(R)

5760
+ . . . (C.6)

The pk are the Pontryagin classes, 4k-forms that are 2k-order polynomials in R. For reference,

the first two Pontryagin classes for a real vector bundle with curvature R are

p1(R) =−
1
2

1
(2π)2 Tr(R2), (C.7)

p2(R) =
1
8

1
(2π)4

[(
Tr(R2)

)2−2Tr(R4)
]
. (C.8)

For a real bundle with a complex cover, the Pontryagin classes can be related to the Chern classes.

For an SO(N) bundle E, p1(E) and p2(E) can be written in terms of the Chern roots λi as

p1(E) = ∑
i

λ
2
i , p2(E) = ∑

i< j
λ

2
i λ

2
j . (C.9)

Another useful set of identities relates the Pontryagin classes of a vector bundle which is

the Whitney sum of two vector bundles, E = E1⊕E2, to the Pontryagin classes of the constituent

E1,2 as

p1(E) = p1(E1)+ p1(E2) (C.10)

p2(E) = p2(E1)+ p2(E2)+ p1(E1)p1(E2). (C.11)

From (C.3), it follows that the six-form anomaly polynomial for one four-dimensional

Weyl fermion with U(1) charge q is

I6 =
[
Â(T 4)ch(qF)

]
6 =

q3

6
c1(F)3− q

24
c1(F)p1(T 4). (C.12)

190



Here, F is the field strength of the U(1) bundle, and T 4 is the spacetime tangent bundle. More

generally, a four-dimensional theory with a U(1) R-symmetry and anomaly coefficients TrR3 and

TrR (n.b. that R here does not refer to the curvature!) has the corresponding six-form anomaly

polynomial:

I6 =
TrR3

6
c1(F)3− TrR

24
c1(F)p1(T 4). (C.13)

F here is field strength of the U(1) bundle coupled to the R-symmetry. I6 is then related to the

anomalous divergence of the R-symmetry current by the descent procedure.

C.2 Anomalies for Regular N = 2 Punctures

A regular N = 2 puncture is labeled by an embedding ρ : su(2)→ g. For g = AN−1,

the choice of ρ is 1-to-1 with a partition of N, i.e. a Young diagram Y with N boxes. In this

appendix, we review the contributions of punctures from the six-dimensional (2,0) g = AN−1

theories compactified on a Riemann surface Σg,n with genus g and n total punctures.

Let Y have some number of columns of height hi, and some number of rows of length ` j,

corresponding to a partition of N

N = ∑
i

hi = ∑
j
` j. (C.14)

Let ni be the number of columns of height hi that appear in the sum. Then, the theory has an

unbroken flavor symmetry

G = S

[
∏

i
U(ni)

]
, (C.15)

which corresponds to the commutant of the embedding ρ .

We also assign a pole structure to the puncture [82], which can be read off of the Young

diagram. Denote the pole structure by a set of N integers pi, i = 1, . . . ,N. Label each of the N

boxes in the Young diagram sequentially with a number from 1 to N, starting with 1 in the upper

left corner and increasing from left to right across a row. Then, pi = i−(height of ith box). For
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instance, p1 = 1−1 = 0 always.

For example, a “maximal” puncture is labeled by a Young diagram with 1 row of length

`1 = N, or alternatively, N columns each of height h1≤ j≤N = 1. This is commonly denoted

Y = [1, . . . ,1]. The unbroken flavor symmetry is G = SU(N), and the pole structure is pi =

i−1 = (0,1,2, . . . ,N−1). As another example, a “minimal” or “simple” puncture is labeled by a

Young diagram with 1 row of length 2 and N−2 rows of length 1, or alternatively, 1 column of

height N−1 and 1 column of height 1, denoted Y = [N−1,1]. The unbroken flavor symmetry is

G = S[U(1)×U(1)] =U(1), and the pole structure is pi = (0,1,1, . . . ,1).

The effective number of vector multiplets that a regular puncture labeled by a Young

diagram Y contributes to the theory is [83, 95]

nv(PY ) =−
1
2

(
rG +

4
3

dGhG

)
+

N

∑
k=1

(2k−1)pk (C.16)

and the effective number of hypermultiplets is

nh(PY ) =
1
2

[
r

∑
i=1

`2
i −1

]
− 1

2

(
rG +

4
3

dGhG

)
+

N

∑
k=1

(2k−1)pk (C.17)

For example, the maximal puncture contributes

nv(Pmax) =−
1
2
(N2−1), nh(Pmax) = 0, (C.18)

and the minimal puncture contributes

nv(Pmin) =−
1
6
(4N3−6N2−N +3), nh(Pmin) =−

1
6
(4N3−6N2−4N). (C.19)

An SU(ni) flavor group factor corresponds in the Young diagram to a nonzero difference

of ni = `i− `i+1 between the lengths of two rows. Then, the associated flavor central charge can

be written

kSU(`i−`i+1) = 2 ∑
n≤i

`n. (C.20)
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C.3 Integral Identities

It is useful for us to understand integral properties of F0 that are implied by (7.80) and

(7.84). Recall that we describe the transverse space to the branes by the metric (7.64), where µ is

the interval [0,1], and that we use coordinates x1,2 on the Riemann surface. Near each puncture,

we subtract a small ball B3
a of size εa centered at the a’th monopole. Explicitly, the coordinate

transformation near each ball is given by

(µ−µ
a)2 = R2

a(1− τ
2
a ), (x1)2 = (Raτa)

2 cos2
ϕ

a, (x2)2 = (Raτa)
2 sin2

ϕ
a, (C.21)

where ϕa is the circle coordinate for the unbroken U(1)a at each source. We define M̃3 as the

space [µ]×Σg,n, with the balls B3
a subtracted.

With µ as given in (C.21), it follows that for any function h(µ) and n > 0,

as ε
a→ 0 :

∫

M̃3
h(µ)dµ ∧ρ

n
a dA = 0,

∫

M̃3
h(µ)dµ ∧ρ

n
a F0 = 0, (C.22)

∫

M̃3
h(µ)dµ ∧d(τaρa)∧dϕ

a = 0. (C.23)

When no power of ρa appears in the integrand, we have that

as ε
a→ 0 :

∫

M̃3
h(µ)dµ ∧F0 =−2πχ(Σg,1)

∫
h(µ)dµ. (C.24)

The boundary of the balls B3
a is a sphere S2

a. Integrating over the boundary S2
a, we also

have that
∫

S2
a

h(µ)dA = 0,
∫

S2
a

h(µ)dτa∧dϕ
a(ρa)

n(ρb)
m = 4πδab(ka)n+mh(µa). (C.25)

These integrals are useful when evaluating the anomaly.
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