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We study various aspects of scale invariant quantum field theories, in particular, the

non-relativistic ones. We explore consequences on symmetry algebra in terms of unitarity bound,

existence of monotonic renormalization group flow. We leverage the non relativistic conformal

symmetry algebra to construct an operator basis for Heavy Quark Effective Field theory and

there by provide a framework for operator counting in this effective field theory. We investigate

the large charge sector of non-relativistic conformal theory and in that limit, we find the scaling

of operator dimensions with respect to the charge it carries. In the relativistic counterpart, we

focus on 2D conformal field theories (CFT) and explore the consequences of modular invariance
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of thermal partition function of a 2D CFT. In particular, we investigate the finer details of the

asymptotic density of states in 2D CFT using modular invariance and put bounds on asymptotic

gap in the spectra.
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Chapter 1

Introduction

One of the central theme of the thesis is Symmetry. Symmetry is a powerful tool to

describe nature. Since every symmetry is associated with a transformation under which the

system under consideration looks the same, some physical quantity associated with the system

has to be conserved or invariant under such transformation. For example, we can think of a

perfectly round ball painted with a color uniformly, it would look exactly the same even when

someone rotates the ball. If we look carefully at the figure 1.1, we can spot the rotation only

because there is a dot which tells us that we have performed a rotation. Without the dot, the two

picture of the ball look exactly the same. Without the dot, we will say the ball is spherically

symmetric. The orange dot is what breaks the symmetry. This pattern of being same even when

one rotates the object is related to rotational symmetry and the conserved quantity is the angular

momentum of the object. In fact, human as a species has always been awed by patterns. Since

the dawn of the civilization, we have been striving to find patterns, which is often poetically

called finding order in chaos. We observe the nature with minute details, we find out patterns in

events occurring repeatedly. We have found patterns in the cycle of day and night, the apparent

motion of sun across the sky at different time of the year. The take home message in all of these

is that whenever there is a pattern, there is a symmetry associated with it. Another example
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Figure 1.1: The rotation of a sphere with a dot, without the dot, the two scenarios are exactly
the same.

closer to the particle physics is the observation that the lowest spin 0 mesons have similar masses

and form an octet, this led to the discovery of SU(3) flavor symmetry and hence quarks, the

fundamental building block of subatomic elementary particles like proton, neutron etc. In short,

symmetry turns out to be instrumental in explaining the nature. Even when one does not find a

perfect pattern, one can always study the most symmetric scenario and systematically investigate

the deviation from it. Going back to the painted ball example, the orange dot was what caused

the deviation from perfect spherical symmetry.

To formalize the notion of symmetry, we define symmetry in the following way: we start

with a system, we perform an operation on it, if it stays same or changes in a precise manner, we

say that the system is symmetric under the operation. Another example, that one can think of and

the one that will come along in this thesis over and over again is the scaling of space-time, which

basically means zooming in or out while probing a system. Now if we have a self-similar pattern,

for example fractals, zooming in or out would not effect the appearance of the system and we

have scale invariance, see figure 1.2. To give a more intuitive picture, for a reader familiar with

dimensional analysis, we can intimately relate the scale invariance to how we assign dimensions
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Figure 1.2: The image of a fractal (picture taken from Wikipedia). The fractal has a self similar
pattern i.e it looks same whether we zoom in or zoom out.

to various physical quantities and perform dimension analysis. An instructive example is to

consider the energy density of an electromagnetic wave, which can also be thought of as a gas of

photon confined in a box of length L. We know that the energy should be extensive in volume

and should go as L3. Hence the energy density E should be independent of L. The only other

physical quantity that E can depend on is temperature T and the fundamental constants: speed of

light c and the reduced Planck’s constant ~. From this, one can perform the dimension analysis

and deduce that

E = α
kBT 4

(~c)3 (1.1)

where α is some undetermined dimensionless number. In the usual units, kB,~ and c are

fdimensionful constants, nonetheless, we can choose a unit where they are 1 and we have

E = αT 4 (1.2)

We can easily derive the above by using the fact that the theory describing photons in 3+1D is
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scale invariant. In order to show that, we implement a scale transformation on space-time which

takes xxx→ λxxx and t→ λt. Now we assign dimensions to various physical quantities, keeping in

mind that the ~ and c are constants and does not scale under such transformation. This leads to

the following scaling assignment for E and temperature T .

E → λ
−4E (1.3)

T → λ
−1T (1.4)

Since E depends on T only, the only way they can be related and respect scale invariance1

is to satisfy eq. (1.2). The input of scale invariance is coming from the fact there is no other

dimensionful parameter which E can possibly depend on. This example can be thought of as a

stepping stone for more sophisticated use of scale invariance that has been undertaken in this

thesis. Naively, one can think if a theory does not have any intrinsic dimensionful parameter

when we define it, the theory is scale invariant2. In principle one can consider more generic scale

transformation:

xi→ λ
zixi , t→ λ

zt . (1.5)

If one wishes to preserve rotational invariance, one should also impose the restriction that all the

zi’s are equal. In particular, to keep rotational invariance, without loss of generality, we can set

zi = 1, we will be interested in the following scale transformation:

xxx→ λxxx , t→ λ
zt (1.6)

1Technically we call it covariance, which means both side of an equation transforms in a similar manner.
2A technical remark is in order: if a theory has dimensionful parameter, one can assign a scaling dimension to

that parameter and transform it accordingly to restore scale invariance, but to decide whether a theory is invariant or
not, we are not allowed to transform its parameter, for example, one can consider a massive scalar field, we say that
the mass term breaks the scale invariance, this means that we are treating mass as a parameter and not allowed to
assign a scaling dimension to mass and transform it accordingly.

4



Imposing Lorentz invariance on top of it would force z = 1. Unless otherwise mentioned, we

will keep z to be arbitrary.

The second key theme of the thesis is quantum field theory. To understand quantum field

theory, let us first review the concept of field. We start with the basic fact that any physical

system can potentially be described by some quantities which evolves under some parameter.

For example, we can consider a stream of water flowing through a pipe. We can describe the

flow of the water by reading out the velocity of the water at each point along the stream. Thus for

each point along the stream, we have a vector describing the motion of the water. This is what

we call the velocity field. In general, a physical system can be described by some fields, which

assigns numbers or ordered tuple of numbers to each point in space-time. Then the properties of

the system are encoded within how the values of the field at different points in space-time are

correlated with each other. It so turns out that the field can be quantum in nature i.e. each field

can be thought of as a wave form of some quanta i.e. particle. Quantum field theory (QFT) is

nothing but a quantized version of field theory which can also encode the particle nature of the

wave. QFT is one of the most successful mathematical framework to investigate nature, from

the theory of fundamental particles to collective phenomena in condensed matter. The concept

of symmetry gets married to the concept of QFT via the assumption that the quantum fields

and their correlation functions have to transform in a precise manner if the system that the QFT

describes is symmetric under a transformation. As we will be interested in scale invariant field

theories, we reiterate that a QFT is said to be scale invariant if we can assign scaling dimension

to the fields such that all the correlation functions transforms with a scaling dimension under a

scaling of space-time.

The research carried out in this thesis revolves around deeply understanding QFTs using

symmetry arguments especially scale invariance. Even though we know a lot about weakly

coupled QFTs, strongly coupled field theories are much less known. To provide a sense of

strong and weak, let us introduce Alice, she is standing on the floor, the whole enormous sized
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Earth is attracting Alice towards his center but Alice is not falling through (for him) because of

the normal reaction coming from the floor. This normal reaction is nothing but an interaction,

electromagnetic in nature. This, in turn, does show that the electromagnetic interaction is much

stronger than the gravity. Similar phenomenon can be seen when in dry weather one can use

static electricity to hold small pieces of paper against gravity with the comb.

In technical terms, the research undertaken here focuses primarily on the scale invariant

systems, in particular those, described by the non-relativistic (NR) avatars of conformal field

theories (a.k.a CFT, a genre of scale invariant theories) in different dimensions and 2D CFTs .

From a practical standpoint, the scale invariance plays a pivotal role in understanding critical

phenomena such as ferromagnetic phase transition, non relativistic fermions at unitarity, helium

near superfluid transitions. The motivation to study scale invariance not only stems from its

novel practical applications, but also from two fundamental cornerstones of physics: first of all,

QFTs can be understood as renormalization group flows between scale invariant theories, so

the latter organizes the space of QFTs, secondly the scale invariant QFTs offer the simplest and

most tractable examples of the AdS-CFT correspondence, which offers one of our best hopes of

understanding the ambitious holy grail, a nonperturbative theory of quantum gravity.

As mentioned earlier, renormalization group flows end at a point where the scale invariant

field theories reside. In the space of relativistic QFTs, renormalization group flows are monotonic,

which means that there is a function C, a function of couplings of the theory and the function

decreases monotonically as the theory flows from the UV fixed point to the IR fixed point. One

way to study/derive this monotonicity property is to couple the theory to gravity, and investigate

the divergences in vacuum bubble diagrams following the work of Jack and Osborn for φ4 theory,

the work of Grinstein, Stergiou, Stone, Zhong for φ3 theory. We have adapted this formalism and

applied it to generic NR scale invariant systems to identify potential C-theorem candidates. The

similar formalism got adapted by Auzzi et.al. to study NR scale invariant systems with Galilean

boost invariance. This is also known as Schrödinger invariant field theory since the Schrödinger
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equation is invariant under this symmetry group. We went on showing that the free NR scalar

field theory (which is an example of NR scale invariant system with Galilean boost invariance)

does not have any Weyl anomaly using the heat kernel method. This work clarified lot of issues

and subtleties associated with NR Schrödinger operator and corrected some of the previous

results in literature. On this front, the long term goal is to understand the space of non-relativistic

QFTs, prove/disprove the C-theorem like statement in non-relativistic scenarios. The chapter 2

and 3 expound on these.

In chapter 2, Weyl consistency conditions have been used in unitary relativistic quantum

field theory to impose constraints on the renormalization group flow of certain quantities. We

classify the Weyl anomalies and their renormalization scheme ambiguities for generic non-

relativistic theories in 2+1 dimensions with anisotropic scaling exponent z = 2; the extension

to other values of z are discussed as well. We give the consistency conditions among these

anomalies. As an application we find several candidates for a C-theorem. We comment on

possible candidates for a C-theorem in higher dimensions.

In chapter 3 we propose a method inspired from discrete light cone quantization (DLCQ)

to determine the heat kernel for a Schrödinger field theory (Galilean boost invariant with z = 2

anisotropic scaling symmetry) living in d +1 dimensions, coupled to a curved Newton-Cartan

background, starting from a heat kernel of a relativistic conformal field theory (z = 1) living

in d + 2 dimensions. We use this method to show the Schrödinger field theory of a complex

scalar field cannot have any Weyl anomalies. To be precise, we show that the Weyl anomaly

AG
d+1 for Schrödinger theory is related to the Weyl anomaly of a free relativistic scalar CFT

AR
d+2 via AG

d+1 = 2πδ(m)AR
d+2 where m is the charge of the scalar field under particle number

symmetry. We provide further evidence of vanishing anomaly by evaluating Feynman diagrams

in all orders of perturbation theory. We present an explicit calculation of the anomaly using a

regulated Schrödinger operator, without using the null cone reduction technique. We generalize

our method to show that a similar result holds for one time derivative theories with even z > 2.
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In chapter 4 we prove a no-go theorem for the construction of a Galilean boost invariant

and z 6= 2 anisotropic scale invariant field theory with a finite dimensional basis of fields.

Two point correlators in such theories, we show, grow unboundedly with spatial separation.

Correlators of theories with an infinite dimensional basis of fields, for example, labeled by

a continuous parameter, do not necessarily exhibit this bad behavior. Hence, such theories

behave effectively as if in one extra dimension. Embedding the symmetry algebra into the

conformal algebra of one higher dimension also reveals the existence of an internal continuous

parameter. Consideration of isometries shows that the non-relativistic holographic picture

assumes a canonical form, where the bulk gravitational theory lives in a space-time with one

extra dimension. This can be contrasted with the original proposal by Balasubramanian and

McGreevy, and by Son, where the metric of a d +2 dimensional space-time is proposed to be

dual of a d dimensional field theory. We provide explicit examples of theories living at fixed

point with anisotropic scaling exponent z = 2`
`+1 , ` ∈ Z.

The chapters 5−9 deal with a special non-relativistic (NR) avatars of conformal field

theories, henceforth we call them NRCFT. NRCFT is a non relativistic scale invariant theory

with Galilean boost invariance. It also admits another special symmetry known as special

conformal invariance. The cutting edge experiments involving cold atoms provide us an excellent

opportunity to realize systems like fermions at unitarity, which exhibits non-relativistic conformal

invariance. One can measure the energy of ground state and excited states of these fermionic

systems (e.g. systems consisting of 6Li,39K,133Cs) trapped in a harmonic potential. Since the

energy is directly related to the scaling dimension of non-relativistic operators of underlying

NRCFT, describing the system, we have a unique platform where one as a theorist can study how

the symmetry constrains various physical data of NRCFT and subsequently experimentalists can

verify them in a real life experiment. The research on this front aims at extracting these NRCFT

data using symmetry principles on one hand while on the other hand it strives to connect these

results to real life experiments.
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In what follows, a novel connection between 1D CFT and non-relativistic CFT (NRCFT)

to explore the neutral sector (containing physically important operators like current, charge

density, Hamiltonian), which was otherwise unexplored due to subtleties in the representation

theory of NRCFT. The connection arises because of the SL(2,R) subgroup of the NR conformal

group. The SL(2,R) acts on the time co-ordinate and thus all the equal space correlators in

NRCFT behave like the ones in 1D CFT. The work has shown the possibility of the use of 1D

CFT to study NRCFT (bootstrapping NRCFT, deriving sum-rules, nonunitarity in fractional

dimensions) and thus merits further exploration. This is specially relevant as 1D CFT has recently

been analytically studied by Paulos et.al.and exact results have been derived. The connection

with NRCFT allows us to investigate the implications of these fascinating exact results from 1D

CFT in NRCFT.

In chapter 5 we relate the notion of unitarity of a (0+ 1)-D conformally (SL(2,R))

invariant field theory with that of a non-relativistic conformal (Schrödinger) field theory using

the fact that SL(2,R) is a subgroup of non-relativistic conformal (Schrödinger) group. Exploiting

SL(2,R) unitarity, we derive the unitarity bounds and null conditions for a Schrödinger field

theory (for the neutral as well as the charged sector). In non integer dimensions the theory is

shown to be non-unitary. The use of SL(2,R) subgroup opens up the possibility of borrowing

results from (0+ 1)-D SL(2,R) invariant field theory to explore Schrödinger field theory, in

particular, the neutral sector, which has otherwise been unexplored. This viewpoint of organizing

the operator content of Schrödinger invariant field theory in terms of SL(2,R) finds natural

application in heavy quark effective field theory which we explore in chapter 6&7.

In chapter 6 we use a Hilbert series to construct an operator basis in the 1/m expansion

of a theory with a nonrelativistic heavy fermion in an electromagnetic (NRQED) or color gauge

field (NRQCD/HQET). We present a list of effective operators with mass dimension d ≤ 8.

Comparing to the current literature, our results for NRQED agree for d ≤ 8, but there are some

discrepancies in NRQCD/HQET at d = 7 and 8. In chapter 7 an operator basis of an effective
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theory with a heavy particle, subject to external gauge fields, is spanned by a particular kind

of neutral scalar primary of the non-relativistic conformal group. We calculate the characters

that can be used for generating the operators in a non-relativistic effective field theory, which

accounts for redundancies from the equations of motion and integration by parts.

In chapter 8 we study Schrödinger invariant field theories (nonrelativistic conformal field

theories) in the large charge (particle number) sector. We do so by constructing the effective

field theory (EFT) for a Goldstone boson of the associated U(1) symmetry in a harmonic

potential. This EFT can be studied semi-classically in a large charge expansion. We calculate the

dimensions of the lowest lying operators, as well as correlation functions of charged operators.

We find universal behavior of three point function in large charge sector. We comment on

potential applications to fermions at unitarity and critical anyon systems.

In chapter 9, we study operators in Schrödinger invariant field theories (non-relativistic

conformal field theories or NRCFTs) with large charge (particle number) and spin. Via the

state-operator correspondence for NRCFTs, such operators correspond to states of a superfluid

in a harmonic trap with phonons or vortices. Using the effective field theory of the Goldstone

mode, we compute the dimensions of operators to leading order in the angular momentum L and

charge Q. We find a diverse set of scaling behaviors for NRCFTs in both d = 2 and d = 3 spatial

dimensions. These results apply to theories with a superfluid phase, such as unitary fermions or

critical anyon systems.

In chapter 10, we switch gears and focus on 2D conformal field theories. In 2 dimensions,

the conformal algebra can be extended to a bigger infinite dimensional algebra known as Virasoro

algebra. The infinite dimensionality of symmetry algebra provides us with immense control over

the physical theories invariant under such algebra. On top of that, the thermal partition function

of 2D CFTs on a spatial circle are modular invariant i.e. invariant under the exchange of thermal

and spatial circle. This, in turn, relates the low temperature behavior to the high temperature

behavior of partition function. Since the high temperature behavior is controlled by the density

10



of states at high energy, the modular invariance reveals the density of states of a 2D CFT at high

energy. This is known as Cardy formula. The mathematical methodology involves estimation

and bounds of Laplace transform of distributions and comes under the umbrella of Tauberian

theorems. The Cardy formula is an asymptotic expression for the density of states, that can be

derived rigorously using Tauberian theorems. The basic features of Tauberian theorems can

be explained in an elementary manner. The idea comes from an attempt to assign a sum to

otherwise not summable series, where by not summable we mean where the partial sum Sn sum

does not converge as n→ ∞. To cure this, what one does is to construct a hierarchy of notion

of summability. Going up the hierarchy lets one sum series which are not summable in the

lower hierarchy. The branch of mathematics dealing with these is Tauberian theory. To be more

explicit, let us consider the sum ∑k=0(−1)k(k+1), which is evidently not summable in the usual

sense. Now one defines

f (β)≡ ∑
k=0

(−1)k(k+1)e−nβ (1.7)

For β > 0, however, this is summable in the usual sense and we find

f (β) =
e2β(

eβ +1
)2 (1.8)

It’s easy to see, e2β/
(

eβ +1
)2

is well defined at β = 0 and equals to 1/4. Thus, one can say

f (β) goes to 1/4 as β goes to 0. Now one defines,

∑
k=0

(−1)k(k+1) =︸︷︷︸
New notion of sum

1
4
. (1.9)

This new notion of sum is called Abel sum. It’s easy to see that summability in Abel sense

follows directly from summability in the usual sense, but not the other way around. The

Tauberian theorems specify the conditions under which the higher notion of summability (e.g.

Abel summability) implies the lower notion of summability (e.g. the usual summability). In
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its generalized version, one can deduce the asymptotic behavior of the usual sum from the

asymptotic behavior of Abel sum. We will be interested in partition function, which is Laplace

transform of density of states and the Laplace transform is nothing but the continuous version of

Abel sum. In particular, we will be interested in

Z(β) =
∫

d∆ ρ(∆) e−(∆−c/12)β, ρ(∆) = ∑
k

δ(∆−∆k), (1.10)

where β is the inverse temperature. Now, knowing the form of Z(β) as β goes to 0 enables us

to deduce the asymptotic form of
∫

∆

0 d∆′ρ(∆′) as ∆ goes to ∞. The power of Tauberian theory

comes from the fact that one does not have to impose any regularity condition on ρ(∆).

The chapter 10 gives a brief introduction to the Cardy formula and motivates the use

of sophisticated machinery of Tauberian theory. The chapter 11 expounds on finer details

and subleading correction to this formula by methods inspired from Tauberian theorems. In

particular, we improve the existing bounds on the O(1) correction to the Cardy formula for the

density of states in 2 dimensional conformal field theory at high energy. We prove a conjectured

upper bound on the asymptotic gap between two consecutive Virasoro primaries for a central

charge greater than 1, demonstrating it to be 1. Furthermore, a systematic method is provided

to establish a limit on how tight the bound on the O(1) correction to the Cardy formula can be

made using bandlimited functions. The techniques and the functions used here are of generic

importance whenever the Tauberian theorems are used to estimate some physical quantities.
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Chapter 2

Weyl Consistency Conditions in

Non-Relativistic Quantum Field Theory

Weyl consistency conditions have been used in unitary relativistic quantum field theory to

impose constraints on the renormalization group flow of certain quantities. We classify the Weyl

anomalies and their renormalization scheme ambiguities for generic non-relativistic theories in

2+1 dimensions with anisotropic scaling exponent z = 2; the extension to other values of z are

discussed as well. We give the consistency conditions among these anomalies. As an application

we find several candidates for a C-theorem. We comment on possible candidates for a C-theorem

in higher dimensions.

2.1 Introduction

Aspects of the behavior of systems at criticality are accessible through renormalization

group (RG) methods. Famously, most critical exponents are determined by a few anomalous

dimensions of operators. However, additional information, such as dynamical (or anisotropic)

exponents and amplitude relations can be accessed via renormalization group methods near but

13



not strictly at criticality. Far away from critical points there are often other methods, e.g., mean

field approximation, that can give more detailed information. The renormalization group used

away from critical points can valuably bridge the gap between these regions.

Systems of non-relativistic particles at unitarity, in which the S-wave scattering length

diverges, |a| → ∞, exhibit non-relativistic conformal symmetry. Ultracold atom gas experiments

have renewed interest in study of such theories. In these experiments one can freely tune the

S-wave scattering length along an RG flow [1, 2]: at a−1 =−∞ the system is a BCS superfluid

while at a−1 = ∞ it is a BEC superfluid. The BCS-BEC crossover, at a−1 = 0, is precisely the

unitarity limit, exhibiting conformal symmetry. This is a regime where universality is expected,

with features independent of any microscopic details of the atomic interactions. Other examples

of non-relativistic systems with accidentally large scattering cross section include few nucleon

systems like the deuteron [3, 4] and several atomic systems, including 85Rb[5],138Cs [6], 39K

[7].

In the context of critical dynamics the response function exhibits dynamical scaling. This

is characterized by a dynamical scaling exponent which characterizes anisotropic scaling in

the time domain. There has been recent interest in anisotropic scaling in systems that are non-

covariant extensions of relativistic systems. The ultraviolet divergences in quantized Einstein

gravity are softened if the theory is modified by inclusion of higher derivative terms in the

Lagrangian. Since time derivatives higher than order 2 lead to the presence of ghosts,1 Horava

suggested extending Einstein gravity by terms with higher spatial derivatives but only order-2

time derivatives [13]. The mismatch in the number of spatial versus time derivatives is a version

of anisotropic scaling, similar to that found in the non-relativistic context. This has motivated

studies of extensions of relativistic quantum field theories that exhibit anisotropic scaling at short

distances. Independently, motivated by the study of Lorentz violating theories of elementary

1Generically, the S-matrix in models with ghosts is not unitary. However, under certain conditions on the
spectrum of ghosts and the nature of their interactions, a unitary S-matrix is possible [8, 9, 10, 11]. In theories of
gravity Hawking and Hertog have proposed that ghosts lead to unitarity violation at short distances, and unitarity is
a long-distance emergent phenomenon [12].
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particle interactions [14], Anselmi found a critical point with exact anisotropic scaling, a so-

called Lifshitz fixed point, in his studies of renormalization properties of interacting scalar field

theories [15]; see Refs. [16, 17] for the case of gauge theories. Anomalous breaking of anisotropic

scaling symmetry in the quantum Lifshitz model has been studied in Ref. [18, 19, 20, 21, 22];

see also Ref. [23] for an analysis using holographic methods.

Wess-Zumino consistency conditions for Weyl transformations have been used in unitary

relativistic quantum field theory to impose constraints on the renormalization group flow of Weyl

anomalies [24]. In 1+1 dimensions a combination of these anomalies gives Zamolodchikov’s

C-function [25], that famously decreases monotonically along flows towards long distances, is

stationary at fixed points and equals the central charge of the 2D conformal field theory at the

fixed point boundaries of the flow. Weyl consistency conditions can in fact be used to recover

this result [24]. Along the same lines, in 3+1 dimensions Weyl consistency conditions can be

used to show that a quantity ã satisfies

µ
dã
dµ

= Hαββ
α

β
β (2.1)

where µ is the renormalization group scale, increasing towards short distances. The equation

shows that at fixed points, characterized by µdgα/dµ≡ βα = 0, ã is stationary. It can be shown

in perturbation theory that Hαβ is a positive definite symmetric matrix [26]. By construction

the quantity ã is, at fixed points, the conformal anomaly a of Cardy, associated with the Euler

density conformal anomaly when the theory is placed in a curved background [27]. This is

then a 4-dimensional generalization of Zamolodchikov’s C function, at least in perturbation

theory. Going beyond 4 dimensions, Weyl consistency conditions can be used to show that in

d = 2n dimensions there is a natural quantity that satisfies (2.1), and that this quantity is at fixed

points the anomaly associated with the d-dimensional Euler density [28]. Concerns about the

viability of a C-theorem in 6-dimensions were raised by explicit computations of “metric” Hαβ
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in perturbation theory [29, 30, 31]. However it was discovered in Ref. [32] that there exists a

one parameter family of extensions of the the quantity ã of Ref. [28] that obey a C-theorem

perturbatively.

Weyl consistency conditions can also be used to constrain anomalies in non-relativistic

field theories. The constraints imposed at fixed points have been studied in Ref. [18] for models

with anisotropic scaling exponent z = 2 in 2-spatial dimensions; see Refs. [33, 34] for studies

of the Weyl anomaly at d = 4,z = 3 and d = 6. Here we investigate constraints imposed along

renormalization group flows. We recover the results of [18] by approaching the critical points

along the flows. As mentioned above, there are questions that can only be accessed through

the renormalization group methods applied to flows, away from fixed points. The additional

information obtained from consideration of Weyl consistency conditions on flows can be used

to ask a number of questions. For example, we may ask if there is a suitable candidate for a

C-theorem.

A related issue is the possibility of recursive renormalization group flows. Recursive

flows in the perturbative regime have been found in several examples in 4−ε and in 4 dimensional

relativistic quantum field theory [35, 36, 37, 38, 39, 40]. Since Weyl consistency conditions

imply ã does not increase along RG-flows it must be that ã remains constant along recursive

flows. This can be shown directly, that is, without reference to the monotonicity of the flow;

see [40]. In fact one can show that on recursive flows all physical quantities, not just ã, remain

constant: the recursive flow behaves exactly the same as a single fixed point. This is as it should

be: the monotonicity of the flow of a implies that limit cycles do not exist in any physically

meaningful sense [41, 42]; in fact, they may be removed by a field and coupling constant

redefinition. However, it is well known that bona-fide renormalization group limit cycles exist

in some non-relativistic theories [43, 44, 45]. The C-theorem runs afoul of limit-cycles, and an

immediate question then is what invalidates it in models that exhibit recursive flows? Our analysis

indicates some potential candidates for C-theorems but does not show whether generically the
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“metric” Hαβ has definite sign. The question of under what conditions the metric has definite

sign, precluding recursive flows, is left open for further investigation.

The paper is organized as follows. In Sec.2.2 we set-up the computation, using a

background metric and space and time dependent coupling constants that act as sources of

marginal operators. In the section we also clarify the relation between the dynamical exponent

and the classical anisotropic exponent. We then use this formalism in Sec. 2.3 where we analyze

the consistency conditions for the case of 2-spatial dimensions and anisotropic exponent z = 2.

The Weyl consistency conditions and scheme dependent ambiguities are lengthy, so they are

collected in Apps. A.1 and A.2. In Sec. 2.4 we explore the case of arbitrary z, extending some of

the results of the previous section and in Sec. 2.5 we propose a candidate C-theorem for any even

spatial dimension. We offer some general conclusions and review our results in Sec. 2.6. There

is no trace anomaly equation for the case of zero spatial derivatives, that is, particle quantum

mechanics; we comment on this, and present a simple but useful theorem that does apply in this

case, in the final appendix, App. A.3.

2.2 Generalities

We consider non-relativistic (NR) field theories with point-like interactions. Although not

necessary for the computation of Weyl consistency conditions, it is convenient to keep in mind a

Lagrangian description of the model. The Lagrangian density L = L(φ,m,g) is a function of

fields φ(t,xxx), mass parameters m and coupling constants g that parametrize interaction strengths.

We restrict our attention to models for which the action integral,

S[φ(xxx, t)] =
∫

dt ddxL
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remains invariant under the rescaling

xxx 7→ λxxx, t 7→ λ
zt, (2.2)

that is,

S[λ∆
φ(λxxx,λzt)] = S[φ(xxx, t)] .

Here ∆ is the matrix of canonical dimensions of the fields φ. In a multi-field model the anisotropic

scaling exponent z is common to all fields. Moreover, assuming that the kinetic term in L is local,

so that it entails powers of derivative operators, z counts the mismatch in the number of time

derivatives and spatial derivatives. In the most common cases there is a single time derivative

and z spatial derivatives so that z is an integer.

For a simple example, useful to keep in mind for orientation, the action for a single

complex scalar field with anisotropic scaling z in d dimensions is given by

S =
∫

dt ddx
[
imφ

∗←→
∂t φ−∇∇∇i1· · ·∇∇∇iz/2φ

∗
∇∇∇i1· · ·∇∇∇iz/2φ−gmz/d|φ|2N

]
, (2.3)

where z is an even integer so that the Lagrangian density is local. If N = 1+ z/d the scaling

property (2.2) holds with ∆ = d/2 (alternatively, if N ∈ Z, then z = d(N−1) ∈ dZ). When (2.2)

holds the coupling constant g is dimensionless. The mass parameters m have dimensions of T/Lz,

where T and L are time and space dimensions, respectively. One may use the mass parameter

to measure time in units of z-powers of length, and this can be implemented by absorbing m

into a redefinition, t = mt̂. In multi-field models one can arbitrarily choose one of the masses to

give the conversion factor and then the independent mass ratios are dimensionless parameters of

the model. In models that satisfy the scaling property (2.2), these mass ratios together with the

coefficients of interaction terms comprise the set of dimensionless couplings that we denote by

gα below.
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The above setup is appropriate for studies of, say, quantum criticality. However the

calculations we present are applicable to studies of thermal systems in equilibrium since the

imaginary time version of the action integral is equivalent to an energy functional in d+1 spatial

dimensions. Taking t =−iy in the example of Eq. (2.3) the corresponding energy integral is

H =
∫

dyddx
[
mφ
∗←→

∂y φ+∇∇∇i1· · ·∇∇∇iz/2φ
∗
∇∇∇i1· · ·∇∇∇iz/2φ+gmz/d|φ|2N

]
.

The short distance divergences encountered in these models need to be regularized and

renormalized. Although our results do not depend explicitly on the regulator used, it is useful to

keep in mind a method like dimensional regularization that retains most symmetries explicitly.

Thus we consider NR field theories in 1+n dimensions, where the spatial dimension n = d− ε,

with d an integer. Dimensional regularization requires the introduction of a parameter µ with

dimensions of inverse length, L−1. Invariance under (2.2) is then broken, but can be formally

recovered by also scaling µ appropriately, µ 7→ λ−1µ. For an example, consider the dimensionally

regularized version of (2.3):

S[φ0(xxx, t);µ] =
∫

dt dnx
[
im0 φ

∗
0
←→
∂t φ0−∇∇∇i1· · ·∇∇∇iz/2φ

∗
0∇∇∇i1· · ·∇∇∇iz/2φ0−gZgmz/d

0 µkε|φ0|2N
]
.

(2.4)

We have written this in terms of bare field and mass, φ0 and m0, and have given the bare

coupling constant explicitly in terms of the renormalized one, g0 = µkεZgg. The coefficient

k = N−1 = z/d is dictated by dimensional analysis. It follows that

S[λn/2
φ0(λxxx,λzt);λ

−1µ] = S[φ0(xxx, t);µ] (2.5)

In order to study the response of the system to sources that couple to the operators in

the interaction terms of the Lagrangian, we generalize the coupling constants gα to functions

of space and time gα(t,xxx). One can then obtain correlation functions of these operators by
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taking functional derivatives of the partition function with respect to the space-time dependent

couplings, and then setting the coupling functions to constant values. Additional operators of

interest are obtained by placing these systems on a curved background, with metric γµν(t,xxx).

One can then obtain correlations including components of the stress-energy tensor by taking

functional derivatives with respect to the metric and evaluating these on a trivial, constant metric.

For example, we then can define the components of the symmetric quantum stress energy tensor

and finite composite operators in the following way:

Tµν =
2
√

γ

δS0

δγµν
[Oα] =

1
√

γ

δS0

δgα
(2.6)

The square bracket notation in the last term indicates that these are finite operators, possibly

differing from Oα = ∂L/∂gα by a total derivative term.

Time plays a special role in theories with anisotropic scaling symmetry. Hence, it is

useful to assume the background space-time, in addition to being a differential manifold M ,

carries an extra structure — we can foliate the space-time with a foliation of co-dimension 1.

This can be thought of a topological structure on M [13], before any notion of Riemannian

metric is introduced on such manifold. Now the co-ordinate transformations that preserve the

foliation are of the form:

t 7→ τ(t), xi 7→ ξ
i(xxx, t) (2.7)

We will also assume the space-time foliation is topologically given by M = R×Σ. The foliation

can be given Riemannian structure with three basic objects: hi j, Ni and N. This is the ADM

decomposition of the metric — one can generally think as writing the metric in terms of lapse

and shift functions, N(t,xxx) and Ni(t,xxx), and a metric on spatial sections, hi j(t,xxx):

ds2 = γµνdxµdxν = N2dt2 +2Nidtdxi−hi jdxidx j (2.8)
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Here and below the latin indices run over spatial coordinates, i, j = 1, . . . ,d. We assume

invariance of the theory under foliation preserving diffeomorphisms. In a non-relativistic set up,

it is convenient to remove the shift Ni by a foliation preserving map t 7→ τ(t) and xi 7→ ξi(xxx, t).

The metric is then given by

ds2 = γµνdxµdxν = N2dt2−hi jdxidx j (2.9)

Once the shift functions are removed the restricted set of diffeomorphisms that do not mix space

and time are allowed, t→ τ(t) and xi→ ξi(x), so that Ni = 0 is preserved.

In Euclidean space, the generating functional of connected Green’s functions W is given

by

eW =
∫
[dφ] e−S0−∆S . (2.10)

The action integral for these models is generically of the form

S0 =
∫

dt dnxN
√

hL0 , (2.11)

where h= det(hi j). We have denoted by L0 the Lagrangian density with bare fields and couplings

as arguments; these are to be expressed in terms of the renormalized fields and couplings, so as

to render the functional integral finite. The term ∆S contains additional counter-terms that are

solely functionals of gα and γµν that are also required in order to render W finite. In a curved

background the scaling (2.2) can be rephrased in terms of a transformation of the metric,

N(xxx, t) 7→ λ
zN(xxx, t) , hi j(xxx, t) 7→ λ

2hi j(xxx, t) . (2.12)

Then the generalization of the formal invariance of Eq. (2.5) is

S0[λ
zN(xxx, t),λ2hi j(xxx, t),λ∆0φ0(xxx, t);λ

−1µ] = S0[N(xxx, t),hi j(xxx, t),φ0(xxx, t);µ] (2.13)
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for a suitable matrix of canonical dimensions ∆0 of the bare fields (appropriate to n = d− ε

spatial dimensions).

We assume that when introducing a curved background the action integral is suitably

modified so that the formal symmetry of Eq. (2.13) holds locally, that is, it holds when replacing

λ→ exp(−σ(xxx, t)). The modification to the action integral consists of additional terms that

couple the fields φ to the background curvature.

For example, the model in Eq. (2.4) for z = 2 is modified to include, in addition to

coupling to a background metric, additional terms

∫
dt dnxN

√
h
[

im0ξKφ
∗
0φ0K +ξNφ

(
φ
∗
0

∂iN
N

∂
i
φ0 +φ0

∂iN
N

∂
i
φ
∗
0

)
+ξNN

∂iN
N

∂iN
N

φ
∗
0φ0 +ξRRφ

∗
0φ0

]
.

Here Ki j =
1
2∂thi j/N is the extrinsic curvature of the t = constant hypersurfaces in the Ni = 0

gauge and K = hi jKi j (with hi j the inverse of the metric hi j), and R is the d-dimensional

Ricci scalar for the metric hi j. Under the transformation (2.12) with λ = exp(−σ) one has

K → e2σ(K + n∂tσ/N), R→ e2σ(R+ 2(n− 1)∇2σ− (n− 1)(n− 2)∇iσ∇iσ) and N → e−2σN,

so that choosing ξK = 1/2 and ensuring

2(n−1)ξR +2ξNφ +
n
2
= 0 (n+2)ξNφ−4ξNN +

n
2
= 0, (2.14)

the action integral remains invariant. Thus, we have a one parameter family of parameters

that preserves invariance of the action under anisotropic scaling. For arbitrary even z and

arbitrary spatial dimension n, in the example (2.4) we first integrate by parts the spatial covariant

derivatives:

∇∇∇i1· · ·∇∇∇iz/2φ
∗
∇∇∇i1· · ·∇∇∇iz/2φ→ (−1)z/2

φ
∗(∇2)z/2

φ .
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Then we replace the operator (∇2)
z
2 by O(n+2z−4)O(n+2z−8) · · ·O(n+4)O(n) with O(p) defined as

O(p) ≡
[

∇
2− p

4(n−1)
R+

2+ p−n
z

∂iN
N

hi j
∂ j +

n
4z2 (2+ p−n)

∂iN
N

hi j ∂ jN
N

]
(2.15)

Under hi j → e−2σhi j, N → e−zσN and ψ→ e
p
2 σ

ψ, this operator transform covariantly, in the

sense that

O(p)
ψ→ e(

p
2+2)σO(p)

ψ . (2.16)

Hence, under the Weyl rescaling hi j→ e−2σhi j, N→ e−zσN and φ→ e
n
2 σ

φ we have following,

transforming covariantly

φ
∗
0O(n+2z−4)O(n+2z−8) · · ·O(n+4)O(n)

φ0→ e(n+z)σ
φ
∗
0O(n+2z−4)O(n+2z−8) · · ·O(n+4)O(n)

φ0

(2.17)

For z = 2, this construction gives

N
√

hφ
∗
0O(n)

φ0 = N
√

hφ
∗
0

[
∇

2− n
4(n−1)

R+
∂iN
N

hi j
∂ j +

n
8

∂iN
N

hi j ∂ jN
N

]
φ0 (2.18)

= N
√

h
[
−∂iφ

∗
0∂

i
φ0−

n
4(n−1)

Rφ
∗
0φ0 +

n
8

∂iN
N

hi j ∂ jN
N

φ
∗
0φ0

]
(2.19)

This solves Eq. (2.14) with

ξR =− n
4(n−1)

, ξNφ = 0, ξNN =
n
8
. (2.20)

The extra freedom for z = 2 arises from the fact that φ∗0

[
R+(n−1)∇2N

N −
(n−1)(n+2)

4
∂iN
N

∂iN
N

]
φ0

is Weyl invariant. This special invariant quantity is available only for z = 2.

Having constructed a classically Weyl invariant curved space action, we have that
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W̃ =W −Wc.t. =W +∆S is invariant under these local transformations:

W̃ [e−zσN,e−2σhi j,gα(e−σµ)] = W̃ [N,hi j,gα(µ)] (2.21)

We have suppressed the explicit dependence on space and time and have assumed the only depen-

dence on the renormalization scale µ is implicitly through the couplings: using µ-independence of

bare couplings, g0 = µkεg(µ)Zg(g(µ)) = (λµ)kεg(λµ)Zg(g(λµ)) so that (λ−1µ)kεg(µ)Zg(g(µ)) =

µkεg(λµ)Zg(g(λµ)).

The generating functional W is not invariant in the sense of Eq. (2.21). The anomalous

variation of W arises purely from the counter-terms: under an infinitesimal transformation,

∆σW =Wc.t.[(1− zσ)N,(1−2σ)hi j,gα−σ µ dgα/dµ]−Wc.t.[N,hi j,gα]

=
∫

dt ddx N
√

h
(
terms with derivatives on N, hi j, gα and σ

)
(2.22)

does not vanish. Using Eqs. (2.6) and choosing σ to be an infinitesimal local test function, this

reads

z〈T 0
0〉+ 〈T i

i〉−β
α〈[Oα]〉=

(
terms with derivatives on N, hi j, gα and σ

)
. (2.23)

Evaluating at space and time independent coupling constants and on a flat metric, so that the

right hand side vanishes, we recognize this as the trace anomaly for NRQFT.

Since the Weyl group is Abelian, consistency conditions follow from requiring that

[∆σ,∆σ′]W = 0 . (2.24)

These consistency conditions impose relations on the various anomaly terms on the right hand

side of Eq. (2.22). In the following sections we classify all possible anomaly terms and derive
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the relations imposed by these conditions.

2.2.1 Dynamical exponent

In the theory of critical phenomena the dynamical exponent ζ characterizes how a

correlation length scales with time in time dependent correlations. At the classical level (the

gaussian fixed point) this just corresponds to the anisotropic exponent z introduced above. To

understand the connection between these we must retain explicitly the dependence on the mass

parameter(s) m in Eqs. (2.13) and (2.21). We consider for simplicity the case of a single mass

parameter. In particular, we have

W̃ [e−zσN,e−2σhi j,gα(e−σµ),m(e−σµ)] = W̃ [N,hi j,gα(µ),m(µ)] . (2.25)

By dimensional analysis and translational and rotational invariance, the correlator of

fundamental fields is given by

〈φ(xxx, t)φ(0,0)〉= 1
|xxx|2∆

F(ln(m(µ)|xxx|z/t), ln(µ|xxx|)) ,

for some dimensionless function of two arguments, F(x,y). This function is further constrained

by the renormalization group equation. At a fixed point, βα = 0, it takes the form

(
µ

∂

∂µ
+ γmm

∂

∂m
+2γ

)
〈φ(xxx, t)φ(0,0)〉= 0 ,

where γm and γ are the mass anomalous dimension and the field anomalous dimension, respec-

tively. These are generally dimensionless functions of the dimensionless coupling constants, gα,

here evaluated at their fixed point values, say, gα
∗ . It follows that

〈φ(xxx, t)φ(0,0)〉= 1

µ2γ

0 |xxx|2(∆+γ)
f (m(µ0)µ

−γm
0 |xxx|z−γm/t) .
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E,kkk E,kkk

(1
2E + p0,

1
2kkk+ ppp)

(1
2E− p0,

1
2kkk− ppp)

Figure 2.1: Self energy correction to propagator at one loop. The ingoing momenta is denoted
by (E,kkk) while the internal loop momenta is given by the variable p.

Here µ0 is a reference renormalization point and f is a dimensionless function of one variable.

This shows that at the fixed point the fields scale with dimension ∆+ γ and the dynamical

exponent is ζ = z− γm. It is important to understand that while ζ can be thought of as running

along flows, the exponent z is fixed to its classical (gaussian fixed point) value.

As an example consider the following Lagrangian for a z = 2 theory in 4+1 dimensions:

L =
[
iZmmZφφ

∗←→
∂t φ−Zφ∇∇∇φ

∗
∇∇∇φ− 1

2Zggµ
ε

2
√

ZmmZ3/2
φ
|φ|2 (φ+φ

∗)
]
, (2.26)

The renormalization factors in dimensional regularization in n+1 dimensions, with n = 4− ε,

have the following form:

ZX = 1+ ∑
n=1

aX
n

εn , (2.27)

where the residues aX
n are functions of the renormalized coupling constant g. Independence of

the bare parameters on the scale µ requires

0 = µ
d

dµ

(
Zggµ

ε

2

)
=

∂Zg

∂g
β̂gµ

ε

2 +Zgβ̂µ
ε

2 +
ε

2
Zggµ

ε

2 (2.28)

where β̂≡ µdg/dµ has β̂(g,ε) =− ε

2g+β(g), and

0 = µ
d

dµ
(Zmm) =

∂Zm

∂g
β̂m+µ

dm
dµ

Zm . (2.29)
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It follows that

γm = µ
d ln(m)

dµ
= 1

2g
dam

1
dg

. (2.30)

At one loop the self-energy correction to the propagator, represented by the Feynman

diagram in Fig. 2.1, reads

iΣ(E,kkk) =−1
2mg2µε

∫ d p0

2π

dn p
(2π)n D

(1
2E− p0,

1
2kkk− ppp

)
D
(1

2E + p0,
1
2kkk+ ppp

)
(2.31)

where the propagator is given by

D(E, ppp ) =
i

(2mE− ppp 2 + i0+)
. (2.32)

The integration over p0 and then over ppp gives

Σ(E,kkk ) = 1
8g2µε

∫ dn p
(2π)n

1(
mE− 1

4kkk2− ppp 2
) =−1

ε

g2

64π2 (mE− 1
4kkk 2)+ · · · , (2.33)

where the ellipses stand for finite terms. We read off

Zφ−1 =
g2

256π2ε
and Zm−1 =

g2

256π2ε
.

Form which it follows that

γm =
g2

256π2 . (2.34)
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2.3 d = 2, z = 2 Non Relativistic theory

2.3.1 Listing out terms

We first consider 2+ 1 NRCFT with z = 2. It is convenient to catalogue the possible

terms on the right hand side of Eq. (2.22) by the number of space and time derivatives acting

on the metric, the couplings and the transformation parameter σ. Rotational invariance implies

that space derivatives always appear in contracted pairs. We must, in addition, insure the correct

dimensions. Table 2.1 summarizes the dimensions of the basic rotationally invariant quantities;

R stands for the curvature scalar constructed from the spatial metric hi j. Since hi j is the metric

of a 2 dimensional space, rotational invariants constructed from the Riemann and Ricci tensors

can be expressed in terms of R only.

Table 2.1: Basic rotationally invariant operators and their dimensions. They are made out of N,
gα and curvature R.

Operators N gα R
Length Dimension 0 0 2
Time Dimension 1 0 0

In order to match up the dimension of the Lagrangian, terms that only contain spatial

derivatives must have exactly four derivatives. The derivatives can act on the metric or on

on the dimensionless variation parameter σ. Hence we have following 2-spatial-derivatives

components:

∂iN
N

∂iN
N

,
∂iN
N

∂
igα , ∂igα

∂
igβ ,

∇2N
N

, ∇
2gα , R (2.35)

∇
2
σ (2.36)

∂iσ
∂iN
N

, ∂iσ∂
igα (2.37)

where we note that in the term ∂iN
N the denominator serves to cancel off the time dimension of the

numerator. To form a 4 derivative term out of above terms, we can (i) choose two terms among
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Table 2.2: Summary of four spatial derivative terms that can enter the counterterm functional
Wc.t. or the anomaly on the right hand side of Eq. (2.22). The terms in Wc.t. are the products of
the first six entries of the first column and the first six of the first row, and their coefficients
are the first of the entries listed in the table (uppercase letters). Those in the anomaly extend
over the whole table; in the first 6×6 block they correspond to the second entry (lowercase
characters) and for those a factor of σ is implicit. The red NA labels denote terms that are
second order in infinitesimal parameter σ, hence dropped. Latin indices are contracted with the
inverse metric hi j when repeated, eg, ∂iN∂iN = hi j∂iN∂ jN.

∇4 Sector ∂iN∂iN ∂igα∂igβ ∂iN∂igα ∇2N ∇2gα R ∇2σ ∂iσ∂iN ∂iσ∂igα

∂iN∂iN P3, p3 Xαβ,xαβ P1α,ρ9α P4, p4 Yα,yα Q,χ4 χ3 ρ11 ρ8α

∂igα∂igβ Xαβ,xαβ Xαβγδ,xαβγδ Xαβγ,xαβγ X2αβ,x2αβ T2αβγ, t2αβγ Y5αβ,y5αβ a3αβ ρ1αβ tαβγ

∂iN∂igα P1α,ρ9α Xαβγ,xαβγ P5αβ, p5αβ P25α,ρ25α P26αβ,ρ26αβ χα χ1α ρ10α x1αβ

∇2N P4, p4 X2αβ,x2αβ P25α,ρ25α P23,ρ23 P24α,ρ24α H,c2 h2 ρ12 ρ13α

∇2gα Yα,yα T2αβγ, t2αβγ P26αβ,ρ26αβ P24α,ρ24α P22αβ,ρ22αβ A5α,a5α a4α ρ7α ρ21αβ

R Q,χ4 Y5αβ,y5αβ Q1α,χα H,c 1 A5α,a5α A, a n h1 a7α

∇2σ χ3 a3αβ χ1α h2 a4α n NA NA NA
∂iσ∂iN ρ11 ρ1αβ ρ10α ρ12 ρ7α h1 NA NA NA
∂iσ∂igα ρ8α tαβγ x1αβ ρ13α ρ21αβ a7α NA NA NA

(2.35) with repetition allowed: there are 62− 6C2 = 21 such terms; (ii) (2.36) can combine with

any of (2.35) giving 6 additional terms; and (iii) we can choose one of (2.37) and choose another

from (2.35), yielding an additional 2∗6 = 12 terms. Hence we will have 21+12+6 = 39 terms

with four space derivatives. Terms with derivatives of R, such as

∂iR∂
igα and ∂iR

∂iN
N

,

are not independent. Integrating by parts, the term ∂iR∂igα can written in terms of R∇2gα and

R∂iσ∂igα, and the term R∇2N can be expressed in terms of ∂iR∂iN
N . The 39 four derivative

terms, which we call the ∇4 sector, appear on the right hand side of (2.22) with dimensionless

coefficients that are functions of the couplings gα, and with a factor of σ if the term does not

already contain one. Table 2.2 gives our notation for the coefficients of these terms in Eq. (2.22).

Two time derivatives are required for the sector with pure time derivatives, which we

label ∂2
t . The terms must still have length dimension −4. The dimensions of the basic building
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Table 2.3: Basic building blocks for operators in the ∂2
t sector and their dimensions. They are

made out of K, gα and (Ki j− 1
2 Khi j).

Operators K gα (Ki j− 1
2Khi j)

Length Dimension 0 0 0
Time Dimension 1 0 1

Table 2.4: Summary of two time derivative terms that can enter the counterterm functional Wc.t.
or the anomaly on the right hand side of Eq. (2.22). The terms in Wc.t. are the products of the
first, second, fourth entries of the first column and the first, second, fourth entry of the first row
, and their coefficients are the first of the entries listed in the table (uppercase letters). Those in
the anomaly extend over the whole table; in the first 2×2 block they correspond to the second
entry (lowercase characters) and for those a factor of σ is implicit. The red NA labels denote
terms that are either second order in infinitesimal parameter σ or terms that are not rotationally
invariant.

∂2
t Sector K ∂tgα ∂tσ Ki j− 1

2Khi j
K D,d Wα, wα f NA

∂tgα Wα, wα X0αβ, χ0αβ bα NA
∂tσ f bα NA NA

Ki j− 1
2Khi j NA NA NA E,e

blocks are given in Tab. 2.3, where Ki j =
1
2∂thi j/N is the extrinsic curvature of the t =constant

hypersurfaces in the Ni = 0 gauge and K = hi jKi j (with hi j the inverse of the metric hi j). The

combination (Ki j− 1
2Khi j) is convenient because it is Weyl invariant. Hence, for the ∂2

t sector

we have the following basic one derivative terms:

K, ∂tgα (2.38)

∂tσ (2.39)

Ki j− 1
2Khi j (2.40)

The term ∂tN is not included in the list because it is not covariant. The diffeomorphism invariant

quantity is given by ∂tN−Γ0
00N which vanishes identically 0.

Possible anomaly terms are constructed from the 22−1 = 3 products of terms in (2.38);

from 2 terms by combining (2.39) and one from (2.38); and we can have (2.40) contracted
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Table 2.5: Summary of one-time, two-space derivative terms that can enter the counterterm
functional Wc.t. or the anomaly on the right hand side of Eq. (2.22). The terms in Wc.t. are the
products of the entries that have no explicit σ factor, and their coefficients are the first of the
entries listed in the table (uppercase letters). Those in the anomaly extend over the whole
table; terms without explicit σ have coefficients that correspond to the second entry (lowercase
characters) and for those a factor of σ must be included. Latin indices are contracted with
the spatial metric as necessary to make the product of the first column and first row entries
rotationally invariant; for example, ρ4 denotes the coefficient of K∂iN∂iN. For last entry in
the first column, indices are contracted with those in the terms in first row. The red NA labels
denote terms that are second order in infinitesimal parameter σ, hence dropped. The blue NA
one denotes a term that is identically 0 since Ki j− 1

2 Khi j vanishes upon contraction via hi j.

∂t∇
2 Sector ∂iN∂ jN ∂igα∂ jgβ ∂iN∂ jgα ∇i∇ jN ∇i∇ jgα R ∇i∇ jσ ∂iσ∂ jN ∂iσ∂ jgα

K P, ρ4 X5αβ,x5αβ Pα,ρα L, j3 P3α,b8α B,b m l1 b7α

∂tgα Xα,ρ6α X3αβγ,x3αβγ P4αβ, p4αβ B6α,b6α X4αβ,x4αβ B5α,b5α B9α,b9α ρ5α x6αβ

∂tσ ρ3 b3αβ ρ1α l2 b4α k NA NA NA
Ki j− 1

2Khi j F1, f1 F2αβ, f2αβ F3α, f3α F4, f4 F5α, f5α NA f6 f7 f8α

with itself. Thus in total there are 3+ 2+ 1 = 6 terms listed in Tab. 2.4 that also gives the

corresponding coefficients.

The sector with mixed derivatives has terms with one time and two spatial derivatives.

For this ∂t∇
2 sector we can form terms by combining one of (2.38) or (2.39) with one of (2.35),

(2.36) or (2.37), excluding terms quadratic in σ. This gives 3∗9−3 = 24 terms, as displayed

with their coefficients in Tab. 2.5. Finally, we have terms that are not constructed as products of

rotationally invariant quantities. Coefficient of those terms are listed in the last row of Tab. 2.5.

2.3.2 Using counter-terms

One can similarly list all possible terms in Wc.t.. The requirements imposed by dimen-

sional analysis and rotational invariance are as before, the only difference being that these terms

are built from the metric and the couplings but not the parameter of the Weyl transformation σ.

Therefore the list of possible counterterms is obtained from the one for anomalies by replacing

σ→ 1. Tables. 2.2, 2.4 and 2.5 give, as uppercase letters, our notation for the coefficients of

3K∇2N can be written as ∂iK∂iN by doing integration by parts, and it is for this operator that we use the
coefficient j.
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these operators in Wc.t..

The counterterms in Wc.t. are not completely fixed by requiring finiteness of the generating

functional. The ambiguity consists of the freedom to include arbitrary finite contributions to

each term. This freedom to add finite counter-terms does not affect the consistency conditions

but does change the value of the individual terms related by them. We can use this freedom to set

some anomalies to zero, simplifying the analysis of the consequences of the Weyl consistency

conditions. In particular, in searching for an a-theorem we can use this freedom to simplify the

consistency conditions. It may be possible to show then that there exist some class of subtraction

schemes for which there exists a possible candidate for an a-theorem, but a general, counter-term

and scheme independent statement may not be possible.
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To illustrate this, consider the variation of the K2 and K∂tgα terms in Wc.t.:

∆σ

∫
dt d2xN

√
h
(
DK2)= ∫

dt d2xN
√

h
(
−4

1
N

∂tσDK−σβ
α

∂αDK2
)
,

∆σ

∫
dt d2xN

√
h(Wα K∂tgα) =

∫
dt d2xN

√
h
(
−σ

[
β

α
∂αWγ +Wα∂γβ

α
]

K∂tgγ

− 1
N

∂tσ β
α WαK−2

1
N

∂tσ Wα∂tgα

)

Inspecting Tabs. 2.2, 2.4 and 2.5 we see that the f anomaly gets contributions only from these

variations, so that the change in f induced by finite changes in the counterterms is given by

δ f =−4D −β
αWα . (2.41)

With a slight abuse of notation we have denoted here the arbitrary, finite, additive change to the

coefficients of counterterms by the same symbol we have used for the counterterm coefficients

themselves. From Eq. (2.41) we see that one can always choose D so as to set f arbitrarily, and

it is often convenient to set f = 0. For a second example consider the R2 anomaly, a. A similar

computation gives

δa =−β
α

∂α A (2.42)

In this case we may solve this equation so as to set a = 0 only if a = 0 at fixed points, where

βα = 0. As we will see below, the Weyl consistency conditions constrain some anomalies to

vanish at fixed points.

We give in App. A.2 the complete set of ambiguities for models with z = 2 in d = 2

spatial dimensions. Terms in the effective actions whose coefficients can be varied at will are not

properly anomalies, since the coefficients can be set to zero. With a slight abuse of language they

are commonly referred to as trivial anomalies and we adopt this terminology here. Table 2.6

summarizes the trivial anomalies found in each sector.
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Table 2.6: Trivial anomalies for each sector. Finite ambiguities in counter-terms give sufficient
freedom to set all these anomalies arbitrarily; setting them to zero is often convenient. For
anomalies grouped within parenthesis, all but one of them can be set arbitrarily.

Sector Trivial Anomalies
∂2

t f , bα

∇2∂t (ρ3, l1), x6αβ, ρ5α, b3αβ,b4α, b9α, (k,m, l2), (b7α,ρ1α), f6, f7, f8α

∇4 χ3, ρ11, (ρ10α,ρ13α,ρ8α), a3αβ, ρ1αβ, tαβγ, χ1α, x1αβ, h2, ρ12, a4α, ρ7α, ρ21αβ, n, h1, a7α

Table 2.7: Vanishing anomalies for each sector. The Weyl consistency conditions imply these
anomalies, or combination of anomalies, vanish at fixed points (where βα = 0). An anomaly is
conditionally vanishing if it is vanishing only for a particular choice of counterterms.

Sector Vanishing Anomalies Conditionally
Vanishing Anomalies

∂2
t d wα

∇2∂t f4, f1, ρ4, b7α b6α +ρ6α, b5α−b6α, b7α−ρ1α

b, j, 2ρ3− l1 +2l2, k+m− l2 x5αβ, f3α, b8α

∇4 χ4− p4, 2p3 + p4, c−χ4 h1 +2h2 +2χ3− c−ρ12, xαβ + x2αβ, ρ13α

2a+ c, p4 +2ρ23, 2ρ23 + c y5αβ− x2αβ, yα +ρ24α, a5α−ρ24α, ρ25α +ρ9α

2.3.3 Consistency conditions and vanishing anomalies

In computing the consistency condition (2.24) one finds a functional that is a combination

of linearly independent “operators” (combinations of σ, γµν and gα), each with a coefficient that

is a linear combination of the coefficients in Tabs. 2.2, 2.4 and 2.5 and their derivatives. Thus the

consistency conditions can be expressed as a set of equations among these coefficients and their

derivatives. The full set of consistency conditions for d = 2, z = 2 are listed in App. A.1. On the

left of each condition we have listed the operator the condition arises from. We have verified

that these conditions reduce to the ones computed in Ref. [18] at fixed points. In the ∂t∇
2 sector

the consistency conditions, Eqs. (A.1), are given for arbitrary z, while for the ∂2
t and ∇4 sectors,

Eqs. (A.2) and (A.3), respectively, the value z = 2 has been used.

At fixed points the consistency conditions imply some anomalies vanish. These are

known as vanishing anomalies. For example, setting βα = 0 in Eq. (A.2a) gives d = 0. Table 2.7

summarizes the vanishing anomalies found in each sector. The table also shows conditionally
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vanishing anomalies. These are vanishing anomalies but only for a specific choice of coun-

terterms. For example, setting βα = 0 in Eq. (A.2b) gives −2wα +bγ∂αβγ = 0, and Eq. (A.4c)

shows that we can choose the counterterm Wα to set bα = 0.

As explained above, some vanishing anomalies can be set to zero. For example, from

Tab. 2.7 we see that d is a vanishing anomaly, and then Eq. (A.4e) informs us that one may

choose D to enforce d = 0. We note, however, that by Eqs. (A.4a) and (A.4e) one may either

choose f or d to vanish, but not both.

2.3.4 Applications

While there are many avenues for analysis in light of the relations imposed by Weyl

consistency conditions on the anomalies, we concentrate on finding candidates for a C-theorem.

We search for a combination of anomalies, C, a local function in the space of dimensionless

coupling constants that flows monotonically, µdC/dµ≥ 0. We try to establish this by judiciously

setting some anomalies to zero by the freedom explained above and looking for a relation of the

form

β
α

∂αC =−Hαγβ
α

β
γ .

Our first three candidates arise from the ∇4 sector. Consider Eq. (A.3l), here reproduced:

−a5αβ
α +4a+2c+β

α
∂αn = 0

The combination 2a+ c is a vanishing anomaly. One may then use (A.71) and (A.62) to set

2a+c = 0. Equation (A.68) shows a4α is a trivial anomaly and one may set a4α = 0. Combining

with Eq. (A.3c) we have

β
α

∂αn = ρ22αγβ
α

β
γ +ρ24αβ

α

Similarly, Eq. (A.3i) shows 2ρ23 + c is a vanishing anomaly and using (A.60) we may set
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2ρ23 + c = 0. We then have from Eq. (A.3i) again that

β
γ
∂γh2 = β

γ
ρ24γ

The difference of these equations then gives us our first candidate for a C-theorem, with C =

n−h2:

β
α

∂α(n−h2) = ρ22αγβ
α

β
γ . (2.43)

A second candidate can be found as follows. Eq. (A.3s) shows χ4− p4 is a vanishing

anomaly. Then Q−P4 can be chosen so that χ4− p4 = 0; see Eqs. (A.41) and (A.39). Using

Eq. (A.3k) with ρ7α = 0 as it is a trivial anomaly, we obtain

−β
α

∂αχ3 =
1
4ρ26αγβ

α
β

γ +ρ24αβ
α

It follows that

β
α

∂α (n+χ3) = (ρ22αγ− 1
4ρ26αγ)β

α
β

γ (2.44)

Combining Eqs. (A.3n), (A.3j) and (A.3r) while setting χ1α = 0, p4 + 2ρ23 = 0 and

c−χ4 = 0 gives what appears to be yet another candidtae in the ∇4 sector:

β
α

∂α (c+ρ12−h1) =−1
2ρ26αγβ

α
β

γ (2.45)

However, setting the trivial anomalies ρ1α and χ1α to zero, Eq. (A.3o) gives

h2 +χ3 =
1
2(c+ρ12−h1)

which shows that the candidates given by eq (2.43),(2.44),(2.45) are not linearly independent in

the scheme with 2a+ c = 2ρ23 + c = χ4− c = χ4− p4 = p4 +ρ23 = 0 and a4α = ρ1α = ρ7α =
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χ1α = 0.

We find one candidate for a C-theorem in the ∂2
t sector. Equation (A.2a) shows d is a

vanishing anomaly and use Eqs. (A.4e) and (A.4c) to set d = bα = 0. Combining (A.2a) and

(A.2b) gives

β
α

∂α f =−χ0αγβ
α

β
γ . (2.46)

In the ∂t∇
2-sector we find the following candidates for a C-theorem:

β
α

∂αm =−1
2x4αγβ

α
β

γ (2.47)

β
α

∂αl1 =−1
2 p4γαβ

γ
β

α (2.48)

β
α

∂α (ρ3 + l2) =− 1
2z p4αγβ

γ
β

α (2.49)

β
α

∂α

(
f6 +

z
2

f7−β
γ f5γ

)
= β

α
β

γ
(

f2αγ−∂α f5γ

)
(2.50)

We have kept the explicit dependence on z in these equations. As we will see below the ∂t∇
2-

sector is special in that the Weyl anomalies and the relations from consistency conditions hold

for arbitrary z. Hence, the C-candidates in this sector are particularly interesting since they are

candidates for any z. To derive (2.47) we have used that j and b are vanishing anomalies, as

evident from Eqs. (A.1d) and (A.1f), and used B and L to set b = j = 0 in Eq. (A.1f) and P3α to

set b4α = 0 in Eq. (A.1b). For (2.48) we used j = 0 in Eq. (A.1a) and (A.1n), deduce that ρ4 is

a vanishing anomaly and use P to set ρ4 = 0 in Eq. (A.1n) and Pα to set ρ1α = 0 in Eq. (A.1a).

For (2.49), we set j = ρ4 = 0 as before and in addition we set ρ5α = 0 using Xα in (A.1e), and

use Eqs. (A.1d), (A.1e) and (A.1m). In the scheme, j = ρ1α = 0, Eq (A.1o) implies that the

candidates given by (2.49) and (2.48) are linearly dependent. Last but not the least, (2.50) is

derived from Eqs. (A.1p)–(A.1r) by using F3α to set f8α = 0 and setting to zero the vanishing

anomalies f1 and f4 using F1 and F4.

Two comments are in order. First, we have not established any C-theorem. To do so

would require showing that the two index symmetric tensor appearing on at least one of the right

37



hand side of Eqs. (2.43)–(2.46) is positive definite, so that it acts as a metric in the space of

flows. In addition, the interpretation of C as counting degrees of freedom is better supported if

it is a monotonic function of the number of degrees of freedom at a gaussian fixed point. And

second, we do not expect a positive definite metric can be found in generality, since cyclic flows

are known to appear in NR quantum systems. Cyclic flows appear in relativistic systems too, but

they differ from NR ones in that there is scaling symmetry all along the cyclic flows and, in fact,

the C quantity is constant along the cyclic flow [40]. Investigating the conditions under which a

theory gives positive definite metric(s) in the space of flows is beyond the scope of this work; we

hope to return to this problem in the future.

2.4 Generalisation to arbitrary z value

In this section, we will explore the possibility to generalize the work for arbitrary z value.

It is clear that the formalism fails for non-integer values of z since in that case, we can not make

up for dimensions with regular analytic functions of curvature and coupling constants. This is

because the quantities constructed out of geometry and coupling constants always have integer

length and time dimension. Furthermore, in a Lagrangian formulation a non-integer z requires

non-analyticity of Lagrangian. So we begin by recalling under what conditions a Lagrangian

with local interactions allows for integer z values.

Consider first the case of d = 2 at arbitrary z value. In constructing ∆Wc.t., rotational

invariance implies even number of spatial derivatives, say 2n. Along with m time derivatives, we

must have

mz+2n = z+2 .

We look for solutions with integer values for m and n. For m = 1 we must have n = 1 and this
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satisfies the equation for any z. Else, for m 6= 1 we have

z =
2(1−n)
(m−1)

.

For z > 0 we must have either m = 0 with n > 1 or n = 0 with m > 1. For m = 0 solutions exist

only if z = 2k is even, with 2n = 2(1+ k) spatial derivatives. On the other hand, with n = 0, we

have solutions for z = 2/k, with m = k+2 time derivatives. To summarize, for z > 0 we can

classify the counterterms by sector as follows:

• There is a pure ∇2 sector for z = 2k, k ∈ Z. It has precisely 2(k+1) spatial derivatives.

We have discussed in detail the case k = 1. Higher values of k can be similarly analyzed,

but it it involves an ever increasing number of terms as z increases.

• There is a pure ∂t sector for z = 2/k, k ∈ Z, with k+1 time derivatives. We have analyzed

the k = 1 case. Higher values of k can be similarly analyzed, but it involves an ever

increasing number of terms as z decreases.

• There is a ∂t∇
2 sector for arbitrary z. It has 1-time and 2-spatal derivatives regardless of z.

Therefore, the classification of anomalies and counterterms is exactly as in the z = 2 case,

and the consistency conditions and derived C-candidates are modified by factors of z/2

relative the z = 2 case.

2.5 A candidate for a C-theorem in d +1D

In relativistic 2n-dimensional QFT the quantity that is believed to satisfy a C-theorem

is associated with the Euler anomaly, that is, it is the coefficient of the Euler density E2n in

the conformal anomaly [28].4 It would seem natural to seek for analogous candidates in non-

4There is no known local C-function candidate for odd-dimensional relativistic field theory. Jafferis has proposed
a non-local F-function for 3D relativistic theories that shares the monotonicity properties of a C-function[46]
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relativistic theories. The obvious analog involves the Euler density for the spatial sections

t = constant; by dimensional analysis and scaling it should be constructed out of z+ d = 2n

spatial derivatives acting on the metric hi j. However, for a d-dimensional metric the Euler density

E2n with 2n−d = z > 0 vanishes. Hence, we are led to consider an anomaly of the form XEd ,

that is the Euler density computed on the spatial sections t = constant times some quantity X

with the correct dimensions, [X ] = z. This construction is only valid for even spatial dimension,

d = 2n. The most natural candidate for X is K: it is the only choice if z is odd. If z is even it can

be constructed out of spatial derivatives. For example, if z = dk = 2nk for some integers k and n,

one may take X = (Ed)
k.

The variation of the Euler density yields the Lovelock tensor [47], Hi j, a symmetric

2-index tensor that satisfies

∇iH i j = 0

In looking for a candidate C-theorem we consider a set of operators that close under Weyl-

consistency conditions, starting from XEd . Since δσ(
√

hEd) =
√

hH i j∇i∂ jσ, and [XH i j] =

z+d−2, we are led to include terms with the Lovelock tensor and two spatial derivatives. In

order to compute the consequences of the Weyl consistency conditions we assume

δX = zσX + · · · (2.51)

where the ellipses denote terms that depend on derivatives of σ and are therefore independent of

X . Consider therefore a subset of terms in the anomaly that appear in the consistency conditions

that lead to a potential C-theorem:

∆σW =
∫

ddxdt N
√

h
[

σ

{
aXEd +bXH i jRi j +χ4XH i j ∂iN

N
∂ jN
N

+χαXH i j ∂iN
N

∂ jgα

+y5αβXH i j
∂igα

∂ jgβ + cH i j
∂iX

∂iN
N

+a5αH i j
∂iX∂ jgα

}
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+∂iσ

{
n∂ jXH i j +h1

∂ jN
N

H i jX +a7α∂ jgαH i jX
}]

(2.52)

Correspondingly there are metric and coupling-constant dependent counter-terms with

coefficients denoted by uppercase symbols:

Wc.t. =
∫

ddxdt N
√

h
[

AXEd +BXH i jRi j +X4XH i j ∂iN
N

∂ jN
N

+XαXH i j ∂iN
N

∂ jgα

+Y5αβXH i j
∂igα

∂ jgβ +CH i j
∂iX

∂iN
N

+A5αH i j
∂iX∂ jgα

]
(2.53)

Freedom to choose finite parts of counter-terms leads to ambiguities in the anomaly coefficients

as follows:

δa =−β
α

∂αA (2.54a)

δχ4 =−β
α

∂αX4 (2.54b)

δχα =−β
γ
∂γXα−Xγ∂αβ

γ (2.54c)

δy5αβ =−β
γ
∂γY5αβ−Y5γβ∂αβ

γ−Y5αγ∂ββ
γ (2.54d)

δc =−β
α

∂αC (2.54e)

δb =−β
α

∂αB (2.54f)

δa5α =−β
γ
∂γA5α−A5γ∂αβ

γ (2.54g)

δn =−A− (d−2)B−Cz−β
αA5α (2.54h)

δh1 =−2zX4−β
αXα +Cz−A− (d−2)B (2.54i)

δa7α =−∂α (A+(d−2)B)− zXα−2β
γY5γα + zA5α (2.54j)

In addition to the Euler density, Ed , there are several independent scalars one can

construct out of d derivatives of the metric in d dimensions (except for d = 2, for which the

only 2-derivative invariant is the Ricci scalar and hence Ed ∝ R). Ed is special in that it is the
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only quantity that gives just the Lovelock tensor under an infinitesimal Weyl trasformation,

δσ(
√

hEd) =
√

hH i j∇i∂ jσ. In general some other d-derivative invariant5 E constructed out of

d/2 powers of the Riemann tensor will instead give δσ(
√

hE) =
√

hH i j∇i∂ jσ where H i j 6= 0

is not divergence-less, ∇iH i j 6= 0. We have given an example of such a term above, H i jRi j,

both in the anomaly and among the counter-terms. Given a basis of d-derivative operators E

and d−2 derivative 2-index symmetric tensors H i j one can derive Weyl consistency conditions

by demanding that the coefficients of each linearly independent operator in [∆σ,∆σ′]W vanish.

Suppose ∆σW ⊃
∫

σ[aEd +bE ]: a change of basis by E→E +ξEd results in shifting a→ a+ξb

in the consistency conditions that arise from terms involving H i j. Similarly, a change of basis of

d−2 derivative 2-index symmetric tensors H i j→H i j +ξH i j shifts by a common amount all

the consistency conditions that arise from terms involving H i j. So while we have not retained all

the anomalies that can contribute to the consistency conditions that lead to a potential C-theorem,

they give a common contribution to all those consistency conditions and therefore effectively

shift the contribution of a to the potential C-theorem —and the shift is immaterial since it is

basis dependent. Consider, for example, the coefficient b of the anomaly term H i jRi j which we

have retained precisely to demonstrate these points. Since δσRi j = (d−2)∇i∂ jσ+hi j∇
2σ it is

natural to define Hi j by δσ(
√

hH i jRi j) =
√

h[(d−2)H i j +H i j]∇i∂ jσ. With this definition of a

basis of operators the consistency conditions in Eqs. (2.55) below all contain the combination

a+(d−2)b; had we defined instead a basis with the operator H i jRi j− (d−2)Ed or defined the

basis of 2-index tensors through δσ(
√

hH i jRi j) =
√

hH i j∇i∂ jσ, the anomaly b would not have

appeared in Eqs. (2.55) at all. Similarly the ambiguity due to finite counter-terms in anomalies

associated with the Lovelock tensor all enter in the combination A+(d−2)B.

Imposing [∆σ′,∆σ]W = 0 we find three conditions,

(σ∂ jσ
′−σ

′
∂ jσ)H i j

∂iX : β
α

∂αn = zc+a5αβ
α+a+(d−2)b (2.55a)

5Weyl variations of d-derivative scalars constructed from less than d/2 powers of the Riemann tensor do not
contribute to the consistency condition we are considering.
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(σ∂ jσ
′−σ

′
∂ jσ)H i j

∂iNX : β
α

∂αh1 = a+(d−2)b+2zχ4 +β
α

χα− cz (2.55b)

(σ∂ jσ
′−σ

′
∂ jσ)H i j

∂igαX : ∂α (a+(d−2)b)−β
γ
∂γa7α−a7γ∂αβ

γ = za5α− zχα−2y5αγβ
γ

(2.55c)

Here we have listed on the left the independent operators in [∆σ′,∆σ]W whose coefficients must

vanish yielding the condition correspondingly listed on the right. We have checked that the

conditions in Eqs. (2.55) are invariant under the ambiguities listed in Eqs. (2.54). The freedom

represented by these ambiguities allows us to set a+(d−2)b+ zc = 0 in Eq. (2.55a). To see

this note that a+(d−2)b+ zc is a vanishing anomaly per Eq. (2.55a), and Eqs. (2.54a), (2.54e)

and (2.54f) give δ(a+(d−2)b+ zc) =−βα∂α(A+(d−2)B+ zC) which can be integrated. A

similar argument using Eq. (2.55b) shows that a+(d−2)b+2zχ4− cz is a vanishing anomaly.

Using this freedom we have a simpler version of the consistency conditions:

(σ∂ jσ
′−σ

′
∂ jσ)H i j

∂iX : β
α

∂αn = a5αβ
α

(σ∂ jσ
′−σ

′
∂ jσ)H i j

∂iNX : β
α

∂αh1 = β
α

χα

(σ∂ jσ
′−σ

′
∂ jσ)H i j

∂igαX : ∂α (a+(d−2)b)−β
γ
∂γa7α−a7γ∂αβ

γ = za5α− zχα−2y5αγβ
γ

Combining these we arrive at the candidate for a C-theorem:

β
α

∂α

[
a+(d−2)b+ zh1− zn−β

γa7γ

]
=−2y5αγβ

γ
β

α (2.56)

Establishing a C-theorem requires in addition demonstrating positivity of the “metric”

−2y5αγ in Eq. (2.56). While we have not attempted this, it may be possible to demonstrate this in

generality working on a background with positive definite Lovelock tensor and using the fact that

y5αγ gives the RG response of the contact counter-term to the obviously positive definite correlator

〈OαOγ〉. In addition, one should check that, when computed at the gaussiaan fixed point, the

quantity a+(d−2)b+ zh1− zn−βγa7γ is a measure of the number of degrees of freedom. We
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hope to come back to this questions in the future, by performing explicit calculations (at and

away from fixed points) of these quantities — but such extensive computations are beyond the

scope of this work.

The limit d = 2 is special since H i j = 2hi j. In our analysis, the term H i jRi j = 2R = 2E2

so a and b appear in the combination a+2b throughout. The potential C theorem reads

β
α

∂α

[
a+2b+ zh1− zn−β

γa7γ

]
=−2y5αγβ

γ
β

α (2.57)

As we have seen in Sec. 2.4, potential C-theorems in d = 2 for any z can be found only in the

∇2∂t sector. Consulting Tab. 2.5 we see the only candidate for X in our present discussion is

X = K. None of the potential C-theorems listed in Eqs. (2.47)–(2.50) (nor linear combinations

thereof) reproduce the potential C-theorem in Eq. (2.57). The reason for this is that in Sec. 2.3.4

we looked for C-theorems from consistency conditions that included, among others, tems with

σ∇i∂ jσ
′−σ′∇i∂ jσ, wheras in this section we integrated such terms by parts. The difference

then corresponds to combining the consistency conditions given in the appendix with some of

their derivatives.

In fact we have found a scheme for deducing aditional C-theorem candidates in d = 2

by taking derivatives of some of our consistency conditions. The method is as follows. Take

X ∈ {R,∇2N,∂iN∂iN,K}; the first three instances apply to the case z = 2 while the last is

applicable for arbitrary z. Then :

• Consider the consistency condition involving σ∇2σ′X , and take a derivative to obtain an

equation, say T1.

• Take the consistency condition involving σ∇iσ
′∂iNX . From this one may deduce a linear

combination of anomalies is vanishing. Set that to 0 using the ambiguity afforded by

counter-terms. The remaining terms in the equation (all proportional to βα) give an

equation we denote by T2.
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• Take the consistency condition involving σ∇iσ
′∂igαX , contract it with βα, to get an

equation, say, T3.

• Combine T1,T2,T3 in a manner such that there are no terms of the form βαrα··· and

rγ···β
α∂αβγ.

Following this scheme we obtain four new C-theorem candidates. In the following the expressions

for T1,2,3 refer to the equation numbers of the consistency conditions in the appendix:

(i) X = R. T1 = A.3l,T2 = A.3r,T3 = A.3m. Set c−χ4 = 0. Then

β
α

∂α

[
8a+2c+2h1 +2β

γ
∂γn−β

γa7γ

]
= 2β

α
β

γ
[
∂αa5γ− y5αγ

]
(2.58)

(ii) X = ∇2N. T1 = A.3i,T2 = A.3j,T3 = A.3d. Set 4p4 +8ρ23 = 0. Then

β
α

∂α

[
8ρ23 +4c+2ρ12 +2β

γ
∂γh2−β

γ
ρ13γ

]
= 2β

α
β

γ
[
∂αρ24γ− x2αγ

]
(2.59)

(iii) X = ∇iN∇iN. T1 = A.3s,T2 = A.3p,T3 = A.3t. Set 8p3 +4p4 = 0. Then

β
α

∂α

[
4χ4−4p4 +2ρ11 +2β

γ
∂γχ3−β

γ
ρ8γ

]
= 2β

α
β

γ
[
∂αyγ− xαγ

]
(2.60)

(iv) X = K. T1 = A.1f,T2 = A.1n,T3 = A.1h. Set j−ρ4 = 0. Then

β
α

∂α

[
4b+ z j+ zl1 +2β

γ
∂γm−β

γ
ρ7γ

]
= 2β

α
β

γ
[
∂αb8γ− x5αγ

]
(2.61)

We have verified that after accounting for differences in basis and notation Eq. (2.61) is precisely

the same as the general C-theorem candidate of this section given in Eq. (2.57).
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2.6 Summary and Discussion

Wess-Zumino consistency conditions for Weyl transformations impose constraints on

the renormalization group flow of Weyl anomalies. As a first step in studying these constraints

in non-relativistic quantum field theories we have classified the anomalies that appear in d = 2

(spatial dimensions) at z = 2 (dynamical exponent at gaussian fixed point). There are many more

anomalies than in the comparable relativistic case (3+1 dimensions): there are 39 anomalies

associated with 4-spatial derivatives (Table 2.2), 6 with 2-time derivatives (Table 2.4) and 32

more that contain 1-time and 2-spatial derivaties (Table 2.5). Freedom to add finite amounts to

counterterms gives in turn freedom to shift some anomalies arbitrarily. “Trivial Anomalies” are

those that can thus be set to zero. We then classified all counterterms (Tables 2.2–2.5), gave the

shift in Weyl anomalies produced by shifts in counterterms (in App. A.2), and then listed the

trivial anomalies (Table 2.6).

The consistency conditions among these 39+6+32 anomalies do not mix among the

three sectors. They are listed by sector in App. A.1, and from these we can read-off “Vanishing

Anomalies” — those that vanish at fixed points; see Table. 2.7. As an application of the use

of these conditions we find 6 combinations that give C-function candidates. That is, we find

(combinations of) anomalies ã and Hαβ that satisfy µdã/dµ = Hαββαββ, where βα = µdgα/dµ

give the flow of the dimensionless coupling constants; then ã flows monotonically provided Hαβ

is positive definite. We have not endeavored to attempt to prove that any of our Hαβ functions are

positive definite, and hence our candidates remain just that, candidates. Exploring positivity of

these functions in specific examples would be of interest, and determining model-independently

under which conditions positivity holds would be more so.

It is important to appreciate the generality, or lack of it thereof, of our results. While we

have used some specific form of the Lagrangian in setting up and contextualizing the computation,

there is in fact no need to assume this in order to classify the anomalies and compute the

46



consistency conditions. On the other hand we have made a fairly strong assumption, that the

classical action integral is invariant under the anisotropic scale transformation xxx 7→ λxxx, t 7→ λzt.

All our couplings correspond to marginal deformations. In the 3+1-dimensional relativistic case

relevant deformations do modify the consistency conditions, but the candiate C-theorem is not

affected, at least by a class of relevant deformations [24]. Clearly, another interesting direction

of future study is to investigate the effect of relevant deformations on our consistency conditions:

perhaps some of the 6 C-candidates survive even in the presence of relevant deformations, much

as in the relativistic case.

While we have performed a detailed analysis only for the z = 2 case in 2+1 dimensions,

our results can be readily used in other cases too. For theories in 2+1 dimensions with z > 0

and neither z = 2k nor z = 2/k where k is an integer, only the sector of anomalies with 1-time

and 2-spatial derivatives remains. Moreover, the classification of anomalies and the consistency

conditions for that sector that were derived assuming z = 2 are valid for arbitrary z, with minor

modifications in the form of a sprinkling of factors of z/2; we have retained explicit z dependence

in the consistency conditions in this sector, Eqs. (A.1). This means, in particular, that the 4

C-candidates in this sector, in Eqs. (2.47)–(2.50), are C-candidates for arbitrary z. For z = 2k≥ 4

there are anomalies with 2(k+1) spatial derivatives; their classification depends on z, so a case-

by-case analysis is required. For z = 2/k ≤ 2 there are anomalies with k+1 time derivatives;

again their classification depends on z and a case-by-case analysis is required.

For spatial dimensions d > 2, if d is even a C-theorem candidate, in Eq. (2.57), becomes

available that mimics the one in relativistic theories. Again it relies on assuming only marginal

operators are present, but it is possible that, just as in the 3+1 realtivistic case, the conclusion

is not modified by inclusion of relevant deformations. The candidate is based on the anomaly

associated with the d-dimensional Euler density for the theory on a curved background. Here

again it would be interesting to have an explicit example, to test whether the putative metric

in coupling constant space, Hαβ, is positive definite. The analysis of a potential C-theorem in
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the case of general dimensions d yields four additional potential C-theorems in d = 2, three for

z = 2 given in Eqs. (2.58)–(2.60) and one more for arbitrary z, given in Eq. (2.61). It deserves

mention that all of our proposed C theorem candidates are scheme dependent even at a fixed

point. Hence, the value of them at a fixed point can be shifted using counter-terms F .

If any of these candidates yields a bona-fide C-theorem the presence of limit cycles in

non-relativistic quantum field theories is called into question. Limit cycles in relativistic 3+1

dimensional theories physically correspond to critical points, and the recursive flow corresponds

to what amounts to a simultaneous rotation among fundamental fields and marginal operators

and their coefficients. Cyclic behavior in non-relativistic quantum systems, on the other hand,

do not display continuous scale invariance, so there is no reason to expect that C would remain

constant along the flow. The resolution may be that there are no C-theorems at all. Or that there

are C-theorems only under conditions that do not apply to systems that exhibit cycles. We look

forward to developments in this area.
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Chapter 3

On the Heat Kernel and Weyl Anomaly of

Schrödinger invariant theory

We propose a method inspired from discrete light cone quantization (DLCQ) to de-

termine the heat kernel for a Schrödinger field theory (Galilean boost invariant with z = 2

anisotropic scaling symmetry) living in d +1 dimensions, coupled to a curved Newton-Cartan

background, starting from a heat kernel of a relativistic conformal field theory (z = 1) living

in d + 2 dimensions. We use this method to show the Schrödinger field theory of a complex

scalar field cannot have any Weyl anomalies. To be precise, we show that the Weyl anomaly

AG
d+1 for Schrödinger theory is related to the Weyl anomaly of a free relativistic scalar CFT

AR
d+2 via AG

d+1 = 2πδ(m)AR
d+2 where m is the charge of the scalar field under particle number

symmetry. We provide further evidence of vanishing anomaly by evaluating Feynman diagrams

in all orders of perturbation theory. We present an explicit calculation of the anomaly using a

regulated Schrödinger operator, without using the null cone reduction technique. We generalise

our method to show that a similar result holds for one time derivative theories with even z > 2.
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3.1 Introduction

The Weyl anomaly in relativistic Conformal Field Theory (CFT) has a rich history

[48, 49, 50, 51, 52, 53, 54, 55]. In 1+ 1 dimensions irreversibility of RG flows has been

established by Zamoldchikov [25] who showed monotonicity of a quantity C that equals the

Weyl anomaly c at fixed points. Remarkably, the anomaly c equals the central charge of the

CFT. In 3+1 dimension, there is a corresponding “a-theorem” [56, 57, 41, 58] where a again

appears in the Weyl anomaly, and there is strong evidence for a similar a-theorem in higher, even

dimensions [28, 29, 30, 32]. In contrast, much less is known in the case of non-relativistic field

theories admitting anisotropic scale invariance under the following transformation

xxx→ λxxx, t→ λ
zt . (3.1)

Nonetheless, non-relativistic conformal symmetry does emerge in various scenarios. For example,

fermions at unitarity, in which the S-wave scattering length diverges, |a| → ∞, exhibit non-

relativistic conformal symmetry. In ultracold atom gas experiments, the S-wave scattering length

can be tuned freely along an RG flow and this has renewed interest in the study of the RG flow

of such theories [1, 2]. In fact, at a−1 =−∞ the system behaves as a BCS superfluid while at

a−1 = ∞ it becomes a BEC superfluid. The BCS-BEC crossover, at a−1 = 0, is precisely the

unitarity limit, exhibiting non-relativistic conformal symmetry [59, 60]. In this regime, we expect

universality, with features independent of any microscopic details of the atomic interactions.

Other examples of non-relativistic systems exhibiting scaling symmetry come with accidentally

large scattering cross section. Examples include various atomic systems, like 85Rb[5],138Cs [6],

and few nucleon systems like the deuteron [3, 4].

Galilean CFT, which enjoys z = 2 scaling symmetry is special among Non-Relativistic

Conformal Field Theories (NRCFTs). On group theoretic grounds, there is a special conformal

generator for z = 2 that is not present for z 6= 2 theories [61, 62]. The coupling of such theories to
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the Newton Cartan (NC) structure is well understood [62, 63, 64, 65]. The generic discussion of

anomalies in such theories has been initiated by Jensen in [22]. Moreover, there have been recent

works classifying and evaluating Weyl anomalies at fixed points [18, 66, 20, 67, 68] and even

away from the fixed points; the latter have resulted in proposed C-theorem candidates [21, 69].

It has been proposed in [22], using the fact that Discrete Light Cone Quantization

(DLCQ) of a relativistic CFT living in d +2 dimensions yields a non-relativistic Galilean CFT

in d +1 dimensions with z = 2, that the Weyl anomaly of the relativistic CFT survives in the

non-relativistic theory. The conjecture states that the Weyl anomaly AG for a Schrödinger field

theory (Galilean boost invariant with z = 2 scale symmetry and special conformal symmetry) is

given by

AG
d+1 = aEd+2 +∑

n
cnWn (3.2)

where Ed+2 is the d +2 dimensional Euler density of the parent space-time and Wn are Weyl

covariant scalars with weight (d +2). The right hand side is computed on a geometry given in

terms of the d +2 dimensional metric; this will be explained below, see Eq. (3.19). A specific

example of particular interest is

AG
2+1 = aE4− cW 2 (3.3)

where W 2 stands for the square of the Weyl tensor.

The purpose of this work is twofold. First, we show that these proposed relations must

be corrected to include a factor of δ(m), when the Schrödinger invariant theory involves a single

complex scalar field having charge m under the U(1) symmetry. To be precise, we show that

AG
d+1 = 2πδ(m)AR

d+2 (3.4)

51



where AR
d+2 is the Weyl anomaly of the corresponding relativistic CFT in d+2 dimensions. This

is derived explicitly for the case of a bosonic (commuting) scalar field, but the derivation applies

equally to the case of a fermionic (anti-commuting) scalar field. The second purpose is to develop

a framework inspired from DLCQ to evaluate the heat kernel of a theory with one time derivative

kinetic term in a non-trivial curved background. This framework enables us to calculate not only

the heat kernel but also the anomaly coefficients. In fact, using this method and its appropriately

modified form enables us to generalise Eq. (3.4) to one time derivative theories with arbitrary

even z, where the parent d + 2 dimensional theory enjoys SO(1,1)× SO(d) symmetry with

scaling symmetry acting as t→ λz/2t,xd+2→ λz/2xd+2,xi→ λxi, (i = 1, . . . ,d +1).

The paper is organised as follows. We will briefly review coupling of a Schrödinger field

theory to the Newton-Cartan structure in Sec. 3.2. In Sec. 3.3, we sketch how DLCQ can be used

to obtain Schrödinger field theories following the procedure of [22] and propose its modified

cousin, that we call Lightcone Reduction (LCR), to obtain a Schrödinger field theory. In Sec. 3.4

we determine the heat kernel for free Galilean CFT coupled to a flat NC structure in two different

ways, on the one hand using LCR and on the other without the use of DLCQ, providing a check

on our proposed method for determining the heat kernel for Galilean field theory coupled to a

curved NC geometry. We then proceed to evaluate the heat kernel on curved spacetime according

to the proposal and subsequently derive the Weyl anomaly for Schrödinger field theory of a

single complex scalar. In Sec. 3.5 we reconsider the computation using perturbation theory;

we find that for a wide class of models on a curved background all vacuum diagrams vanish.

In fact, we show that an anomaly is not induced in the more general case that U(1) invariant

dimensionless couplings are included, regardless of whether we are at a fixed point or away from

it, in all orders of a perturbative expansion in the dimensionless coupling and metric. In Sec. 3.6,

we give a formal proof of our prescription and generalise the framework to calculate the heat

kernel and anomaly for theories with one time derivative and arbitrary even z. We conclude with

a brief summary of the results obtained and discuss future directions of investigation. Technical
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aspects of defining heat kernel for one time derivative theory in flat space-time are explored in

App. B.1, and on a curved background in App. B.2. Finally, in App. B.3 we present an explicit

calculation of the anomaly using a regulated Schrödinger operator, without using the null cone

reduction technique.

3.2 Newton-Cartan Structure & Weyl Anomaly

The study of the Weyl anomaly necessitates coupling of non-relativistic theory to a

background geometry, which can potentially be curved. Generically, the prescription for coupling

to a background can depend on the global symmetries of the theory on a flat background. Of

interest to us are Galilean and Schrodinger field theories. The algebra of the Galilean generators

is given by [61]

[Mi j,N] = 0 , [Mi j,Pk] = ı(δikPj−δ jkPi) , [Mi j,Kk] = ı(δikK j−δ jkKi) ,

[Mi j,Mkl] = ı(δikM jl−δ jkMil +δilMk j−δ jlMki) ,

[Pi,Pj] = [Ki,K j] = 0 , [Ki,Pj] = ıδi jN , (3.5)

[H,N] = [H,Pi] = [H,Mi j] = 0 , [H,Ki] =−ıPi ,

and the commutators of dilatation generator with that of Galilean ones are given by

[D,Pi] = ıPi , [D,Ki] = (1− z)ıKi , [D,H] = zıH ,

[D,N] = ı(2− z)N , [Mi j,D] = 0 (3.6)

where i, j = 1,2, . . . ,d label the spatial dimensions, z is the anisotropic exponent, Pi, H and

Mi j are generators of spatial translations, time translation spatial rotations, respectively, Ki

generates Galilean boosts along the xi direction, N is the particle number (or rest mass) symmetry
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generator and D is the generator of dilatations. The generators of Schrödinger invariance include,

in addition, a generator of special conformal transformations, C. The Schrödinger algebra

consists of the z = 2 version of (3.5),(3.6) plus the commutators of C,

[Mi j,C] = 0 , [Ki,C] = 0 , [D,C] =−2ıC , [H,C] =−ıD. (3.7)

In what follows, by Schrödinger invariant theory we will mean a z = 2 Galilean, conformally

invariant theory. For z 6= 2 we only discuss anisotropic scale invariant theories invariant under a

group generated by Pi, Mi j, H, D and N such that the kinetic term involves one time derivative

only. The most natural way to couple Galilean (boost) invariant field theories to geometry is

to use the Newton-Cartan (NC) structure [62, 63, 64]. In what follows we briefly review NC

geometry, following Ref. [22].

The NC structure defined on a d +1 dimensional manifold Md+1 consists of a one form

nµ, a symmetric positive semi-definite rank d tensor hµν and an U(1) connection Aµ, such that

the metric tensor

gµν = nµnν +hµν (3.8)

is positive definite. The upper index data vµ and hµν is defined by

vµnµ = 1, vνhµν = 0, hµνnν = 0, hµρhρν = δ
µ
ν− vµnν (3.9)

Physically vµ defines a local time direction while hµν defines a metric on spatial slice of Md .

As prescribed in [62], while coupling a Galilean invariant field theory to a NC structure,

we demand

1. Symmetry under reparametrization of co-ordinates. Technically, this requirement boils

down to writing the theory in a diffeomorphism invariant way.
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2. U(1) gauge invariance. The fields belonging to some representation of Galilean algebra

carry some charge under particle number symmetry, which is an U(1) group. Promoting

this to a local symmetry requires a gauge field Aµ that is sourced by the U(1) current.

3. Invariance under Milne boost under which (nµ,hµν) remains invariant, while

vµ→ vµ +ψ
µ, hµν→ hµν−

(
nµψν +nνψµ

)
+nµnνψ

2, Aµ→ Aµ +ψµ−
1
2

nµψ
2

(3.10)

where ψ2 = hµνψµψν and vνψν = 0.

The action of a free Galilean scalar φm with charge m, coupled to this NC structure

satisfying all the symmetry conditions listed above is given by

∫
dd+1x

√
g
[
ımvµ

(
φ

†
mDµφm−φmDµφ

†
m

)
−hµνDµφ

†
mDνφm

]
(3.11)

where Dµ = ∂µ− ımAµ is the appropriate gauge invariant derivative.

From a group theory perspective, a Galilean group can be a subgroup of a larger group

that includes dilatations. That is, besides the symmetries mentioned earlier, a Galilean invariant

field theory coupled to the flat NC structure can also be scale invariant, i.e., invariant under the

following transformations

xxx→ λxxx, t→ λ
zt, (3.12)

where z is the dynamical critical exponent of the theory. As mentioned earlier, for z = 2, the

symmetry algebra may further be enlarged to contain a special conformal generator, resulting in

the Schrödinger group. On coupling a Galilean CFT with arbitrary z to a nontrivial curved NC

structure, the scale invariance can be thought of as invariance under following scaling of NC data

(also known as anisotropic Weyl scaling; henceforth we omit the word anisotropic, and by Weyl
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transformation it should be understood that we mean the transformation with appropriate z):

nµ→ ezσnµ, hµν→ e2σhµν, Aµ→ e(2−z)σAµ, (3.13)

where σ is a function of space and time.

Even though classically a Galilean CFT may be scale invariant, it is not necessarily

true that it remains invariant quantum mechanically. Renormalisation may lead to anomalous

breaking of scale symmetry much like in the Weyl anomaly in relativistic CFTs (where z = 1).

The anomaly A is defined from the infinitesimal Weyl variation (3.13) of the connected generating

functional W :

δσW =
∫

dd+1x
√

gδσA , . (3.14)

We mention in passing that away from the fixed point the coupling is scale dependent,

that is, the running of the coupling under the RG must be accounted for, hence the variation δσ

on the couplings needs to be incorporated. The generic scenario has been elucidated in Ref. [69].

In this work, we are interested in anomalies at a fixed point. Even in the absence of

running of the coupling, the background metric can act as an external operator insertion on

vacuum bubble diagrams leading to new UV divergences that are absent in flat space-time.

Removing these new divergences can potentially lead to anomalies. The anomalous ward identity

for anisotropic Weyl transformation is given by[22]

znµEµ−hµνTµν = A , (3.15)

where nµEµ and hµνTµν are respectively diffeomorphic invariant measure of energy density and

trace of spatial stress-energy tensor.

In what follows, we will be interested in evaluating the quantity appearing on the right
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hand side of Eq. (3.15). A standard method is through the evaluation of the heat kernel in

a curved background. Hence, our first task is to figure out a way to obtain the heat kernel

for theories with kinetic term involving only one time derivative. In the next few sections we

will introduce methods for computing heat kernels and arrive at the same result from different

approaches.

3.3 Discrete Light Cone Quantization (DLCQ) & its cousin

Lightcone Reduction (LCR)

One elegant way to obtain the heat kernel is to use Discrete Light Cone Quantization

(DLCQ). This exploits the well known fact that a d +1 Galilean invariant field theory can be

constructed by starting from a relativistic theory in d +2 dimensional Minkowski space in light

cone coordinates

ds2 = 2dx+dx−+dxidxi (3.16)

where i = 2,3, . . . ,d +1 and x± = x1±t√
2

define light cone co-ordinates, followed by a compactifi-

cation in the null co-ordinate x− on a circle. From here on, by reduced theory we will mean the

theory in d +1 dimensions while by parent theory we will mean the d +2 dimensional theory

on which this DLCQ trick is applied. We first present a brief review of DLCQ.

The generators of SO(d +1,1) which commute with P−, the generator of translation in

the x− direction, generate the Galilean algebra. P− is interpreted as the generator of particle

number of the reduced theory. In light cone coordinates the mass-shell condition for a massive
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particle becomes1

p+ =
|ppp|2

2(−p−)
+

M2

4(−p−)
(3.17)

Eq. (3.17) can be interpreted as the non-relativistic energy of a particle, p+, with mass m =−p−

in a constant potential. The reduced mass-shell condition (3.17) is Galilean invariant, that is,

invariant under boosts (vvv) and rotations (R):

ppp→ Rppp− vvvp−, p+→ p++ vvv · (Rppp)− 1
2
|vvv|2 p−

Setting M = 0, the dispersion relation is of the form

ω =
k2

2m
(3.18)

and enjoys z = 2 scaling symmetry. To rephrase, setting M = 0 will allow one to append a

dilatation generator, which acts as follows:

p+→ λ
2 p+ , p−→ p−, ppp→ λppp

Had we not compactified in the x− direction, p− would be a continuous variable. The parameter

p− can be changed using a boost in the +− direction, but compactification in the x− direction

spoils relativistic boost symmetry and the eigenvalues of p− become discretized, p− = n
R , where

R is the compactification radius. We note that Lorentz invariance is recovered in the R→∞ limit.

For convenience, by appropriately rescaling the generators of spatial translations and of special

conformal transformations, as well as P−, we can set R = 1.

One can technically perform DLCQ even in a curved space-time as long as the metric

admits a null isometry. This guarantees that we can adopt a coordinate system with a null
1The unusual sign convention in our definition of x− results in the peculiar sign in Eq. (3.17).
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coordinate x− such that all the metric components are independent of x−. To be specific, we will

consider the following metric:

ds2 = GMNdxMdxN , Gµ− = nµ, Gµν = hµν +nµAν +nνAµ, G−− = 0 (3.19)

where M,N = +,−,1,2, . . . ,d run over all the indices in d + 2 dimensions, the index µ =

+,1,2, . . . ,d runs over d +1 dimensions and hµν is a rank d tensor. Ultimately, hµν,nµ,Aµ are

to be identified with the NC structure, and just as above we can construct hµν and vµ such

that Eq. (3.9) holds. Moreover, these quantities transform under Milne boost symmetry as per

Eq. (3.10). Hence, the boost invariant inverse metric is given by

G−µ = vµ−hµνAν, Gµν = hµν, G−− =−2vµAµ +hµνAµAν . (3.20)

Reduction on x− yields a Galilean invariant theory coupled to an NC structure given by

(nµ,hµν,Aµ), with metric given by (3.8). Moreover, all the symmetry requirements listed above

Eq. (3.10) are satisfied by construction.

This prescription allows us to construct Galilean QFT coupled to a non trivial NC

structure starting from a relativistic QFT placed in a curved background with one extra dimension.

For example, we can consider DLCQ of a conformally coupled scalar field in d +2 dimensions,

SR =
∫

dd+2x
√
−G

[
−GMN

∂MΦ
†
∂NΦ−ξR Φ

†
Φ

]
, ξ =

d
4(d−1)

(3.21)

where R stands for the Ricci scalar corresponding to the GMN metric. We compactify x− with

periodicity 2π and expand Φ in fourier modes as

Φ =
1√
2π

∑
m

φm(xµ)eımx−, φm =
1√
2π

∫ 2π

0
dx− Φe−ımx− . (3.22)
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In terms of φm , we recast the action, Eq. (3.21) in following form using Eq. (3.20)

SR = ∑
m

∫
dd+1x

√
g
[
ımvµ

(
φ

†
mDµφm−φmDµφ

†
m

)
−hµνDµφ

†
mDνφm−ξR φ

†
mφm

]
(3.23)

where Dµ = ∂µ− ımAµ and where each of the φm carry charge m under the particle number

symmetry and sit in distinct representations of the Schrödinger group. The theory described by

Eq. (3.23) is not Lorentz invariant because we have a discrete sum over m, breaking the boost

invariance along the null direction.

The point of DLCQ is to break Lorentz invariance to Galilean invariance. As explained

above, one can work in the uncompactified limit, and still break the Lorentz invariance by

dimensional reduction. In the uncompactified limit, the sum over eigenvalues of P− becomes

integration over the continuous variable p−. Nonetheless, one can focus on any particular Fourier

mode. Technically, we can implement this by performing a Fourier transformation with respect

to x− of quantities of interest. This procedure also yields a Galilean invariant field theory where

the elementary field is the particular Fourier mode under consideration. Henceforth we will refer

to this modified version of DLCQ as Lightcone Reduction (LCR).

Taking a cue from the relation between the actions given by Eqs. (3.21) and (3.23) we

propose the following prescription to extract the heat kernel in the reduced theory:

The heat kernel operator KG in d +1 dimensional Galilean theory is related to the heat kernel

operator KR of the parent d +2 dimensional relativistic theory via

〈(xxx2, t2)|KG|(xxx1, t1)〉=
∫

∞

−∞

dx− 〈xxx2,x−2 ,x
+
2 |KR|xxx1,x−1 ,x

+
1 〉 e−ımx−12 (3.24)

where x−12 = x−2 − x−1 and the time t in the reduced theory is to be equated with x+ in the parent

theory.

We will postpone the proof of our prescription to Sec. 3.6. In the next section, we will

lend support to our prescription by verifying our claim using two different methods of calculating
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the heat kernel. We emphasize that the reduction prescription, described above, is applicable

to the z = 2 case of Galilean and scale invariant theories. The generic reduction procedure for

arbitrary z (though not Galilean boost invariant) is discussed later in sec. 3.6.2.

3.4 Heat Kernel for a Galilean CFT with z = 2

3.4.1 Preliminaries: Heat Kernel, Zeta Regularisation

We start by briefly reviewing the heat kernel and zeta function regularisation method

[70, 71, 57, 30]. A pedagogical discussion can be found in [72, 73]. Let us consider a theory

with partition function Z, formally given by

Z =
∫

[Dφ][Dφ
†]e−

∫
ddxφ†M φ (3.25)

where the eigenvalues of the operator M have positive real part.2The path integral over the

field variable φ suffers from ultraviolet (UV) divergences and requires proper regularization and

renormalisation to be rendered as a meaningful finite quantity. Similarly, the quantum effective

action W =− lnZ corresponding to this theory, given by a formal expression

W = ln(det(M ))

requires regularization and renormalisation.3

The method of zeta-function regularization introduces several quantities; the heat kernel

operator

G = e−sM , (3.26)

2Positivity is required for convergence of the gaussian integral.
3For anti-commuting fields W =− ln(det(M )); the minus sign is the only difference between commuting and

anti-commuting cases, so that in what follows we restrict our attention to the case of commuting fields.
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its trace K over the space L2 of square integrable functions

K(s, f ,M ) = TrL2 ( f G) = TrL2

(
f e−sM

)
, (3.27)

where f ∈ L2, and the zeta-function, defined as

ζ(ε, f ,M ) = TrL2
(

f M −ε
)
. (3.28)

K and ζ are related via Mellin transform,

K(s, f ,M ) =
1

2πı

∫ c+ı∞

c−ı∞
dε s−ε

Γ(ε)ζ(ε, f ,M ) and ζ(ε, f ,M ) =
1

Γ(ε)

∫
∞

0
ds sε−1K(s, f ,M ) .

(3.29)

As is customary, below we use f = 1. However this should be understood as taking the limit

f → 1 at the end of the computation to ensure all expressions in intermediate steps are well

defined.

Formally W is given by the divergent expression

W =−
∫

∞

0
ds

1
s

K(s,1,M )

The regularized version, Wε, is defined by shifting the power of s

Wε =−µ̃2ε

∫
∞

0
ds

1
s1−ε

K(s,1,M ) =−µ̃2ε
Γ(ε)ζ(ε,1,M ) (3.30)

where the parameter µ̃ with length dimension −1 is introduced so that Wε remains adimensional.

In this context, the parameter ε behaves like a regulator, the divergences re-appearing as ε→ 0.
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In this limit

Wε =−
(

1
ε
− γE + ln(µ̃2)

)
ζ(0,1,M )−ζ

′(0,1,M )+O(ε) ,

so that subtracting the 1
ε

term gives the renormalized effective action

W ren =−ζ
′(0,1,M )− ln(µ2)ζ(0,1,M ) . (3.31)

where µ2 = µ̃2e−γE and γE is the Euler constant. On a compact manifold ζ(ε,1,M ) is finite

as ε→ 0 and the renormalized effective action given by (3.31) is finite, as it should. For non-

compact manifolds the standard procedure for computing a renormalized effective action is to

subtract a reference action that does not modify the physics. One may, for example, define

W = ln(det(M )/det(M0)), where the operator M0 is defined on a trivial (flat) background. This

amounts to replacing K(s,1,M )→ K(s,1,M )−K(s,1,M0) in Eq. (3.30) and correspondingly

ζ(ε,1,M )→ ζ(ε,1,M )−ζ(ε,1,M0). The expression for W ren in (3.31) remains valid if it is

understood that this subtraction is made before the ε→ 0 limit is taken.

Classical symmetry under Weyl variations (both in the relativistic case and the anisotropic

one) guarantees M transforms homogeneously, i.e., δσM =−∆σM under δσgµν = 2σgµν where

∆ is the scaling dimension of M . Hence, we have

δσζ(ε,1,M ) =−εTrL2
(
δM M −ε−1)= ∆εζ(ε,σ,M ) . (3.32)

Consequently, the anomalous variation of W is given by

δσW ren =−∆ζ(0,σ,M ) . (3.33)
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In the relativistic case, using the fact that

δσW =
1
2

∫
dd+1x

√
gTµνδgµν =−

∫
dd+1x

√
gT µ

µδσ , (3.34)

one has the trace anomaly equation

A =−T µ
µ =−

1
√

g
∆

(
δζ(0,σ,M )

δσ

)
σ=0

. (3.35)

In the non-relativistic case, the Weyl anisotropic scaling is given by hµν→ e2σhµν and nµ→ ezσnµ.

We have

δσW =
∫

dd+1x
√

g
(

1
2

Tµνδhµν−Eµδnµ
)
=

∫
dd+1x

√
g
(
hµνTµν− znµEµ

)
δσ (3.36)

leading to

A = znµEµ−hµνTµν =−
1
√

g
∆

(
δζ(0,σ,M )

δσ

)
σ=0

. (3.37)

One can evaluate δζ(0,σ,M )/δσ
∣∣
σ=0 using the asymptotic form (s→ 0) of the heat

kernel, K. The asymptotic expansion depends on the operator M and its scaling dimension.

Schematically, one has

K(s,1,M ) =
1

sdM

∞

∑
n=0

sκ(n)√gan,

where κ(n) is a linear function of n. The singular pre-factor, 1
sdM

, is determined by the heat

kernel in the background-free, flat space-time limit while the expansion accounts for corrections

from background fields or geometry. The asymptotic expansion is guaranteed to exist if the

heat kernel is well behaved for s > 0 in the flat space-time limit, that is, if ∑i e−sλi , with λi, the

eigenvalues of the operator M , is convergent. The convergence requires that λi have, at worst, a
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power law growth and positive real part [74].

We are interested in operators M of generic form

M = 2ım∂t ′− (−1)z/2(∂i∂i)
z/2 ,

for which the heat kernel has a small s expansion of the following form

K(s,1,M ) =
1

s1+d/z

∞

∑
n=0

s2n/z
∫

dd+1x
√

gan , (3.38)

where d is number of spatial dimension and z is dynamical exponent.4 Then the zeta function is

given by

ζ(0, f ,M ) =
∫

dd+1x
√

g f a(d+z)/2 , (3.39)

so that we arrive at an expression for the Weyl anomaly

A =−∆ a(d+z)/2 . (3.40)

Hence, in order to determine the Weyl anomaly, one has to calculate the coefficient

a(d+z)/2 of the heat kernel expansion (3.38).5 In subsequent sections, we will find out a way

to evaluate the heat kernel in flat space-time and then in curved space-time for a Schrödinger

invariant field theory. We will be doing this first without using DLCQ/LCR, and then again with

LCR (modified cousin of DLCQ) using the prescription introduced above.

4In next few sections, we explicitly find this asymptotic form for z = 2 while the arbitrary z case is handled
separately in 3.6.2.

5Incidentally, this shows that the anomaly is absent when d + z is odd.
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3.4.2 Heat Kernel in Flat Space-time

Direct calculation (without use of DLCQ)

The action for a free Galilean CFT on a flat space-time (which is in fact invariant under

the Schrödinger group) is given by

S =
∫

dt ddxφ
† [2mı∂t +∇

2]
φ (3.41)

In order to improve convergence of the functional integral defining the partition function we

perform a continuation to imaginary time :

eı
∫

dtddxφ†[2mı∂t+∇2]φ 7→
t=−ıτ

e−
∫

dτddxφ†[2m∂τ−∇2]φ (3.42)

Hence, the Euclidean version of M = 2mı∂t +∇2 is given by

ME = 2m∂τ−∇
2 , (3.43)

and it is this operator for which we will compute the heat kernel. The prescription t =−ıτ is

equivalent to adding +ıε to the propagator in Minkowskian flat space. In fact, the same +ıε

prescription is obtained by deriving the non-relativistic propagator as the non-relativistic limit of

the relativistic propagator.

The Heat kernel for ME is a solution to the equation6

(∂s +ME)G = 0 , (3.44)

6Even though ME is not a hermitian operator, the heat kernel is well defined for any operator as long as
Re(λk)> 0 where λk are its eigenvalues. We explore this technical aspect in appendix.
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that is

(∂s +2m∂τ2−∇
2
x2
)G(s;(xxx2,τ2),(xxx1,τ1)) = 0 , (3.45)

with boundary condition G(0;(xxx2,τ2),(xxx1,τ1)) = δ(τ2− τ1)δ
d(xxx2− xxx1). Equation (3.45) is

solved by

G(s;(xxx2,τ2),(xxx1,τ1)) = δ(2ms− (τ2− τ1))
e−
|xxx2−xxx1|2

4s

(4πs)
d
2

(3.46)

Consequently, the Eulcidean two point correlator is given by

G((xxx2,τ2),(xxx1,τ1)) =
∫

∞

0
dsG(s) =

θ(τ)

2m
e−

m|xxx|2
2τ

(2π
τ

m)
d
2

(3.47)

where τ = τ2− τ1 and xxx = xxx2− xxx1. The same two point correlator can be obtained by Fourier

transform from the Minkowski momentum space propagator GM, or its imaginary time version,

GM(p,ω) =
ı

2mω−|ppp|2 + i0+
7→

t=−ıτ
ω=ıωE

G =
1

2mωE + ı|ppp|2
(3.48)

In the coincidence limit the heat kernel of (3.46) contains a Dirac-delta factor, δ(ms).

Since this non-analytic behavior is unfamiliar, it is useful to re-derive this result by directly

computing the trace K, Eq. (3.26). One can conveniently choose the test function f = e−|ηω|.

Hence

K(s, f ,ME,g) = Tr
(

f e−sME,g
)
=

∫ ( ddk
(2π)d e−sk2

)(∫ dω

2π
e−2mısω−|ηω|

)

The integral over k gives the factor of 1/sd/2, while the integral over ω gives

1
π

η

4m2s2 +η2
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that tends to δ(2ms) as η→ 0. Before taking the limit, this factor gives a well behaved function

for which the Mellin transform that defines ζ, Eq. (3.29), is well defined for d/2 < Re(ε) <

d/2+2 and can be analytically continued to ε = 0.

One may be concerned that the derivation above is only formal as it does not involve an

elliptic operator. This is easily remedied by considering the elliptic operator7 M ′ = ıη
√
−∂2

t +

ı(2m)∂t +∇2. Its spectrum,
(
2mω− k2 + ıη|ω|

)
, tends to that of the Minkowskian Schrödinger

operator M as η→ 0. Consequently, the spectrum for the Euclidean avatar8 (M ′
E,g) of M ′

becomes
(
k2 +2mıω+ |ηω|

)
and the heat kernel for that operator is given by

K(s,1,M ′
E,g) = Tr

(
e−sM ′

E,g

)
=

∫ ( ddk
(2π)d e−sk2

)(∫ dω

2π
e−2mısω−s|ηω|

)

The integral over k gives the factor of 1/sd/2 as before, while the integral over ω gives

1
πs

(
η

4m2 +η2

)

that tends to 1
s δ(2m) as η→ 0. As we will see later, Light Cone Reduction technique indeed

reproduces this factor of δ(2m).

Derivation using LCR

In Euclidean, flat d + 2 dimensional space-time, the heat kernel GR,E of a relativistic

scalar field at free fixed point is given by [75]

GR,E(s;xM
2 ,xM

1 ) =
1

(4πs)d/2+1 e−
(x1−x2)

2

4s (3.49)

7The choice of regulator is suggested naturally, as it can ultimately be linked to the Minkowski form of the
propagator G = ı

2mω−k2+ı|ηω| →
ı

2mω−k2+ı0+
8Alternatively, one can think of introducing the regulator, only after going over to the Euclidean version. The

unregulated Euclidean operator, ME,g = 2m∂τ−∇2 is regulated to M ′
E,g = 2m∂τ−∇2 +η

√
−∂2

τ .
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where the superscript reminds us that this is the relativistic case and (x1−x2)
2 = (xM

1 −xM
2 )(xN

1 −

xN
2 )δMN .

In preparation for using LCR, we rewrite the expression (3.49) by first reverting to

Minkowski space, t =−ıx0, and then switching to light-cone coordinates.9 Using x± = x±2 − x±1

we have:

GR,M(s;(x+2 ,x
−
2 ,xxx2),(x+1 ,x

−
1 ,xxx1)) =

1
(4πs)d/2+1 e−

x+x−
2s −

|xxx|2
4s (3.50)

where GR,M is the heat kernel in Minkowski space. Now, in the reduced theory, the co-ordinate

x+ becomes the time coordinate t. Going to imaginary time, t→ τ = ıt, and Fourier transforming

we obtain the heat kernel Gg,E for the Galilean invariant theory in Euclidean space:

Gg,E(s;(xxx2,τ2),(xxx1,τ1))) =
∫

∞

−∞

1
(4πs)d/2+1 e

ıτx−
2s −

|xxx|2
4s e−ımx−dx−

= 2πδ

(
τ

2s
−m

) 1
(4πs)d/2+1 e−

|xxx|2
4s (3.51)

where τ = τ2− τ1, in detailed agreement with Eq. (3.46). For later use we note that in the

coincidence limit we have

Gg,E((xxx,τ),(xxx,τ))) =
2πδ(m)

(4πs)d/2+1 . (3.52)

It is interesting to note that LCR directly gives ∼ δ(m)/sd/2+1 while the direct computations

gives ∼ δ(ms)/sd/2. Our main result, below, follows from the coincidence limit of the heat

kernel expansion in Eq. (3.57), which is useful only for s 6= 0, since it is used to extract the

coefficients of powers of s in the expansion. The limiting behavior as s→ 0 of the function Gg,E

is a delta function enforcing coincidence of the points, by construction (and this is why a0 = 1 at

coincidence), and therefore the behavior as s→ 0 is correct but of no significance.

9Recall, in the parent theory x± = 1√
2
(x1± t). Note that we are using a non-standard sign convention in the

definition of x−.
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The spectral dimension of the operator ME is given by

dM =−d ln(K)

d ln(s)
=

d
2
+1 (3.53)

which explains why there can not be any trace anomaly when the spatial dimension d is odd.

This has to be contrasted with the relativistic case where the spectral dimension of the laplacian

operator is given by d+1
2 , so that in the relativistic case the anomaly is only present when the

spatial dimension d is odd.

3.4.3 Heat Kernel in Curved spacetime

Now that we know that LCR works in flat space-time, we can go ahead and implement

it in curved space-time exploiting the known fact that for relativistic field theories coupled to

a curved geometry, the heat kernel can be obtained as an asymptotic series. The method is

explained in, e.g., Refs. [70, 75, 30].

The method, first worked out by DeWitt [76], starts with an Ansatz for the form of the

heat kernel taking a cue from the form of the solution in flat space-time for the heat equation.

For small enough s the Ansatz for the heat kernel, corresponding to a relativistic theory in d +2

dimensions, reads:

GR,E(x2,x1;s) =
∆

1/2
VM(x2,x1)

(4πs)d/2+1 e−σ(x2,x1)/2s
∞

∑
n=0

an(x2,x1)sn , a0(x1,x2) = 1 (3.54)

with an(x2,x1) the so-called Seeley–DeWitt coefficients and where σ(x2,x1) is the biscalar

distance-squared measure (also known as the geodetic interval, as named by DeWitt), defined by

σ(x2,x1) =
1
2

(∫ 1

0
dλ

√
GMN

dyM

dλ

dyN

dλ

)2

, y(0) = x1 , y(1) = x2 , (3.55)

with y(λ) a geodesic. The bi-function ∆VM(x2,x1) is called the van Vleck-Morette determinant;
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this biscalar describes the spreading of geodesics from a point and is defined by

∆VM(x2,x1) = G(x2)
−1/2 G(x1)

−1/2 det

(
− ∂2

∂xM
2 ∂xN′

1
σ(x2,x1)

)
. (3.56)

where G is the negative of determinant of metric GMN .

Now, to implement LCR, recall that a Schrödinger invariant theory coupled to a generic

curved NC structure is obtained by reducing from the d+2 dimensional metric GMN in Eq. (3.19).

In taking the coincident limit we must keep x−1 and x−2 arbitrary in order to Fourier transform

with respect to x− per the prescription (3.24). Therefore, we work in the coincident limit

where xµ
1 = xµ

2, with µ = +,1,2, · · · ,d. Now, since x− is a null direction, in this limit we

have σ((x−1 ,x
µ),(x−2 ,x

µ)) = 0 or [σ] = 0 for brevity. Furthermore, null isometry guarantees

that metric components are independent of x− and so are [an] and [∆V M]. Thus the coincident

limit is equivalent to the coincident limit of the parent theory, hence
[
∆V M

]
= 1. We refer to

appendix B.2 for details.

Thus, in the coincidence limit, we have the following expression for the heat kernel

corresponding to the reduced theory:

Gg,E(s;(τ,xxx),(τ,xxx)) =
2πδ(m)

(4πs)d/2+1

∞

∑
n=0

an((τ,xxx),(τ,xxx))sn , a0((τ1,xxx1),(τ2,xxx2)) = 1 (3.57)

where to define τ, we have proceeded just as in flat space: first revert to a Minkowski metric,

then switch to light cone coordinates, and finally go over to imaginary x+ time, τ. Subsequently,

using Eq. (3.40) the anomaly is given by

AG
d+1 =−4πδ(m)

ad/2+1

(4π)d/2+1 . (3.58)

From Eq. (3.57) it is clear that only the zero mode of P− can contribute to the anomaly; the

anomaly vanishes for fields with non-zero U(1) charge. We already know that the anomaly for
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the relativistic complex scalar case is given by

AR
d+2 =−

2ad/2+1

(4π)d/2+1 . (3.59)

Thereby we establish the result advertised in the introduction, giving the Weyl anomaly of a

d +1 dimensional Schrödinger invariant field theory of a single complex scalar field carrying

charge m under U(1) symmetry), AG
d+1, in terms of the anomaly in the relativistic theory in d+2

dimensions, AR
d+2:

AG
d+1 = 2πδ(m)AR

d+2 , (3.60)

computed on the class of metrics given in Eq. (3.19).

At this point, we pause to remark on the interpretation of the δ(m) factor. While it

trivially shows that the anomaly is absent for m 6= 0 , the interpretation becomes subtle when

m = 0. The apparent divergence in the anomaly is just an artifact of the usual zero mode

problem associated with null reduction. A similar issue has been pointed out in [62] in reference

to [77, 78]. The reduced theory in the m→ 0 limit becomes infrared divergent; the fields become

non-dynamical in that limit. The infrared divergence is also evident from Eq. (3.24). One may

further understand the presence of δ(m) by letting m be a continuous parameter and considering

a continuous set of fields φm, of charge m. The anomaly arising from the continuous set of fields

is given by summing over their contributions:

1
2π

∫
dmAG

d+1 = AR
d+2

∫
dmδ(m) = AR

d+2

The right hand side is exactly what we expect since allowing the parameter m to continuously

vary restores the Lorentz invariance: consulting Eq. (3.23) we see that this continuous sum

corresponds to restoring the relativistic theory of Eq. (3.21).
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That the constant of proportionality relating AR
d+2 to AG

d+1 vanishes for m 6= 0 can be

verified by an all-orders computation of AG
d+1, to which we now turn our attention.

3.5 Perturbative proof of Vanishing anomaly

The fact that the anomaly vanishes for non-vanishing m can be shown perturbatively

taking the background to be slightly curved. In flat space-time, wavefunction renormalization and

coupling constant renormalization are sufficient to render a quantum field theory finite. Defining

composite operators requires further renormalization. Therefore, when the model is placed on a

curved background additional short distance divergences appear since the background metric can

act as a source of operator insertions. To cure these divergences, new counter-terms are required

that may break scaling symmetry even at a fixed point of the renormalization group flow. In this

section, we will treat the background metric as a small perturbation of a flat metric so that we

compute in a field theory in flat space-time with the effect of curvature appearing as operator

insertions of the perturbation hµν = gµν−ηµν. To be specific, we will look at the vacuum bubble

diagrams with external metric insertions. It turns out that all of these Feynman diagrams vanish

at all orders of perturbation theory, leading to a vanishing anomaly. In fact, we will show that

these anomalies vanish even away from the fixed point as long as the theory satisfies some nice

properties.

Suppose we have a rotationally invariant field theory such that:

1. The theory includes only rotationally invariant (“scalar”) fields.

2. At free fixed point, the theory admits an U(1) symmetry under which the scalar fields are

charged.

3. The free propagator is of the form ı
2mω− f (|kkk|)+ıε , where, generically, f (|kkk|) = |kkk|z.
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4. The interactions are perturbations about the free fixed point by operators of the form

g(φ,φ∗)|φ|2, where g is a polynomial of the scalar field φ.

An elementary argument presented below shows that, under these conditions, all the

vacuum bubble diagrams vanish to all orders in perturbation theory.

Before showing this, a few comments are in order. First, the argument is valid in any

number of spatial dimensions. Second, assumption 4 precludes terms like φ4 +(φ∗)4 or Kφ2 in

the Lagrangian. To be precise, F(φ)+h.c. can evade this theorem for any holomorphic function

F of φ. This is because assumption 4 implies that each vertex of the Feynman diagrams of the

theory has at least one incoming scalar field into it and one outgoing scalar field line from it;

having both incoming and outgoing lines at each vertex is at the heart of this result. Thirdly, it

should be understood that all interactions that can be generated via renormalization, that is, not

symmetry protected, are to be included. For example, were we to consider a single scalar field

with only the interaction φ3φ∗+h.c., the interactions φ4 +(φ∗)4 and (φφ∗)2 will be generated

along the RG flow. Nonetheless, U(1) symmetry will always prohibit a holomorphic interaction

F(φ)+h.c. Lastly, assumption 3 can be relaxed to include a large class of functions f (|kkk|2); this

means one can recast this result in terms of perturbation theory along the RG-flow rather than

about fixed points.

To prove this claim, notice first that a vacuum diagram is a connected graph without

external legs (hanging edges). Moreover, since we are considering a complex scalar field, the

vertices are connected by directed line segments. These directed segments form directed closed

paths. To see this, recall that by assumption each vertex has at least one ingoing and one outgoing

path. Starting from any vertex, we have at least one outgoing path. Any one of these paths

must have a second vertex at its opposite end, since by assumption there are not hanging edges.

Take any one outgoing path and follow it to the next vertex. Now, at this second vertex repeat

this argument: follow the outward path to a third vertex. And so on. Since a finite graph has

a finite number of vertices, at some point in the process we have to come back to a vertex we
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have already visited. For example, assume that we first revisit the i-th vertex. This means that

starting from the vertex i we have a directed path which loops back to the i-th vertex itself. The

simplest example is that of a path starting and ending on the first vertex, corresponding to a self

contraction of the elementary field in the operator insertion.

Let us call this directed loop Γ. We use the freedom in the choice of loop energy and

momentum in the evaluation of the Feynman diagram to assign a loop energy ω in a way such

that ω loops around Γ. In performing the integral over ω it suffices to consider the Γ subdiagram

only. The resulting integration is of the form:

∫
dωP(ω,kkk,{ωn,kkkn})∏

n∈Γ

1
(ω+ωn− f (|kkk+ kkkn|)/2m+ iε)

(3.61)

where the product is over all vertices in Γ and correspondingly over all line segments in Γ out of

these vertices. Energy ωn and momentum kkkn enter Γ at the vertex n. The factor P(ω,kkk,{ωn,kkkn})

is polynomial in momentum and energy and may arise if there are derivative interactions. Note

that every propagator factor has the same sign iε prescription, that is, all poles in complex-ω

lie in the lower half plane (have negative imaginary part). The integral over the real ω axis can

be turned into an integral over a closed contour in the complex plane, by closing the contour

on an infinite radius semicircle on the upper half plane, using the fact that for two or more

propagators the integral over the semicircle at infinity vanishes. Then Cauchy’s theorem gives

that the integral over the closed contour vanishes as there are no poles inside the contour.

This proves the claim, except for the singular case of a self-contraction, that is, a

propagator from one vertex to itself. Self contractions can be removed by normal ordering,

again giving a vanishing result. For an alternative way of seeing this note that this integral is

independent of external momentum and energy, and is formally divergent in the ultraviolet (as

|ω| → ∞). The integral results in a constant (independent of external momentum and energy)

that must be subtracted to render it finite, and can be chosen to be subtracted completely, to give
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a vanishing result.

The computation in the case of anti-commuting fields differs only in that a factor of −1

is introduced for each closed fermionic loop. Hence the claim applies equally to the case of

anti-commuting scalar fields.

We now return to the derivation of our main result, Eq. (3.4). The conditions above

are satisfied for the theories considered in Sec. 3.4.3, namely, free theories of complex scalars,

with the free propagator given by ı
2mω−|kkk|2+ı0+ . Recall that we are to put the theory on a

curved background which is assumed to be a small perturbation from flat background. The

perturbations act as insertions on vacuum bubble diagrams, but since they preserve the U(1)

symmetry the model still satisfies the assumptions above. Hence all the bubble diagrams vanish,

and we conclude there are no divergences coming from metric insertion on bubble diagrams.

Consequently, there is no scale anomaly. We emphasize that the absence of the Weyl anomaly is

valid in all orders of perturbation in both the coupling and the metric. The result holds true even

if we make the couplings to be space-time dependent so that every coupling insertion injects

additional momentum and energy to the bubble diagram. Physically, the anomaly vanishes

because the absence of antiparticles in non-relativistic field theories and the conservation of U(1)

charge forbid pair creation, necessary for vacuum fluctuations that may give rise to the anomaly.

This perturbative proof holds for theories which need not be Galilean invariant, and the

question arises as to whether one may use LCR to make statements about anomalies for theories

with kinetic term involving one time derivative and z 6= 2. We will take up this task in following

section, starting by giving the promised proof of our prescription in Eq. (3.24).

We remark that perturbative proof works for m 6= 0. For m = 0, the integrand becomes

independent of ω, and one can not perform the contour integral to argue the diagrams vanish. In

fact, the integral over ω is divergent, as expected from our earlier expectation that at m = 0 one

encounters IR divergences. One way to see the presence of δ(m), as explained earlier, is to take

a continuous set of fields φm, labelled by continuous parameter m. If we exchange the sum over
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(1-loop) bubble diagrams and the integral over m, then each of the propagator can be thought of

as a relativistic propagator with m, playing the role of p−. Thus the whole calculation formally

becomes that of the relativistic anomaly.

One can verify our results by explicit calcualation in specific cases. In a slightly curved

space-time, one can treat the deviation from flatness as background field sources. This also

serves the purpose of checking that the η-regularization is appropriate, obtaining the anomaly as

a function of η. Since, as η→ 0, for m 6= 0, the flat space heat kernel vanishes, one expects the

anomaly to be vanishing. In fact, one can check that a δ(m) is recovered as η→ 0. We refer to

the App. B.3 for an explicit calculation; it verifies our results in detail, and shows the vanishing

anomaly regardless of the order of limits η→ 0 and m→ 0.

3.6 Modified LCR and Generalisation

3.6.1 Proving the heat kernel prescription

In this subsection we will explain why our proposed method to determine the heat kernel

for Schrödinger field theory (z = 2) worked in a perfect manner, as evidenced by the agreement

between Eqs. (3.46) and (3.51). We will see that one can use LCR to relate the heat kernel of a

theory living in d +1 dimensions with that of a parent theory living in d +2 dimensions, as long

as the parent theory has SO(1,1) invariance.10 Furthermore, if the parent theory has a dynamical

scaling exponent given by z, then the theory living in d +1 dimension has 2z as its dynamical

exponent. We will make these statements precise in what follows.

Suppose the operator D defined in d + 2 dimensional space-time is diagonal in the

eigenbasis of P−, the conjugate momenta to x−:

〈x+2 ,x
i
2,m2|D|x+1 ,x

i
1,m1〉= 〈x+2 ,x

i
2|Dm2|x

+
1 ,x

i
1〉δ(m2−m1) , (3.62)

10One may as well assume that both parent and reduced theories have, in addition, SO(d) rotational symmetry.
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where m1,2 label the eigenvalues of P−. The example worked out in Sec. 3.4.2 had D = M , and

it does satisfy this requirement. It follows that

〈x+2 ,x
i
2,x
−
2 |e
−sD|x+1 ,x

i
1,x
−
1 〉=

1
2π

∫
dm1 dm2e−ım1x−1 +ım2x−2 〈x+2 ,x

i
2,m2|e−sD|x+1 ,x

i
1,m1〉

=
1

2π

∫
dm1eım1x−12〈x+2 ,x

i
2|e−sDm1 |x+1 ,x

i
1〉 , (3.63)

from which we obtain

〈x+2 ,x
i
2|e−sDm|x+1 ,x

i
1〉=

∫
dx−e−ımx−12〈x+2 ,x

i
2,x
−
2 |e
−sD|x+1 ,x

i
1,x
−
1 〉 . (3.64)

This is precisely the prescription we gave in Eq. (3.24).

3.6.2 Generalisation

Since the LCR (or DLCQ) trick requires null cone reduction, it may seem necessary that

the parent theory have SO(d +1,1) symmetry, and that this will result necessarily in a Galilean

invariant reduced theory, that is, with z = 2. This is not quite right: one may relax the condition

of SO(d +1,1) symmetry and obtain reduced theories with z 6= 2. The key observation is that

for null cone reduction only two null coordinates are needed, with the rest of the coordinates

playing no role. Hence, we consider null cone reduction of a d +2 dimensional theory which

enjoys SO(1,1)×SO(d) symmetry. The reduced theory will be a d +1 dimensional theory with

SO(d) rotational symmetry and a residual U(1) symmetry that arises from the null reduction.

The point is that the theory can enjoy anisotropic scaling symmetry. Consider, for example, the

following class of operators

Mrc;d+2 =
(
−∂

2
t +∂

2
x
)
− (−1)z/2(∂i∂

i)z/2 , (3.65)
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where t = x0 and x = xd+1 and for the reminder of this section there is an implicit sum over

repeated latin indices, over the range i = 1, . . . ,d. These operators transform homogeneously

under

xi→ λxi, t→ λ
z/2t and x→ λ

z/2x . (3.66)

Introducing null coordinates as before, x± = 1√
2
(x± t), null reduction of this operator yields

Mgc;d+1 = 2ım∂t ′− (−1)z/2(∂i∂i)
z/2 , (3.67)

where t ′ = x+ is the time coordinate of the reduced theory. From the dispersion relation of the

reduced theory, 2mω = |kkk|z, we read off that the dynamical exponent is z. Here we are interested

in even z to insure that the operator Mgc;d+1 is local. For z = 2, we recover the case discussed

in earlier sections with the parent theory being Lorentz invariant and the reduced theory being

Schrödinger invariant.

Following the prescription (3.64), we can relate the matrix element of the heat kernel

operator for Mr;d+2 to that of Mg;d+1, via11

GMgc;d+1
=

∫
∞

−∞

dx− e−ımx−〈x−0 + x−|GMrc;d+2
|x−0 〉 . (3.68)

This should be viewed as an operator relation: thinking of the basis on which the operator

GMr;d+2
acts as given by the tensor product of |x+〉, |x−〉 and |xi〉 for i = 1,2, . . . ,d, then 〈x−0 +

x−|GMr;d+2
|x−0 〉 is an operator acting on the complement of the space spanned by |x−〉. Taking

the trace on both sides of Eq. (3.68), we obtain the heat kernel of the reduced theory:

KMgc;d+1
=

∫
∞

−∞

dx− e−ımx− Trx+,xi〈x−0 + x−|GMrc;d+2
|x−0 〉 (3.69)

11Provided these heat kernels are well defined. We postpone this technical aspect to the appendix.
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Equations (3.68) or (3.69) are useful in practice only when we know either left or right

hand sides by some other means. Hence, the next meaningful question to be asked is whether we

can calculate GMr
explicitly for a curved space-time for any z. The case for z = 2, that in which

the parent theory is relativistic and the reduced theory is Schrödinger invariant, is well known

and was presented in Sec. 3.4.2. For generic z, the answer is yes to some extent. We will find a

closed form expression when the slice of constant (t,x) in space-time is described by a metric

that does not depend on t or x:

ds2 =−dt2 +(dx)2 +hi j(xi)dxidx j (3.70)

With this choice, the heat kernel equation for the curved background version of the operator

Mrc;d+2 of Eq. (3.65) admits a solution by separation of variables, into the product of the

relativistic heat kernel in 1+1 dimensions and the heat kernel for an operator acting only on the

d-dimensional slice [18]. Specifically, we consider operators

Mrc;d+2 = ∇
2
t,x−Dz/2 (3.71)

where ∇2
t,x = (−∂2

t + ∂2
x) and D is a second order scalar differential operator on the slice of

constant (t,x), e.g., D =−∇2 =−1/
√

h∂i
√

hhi j∂ j. With these choices,

GMrc;d+2
= G

∇2
t,x

GDz/2 . (3.72)

Gilkey has shown that the heat kernel expansion for Dk can be computed from that for D [74]

for k > 0. The argument is based on the observation that the ζ-functions for the two operators

are related:

ζ(ε, f ,Dk) = TrL2

(
f (Dk)−ε

)
= TrL2

(
f D−kε

)
= ζ(kε, f ,D) .
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Gilkey’s result is as follows: If D has heat kernel expansion

KD =

(
1√
4π

)d

∑
n≥0

sn− d
2 a(d)n (3.73)

then the heat kernel expansion of Dk is

KDk =

(
1√
4π

)d

∑
n≥0

s
2n−d

2k
Γ(d−2n

2k )

kΓ(d
2 −n)

a(d)n =

(
1√
4π

)d

∑
n≥0

2n 6=d(mod 2k)

s
2n−d

2k
Γ(d−2n

2k )

kΓ(d
2 −n)

a(d)n

+

(
1√
4π

)d

∑
n≥0

2n=d(mod 2k)

s
2n−d

2k (−1)
(2n−d)(1−k)

2k a(d)n (3.74)

Hence, Mrc;d+2 = (−∂2
t +∂2

x)− (−∇2)z/2 has heat kernel expansion

〈x+2 ,x
−
2 ,x

i|GMrc;d+2
|x+1 ,x

−
1 ,x

i〉= e
−x+12x−12

2s

4πs

(
1√
4π

)d

∑
n≥0

s
2n−d

z
Γ(d−2n

z )
z
2Γ(d

2 −n)
a(d)n (3.75)

where x±12 = x±2 − x±1 and a(d)n are the well known coefficients of the heat kernel expansion

of −∇2.

Now, the reduced theory lives on d +1 dimensional space-time with curved spatial slice,

i.e., the background metric is given by

ds2 =−dt2 +hi jdxidx j , (3.76)

where i runs from 1 to d. In order to extract the heat kernel of Mgc;d+1 = 2ım∂t +(−∇2)z/2, we

need partial tracing of heat kernel of Mrc;d+2,

〈x−0 + x−|Trx+,xiGMrc;d+2
|x−0 〉=

(
1√
4π

)d 1
4πs ∑

n≥0
s

2n−d
z

Γ(d−2n
z )

z
2Γ(d

2 −n)
a(d)n , (3.77)
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leading to

KMgc;d+1
= 2πδ(m)

1
4πs

(
1√
4π

)d

∑
n≥0

s
2n−d

z
Γ(d−2n

z )
z
2Γ(d

2 −n)
a(d)n . (3.78)

Adding conformal coupling modifies a(d)n but the pre-factor stays 2πδ(m) 1
4πs

(
1√
4π

)d
. Hence, we

have the generalised result

Ag
d+1 = 2πδ(m)Ar

d+2 (3.79)

where Ag
d+1 is the Weyl anomaly of a theory of a single complex scalar field of charge m

under a U(1) symmetry living in d + 1 dimensions with dynamical exponent z and Ar
d+2 is

the Weyl anomaly of a field theory living in d + 2 dimension such that it admits a symmetry

under t → λz/2t,xd+2→ λz/2xd+2and xi→ λxi for i = 1, . . . ,d + 1. Thus we have shown that

theories with one time derivative on a time independent curved background do not have any

Weyl anomalies. This is consistent with the perturbative result obtained previously.

It deserves mention that the operator Mrc;d+2 of Eq. (3.71) does not transform homoge-

neously under Weyl transformations. In order to construct a Weyl covariant operator consider

generalizing the metric (3.70) to the following form

ds2 = Ndx+dx−+hi jdxidx j . (3.80)

If N is independent of x− the metric for the reduced theory will include a general lapse function

N. Then we replace (∇2)
z
2 by O(d+2z−4)O(d+2z−8) · · ·O(d+4)O(d) with O(p) defined as

O(p) ≡ ∇
2− p

4(d−1)
R+

2+ p−d
z

∂iN
N

hi j
∂ j +

d
4z2 (2+ p−d)

∂iN
N

hi j ∂ jN
N

(3.81)

Under hi j → e2σhi j, N → ezσN and ψ→ e−
p
2 σ

ψ, this operator transforms covariantly, in the
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sense that

O(p)
ψ→ e−(

p
2+2)σO(p)

ψ . (3.82)

Therefore, under the Weyl rescaling hi j→ e2σhi j, N→ ezσN and φ→ e−
d
2 σ

φ we have that

N
√

hφ
∗O(d+2z−4)O(d+2z−8) · · ·O(d+4)O(d)

φ (3.83)

is invariant under under Weyl transformations.

Adding the conformal coupling will modify the expressions for a(d)n , but scaling with

respect to s will remain unmodified. Hence we can enquire about existence or absence of potential

Weyl anomalies. To have a non-vanishing Weyl anomaly, we need to have an s independent term

in the heat kernel expansion. This is possible only when 2n−d
z = 1, i.e., when d + z is even; see

Eqs. (3.75) and (3.78). Since for a local Lagrangian z must be even, this condition corresponds

to even d 12. This is expected because of the following reason: the scalars we can construct out

of geometrical data (that can potentially appear as a trace anomaly) have even dimensions and

the volume element scales like λd+z, so that in order to form a scale invariant quantity d + z has

to be even. Now when d is even, we have s independence for n = (d + z)/2 and the coefficient

of s0 is given by
(

1√
4π

)d
(−1)1− z

2 ad
d+z

2
. Hence, the result relating anomalies in the parent and

reduced theory, Eq. (3.79), still holds.

3.7 Summary, Discussion and Future directions

We have shown that for a d+1 dimensional Schrödinger invariant field theory of a single

complex scalar field carrying charge m under U(1) symmetry, the Weyl anomaly, AG
d+1, is given

12Giving up on the requirement of locality allows z to be any positive real number. In this case, the anomaly is
expected to be present whenever d + z is even. It might be of potential interest to look at these cases carefully and
make sure that non-locality does not provide any obstruction in the anomaly calculation and that the renormalization
process can be done in a consistent manner.
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in terms of that of a relativistic free scalar field living in d +2 dimensions, AR
d+2, via

AG
d+1 = 2πδ(m)AR

d+2 . (3.84)

Here the parent d +2 theory lives in a space-time with null isometry generated by the Killing

vector ∂− so that the metric can be given in terms of a d+1 dimensional Newton-Cartan structure.

The result is shown to be generalised to

Ag
d+1 = 2πδ(m)Ar

d+2 , (3.85)

where Ag
d+1 is the Weyl anomaly of a theory of a single complex scalar field of charge m under

an U(1) symmetry living in d + 1 dimensions with dynamical exponent z, while Ar
d+2 is the

Weyl anomaly of an SO(1,1)× SO(d) invariant theory living in d + 2 dimension such that it

admits symmetry under t→ λz/2t, xd+2→ λz/2xd+2 and xi→ λxi for i = 1, . . . ,d +1.

To obtain information regarding the anomaly, we introduced a method to systematically

handle the heat kernel for a theory with kinetic term involving one time derivative only. We

provided crosschecks and consistency checks on our heat kernel prescription. One may worry

that to properly define a heat kernel the square of the derivative operator must be considered.

This would also be the case for, say, the Dirac operator. In fact, one can properly define it this

way; see, for example, Ref. [79].

The result obtained regarding the anomaly of Schrödinger field theory is consistent with

the one by Jensen [62]. Auzzi et al, [80] have studied the anomaly for a Euclidean operator

given by

M ′
E,g = 2m

√
−∂2

t −∇
2 , (3.86)

with eigenspectra given by |kkk|2 +2m|ω| ≥ 0. One can define the heat kernel for this operator as
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well, but the eigenspectra of this operator is not analytically related to that of MM,g = 2ım∂t +∇2,

which is −k2 +2mω. As a result the propagator in ω-kkk space has a cut on the complex ω plane

with branch point at the origin, making the analytic continuation to Minkowski space problematic.

It is known that the two point correlator of Schrödinger field theory is constrained and has a

particular form as elucidated in Ref. [59, 81]. While our prescription and the resulting Euclidean

correlator conforms to that form, it is not clear how the Euclidean Schrödinger operator defined

in Ref. [80] does, if at all. Finally, we note that the operator
√
−∂2

t is non-local (in the sense that

the kernel, defined by
√
−∂2

t f (t) =
∫

dt ′K(t− t ′) f (t ′), has non-local support, K(t) = 2∂tP1
t ).

There are several avenues of investigation suggested by this work:

1. What happens in the case of several scalar fields with different charge interacting with each

other while preserving Schrödinger invariance in flat space-time? How is the pre-factor

δ(m) modified?

2. It is not obvious how null reduction of a theory of a Dirac spinor in d + 2 dimensions

can result in a Lagrangian in d +1 dimensions of the form L = 2ımψ†∂tψ+ψ†∇2ψ, let

alone one with L = 2ımψ†∂tψ−ψ†(−∇2)z/2ψ for z 6= 2. On the other hand, as we have

seen, the functional integral over non-relativistic anti-commuting fields yields the same

determinant as that of commuting fields (only a positive power). Hence, the anomaly of

the anti-commuting field is the negative of that of the commuting field.

3. Calculations using the same Euclidean operator as in Ref. [80] give a non-vanishing

entanglement entropy in the ground state [82]. By contrast, for the operator MM,g =

2ım∂t +∇2, the entanglement entropy in the ground state vanishes, since for this local

non-relativistic field theory φ(x)|0〉= 0 and hence the ground state is a product state. It

would be of interest to verify this result by direct computation using a method based on

our prescription.

4. The method described in Sec. 3.6.2 to compute Weyl anomalies in theories with z 6= 2
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is not sufficiently general in that, by assuming the metric is time independent and has

constant lapse, it neglects anomalies involving extrinsic curvature or gradients of the lapse

function. A future challenge is to develop a more general computational method.

We hope to come back to these questions in the future.
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Chapter 4

Unitarity and Universality in non

relativistic Conformal Field theory

We relate the notion of unitarity of a (0+ 1)-D conformally (SL(2,R)) invariant field

theory with that of a non-relativistic conformal (Schrödinger) field theory using the fact that

SL(2,R) is a subgroup of non-relativistic conformal (Schrödinger) group. Exploiting SL(2,R)

unitarity, we derive the unitarity bounds and null conditions for a Schrödinger field theory (for

the neutral as well as the charged sector). In non integer dimensions the theory is shown to be

non-unitary. The use of SL(2,R) subgroup opens up the possibility of borrowing results from

(0+1)-D SL(2,R) invariant field theory to explore Schrödinger field theory, in particular, the

neutral sector, which has otherwise been unexplored.

4.1 Introduction

The conformal field theory [83] has a rich literature with wide application in describing

physics at relativistic fixed points. Much of its armory stem from the early papers on the

representation theory of SL(2,R), a subgroup of the conformal group [84, 85, 86]. The unitarity
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bound along with the null condition is one of the many consequences of the representation theory

of SL(2,R) algebra [87]. The conformal bootstrap program also relies on knowing conformal

(SL(2,R)) blocks [88, 89, 90, 91, 92]. The task we take up here is to use this arsenal of SL(2,R)

algebra to hammer a class of non-relativistic conformal theories (NRCFT), which are SL(2,R)

invariant.

The non-relativistic conformal invariance emerges at fixed points without Lorentz in-

variance, in particular, in a scenario, where the symmetry involves scaling time and space in

a separate way. If the theory permits, one can have Galilean boost invariance and invariance

under special conformal transformations as well. A prime example of such kind is the theory de-

scribed by Schrödinger equation, where the maximal kinetic invariance group is the Schrödinger

group[93]. Fermions at the unitarity limit (when the S-wave scattering length a→ ∞) are also

described by Schrödinger field theory[94, 60, 59, 1, 2]. Examples of approximate non-relativistic

conformal field theories include systems involving 85Rb [5],133Cs[6],39K [7], deuterons [3, 4]

and spin chain models[95].

Much like its relativistic cousin, progress has been made regarding the form of correlators

and convergence of operator product expansion (OPE) in such theories for a sector with non-zero

charge using the symmetry algebra only [96, 93, 94, 97, 98, 59, 61, 81, 99] (which is Schrödinger

algebra). The state-operator correspondence invoking the harmonic potential is available for the

charged sector. Nonetheless, the neutral sector has remained elusive since the representation

theory along with the concept of primary and descendant breaks down for the neutral sector[99].

Thus, there is no state-operator correspondence available for the neutral sector, neither there

is a proof of OPE convergence if the four point correlator involves neutral operator(s). On the

other hand, physically relevant operators like Hamiltonian, number current, stress-energy tensor

are neutral. This motivates us in first place to use SL(2,R) to explore the neutral sector as one

can organize the operator content according to SL(2,R) representation, which is applicable to

both the neutral as well as the charged sector. To our favor, it so turns out that SL(2,R) provides

88



strong constraints on properties of Schrödinger field theories even for the charged sector on top

of solving all the puzzles mentioned before in context of the neutral sector.

The purpose of this work is multifold. The most important point that we make is that

SL(2,R) establishes a powerful and novel link between (0+1)-D conformal field theory (CFT)

and NRCFTs. Thus results proven for (0+ 1)-D CFTs immediately apply to NRCFTs and

vice versa. In fact, using SL(2,R), we come up with state-operator map, subsequently, derive

the unitarity bound, the null condition for the neutral sector for the first time. Secondly, we

reformulate the notion of unitarity in the charged sector and re-derive the unitarity bound without

invoking the standard map to harmonic oscillator. This, in turn helps us to identify the non-unitary

sector in fractional dimensions, which has otherwise not been known previously. Moreover, we

explore the universal features of Schrödinger field theories including the convergence of the

operator product expansion (OPE) in the neutral sector. Convergence of OPE in all the sectors

also opens up the possibility of bootstrapping these theories. We deduce the universal behavior

of three point coefficient and establish for the first time that even in NRCFT, there exist infinite

number of SL(2,R) primaries. In short, we explicitly unveil a complete equivalence between

correlators of NRCFTs on (τ,000) slice and (0+1)-D CFTs via the notion of SL(2,R) primaries

and descendants. Last but not the least, the use of SL(2,R) primaries/descendants proves to be

quintessential in operator counting of heavy particle effective field theory, where neutral scalar

operators appear in the Lagrangian. Only with the aid of SL(2,R), it is possible to organize the

operator basis of heavy particle effective field theory in Schrödinger representation [100].

The paper is organized as follows. In sec. 4.2, we derive the unitary bounds and null

conditions for both the charged sector as well as the neutral sector of Schrödinger algebra.

Non-unitarity in non integer dimensions has been explored in sec. 4.3. The sec. 4.4 deals with

the universality, in particular, the OPE convergence, the asymptotic behavior of three point

coefficients in Schrödinger invariant field theory. We conclude with an elaborate discussion

pointing out potential avenues of future research. To aid the main flow of the paper, the details
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of SL(2,R) invariant theory and representation of Schrödinger algebra have been relegated

to appendix C.1 and C.2 respectively. The role of time reversal and parity is elucidated in

appendix C.3. The appendix C.4 expounds on defining the Euclidean Schrödinger field theory,

which comes out as a byproduct of organizing the operator content of Schrödinger field theory

according to SL(2,R) algebra.

4.2 Unitarity bounds & Null conditions

The Schrödinger group acts on space-time as follows [96, 93, 94, 98]:

t 7→ at +b
ct +d

, rrr 7→ Rrrr+ vvvt + f
ct +d

. (4.1)

where ad−bc = 1, R is a d dimensional rotation matrix, vvv denotes the Galilean boost and f is a

spatial translation. For the sector with non-zero charge, the representation is built by translating

all the operators to the origin and considering the little group generated by dilatation operator

D, Galilean boost generator Ki, and special conformal transformation generator C. The highest

weight states (φα) are annihilated by C and Ki i.e.

[C,φα(0,000)] = 0 , [Ki,φα(0,000)] = 0 . (4.2)

These are called primary operators. The commutators with D and particle number symmetry

generator N̂ dictate the charge and the dimension of these operators φα i.e. [D,φα(0,000)] =

ı∆αφ(0,000) and [N̂,φα(0,000)] = Nαφα(0,000). The time and space translation generators H and Pi

create descendant operators by acting upon primary operators and raising the dimension by 2

and 1 respectively. The concept of primaries and descendants breaks down within the neutral

sector. Since Ki and Pj commute in this sector, Pj acting on a primary spits out a primary in

stead of a descendant.
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The subgroup, SL(2,R) is defined by R= I, vvv = 0, f = 0 and generated by H, D and C.

Evidently, the (t,0) slice is an invariant domain of SL(2,R) . Using this SL(2,R) algebra, one can

reorganize the operator content. A SL(2,R) primary O is defined by requiring [C,O(0,000)] = 0.

Thus all the primaries defined by (4.2) are SL(2,R) primaries but not the other way around. The

situation is reminiscent of 2D conformal field theory where we have Virasoro primaries as well

as SL(2,R) primaries and the SL(2,R) primaries are called quasi-primaries. We will borrow that

nomenclature and call the Schrödinger primaries as primaries while we name SL(2,R) primaries,

quasi-primaries. Remarkably the notion of quasi-primaries goes through even for a zero charge

sector. Henceforth, by φ(t) (or O(t)), we will mean the operator φ(t,000)(or O(t,000)).

For a SL(2,R) invariant field theory, there is a notion of unitarity/reflection positivity,

which guarantees that the two point correlator of two operators inserted at imaginary time −τ

and τ is positive definite. We will exploit the SL(2,R) subgroup of Schrödinger group to borrow

the notion of reflection positivity in Schrödinger field theory. We consider the following states

for α ∈ R and β ∈ R:

|ψα(τ1)〉=
∫

dτ
[
δ(τ− τ1)+2τ1α

−1
δ
′(τ− τ1)

]
O(τ)|0〉 ,

=

∣∣∣∣[O(τ1)−2τ1α
−1(∂τO)(τ1)

]〉
.

|Ψβ(τ1)〉=
∫

dτ

[(
Nd
2∆
− N

β

)
δ
′(τ− τ1)φ

†(τ)|0〉

+δ(τ− τ1)A†(τ)|0〉
]
=

∣∣∣∣[N
β

∂τφ
†− 1

2
∇

2
φ

†
]〉

τ=τ1

(4.3)

where O is a quasi-primary, φ† is a primary with charge −N and A† ≡
(Nd

2∆
∂τφ†− 1

2∇2φ†) is a

quasi-primary1.

1The details of SL(2,R) invariant field theory and Schrödinger algebra can be found in the appendix C.1 and C.2.
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To derive the unitarity bound for quasi-primary, we demand that the state |ψα〉 =

|ψα(1/2)〉2 has a positive norm:

〈ψα|ψα〉 ≥ 0⇔ ∆
2 +(2α+1)∆+α

2 ≥ 0 , (4.4)

where we have used 〈O(τ1)O(τ2)〉= (τ2− τ1)
−∆. For α <−1

4 there is no constraint on ∆. For

0 100 200 300 400 500

0

-250

-500

Figure 4.1: Unitarity bound on (α,∆) plane: the projection of the region bounded by two

curves onto the Y axis excludes ∆ < 0. The blue thick curve is ∆+ =−α− 1
2 +
√

α+ 1
4 while

the orange dashed curve is ∆− =−α− 1
2 −
√

α+ 1
4 .

α≥−1/4, the region (∆−,∆+) is excluded where

∆± = (−α−1/2±
√

α+1/4)≤ 0. . (4.5)

As we vary α, the whole ∆ < 0 region gets excluded (fig. 4.1) since, ∆+−∆− = 2
√

α+1/4.

Now we will do the same for a primary and consider the norm of the state |Ψβ〉 =

|Ψβ(1/2)〉,

〈Ψβ|Ψβ〉 ≥ 0⇔ ∆
2 +∆(1−βd)+

1
4

βd(β(d +2)−4)≥ 0 (4.6)

To find out the norm of Ψβ, we have used the two point correlator of primaries, fixed by

2Technically, the ratio, α/τ1 is dimensionless. So, in some suitable unit, one can choose τ1 = 1/2 and vary α in
the same unit.
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Schrödinger algebra. This is exactly where it becomes important that the actual symmetry group

is bigger than SL(2,R) and there are d spatial dimensions. The region, excluded (fig. 4.2) due to

(4.6) is given by (∆−,∆+) where ∆± = dβ−1
2 ± 1

2

√
1+2dβ−2dβ2.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
-1

0

1

2

3

4

5

Figure 4.2: Unitarity bound on (β,∆) plane: the projection of the region bounded by the
ellipse onto the Y axis excludes ∆ ∈

(
−1, d

2

)
. Here d = 10. The blue thick curve is ∆+ =

dβ−1
2 + 1

2

√
1+2dβ−2dβ2 while the orange dashed curve is ∆− = dβ−1

2 −
1
2

√
1+2dβ−2dβ2.

As we vary β, on the (β,∆) plane, the excluded region is bounded by an ellipse. This, in

turn, excludes ∆ ∈
(
−1, d

2

)
. Thus we have (recalling a primary is a quasi-primary too and has to

satisfy the bound for quasi-primary)

∆ /∈
(
−1,

d
2

)
∪ (−∞,0)⇒ ∆≥ d

2
. (4.7)

The bound is saturated when ∆+ = d
2 , which implies that β = 1 and we arrive at the null

condition:

〈Ψ1|Ψ1〉= 0⇔ N∂τφ
†− 1

2
∇

2
φ

† = 0 (4.8)

The unitarity bound and the null condition, thus obtained for the charged sector, is consistent

with the results in [60]. A technical remark is in order: setting β = 1 to begin with, would not

suffice to derive the unitarity bound. This is because merely demanding〈Ψ1|Ψ1〉 ≥ 0 would

exclude the region
(d

2 −1, d
2

)
only.

For a sector with N = 0, the unitarity bound becomes the one obtained by using |ψα〉,
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thus the null condition is achieved when ∆+(α) = 0⇒ α = 0. Thus the null condition for neutral

sector reads ∂τO = 0. The bound in the neutral sector is lower compared to the bound in charged

sectors, thus in free Schrödinger field theory there’s no neutral operator satisfying the bound

except the Identity operator. The identity operator by definition creates the neutral vacuum

state, has 0 dimension and trivially time independent. It would be interesting to find an operator

besides the identity operator, which saturates the bound or improve the bound for the non-identity

operators. One might hope to come up with stronger bound for the neutral sector by considering

the norm of the state A|ψα〉+B|Ψβ〉, but this is given by A2〈ψα|ψα〉+B2〈Ψβ|Ψβ〉 since |Ψβ〉 is

charged whereas |ψα〉 is neutral, leading to 〈ψα|Ψβ〉= 0. Now, A2〈ψα|ψα〉+B2〈Ψβ|Ψβ〉 ≥ 0

by previous bounds.

Subtleties associated with Null condition & Non-Renormalization: The derivation of the

null condition assumes that the only operator that can annihilate the vacuum is the null operator

(denoted as 0̂ henceforth). This is not necessarily true in a non-relativistic set up. For example,

the canonical way of quantizing free Schrödinger field theory starts with the existence of an

operator φ such that φ annihilate the vacuum Thus for τ > 0, we have 〈0|φ†(0)φ(τ)|0〉= 0. But

this does not imply that φ is a null operator. In a theory with anti-particles, φ can not annihilate

the vacuum since its Fourier decomposition consists of several particle annihilation operators

and anti-particle creation operators. But a non-relativistic field theory admits a quantization

process without having any anti-particle in its spectrum. Thus, non-trivial operators like φ can

have the vacuum state as their kernel.

To state a generic null condition, we consider the set of operators SN , defined by sN ∈ SN

iff |0〉 ∈ ker(sN), [N̂,sN ] = NsN . The null condition then reads:

N∂τφ
†− 1

2
∇

2
φ

† ∈ S−N ∪{0̂} . (4.9)
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We see that, unlike relativistic CFT, the Eq. (4.9) can be satisfied at an interacting fixed point. It

has, therefore, consequences in terms of anomalous dimension of φ. For example, let us consider

a free Schrödinger field theory and perturb by an operator of the form s(x)φ(x) where s ∈ SN . If

the theory flows to another fixed point such that Eq. (4.9) holds, the field φ can not acquire an

anomalous dimension. This happens because the null condition (4.9) implies that even at the

non-trivial fixed point φ has dimension d
2 , which equals the dimension at the free fixed point.

The non-renormalization theorem can be utilized in following way: consider a free

Schrödinger field theory with free elementary fields φα (the ones that appear in Lagrangian at

free fixed point) and [N̂,φα] = Nαφα with Nα < 0. We further assume without loss of generality

that φ
†
1 has the minimum positive charge given by −N1 > 0. The absence of anti-particles

mean φα annihilates the vacuum. Now we perturb the theory by adding a classically marginal

s−N1φ1+h.c term, where s−N carries charge−N > 0 and annihilates the vacuum. Assuming that

the theory flows to a another fixed point invariant under Schrödinger symmetry, we can show

that the field φ1 does not acquire any anomalous dimension at the non trivial fixed point.

We proceed by observing that all the terms that might get generated due to renormalization

group flow preserve U(1). Furthermore, we only look for the operators of the form s′φ1, as

they contribute to the equation motion of φ
†
1. Now, the U(1) charge conservation guarantees

that s′ has −N1 charge. We need to show that s′ annihilates the vacuum. This would not be

the case if s′ = φ
†
1, but this operator can not be generated from a classically marginal term. So

we are left with the other option which requires having at least two elementary field operators

such that their charges add up to −N1. Since −N1 is the least possible positive charge, there

exists at least one operator with negative charge and this implies that s′ ∈ S−N1 i.e s′ annihilates

the vacuum. Thus the null condition (N1∂τ +∇2)φ†|0〉= 0 is always satisfied for the field with

the least possible charge and the corresponding field operator does not acquire any anomalous

dimension at the nontrivial fixed point. For example, fermions at unitarity is described by two

equivalent theories living at a non-trivial Wilson-Fisher fixed point: one in 2+ ε dimensions,
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another one in 4− ε dimensions. It is easy to verify from [59] that both of them conform to the

above theorem. The one fermion operator ψ does not acquire anomalous dimension in both 2+ε

and 4− ε dimensions whereas in 4− ε dimensions, the two fermion operator φ does acquire a

anomalous dimension, which should be the case since even at tree level the equation motion of

φ† does not belong to S−N where

s−N ∈ S−N iff |0〉 ∈ ker(s−N) & [N̂,s−N ] =−Ns−N . (4.10)

4.3 Non Unitarity in non integer dimensions

The unitarity of a SL(2,R) invariant field theory can be defined in non-integer dimensions

by analytically continuing the appropriate correlator. Relativistic CFTs in non integer dimensions

can have Evanescent operators, corresponding to states with negative norm, thus has a non-

unitary sector. These operators cease to exist whenever d becomes integer, nonetheless they are

present and non-trivial whenever one extends the theory away from integer (spatial) dimensions

[101, 102, 103, 104]. Here we consider a free Schrödinger field theory in d +1 dimensions and

show the presence of such operators. In particular, we consider the following set of operators for

n≥ 2,

Rn(t,xxx) := δ
i1[ j1δ

|i2| j2 · · ·δ|in| jn] : Mi1 j1Mi2 j2 · · ·Min jn :,

where Mi j = ∂i∂ jφ(t,xxx), φ is a primary operator with dimension d/2 and all the j indices are

anti-symmetrized. For example, R2(t,xxx) := (δi1 j1δi2 j2 − δi1 j2δi2 j1) : Mi1 j1Mi2 j2 :. For integer

d < n dimensions, at least one of the indices has to repeat itself, thus the operator becomes

trivially zero. For non integer d < n−1 and for d ≥ n, the operators are indeed nontrivial.

The operator R2 produces a negative norm state (we are using the notion of state borrowed

from SL(2,R) invariant field theory, as explained in the appendix C.1) in a theory living on

96



(1− ε)+1 dimensions with 1 > ε > 0. The norm of R2 is given by

〈
R2(−1

2 ,0)R
†
2(

1
2 ,0)

〉
= #(d +2)(d +1)d (d−1) (4.11)

where # is a positive number, determined by the two point correlator of φ and number of

independent ways to contract. Here we have also set τ = 1
2 without any loss of generality. As

expected, the norm becomes zero as d = 0,1. The norm is negative when 0 < d < 1. Similarly,

we find that

〈
R3(−1

2 ,0)R
†
3(

1
2 ,0)

〉
= #(d +2)(d +1)d2 (d−1)(d−2)〈

R4(−1
2 ,0)R

†
4(

1
2 ,0)

〉
= #(d +2)(d +1)d2 (d−1)2 (d−2)(d−3)〈
R5(−1

2 ,0)R
†
5(

1
2 ,0)

〉
= #(d +2)(d +1)d2 (d−1)2 (d−2)2 (d−3)(d−4)

where # is a positive number, determined by the two point correlator of φ and number of

independent ways to contract. In general, the operator Rn produces a negative norm state:

〈
Rn(−1

2 ,0)R
†
n(

1
2 ,0)

〉
= #(d−n+3)n

n−1

∏
j=0

(d− j) ,

where (d−n+3)n =
Γ(d+3)

Γ(d−n+3) is the Pochhammer symbol. The norm becomes negative when

(n−2)< d < (n−1).

These negative norm states are robust and do survive at the Wilson-Fisher fixed point as

long as the fixed point can be reached perturbatively i.e. ε << 1[103].
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Figure 4.3: The norm of R5 as a function of d. This becomes negative for 3 < d < 4. The
zoomed in version shows that the norm is non negative when d ∈ (0,3) and becomes zero iff d
is an integer below 5 i.e. d = 0,1,2,3,4.

4.4 Universality

(0+1)-D SL(2,R) invariant field theory has universal features, irrespective of the details

of the theory. They come out as a natural consequence of SL(2,R) invariance and crossing

symmetry. Schrödinger field theory, by virtue of being SL(2,R) invariant theory as well, inherits

these universal features, specially in the neutral sector. Following [105], we consider the 4

point correlator of four Hermitian operator 〈O(0)O(τ)O(1)O(∞)〉= τ−∆O G(τ), where, from the

SL(2,R) algebra, it follows that

G(τ) =
∫

∞

0
d∆p(∆)G∆(τ) , (4.12)

G∆(τ) = τ
∆

2 2F1

(
∆

2
,
∆

2
,∆,τ

)
(4.13)

where p(∆) is the weighted spectral density and given by |cOO∆|2ρ(∆). Here ρ(∆) is the density

of quasi-primaries at ∆, cOO∆ is the three point coefficient and G∆ is SL(2,R) block. We refer to

the (C.12) in appendix C.1 for the generic form of three point correlator. The convergence of

this integral for finite τ holds true for the same reason it holds true in (0+1)-D conformal field

theory. Now, as τ→ 1, the operator product expansion (OPE) of O(τ)O(1) is dominated by the
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contribution from the identity operator, thus we have

G(1− τ)∼ τ
−∆O , τ→ 0 . (4.14)

Using the fact,

G∆(1− τ)' 2∆

√
∆

2π
K0
(√

τ∆
)
, (4.15)

one can obtain [105]:

p(∆) ∼
∆→∞

2−∆

√
2π

∆

41−∆O

Γ(∆O)2 ∆
2∆O−1 (4.16)

The difference in factors of 2, as compared to Ref. [105], is coming from the definition of the

dilatation operator and ∆ in Schrödinger field theory. We remark that Schrödinger group has

U(1) subgroup, invariance under which implies that each of the operator O carries zero charge

under U(1). Thus, we are in fact probing the neutral sector, where one can not define the notion

of Schrödinger primary. Furthermore, the non-zero asymptotics of p(∆) in Eq. (4.16) directly

implies that there has to be infinite number of quasi-primaries.

Infinite number of quasi-primaries: One can prove the existence of infinite number of quasi-

primaries in the OO→OO OPE channel using the crossing symmetry as well. It might seem that

the existence of infinite number of quasi-primaries are trivial as in the charged sector, operators

that are some number of spatial derivatives acting on a primary do appear and they can be

written down as a linear combination of SL(2,R) descendants and quasi-primaries. But, here we

consider 〈O(0)O(τ)O(1)O(∞)〉 and all the operators lie at xxx = 0. As a result, the operators that

appear in the OPE are not of the form of some spatial derivative acting on a primary.
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The proof goes by noting that the crossing symmetry implies

(1− τ)∆O G(τ) = τ
∆O G(1− τ) (4.17)

where ∆O is the dimension of the operator O.

As τ→ 0, the leading contribution to the left hand side of (4.17) comes from identity,

i.e. we have (1− τ)∆O G(τ) = 1+ · · · . If we look at the right hand side in terms of blocks, we

realize that each G∆(1− τ) goes like log(τ), thus the each term in the block decomposition of

τ∆O G(1− τ) behaves like τ∆O log(τ), which goes to 0 as τ→ 0. If we have finite number of

quasi-primaries, since each of the summands goes to 0, we could never have (4.17) satisfied

in τ→ 0 limit. This proves the existence of infinite number of quasi-primaries which are not

descendants of a primary. Similar argument works for SL(2,R) primaries of conformal field

theories as well. This line of argument has first appeared in [92] (See also[106]).

Analyticity of Three point function: The three point function of Schrödinger primaries are

given by

〈φ1(xxx1, t1)φ2(xxx2, t2)φ3(xxx3, t3)〉

= exp
[
−N1
|xxx13|2

τ13
−N2

|xxx23|2

τ23

](
∏
i< j

τ

∆k−∆i−∆ j
2

i j

)
F(v123) (4.18)

where v123 =
1
2

(
|xxx23|2

τ23
+ |x

xx12|2
τ12
− |xxx13|2

τ13

)
and xxxi j = xxx j− xxxi, τi j = τ j− τi. F is a model dependent

function and zero if ∑i Ni 6= 0, where Ni is the charge carried by φi. By translation invariance,

we can set τ3 = 0 and xxx3 = 0. As φ(000,τ) is a quasi-primary, upon setting xxx1 = xxx2 = xxx3 = 0, we

immediately obtain that F(0) is a finite number and given by three point coefficient c123.

For simplicity, let us work in d = 1 dimension and set x1 = x3 = 0 and investigate

the behavior of F as a function of x2. The SL(2,R) algebra guarantees that F is infinitely
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differentiable at x2 = 0. This follows from noting that

〈φ1(0, t1)φ2(x2, t2)φ3(0,0)〉

= ∑
β

1
β!

xβ

2〈φ1(0, t1)∂β
x2

φ2(0, t2)φ3(0,0)〉 (4.19)

and finiteness of 〈φ1(0, t1)∂
β
x2φ2(0, t2)φ3(0,0)〉. The finiteness follows from finiteness of norm

and the fact that ∂
β
x2φ2(0, t2) can be written down as a linear combination of quasi-primaries and

descendants of quasi-primary. For example, we list out the first two quasi-primaries (in d spatial

dimensions), given φ is a primary (which is trivially a quasi-primary too):

B(1)
i ≡ ∂iφ , B(2) ≡ Nd

2∆
∂τφ+

1
2

∇
2
φ .

4.5 Discussion & Outlook

We have shown that the features of (0+ 1)-D conformal field theory is inherited by

the Schrödinger field theory. SL(2,R) algebra can be leveraged to derive the unitary bounds

and null conditions, to prove the convergence of operator product expansion in the kinematic

limit, where all the operators are inserted at same xxx, but at different times. Moreover, if we

consider the four point correlator of Schrödinger primaries with all but one inserted on (τ,000)

slice and one operator inserted at some different xxx 6= 000, we can still prove the OPE convergence

by using SL(2,R) invariance. This happens because xxx dependence of the four point correlator

is simply given by exp
[

N|xxx|2
2τ

]
where N < 0 is the charge of the operator. The use of SL(2,R)

reveals the universal behavior of the weighted spectral density function and the existence of

infinitely many quasi-primaries. We emphasize the salient role of SL(2,R) in this context, as

concept of Schrödinger primaries and descendants break down in the neutral sector. Moreover,

one can easily deduce the analyticity of three point co-efficient function as a consequence of
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SL(2,R) . It worths mentioning that the usual oscillator picture also relies on SL(2,R) algebra in

hindsight. In fact, the state-operator correspondence using the oscillator picture work beyond the

primary operator: for every quasi-primary operator, one can define a state |O〉= e−HO|0〉 such

that (H +C) |O〉= ∆|O〉, where H +C can be interpreted as a Hamiltonian for the same system

under harmonic trap.

The use of SL(2,R) algebra provides us with a neat way to define the Euclidean

Schrödinger theory. We refer to the appendix C.4 for more details. This justifies the Wick

rotation done in [107] to evaluate the heat kernel and the Weyl anomaly. Moreover, the use of

Euclidean Schrödinger operator in [80, 82] comes under question in this light as the correlator

obtained from the heat kernel of such operators do not satisfy the constraint coming from SL(2,R)

algebra. In this connection, it deserves a remark that the notion of parity (τ→−τ) and time

reversal (τ→−τ with charge conjugation) is subtle in (0+1)-D conformal field theory and the

same subtlety is also present in Schrödinger field theories (the details have been relegated to

the appendix C.3). If one can consistently impose parity invariance beyond (τ,000) slice, such

theories should have anti-particles and are suspected to have a non-zero entanglement entropy in

the vacuum in contrast with its cousin where anti-particles are absent. One also wonders about

presence of Weyl anomalies in such parity invariant theories on coupling to a non trivial curved

background in the same spirit of [20, 21, 69, 22, 62, 64].

The most important take home message is that bootstrapping the Schrödinger field

theory on (τ,0) slice exactly amounts to bootstrapping 0+ 1 D conformal field theory. Thus

one can extend the analysis for 4 point correlator of operators with different dimensions, not

necessarily the Hermitian ones with an aim to use SL(2,R) bootstrap [108, 109, 110, 111]

program to derive useful constraints for Schrödinger field theories. Furthermore, the four point

correlator 〈O(0)O(t)O(1)O(∞)〉 is analytic in complex t domain. One might hope to gain more

mileage for (0+ 1)-D conformal field theory as well as the Schrödinger field theory using

analyticity in the complex plane [108, 109]. In fact, if one is interested in knowing the spectra
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of the dilatation operator, then bootstrapping on (τ,0) slice is sufficient as well. Should one

consider a four point correlator of operators Oi inserted at different xxx, the OPE would have

operators [Pi1, [Pi2, · · · [Pin,Ok]]] while on the (τ,0) slice, we would only have Ok operator. But

the dimension of [Pi1, [Pi2, · · · [Pin,Ok]]] is completely fixed by Ok. This feature elucidates why it

is sufficient to bootstrap on the (τ,000) slice to know the spectra of the dilatation operator. Similar

argument applies for knowing the OPE coefficients.

On a different note, the operator basis for the heavy quark effective field theory (HQEFT),

non relativistic QED/QCD [112] can be organized according to the representation of the

Schrödinger algebra (or of SL(2,R) algebra) like it is done for the Standard Model effective field

theory [113, 114, 115]. As the operators appearing in the Lagrangian of HQEFT are necessarily

neutral, the concept of quasi-primary is quintessential in that context as reported on a separate

paper [100] with an application towards construction of an operator basis[116, 117, 118] for

heavy particle effective field theory.

There are further questions which requires more attention. Fermions at unitarity [59] is

described by a nontrivial fixed point in 4− ε dimensions, it is important to investigate whether

there is any imprint of non-unitarity in the physics of that fixed point. A step towards this would

be to find out whether heavy enough operators acquire complex anomalous dimension at WF

fixed point. For a relativistic scenario, this has been done in [103]. It is also worthwhile to

investigate whether SL(2,R) constrains the properties of a thermal Schrödinger field theory [119].

At 0 temperature, one can calculate all the correlators using the OPE coefficients. For T > 0, the

OPE is expected to hold true for time |t|<< ~
kBT [120]. Thus using the SL(2,R) algebra, it seems

possible to obtain sum rules involving conductivities as done in [120, 121, 122], particularly

for CFTs. Furthermore, the idea presented here is extendable to the theories invariant under a

symmetry group which contains SL(2,R) as subgroup. The natural question is to ask whether

the generalized z (z 6= 2) group can have a bound. It is shown[61] that the algebra does not close

with the special conformal generator C, if one has the particle number symmetry generator N̂.
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Thus SL(2,R) subgroup is absent and they can not be realized with finite dimensional basis of

operators [123]. Nonetheless, if one does not have the U(1) associated with particle number

symmetry, the algebra closes with C and it does have a SL(2,R) piece, so similar analysis can be

done for field theories invariant under such group. For sake of completeness, we write down the

algebra so that SL(2,R) becomes manifest:

[D,C] =−2ıC , [D,H] = 2ıH , [H,C] =−ıD

[D,Pi] = ıαPi , [D,Ki] = 2ı(α−α
−1)Ki , [H,Ki] =−ıPi

[H,Pi] = [Pi,Pj] = [Ki,Pj] = 0

where α = 1
z . The commutation relations of these with the generators of rotation group are

the usual ones. Last but not the least, in 1+ 1 dimensions, SL(2,R) algebra gets extended to

infinite Virasoro algebra. One can then introduce Virasoro conformal blocks and one has more

analytical control over such theories. One wonders whether there exists any such extension for

the Schrödinger algebra. If exists, it would imply the possibility of borrowing the arsenal of

Virasoro algebra.
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Chapter 5

Existence and Construction of Galilean

invariant z 6= 2 Theories.

We prove a no-go theorem for the construction of a Galilean boost invariant and z 6= 2

anisotropic scale invariant field theory with a finite dimensional basis of fields. Two point

correlators in such theories, we show, grow unboundedly with spatial separation. Correlators

of theories with an infinite dimensional basis of fields, for example, labeled by a continuous

parameter, do not necessarily exhibit this bad behavior. Hence, such theories behave effectively

as if in one extra dimension. Embedding the symmetry algebra into the conformal algebra of one

higher dimension also reveals the existence of an internal continuous parameter. Consideration

of isometries shows that the non-relativistic holographic picture assumes a canonical form,

where the bulk gravitational theory lives in a space-time with one extra dimension. This can be

contrasted with the original proposal by Balasubramanian and McGreevy, and by Son, where the

metric of a d +2 dimensional space-time is proposed to be dual of a d dimensional field theory.

We provide explicit examples of theories living at fixed point with anisotropic scaling exponent

z = 2`
`+1 , ` ∈ Z.
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5.1 Introduction

Gravity duals of non-relativistic field theories have been proposed in [61, 124]. It has

been observed in Ref. [61], that one can consistently define an algebra with Galilean boost

invariance and arbitrary anisotropic scaling exponent z. While the metric having isometry of

this generalized Schrödinger group has been used with the holographic dictionary to construct

correlators of a putative field theory[125, 126, 127, 128, 129, 130, 131], there is no explicit field

theoretic realization of such a symmetry for z 6= 2.1 One surprising feature, noted as a “strange

aspect” in Ref. [61], is that, unlike in the canonical AdS/CFT correspondence, where the CFT in

d dimensions is dual to the gravity in d +1-dimensions, in the non-relativistic case the metric

is of a space-time with two additional dimensions. The (d + 2)-dimensional metric, having

isometries of the d-dimensional generalized Schrödinger group, is given by[61, 124]

ds2 = L2
[
−dt2

r2z +
2dξdt +dx2

r2 +
dr2

r2

]
, (5.1)

where ξ is the extra dimension having no analogous appearance in the relativistic AdS-CFT

correspondence. The metric is invariant under the required anisotropic scaling symmetry

xi→ λxi , t→ λ
zt , r→ λr , ξ→ λ

2−z
ξ, (5.2)

and under Galilean boosts

xi→ xi + vit , ξ→ ξ− 1
2
(
2vixi + v2t

)
. (5.3)

For z = 2, an explicit construction of Galilean boost invariant field theory in (d−1)+1 dimen-

sions has been known. Thus a question arises naturally as to whether one can get rid of the

1 We note that just matching the isometries is necessary but not sufficient for the existence of a holographic
description. Here we just seek a group invariant field theory, which may or may not have a gravity dual.
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extra ξ direction and reduce the correspondence down to a canonical correspondence between

a d-dimensional quantum field theory on flat space and a (d + 1)-dimensional gravitational

theory. This was answered positively in Ref. [132]. But for z 6= 2 we do not know of any explicit

d-dimensional field theoretic example having the generalized Schrödinger symmetry, nor do we

know an example of a (d +1)-dimensional metric having the same set of isometries. Thus the

“strange aspect” of d-(d +2) correspondence appears to persist for z 6= 2.

In this paper, we initiate a field theoretic study of z 6= 2 theories.2 We prove a no-go

theorem for the construction of a space-time translation invariant, rotation invariant, Galilean

boost invariant,3 and z 6= 2 anisotropic scale invariant field theory with a finite number4 of fields

in d dimensions. Two point correlators in such theories, we show, grow unboundedly with spatial

separation. By contrast, correlators of theories with an infinite number of fields, e.g., labeled

by a continuous parameter, do not necessarily exhibit this bad behavior. Hence, such theories

behave effectively as a (d +1)-dimensional theory. In the context of holography, this explains

the “strange aspect”; the z 6= 2 theories indeed provide us with the possibility of a canonical

realization of holography, i.e., a (d + 1)-dimensional theory is dual to a (d + 2)-dimensional

geometry. The z = 2 case is special in that respect since it is possible to obtain a d-dimensional

theory with a finite number of fields such that the symmetries on field theory side match onto the

isometries of a (d +2)-dimensional geometry. The special role of z = 2 has been emphasized in

the context of the holographic dictionary in Refs. [130, 131]. For z = 2, the dual space-time can

be made into a (d +1)-dimensional one via Kaluza-Klein reduction of the (d +2)-dimensional

metric [132]. This is possible since, for z = 2, the extra direction ξ does not scale by the

transformations given in Eq. (5.2). The scaling of ξ given in Eq. (5.2) can be verified on the

field theory side of the duality by embedding the d-dimensional generalized Schrödinger group

2Theories with z = 2 have been studied from a field theoretic point of view in many works; see, e.g., Refs. [59,
60, 81, 99]. The z = ∞ case without particle number symmetry has been explored in Ref. [133, 134].

3Here by Galilean boost invariance, we mean invariance under both the boost and a U(1) particle number
symmetries. The U(1) naturally arises as a commutator of generators of boosts and translations.

4More precisely, a finite-dimensional basis of operators as defined below Eq. (5.12)
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into the conformal group of one higher dimension i.e., SO(d,2). By contrast, since for z 6= 2

the ξ direction does scales, any attempt to compactify the extra direction ξ is at odds with the

continuous scaling symmetry. The no-go theorem that we have proved is consistent with the

argument in Ref. [135], based on consistency of thermodynamic equation of state, that a perfect

fluid with z 6= 2 Schrödinger symmetry and discrete spectrum for the energy and particle number,

H and N, can not exist. In Sec. 5.4, we present some fixed point theories with z = 2`
`+1 , with

` ∈ Z.

Before delving into a technical proof, we present a physical argument for our main

result.5 Consider a theory invariant under z = 2 Schrödinger symmetry, where, under a boost[61]

φ(xxx, t) 7→ exp
[
−ın(1

2v2t + vvv · xxx)
]

φ(xxx− vvvt, t) , (5.4)

where [N,φ] = nφ. In turn, the state of a particle with momentum kkk = 0 i.e., φ
†
kkk=0|0〉 transforms

under the boost by vvv as follows:

|vvv〉 ≡ e−ıKKK·vvv
φ

†
kkk=0|0〉

=
∫

dxxx exp
[
ın(1

2v2t + vvv · xxx)
]

φ
†(xxx− vvvt, t|0〉

= exp
[
ınv2

2 t
]

φ
†
kkk=nvvv|0〉 . (5.5)

This has the interpretation of having a boosted particle moving with momentum nvvv and kinetic

energy −1
2nvvv2. A positive value of n results in decreasing energy with increasing boost. There-

fore, negative semi-definiteness of n is required for stability. In case of more than a single species

of particle, the matrix N appearing in [N,Φ†] =−NΦ† has to be negative semi-definite. As we

will see, from the symmetry algebra it follows that for a theory with finite number of fields with

z 6= 2 the trace of N must vanish, spoiling the negative semi-definiteness and the stability in the

5We thank John McGreevy for discussions leading to this argument.
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sense discussed above; by contrast, for z = 2 there is no constraint on the trace of N. The above

is merely a heuristic argument, giving intuition behind the technical result presented below.

5.2 Generalized Schrödinger algebra and its Representation

The Galilean algebra consists of generators corresponding to spatial translations, Pi, time

translation, H, Galilean boosts, Ki, rotations, Mi j, along with a particle number generator, N,

such that they satisfy the following commutation relations [59, 60, 81, 99]:

[Mi j,N] = [Pi,N] = [Ki,N] = [H,N] = 0

[Mi j,Pk] = ı(δikPj−δ jkPi) ,

[Mi j,Kk] = ı(δikK j−δ jkKi) ,

[Mi j,Mkl] = ı(δikM jl−δ jkMil +δilMk j−δ jlMki) ,

[Pi,Pj] = [Ki,K j] = 0 , [Ki,Pj] = ıδi jN , (5.6)

[H,N] = [H,Pi] = [H,Mi j] = 0 , [H,Ki] =−ıPi .

The algebra can be enhanced by appending a dilatation generator D,6 which scales space and

time separately, in the following way:

xi→ λxi, t→ λ
zt . (5.7)

The commutators of D with the rest of the generators are given by

[D,Pi] = ıPi , [D,Ki] = (1− z)ıKi , [D,H] = zıH ,

[D,N] = ı(2− z)N , [Mi j,D] = 0 . (5.8)

6This enhanced algebra corresponds to that of deformed ISIM(2) [136], with the following identification:
H 7→ P+, N 7→ P−, Ki 7→M+i and D 7→ − 1

b N where b(z−1) = 1.
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The physical interpretation of N is subtle. For z = 2 it is usually thought of as a particle

number symmetry generator. The subtlety in the context of holography has been explored in

[132]. For rest of this work, we take an agnostic viewpoint and treat N as a generator of symmetry

without specifying its physical origin. This will enable us to explore all the possibilities, as

allowed by symmetries. The case z = 2 is very special in that one can append an additional

generator C of special conformal transformations. Thus one can have the full Schrödinger

algebra for z = 2 [96, 93, 94, 98, 81, 99, 137]. When z 6= 2, the generator corresponding to

special conformal transformation is not available.

In what follows, we will assume (unless otherwise specified) that the field theory lives

in d = (d− 1) + 1 dimensions and that the vacuum is invariant under Galilean boosts, i.e.,

Ki|0〉= 〈0|Ki = 0

The field representation is built by defining local operators Φ such that H and P act

canonically,

[H,Φ] =−ı∂tΦ , [Pi,Φ] = ı∂iΦ . (5.9)

We consider representations of the little group, generated by D, Ki, N and Mi j, that keeps the

origin, (000,0), invariant. The fields Φ have definite transformation properties under D, Ki and N,7

[D,Φ(xxx = 000, t = 0)] = ıDΦ(xxx = 000, t = 0) , (5.10)

[N,Φ(xxx = 000, t = 0)] = N Φ(xxx = 000, t = 0) , (5.11)

[Ki,Φ(xxx = 000, t = 0)] = KiΦ(xxx = 000, t = 0) . (5.12)

where D, N , and Ki are linear operators. We refer to the smallest non-trivial irreducible

representation in Eqs. (5.10)–(5.12) as “the basis of operators”.8 For Lagrangian theories the

7The fields Φ also have definite transformation properties under Mi j, but this will not play a role in the discussion
below.

8For example, the free Schrödinger field theory is invariant under z = 2 Schrödinger algebra and the single field
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basis of operators corresponds to the elementary fields from which the Lagrangian is constructed.

Henceforth, we restrict our attention to the basis of operators, and continue to denote by D,

N , and Ki their linear representation. In the finite dimensional case, we denote these by finite

dimensional matrices �, N and Ki, � respectively.

Consider Gαβ ≡ 〈0|Φα(x, t)Φβ(0,0)|0〉. Using Eqs. (5.9), the commutator in (5.12)

translates, in the finite dimensional case, to

[Ki,Φ] = (−ıt∂iI+ xiN+Ki)Φ (5.13)

where xi = xi. Galilean boost invariance of the vacuum, Ki|0〉= 〈0|Ki = 0, then gives

〈0|
[
Ki,Φα(x, t)Φβ(0,0)

]
|0〉= 0

⇒ (−ıt∂iδασ + xiNασ +Kiασ)Gσβ +KiβσGασ = 0 .

Using the fact that [N,Ki] = 0, the solution to the above differential equation is given by

Gαβ =

(
e−ı |xxx|

2
2t Ne−ı xxx·K

t C(t)e−ı xxx·KT
t

)
αβ

where C(t) is an as yet undetermined matrix function of t. The norm is defines as |xxx|2 ≡

∑i(xi)2 while the dot product is defined as xxx ·KKK = ∑i xiKi. Similarly, one can consider G′
αβ
≡

〈0|Φα(x, t)Φ
†
β
(0,0)|0〉 which is given by

G′
αβ

=

(
e−ı |xxx|

2
2t Ne−ı xxx·K

t C′(t)eı xxx·K†
t

)
αβ

where C′(t) is as yet undetermined.

φ forms a one dimensional irreducible representation of the little group i.e. [D,φ(000,0)] = ı d
2 φ(000,0) , [N,φ(000,0)] =

Nφ(000,0) and [Ki,φ(000,0)] = 0.
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Since [D,N] = ı(2− z)N, we have

[�,N] = (2− z)N .

and this leads to Tr(N) = 0; similarly, for z 6= 1 we have Tr(Ki) = 0. Now using Jordan-Chevalley

decomposition, we can write

N= N1 +N2 , [N1,N2] = 0 ,

K= K1 +K2 , [K1,K2] = 0 .

where K1 and N1 are diagonalizable matrices while N2 and K2 are nilpotent matrices (here and

below we suppress the vector index in K and K1,2 to avoid clutter). Let us define diagonal

matrices DN1 and DK1 such that

PNDN1P−1
N = N1, PKDK1P−1

K = K1 (5.14)

where PN and PK diagonalize N1 and K1 respectively. The zero trace condition leads to Tr(K1) =

Tr(DK1) = 0 and Tr(N1) = Tr(DN1) = 0, which in turn implies that either all the diagonal entries

of DN1 (or DK1) are zero, in which case N (or K) is a nilpotent matrix, or there has to be both

positive and negative entries. We can then recast the correlators as follows:

Gαβ =

(
e
|xxx|2
2ıt N1e

|xxx|2
2ıt N2e

xxx·K111
ıt e

xxx·K222
ıt C(t)e

xxx·KT
111

ıt e
xxx·KT

111
ıt

)
αβ

(5.15)

G′
αβ

=

(
e
|xxx|2
2ıt N1e

|xxx|2
2ıt N2e

xxx·K111
ıt e

xxx·K222
ıt C′(t)e−

xxx·K†
1

ıt e−
xxx·K†

2
ıt

)
αβ

(5.16)

It follows that when N1 6= 0, e
|xxx|2
2ıt N1 = PNe

|xxx|2
2ıt DN1 P−1

N has exponential growth for imagi-

nary time irrespective of how we do the analytical continuation of the correlator to imaginary
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time. This growth can not be overcome by any of the other terms as nilpotency of N2 guarantees

that

e−ı |xxx|
2

2t N2 =
`=M−1

∑
`=0

(
−ı
|xxx|2

2t

)`

N`
2 (5.17)

where NM
2 = 0 for some integer M. Also, terms like eı xxx·K

t cannot suppress the exponential growth

arising from N1.

If instead N1 = 0 then e−ı |xxx|
2

2t N2 gives polynomial growth with x. We employ the same

technique to establish the effect of eı xxx·K
t . If K1 6= 0, there will be exponential growth for some

entries, while terms involving K2 are polynomial in nature, giving exponential growth as a whole.

Alternatively, if K1 = 0 then K is nilpotent and we have polynomial growth.

We note that only when z = 2 or the representation is infinite, we can not implement

the Tr(N) = 0 condition and the above argument fails. This is expected for z = 2 since the

two point correlator is well behaved in this case, that corresponds to Schrödinger field theory

[96, 93, 94, 98]. We conclude that in the finite dimensional case for z 6= 2 a quantum field theory

with the symmetry of the algebra in Eqs. (5.6) and (5.8) is ill-behaved. For example, since

correlators grow with spatial separation cluster decomposition fails. The same conclusion can be

drawn via an independent argument in the case that � is diagonal; see App. D.1.

Therefore, for z 6= 2 we are left to consider infinite dimensional representations. In this

case we can display explicitly an example that does not obviously lead to problematic quantum

field theories. To achieve this, we introduce fields ψ labeled by a new non-compact variable ξ,

such that

[N,ψ] = ı∂ξψ , (5.18)

[D,ψ] = ı
(
zt∂t + xi

∂i +(2− z)ξ∂ξ +∆ψ

)
ψ , (5.19)

[Ki,ψ] =
(
−ıt∂i + ıxi∂ξ

)
ψ. (5.20)
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Thus, D = (2− z)ξ∂ξ +∆ψ, N = ı∂ξ, and Ki = 0. Note that ξ must be a non-compact variable,

else scaling symmetry is broken. To be concrete,

[
ξ,∂ξ

]
=−1 ,

[
ξ∂ξ,∂ξ

]
=−∂ξ , (5.21)

are well defined only when ξ is a non-compact variable. If we take a Fourier transform with

respect to ξ, it becomes obvious that N is diagonal while D is not diagonal. This, however, is

immaterial, since in terms of a new variable ξ′ = ln |ξ|, N is non-diagonal and D is diagonal.

We say ψ is a primary operator if [Ki,ψ(xxx = 0, t = 0;ξ)] = 0, that is, Ki = 0; this

was assumed in the commutation relations (5.20). Once again, one can invoke the Galilean

boost invariance of the vacuum to obtain the form of the two point correlator of primaries ψ

and φ. This is most easily computed in terms of the the Fourier transformed operators, e.g.,

ψ(xxx, t,m1) =
∫

dξ ψ(xxx, t,ξ)eımξ; we obtain

〈0|ψ(xxx, t,m1)φ(0,0,m2)|0〉

=


h(t)δ(m1 +m2) f (t2−zmz

1)exp
(

ım1|xxx|2
2t

)
, z 6= 0

h(t)δ(m1 +m2) f (m1)exp
(

ım1|xxx|2
2t

)
, z = 0

(5.22)

where h(t) is an as yet undetermined function of t. Evidently, Eq. (5.22) is consistent with the

correlator of the z = 2 theory [81, 99]. For z 6= 2, rewriting in terms of ξ, we obtain:

〈0|ψ(xxx, t,ξ)φ(0,0,0)|0〉

∝


h(t)t1−2/zg̃

(
|xxx|2−2tξ

2t2/z

)
, z 6= 0

h̃(t) f̃
(
|xxx|2
2t −ξ

)
= h̃(t)

(
|xxx|2
2t −ξ

)−∆/2
, z = 0

(5.23)

where g̃(s) =
∫

dy e−ıysg(y), g(y) = f (yz) and yz = mzt2−z. When z = 0, we use the fact that f̃
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has to scale covariantly under z = 0 scaling, where f̃ is the Fourier transform of f ; here h(t) must

be a power law of t with t−α such that the scaling dimensions of ψ and φ add up to αz+(2− z)

for z 6= 0 and ∆ for z = 0 with h̃(t) being any function of t.

5.3 Null reduction and Embedding into Conformal group

A standard trick to obtain a d dimensional z = 2 Schrödinger invariant theory is to

start with a conformal field theory in d + 1 dimensions and perform a null cone reduction

[77, 22, 138, 139, 107, 140]. This is possible because the Schrödinger group, Sch(d), can be

embedded into SO(d,2). Next we show that the generalized Schrödinger group can also be

embedded into SO(d,2). A similar embedding has been considered in [136] in the context of the

Lie algebra of the deformed ISIM(2) group.

If the generators of SO(d,2) are given by P(r)
µ ,M(r)

µν ,D(r),C(r)
µ where P(r)

µ are translation

generators, M(r)
µν are Lorentz generators, D(r) is the relativistic scaling generator and C(r)

µ are

special conformal generators (here the superscript “(r)” denotes the relativistic generators), then

following generators generate the generalized Schrödinger algebra:

Ki = M(r)
i− ,H = P(r)

+ ,N = P(r)
− (5.24)

Mi j = M(r)
i j ,Pi = P(r)

i (5.25)

D = D(r)+(1− z)M(r)
+− (5.26)

It is straightforward to verify that D scales x−→ λ2−zx−. Only for z = 2, does x− not scale

and one is able to do a null cone reduction via compactification in the x− direction, yielding a

discrete spectra for N. On the other hand, for z 6= 2, even via null cone reduction one can not

truly get rid of the x− direction since any compactification in the x− direction would spoil the

scaling symmetry. As a result, for z 6= 2 the null reduction always leaves a continuous spectra
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for the generator N.

5.4 Explicit d +1 dimensional examples

5.4.1 z = 0

Here we provide with an explicit example of a generalized Schrödinger invariant theory

in (d−1)+1 dimensions with z = 0 and verify that the two point correlator indeed conforms to

the general form given in Eq. (5.23).

We consider a Lagrangian model given by

L = φ
† (2∂t∂ξ−∇

2 +2ı∂ξ

)
φ (5.27)

and the two point correlator is given by9

〈φφ
†〉 ∝

(
1
t

)d−1
2

exp [−ıt]
(
|xxx|2

2t
−ξ

)−d−1
2

(5.28)

In d +1 dimensions, d−1
2 = (d+1)−2

2 is precisely the dimension of a free relativistic scalar. This

is because the generalized Schrödinger algebra can be embedded into the conformal group of

one higher dimension, as mentioned in Sec. 5.3.

For z = 0, t does not scale. One may contemplate perturbing the gaussian fixed point

by marginal operators constructed out of powers of ∂t , for example, φ† exp(ı∂t)∂ξφ. However,

Galilean boost invariance requires that ∂t appears in the combination with other derivatives

shown in Eq. (5.27). By contrast, in the models presented in Refs. [133, 134], where N = 0 and

the Lagrangian is invariant under xxx→ xxx and t→ λt, arbitrary powers of spatial derivatives are

allowed.
9The correlator in (5.28) follows from (5.27) only after restricting the field φ to positive ξ-Fourier modes; see

the footnote below Eq. (5.30) for more details.
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5.4.2 z = 2`
`+1 , ` ∈ Z, `≥ 1

These series of examples are given by following Lagrangian

L` = φ
†
(

2∂t∂ξ−∇
2 +2g

(
ı∂ξ

)`+1
)

φ (5.29)

The two point correlators, after partial Fourier transformation is given by

G(xxx, t,m) ∝ t−
d−1

2 m
d−3

2 exp
[

ı
(

m|xxx|2

2t
−gm`t

)]
(5.30)

where z = 2`
`+1 . One can Fourier transform10 to obtain the correlator in position space-time only

depending on the analytical ease to do so. For d = 3, `= 2 i.e z = 4
3 , we have

G(xxx, t,ξ) ∝ t−1 1
√

gt
exp
[

ı(x2−2ξt)2

16gt3

]
(5.32)

which is consistent with Eq. (5.23) for z 6= 0. After performing a Euclidean rotation, t→−iτ,

ξ→ iξ, one finds good behavior of this correlator at large spatial separation (as long as g < 0).

One can add classically marginal interactions to the model in (5.29). For example, one

may add (φφ†)n−1φ(ı∂ξ)
kφ† with k = (`+1)[(d−1)β+d−2] and n = 2β+3, where β is a non-

negative integer. Furthermore, one can have supersymmetric generalizations of z 6= 2 theories,

10Care is needed regarding the allowed values of m. The correlator in (5.30) is most readily obtained by Fourier
transform of

G(kkk, t,m) ∝ exp
[
−ıt
(
|kkk|2

2m
+gm`

)]
. (5.31)

For even, positive `, the integral over kkk is well defined only for Im(t/m) < 0, and the result can be analytically
continued to all values of t/m. The integral over m requires Im(t) < 0 (for g > 0), and again one analytically
continues to all values of t.

For odd (and positive) `, the Fourier transform with respect to m is ill behaved for any value of t, because there
is no deformation of the contour of integration that can render the integral of exp

[
ı
(

m|xxx|2
2t −gm`t

)]
over m finite.

Both for ` odd and for `= 0, a sensible way to make this integral well defined is to restrict it to m > 0. This is, in
fact, how we obtained the correlator for the z = ` = 0 in Eq. (5.28). Strictly speaking, these are not Lagrangian
theories; these systems are close analogues of the chiral boson, where the Fourier modes are restricted [141].
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much like the z = 2 case presented in [142] where supersymmetry is an internal symmetry

exchanging Fermionic and Bosonic fields.

5.5 Conclusion

The most natural way to realize the Schrödinger algebra and its z 6= 2 avatar in a gravity

dual of a d-dimensional non-relativistic field theory with Galilean boost and scale invariance with

dynamical exponent z is via isometries of the bulk metric. As it turns out, the dual metric is of a

(d+2)-dimensional space-time [61, 124]. By contrast, for the canonical notion of gauge-gravity

duality the bulk gravitational theory lives in one extra dimensional space-time. Above we have

expounded the presence of the two extra dimensions in the duality. We showed that on the

field theory side of the duality, for z 6= 2, one needs to have an internal continuous parameter,

effectively making the field theory (d +1)-dimensional. Any attempt to construct a z 6= 2 non-

relativistic field theory with Galilean boost and scale invariance with finite number of fields is

bound to run into trouble, since correlators will grow with separation and will fail to exhibit

cluster decomposition. This result follows solely from constrains that the symmetry algebra

places on two point correlators. It is important to have the particle number symmetry for the

no-go theorem. Without particle number symmetry, there are indeed examples of Galilean boost

invariant z 6= 2 theories [143]. Examples of theories with z = ∞ anisotropic scaling symmetry

based on warped conformal field theories, are discussed in Ref. [133, 134].

Only for z = 2 is a consistent d-dimensional field theoretic realization of the symmetry,

with finite number of fields, possible, and therefore a conventional (d +1)-dimensional gravity

dual is available. On the gravity side, the metric dual to a z= 2 Schrödinger theory has a direction

ξ which does not scale, and can therefore be compactified. The Kaluza-Klein reduction of the

momentum conjugate to ξ generates a discrete spectrum for N that matches onto a d-dimensional

field theory. The ξ direction for z 6= 2 duals scales, forbidding any such compactification. One
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can also see this by embedding the generalized Schrödinger group into SO(d,2); see Sec. 5.3.

That there is no impediment to constructing a sensible z 6= 2 non-relativistic field theory

with Galilean boost and scale invariance for an infinite number of fields is most easily established

by giving explicit examples. Above we presented explicit examples of Galilean boost invariant

theories, with z = 2`
`+1 .

Given that we have explicit examples and the generic form of the correlator, several

new questions come to mind. One can ask how one may couple these theories to gravity. Non-

relativistic theory coupled to gravity gives a natural framework to study Ward identity anomalies,

and scale anomalies [144, 145, 62, 64, 63, 18, 22, 66, 20, 69, 21, 107]. Since these theories are

intrinsically (d +1)-dimensional, the use of Newton-Cartan geometry is not a natural choice. It

would also be interesting to understand the dispersion relation of Goldstone bosons, arising from

spontaneous breaking of z 6= 2 scale symmetry; the z = 2 case has been studied in [146].
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Chapter 6

Hilbert Series and Operator Basis for

NRQED and NRQCD/HQET

We use a Hilbert series to construct an operator basis in the 1/m expansion of a theory

with a nonrelativistic heavy fermion in an electromagnetic (NRQED) or color gauge field

(NRQCD/HQET). We present a list of effective operators with mass dimension d≤ 8. Comparing

to the current literature, our results for NRQED agree for d ≤ 8, but there are some discrepancies

in NRQCD/HQET at d = 7 and 8.

6.1 Introduction

An operator basis for an effective field theory is a set containing all operators that give

rise to different scattering matrix elements, invariant under relevant symmetries of the theory.

The Hilbert series1 can be used as a tool for enumerating the elements of an operator basis

for effective field theories. With it, one can impose symmetry requirements [147, 148, 149]

and account for redundancies between operators coming from the equations of motion and

1The Hilbert series is a generic concept, defined on any graded vector space. In our context, it is defined over
the ring of operators of the effective theory under consideration, as in Refs. [113, 114]. Our working definition is
given in Section 6.3.
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integration by parts [113, 114]. So far, the focus has been on relativistic theories, e.g., especially

the effective theory of the Standard Model [114, 150, 151], and nonrelativistic effective theories

have been unexplored using Hilbert-series methods.

We examine the specific effective theories of a single nonrelativistic fermion in an electro-

magnetic field or color field. These effective theories are called non-relativistic QED (NRQED)

and non-relativistic QCD (NRQCD), respectively. NRQCD is the same theory described by the

heavy quark expansion (HQET) [112], and we refer to this theory as NRQCD/HQET. One can

construct a list of effective operators, where operators are suppressed by the appropriate powers

of 1/m (where m is the fermion’s mass), in the rest frame of the heavy fermion without loss of

generality. These two effective theories have been used extensively over the past few decades.

For example, NRQED was originally formulated in Ref. [152], where higher-dimensional opera-

tors were listed by the authors of Refs. [153, 112, 116], and is used to explore the proton radius

puzzle (see, for example, Ref. [154], and references therein). NRQCD/HQET is a tool that can

be used to extract the value of |Vcb| in inclusive semileptonic B decays, and the higher-order

terms in 1/m have been discussed in Refs. [155, 112, 156, 118]. These high-order terms in 1/m

may become important when analyzing the high-luminosity data from the upcoming Belle-II

experiment [157, 158].

There is currently no disagreement in the literature regarding the number of NRQED

operators up to and including order 1/m4, and the Hilbert series we construct for NRQED agrees

with the results in Refs. [152, 153, 112, 116]. Also, our results for NRQCD/HQET agree with

those in Refs. [155, 112] up to order 1/m3, but we find discrepancies with other analyses at 1/m3

and 1/m4. Specifically, we count 11 operators at 1/m3 (as does Ref. [112]), and 25 operators at

1/m4. However, at order 1/m3, Ref. [159] says there are 5, and Refs. [156, 118] claim there are

9. At order 1/m4, Refs. [156, 118] claim there are 18 operators. The differences between our

results and those found in Refs. [156, 118] could be explained by there being two symmetric

SU(3) color singlets for operators with two gauge bosons. We discuss this further in Section 6.5.
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6.2 Effective Theory for a Nonrelativistic Fermion

We consider a system where the relevant dynamics of a massive fermion in an external,

dynamical, gauge field occurs at energy scales well below the rest mass, m, of a fermion.2 The

following effective Lagrangian can be used to describe such a system with a heavy fermion:

L = ψ
†iDtψ+

∞

∑
k=1

ckψ
†Okψ. (6.1)

Here, ψ is a two-component Pauli spinor, ck is a coupling constant, and Ok are Hermitian

operators, suppressed by the appropriate powers of 1/m. All operators Ok must be rotationally

and translationally invariant, contain either zero or one spin vector si, and are built from time

and spatial components of covariant derivatives, i.e., iDt and iD⊥, respectively.

Listing all operators that satisfy only these conditions leads to over counting, since

some operators can be related to others via integration by parts or relations associated with the

equations of motion. In particular, operators with derivatives that act on ψ† can be related to

other operators with derivatives that act on ψ by integrating by parts:

ψ
†i
←−
∂t Oψ+ψ

†i∂tOψ = 0, (6.2)

ψ
†i
←−
∂⊥Oψ+ψ

†i∂⊥Oψ = 0, (6.3)

where O is some operator. Also, the equation of motion for ψ is

iDtψ+
∞

∑
k=1

ckOkψ = 0. (6.4)

Therefore, if Dt acts on ψ, it can be replaced by a series of operators, all at higher powers in

1/m:

ψ
†OiDtψ =−

∞

∑
k=1

ckψ
†OOkψ, (6.5)

2Physical theories are diffeomorphic, so if an operator is zero in one reference frame, it is zero in all other frames.
Therefore, we choose to work in the rest frame of the nonrelativistic fermion for the purposes of enumerating
operators and constructing a basis.
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where O is some Hermitian operator. A similar argument holds for the equations of motion

associated with ψ†. There are also equations of motion associated with the external gauge

field. We refer to antisymmetric combinations of covariant derivatives as E i = i
g [Dt ,Di

⊥] and

Bi =− i
2gεi jk[D⊥ j,D⊥k]. The equations of motion for E i and Bi are Maxwell’s equations, or its

non abelian version:

DDD⊥ ·EEE = ρ, (6.6)

DDD⊥ ·BBB = 0, (6.7)

DDD⊥×EEE = −DtBBB, (6.8)

DDD⊥×BBB = JJJ+DtEEE, (6.9)

where ρ and JJJ are the external charge and current densities, respectively. In summary, correct

enumeration of operators, when accounting for redundancies associated with integration by parts

and the equations of motion, amounts to removing: (1) total derivatives, (2) those of the form

ψ†i
←−
D tOψ and ψ†OiDtψ, (3) those with DDD⊥ ·BBB, and (4) those with either DDD⊥×EEE or DtBBB.

More symmetry is expected in a theory with a nonrelativistic fermion, such as reparame-

terization invariance [160, 112] or residual Lorentz symmetry [161]. Imposing this invariance

would require establishing relationships between the coefficients of operators at different orders

in 1/m. For this work, however, we focus only on a rotationally- and translationally-invariant

theory, since this can be readily encoded into a Hilbert series. In the particular examples of

NRQED and NRQCD/HQET, invariance under parity and time reversal transformations are also

expected, since the underlying theories are invariant under parity and time reversal, which we

discuss in Sections 6.4 and 6.5.
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6.3 Hilbert series for a nonrelativistic theory

The Hilbert series can be used to count the number of invariants under a group transfor-

mation, utilizing the plethystic exponential, defined as

PEbosons
φ ≡ exp

[
∞

∑
n=1

φn

n
χR(zn

1,z
n
2, ...,z

n
k)

]
, (6.10)

PEfermions
ψ ≡ exp

[
∞

∑
n=1

(−1)n+1ψn

n
χR(zn

1,z
n
2, ...,z

n
k)

]
. (6.11)

Here, χR is the character of the representation R of group G of rank k, φ and ψ are spurions

(complex numbers taken to have modulus less than unity) corresponding to the field associated

with the representation R, and the zi’s are complex numbers with unit modulus (called fugacities)

that parameterize the maximal torus of G. The plethystic exponentials are defined so as to

ensure, if Taylor expanded in φ or ψ, that the nth power of φ or ψ will have a coefficient equal to

the character of symmetric (in the case of bosonic statistics) or antisymmetric (in the case of

fermionic statistics) tensor products, constructed out of representation R, n times. The Hilbert

series that counts the total number of group invariants is generated by performing the following

integral (often called the Molien-Weyl formula):

HS =
∮
[dµ]G PEx, (6.12)

where the contour integral is done over the maximal torus of the group G with respect to

the Haar measure, [dµ]G, associated with the group G. The Hilbert series, as defined by

Eq. (6.12), is a polynomial in the spurions such that the coefficient of different powers of the

spurions counts the number of invariants under the group G.3 For further details, we refer

to [148, 149, 147, 113, 114].

Using the machinery of the Hilbert series, we can construct all possible operators Ok in

3The invariants are counted using the character orthogonality relation:∮
[dµ]G χR χR′ = δRR′ , (6.13)
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Eq. (6.1). The characters for E, B, ψ, ψ†, and s are (note that P0, P⊥, Dt , and D⊥ are defined in

Eqs. (6.21) and (6.22) and in the text thereafter):

χE = P0P⊥χ
C
E

(
χ

SO(3)
3 −D⊥χ

SO(3)
3 +D2

⊥

)
, (6.16)

χB = P0P⊥χ
C
B

(
χ

SO(3)
3 −D⊥

)
, (6.17)

χψ = P0P⊥χ
C
ψχ

SU(2)
2 (1−Dt), (6.18)

χψ† = P0P⊥χ
C
ψ†χ

SU(2)
2 (1−Dt), (6.19)

χs = χ
SO(3)
3 χ

SU(2)
3 , (6.20)

where χ
SO(3)
3 , χ

SU(2)
2 , and χ

SU(2)
3 are the characters for a 3 of SO(3), a 2 of SU(2), and a 3 of

SU(2), respectively. Explicit expressions for these characters can be found in Appendix E.1.

The characters χC represent the way E, B, ψ, and ψ† are charged under the external gauge field.

For example, if the fermion has color, then χC
E and χC

B are both the characters for the adjoint

representation of SU(3), and χC
ψ (χC

ψ†) is the character for the fundamental (antifundamental)

representation of SU(3). P0 and P⊥ generate all symmetric products of temporal and spatial

derivatives, respectively:

P0 ≡ exp

[
∞

∑
n=1

Dn
t

n

]
=

1
1−Dt

, (6.21)

P⊥ ≡ exp

[
∞

∑
n=1

Dn
⊥

n
χ

SO(3)
3 (zn)

]
=

1
(1− zD⊥)(1−D⊥)(1−D⊥/z)

, (6.22)

where Dt and D⊥ are the spurions that correspond to time and spatial derivatives in the operator,

where χR and χR′ are characters of irreducible representations, R and R′, of G. When R′ is a trivial singlet
representation, using χsinglet = 1, we have∮

[dµ]G χR = 1, iff χR = χsinglet. (6.14)

Therefore, using the definition of the plethystic exponentials, the Hilbert series we use, which counts the invariants
under group G is

HS =
∮
[dµ]G PE. (6.15)
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respectively. The characters in Eqs. (6.16) - (6.19) take the form they do so as to remove terms

that are zero according to the equations of motion for the external gauge field, where we choose

to construct operators with ∂BBB/∂t, in lieu of ∇×EEE, according to Eq. (6.8). We note that, we

have to add back D2
⊥ in Eq. (6.16), to enforce the constraint that ∇ · (∇×EEE) = 0. Without it,

Hilbert series will erroneously subtract off ∇ · (∇×EEE), which was not there to begin with before

the subtraction.

The general Hilbert series for a theory with a heavy fermion is

HS =
∮
[dµ]SO(3)

∮
[dµ]SU(2)

∮
[dµ]C

1
P0P⊥

PEE PEB PEψ PEψ† PEs. (6.23)

The bosonic plethystic exponential, i.e., Eq. (6.10), is used for E, B, and s, while the fermionic

one, i.e., Eq. (6.11), is used for ψ and ψ†. The expressions for the Haar measures can be found

in Appendix E.1. The factor of 1/P0P⊥ removes operators that are total time derivatives and total

spatial derivatives.4 This method, however, will over-subtract operators that are total derivatives,

but which have already been subtracted by the equations of motion. Thus, this Hilbert series

will, in general, produce some terms with negative signs, all of which are redundant operators,

and can be ignored. One can expand the plethystic exponentials for ψ and ψ† to first order, and

perform the SU(2) integral by hand, which results in the Hilbert series for the operators Ok in

Eq. (6.1):

HS =
∮
[dµ]SO(3)

∮
[dµ]C

P⊥
P0

(1+ sχ
SO(3)
3 ) χ

C
ψ†χ

C
ψ PEE PEB. (6.24)

Explicit expressions for the Hilbert series NRQED and NRQCD/HQET will be given in Sec-

tions 6.4 and 6.5, respectively, including discussions on how to impose invariance under parity

and time reversal.
4One can justify introducing the factor of 1/P0P⊥, by noting that one can always choose a basis of operators

where no time or spatial derivatives act on ψ†, using integration by parts. This procedure should remove the P0P⊥ in
the definition of the character for ψ†. The factor 1/P0P⊥ can also be justified using differential forms, as discussed
in Ref. [114].
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6.4 NRQED

In NRQED, the relevant gauge symmetry group is U(1). Here, χC
E = χC

B = 1, since

photons do not have any U(1) charge, and χC
ψ = χ

U(1)
ψ = 1/χ

U(1)
ψ† . Because of this, we have

∮
[dµ]U(1) χ

U(1)
ψ† χ

U(1)
ψ =

∮
[dµ]U(1) = 1 (6.25)

The Hilbert series for Ok in Eq. (6.1) in NRQED is

HS =
∮
[dµ]SO(3)

P⊥
P0

(1+ sχ
SO(3)
3 ) PEE PEB. (6.26)

Again, we ignore any negative terms generated by this Hilbert series, since they are both total

derivatives and related to other operators by the equations of motion, as discussed in Section 6.3.

Since parity is a symmetry of QED, one can demand that Ok respects parity by requiring that

it is composed of any number of parity-even objects, i.e., Dt , B, and s, and an even number of

parity-odd objects, i.e., D⊥ and E. This can be automated without explicitly constructing the

operators Ok by hand.

The output for this Hilbert series for dimensions 5, 6, 7, and 8, before imposing invariance

under time reversal, is

HSd=5 = D2
⊥+ sB, (6.27)

HSd=6 = 2ED⊥+ sED⊥, (6.28)

HSd=7 = D4
⊥+E2 +B2 +BD2

⊥+5sBD2
⊥, (6.29)

HSd=8 = sB2Dt + sE2Dt +2EBD⊥+3sED3
⊥+5ED3

⊥+7sEBD⊥. (6.30)

While the Hilbert series can count the number of operators that are invariant under the given

symmetries, it does not say how the indices within each operator are contracted. In general,

this needs to be done by hand. To do this, we choose to organize operators according to what

objects the derivatives are acting on. E and B have no electric charge, so derivatives acting on
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E and B are only partial derivatives. As such, objects of the form [∂t ...∂⊥E] and [∂t ...∂⊥B] are

Hermitian, where the square brackets indicate that the derivatives only act on E or B. So as

not to introduce terms like ∇ ·B and ∇×E, we require that the SO(3) index of B cannot be be

symmetric with any index of ∂⊥ acting on it, and the index on E must be symmetric with the

index of any ∂⊥ acting on it. Because ψ does have electromagnetic charge, the derivatives acting

on it are covariant derivatives. Only spatial derivatives can act on ψ, due to the equations of

motion, and we use anticommutator brackets {A,B} ≡ AB+BA to construct fully Hermitian

operators O. One can impose invariance under time reversal by hand, as shown in Table 6.2 for

d = 5, 6, 7, and 8. T -even operators are those with any number of T -even objects, i.e., E and ∂⊥,

and an even numbers of T -odd objects, i.e., ∂t , iD⊥, B, and s.

In the special case of NRQED, where the group is abelian, there is a method to impose T

invariance that is easily automated. This is done by modifying the Hilbert series to distinguish

those spatial derivatives ∂⊥ acting only on E and B from the spatial derivatives iD⊥ that act on

ψ. Here, the former ones are always T -even, while the latter are always T -odd. This results in:

HSd=5 = D2
⊥+ sB, (6.31)

HSd=6 = ED⊥+ sED⊥, (6.32)

HSd=7 = D4
⊥+E2 +B2 +BD2

⊥+3sBD2
⊥, (6.33)

HSd=8 = sB2Dt + sE2Dt +EBD⊥+2sED3
⊥+3ED3

⊥+4sEBD⊥. (6.34)

This method agrees with the result when explicitly constructing operators and selecting by hand

only those that are T -even, and it agrees with the lists of operators up to and including d = 8 in

Refs. [152, 153, 112, 116]. It is straight forward, using the Hilbert series as a guide, to explicitly

list operators for d > 8. We show in Fig. 6.1 the total number of operators in NRQED up to

d = 18, when T invariance is imposed, and list the total number of operators in Table 6.1.

129



Table 6.1: The total number of effective operators in NRQED with mass dimension d up to
and including d = 18, which are invariant under parity and time reversal transformations.

Mass dimension (d) 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of operators 2 2 7 12 37 73 218 474 1303 3077 7896 19359 48023 117625

Table 6.2: The output of the NRQED Hilbert series for mass dimensions d = 5,6,7, and 8.
We list the possible Hermitian combinations of these operators, distinguishing between those
that are even and odd under time reversal, where i, j,k, l,m, ... signify SO(3) indices. Note that
these Hermitian operators O are those in the bilinear ψ†Oψ, and the square brackets indicate
that the derivative acts only on the object in the square bracket. Also, in the special case of
NRQED, time-reversal symmetry can be imposed in an automated way, without constructing
Hermitian operators by hand; see the text at the end of Section 6.4 for details.

Order HS T even T odd

1
m

D2
⊥ (iD⊥)2

sB siB jδi j

1
m2

2ED⊥ [∂iE j]δi j {E i, iD j
⊥}δi j

sED⊥ si{E j, iDk
⊥}εi jk

1
m3

D4
⊥ (iD⊥)4

E2 E2

B2 B2

BD2
⊥ {[∂iB j], iDk

⊥}εi jk

5sBD2
⊥

{siB j,(iDk
⊥)

2}δi j {si[∂ jBk], iDl
⊥}δi jδkl

{siB j, iDk
⊥iDl

⊥}(δikδ jl +δilδ jk) {si[∂ jBk], iDl
⊥}δikδ jl

si[∂2B j]δi j

1
m4

sB2Dt siB j[∂tBk]εi jk
sE2Dt siE j[∂tEk]εi jk

2EBD⊥ {E iB j, iDk
⊥}εi jk E i[∂ jBk]εi jk

3sED3
⊥

{siE j, iDk
⊥(iD⊥)

2}εi jk {si[∂ jEk], iDl
⊥iDm

⊥}(εi jlδkm + εi jmδkl + εiklδ jm + εikmδ jl)
{si[∂ j∂kE l ], iDm

⊥}(εi jmδkl + εikmδ jl + εilmδ jk)

5ED3
⊥

{[∂iE j],(iD⊥)2}δi j {E i, iD j
⊥iDk

⊥iDl
⊥}(δi jδkl +δikδ jl +δilδ jk)

{[∂iE j], iDk
⊥iDl

⊥}(δikδ jl +δilδ jk) {[∂i∂ jEk], iDl
⊥}(δi jδkl +δikδ jl +δilδ jk)

[∂i∂ j∂kE l ](δi jδkl +δikδ jl +δilδ jk)

7sEBD⊥

siE j[∂kBl ]δikδ jl {siE jBk, iDl
⊥}δi jδkl

siE j[∂kBl ]δilδ jk {siE jBk, iDl
⊥}δikδ jl

siB j[∂kE l ](δikδ jl +δilδ jk) {siE jBk, iDl
⊥}δilδ jk

siB j[∂kE l ]δi jδkl
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Figure 6.1: The total number of rotationally-invariant operators in NRQED, which are even
under parity and time reversal, as a function of the operator dimension d. Explicit form of the
operators for d = 5,6,7,8 can be found in Table 6.2.

6.5 NRQCD/HQET

The construction of the Hilbert series for NRQCD/HQET is very similar to that of

NRQED, where now χC
E = χC

B = χ
SU(3)
8 , χC

ψ = χ
SU(3)
3 , and χC

ψ† = χ
SU(3)
3̄ . The Hilbert series for

the operators Ok in Eq. (6.1) is

HS =
∮
[dµ]SO(3)

∮
[dµ]SU(3)

P⊥
P0

(1+ sχ
SO(3)
3 ) χ

SU(3)
3 χ

SU(3)
3̄ PEE PEB. (6.35)

When invariance under parity is imposed, the output from this Hilbert series for operators of

mass dimension d = 5, 6, 7, and 8 is:

HSd=5 = D2
⊥+ sB, (6.36)

HSd=6 = 2ED⊥+ sED⊥, (6.37)

HSd=7 = D4
⊥+2E2 +2B2 + sE2 + sB2 +BD2

⊥+5sBD2
⊥, (6.38)

HSd=8 = B2Dt +E2Dt +2sB2Dt +2sE2Dt +6EBD⊥+3sED3
⊥+5ED3

⊥+21sEBD⊥.(6.39)
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Unlike NRQED, we have not found an automated way to implement invariance under time

reversal in NRQCD/HQET, because T acts as an anti-unitary operator, and counting T -invariant

operators requires keeping track of factors i while constructing Hermitian operators. This is not

an issue when constructing invariants in NRQED, since it has an abelian U(1) symmetry, but

when the group is non-abelian, like SU(3), the algebra’s structure constants, e.g., fabc, bring

with them a factor of i, and imposing T -symmetry is no longer straight-forward.

We take the output from this Hilbert series and explicitly contract indices by hand,

separating those that are even and odd under time reversal. The prescription is very close to

the one we used in NRQED. We choose to suppress color indices, and express E = EaT a and

B = BaT a, where T a are the eight generators of SU(3), which satisfy:

[T a,T b] = i f abcTc, (6.40)

{T a,T b} =
1
3

δ
ab +dabcTc. (6.41)

We utilize the following notation, where the letters i, j,k, l,m, ... are used for SO(3) indices, and

the letters a,b,c, ... are used to signify the SU(3) generators:

ψ
†[Di
⊥E j]aδi jT a

ψ≡ ψ
†
(
[∂i
⊥E j

a]+g(A⊥)ibE jc fabc

)
δi jT a

ψ, (6.42)

where Aµ ≡ Aµ
aT a is the gauge field. When there are two SU(3) generators in an operator, one

can use the relation that results in adding Eqs. (6.40) and (6.41) together:

T aT b =
1
6

δ
ab +

1
2

(
dabcTc + i f abcTc

)
. (6.43)

From this, one can see that, for example, the operator E2 in the Hilbert series can be contracted

in two ways:

E i
aE j

bδi jT aT b → E i
aE j

bδi jδ
ab and E i

aE j
bδi jdabcTc. (6.44)

A third contraction with fabc is completely antisymmetric in a,b,c, which results in an operator

equal to zero, in this case. Finally, it should be noted that f abc should be thought of a odd under
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time reversal.5 The two contractions in Eq. (6.44) give rise to different matrix elements, since the

contraction of color indices would be different. A complete list of NRQCD/HQET operators can

be found in Table 6.3 for d ≤ 8. Extending the list to higher orders would be straight-forward.

Our results agree with those in Ref. [112] for NRQCD/HQET operators up to and

including operators of order 1/m3. However, we find a different number compared to Refs. [156,

118] for operators at order 1/m3 and 1/m4. Specifically, Refs. [156, 118] claim there are 9

operators at 1/m3, and 18 operators at 1/m4, while we find 11 and 25, respectively. These

discrepancies are consistent with the possibility that Refs. [156, 118] count only once the two

symmetric terms, i.e., contractions with δab and dabc, in Eq. (6.43).

6.6 Discussion and Conclusions

We construct a Hilbert series for an effective theory with a single non-relativistic fermion

in an external, and dynamical, gauge field, defining characters and using a method to subtract

operators that are related to others via the equations of motion associated with the heavy

fermion and the external gauge bosons, as well as integration by parts. We consider the specific

examples of NRQED and NRQCD/HQET, where the heavy fermion has electric charge or color,

respectively. Imposing invariance under parity can be easily automated. Invariance under time

reversal also can be automated in the case of NRQED, since it is an abelian theory, but not

for NRQCD/HQET, in which case we separate T -even and -odd operators by hand. For both

effective theories, we construct explicit contractions for effective operators at dimensions d ≤ 8

that are invariant under parity and time reversal transformations, as enumerated in Table 6.2 for

NRQED and Table 6.3 for NRQCD/HQET. In a theory with a nonrelativistic fermion, additional

symmetry, e.g., reparameterization invariance [160, 112] or residual Lorentz symmetry [161], is

expected, in general. However, we do not impose such additional constraints, since it remains an

5This can be heuristically understood by noting that color is an internally symmetry, and must therefore be
invariant under spacetime transformations. Therefore, the matrix multiplication between two SU(3) generators must
be even under time reversal, which requires T−1i f abcT = i f abc, and f abc can be therefore be thought of as T -odd.
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Table 6.3: Same as Table 6.2, but for NRQCD/HQET, separating those operators that are even
and odd under time reversal. See the text at the end of Section 6.5 for a discussion regarding
notation.

Order HS T even T odd

1
m

D2
⊥ (iD⊥)2

sB siB j
aδi jT a

1
m2

2ED⊥ [∆iE j]aδi jT a {E i
a, iD

j
⊥}δi jT a

sED⊥ si{E j
a , iDk

⊥}εi jkT a

1
m3

D4
⊥ (iD⊥)4

2E2 E i
aE j

bδi jdabcTc

E i
aE j

bδi jδ
ab

2B2 Bi
aB j

bδi jdabcTc

Bi
aB j

bδi jδ
ab

sE2 siE j
aEk

bεi jk f abcTc

sB2 siB j
aBk

bεi jk f abcTc
BD2
⊥ {[∆iB j]a, iDk

⊥}εi jkT a

5sBD2
⊥

{siB j
a,(iDk

⊥)
2}δi jT a {si[∆ jBk]a, iDl

⊥}δi jδklT a

{siB j
a, iDk

⊥iDl
⊥}(δikδ jl +δilδ jk)T a {si[∆ jBk]a, iDl

⊥}δikδ jlT a

si[∆2B j]aδi jT a

1
m4

B2Dt Bi
a[DtB j]bδi j f abcTc

E2Dt E i
a[DtE j]bδi j f abcTc

2sB2Dt
siB j

a[DtBk]bεi jkδab

siB j
a[DtBk]bεi jkdabcTc

2sE2Dt
siE j

a [DtEk]bεi jkδab

siE j
a [DtEk]bεi jkdabcTc

6EBD⊥
{E i

aB j
b, iD

k
⊥}εi jkδab {E i

aB j
b, iD

k
⊥}εi jk f abcTc

{E i
aB j

b, iD
k
⊥}εi jkdabcTc E i

a[∆
jBk

b]bεi jkδab

E i
a[∆

jBk]bεi jk f abcTc E i
a[∆

jBk]bεi jkdabcTc

3sED3
⊥

{siE j
a , iDk

⊥(iD⊥)
2}εi jkT a {si[∆ jEk]a, iDl

⊥iDm
⊥}T

a(εi jlδkm + εi jmδkl + εiklδ jm + εikmδ jl)
{si[∆ j∆kE l ]a, iDm

⊥}T
a(εi jmδkl + εikmδ jl + εilmδ jk)

5ED3
⊥

{[∆iE j]a,(iD⊥)2}δi jT a {E i
a, iD

j
⊥iDk

⊥iDl
⊥}T

a(δi jδkl +δikδ jl +δilδ jk)
{[∆iE j]a, iDk

⊥iDl
⊥}T

a(δikδ jl +δilδ jk) {[∆i∆ jEk]a, iDl
⊥}T

a(δi jδkl +δikδ jl +δilδ jk)
[∆i∆ j∆kE l ]aT a(δi jδkl +δikδ jl +δilδ jk)

21sEBD⊥

{siE j
aBk

b, iD
l
⊥}δi jδkl f abcTc {siE j

aBk
b, iD

l
⊥}δi jδkldabcTc

{siE j
aBk

b, iD
l
⊥}δikδ jl f abcTc {siE j

aBk
b, iD

l
⊥}δikδ jldabcTc

{siE j
aBk

b, iD
l
⊥}δilδ jk f abcTc {siE j

aBk
b, iD

l
⊥}δilδ jkdabcTc

siE j
a [∆kBl ]bδikδ jldabcTc {siE j

aBk
b, iD

l
⊥}δi jδklδ

ab

siE j
a [∆kBl ]bδilδ jkdabcTc {siE j

aBk
b, iD

l
⊥}δikδ jlδ

ab

siE j
a [∆kBl ]bδikδ jlδ

ab {siE j
aBk

b, iD
l
⊥}δilδ jkδab

siE j
a [∆kBl ]bδilδ jkδab siE j

a [∆kBl ]bδikδ jl f abcTc

siB j
a[∆kE l ]bdabcTc(δikδ jl +δilδ jk) siE j

a [∆kBl ]bδilδ jk f abcTc

siB j
a[∆kE l ]bδi jδkldabcTc siB j

a[∆kE l ]b f abcTc(δikδ jl +δilδ jk)

siB j
a[∆kE l ]bδab(δikδ jl +δilδ jk) siB j

a[∆kE l ]bδi jδkl f abcTc

siB j
a[∆kE l ]bδabδi jδkl

open question regarding how to encode such requirements with Hilbert-series methods.

Our results agree with those presented in Refs. [152, 153, 112, 116] for NRQED, which

discuss operators up to and including d = 8. The total number of operators in NRQED grows

exponentially, as shown Fig. 6.1 and listed in Table 6.1 for mass dimension d ≤ 18. When
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using a Hilbert series for NRQCD/HQET, we count a total of 2 operators each at orders 1/m

and 1/m2, which agrees with Ref. [155], 11 operators at 1/m3, which agrees with Ref. [112],

and 25 operators at 1/m4. However, at order 1/m3, other analyses claim that there are either

5 [159], or 9 [156, 118] total operators, and Refs. [156, 118] claim there are a total of 18

operators at 1/m4. The differences between our results and those found in Refs. [156, 118] can

be explained by the existence of two symmetric SU(3) color singlets for operators with two

gauge bosons, as discussed at the end of Section 6.5. It is possible that analyses using the results

in Refs. [159, 156, 118], may need to be reevaluated, e.g., Refs. [157, 162, 158].

The authors of Refs. [113, 114] discuss a connection between enumerating operators in

a relativistic effective theory and the representations of the relativistic conformal group. Here,

selecting only primary operators constructed out of tensor products of the conformal group’s

short representations correctly accounts for redundancies between operators via integration by

parts and the equations of motion. We strongly suspect that our results can be reformulated in

terms of the non-relativistic conformal group [61, 81, 59, 22, 107], and we take this up as future

work.

Note: While this article was in review for publication, the authors of Ref. [118] updated

their work, and their results now agree with our enumeration of NRQCD/HQET effective

operators for d ≤ 8.
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Chapter 7

Conformal Structure of the Heavy Particle
EFT Operator Basis

An operator basis of an effective theory with a heavy particle, subject to external gauge

fields, is spanned by a particular kind of neutral scalar primary of the non-relativistic conformal

group. We calculate the characters that can be used for generating the operators in a non-

relativistic effective field theory, which accounts for redundancies from the equations of motion

and integration by parts.

7.1 Introduction

If one can say that a particle, and not its antiparticle, exists in the laboratory, then the

length scale of its spatial wave function ∆x is parametrically larger than its Compton wavelength

1/M. This hierarchy of scales leads to heavy particle effective field theories (heavy particle

EFTs), where one can systematically include higher powers of 1/(∆x M). Such systems are,

in fact, fairly common. For example, the b quark can be located anywhere within a B meson,

which has a spatial size of ∼ 1/ΛQCD, and heavy quark effective field theory is an expansion in

powers of ΛQCD/mb ∼ 0.3. A more dramatic example is the electron in a hydrogen atom, whose

wave function has a size ∆x∼ 10−10 m, and 1/(∆x me)∼ 10−3, which is why the Schrödinger

equation for single-partial quantum mechanics works so well in describing this system, using

only the first-order expansion in 1/M. Sometimes these theories are called non-relativistic
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effective field theories, insofar as there is a inertial frame in which there are non-relativistic

particles.

Even though heavy particle EFTs describe common physical scenarios, enumerating

the independent operators that appear in the Lagrangian, i.e., defining the operator basis, takes

considerable effort. The reason for this is that defining the operator basis is more than just

requiring that the operators preserve certain symmetries - it also involves accounting for non-

trivial redundancies between operators from the classical equations of motion and integration by

parts [163, 164]. There are popular EFTs with Lagrangians containing heavy fields, e.g., NRQED

(external abelian gauge fields), and HQET and NRQCD (external color gauge fields). The

operator basis for NRQED was written to order O(1/M3) in Ref. [153] and to O(1/M4) in

Ref. [116]. The HQET/NRQCD operator basis was enumerated up to O(1/M3) in Ref. [112],

and to O(1/M4) by Ref. [117], which was later confirmed in Ref. [118].

A huge stride was taken recently by the authors of Refs. [113, 114, 115], where they

noticed that the operator basis for a relativistic EFT can be organized according to the represen-

tations of the conformal group. In particular, accounting for the redundancies from the classical

equations of motion can be mapped to the null conditions that saturate unitarity in the conformal

group, and choosing the operator basis to be spanned only by primaries of the conformal algebra

removes any redundancies associated with integration by parts. By embedding operators into

representations of the conformal group, one can use characters as inputs into a Hilbert series,

which then can generate the operator basis, counting the number of operators in the EFT with

the given field content. Constructing the explicit operators with contracted internal and Lorentz

indices, however, needs to be done by hand. Even so, the Hilbert series output provides an

invaluable tool for constructing a bonafide operator basis. For example, a Hilbert series aided

in constructing the first correct operator basis for dimension-7 operators in the standard model

EFT [114] and dimension-8 operators in the HQET/NRQCD Lagrangian [117].

In practice, the characters of particular group representations are used as inputs for the
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Hilbert series, which generates all possible tensor products of these representations. We refer

the reader to Ref. [150] for an introductory and pedagogical discussion regarding Hilbert series

and the underlying group theory. In Ref. [117], we constructed such a Hilbert series to help

write down the operator basis for NRQED and HQET/NRQCD to order O(1/M4). However,

we did not use any organizational principle associated with the representation of the conformal

group, since the equations of motion for non-relativistic fields are not those for relativistic fields.

Instead, the “characters” we used in the Hilbert series were constructed by hand. This begs the

question: Are they characters of a group representation? Perhaps unsurprisingly, the answer

is: “Yes.” In this work, we show that the characters used in Ref. [117] are those associated with

“shortened” representations of the non-relativistic conformal group, and the operator basis for

heavy particle effective field theories are spanned by a special category of primary operators.

While this does have some analogy to the relativistic scenario studied in Refs. [113, 114, 115],

there are important subtleties with non-relativistic theories, which we discuss in some detail.

7.2 Operator Basis for Heavy Particle EFTs

We consider operators that comprise an effective field theory that are singlets under

the symmetries of the theory, each constructed out of the relevant degrees of freedom and any

number of derivatives acting on them. Of such operators, two or more may give rise to identical

S-matrix elements, in which case they ought to not be counted as distinct. This occurs when two

or more operators: (1) differ by a total derivative, or (2) can be related via the classical equations

of motion (a kind of field redefinition) [163, 164]. Accounting for these redundancies amounts

to the program of constructing operator bases in effective field theories.

How these redundancies apply to heavy-particle EFTs is described in Ref. [117], and

we will briefly recapitulate it here. Consider every possible rotationally- and gauge-invariant
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operator in the rest frame1 of a theory with only one heavy particle ψ:

L = ψ
†iDtψ+

1
Md−1

∞

∑
k

ckψ
†O [d]

k ψ , (7.1)

where the ck’s are dimensionless constants, M is the mass of the heavy particle, and the operators

O [d]
k are Hermitian operators of mass dimension d ≥ 2, constructed out of field strength tensors

of gauge fields, covariant time derivatives, Dt , covariant spatial derivatives, D⊥ (and these

derivatives can act to the right as well at the left), and spin vectors. All covariant derivatives

must be symmetric under exchange of spatial indices, otherwise they are proportional to field

strength tensors, which have already been included.

Consider a set of operators that contain only one derivative. For a given operator O, the

relationship between operators by integrating by parts is

ψ
†O∂ψ+[∂ψ

†]Oψ+ψ
†[∂O]ψ = ∂(ψ†Oψ) = total derivative , (7.2)

where ∂ is a partial time or spatial derivative, and the square brackets indicate that the derivative

only acts on the operator within the brackets. Combined with the identity

ψ
†ODψ+[Dψ

†]Oψ+ψ
†[DO]ψ = D(ψ†Oψ) , (7.3)

where D is a covariant time or spatial derivative, and with the fact that D(ψ†Oψ) = ∂(ψ†Oψ)

since ψ†Oψ was defined to be a gauge singlet, we have the constraint:

ψ
†ODψ+[Dψ

†]Oψ+ψ
†[DO]ψ = total derivative . (7.4)

This equation relates three operators to a total derivative, so to account for this redundancy, we

need to ignore one of them. One easy option is to only ignore operators O that contains derivative

that act on ψ†. But this solution cannot be generalized to the case with more derivatives in the

operator, and accounting for the redundancies associated from integration by parts between

1In general, a covariant derivative Dµ can be written in terms of the velocity 4-vector vµ: Dµ = (v ·D)vµ +Dµ
⊥.

In the rest frame, i.e., where vµ = (1,0,0,0), then Dµ = (Dt ,D⊥).
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operators with more derivatives becomes more challenging.

The equations of motion for ψ also give relationship between operators:

iDtψ+
1

Md−1

∞

∑
k

ckO [d]
k ψ = 0 , (7.5)

and multiplying from the left by ψ†O [d′]
j :

ψ
†O [d′]

j iDtψ =− 1
Md−1

∞

∑
k

ckψ
†O [d′]

j O [d]
k ψ . (7.6)

Any operator O that contains a covariant time derivative that acts on ψ can be related to an

infinite set of other operators at higher order. Therefore, this single equation that relates operators

can be imposed if one ignores any operator that contains a covariant time derivative that acts on

ψ. The same argument follows for ψ†.

Lastly, there are relationships between operators due to the equations of motion of the

field strength tensors associated with external gauge fields, i.e., DµFµν = jν and DµF̃µν = 0,

where jµ = (ρ,J). Because the effective theory defined in Eq. (7.1) is restricted to only the

sector with one matter degree of freedom, there exists the possibility that whatever gauge fields

appear in Lagrangian may have equations of motion that include external sources. Representing

the covariant derivative as Dµ = (Dt ,D⊥) in the rest frame of the heavy particle, we have the

non-abelian generalizations of Maxwell’s equations:

D⊥ ·E = ρ , (7.7)

D⊥ ·B = 0 , (7.8)

D⊥×E = −DtB , (7.9)

D⊥×B = J+DtE . (7.10)

So, if the operator O in Eq. (7.1) is constructed out of E and B (and covariant derivatives

acting on them), then Maxwell’s equations will make some operators vanish, as well as provide
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relationships between different operators. Accounting for these constraints, one must impose

D⊥ ·B = 0, and choose to either express the operator O in terms of D⊥×E or DtB, but not both.

In summary, imposing the constraints on operators from integration by parts and equations

of motion of ψ, E, and B on the rotationally- and gauge-invariant Lagrangian density in Eq. (7.1)

will provide the operator basis for HQET. That is, every operator gives rise to different S-matrix

elements. There are additional symmetry constraints on such an EFT from residual relativistic

boost symmetry [160, 161]. This amounts to relating the coupling constants ck in Eq. (7.1) to

one another, but does not alter the operator basis.

7.3 Operator Basis and the Schrödinger Algebra

We show that the characters in Ref. [117], which were constructed by hand in order

to generate the operator basis for a heavy-particle effective theory, are, in fact, characters of

irreducible representations of the non-relativistic conformal group (this group is also referred to

as the Schrödinger group, and we will use these terms interchangeably). Furthermore, from this

one can determine that the operator basis for a heavy-particle effective field theory is spanned by

particular kinds of primary operators of the non-relativistic conformal group. For those readers

not familiar with symmetries of non-relativistic systems or the Schrödinger algebra, we invite

them to read the Appendix, which is an introductory review to some of its well-known features

that are relevant to the following discussion.
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The Lie algebra of the Schrödinger group is:

= iεi jkJk , [Ji,K j] = iεi jkKk , [Ji,Pj] = iεi jkPk ,

[H,Ki] =−iPi , [Ki,Pj] = iNδi j ,

[D,Ki] =−iKi , [D,Pi] = iPi , [D,H] = 2iH ,

[C,Pi] = iKi , [C,H] = iD ,

[Ki,K j] = [H,Pi] = [H,Ji] = [Pi,Pj] = [N,any] = 0 ,

[D,Ji] = [C,Ji] = [C,Ki] = 0 ,

(7.11)

where these are the generators of rotations (Ji), non-relativistic boosts (Ki), time translations

(H), spatial translations (Pi), scaling transformations (D), special conformal transformations (C),

and number charge (N). States that transform as irreducible representations of the Schrödinger

algebra can be labeled with the eigenvalues of the Cartan generators for the group, i.e., D, N,

and J3:

D |∆,n,m〉 = i∆ |∆,n,m〉 , (7.12)

N |∆,n,m〉 = n |∆,n,m〉 , (7.13)

J3 |∆,n,m〉 = m |∆,n,m〉 . (7.14)

The Schrödinger algebra has raising and lowering operators, analogous to those for angular

momentum, which raise and lower the scaling dimension ∆:

DPi |∆,n,m〉 = i(∆+1)Pi |∆,n,m〉 , (7.15)

DKi |∆,n,m〉 = i(∆−1)Ki |∆,n,m〉 , (7.16)

DH |∆,n,m〉 = i(∆+2)H |∆,n,m〉 , (7.17)

DC |∆,n,m〉 = i(∆−2)C |∆,n,m〉 . (7.18)
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Pi and H raise the scaling dimension, and Ki and C lower it. Using the linear combinations:

P± ≡ P1± iP2 , K± ≡ K1± iK2 , (7.19)

the following eigenvalue equations following directly from the algebra:

J3P± |∆,n,m〉 = (m±1)P± |∆,n,m〉 , (7.20)

J3P3 |∆,n,m〉 = mP3 |∆,n,m〉 , (7.21)

J3K± |∆,n,m〉 = (m±1)K± |∆,n,m〉 , (7.22)

J3K3 |∆,n,m〉 = mK3 |∆,n,m〉 , (7.23)

J3H |∆,n,m〉 = mH |∆,n,m〉 , (7.24)

J3C |∆,n,m〉 = mC |∆,n,m〉 . (7.25)

More such relations exist, but we only list the ones here that we will use. The Cartan generator

N commutes with everything, and the action of other generators on the state does not change its

number-charge. This allows us to consider states sector-wise depending on its number charge. In

the sector of states with number charge n 6= 0, one can lower the scaling dimension by action

of Ki and C, but the unitarity bound restricts the lowest possible dimension. For details, see

Appendix F.3. There can be lowest-weight states of scaling dimension (in group theory literature,

this is known as highest-weight state), such that:

Ki |∆∗,n,m〉 = 0 , (7.26)

C |∆∗,n,m〉 = 0 , (7.27)

where m =− j,− j+1, · · · , j where j is the total spin of the highest-weight state. We note that

even though the highest-weight states can be assigned a total spin j, this is no longer true once

we act on these states by P± or P3, since acting on a state with spin j, they produce a linear

combination of spin j+ 1, j, · · · , | j− 1|. If the state’s scaling dimension is ∆∗ > d/2, where
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d is the number of spatial dimensions, then an irreducible representation of the Schrödinger

algebra can generated by acting repeatedly on |∆∗,n,m〉 with Pi and H. Thus all the states in the

representation are of the form:

∣∣∆,n,m′〉= H`Pr
+Pp
−Pq

3 |∆∗,n,m〉 , (7.28)

where, specifically, ∆ = 2`+ r+ p+ q+∆∗, m′ = r− p+m and m = − j,− j+ 1, · · · , j. The

character for this representation is a trace over all its states (following the procedure for relativistic

conformal representation, as detailed in Ref. [165]):

χ[∆>d/2,n6=0, j] = Tr
[
eiθDD+iθNN+iθ3J3

]
, (7.29)

= einθN ∑
|m|≤ j

`,r,p,q≥0

〈adjoint|eiθDD+iθ3J3H`Pr
+Pp
−Pq

3 |∆∗,n,m〉 , (7.30)

=
einθN Λ∆∗ χ

SU(2)
( j) (z)

(1− z2Λ)(1−Λ)(1−Λ/z2)(1−Λ2)
, (7.31)

where Λ≡ e−θD , z≡ eiθ3/2, and 〈adjoint| means the complex conjugate of the state, created by

the action of H`Pr
+Pp
−Pq

3 on |∆∗,n,m〉, such that the norm of the state is unity. Here, χ
SU(2)
( j) (z) is

the character for an SU(2) j−plet, i.e.,

χ
SU(2)
( j) (z)≡ ∑

|m|≤ j
〈 j,m|z2J3 | j,m〉 . (7.32)

For example, the character for an SU(2) doublet is χ
SU(2)
2 = z+1/z, and the character for an

SU(2) triplet is χ
SU(2)
3 = z2 +1+1/z2, and so on. Since Pi and H are the generators for spatial

and time translations, respectively, we can identify the term [(1− z2Λ)(1−Λ)(1−Λ/z2)]−1

as the generating functional for all possible symmetric products of spatial derivatives, and

(1−Λ2)−1 as the generating functional for all possible products of time derivatives. To make

this more clear, we can put in the numbers Dt and D⊥ (of modulus less than unity) to flag where
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and how many derivatives are generated, e.g.,

P0(Λ)≡
1

(1−Λ2Dt)
= 1+Λ

2Dt +Λ
4D2

t + ...

P⊥(Λ)≡
1

(1− z2ΛD⊥)(1−ΛD⊥)(1−ΛD⊥/z2)

= 1+ΛD⊥χ
SU(2)
3 +Λ

2D2
⊥

(
1+χ

SU(2)
5

)
+ ...

(7.33)

We can illustrate the behavior of these generating functionals with an example. Consider that

the generating function for spatial derivatives acts on an object that is a singlet under rotation,

call it φ, then the rotational indices can be reintroduced by hand, and generating derivatives can

be represented as: P⊥φ = φ+∂iφ+∂i∂iφ+∂i∂ jφ+ · · · . Note that there is no term like εi jk∂i∂ jφ

generated; it is trivially zero.

If the scaling dimension of the highest-weight state |∆∗,n,m〉 in the representation is

∆∗ = d/2, then the unitarity bound is saturated, leading to the fact that the following state has

zero norm (see Appendix F.3 and Refs. [59, 81, 137]):(
H− P2

i
2n

)
|∆∗ = d/2,n,m〉= 0 . (7.34)

Therefore, the character for the representation when the highest-weight state has ∆∗ = d/2

should not contain the contribution coming from the state
(

H− P2
i

2n

)
|∆∗ = d/2,n,m〉 and any

power of H or Pi acting on it. This can be achieved by removing the tower of states generated

by H acting on |∆∗ = d/2,n,m〉. As discussed in Section 7.2, this is precisely the requirement

that when defining an operator basis with a heavy particle, taking into account the equations of

motion, that one can choose a basis with no time derivatives act on heavy field ψ. The character

for such a shortened representation is can be easily calculated:

χ[∆∗=d/2,n6=0, j] = einθN Λ
d/2 P⊥(Λ) χ

SU(2)
( j) (z) . (7.35)

This is the character used in Ref. [117] for the heavy particle degree of freedom, modulo the

multiplicative factor of einθN Λd/2. Therefore, for the sake of defining an operator basis, one can
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say that the heavy-particle state is a highest-weight state with scaling dimension ∆∗ = d/2 and

n 6= 0. And, in particular, if it is a heavy fermion, then χ
SU(2)
( j) = χ

SU(2)
2 . This is a scenario when

the equation of motion can be derived using the algebra and the constraint from unitarity, though

this does not always have to the case.2 The representation for ψ† is the same as ψ, but with the

sign of n flipped.

In the heavy particle EFT, the Lagrangian is expressed using external electric and

magnetic fields (or their non-abelian generalizations). We are interested in embedding these

fields within an representation of the Schrödinger group, where they would have well-defined

charges under scaling transformations, number charge, and z-component of angular momentum.

To begin, one must take care to reinstate the location of the speed of light constant c. Because

space time scale differently under scaling transformations, i.e., x→ λx and t→ λ2t, the speed

of light is not invariant, behaving as an intrinsic scale in the theory. As such, E ≡ E/c and B

are the fundamental fields that appear in the field strength tensor Fµν. Since they are externally

defined, they can be taken to scale in a similar way, both with scaling dimension ∆ = 2. Also,

E and B transform as vectors under rotation, so they are both spin-1. Lastly, since the electric

and magnetic fields are Hermitian, they can not carry any number-charge, so they have n = 0.

As noted in Appendix F.2, the representation of the Schrödinger group for operators with n = 0

differs from the n 6= 0 sector. For example, consider a highest-weight state |∆∗,n = 0,m〉 such

that Ki |∆∗,n = 0,m〉=C |∆∗,n = 0,m〉= 0. The Schrödinger algebra then leads to the following:

K jPi |∆∗,n = 0,m〉 = 0 , (7.36)

CPi |∆∗,n = 0,m〉 = 0 . (7.37)

Therefore, the state Pi |∆∗,n = 0,m〉 is also a highest-weight state in scaling dimension. In order

to embed E and B in the Schrödinger representation, we can choose to define the following kind

2To cite a specific example, at the interacting fixed point of a relativistic φ4 theory, the equation of motion is not
associated with a unitarity bound, since, in 4− ε dimensions, the field φ acquires an anomalous dimension, which
no longer saturates the unitarity bound [166].
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of state |∆∗,n = 0,m〉, where: (1) C |∆∗,n = 0,m〉= 0, and (2) |∆∗,n = 0,m〉 6= Pi |∆′∗,n = 0,m′〉,

where |∆′∗,n = 0,m′〉 is some other state in the Hilbert space. This is the definition of the state in

the Schrödinger group that we associate with the electric and magnetic fields. As before, one

can build up a representation of the Schrödinger group (two towers of states) by acting by Pi

and H on this |∆∗,n = 0,m〉. In d = 3 spatial dimensions there is no constraint from unitarity

regarding how high these towers can go. However, these towers do not extend forever, since two

of Maxwell’s equations are:

D⊥ ·B = 0 , D⊥×E =−1
c

DtB . (7.38)

The other two Maxwell’s equation with source term do not constrain or relate the tower of states,

since both the current and charge density are externally defined. If we take the c→ ∞ limit, then

Eqs. (7.38) gets contracted from the Poincaré representation to the N = 0 representation of the

Galilean group (for some details regarding this c→ ∞ contraction, see Appendix F.1), and end

up being invariant under scaling and special conformal transformations:

D⊥ ·B = 0 , D⊥×E = 0 . (7.39)

Therefore, these are the shortening conditions for the states in the Schrödinger group associated

with the electric and magnetic fields. So, the the characters for E and B are:

χ
E
[∆∗=2,n=0, j=1] = Λ

2 P0(Λ) P⊥(Λ)
(

χ
SU(2)
3 −ΛD⊥χ

SU(2)
3 +Λ

2D2
⊥

)
, (7.40)

χ
B
[∆∗=2,n=0, j=1] = Λ

2 P0(Λ) P⊥(Λ)
(

χ
SU(2)
3 −ΛD⊥

)
. (7.41)

The additional Λ2D2
⊥ term in the character for E is due to the fact that if one subtracts out

ΛD⊥χ
SU(2)
3 , then one will also subtract out Λ2D2

⊥, but this term was never there to begin with,

since derivatives are symmetric under interchange of their spatial indices. These are precisely

the characters used in Ref. [117] for the external gauge fields.

We have established how the requirements of defining an operator basis for a heavy
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particle EFT can be associated with the relevant degrees of freedom in the theory, i.e., the

heavy particles, electric and magnetic fields, and the time and spatial derivatives that act on

them, falling into irreducible representations of the Schrödinger group. In particular, we have

shown that characters of certain representations of the Schrödinger group match those we used

in Ref. [117], where we only had in mind the constraints from the equations of motion. At last,

we can take tensor products between these representations of the Schrödinger group to generate

operators that appear in the Lagrangian. Illustrating this with the following cartoon (including

the details of the shortening conditions for E and B is a bit cumbersome):

ψ†

D⊥ψ†

D2
⊥ψ†

...


⊗



E

D⊥E

D2
⊥E,DtE

...


⊗



B

D⊥B

D2
⊥B,DtB

...


⊗·· ·⊗



ψ

D⊥ψ

D2
⊥ψ

...


=



O

D⊥O

D2
⊥O,DtO

...


+ ..

(7.42)

Because the right-hand side of Eq. (7.42) are also representations of the Schrödinger group, only

the highest-weight operators are not associated with total derivatives. These highest-weight

operators have the properties that [C,O] = 0, and O 6= [Pi,O ′], where O ′ is some other operator

in the Hilbert space. Therefore, it is exactly these highest-weight operators that span the operator

basis for the EFT with one heavy particle. This connection between representations of the

Schrödinger group and a heavy particle EFT can be made for EFTs with multiple heavy fields. If

there are no interactions that cause heavy fields to transform into other types, then each heavy

field can be labeled with a different charge n, and operator basis is required be invariant under N.

7.4 Discussion and Conclusions

The operator basis for a heavy particle EFT, subject to external gauge fields, can be

organized according to the representations of the non-relativistic conformal group (often called

the Schrödinger group). Such an organization allows one to easily remove any redundancy

149



between operators due to integration by parts and the equations of motion for the individual

degrees of freedom. Specifically, we discuss that the heavy particle states are highest-weight

states that saturate unitarity in d = 3 spatial dimensions, and this leads to a representation of the

Schrödinger group that removes any time derivatives acting on the heavy field, which amounts

to the same imposition on the operator basis due to the equations of motion of the heavy field.

The external gauge fields are associated with the n = 0 sector of the Schrödinger group, and this

necessitates an extended classification of highest-weight states [137]. Maxwell’s equations in the

c→ ∞ limit produce the shortening conditions for the external gauge fields. Taken together, the

tensor products of these Schrödinger representations is itself a representation of the Schrödinger

group, and the highest-weight (with n = 0 and j = 0) operators of this are exactly those which

are not total derivatives, and therefore are the operators that span the operator basis for an EFT

with a heavy particle.

We have shown the characters of representation for the neutral sector and charged

sector of the Schrödinger group to be precisely those used in Ref. [117], which used a Hilbert

series to help tabulate the operator basis for NRQED and HQET/NRQCD, up to and including

operators at O(1/M4). An analogous situation occurs in relativistic theories, and the authors of

Refs. [113, 114, 115] discuss why it may not be unreasonable to intuit a connection between an

operator basis and the representations of a conformal group. It is also worth mentioning that

since the Schrödinger group is non-compact, it has similar subtleties associated with character

orthogonality as in the relativistic conformal group. Operationally, this does not hamper the

operator counting program, nonetheless it would be interesting to explore further the subtleties

associated with character orthogonality of Schödinger algebra in the same spirit as done in

relativistic case.

The methodology introduced here could be leveraged to also describe the operator content

beyond the realm of heavy particle effective field theory with a single heavy field, for example,

fermions at unitarity [2, 1], two nucleon systems [4, 3], and it could have potential application
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in writing an operator basis for anisotropic Weyl anomaly, i.e., the anomaly associated with

nonrelativistic scaling upon coupling the theory with curved space-time [20, 69, 21].
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Chapter 8

Nonrelativistic Conformal Field Theories
in the Large Charge Sector

We study Schrödinger invariant field theories (nonrelativistic conformal field theories) in

the large charge (particle number) sector. We do so by constructing the effective field theory

(EFT) for a Goldstone boson of the associated U(1) symmetry in a harmonic potential. This EFT

can be studied semi-classically in a large charge expansion. We calculate the dimensions of the

lowest lying operators, as well as correlation functions of charged operators. We find universal

behavior of three point function in large charge sector. We comment on potential applications to

fermions at unitarity and critical anyon systems.

8.1 Introduction and Summary

Symmetry has always been a guiding principle in characterizing physical systems. While

weakly coupled field theories are known to be tractable in terms of perturbation theory in

coupling, often the strongly coupled ones can only be constrained by symmetry arguments.

For example, the physics of low-energy quantum chromo dynamics (QCD) is captured by an

effective theory of pions, whose low-energy interactions are fixed by the broken chiral symmetry.

Conformal field theories (CFTs) are especially beautiful examples of how one can

leverage the symmetry group. While generically strongly coupled, conformal symmetry almost

completely fixes the behavior of correlation functions and gives non-trivial insights into the
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structure of their Hilbert spaces. In some cases, the conformal bootstrap [92] can provide us

with rich physics of such theories entirely based on symmetry principles. However, we are

still lacking many concrete calculational tools for these theories. In CFTs with an additional

global U(1), recent progress has been made by constructing effective field theories for their large

charge (Q) sector. Generically, the large charge sector can be horribly complicated in terms of

elementary fields and their interactions, but one can set up a systematic 1/Q expansion to probe

this strongly coupled regime. This has been useful in finding the scaling of operator dimensions,

and many other meaningful physical quantities [167, 168, 169, 170, 171, 172].

In this work, we will be dealing with systems with non relativistic scale and conformal

invariance i.e. systems invariant under Schrödinger symmetry. While in CFT, one needs to have a

external global symmetry to talk about large charge expansion, the nonrelativistic conformal field

theories (NRCFTs) come with a “natural” U(1), the particle number symmetry. The Schödinger

symmetry group and its physical consequences have been studied in [94, 60, 59, 173, 99, 137].

The physical importance of Schrödinger symmetry lies in varied realisation of the symmetry

group, starting from fermions at unitarity[1, 2] to examples including spin chain models [95],

systems consisting of deuterons [3, 4], 133Cs[6], 85Rb [5],39K [7].

Such theories, similar to CFTs, admit a state-operator correspondence[174, 173] in

which the dimensions of operators correspond to energy of a state in a harmonic potential1.

Specifically, the scaling generator D, which scales xxx 7→ λx and t 7→ λ2t for λ ∈R gets mapped to

the Hamiltonian (Hω) in the harmonic trap i.e. Hω ≡ H +ω2C where C = 1
2
∫

ddx x2n(x) is the

special conformal generator and n(x) is the number density and H is the time translation generator

of the Schrödinger group. The parameter ω determines the strength of the potential and plays an

analogous role to the radius of the sphere in the relativistic state-operator correspondence.2.

Given this set up, we consider an operator Φ with large number charge Q. For example,

1This state-operator map is different from the one discussed in [137] to explore the neutral sector. In [137], the
map is more akin to the (0+1) dimensional CFT.

2Here and also subsequently, we will be working in non-relativistic “natural” units of m = ~= 1

153



one can think of φ
N
2 for φ(x) = :ψ†

↑(x)ψ
†
↓(x): in the case of fermions at unitarity in d = 3

dimensions. By the state-operator correspondence, the operator is related to a state |Φ〉 with

finite density of charge (n) in the harmonic trap. There’s an energy scale set by the density

ΛUV ∼ µ∼ n
2
d , µ being the chemical potential which fixes the total charge to Q. There is also

a scale set by the trap ΛIR ∼ ω which controls the level spacing of Hω. The limit of large

charge Q� 1 then implies a parametric separation of these scales. This allows us to set up a

perturbatively controlled expansion in 1/Q and probe the large charge sector of a theory invariant

under Schrödinger symmetry.

In this limit it becomes appropriate to ask, what state of matter describes the large charge

sector? Such a state with finite density of charge necessarily breaks some of the space-time

symmetries e.g. scale transformations, (Galilean) boosts, special-conformal transformations.

That these symmetries are spontaneously broken also implies that they must be realized non-

linearly in the effective field theory (EFT) describing the large charge sector. We expect the

low-energy degrees of freedom to be Goldstones.

One possibility is that the U(1) symmetry remains unbroken. This is the case for a system

with a Fermi surface. There the low-energy degrees of freedom would also include fermionic

matter in addition to any Goldstones. The simplest candidate EFT, Landau Fermi-Liquid theory,

is incompatible with the non-linearly realized Schrödinger symmetry[175] and therefore this is a

fairly exotic possibility.

Another possibility is that the U(1) symmetry is also spontaneously broken, leading to

superfluid behavior. This has been the case most studied in the literature and seems like the

most obvious possibility for a bosonic NRCFT. Additionally, both unitary fermions and the

scale invariant anyon gas at large density are suspected to be superfluids. Therefore we focus

exclusively on this symmetry breaking pattern.

154



Summary of Results

We compute the properties of the ground state |Φ〉 with finite density of charge, under

the assumption it describes a rotationally invariant superfluid, via an explicit path integral

representation:

〈Φ|e−HωT |Φ〉=
∫

Dχ e−Se f f [χ]+µ
∫

ddx n(x) (8.1)

where χ is a Goldstone boson describing excitations above the ground state, µ is the chemical

potential and n(x) is the number density which is canonically conjugate to χ. This integral can

then be computed by saddle point in the large µ limit. The chemical potential µ can then be fixed

semi-classically in terms of the charge Q. Thus self-consistently, we are obtaining a large Q

expansion. We employ the coset construction to write down the most general effective action for

the Goldstone which is consistent with the non-linearly realized Schrödinger symmetry.

• For the case with magnetic vector potential AAA = 0 (the one that is relevant for the NRCFT

in harmonic trap), we find the effective Lagrangian given by

Le f f = c0X
d
2+1 + c1

X
d
2+1

X3 ∂iX∂
iX + c2

X
d
2+1

X3 (∂iA0)
2

+ c3
X

d
2+1

X2 ∂i∂
iA0 + c4

X
d
2+1

X2 (∂i∂
i
χ)2

(8.2)

where X = ∂tχ−A0− 1
2∂iχ∂iχ. However this is not the full set of constraints. It can be

shown that imposing ‘general coordinate invariance’ will reduce the number of independent

Wilson coefficients even further[176]. In particular there are the additional constraints:

c2 = 0 and c3 =−d2c4. Additionally, in d = 2, one can have parity violating operator at

this order:

c5
1
X

ε
i j(∂iA0)(∂ jX) (8.3)

The details can be found in Section 8.4.
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• The dispersion relation of low energy excitation above the ground state is found out to be:

ε(n, `) =±ω

(
4
d

n2 +4n+
4
d
`n− 4

d
n+ `

) 1
2

(8.4)

where ` is the angular momentum and n is a non-negative integer and ε(n, `) is the

excitation energy. The dispersion determines the low-lying operator dimensions explicitly.

Since, ε(n = 0, `= 1) =±ω and ε(n = 1, `= 0) =±2ω, they can be identified with two

different kinds of descendant operators appearing in the Schrödinger algebra. The details

can be found in Section 8.6.2.

• In the leading order in Q, we find the ground state energy i.e. dimension ∆Q of the

corresponding operator Φ:

∆Q =

(
d

d +1

)
ξQ1+ 1

d , where
1
c0

=
Γ(d

2 +2)
Γ(d +1)

(2πξ
2)

d
2 . (8.5)

where c0 is UV parameter of the theory, appearing in the Lagrangian (8.2).

Specifically, we have

∆Q =
2
3

(
ξQ3/2

)
+ c1

4π

3
ξ

(
Q

1
2 logQ

)
+O

(
Q

1
2

)
for d = 2 . (8.6)

∆Q =

(
3
4

)
ξQ4/3−

(
c1 +

c3

2

)
(3
√

2π
2)ξ2Q2/3 +O

(
Q5/9

)
for d = 3 . (8.7)

The details can be found in Section 8.6.1.

• We find the structure function F appearing in three point function of two operators with

large charge Q and Q+q and one operator φq with small charge q goes as follows:

F(v = iωy2) ∝ Q
∆φ

2d

(
1− ωy2

2ξ
Q−1/d

)∆φ

2

e−
1
2 qωy2

(8.8)

where y is the insertion point of φq in the oscillator co-ordinate and ∆φ is the dimension φq.

The details can be found in Section 8.7.2.
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Note: While this work was being completed a paper appeared with some overlap[177].

They identify many of the same operators we do, through different means and without couplings

to the background gauge field. The primary tool we utilize is the state-operator correspondence

for NRCFTs, therefore directly compute properties of the NRCFTs in harmonic trap in large

charge limit.

8.2 Lightning Review of Schrödinger Algebra

The Schrödinger algebra has been extensively explored in [94, 60, 59, 173, 99, 137].

Here we take the readers through a quick tour of the essential features of Schrödinger algebra, that

we are going to use through out this paper. The most important subgroup of Schrödinger group

is the Galilean group, generated by time translation generator H, spatial translation generators Pi,

rotation generators Ji j and boost generators Ki. One can centrally extend this group by appending

another U(1) generator N, which generates the particle number symmetry. As a whole, these

generators constitute what we call Galilean algebra and they satisfy:

[Ji j,N] = [Pi,N] = [Ki,N] = [H,N] = 0

[Ji j,Pk] = i(δikPj−δ jkPi) ,

[Ji j,Kk] = i(δikK j−δ jkKi) ,

[Ji j,Jkl] = i(δikJ jl−δ jkJil +δilJk j−δ jlJki) ,

[Pi,Pj] = [Ki,K j] = 0 , [Ki,Pj] = iδi jN , (8.9)

[H,N] = [H,Pi] = [H,Mi j] = 0 , [H,Ki] =−iPi .

The Galilean group is enhanced to Schrödinger group by appending a scaling generator

D and a special conformal generator C such that they satisfy the following commutator relations:

[D,Pi] = iPi , [D,Ki] =−iKi , (8.10)
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[D,H] = 2iH , [D,C] =−2iC , [H,C] =−iD , (8.11)

[Ji j,D] = 0 , [Ji j,C] = 0 , [N,D] = [N,C] = 0 . (8.12)

The state-operator correspondence for an NRCFT is based on the following definition

[173]:

|O〉 ≡ e−
H
ω O†(0) |0〉= O†

(
− i

ω
,0
)
|0〉 (8.13)

where O† is a primary operator of number charge QO† =−QO ≥ 0. By the Schrödinger algebra,

this state satisfies:

N |O〉= QO† |O〉 Hω |O〉= ω∆O |O〉 (8.14)

where Hω = H +ω2C is the Hamiltonian with the trapping potential.

It is natural to define a transformation from Galilean coordinates x = (t,xxx) to the “oscil-

lator frame” y = (τ,yyy) where the time translation τ→ τ+a is generated by Hω. Explicitly this is

given by

ωτ = arctanωt , yyy =
xxx√

1+ω2t2
(8.15)

and allows us to map primary operators and their correlation functions in the oscillator frame to

the Galilean frame via the map[173]:

Õ(y) =
(
1+ω

2t2)∆O
2 exp

[
i
2

QO
ω2|xxx|2t

1+ω2t2

]
O(x) (8.16)

O(x) = [cos(ωt)]∆O exp
[
− i

2
QOω|yyy|2 tan(ωτ)

]
Õ(y) (8.17)

In this paper, we will be interested in matrix elements of the form:

〈Φ|φ1(y1) · · ·φn(yn)|Φ〉 (8.18)
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where Φ† is a primary of charge Q� 1 and φi are also charged 3 primaries with qi� Q.4

In the Galilean frame, the general form of a two point function is fixed to be

〈O1(x1)O2(x2)〉= cδ∆1,∆2δQ1,−Q2

exp
[
iQ2

|xxx|2
2t

]
(t1− t2)∆1

(8.19)

where c is a numerical constant, ∆i is the dimension of the operator Oi, Qi is the charge of Oi.

The symmetry algebra constrains the general form of a three-point function upto a arbitrary

function of a cross-ratio vi jk defined below:

〈O1(x1)O2(x2)O3(x3)〉 ≡ G(x1;x2;x3)

= F(v123)exp
[
−i

Q1

2
xxx2

13
t13
− i

Q2

2
xxx2

23
t23

]
∏
i< j

t
∆

2−∆i−∆ j
i j (8.20)

where ∆≡ ∑i ∆i , xi j ≡ xi− x j , and F(vi jk) is a function of the cross-ratio vi jk defined:

vi jk =
1
2

(
xxx2

jk

t jk
−

xxx2
ik

tik
+

xxx2
i j

ti j

)
(8.21)

We note that the three point function becomes zero unless ∑Qi = 0.

8.3 Lightning Review of Coset Construction

A symmetry is said to be spontaneously broken if the lowest energy state, the ground

state, is not an eigenstate of the associated charge. The low-energy effective action, describing

the physics above the ground state, is still invariant under the full global symmetry group but the

broken subgroup is realized non-linearly. Typically this means the effective action describes

some number of Goldstones.

The coset construction gives a general method for constructing effective actions with

3The state-operator correspondence breaks down for neutral operators as they actually trivially on the vacuum
and their representation theory is not well understood. [137] explores how to circumvent this issue.

4Here we point out that if an operator is explicitly written as a function of oscillator co-ordinate, it is to be
understood that we have already employed the mapping (8.16). Thus φi(y1) in (8.18) should technically be written
as φ̃i(y1), albeit we omit “tilde” sign for notational simplicity.
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appropriate non-linearly realized symmetry actions. It was developed for internal symmetries by

CCZW [178, 179] and later generalized to space-time symmetries[180]. Here we give a nimble

review of the method and its application to the superfluid. We refer to the original literature and

the recent review [181] for more details. The primary objective of the coset construction is to

write down the most general action, invariant under a global symmetry group G but where only

the subgroup G0 is linearly realized. Let us consider a symmetry group which contains the group

of translations, generated by Pa. Let us denote the broken generators as Xb corresponding to

associated Goldstones πb(x). We denote unbroken generators as Tc.

We can define the exponential map from space-time to the coset space G/G0

U ≡ eiP̄axa
eiXbπb(x) (8.22)

With this map we can define the 1-form, known as the Maurer-Cartan (henceforth we call it MC)

form, on the coset space. Under a G-transformation (8.22) transforms as

g : U(x)→ eiP̄a(x′)a
eiXbπ

′b(x′)h(π(x),g) (8.23)

where h(π(x),g) is some element in G0, determined by the Goldstones and g ∈ G, that “com-

pensates” to bring U(x) back to the form in (8.22). This determines how the Goldstone fields

transform5.

Expanded in a basis of generators the MC form looks like:

Ω≡−iU−1
∂µU ≡ Ea

µ(P̄a +(∇aπ
b)Xb +Ac

aTc) (8.24)

where each of the tensors {Ea
µ , ∇aπb, Tc} is a function of the Goldstone fields πa. Here Ea

µ is a

vierbein, ∇aπb are the covariant Goldstone derivatives and Ac
a transforms like a connection.

Several remarks are in order. Once space-time symmetries are broken the quantity ddx

is no longer necessarily a scalar under those transformations. However the quantity ddxdetE

5For space-time symmetries there’s a translation piece even though P̄a are unbroken. This is because, on
coordinates, translations are always non-linearly realized as x→ (x+a)
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can be used to define an invariant measure for the action. On the other hand, contractions of

the objects ∇aπb, in a way which manifestly preserves the G0 symmetry, also provides us with

G invariants and form the Goldstone part of the effective action. The connection, Ac
a and the

vierbein, can be used to define the following “higher” covariant derivative

∇
H
a ≡ (E−1)µ

a∂µ + iAc
aTc (8.25)

An object like ∇H
a ∇bπc also transforms covariantly and G0-invariant contractions with other

tensors should be included. The other primary use of (8.25) is for defining covariant derivatives

of “matter fields”. For example, suppose ψ is a matter field transforming in a k-dimensional

linear representation r of G0 as ψ→ ψ′ = r(h)ψ. The coset construction provides multiple

ways to uplift G0 representations to full G representations. The one of importance to us is

when r appears in the decomposition of a K-dimensional representation R of G. Defining the

field ψ̃≡ (ψ, 0) in the K-dimensional representation, one can show that the field Ψ = R(Ω)ψ̃

transforms linearly under the full group G. If a subset of the symmetry is gauged then we just

covariantly replace ∂µ→ Dµ = ∂µ + iĀd
µT̄d in the above. The tensors will then depend on the

gauge fields Ā but otherwise everything goes through.

One last important aspect of space-time symmetry breaking is that not all the Goldstone

bosons are necessarily independent [182]. This occurs when the associated currents differ only

by functions of spacetime. A localized Goldstone particle is made by a current times a function

of spacetime, so we can not sharply distinguish the resulting particles. This redundancy also

appears in the coset construction. Suppose X and X ′ are two different broken generators in

different G0-multiplets and we denote their associated Goldstone bosons π and π′. Let P̄ν be an

unbroken translation generator. Let us also assume that there’s a non-trivial commutator of the

form [Pν,X ]⊇ X ′. One can see, from calculating the Maurer-Cartan form via the BCH identity,

that this implies an undifferentiated π in the covariant Goldstone derivative ∇νπ′. The quadratic

term is then (∇νπ′)2 ∼ c2π2 ; this is an effective mass term for the π Goldstone. Thus we are
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justified in integrating it out by imposing its equation of motion. A simpler, but equivalent up to

redefinitions, constraint is setting ∇νπ′ = 0. This is a covariant constraint, completely consistent

with the symmetries. In the literature it is known as an “inverse Higgs constraint” .

8.4 Schrödinger Superfluid from Coset Construction

In this section, we will use the coset construction to construct the most general Goldstone

action consistent with the broken symmetries of a rotationally invariant Schrödinger superfluid.

For the purpose of determining local properties of the superfluid state in the trap we can first

work in the thermodynamic limit defined by ΛIR ∼ ω→ 0. The symmetry generators are then

just those of the usual Schrödinger group.

The superfluid ground state |Φ〉 spontaneously breaks the number charge N. As men-

tioned in the introduction, this state also breaks the conformal generators and boosts. It is

simplest to describe such states in the grand canonical ensemble. We remark that in the thermo-

dynamic limit, one can leverage the equivalence between canonical ensemble with fixed chrage

and grand canonical ensemble6. Thus, in what follows, we define the operator H̄ = H− µN

such that H̄ |Φ〉 = 0. The parameter µ plays the role of a chemical potential; it is a Lagrange

multiplier to be determined by the charge density. By assumption, |Φ〉 is not an eigenstate of

N. It therefore cannot be an eigenstate of H while satisfying H̄ |Φ〉= 0. The unbroken ‘time’

translations are therefore generated by H̄[183]. The symmetry breaking pattern is then given by:

Unbroken: {H̄ ≡ H−µN ,Pi ,Ji j} Broken: {N ,Ki ,C ,D} , (8.26)

for which we can parameterize the coset space as:

U = eiH̄te−iPPP·xxxeiηηη·KKKe−iλCe−iσDeiπN = eiHte−iPPP·xxxeiηηη·KKKe−iλCe−iσDeiχN . (8.27)

Here we use 4 distinct Goldstone fields:
6As a result, one can always view the large charge expansion as a large chemical potential expansion
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• π is the ‘phonon’, the Goldstone for the charge. It defines the shifted field χ≡ π+µt

• ηηη is the ‘framon’, the Goldstone for (Galilean) boosts. It transforms as a vector.

• λ is the ‘trapon’, the Goldstone for special conformal transformations.

• σ is the ‘dilaton’, the Goldstone for dilations.

To allow for a background field Aµ, we define the covariant derivative Dµ = ∂µ + iAµN. From

this group element we can calculate the MC form:

−iU−1DµU ≡ Eν
µ [P̄ν +(∇νη

i)Ki− (∇νλ)C− (∇νσ)D+(∇νπ)Q] (8.28)

where P̄µ ≡ (−H̄,PPP), and we’ve anticipated the absence of a gauge field for Ji j. We remark that

the relativistic notation is just for ease of writing; because space and time are treated differently

we have to treat those components of the MC form separately. Explicitly we have the following:

E0
0 = e−2σ , E i

0 =−η
ie−σ , E0

i = 0 , E j
i = δ

j
i e−σ , (8.29)

∇0η
j = e3σ(η̇ j +ηηη ·∂∂∂η

j) , ∇iη
j = e2σ(∂iη

j−λδ
j
i ) , (8.30)

∇0λ = e4σ(λ̇+ηηη ·∂∂∂λ+λ
2) , ∇iλ = e3σ

∂iλ , (8.31)

∇0σ = e2σ(σ̇+ηηη ·∂∂∂σ−λ) , ∇iσ = eσ
∂iσ , (8.32)

∇0π = e2σ(χ̇−A0−µe−2σ +ηηη ·∂∂∂χ+
1
2

η
2) , ∇iπ = eσ(∂iχ−Ai +ηi) , (8.33)

which can be used to construct the effective action.

There are 4 commutators that each imply a different constraint

[Pi,K j] =−iδi jN =⇒ ∇iπ = 0 , [H̄,D] =−2i(H̄ +µN) =⇒ ∇0π = 0 , (8.34)
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[H̄,C] =−iD =⇒ ∇0σ = 0 , [Pi,C] =−iK jδi j =⇒ ∇iη
j = 0 . (8.35)

Imposing them allows everything to be written in terms of a single Goldstone field χ. Upon

defining the gauge invariant derivatives:

Dtχ≡ ∂tχ−A0 , Diχ≡ ∂iχ−Ai , (8.36)

the simplest pair can be solved as:

∇iπ = 0 =⇒ ηi =−Diχ , (8.37)

∇0π = 0 =⇒ µe−2σ = Dtχ−
1
2

DiχDi
χ . (8.38)

The other two involve the trapon λ:

∇iη
j = 0 =⇒ λδ

j
i = ∂iη

j =−∂iD j
χ , (8.39)

∇0σ = 0 =⇒ λ = σ̇+ηηη ·∂∂∂σ , (8.40)

which can be written together as:

σ̇+ηηη ·∂∂∂σ− 1
d

∂∂∂ ·ηηη =−1
2

∂0X
X

+
1
2

Diχ∂iX
X

+
1
d

∂iDi
χ = 0 . (8.41)

This is simply the leading order equation of motion for χ as we will show below.

The leading order action comes from the vierbein (8.29) which can be expressed with χ

as

detE = e−(d+2)σ
∝

(
Dtχ−

1
2

DiχDi
χ

) d
2+1

. (8.42)

Defining the variable X as

X = Dtχ−
1
2

DiχDi
χ , (8.43)
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we can write the leading order effective action as

S0 =
∫

dtddx c0 O0 =
∫

dtddx c0X
d
2+1 , (8.44)

where c0 is a dimensionless constant. The leading order theory (8.44) is time reversal invariant

as it acts as:

T : t→−t , π→−π , A0→−A0 . (8.45)

Higher derivative terms are constructable from contractions of the following objects:

∇0η
i , ∇0λ , ∇iλ , ∇iσ . (8.46)

as well as contractions of the ‘higher covariants’

∇
H
0 =−e2σ

∂0 + eσ
η

i
∂i , ∇

H
i = eσ

∂i , (8.47)

acting on the tensors (8.46). All of these objects can be expressed in terms of χ by the constraints

(8.34) and (8.35). Even though we are interested in large Q expansion eventually, to touch the

base with the EFT written in [176], we emphasize that the power counting is done with X , being

taken to be O(p0), which implies that objects like [(∂iχ)(∂iχ)]
k, ∂tχ and A0 are also order one.

Additional derivatives then increase the dimension. In what follows, the field strengthsEi and Fi j

are defined as

Ei ≡ ∂0Ai−∂iA0 Fi j ≡ ∂iA j−∂ jAi . (8.48)

At O(p2) we have following operators:

O1 ≡ detE ∇iσ∇
i
σ ∝

X
d
2+1

X3 ∂iX∂
iX , (8.49)

O2 ≡ detE (∇0ηi−2∇iσ)
2

∝
X

d
2+1

X3 [E2 +2EiFi j(D jχ)+Fi jFik(D jχ)(Dkχ)] , (8.50)

O3 ≡ detE ∇iσ(∇0η
i−2∇

i
σ) ∝

X
d
2+1

X2 [∂iE i +[∂iFi j](D jχ)−
1
2

Fi jF i j] , (8.51)
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O4 ≡ detE ∇0λ ∝
X

d
2+1

X2 (∂iDi
χ)2 , (8.52)

where the second expression of (8.51) is obtained via integration-by-parts and the (8.52) is

obtained by a straight forward application of the identity (8.41) and integration-by-parts. These

operators were found in reference[176] for d = 3 by very different means. Additionally, in d = 2,

one can construct following parity violating operators at this order:

O5 ≡ detE ε
i j(∇0ηi)(∇ jσ) ∝

X
d
2+1

X3 ε
i j [Ei−Fjk(Dkχ)

]
(∂ jX) , (8.53)

O6 ≡ detE ε
i j

∇
H
i (∇0η j−2∇ jσ) ∝

X
d
2+1

X2 ε
i j

∂i(E j−Fjk(Dkχ)) . (8.54)

Similarly in d = 3 we have εi jk but that means the parity violating operators will be higher order

in the derivative expansion.

8.5 Superfluid Hydrodynamics

In this section, we study the superfluid hydrodynamics. As a warm up, we first consider

the fluid without the trap, thus there is no intrinsic length scale associated with such a system.

The leading order superfluid Lagrangian is known to take the form [176]:

L = P(X) (8.55)

where P stands for ‘pressure’ as function of the chemical potential µ at zero temperature and X is

the same as defined in the previous section. Due to the absence of any internal scale, dimensional

analysis dictates that:

P = c0µ
d
2+1 , (8.56)
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which we get from (8.44) by evaluating on the groundstate solution χcl = µt. The number density

is conjugate to the Goldstone field χ and at leading order is:

n≡ ∂L
∂χ̇

= P′(X) = c0

(
d
2
+1
)

X
d
2 . (8.57)

One can then define the superfluid velocity in terms of the Goldstone as:

vi ≡−Diπ =−Diχ = ηi (8.58)

where we have used the inverse Higgs constraint (8.37). This gives a simple interpretation of the

equation of motion:

∂µ
∂L

∂(∂µχ)
= ∂tn+∂i(nvi) = 0 , (8.59)

which is the continuity equation of superfluid hydrodynamics. Using equations (8.37), we can

write:

∂µn = c0
d
2

(
d
2
+1
)

X
d
2−1(∂µX) =−dn(∂µσ) ∂ivi =−∂iDi

χ = ∂∂∂ ·ηηη (8.60)

The equation of motion (8.59) thus comes out to be as follows:

∂tn+∂i(nvi) =−dnσ̇−dn(ηηη ·∂∂∂σ)+n∂∂∂ ·ηηη = 0 (8.61)

and becomes equivalent to the constraint (8.41). Thus the superfluid EFT is consistent with the

symmetry breaking pattern we discussed in the previous section.

8.5.1 Superfluid in a Harmonic Trap

Now we turn on the harmonic trap and study this superfluid EFT in the trapping potential

by taking:

A0 =
1
2

ω
2r2 , AAA = 0 . (8.62)
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In the presence of a harmonic potential, the ground state density is no longer uniform. The

number density is given by the conjugacy relation (8.57) and to leading order is:

n(x) = c0

(
d
2
+1
)
(µ− 1

2
ω

2r2)
d
2 , (8.63)

which is vanishing at the “cloud radius” R =
√

2µ
ω2 . This defines an IR cutoff for the validity

of our EFT in the trap. Semi-classically, we can fix µ in terms of the number charge Q by

imposing7:

Q = 〈Q|N̂|Q〉=
∫

ddx〈Q|n(x)|Q〉=
c0(2π)d/2Γ

(d
2 +2

)( µ
ω

)d

Γ(d +1)
=⇒ µ

ω
≡ ξQ

1
d (8.64)

The naive effective Lagrangian up to next-leading order is then:

Le f f = c0X
d
2+1 + c1

X
d
2+1

X3 ∂iX∂
iX + c2

X
d
2+1

X3 (∂iA0)
2 + c3

X
d
2+1

X2 ∂i∂
iA0 + c4

X
d
2+1

X2 (∂i∂
i
χ)2(8.65)

For d = 2 we have an additional parity violating operator at this order:

Le f f 3 c5ε
i j (∂iA0)(∂ jX)

X
(8.66)

However, this is not the full set of constraints. It can be shown that imposing ‘general co-

ordinate invariance’ will reduce the number of independent Wilson coefficients even further[176].

In particular there are the additional constraints:

c2 = 0 c3 =−d2c4 (8.67)

Obtaining these from the coset construction would require additionally gauging the space-time

symmetries [184]. The requirement of gauging the space-time symmetries is expected as a

consequence of the number operator being part of the spacetime symmetry algebra and the fact

that the number symmetry has been gauged. We leave this refinement for future work. For

reasons that will become clear in the next section it is not necessary to work beyond this order in

7This is equivalent to fixing Q by differentiating the free energy given by the action
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the derivative expansion.

8.6 Operator Dimensions

8.6.1 Ground State Energy & Scaling of Operator Dimension

The ground state energy is readily computed by a Euclidean path integral, in the infinite

Euclidean time separation, the path integral projects out the ground state, from which one can read

off the ground state energy. A nice pedagogical example of this technique can be found in [169]

in context of fast spinning rigid rotor. On the other hand, from the state operator correspondence,

we know that the ground state energy translated to dimension of the corresponding operator.

Thus, equipped with the effective Lagrangian (8.65) obtained, the operator dimensions can be

calculated via the path integral (8.1):

lim
T→∞
〈Q|e−HωT |Q〉 ∼ e−Se f f [χcl ]−µ

∫
dDx n(x) ∼ e−∆QωT , (8.68)

where to leading order we have

−Se f f [χcl] = c0ΩdT
∫ R

0
dr rd−1

(
µ− 1

2
ω

2r2
) d

2+1

= c0
(2π)d/2Γ

(d
2 +2

)
Γ(d +2)

( µ
ω

)d+1
ωT .(8.69)

Here, Ωd is the volume factor. Combining the results of (8.69) and (8.64) then gives the leading

order operator dimension:

∆Q =
µ
ω

Q−
(
−

Se f f

ωT

)
=

d
d +1

ξQ1+ 1
d . (8.70)

This predicts ∆Q ∼ Q
3
2 in d = 2 and ∆Q ∼ Q

4
3 in d = 3, as in the relativistic case. That these

leading order results are finite implies we can trust the EFT prediction. In general, however, the

ground state energy in the trap is an infrared (IR) sensitive quantity. This becomes apparent at

higher orders in the derivative expansion.

For example, we consider the case of d = 2. The simplest operator at next leading order

is (8.49). To analyze its contribution, define the distance from the cloud s as r = R− s. Its
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contribution to the energy, and hence the operator dimension via (8.69), would go like:

∫
d3x

∂iX∂iX
X

∼
∫ R

0
dr r

ω4r2

µ− 1
2ω2r2

∼ µ
∫

ds
1
s
, (8.71)

which is log divergent for small s, close to the edge. For d = 3, noticed in reference [176], a

divergence first appears at next-next leading order associated with the operator:

detE(∇iσ∇
i
σ)2

∝
(∂iX∂iX)2

X
7
2

. (8.72)

This leads to a power-law divergence, implying an even greater sensitivity to IR physics compared

to d = 2. Ultimately these divergences originate from the breakdown of our EFT as the superfluid

gets less dense. This occurs in a small region before the edge of the cloud at radius R∗ ≡ R−δ

where δ is roughly the width of this region. Following [176], we can estimate the size of this

region as follows. One interpretation of (8.63) is that the chemical potential is now effectively

space dependent. At the cutoff radius R∗, there is then an “effective chemical potential”

µ(r)≡ µ− 1
2

ω
2r2 , µe f f ≡ µ(r = R∗) =

1
2

δ(2R−δ)ω2 ≈ Rω
2
δ . (8.73)

There is a length scale set by µe f f which controls the EFT expansion parameter in this region.

Once that length is comparable to the distance δ itself we cannot claim to control the calculation

semi-classically. Using (8.73) this gives the estimate scaling:

δ∼

√
1

µe f f
=⇒ δ∼ 1

(ω2µ)
1
6

(8.74)

We can estimate the contribution of this region to the energy by cutting off the divergent

integrals at R∗. For d = 2 the effective action contains a term:

−Se f f 3 c1(2π)T
∫ R∗

0
dr r

ω4r2

µ− 1
2ω2r2

= 4πT µc1

(
13
8
− log

[
2µ

µe f f

])
+ · · · (8.75)

where the · · · terms vanish as δ→ 0
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Substituting the relations (8.64) and (8.74) gives:

∆Q 3 −4πξQ
1
2 c1

(
13
8
− 1

2
log2− 1

3
logQ− 2

3
logξ

)
(8.76)

Changing the cutoff relation (8.74) by a factor can then change the O(Q
1
2 ) contribution, but not

the logarithmic divergence which is universal. This translates to an uncertainty of order O(Q
1
2 )

in the operator dimension in d = 2. A similar analysis[176] for d = 3 and (8.72) translates to

uncertainty of order O(Q
5
9 ).

Unlike d = 2, the operator (8.49) gives a finite correction to leading order scaling of

dimension of operator in d = 3. This can be found by figuring out the contibution to Se f f [see

Eq. (8.65)]

−Se f f 3 c1

∫
dτ

E
∫ R

0
dr 4πr2

 ω4r2√
µ− 1

2ω2r2

= c1(3
√

2π
2)
( µ

ω

)2
ωT (8.77)

Similar contribution8 comes from (8.51):

−Se f f 3 c3

∫
dτ

E
∫ R

0
dr 4πr2(ω2)

(
µ− 1

2ω
2r2)1

2 = c3

(
3π2
√

2

)( µ
ω

)2
ωT (8.78)

To summarize, using (8.70), we have

∆Q =
3
4

(
ξQ4/3

)
−
(

c1 +
c3

2

)
(3
√

2π
2)ξ2Q2/3 +O(Q

5
9 ) for d = 3 , (8.79)

∆Q =
2
3

(
ξQ3/2

)
+ c1

4π

3
ξ

(
Q

1
2 logQ

)
+O

(
Q

1
2

)
for d = 2 . (8.80)

The Eq. (8.70), (8.79) and (8.80) constitute the main findings of this subsection.

8.6.2 Excited State Spectrum

We can also analyze the low energy excitations above the ground state. These correspond

to low lying operators in the spectrum at large charge. To compute their dimension, we expand

the leading action (8.44) to quadratic order in fluctuations π about the semi-classical saddle,

8Contribution should have come from (8.50) as well, but as we mentioned earlier, c2 = 0 [176].
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χ = µt +π. The spectrum of π can then be found by linearizing the equation of motion (8.59):

π̈− 2
d

(
µ− 1

2
ω

2r2
)

∂
2
π+ω

2rrr ·∂∂∂π = 0 (8.81)

Expanding π(t,x) = eiεt f (r)Y` where Y` is a spherical harmonic, one can show (8.81) reduces to

a hypergeometric equation. Details can be found in Appendix A. The dispersion relation is given

by:

ε(n, `) =±ω

(
4
d

n2 +4n+
4
d
`n− 4

d
n+ `

) 1
2

(8.82)

where ` is the angular momentum and n is a non-negative integer. In the NRCFT state-operator

correspondence, there are two different operators which generate descendants. In the Galilean

frame, these are the operators PPP and H. While PPP raises the dimension by 1 and carries angular

momentum, acting by H raises the dimension by 2 and carries no angular momentum. In the

oscillator frame, this corresponds to:

PPP± =
1√
2ω

PPP± i
√

ω

2
KKK L± =

1
2
(

1
ω

H−ωC± iD) (8.83)

which then satisfy

[Hω,PPP±] =±ωPPP± [Hω,L±] =±2ωL± (8.84)

One can check by equation (8.82) that ε(n = 0, ` = 1) = ±ω and ε(n = 1, ` = 0) = ±2ω.

This allows us to identify these Goldstone modes with the descendant operators in (8.83)

as π(n=0,`=1) ∼ P± and π(n=1,`=0) ∼ L±. The other modes generate distinct primaries and

descendants, including higher spin. We remark that in a strict sense, the above is the leading

order result for the difference in dimensions between low-lying operators in this sector and the

dimension of the ground state found in the previous section. It is also subject to corrections

suppressed in 1/Q from subleading operators and loop effects.
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8.7 Correlation Functions

In a relativistic CFT, the form of two and three point correlators is entirely fixed by

symmetry. However, the four-point function depends on two conformally invariant cross ratios

of the coordinates. The Schrödinger symmetry is less constraining, as there exists an invariant

cross ratio even for a three-point function. This implies only the two-point functions of (number)

charged operators is completely determined by symmetry.

8.7.1 Two Point Function

Following [169], we start with analyzing two point function. In path integral approach,

when the in and out states are well separated in time, we have

〈ΦQ,τ2|e−Hω(τ
(E)
2 −τ

(E)
1 )|ΦQ,τ1〉= e−∆O(τ

(E)
2 −τ

(E)
1 ) (8.85)

where τ(E) is the Euclideanized oscillator time. This is obtained from τ by doing Wick rotation

i.e. τ(E) = iτ. This is evidently consistent with (G.13) upon doing the Wick rotation and taking

(τ
(E)
2 − τ

(E)
1 )→ ∞. One subtle remark is in order: the Hamiltonian Hω generates the time (τ)

translation in oscillator frame. Thus the states prepared by path integration corresponds to

operators in oscillator frame.

8.7.2 Three Point Function

We consider the matrix element that defines the simplest charged9 three-point function

〈ΦQ+q|φq(y)|ΦQ〉 (8.86)

where φq is a light charged scalar primary with charge q and both of ΦQ and ΦQ+q has O(1)

dimension, given by ∆Q and ∆Q+q. By assumption, φq transforms in a linear representation R of

the unbroken rotation group. To enable calculation in our EFT, we can extend this to a linear

9The additional charge of 〈Φ| is required for the correlator to be overall neutral and therefore non-vanishing.
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representation of the full Schroedinger group using the Goldstone fields. In what follows, we

take φq as the “dressed” operator[169]:

φq(y) = R
[
eiKKK·ηηηe−iλCe−iσDeiχN

]
φ̂q (8.87)

where, by the assumption of φq being a scalar primary, is trivially acted on by KKK and C. This,

combined with (8.37) gives

φq = cqX
∆φ

2 eiχq (8.88)

where cq is a constant, which depends on UV physics. Upon evaluating (8.86) semi-classically

about the saddle we found before, the leading order result for the correlator comes out to be:

〈ΦQ+q(τ2)|φq(τ,yyy)|ΦQ(τ1)〉= cq

(
µ− 1

2
mω

2y2
)∆φ

2

eiµq(τ−τ2)e−i∆Q(τ2−τ1)

= cqµ
∆φ

2

(
1− y2

R2

)∆φ

2

eµqτ(E)eω

(
−∆Q+qτ

(E)
2 +∆Qτ

(E)
1

)
(8.89)

where we have used the following identity, which can be derived using the leading order operator

dimension (8.70) and (8.64):

∆Q+q−∆Q

q
= α0

(
1+

1
d

)
Q

1
d +O

(
1
Q

)
≈ ∂∆Q

∂Q
=

µ
ω

(8.90)

as expected since µ is a chemical potential and ω∆Q is the energy. We note that the operator

insertion should be away from the edge of the cloud |y−R| � δ, where δ is the cut-off imposed

to keep the divergences coming from the y→ R limit at bay.

Now we use (the details can be found in appendix [G.2.1])

lim
τ
(E)
2 →∞

1
(1+ω2t2

2)
∆Q+q/2 exp

(
−ω∆Q+qτ

(E)
2

)
= 2−∆Q+qω

∆Q+q/2 ,

lim
τ
(E)
1 →−∞

1
(1+ω2t2

1)
∆Q/2 exp

(
ω∆Qτ

(E)
1

)
= 2−∆Qω

∆Q/2 ,
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to write down the correlator in terms of operators in Galilean frame (we repeat that the path

intergral in oscillator frame prepares a state corresponding to operator in oscillator frame):

〈ΦQ+q(i/ω)|φq(τ,yyy)|ΦQ(−i/ω)〉= cqµ
∆φ

2

(
1− y2

R2

)∆φ

2

eµqτ(E)2−∆Q−∆Q+qω
(∆Q+∆Q+q)/2 .

(8.91)

This can be matched onto the three point function, which is constrained by Schrödinger

algebra:

〈ΦQ+q|φq(τ,yyy)|ΦQ〉= F(v)exp
(q

2
ωy2
)
(2)∆φ

(
iω
2

)∆

2

e−iω(∆Q−∆Q+q)τ. (8.92)

The appendix [G.2.2] has the necessary details. Now, upon comparing (8.92) and (8.91), we

deduce the universal behavior of F(v) in the large charge sector:

F(v = iωy2) ∝ Q
∆φ

2d

(
1− ωy2

2ξ
Q−1/d

)∆φ

2

e−
1
2 qωy2

(8.93)

which can be rewritten as following, using (8.44):

F(v = iωy2) ∝ ∆

∆φ

2(d+1)
Q

(
1− ωy2

2ξ
(d+1

dξ
∆Q)

− 1
d+1

)∆φ

2

e−
1
2 qωy2

(8.94)

The (8.93) and (8.94) are the main results of this subsection. This shows the universal

scaling behavior of the structure function F in the large charge sector.

8.8 Conclusions and Future Directions

We have studied the large charge (Q) sector of theories invariant under Schrödinger group.

We have employed coset construction to write down an effecive field theory (EFT) describing the

large Q sector in any arbitrary dimension d ≥ 2 assuming superfluidity and rotational invariance.
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The effective Lagrangian is given by

Le f f = c0X
d
2+1 + c1

X
d
2+1

X3 ∂iX∂
iX + c2

X
d
2+1

X3 (∂iA0)
2 + c3

X
d
2+1

X2 ∂i∂
iA0 + c4

X
d
2+1

X2 (∂i∂
i
χ)2

where X = ∂tχ−A0− 1
2∂iχ∂iχ and χ is the Goldstone excitation of the superfluid ground state.

We emphasize that the general co-ordinate invariance, as discussed in [176] will put more

constraints on the Wilson coefficients, we leave that as a future project. The EFT is then studied

perturbatively as an expansion in 1/Q. This is to be contrasted with the EFT written down in

[176]. While EFT in [176] is controlled by small momentum parameter, ours is controlled by

1/Q expansion, which enables us to probe and derive universal results and scaling behaviors

in large Q sector. In particular, when Q is very large, we find the scaling behavior of operator

dimension with charge, consistent with that found very recently in [177]. We also find that in the

large charge sector, structure function of three point correlator has a universal behavior. Last but

not the least we derived the dispersion relation for the low energy excitation over this state with

large Q and identify the two different kind of descendents as two different modes of excitations.

A summary of the results can be found in the introduction.

The theory of conformal, and even superconformal, anyons has been studied before

in great detail [185, 186, 59, 187]. In these systems there exists a simple n-particle operator

O = (Φ†)n whose dimension is given as

∆O = n+n(n−1)θ (8.95)

where θ is the statistics parameter that arises from the Chern-Simons term of level k as θ = 1
2k

for bosonic theories. For large k relative to n, close to the bosonic limit, this is known to be the

ground state in the trap. It is known as the ”linear solution” in the literature due to the linear

dependence on θ. For the superconformal theories it is a BPS operator and the dimension (8.95)

is exact. A state corresponding to such an operator is not a superfluid and our theory cannot

capture the physics of the system in that regime. However, it is known there is a level crossing
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for smaller k where the ground state corresponds to an operator whose dimension is not protected

by the BPS bound. For those operators the classical dimension scales as n
3
2 , in agreement with

our results. We are then led to believe the effective field theory we’ve constructed may apply to

anyon NRCFTs in that regime.

Another family of NRCFTs can be defined by the holographic constructions of McGreevy,

Balasubramanian[61] and Son[188]. It would be interesting to study these on the gravitational

side in the large charge limit, as there might exist a regime where both the EFT and gravity

descriptions are valid. The analog of this for the relativistic case was carried out recently[189].

One can envision to extend our results in several ways. One possible extension of these

results would be to study operators with large spin as well as charge. If the superfluid EFT

remains valid, for sufficiently large spin, one naively expects such operators correspond to

vortex configurations in the trap. This was studied in CFT3, where multiple distinct scaling

regimes were shown to exist [190]. Moreover, one can generalize these results to NRCFTs

with a larger internal global symmetry group or study systems where the symmetry breaking

pattern is different. Potentially interesting examples include “chiral” superfluids [191], where

the rotational symmetry is additionally broken by the superfluid order parameter, or the vortex

lattice [192] where the translation symmetry is spontaneously broken.
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Chapter 9

The Spinful Large Charge Sector of
Non-Relativistic CFTs: From Phonons to
Vortex Crystals

We study operators in Schrödinger invariant field theories (non-relativistic conformal

field theories or NRCFTs) with large charge (particle number) and spin. Via the state-operator

correspondence for NRCFTs, such operators correspond to states of a superfluid in a harmonic

trap with phonons or vortices. Using the effective field theory of the Goldstone mode, we

compute the dimensions of operators to leading order in the angular momentum L and charge

Q. We find a diverse set of scaling behaviors for NRCFTs in both d = 2 and d = 3 spatial

dimensions. These results apply to theories with a superfluid phase, such as unitary fermions or

critical anyon systems.

9.1 Introduction and Summary

Superfluid states of matter are one of most fundamental examples of spontaneous symme-

try breaking and appear in countless systems from Helium-4 [193, 194, 195, 196] to neutron stars

[197]. Superfluidity is also a possibility for finite density states of scale invariant critical systems

[198]. Recently this observation has been used to perform explicit calculations of relativistic

conformal field theory (CFT) data, despite strong coupling[167, 168, 169, 170, 171, 199]. The
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key idea behind this is the fact that the large charge operators of the CFT correspond to finite

density states on the sphere, which spontaneously break the conformal invariance and U(1)

corresponding to the charge. Superfluid phenomenology then becomes relevant for describing

the large charge sectors of these CFTs. For example, another hallmark of superfluidity is the

formation of vortices upon insertion of angular momentum. Therefore states with vortices

correspond to large charge operators with spin, and calculating the energy of these vortices reveal

the spinning operator spectrum in CFT [190].

However, many interesting critical systems do not possess Lorentz symmetry. This

includes ultracold fermi gases at “unitarity”, where observation of vortex lattices is perhaps the

most dramatic evidence for a superfluid ground-state in a system which exhibits an emergent

scale invariance[200]. At this critical point the system has a non-relativistic conformal symmetry,

or Schrödinger symmetry. This symmetry algebra plays a pivotal role in understanding numerous

physical systems1. Examples include the aforementioned “fermions at unitarity”[1, 2], as

well as systems comprised of deuterons [3, 4], 133Cs[6], 85Rb [5],39K [7], and various spin

chain models [95]. There has been significant progress in understanding the consequences

of Schrödinger symmetry and its realization in field theory.[94, 60, 59, 173, 99, 137] These

non-relativistic conformal field theories (NRCFTs) admit a state-operator correspondence akin

to their relativistic cousins. Operators with “particle number” charge are related to states in a

harmonic potential.[174] This has been exploited to calculate the energies of few-body quantum

mechanics systems in a harmonic trap. This correspondence also implies a way that the spectrum

of NRCFTs can be determined. The operators with large charge correspond to finite density states

in the trap. These states of matter sometimes admit a simple effective field theory description,

enabling semi-classical calculations controlled in the large charge limit [201, 177].

The simplest and most physically relevant possibility is that of a superfluid ground-state,

1It is important to mention that Schrödinger symmetry is not simply the non-relativistic limit of the conformal
symmetry but rather an entirely distinct algebra [98].
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which is the situation we will explore here.2 Extending upon the results of [190, 201], we study

NRCFT operators which have both large charge and spin. Such operators correspond to either

phonon or vortex excitations of the superfluid. We then compute the leading order scaling of

their dimensions ∆Q,L as functions of their angular momentum L and number charge Q and find

a diverse range of behaviors in d = 2 and d = 3.

Trailer of the Results:

We compute the leading scaling dimension ∆Q,L of spinning operators of a non-relativistic

conformal field theory as a function of U(1) charge Q and angular momentum L in the large

charge limit. The answers are determined up to a single Wilson coefficient c0 in the EFT

description. We leverage the state operator correspondence to arrive at the result that depending

on the range of angular momentum, the spining operators correspond to different excitation

modes of the superfluid. For a smaller range of angular momentum, we find that they correspond

to phonon with angular momentum L. As we increase the angular momentum, we pass through

a regime where a single vortex becomes energetically favorable. If we further increase the

angular momentum, multiple vortices develop and the superfluid exhibits an effective “rigid

body motion” where we can neglect the discrete nature of the vortices.

2It should be emphasized that this is not the only possibility. Ultimately the question “Given this NRCFT, what
state of matter describes its large charge sector?” depends on the NRCFT, which we treat as UV physics. However
we expect our results to be valid for a wide set of NRCFTs, including some of physical relevance such as unitary
fermions [200].
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In d = 2, the leading behavior has 3 regimes and is given as follows:

d = 2 ∆Q,L =



√
L+∆Q 0 < L≤ Q1/3

√
c0π

2

√
L logL+∆Q Q1/3 < L≤ Q

√
9c0π

2

(
L2

Q3/2

)
+∆Q Q < L < Q3/2

(9.1)

where ∆Q = 2
3

(
1√

2πc0

)
Q3/2 is the contribution from ground state energy in d = 2.

In d = 3 dimensions, we have 4 regimes, given by:

d = 3 ∆Q,L =



√
L+∆Q 0 < L≤ Q2/9

α

(
L

Q1/9

)
+∆Q Q2/9 < L≤ Q1/3

(
5π4c0
8
√

2

)1/3
L2/3 logL+∆Q Q1/3 < L≤ Q

1024
25

(
32c2

0
25π4

)1/6(
L2

Q4/3

)
+∆Q Q < L < Q4/3

(9.2)

where ∆Q = 3
2

1√
2π

(
6

15
√

πc0

)1/3
Q4/3 is the contribution from ground state energy in d = 3 and

α is an undetermined O(1) coefficient. We make two remarks at this point. The first one is

that while for d = 2, the transition happens from a single phonon regime to vortex regime at

L ∼ Q1/3, for d = 3, there is a regime Q2/9 ≤ L ≤ Q3/9, where neither vortex nor the single

phonon solution gives the lowest energy. It is a cross-over describing the physics of a vortex

string forming near the boundary of the trap where our EFT is strongly coupled. The only well
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defined configuration in this angular momentum regime contains multiple phonons, and we

determine the scaling from that. The second remark is that the EFT description breaks down

whenever ∆Q,L−∆Q ∼ ∆Q , so we can not probe operators with larger angular momentum with

this method.

The rest of the paper is organized as follows. We briefly review the superfluid hydro-

dynamics and large charge NRCFT in section 9.2. The section 9.3 details out the contribution

coming from phonons and derives the regime where it is energetically favorable to have them.

Subsequently, we discuss the single vortex in d = 2 and d = 3 in section 9.4. The multi-vortex

and rigid body motion is elucidated in section 9.5 followed by a brief conclusion and future

avenues to explore in section 9.6. Some of our results and validity regimes are more appar-

ent in dual frame using particle-vortex duality which we elaborate on in appendix H.1. The

appendix H.2 contains a contour integral useful for calculating interaction energy of multiple

vortices in d = 3.

9.2 Superfluid Hydrodynamics and Large Charge NRCFT

In this section we briefly review the superfluid hydrodynamics in the Hamiltonian

formalism, specialized to the case of a Schrödinger invariant system in a harmonic potential

A0 =
1
2ω2r2. All of our results will be to leading order in the derivative expansion. For a more

in-depth review of the formalism, we refer to [176, 201, 177].

The low-energy physics of a superfluid is determined by a single Goldstone field χ. The

leading order Lagrangian determines the pressure of the system:

L = c0X
d+2

2 ≡ P(X) X ≡ ∂0χ−A0−
1
2
(∂iχ)

2 (9.3)

The number density and superfluid velocity are defined respectively as:

n =
∂L
∂χ̇

= c0

(
d
2
+1
)

X
d
2 vi =−∂iχ (9.4)
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The action (9.3) has a U(1) symmetry of χ→ χ+ c whose current can be written as:

jµ =
(
n,nvi) (9.5)

The Hamiltonian density comes out to be:

H = nχ̇−L = n
(

X +A0 +
1
2

v2
)
−P(X) (9.6)

Now, using the thermodynamic relation nX−P(X)≡ ε(n): we can simplify (9.6) and express

the Hamiltonian as:

H =
∫

ddx H H =
1
2

nv2 + ε(n)+nA0 (9.7)

.

Note that the presence of the harmonic trap implies the density is non-uniform and

vanishes at radius RT F =
√

2µ
ω2 . For most values of r the density is large and varies slowly

compared to the UV length scale 1√
µ . However, the large charge expansion begins to break down

at R∗ = RT F −δ where δ ∼ 1

(ω2µ)
1
6

[201, 176]. There is a boundary layer of thickness δ where

the superfluid effective field theory (EFT) cannot be trusted as it is no longer weakly coupled.

At leading order in the derivative expansion this does not effect the observables but leads to

divergences at higher orders.3

Given this set up, the ground-state at finite density corresponds to the classical solution

of χcl = µt. The number charge of this configuration is determined from µ by:

Q≡
∫

ddx ncl(x) = c0

(
d
2
+1
)∫

ddx (µ−A0)
d
2 =

1
ξ

( µ
ω

)d
(9.8)

where 1
c0

=
Γ(

d
2+2)

Γ(d+1) (2πξ2)
d
2 . We can then compute the ground-state energy as function of Q

3These are UV divergences which can be canceled by counter-terms localized at this edge, as suggested by
Simeon Hellerman in a private communication.
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using (9.7):

EQ =
∫

ddx [ε(ncl)+nclA0] = ωξ

(
d

d +1

)
Q

d+1
d (9.9)

Via the state-operator correspondence of NRCFTs, this semi-classical calculation deter-

mines the dimension of a charged scalar operator to leading order in Q as ∆Q =
EQ
ω

. In particular,

we have obtained [201]:

∆Q =


2
3ξQ3/2 for d = 2

3
4ξQ4/3 for d = 3

(9.10)

In this work, we’ll be interested in excited state configurations which carry some angular

momentum. These will correspond to spinful operators in the large charge sector of the NRCFTs

which the superfluid EFT describes. The simplest of these excitations are phonons; smooth

solutions of the equation of motion with χcl = µt+π. Expanding π in modes πn,`, the Hamiltonian

can be written to leading order in the derivative expansion as:

H = H0 +∑
n,`

ω(n, `)π†
n,`πn,`+ · · · (9.11)

where ω(n, `) is the dispersion relation for phonons:

ω(n, `) = ω

(
4
d

n2 +

(
4− 4

d

)
n+

4
d

n`+ `

) 1
2

(9.12)

for n is a positive integer and ` is the total angular momentum. The phonon wavefunctions are

given as fn,` ∼ ( r
RT F

)
`
2 Gn,`(r)Y` where Gn,` is a hypergeometric function and Y` is a spherical

harmonic. A state with M phonon modes of {n = 0, `= 1} can be identified as the descendant

operator ∂∂∂
MOQ with dimension ∆Q +M. Additionally, NRCFTs have another generator of

descendants ∂t which corresponds to the phonon with {n = 1, `= 0}. States that can be created

by adding phonons with other values of n and ` correspond to distinct primaries [201].4

4They are primary as they are by construction annihilated by the lower operators K and C which correspond to
πn=0,`=1 and πn=1,`=0 respectively.
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The other configuration of a superfluid that can support angular momentum is a vortex,

which gives rise to a singular velocity field of the condensate. This is a distinct semi-classical

saddle point which is not simply related to the ground state. It must therefore correspond to a

unique set of spinful charged operators present in all NRCFTs whose scalar large charge sector

is described by the superfluid EFT.

These two excitations, phonons and vortices, are the configurations of the superfluid we

know support angular momentum. In the rest of the paper we answer the question, what is the

lowest energy configuration of the superfluid for a given angular momentum? By answering

this and using the superfluid EFT defined above we compute the scaling behavior of operators

carrying charge and angular momentum.

9.3 Phonons

The simplest excited state(s) with angular momentum are phonons. From the dispersion

(9.12), we can see that the lowest energy configuration with angular momentum L is a single

phonon with n = 0 and `= L. This is known as a “surface mode” as the wavefunction is nodeless

and supported mostly at the end of the trap. The energy cost of this single phonon is given by5:

∆E = ωL
1
2 . (9.13)

However the validity of (9.12) rests on the assumption that the phonon modes do not carry large

amounts of momentum. In particular, the surface mode wavefunction has f` ∼ ( r
R)

`
2Y` which

for large ` is increasingly concentrated at the edge of the trap. Once the support of the phonon

wavefunction is mostly within the boundary region of thickness δ, we can no longer trust the

solution or the dispersion (9.12). This occurs when RT F
` becomes comparable to δ [202]. This

yields a maximum angular momentum for phonons: `max ∼ Q
2

3d .

5Note this is parametrically lower in energy than in the relativistic case studied in [190], as the phonon spectrum

on the sphere is ε(`) =
√

1
2`(`+1).

185



Thus we have the following scalings for operator dimensions:

d = 2 ∆Q,L = L
1
2 +∆Q 0 < L≤ Q

1
3 (9.14)

d = 3 ∆Q,L = L
1
2 +∆Q 0 < L≤ Q

2
9 (9.15)

where ∆Q is the operator dimension determined from (9.9).

We can also consider multi-phonon configurations and ask ourselves whether it is en-

ergetically favorable to have a single phonon rather than multi phonon configuration, given

total angular momentum. In order to answer this, we assume that phonon interactions are

negligible, suppressed to leading order in the Q-expansion, so the energy and angular momentum

of multiple phonons add linearly. In particular, suppose we have Nγ phonons, each carrying

angular momentum `. The energy and angular momentum to leading order is:

∆E = ωNγ`
1
2 L = Nγ` (9.16)

This tells us that for a given angular momentum L, it is energetically favourable to have

a single phonon carrying the entire angular momentum rather than multiple phonons carrying it

altogether.6

As we’ll see below, naively a single phonon of `= L would always be the most energeti-

6One can also arrive at the same conclusion by considering Nγ phonons, each carrying angular momentum `̀̀iii.
The energy and angular momentum to leading order is then given by:

∆E = ω∑
i
|`̀̀i|

1
2 L =

∣∣∣∣∣∑i
`̀̀i

∣∣∣∣∣ (9.17)

We have

∆E = ω∑
i
|`̀̀i|

1
2 = ω

√
∑ |`̀̀i|+∑

√
|`̀̀i||`̀̀ j| ≥ ω

√∣∣∑ `̀̀i
∣∣+∑

√
|`̀̀i||`̀̀ j| ≥ ω

√
L (9.18)

Hence, the minimum value is obtained when all the li = 0 except one i.e. we land up with single phonon case.
On the other hand, if all the `̀̀i’s are along same direction, then using Cauchy-Schwartz inequality, one can obtain
∆E ≤ ω(Nγ)

1/2
√

L, which implies that the energy would be maximized if each phonon carries angular momentum
of L/Nγ.
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cally favorable configuration per angular momentum. However the cutoff of `max ∼ Q
2

3d means

we cannot trust this conclusion beyond L = `max. Multi-phonon configurations are in principle

valid for larger values of L.7 The most energetically favorable of which has Nγ phonons with

`= `max, which gives the scaling:

∆E = ωL`−1/2
max `max ∼ Q

2
3d (9.19)

where we cannot determine the dimensionless coefficient from `max as it depends on how we

regulate the cutoff region of size δ. Nevertheless, the linear scaling in L means we can compare

to other configurations such as vortices. In particular, we will arrive at the conclusion that

whenever L≥ Q1/3, the minimum energy configuration with a given angular momentum starts

to be attained by vortex solutions.

For d = 2, the transition happens from a single phonon regime to vortex regime at L∼

Q1/3, while for d = 3, there is a regime Q2/9≤ L≤Q1/3, which is inaccessible by both the vortex

string and the single-phonon configurations. The most energetically favorable configuration,

consistent within the leading order EFT analysis, is therefore the multi-phonon configuration

above with a macroscopic number of phonons Nγ ∼ Q
1
9 at the upper bound L∼ Q

1
3 .

This would imply the following scaling for the operator dimension:

d = 3 ∆Q,L = αLQ−1/9 +∆Q Q2/9 < L≤ Q1/3 (9.20)

where α is an unknown order one coefficient.

However the exact nature of this state appears to be related to UV physics of how a vortex

string configuration forms from surface mode phonons in the boundary region of the condensate,

which is inaccessible within our formalism. We therefore cannot give a full accounting of

this regime of angular momentum. Beyond L > Q
1
3 we can be confident the lowest energy

configuration is a vortex, as we’ll now discuss.

7Nγ cannot be made arbitrarily large as the assumption that phonon interactions are suppressed breaks down.
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9.4 Single Vortex in the Trap

A vortex is a configuration of the superfluid with a singular velocity field carrying

angular momentum. The singular nature arises because of the relation (9.4) implying that vi is

necessarily irrotational except due to defects in the field χ; configurations where
∫

C dχ = 2πs

for some integer s. In d = 2 these are particle like excitations while in d = 3 they correspond to

strings, these will be the dimensions we focus on in this work. In fact this language can be made

precise via particle-vortex duality, where vortices are “charged” objects under some dual gauge

field. Adapting this duality to the Schrödinger invariant superfluid has been done in Appendix

H.1 but it is inessential for describing the leading order results.

The simplest configuration in the trap is a single static vortex for which the condensate

order parameter changes by only 2π.8 The approximate velocity profile vi of such a configuration

is:

vi =
εi j(r j−R j)

(rrr−RRR)2 (9.21)

where r is the radial coordinate in d = 2 or the axial coordinate in d = 3, and RRR is the location of

the vortex and we assume that the vortex is streched along the z axis.

The presence of the vortex changes the semi-classical number density, making it singular

at r = R. Before that point the density vanishes, implying a short distance cutoff for the superfluid

EFT. This is the ‘vortex core size’ a whose scaling dimension we can determine as follows.

One interpretation of the non-uniform density (9.8) is that the effective chemical potential

is distance dependent. In the presence of a vortex at rrr = RRR it is given as:

µe f f (rrr)≡ µ− 1
2

ω
2r2− 1

2
1

|rrr−RRR|2
(9.22)

This determines a locally varying UV length scale 1√µe f f
. The EFT, which is controlled in the

8This is in contrast to the CFT case where a minimum of two vortices are needed on the sphere to ensure
compatibility with the Gauss law.
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limit of large density, becomes strongly coupled at the length a when a∼ 1√µe f f
. Solving this

equation for a gives the scaling relations9

d = 2 a∼ 1
√

µ
1√

1− R2

R2
T F

d = 3 a∼ 1
√

µ
1√

1− R2

R2
T F
− z2

R2
T F

(9.23)

Near the center of the trap, a is on order the UV length scale 1√
µ . However as the vortex

approaches the boundary of the trap, either in its placement RRR or along the length of the vortex

string in d = 3, the fact the density is depleted due to the trap implies the cutoff near the

vortex string must happen sooner [203]. As mentioned previously, the EFT is already strongly

coupled in the boundary region of size δ. Therefore the largest placements of the vortex we

can confidently study have R = RT F −δ where the core size scales as a∼ 1

(µω2)
1
3

which is still

parametrically suppressed in µ.

Regulating this divergence as described above, the correction to the semi-classical number

density due to the vortex is subleading in µ and therefore negligible for leading order results.

This implies the dominant contribution to the energy of a vortex configuration comes from the

kinetic energy of the velocity field.

The velocity field (9.21) does not define a stationary flow in the sense that ∂i(nvi) 6= 0

because of the inhomogeneity of the density. This inhomogenity will cause the vortex to precess

in a circle [204]. However since the density varies slowly, as previously discussed, the correction

to the velocity field due to this is suppressed in the large-charge expansion. Using particle-

vortex duality, this is equivalent to the assumption that particle sourcing the gauge field in

dual description has suppressed velocity, hence we are effectively dealing with an electrostatic

scenario. The details are relegated to the appendix H.1, in particular, the discussion after (H.15).

We remark that in dual frame, the cloud boundary is like a conductor, hence the tangential

electric field should be vanishing. This means the velocity field of the vortex should be such that

9This is an equivalent condition to cutting off the theory when the velocity field sourced by the vortex becomes
comparable to the local speed of sound in the superfluid c2

s ∼ ∂P
∂n ∼ X .
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there is no radial outflow of particles out of the trap. Given this condition, one might worry that

the velocity field above does not vanish at the boundary RT F . However, since we require the

normal component of the flow to vanish at the boundary i.e. N̂ · (nvvv) = 0 where NNN is a vector

normal to the trap at boundary, the inhomogeneity of the superfluid comes to rescue and the

condition is trivially met by the vanishing of the density n(x) at RT F [205]. 10

In what follows, we will be evaluating the energy and angular momentum of vortex

configurations in d = 2 and d = 3 spatial dimensions.

9.4.1 Single vortex in d = 2

Let’s first work in d = 2 with the velocity field given by (9.21). The difference in energy

between the vortex state and the ground state can then be computed from the kinetic energy of

Hamiltonian (9.7) as:

∆E =
∫

d2x
1
2

nv2 = c0µ
∫

d2x
(

1− r2

R2
T F

)
1

(rrr−RRR)2 (9.24)

As mentioned, there is a divergence at r = R which we will regulate by assuming a vortex core

size of a(R)∼ 1√µe f f
where µe f f = µ

(
1− R2

R2
T F

)
. Evaluating the integral (9.24) gives:

∆E = 2c0πµ
(

1− R2

R2
T F

)[
log
(

RT F

2a(R)

)
+

1
2

log
(

1− R2

R2
T F

)
−1
]
+ c0πµ+O(a) (9.25)

We can also compute the angular momentum via the integral:

LLL =
∫

d2x nvvv× rrr (9.26)

10This is generically known as a “soft boundary”. Had we been dealing with homogenous fluid with non vanishing
density at boundary, we ought to consider a mirror vortex configuration to ensure the imposition of N̂ · (nvvv) = 0,
this is just like considering the mirror charge while solving for electric in the presence of a conductor. Regardless,
such modifications to the velocity field in the boundary region of the inhomogenous condensate give suppressed
corrections to our leading order results below.
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For our configuration the angular momentum is entirely in the ẑ direction with magnitude:

L = 4πc0µ
∫ RT F

R
dr r

(
1− r2

R2
T F

)
= 2πc0

µ2

ω2

(
1− R2

R2
T F

)2

(9.27)

where we’ve used
∮

r vvv ·d `̀̀ = 2π for a circle centered at the origin of radius r > R, and otherwise

vanishes.

As one can see, it is energetically favorable for the vortex to appear at the edge of the

cloud R≈ RT F . However we cannot trust the solution in the regime of low density near there for

reasons previously discussed. Therefore the largest distance the vortex can be where we have

confidence in the validity of the semi-classical approximation is R∗ = RT F − δ. This gives a

minimum angular momentum, of the vortex configuration Lmin ∼ Q
1
3 . The largest value of the

angular momentum occurs when the vortex is in the center at R = 0 with Lmax ∼ Q.

Combining these results gives the leading order expressions for the operator dimensions

in terms of L and Q as:

d = 2 ∆Q,L =

√
c0π

2

√
L logL+∆Q Q

1
3 < L≤ Q (9.28)

9.4.2 Single vortex in d = 3

Let’s consider the case of d = 3 now. The minimal energy excitation is a single vortex

string. The string must necessarily break the spherical symmetry of the trap. We will consider

the string being stretched along the z-axis, ensuring that all the angular momentum is L = Lz.11

The energy of the vortex string again comes from the kinetic energy and can be evaluated

as:

∆E =
∫

d3x
1
2

nv2 =
∫ Z(R)

−Z(R)
dz T (z,R) (9.29)

11A curved string will generically have to be longer in order to carry the same angular momentum, as parts of
the velocity field it sources will cancel against each other. The longer strings will be energetically more expensive,
making the straight line configuration energetically favorable to leading order.

191



where T (z,R) is the tension of the string and Z(R) = RT F

√(
1− R2

R2
T F

)
defines the integration

bound along the length of the string.

The tension can be computed via a similar integral in d = 2 as:

T (z,R) =
1
2

∫ r(z)

0
drr

∫ 2π

0
dφ n(r,z)

1
(rrr−RRR)2

= πn(R,z)
[

log
(

r(z,R)
a(z,R)

)
− log

(
1+

r(z)
r(z,R)

)]
+ · · · (9.30)

where · · · refer to the non logarithimic pieces. Here n(r,z) = 5
2c0µ

3
2

(
1− 1

R2
T F
(r2 + z2)

) 3
2 is the

number density, r(z) = RT F

√
1− z2

R2
T F

is the radial (radius in cylindrical co-ordinate) size of the

trap at a height z and r(z,R) = RT F

√
1− z2+R2

R2
T F

. Integrating the leading logarithimic piece along

the string length gives the energy:

∆E =
∫ Z(R)

−Z(R)
dz πn(R,z) log

(
r(z,R)
a(z,R)

)
=

15
16

π
2c0µ3/2RT F

(
1− R2

R2
T F

)2[
log
(

1− R2

R2
T F

)
+ log(RT F

√
µ)
]

(9.31)

Evaluating the angular momentum of this configuration is similar to d = 2 and yields:

L =
∫ Z(R)

−Z(R)
dz

∫ r(z)

R
dr r

5
2

c0µ
3
2

(
1− r2 + z2

R2
T F

) 3
2

=
5πc0

8
√

2

( µ
ω

)3
(

1− R2

R2
T F

)3

(9.32)

Again the lowest allowed value of the angular momentum occurs for a vortex at R∗ =

RT F −δ and scales as Lmin ∼ Q
1
3 while the maximum occurs at R = 0 with Lmax ∼ Q.

Together these results imply the scaling:

d = 3 ∆Q,L =

(
5π4c0

8
√

2

)1/3

L2/3 logL+∆Q Q
1
3 < L≤ Q (9.33)

This determines the leading order dimension for the operator which creates the vortex

string but we can also study the spectrum of operators above it. For example, the presence of a

vortex string along the ẑ-direction should split the phonon m degeneracy in (9.12). Treating this
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perturbatively, such a splitting is suppressed in the charge12 Q [203].

Besides phonons, there are unique excitations of the vortex string related to displacements

of position. These are known as “Kelvin modes” and they define another set of low-lying

operators above the one which created the vortex string. These modes are basically the radial

displacement of the vortex core from the original axis. For long wavelength modes ka(z,R)� 1

and in the regime where z� RT F , we can effectively assume that density is uniform13. Under

this assumption, followed by considering a situation where the amplitude of the displacement is

small, we have the standard result quoted in superfluid literature i.e. ω(k)≈ 1
2k2 log 1

|k|a(R) , where

a(R) = 1√
µ

1√
1− R2

R2
T F

is the vortex core size via (9.23). We remark that the boundary conditions

on the string should quantize k ∼ n
RT F

, so there is an approximate continuum of such operators

above the gap to create a single vortex string. The spacing of these modes and exact dimensions

are only visible at higher orders in the Q expansion.

9.5 Multi-Vortex Profile

Consider a collection of Nv vortices at locations RRRi with winding numbers si. The velocity

field of such a contribution is additive and described by:

vvv = ∑
i

vvvi = ∑
i

si
ẑ× (rrr−RRRi)

|rrr−RRRi|2
=⇒ ∇× vvv = ∑

i
siδ(rrr−RRRi) (9.34)

Because the angular momentum is linear in the velocity field, this implies the total angular

momentum of the system is given by the sum of the individual ones:

L = ∑
i

Li =


2πc0

( µ
ω

)2
∑
i
si

(
1− R2

i
R2

T F

)2
d = 2

5πc0
8
√

2

( µ
ω

)3
∑
i
si

(
1− R2

i
R2

T F

)3
d = 3

(9.35)

12One could also consider the energy of a vortex-phonon configuration. The “interaction energy” between the
two is given as

∫
ddx vvvvortex ·∂∂∂π which is also suppressed in the Q expansion.

13For work going beyond this approximation in non-uniform condensates, see [206].
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For vortices far from the boundary, where RT F−Ri
RT F

∼ O(1) (as opposed to Q suppressed number),

we have that Li ∼ siQ.

We can compute the energy of a generic multi-vortex configuration explicitly from

this velocity field (9.34). The energy breaks up into single-vortex contributions and pair-wise

interaction energies:

∆E =
1
2

∫
ddx nv2 = ∑

i
Ei +∑

i 6= j
∑

j
Ei j (9.36)

where the single vortex energy is already computed as

Ei =
1
2

∫
ddx nv2

i =


ω

√
c0π

2 s2
i
√

Li logLi d = 2

ω

(
5π4c0
8
√

2

)1/3
s2

i L2/3
i logLi d = 3

(9.37)

and Ei j is the interaction energy given by:

Ei j =
∫

ddx nvi · v j (9.38)

In d = 2 this integral evaluates to:

Ei j

sis j
= πc0µ

(
1−

RRRi ·RRR j

R2
T F

)
log

(
R4

T F +R2
i R2

j −2R2
T FRRRi ·RRR j

(RRRi−RRR j)4

)
(9.39)

−2πc0µ
1

R2
T F

(
R2

i +R2
j −R2

T F
)

+2πc0µ
1

R2
T F
|RRRi×RRR j|arctan

(
|RRRi×RRR j|

R2
T F −RRRi ·RRR j

)
where RRRi and RRR j are the positions of the vortex pair with R j > Ri assumed without loss of

generality. To leading order in the charge and small vortex separation this simplifies to:

Ei j ∼ sis jµ log
RT F

|RRRi−RRR j|
+ ... (9.40)

This piece is the result of the singular nature of the vortices and describes their interaction. The

analogous result of (9.39) for d = 3 is not analytically tractable, but the leading interaction piece
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in the charge and small vortex separation is given by:

Ei j ∼ sis jµ
3
2 RT F log

RT F

|RRRi−RRR j|
+ · · · (9.41)

One can extract several physical features of the multivortex profile using the expressions

above for the energy. First of all, the minimum energy configurations per angular momentum

will have si = 1 for every vortex as the energy scales quadratically in the charge but the angular

momentum only scales linearly. The angular momentum for the entire configuration then scales

as L ∼ NvQ assuming RT F−Ri
RT F

∼ O(1). Secondly, we remark that the logarithmic terms (9.40)

and (9.41) imply that the minimal energy configuration will generically be a triangular array of

vortices[207, 208]. Empirically this structure persists as the number of vortices is made large,

even in the presence of a harmonic trap[200].

In principle the energy, and therefore the operator dimension, should be found by

fixing the angular momentum and varying over the positions Ri to find the minimum energy

configuration. However, for Nv ∼ O(1) the interaction is negligible and the energy will scale as

E ∼ NvEv where Ev is the energy of a single vortex placed in the center of the trap. To consider

L parametrically larger than Q we must consider Nv � 1. While we cannot exactly analyze

(9.36) in this limit, we are justified in approximating the vortex density as a continuous quantity,

corroborated by the fact that in this limit the interaction energy dominates and has terms which

go as N2
v µ

d
2 Rd−2

T F ∼ L2/I, where I is the moment of inertia, given later by Eq. (9.47).

Continuum Approximation: We can take advantage of the fact the vortices are dense to

coarse grain (9.34) and replace it with a continuous velocity field which satisfies:

∮
C

vvv ·d`̀̀ = 2πNv(C) (9.42)

where Nv(C) is the number of vortices in the area enclosed by the curve C. Let L be the angular

momentum (to be precise the z component of the angular momentum) of the configuration. We

195



take a variational approach, minimizing the energy over smooth v with fixed L. To this end,

define:

EΩ =
1
2

∫
ddx nv2−Ω

(∫
ddx n(rrr× vvv) · ẑ−L

)
(9.43)

=
1
2

∫
ddx n(v−Ωẑ× rrr)2− Ω2

2

∫
ddx nr2 +ΩL (9.44)

where Ω is a Lagrange multiplier to fix the angular momentum. From (9.43), we can see that the

minimum energy velocity field is that of a rotating rigid body with uniform vortex density:

vvv = Ωẑ× rrr =⇒ ∆E =
Ω2

2

∫
ddx nr2 =

Ω2

2
I (9.45)

where I is the moment of inertia of the condensate, computed from the density as:

I =
∫

ddx n(r)r2 . (9.46)

and Ω can be determined via its relation to L as Ω = L
I . Now the moment of inertia I evaluates to

I =



4
3πc0

µ3

ω4 =
1
ω

(
2
3

1√
2πc0

Q
3
2

)
d = 2

5π2

8
√

2
c0

µ4

ω5 =
1
ω

(
25

1024

(
25π4

32c2
0

)1/6
Q

4
3

)
d = 3

(9.47)

Using (9.42) and (9.45) we can also determine that the angular momentum of the configuration

scales as L∼ NvQ as expected from (9.35). Consequently, the energy is that of a rigid body with

angular momentum L and is given by:

∆E =
L2

2I
, (9.48)

Notice that this leading order result is independent of the trap and the inhomogeneity of the

density. Corrections will arise from the inhomogeneity of the trap and the discreteness of the

vortices, but they are subleading in Nv and suppressed in RT F [204]. Indeed, that there are terms
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in the energy which scale as Nv being neglected is visible in (9.36).

We remark that there are constraints of the vortex density of the system. The vortex

spacing λ should be larger than the vortex core size i.e. λ� a∼ 1√µe f f
. Beyond this limit we

expect interactions to be strong and the EFT description to break down [209]. Now, in a scenario

where we have multiple vortices, a rough estimation yields that

Nv ∼
R2

T F
λ2 ∼


√

Q` d = 2

(Q`)1/3 d = 3
(9.49)

where ` is the typical angular momentum of a vortex in the multivortex configuration. Thus in

d = 2, the maximum angular momentum configuration that one can reach within the validity

of the EFT corresponds to a maximum density of Nv ∼ Q. Physically this means most of the

vortices are near the center and ` ∼ Q and the total angular momentum L ∼ Q2. For d = 3

this corresponds to Nv ∼ Q2/3 which is less than Q because the vortices are extended objects

and the total angular momentum amounts to L∼ Q5/3. But our EFT breaks down before this.

Using particle vortex duality as in H.1, one can see that the EFT breaks down when the electric

field becomes comparable to magnetic field. This means that the EFT breaks down when the

contribution coming from rigid body rotation becomes comparable to ∆Q. Hence, the maximum

angular momentum that can be attained within the validity of our EFT is L∼ Q3/2 in d = 2 and

L∼ Q4/3 in d = 3.

These determine the absolute limits on the angular momentum accessible within our EFT

and together with (9.48) and (9.47) imply the following operator dimension scaling:

d = 2 ∆Q,L =

√
9c0π

2

(
L2

Q3/2

)
+∆Q Q < L < Q3/2 (9.50)
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d = 3 ∆Q,L =
1024
25

(
32c2

0
25π4

)1/6(
L2

Q4/3

)
+∆Q Q < L < Q4/3 (9.51)

The above constitute the main results of this section.

9.6 Conclusions and Future Directions

To summarize, we have calculated how the dimensions of operators in NRCFTs scale

with number charge Q and spin L in the limit of Q� 1 via the state-operator correspondence.

The NRCFTs under consideration exist in d = 2 and d = 3 and by assumption are described

by the superfluid EFT. This allows for explicit calculations by studying phonon and vortex

configurations of the superfluid. We expect applicability of our result to “fermions at unitarity”

and certain conformal anyon theories, as well any other NRCFT with this symmetry breaking

behavior in its large charge sector[174, 186, 185, 187]. In fact the superfluid state of unitary

fermions in a harmonic trap has been experimentally observed, including the formation of

vortices [200].

The most direct extension of these results would be to go to beyond the leading order

scaling. To do so would require reasoning about the divergences associated with the vortex core,

the size and structure of which is entirely determined by UV physics. It should be possible to

regulate such divergences by considering operators localized on the vortex. Such a procedure in

the relativistic effective string theory was worked out in [210, 211] and the effective string theory

of vortex lines in superfluids was explored in [212]. A similar analysis has also been applied to

divergences of the superfluid EFT near RT F , associated with the dilute regime of size δ [213] .

It would be especially interesting to study other possible symmetry breaking patterns,

such as those relevant for chiral superfluids [191]. As mentioned in this large angular momentum

regime the vortices are arranged as a triangular lattice. Deformations of this vortex lattice are

a novel excitation in this limit, known as ‘Tkachenko modes’ [214]. Presumably these excited
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states would correspond to a tower of low-lying operators above the operator which creates the

vortex-lattice. However, treatment these modes and corrections to the results (9.50) and (9.51)

would require us to think about a new EFT which captures the spontaneous breaking of spatial

symmetry by the vortex lattice. This EFT has been worked out by [192] and may be adaptable to

the Schrödinger invariant case in a trap. Especially interesting would be systems with a Fermi

surface, however such a critical state must necessarily be a non-fermi liquid following the results

of [175].

While our EFT is not valid at larger angular momentum14, it is interesting to ask if there

is an analog of the large spin expansion when L∼ ∆ for NRCFTs. The techniques for NRCFT

bootstrap are not well developed, but see ref [173]. It is interesting to note that unlike in CFT,

there is no unitary bound restricting L≤ ∆ as spin can be treated as an internal degree of freedom.

Another interesting direction would be to consider correlation functions of charged

spinning operators in these NRCFTs. The universal scaling of the 3-point function and higher

are all explicitly calculable within this EFT, as was done for scalar charged operators in [201].

In relativistic CFTs this was worked out in [190, 169] for certain operators. We leave this and

other questions for future work.
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Chapter 10

Modular Invariance and Cardy Formula

The symmetry algebra of conformal field theory (CFT) in different dimension is highly

constraining in determining the behavior of various physical quantities. In fact, knowing the

operator spectra, the three point coefficients and making sure that crossing symmetry is satisfied

is powerful enough to completely specify a CFT. In 2 dimensions, the conformal algebra gets

extended to its infinite dimensional avatar, named as Virasoro algebra This provides us with

immense analytical control over 2D CFT. It so turns out that one can consistently define 2D CFT

on any Riemann surface of arbitrary genus, the simplest non trivial of which is a genus 1 surface,

also known as torus.

In this chapter and the next one, we consider a 2 dimensional CFT on a torus. Physically

this means that we are considering a thermal CFT living on a spatial circle of length L, at an

inverse temperature β: it can be thought of as obtained by doing a path integral over a square

torus. The two cycles of the torus represent the thermal cycle of length β and the spatial circle

of length L. Since the CFT is scale invariant the thermal partition function satisfies following

functional form:

Z(β,L) = Z
(

β

L

)
(10.1)
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On the other hand such a square torus can be assigned a modular parameter τ,which is defined as

τ =
ıβ
L

(10.2)

The eq. (10.1) implies that the partition function of a CFT on a torus is a function of modular

parameter τ only.

One can generalize the square torus to a non-square one by extending the domain of

definition τ from the positive imaginary axis to whole upper half plane. We require Im(τ) to be

positive since the cycle length is a positive number. The statement of the scale invariance of CFT

remains the same: the partition function Z is still a function of τ. In fact, this fact is manifest

in the definition of the torus partition function of 2 dimensional CFT. In particular, the torus

partition function of 2D CFT is defined as

Z(τ, τ̄) = ∑
h,h̄

qh− c
24 q̄h̄− c

24 (10.3)

where we have used the fact that 2D CFT has two copies of Virasoro symmetry, the holomorphic

and the antiholomorphic one. Here we have q = exp(2πıτ) and q̄ = exp(−2πıτ̄) and the sum is

over the spectrum of the operators with conformal weight (h, h̄). From here on, without loss of

generality, we will assume L = 2π and consider a square torus:

Z(β) = ∑
∆i

exp
[
−β

(
∆i−

c
12

)]
(10.4)

=
∫

∞

0
d∆ ρ(∆)exp

[
−β

(
∆− c

12

)]
, ρ(∆) = ∑

i
δ(∆−∆i) (10.5)

where ∆i = hi + h̄i is the scaling dimension of the operators in the CFT spectra.

Now let us understand the torus in a more geometric way. A torus can be thought of as a

plane with points identified if they are separated by a vector of the form n1ααα1 +n2ααα2 for two

linearly independent vectors αααi and two integers ni. Now one can do a following transformation
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on the basis vectors αααi:βββ1

βββ2

=

a b

c d


ααα1

ααα2

 , where ad−bc = 1 , a,b,c,d ∈ Z (10.6)

This transformation forms a group SL(2,Z) and maps the torus to itself. The action of SL(2,Z)

on the modular parameter τ is given by

τ 7→ aτ+b
cτ+d

, a,b,c,d ∈ Z & ad−bc = 1 (10.7)

and known as modular transformation. Since under modular transformation the torus gets

mapped to itself, the partition function stays invariant. Hence we arrive at the statement of

modular invariance of torus partition function:

Z(τ, τ̄) = Z
(

aτ+b
cτ+d

,
aτ̄+b
cτ̄+d

)
(10.8)

The Cardy formula [217] for asymptotic density of states is then derived by leveraging the above

modular invariance of the torus partition function.

There are two basic kind of modular transformations, which can be used to compose any

arbitrary modular transformation:

S : τ 7→ −1
τ

(10.9)

T : τ 7→ τ+1 (10.10)

For a square torus, which we will be interested in, the S transformation exchanges the thermal

and spatial circle and does the following mapping (shown in fig. 10.1)

β 7→ 4π2

β
(10.11)
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Torus with τ=3* I
2

Modular transformed torus with τ=2* I
3

Figure 10.1: S modular transformation on square torus. The torus on the top has τ = 3ı
2 while

the bottom one has τ = 2ı
3 .

In terms of inverse temperature β, the statement of the modular invariance boils down to:

Z(β) = Z
(

4π2

β

)
. (10.12)

We emphasize that the above equation is at the heart of the Cardy’s analysis. It relates the

low temperature behavior of Z with its high temperature behavior. At low temperature Z(β) is

dominated by the ground state i.e. ∆ = 0 (and controlled by the universal parameter c, the central
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charge of the 2D CFT) and we have

Z(β) =
β→∞

exp
[
β

c
12

]
(10.13)

Now in order to obtain the high temperature expression, we note that β→ 0 implies that

β′ = 4π2/β→ ∞, thus we have the high temperature behavior of the partition function:

Z(β) =
β→0

Z
(
β
′) =

β′→∞

exp
[
β
′ c
12

]
= exp

[
π2c
3β

]
(10.14)

On the other hand, the eq. (10.5) gives us a formal expression for density of states as an inverse

Laplace transform of partition function:

ρ(∆) =
∫

dβ Z(β)exp
[
β

(
∆− c

12

)]
(10.15)

For β→ 0 limit, the partition function Z(β) is dominated by the heavy states with large scaling

dimension ∆→ ∞. Thus in the eq. (10.15), if we substitute Z(β) with its high temperature

approximation, given by the eq. (10.14) and are able to perform the integral, we should obtain

the expression for asymptotic density of states. The result of these procedure gives us

ρ(∆)' π

√
c
3

I1

(√
c
3

(
∆− c

12

))√
c
3

(
∆− c

12

) (10.16)

The true density of states is a sum over Dirac delta function and it can never be equal to

the smooth function appearing in the eq. (10.16). To emphasize on this point, let us rename

(following the convention in [232]) the density of states appearing in the right hand side of the

eq. (10.16) as ρ0(∆) to distinguish it from the actual density of states i.e. we define

ρ0(∆) = π

√
c
3

I1

(√
c
3

(
∆− c

12

))√
c
3

(
∆− c

12

) . (10.17)

As the eq. (10.16) is only an approximate formula, one legitimate question is to ask how

accurate the formula. One way to circumnavigate this problem is to integrate the density of
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states upto some cut-off dimension ∆ and then compare with the actual number of states below

that cut off.

It is clear that even after integrating the ρ0(∆
′) upto some cut-off ∆, we should trust

the expression only for large ∆. The question that arises naturally at this point is upto which

order we should trust the Bessel function appearing in the expression for ρ0(∆). In short, the

above method is completely blind to the error term. Nonetheless in the leading order, it does an

amazing job as can explicitly be seen from the fig. 10.2 and fig. 10.3. On the vertical axis of the

plots we have F(∆) defined as

F(∆) =
∫

∆

0
d∆
′
ρ(∆′) (10.18)

On the other hand, if we try to go on including the subleading approximation of the

Bessel function appearing in the eq. (10.16), we can see that the error goes up as witnessed

in fig. 10.4. We remark that the difference between the red curve and the black curve is not a

constant shift, rather a function ∆, which goes to 0 from the negative side as ∆→ ∞, this can be

seen from fig. 10.5. This motivates us to perform a more careful refinement of Cardy’s analysis.

This is where the techniques inspired from Tauberian theorems come handy. The usefulness of

Tauberian theorems in the context of CFT is pointed out in [228]; subsequently, its importance

was emphasized in Appendix C of [219], where the authors used Ingham’s theorem [229]. The

fact that going out to the complex plane while using Tauberian theorems would provide extra

mileage in controlling the correction terms in various asymptotic quantities of CFT, has been

pointed out in [230]. In particular, the use of [231] turned out to be extremely useful in this

context.

In what follows, we consider an energy window of width 2δ, centered at some large ∆.
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2D Ising Cardy formula
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Figure 10.2: Integrated density of states upto ∆ as a function of ∆ and its approximation due to
Cardy formula for 2D Ising model, the figure on the bottom is the zoomed version of the one
on the top.

We estimate the number of states lying in that window i.e we estimate the following quantity:

∫
∆+δ

∆−δ

d∆
′
ρ(∆′) =

∫
∞

0
d∆
′
ρ(∆′)Θ

(
∆
′ ∈ (∆−δ,∆+δ]

)
(10.19)

and the microcanonical entropy associated with the interval

Sδ ≡ log
(∫

∆+δ

∆−δ

d∆
′
ρ(∆′)

)
(10.20)

The rest of this chapter is a brief review of [232], which acts a precursor of the following chapter.

The result of [232] which is going to be relevant for our purpose is as follows:

Sδ = log
(∫

∆+δ

∆−δ

d∆
′
ρ(∆′)

)
'

∆→∞
2π

√
c∆

3
+

1
4

log
(

cδ4

3∆3

)
+ s(δ,∆) , (10.21)
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Monster Cardy formula
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Figure 10.3: Integrated density of states upto ∆ as a function of ∆ and its approximation due to
Cardy formula for Monster CFT with c = 24, the figure on the bottom is the zoomed version of
the one on the top.
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Figure 10.4: Difference between Integrated density of states upto ∆ and its approximation due
to Cardy formula as a function of ∆ for 2D Ising model and Monster CFT, the figure shows that
including the subleading term from the naive analysis actually increases the error.
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Difference between right Cardy and wrong Cardy
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Figure 10.5: The difference between the error using the right Cardy formula and the wrong one
as a function of ∆ for 2D Ising model and Monster CFT, the figure shows that the difference
goes to 0 from the negative side as ∆→ ∞.

For O(1) energy width, the O(1) correction s(δ,∆) is bounded from above and below:

δ = O(1) : s−(δ,∆)≤ s(δ,∆)≤ s+(δ,∆) (10.22)

and these functions s± are given by

s+ = MZ(δ) (10.23)

s− = mz(δ) (10.24)

where MZ(δ) is defined as

MZ(δ) =


π

3

(
πδ

2

)3(
sin
(

πδ

2

))−4
, δ < a∗

2π
∼ 0.54

2.02 , δ > a∗
2π
∼ 0.54 .

(10.25)

Here, a∗ ∼ 3.38 satisfies a∗ = 3tan(a∗/4). The function mz(δ) is defined as

mz(δ) =


2
(

δ2− 3
π2

)
3δ3 ,

√
3

π
≤ δ < 3

π
∼ 0.95,

4π

27 ∼ 0.46 , δ≥ 3
π
.

(10.26)
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Furthermore, it is shown in [232] for ∆→ ∞:

∫
∆+δ

∆−δ

d∆
′
ρ(∆′)> 0 if δ >

√
3

π
(10.27)

i.e. the asymptotic gap between operators is bounded above by 2
√

3
π2 . Even though this is trivial

due to the presence of descendant operators since within a window of width just greater than 1

there would always be one descendant, the nontriviality comes from the fact that the same bound

applies to the asymptotic gap of Virasoro primaries. This led them to conjecture that the optimal

asymptotic gap of Virasoro primaries is exactly 1. And this has to be the optimal one, since

Monster CFT saturates the bound. The following chapter proves this conjecture made in [232]

involving the asymptotic gap between primaries and improves the bound s± on O(1) correction

to the Cardy formula.

We start with two bandlimited functions φ± such that they are just above and below the

indicator function Θ centered at ∆ with width of 2δ i.e. we have

φ−(∆
′)≤Θ≤ φ+(∆

′) (10.28)

One can obtain from the above the following inequality

eβ(∆−δ)−β∆′
φ−(∆

′)≤Θ≤ eβ(∆+δ)−β∆′
φ−(∆

′) , (10.29)

which, upon integrating against the density of states ρ(∆) gives

eβ(∆−δ)
∫

∞

0
d∆
′
φ−(∆

′)ρ(∆′)e−β∆′ ≤ exp [Sδ]≤ eβ(∆+δ)
∫

∞

0
d∆
′
φ+(∆

′)ρ(∆′)e−β∆′ (10.30)

Let us go to the Fourier domain to analyze the terms that are bounding from the above

and the below. This is exactly where the bandlimited nature of the functions φ± plays a huge

role. In terms of φ±(∆
′) =

∫
∞

−∞
e−ı∆t φ̂±(t), we have
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eβ(∆−δ)
∫

∞

−∞

dt φ̂−(t)Y (β+ ıt)≤ exp [Sδ]≤ eβ(∆+δ)
∫

∞

−∞

dt φ̂+(t)Y (β+ ıt) (10.31)

where we have

Y (β+ ıt) = exp
[
(β+ ıt)

c
12

]
Z(β+ ıt) (10.32)

At this point β is arbitrary, but we know that at the end of the day we are interested in asymptotic

density of states and hence we expect to set β to be very very small. In the naive analysis, we

have seen that the expression for partition function for small β is obtained by doing modular

transformation. Here also we implement a similar transformation and obtain:

eβ(∆−δ+c/12)
∫

∞

−∞

dt φ̂−(t)eıtc/12Z
(

4π2

β+ ıt

)
≤ eSδ ≤ eβ(∆+δ+c/12)

∫
∞

−∞

dt φ̂−(t)eıtc/12Z
(

4π2

β+ ıt

)
(10.33)

Now we write the partition function as

Z(β) = ZL(β)+ZH(β) (10.34)

ZL(β) = ∑
∆′<∆H>

c
12

exp
[
−β

(
∆
′− c

12

)]
(10.35)

ZH(β) = ∑
∆′>∆H>

c
12

exp
[
−β

(
∆
′− c

12

)]
(10.36)

Now from the naive analysis, we know that the smooth function ρ0(∆
′) actually reproduces the

leading term of the partition function at small β. To make sure that this is indeed the leading

expression i.e. to say that the contribution to the partition function coming from the heavy states

i.e ZH is suppressed, we need the bandlimited functions φ±. In fact, one can show that if the
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φ̂±(t) has support within [−2π,2π], this is indeed the case and we have for β = π
√ c

3∆
→ 0:

exp [β(∆−δ)]
∫

d∆
′
ρ0(∆

′)e−β∆′
φ−(∆

′)≤ eSδ ≤ exp [β(∆+δ)]
∫

d∆
′
ρ0(∆

′)e−β∆′
φ+(∆

′)

(10.37)

By evaluating the above integrals by saddle point approximation:

c−ρ0(∆)≤
∫

∆+δ

∆−δ

d∆
′
ρ(∆′)≤ c+ρ0(∆), (10.38)

This equation would be one of the key equations that is used in the next chapter. Here c± is

defined as

c± =
1
2

∫
∞

−∞

dx φ±(∆+δx). (10.39)

The details of the the subleading nature of ZH and the derivation of the eq. (10.39) can be found

in [232]. The functions leading to the eq. (10.23) is given by

φ+(∆
′) =

sin
(

Λ+δ

4

)
Λ+δ

4

−4sin
(

Λ+(∆
′−∆)

4

)
Λ+(∆′−∆)

4

4

, (10.40)

φ−(∆
′) =

sin
(

Λ−(∆′−∆)
4

)
Λ−(∆′−∆)

4

4(
1− (∆′−∆)2

δ2

)
. (10.41)

It turns out that the bound on the O(1) correction to the Cardy formula, obtained in [232]

is not the optimal one. One can improve the bounds by choosing different φ± subject to the

constraint (10.28) and the bandlimited nature of the functions φ±. This will be the main topic of

our next chapter.

211



Chapter 11

Bounds on density of states and spectral
gap in CFT2

We improve the recently discovered bounds on the O(1) correction to the Cardy formula

for the density of states in 2 dimensional conformal field theory at high energy. We prove a

conjectured upper bound on the asymptotic gap between two consecutive Virasoro primaries

for a central charge greater than 1, demonstrating it to be 1. Furthermore, a systematic method

is provided to establish a limit on how tight the bound on the O(1) correction to the Cardy

formula can be made using bandlimited functions. The techniques and the functions used here

are of generic importance whenever the Tauberian theorems are used to estimate some physical

quantities.

11.1 The premise and the results

Modular invariance is a powerful constraint on the data of 2D conformal field theory

(CFT). It relates the low temperature data to the high temperature data. For example, using

the fact that the low temperature behavior of the 2D CFT partition function is universal and

controlled by a single parameter c, the central charge of the CFT, we can deduce the universal

behavior of the partition function at high temperature and thereby deduce the asymptotic behav-
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ior of the density of states, which controls the high temperature behavior1 of a 2D CFT [217].

Similar ideas can be extended to one point functions as well, where the low temperature behav-

ior is controlled by the low lying spectra and three point coefficients [218, 219]. Yet another

remarkable implication of the modular invariance of the partition function is the existence of

infinite Virasoro primaries for CFT with c > 1. Significant progress has been made in recent

years towards exploiting the modular invariance to deduce results in 2D CFT under the umbrella

of modular bootstrap [220, 218, 219, 221, 222, 223, 224, 225, 226, 227].

Recently, with the use of complex Tauberian theorem, Mukhametzhanov and Zhiboedov

[232] have explored the regime of validity, as well as corrections, to the Cardy formula with

great nuance. In particular, they have investigated the entropy Sδ associated with a particular

energy window of width δ around a peak value ∆, which is allowed to go to infinity, and found

Sδ = log
(∫

∆+δ

∆−δ

d∆
′
ρ(∆′)

)
'

∆→∞
2π

√
c∆

3
+

1
4

log
(

cδ4

3∆3

)
+ s(δ,∆) , (11.1)

where ρ(∆) is the density of states, given by a sum of Dirac delta functions peaked at the

positions of the operator dimensions. It is shown in [232] that for O(1) energy width, the O(1)

correction s(δ,∆) is bounded from above and below:

δ = O(1) : s−(δ,∆)≤ s(δ,∆)≤ s+(δ,∆) (11.2)

The purpose of the current note is to improve the bound and provide a systematic way

to estimate how tight the bounds can be made using bandlimited functions. We also prove the

conjectured upper bound on the asymptotic gap between Virasoro primaries, which turns out to

be 1. This gap is optimal since for the Monster CFT, the gap is precisely 1.

1The fact that the modular invariance of CFT can predict the asymptotic density of states is explicitly stated in
[215]. One usually takes the inverse Laplace transform of the partition function to deduce such behavior; similar
techniques also appeared in [216]. We thank Shouvik Datta for pointing this out.
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Figure 11.1: Exp[s±] as a function of δ, the half-width of the energy window. The blue line
is the existing bound. The orange line denotes the improved bound that we report here. The
green line is the analytical lower (upper) bound on the upper (lower) bound, while the brown
dots stand for the lower (upper) bound on the upper (lower) bound obtained from enforcing the
positive definiteness condition on the Fourier transform of ±(φ±−Θ) via Matlab. The bound
on bounds represented by the green line is thus weaker than that represented by the brown dots.
The brown shaded region is not achievable by any bandlimited function.

Our results can be summarized by figure [11.1], where the green line and dots denote

the lower (upper) bound on the upper (lower) bound. The orange lines denote the improved

achievable bounds. The brown dots stand for the lower (upper) bound on the upper (lower)

bound obtained from implementing the positive definiteness condition on the Fourier transform

of ±(φ±−Θ) via Matlab. The bound on bounds represented by the green line is thus weaker

than that represented by the brown dots. In short, the brown shaded region is not achievable by

any bandlimited function.

In particular, we show that the upper bound on s(δ,∆) is given by

exp [s+(δ,∆)] =


MZ(δ) , δ < 0.73

3
40δ3

(
11δ2 + 45

π2

)
, 0.73 < δ≤ 0.785

1.7578 , δ > 0.785

(11.3)
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where MZ(δ) is a function introduced in [232] and defined as

MZ(δ) =


π

3

(
πδ

2

)3(
sin
(

πδ

2

))−4
, δ < a∗

2π
∼ 0.54

2.02 , δ > a∗
2π
∼ 0.54 .

(11.4)

Here, a∗ ∼ 3.38 satisfies a∗ = 3tan(a∗/4). Eq.(11.3) is an improvement of the upper bound for

δ > 0.73, as evident from figure [11.4].

The lower bound s−(δ,∆) is given by

exp [s−(δ,∆)] =


mz(δ) ,

√
3

π
≤ δ <

√
165
19

π
∼ 0.94,

3
(

11δ2− 45
π2

)
40δ3 ,

√
165
19

π
< δ≤ 1,

0.5 , δ > 1.

(11.5)

where mz(δ) is a function, introduced in [232]

mz(δ) =


2
(

δ2− 3
π2

)
3δ3 ,

√
3

π
≤ δ < 3

π
∼ 0.95,

4π

27 ∼ 0.46 , δ≥ 3
π
.

(11.6)

The eq. (11.5) is an improvement of the lower bound for δ > 0.94, as evident from figure [11.4].

One can verify the above bounds against 2D Ising model, Monster CFT and k = 2

extremal CFT, as witnessed in the series of figures 11.2 and 11.3 for different values of δ. The

rest of the paper details the derivation of the above. In section 11.2, we derive the improvement

on the bound on the O(1) correction to the Cardy formula. Section 11.3 describes a systematic

way to estimate how tight the bound can be made. We derive the optimal gap on the asymptotic

spectra in section 11.4 and conclude with a brief discussion in section 11.5.
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Figure 11.2: s± as a function of δ, the half-width of the energy window. We verify the bounds
against the value obtained from 2D ising model, where the partition function and its q expansion
is known explicitly. This is done for various arbitrary values of δ. The black line denotes the
upper bound while the red line denotes the lower bound.

11.2 Derivation of the improvement

The basic ingredients for estimating the asymptotic growth of the density of states are

two functions φ± such that the following holds:

φ−(∆
′)< Θ

(
∆
′ ∈ [∆−δ,∆+δ]

)
< φ+(∆

′) . (11.7)

We refer the readers to section 4 of [232] for details of the procedure leading to a bound when ∆

goes to infinity. The basic result can be summarized as:

c−ρ0(∆)≤
∫

∆+δ

∆−δ

d∆
′
ρ(∆′)≤ c+ρ0(∆), (11.8)
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Figure 11.3: s± as a function of δ, the half-width of the energy window. We verify the bounds
against the value obtained fromMonster CFT and k = 2 extremal CFT where the partition
function and its q expansion is known explicitly. This is done for various arbitrary values of δ.
The black line denotes the upper bound while the red line denotes the lower bound.
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where ρ0(∆) reproduces the contribution from the vacuum at high temperature and is given by

ρ0(∆) = π

√
c
3

I1

(
2π

√
c
3

(
∆− c

12

))√
∆− c

12
Θ

(
∆− c

12

)
+δ

(
∆− c

12

)
. (11.9)

The above is in fact the leading result for the density of states at high energy. Furthermore, c± is

defined as

c± =
1
2

∫
∞

−∞

dx φ±(∆+δx). (11.10)

The eq. (11.8) holds if the Fourier transform of φ± has a support on an interval which lies entirely

within [−2π,2π]. With this constraint in mind, we consider the following functions:

φ+(∆
′) =

sin
(

Λ+(∆
′−∆)

6

)
Λ+(∆′−∆)

6

6(
1+

(∆′−∆)2

δ2

)
, (11.11)

φ−(∆
′) =

sin
(

Λ−(∆′−∆)
6

)
Λ−(∆′−∆)

6

6(
1− (∆′−∆)2

δ2

)
. (11.12)

In order to ensure that the indicator function on the interval [∆−δ,∆+δ] is bounded above by

φ+, we need to have

δΛ+ ≤ 4.9323 . (11.13)

The number in the eq. (11.13) is obtained by requiring that φ+ (∆±δ)> 1. The functions φ±

have Fourier transforms with bounded supports [−Λ±,Λ±] , respectively. Thus, in order for this

support to lie within [−2π,2π], we also require that Λ± < 2π. The bound is then obtained by

minimizing (or maximizing)

c± =
1
2δ

∫
dx φ±(∆+ x) =

3π
(
11δ2Λ2

±±180
)

20δ3Λ3
±

(11.14)
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for a given δ by varying Λ± subject to the constraint given by the eq. (11.13), as well as Λ± < 2π.

From the eq. (11.8), one can conclude [232] that

c− ≤ exp [s(δ,∆)]≤ c+. (11.15)

Since for a fixed δ, c+ is a monotonically decreasing function of Λ+, we deduce that c+ should

be minimized by

Λ+ = min
{

2π,
4.9323

δ

}
=


2π, δ < 0.785,

4.9323
δ

, δ > 0.785.
(11.16)

This explains the number 0.785 appearing in the bounds in the eq. (11.3). The final bound can be

obtained by combining these results with the result of [232]. A similar analysis can be performed

on c−. These procedures yield the eq. (11.3) for the upper bound, while the lower bound is given

by

exp [s−(δ,∆)] =


mz(δ) ,

√
3

π
≤ δ <

√
165
19

π
∼ 0.94,

3
(

11δ2− 45
π2

)
40δ3 ,

√
165
19

π
< δ <

3
√

15
11

π
∼ 1.12,

11
60

√
11
15π∼ 0.49 , δ >

3
√

15
11

π
∼ 1.12.

(11.17)
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Figure 11.4: Exp[s±] : The orange line denotes the improved lower (upper) bound while the
blue line is the one from the literature.

The lower bound can be further improved for δ > 1 by considering the following function
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whose Fourier transform has a support over [−2π

δ
, 2π

δ
].

φ
Sphere
− (∆′) :=

1

1−
(

∆′−∆

δ

)2

sin
(

π(∆′−∆)
δ

)
π(∆′−∆)

δ

2

. (11.18)

This yields c− = 0.5, which is an improvement over the above; see figure 11.5.
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Figure 11.5: The orange line represents the improvement on the lower bound by using the
function φ

Sphere
− appearing in the sphere packing problem.

Serendipity – connection to the sphere packing problem: The function in the eq. (11.18)

also appears in the context of one dimensional sphere packing problem [233]. In fact, there is an

uncanny similarity between the functions required in the two problems, especially if we look at

the requirements on the function producing the lower bound2. In the sphere packing problem,

one has a Fourier transform pair f , f̂ satisfying

f (x)≤ 0 for |x|> 1, (11.19)

f̂ (k)≥ 0. (11.20)

In our case, we have x↔ ∆′ and k↔ t and we require that f̂ (k) has bounded support. In both

scenarios, the goal is to maximize f̂ (0). In the case of sphere packing, we also normalize f (0)

to one. For more details on the relevance of sphere packing to CFT, we refer the reader to the

recent article [234].
2SP thanks John McGreevy for pointing to [234], where sphere packing plays a pivotal role.
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It turns out that only in one dimension [233], where the sphere packing problem is trivial,

the relevant function as given in the eq. (11.18) has bounded support in the Fourier domain and

is positive3. This seems to suggest that if we want to further improve our bound, we need a

bandlimited function whose Fourier transform becomes negative within the band.

Before moving on to the discussion of the bound on bounds, we pause to remark that

the following class of functions parameterized by α can not be used to improve the bound from

above:

φ
(α)
+ (∆′) =

sin
(

Λ+δ

α

)
Λ+δ

α

−αsin
(

Λ+(∆
′−∆)

α

)
Λ+(∆′−∆)

α

α

, α≥ 2. (11.21)

Within this class of functions, α = 4 gives the tightest bound as found in [232].

11.3 Bound on bounds

In this section, we provide a systematic algorithm to estimate how tight the bounds can

be made using bandlimited functions φ±. This provides us with a quantitative estimate of the

limitation of the procedure which produces these bounds on the O(1) correction to the Cardy

formula. If one drops the requirement that the function be bandlimited, one might hope to do

better. For the rest of this section, we will restrict ourselves to bandlimited functions only.

We recall that the functions φ± are chosen in such a way that they satisfy

φ−(∆
′)< Θ

(
∆
′ ∈ [∆−δ,∆+δ]

)
< φ+(∆

′) . (11.22)

3For higher dimensions too, bandlimited functions are used (see, for example, Proposition 6.1 in [233]);
nonetheless, they do not provide the tightest bound for the higher dimensional sphere packing problem. For n = 1,
the function appearing in the said proposition is related to the one that we have used. For other values of n, we
obtain bounds strictly less than 1/2. We thank Tom Hartman for pointing this out.
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This inequality gives a trivial bound on c±:

c− ≤ 1≤ c+ . (11.23)

In what follows, we make this inequality tighter. In this context, the following characterization of

the Fourier transform of a positive function in terms of a positive definite function turns out to be

extremely useful. Before delving into the proof, let us define the notion of positive definiteness

of a function. Unless otherwise specified, here we will be dealing with functions from the real

line to the complex plane. A function f (t) is said to be positive definite if for every positive

integer n and for every set of distinct points t1, . . . , tn chosen from the real line, the n×n matrix

A defined by

Ai j = f (ti− t j) (11.24)

is positive definite. A function g(∆) is said to be positive if g(∆) > 0 for every ∆. One can

show that the Fourier transform of a positive function is positive definite4. Now, let us explore

how this characterization can improve the eq. (11.23). Without loss of generality, we set ∆ = 0

henceforth, and define

g±(∆′) =±
[
φ±(∆

′)−Θ
(
∆
′ ∈ [−δ,δ]

)]
. (11.25)

At this point we use the fact that φ± is a bandlimited function, i.e., it has a bounded support

[−Λ±,Λ±] , and that Λ± < 2π. This requirement stems from the procedure followed in [232].

Thus we arrive at the following:

g̃±(0) =±2δ(c±−1) , (11.26)

g̃±(t) =∓2δ

(
sin(tδ)

tδ

)
for |t| ≥ 2π. (11.27)

The eq. (11.23) states that g̃(0)/2δ > 0. In order to improve this, we construct 2×2 matrices

4The proof is given in a box separately at the end of this subsection for those who are interested.
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with t2 > 2π:

G(2)
± =

 g̃±(0) g̃±(t2)

g̃±(t2) g̃±(0)

 . (11.28)

For a fixed δ, we consider the first positive peak of g̃± outside t > 2π. If this occurs at t = t(δ),

we choose t2 = t(δ). Subsequently, the positive definiteness of the matrix G(2)
± boils down to the

inequality

g̃±(0)> g̃± (t(δ)) , (11.29)

where t(δ) is the first positive peak of g̃± outside t > 2π. For example, we can show that (see

the green lines in Fig. 11.6):
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Figure 11.6: Exp[s±] : The green line is the analytical lower and upper bound on upper and
lower bound i.e. c± respectively. The green shaded region is not achievable by any bandlimited
function.

c+ >


1.2172 , δ < 0.715,

1.0913 , 1.735 > δ > 0.715,

1.0579 , 2.74 > δ > 1.736,

(11.30)
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c− <


0.872 , δ < 1.229,

0.9291 , 2.238 > δ > 1.229.
(11.31)

We will take a detour now and show that the Fourier transform of an even and positive

function is a positive definite function. Consider a function g(∆) and let us define the Fourier

transform as

g̃(t) =
∫

∞

−∞

dt g(∆)e−ı∆t = 2
∫

∞

0
dt cos(∆t)g(∆). (11.32)

Now, we construct the matrix

Gi j = g(ti− t j) = 2
∫

∞

0
dt cos

[
∆(ti− t j)

]
g(∆). (11.33)

In order to show that G is a positive definite matrix, i.e., ∑i j viv jGi j > 0 for vi ∈ R such that

∑i v2
i 6= 0, we think of an auxiliary 2 dimensional space with n vectors vvv(i), (for clarity, we remark

that i labels the vector itself, not its component) such that we have

vvv(i) ≡ (|vi|cos(∆ti), |vi|sin(∆ti)) . (11.34)

Thus, we have

∑
i j

viv jGi j = 2
∫

∞

0
dt

(
∑
i j

viv j cos
[
∆(ti− t j)

])
g(∆) (11.35)

= 2
∫

∞

0
dt (VVV ·VVV ) g(∆)> 0 (11.36)

if t1, . . . , tn are distinct. Here, VVV is given by

VVV = ∑
i

sign(vi) vvv(i) . (11.37)

This completes the proof that the Fourier transform of an even positive function is a positive

definite function. First of all, it is easy to see that c±, and hence the inequality, is insensitive

to the midpoint of the interval, i.e., ∆, so we set it to 0 and this makes the functions φ± and
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Θ even. In particular, we will be applying this theorem to φ+(∆
′)−Θ(∆′ ∈ [∆−δ,∆+δ]) and

Θ(∆′ ∈ [∆−δ,∆+δ])−φ−(∆
′). We make one more remark before exploring the consequences

of this. The above result is true for any function, not necessarily even. The converse is also true

due to Bochner’s Theorem, but in what follows, we do not require the converse statement.

Matlab implementation

We implement the above argument using more than two points and making sure that

|ti− t j| ≥ 2π. For a fixed δ, we use a random number generator to sample the points ti with the

mentioned constraint. We do this multiple times and each time, we test the positive definiteness

of the matrix G by providing as an input the value of ±(c±− 1). The range of ±(c±− 1) is

chosen to be from the first peak t(δ) till some value larger than the achievable bound given in

(11.3) and (11.17). This in turn yields a lower bound (or upper bound) for c± for each trial5.

Subsequently, we pick out the best possible bound among all the trials. For example, we provide

a table [11.1] showing the outputs from a typical run for improving the bound on the upper

bound. The tables [11.1] and [11.2] improve the lower (upper) bound for c± and this is shown in

the figure [11.1], where the brown dots are the stronger bounds over the green lines and disallow

a larger region.

11.4 Bound on spectral gap: towards optimality

In this section, we switch gear and explore the asymptotic spectral gap. In [232], it has

recently been shown that the asymptotic gap between Virasoro primaries are bounded above

by 2
√

3
π2 ' 1.1 and it has been conjectured that the optimal gap should be 1. The example of

Monster CFT tells us that the gap can not be below than 1, hence 1 should be the optimal number.

In this section, we show that the previous bound 2
√

3
π2 can be improved and made arbitrarily

closer to the optimal value 1. Ideally, to prove this one should find out a function f (which

5We assume that the mesh size for c±−1 is small enough that one can safely find out a lower bound.
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Table 11.1: Typical output from a run yielding lower bounds for the upper bound c+. The
Max(c+) column contains a number that is greater than or equal to what can already be
achieved.

δ Number of iterations # points Max(c+) Lower Bound
0.4 10000 300 2.2 1.7042
0.5 1000 300 2.02 1.6905
0.5 10000 200 2.02 1.7002
0.5 10000 300 2.02 1.7179
0.6 1000 200 2.02 1.6086
0.6 10000 200 2.02 1.5917
0.7 10000 200 2.02 1.4246
0.7 10000 250 2.02 1.4270
0.8 10000 200 1.757 1.3692
0.8 10000 200 2.757 1.3698
0.9 10000 200 2.757 1.3798
1 20000 200 1.757 1.3759

1.1 10000 200 2.757 1.3331
1.20 10000 150 2.757 1.2597
1.25 10000 150 2.757 1.2581
1.3 10000 170 2.757 1.2531
1.4 10000 150 2.757 1.2581
1.5 10000 150 1.757 1.2599
1.5 10000 150 2.757 1.2597
1.5 10000 150 2.757 1.2597
1.6 10000 150 1.757 1.2313
1.7 10000 150 1.757 1.1933

will eventually play the role of φ− in this game, to be precise f (∆′) = φ−(∆+∆′)) such that

following holds:

f (∆′)≤Θ

(
∆
′ ∈
[
−ε

2
,

ε

2

])
(11.38)

and

f̃ (t) = 0 for |t| ≥ 2π

ε
, ε > 1 (11.39)

f̃ (0)> 0 (11.40)
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Table 11.2: Typical output from a run providing upper bound for the lower bound c−. The
Min(c−) column contains a number that is smaller than or equal to what can already be
achieved.

δ Iteration Number # points Min(c−) Upper Bound
0.6 1000 200 0.173 0.5738
0.6 10000 200 0.173 0.5535
0.7 10000 200 0.362 0.5604
0.7 10000 250 0.362 0.5559
0.8 10000 200 0.44 0.5567
0.9 10000 200 0.46 0.5853
1 10000 200 0.48 0.6960

1.1 10000 200 0.49 0.7112
1.2 10000 150 0.49 0.7161
1.2 10000 180 0.49 0.7161
1.3 10000 170 0.49 0.7111
1.4 10000 150 0.49 0.7243
1.5 10000 150 0.49 0.7788
1.6 20000 150 0.49 0.7895
1.7 20000 150 0.49 0.7861

This would have implied

∫
∆+δ

∆−δ

d∆
′
ρ(∆′)> 0 (11.41)

Now what would happen if f̃ (0) = 0 ? One need to go back to the original derivation and

reconsider it carefully. Hence instead of the eq. (11.8), we consider a more basic inequality[232]:

exp [β(∆−δ)]
∫

d∆
′
ρ0(∆

′)e−β∆′
φ−(∆

′)−ZH

(
4π2β

β2 +Λ2
−

)
e−β

c
12

∫
Λ−

−Λ−
dt |φ̂(t)|

≤
∫

∆+δ

∆−δ

d∆
′
ρ(∆′) (11.42)

where Λ− = 2π

ε
and ZH(β) is the contribution from the heavy states and defined as

ZH(β) = ∑
∆>∆H>

c
12

e−β(∆− c
12) . (11.43)
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Now we make the following choice for φ−:

φ−(∆
′) =

cos2
(

π(∆′−∆)
ε

)
1−4

(
∆′−∆

ε

)2 , f (∆′) =
cos2

(
π∆′

ε

)
1−4

(
∆′
ε

)2 (11.44)

This function f has following properties:

f (∆′)≤Θ

(
∆
′ ∈
[
−ε

2
,

ε

2

])
(11.45)

f̃ (t) = 0 for |t| ≥ 2π

ε
(11.46)

f̃ (0) = 0 ⇒ c− = 0 (11.47)

Since c− = 0, one can not readily evaluate the integral appearing in (11.42) by saddle point

method and deduce exp [β(∆−δ)]
∫

d∆′ρ0(∆
′)e−β∆′φ−(∆

′) = c−ρ0(∆), so we look for sublead-

ing corrections to the saddle point approximation. We find that the leading behavior is given by,

after setting β = π
√ c

3∆
,

exp [β(∆−δ)]
∫

d∆
′
ρ0(∆

′)e−β∆′
φ−(∆

′) =Cρ0(∆) , (11.48)

where C turns out to be

C =
∫

∞

0
dx

(
cos2 (π x

ε

)
1−4 x2

ε2

)
exp

[
−x2

2π
√ c

3∆
3
2

]
. (11.49)

We remark that C > 0 for any finite ∆ and it becomes 0 only at infinitely large ∆. The second

piece in the eq. (11.42) for large ∆ goes as ρ0(∆)
1− 1

2

(
1− 1

ε2

)
. The analysis for this second

term is exactly same as done in [232]. For sufficiently large ∆, it can be numerically verified

that ρ0(∆)
1− 1

2

(
1− 1

ε2

)
is subleading compared to Cρ0(∆) as long as ε > 1 (we also provide an

analytical proof later on). Here we have

ρ0(∆) =
∆→∞

( c
48∆3

) 1
4 exp

[
2π

√
c∆

3

]
(11.50)

In fact one can analytically show that ρ0(∆)
1− 1

2

(
1− 1

ε2

)
is subleading to Cρ0(∆) for large
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∆. One way to show this is to have an estimate for C. We start with the observation that the

integrand is positive in
(
0, ε

2

)
and negative in

(
ε

2 ,∞
)
. Furthermore, we have

∫
∞

0
d∆
′ f (∆′) = 0 (11.51)

Using the above facts, one can always choose 0 < ε1 <
ε

2 and ε

2 < ε2 < ∞ such that

∫
ε1

0
d∆
′ f (∆′) =−

∫
∞

ε2

d∆
′ f (∆′) (11.52)∫

ε2

ε1

d∆
′ f (∆′) = 0 (11.53)

This is basically guaranteed by the continuity. We choose ε1 such that 0 < ε1 <
ε

2 and consider

the function F(y) =
∫ y

ε1
dx f (x). Now F(y) is a continuous function. It is positive when y = ε

2

and negative when y→ ∞. Thus by continuity, there exists ε

2 < ε2 < ∞ such that the eq. (11.52)

holds. The shaded region in the figure. 11.7 is the area under the function f restricted to the

interval [ε1,ε2] so that the eq. (11.52) is satisfied.

Function for Spectral Gap

1 2 3 4
x

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0
f(x)

Figure 11.7: The function
(

cos2(π
x
ε)

1−4 x2

ε2

)
, the shaded region is the area under the function

restricted to the interval [ε1,ε2]. Here ε1 = 0.25,ε = 1.01,ε2 = 0.819. These are chosen to
ensure the shaded area is 0.
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Now we note that

∫
ε2

ε1

dx f (x)exp

[
−x2

2π
√ c

3∆
3
2

]
≥ 0 (11.54)

and

∫
ε1

0
dx f (x)exp

[
−x2

2π
√ c

3∆
3
2

]
≥ exp

[
−ε2

1

2π
√ c

3∆
3
2

]∫
ε1

0
dx f (x) (11.55)

∫
∞

ε2

dx f (x)exp

[
−x2

2π
√ c

3∆
3
2

]
≥ exp

[
−ε2

2

2π
√ c

3∆
3
2

]∫
∞

ε2

dx f (x) (11.56)

where in the second inequality, we have used negativity of f (x) for x > ε

2 . Combining the last

four equations i.e (11.52),(11.54),(11.55),(11.56) we can write

C ≥Ω

(
exp

[
−ε2

1

2π
√ c

3∆
3
2

]
− exp

[
−ε2

2

2π
√ c

3∆
3
2

])
'

∆→∞

(
ε2

2− ε2
1
)

Ω

2π
√ c

3∆
3
2

> 0 (11.57)

where Ω =
∫ ε1

0 dx f (x) > 0 is an order one positive number. This clearly proves that as long

as ε > 1, we can neglect the second piece i.e. contributions from the heavy states due to its

subleading nature. In fact, one can do much better and show that6 C falls like ∆−3/4 by noting

the following:

C =
επ

8
exp

[
− 1

8π
√ c

3∆3/2

]
Erfi

 1

2
√

2π
√ c

3∆3/4


− επ

8
e
−

√
3

8π
√

c∆3/2 Im

Erf


√

π

2

(
2π+ i

√
3

2π
√

c∆3/2

)
4
√

3
√

1√
c∆3/2

 '
∆→∞

ε

8

(
3

64c

)1/4

∆
−3/4 . (11.58)

To summarize, we have proved that for sufficiently large ∆,

∫
∆+ ε

2

∆− ε

2

d∆
′
ρ(∆′)≥Cρ0(∆)> 0 (11.59)

Therefore we have been able to show that the asymptotic gap between two consecutive

operators is bounded above by ε, where ε > 1. Now one can choose ε to be arbitrarily close to 1,

6We thank Alexander Zhiboedov for pointing this out in an email exchange.
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which proves that the optimal bound is exactly 1. The analysis can be carried over to the case for

Virasoro primaries, as pointed out in [232]. This implies that the asymptotic gap between two

consecutive Virasoro primaries is bounded above by 1, thereby proves the conjecture made in

[232].

11.5 Brief discussion

In this work, we have improved the existing bound on the O(1) correction to the density

of states in 2D CFT at high energy and proven the conjectured upper bound on the gap between

Virasoro primaries. In particular, we have shown that there always exists a Virasoro primary in

the energy window of width greater than 1 at large ∆.

We have provided a systematic way to estimate how tight the bound can be made using

bandlimited functions. Since there is still a gap between the achievable bound and the bound

on the bound, there is scope for further improvement. Ideally, one would like to close this gap,

which might be possible either by sampling more points and leveraging the positive definiteness

condition on a bigger matrix, or by choosing some suitable function which would make the

achievable bound closer to the bound on the bound. Another possible way to obtain the bound on

bound is to use a known 2D CFT partition functions, for example 2D Ising model and explicitly

evaluate s(δ,∆). It would be interesting to see how the bound on bound obtained in this paper

compares to the one which can be obtained from the 2D Ising model. For example, one can

verify that the bound on bound obtained here is stronger than that could be obtained from 2D

Ising model7 for δ = 1. It would be interesting to further explore this.

The utility of the technique developed here lies beyond the O(1) correction to the

7We thank Alexander Zhiboedov for raising this question of how our bound compares to s(1.7,∆) for the 2D
Ising model, as found in [232].
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Cardy formula. We expect the technique to be useful whenever one wants to leverage the

complex Tauberian theorems. As emphasized in [232], the importance of Tauberian theorems

lies beyond the discussion of 2D CFT partition functions, especially in investigating Eigenstate

Thermalization Hypothesis [235, 236, 237, 238] in 2D CFTs[239, 240, 241, 242, 243, 244, 245,

246, 247, 248, 249]. We end with a cautious remark that if we relax the condition of using

bandlimited functions, the bound on bounds would not be applicable and it might be possible to

obtain nicer achievable bounds on the O(1) correction to the Cardy formula.
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Appendix A

Weyl Consistency Conditions in Non
Relativistic Quantum Field Theory

A.1 Consistency Conditions for 2+1d NRCFT

We give below the consistency conditions for the d = 2 theory. In the ∂t∇
2 sector they

are given for arbitrary z; else z = 2 is assumed. The conditions in the ∂t∇
2 sector are as follows:

σ∂tσ
′
∂iN∂

igα : −β
γ
∂γρ1α−ρ1γ∂αβ

γ +2ρα−2∂α j+ p4γαβ
γ = 0 (A.1a)

σ∂tσ
′
∇

2gα : −b4σ∂αβ
σ−β

σ
∂σb4α + x4γαβ

γ +2b8α = 0 (A.1b)

∇
2
σ∂tσ

′ : 2k+2m− zl2−b4αβ
α +β

αb9α = 0 (A.1c)

−σ
′
∂tσ∇

2N : 2 j+β
α

∂αl2 = b6αβ
α (A.1d)

σ
′
∂iσ∂

iN∂tgα : −2zb6α−2zρ6α +ρ5γ∂αβ
γ +β

γ
∂γρ5α−β

γ p4αγ = 0 (A.1e)

σ
′
∇

2
σK : 2b+β

α
∂αm+ z j = β

αb8α (A.1f)

σ
′
∂tσR : 2b−β

α
∂αk+b5αβ

α = 0 (A.1g)

σ
′
∂iσK∂

igα : −2x5αγβ
γ +β

γ
∂γb7α− zρα

+b7γ∂αβ
γ−2b8γ∂αβ

γ + z∂α j = 0 (A.1h)

σ
′
∇

2
σ∂tgα : − x4αγβ

γ +2b5α− zb6α +b9γ∂αβ
γ +β

γ
∂γb9α = 0 (A.1i)

∂iσ∂tσ
′
∂

igα : −2b4γ∂αβ
γ +2b7α + x6γαβ

γ−2b3αγβ
γ− zρ1α = 0 (A.1j)
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σ∂tσ
′
∂igα

∂
igβ : −β

γ
∂γb3αβ−b3γβ∂αβ

γ

−b3γα∂ββ
γ−b4γ∂α∂ββ

γ + x3γαββ
γ +2x5αβ = 0 (A.1k)

−σ∂iσ
′
∂tgα

∂
igβ : −2x3αγββ

γ + x6σβ∂αβ
σ

+ x6αγ∂ββ
γ−2x4ασ∂ββ

σ +β
γ
∂γx6αβ− zp4αβ = 0 (A.1l)

σ∂tσ
′∂

iN
N

∂iN
N

: β
γ
∂γρ3−2ρ4−β

α
ρ6α = 0 (A.1m)

σ∂iσ
′K∂

iN : 2z j−β
α

ρα +β
α

∂αl1−2zρ4 = 0 (A.1n)

∂iσ∂tσ
′
∂

iN : 2zρ3−2l1 +2zl2 +2 j+ρ1αβ
α = 0 (A.1o)

σ
′
∂

j
σ∂

iN
(
Ki j− 1

2Khi j
)

: 2z f1−β
α f3α + z f4−β

α
∂α f7 = 0 (A.1p)

σ
′
∂

j
σ∂

igα
(
Ki j− 1

2Khi j
)

: 2 f2αγβ
γ + z f3α−β

γ
∂γ f8α− f8γ∂αβ

γ +2 f5γ∂αβ
γ = 0 (A.1q)

σ
′
∇

i
∂

j
σ
(
Ki j− 1

2Khi j
)

: z f4 +β
α f5α−β

α
∂α f6 = 0 (A.1r)

The conditions coming from ∂2
t sector are as follows:

σ
′
∂tσK : 4d−β

α
∂α f +β

αwα = 0 (A.2a)

σ
′
∂tσ∂tgα : −2wα +β

γ
∂γbα +bγ∂αβ

γ−2χ0αγβ
γ = 0 (A.2b)

The conditions coming from the ∇4 sector are given by:

∂iσ
′
∇

2
σ∂

igα : −2ρ13α−β
γ
ρ21αγ +2a7α

+2χ1α +2a3αγβ
γ +2a4γ∂αβ

γ = 0 (A.3a)

σ
′
∇

2
σ∂igα

∂
igβ : −β

γt2γαβ +β
γ
∂γa3αβ +a3αγ∂ββ

γ

+a3βγ∂αβ
γ +a4γ∂α∂ββ

γ +2y5αβ−2x2αβ = 0 (A.3b)

σ
′
∇

2
σ∇

2gα : 2a5α +β
γ
∂γa4α +a4γ∂αβ

γ−2ρ22αγβ
γ−2ρ24α = 0 (A.3c)

σ
′
∂iσ∂

igα
∇

2N : −2x2αγβ
γ +β

γ
∂γρ13α +ρ13γ∂αβ

γ

−2ρ24γ∂αβ
γ−2ρ25α = 0 (A.3d)
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σ
′
∂iσ∂

iN∂ jN∂
jgα : −2p5βαβ

β +β
γ
∂γρ10α +ρ10γ∂αβ

γ−4ρ25α−4ρ9α = 0 (A.3e)

σ
′
∂iσ∂

igα
∂ jgβ

∂
jgγ : −4xασβγβ

σ +β
σ
∂σtαβγ + tσβγ∂αβ

σ + tασγ∂ββ
σ + tασβ∂γβ

σ

−2t2σβγ∂αβ
σ +ρ21ασ∂β∂γβ

σ−2xαβγ = 0 (A.3f)

σ
′
∂iσ∂

igα
∂ jN∂

jgβ : −4p5αβ−2ρ26βγ∂αβ
γ

+ x1αγ∂ββ
γ + x1γβ∂αβ

γ +β
γ
∂γx1αβ−2xαγββ

γ = 0 (A.3g)

σ∂iσ
′
∂

igα
∇

2gβ : −β
γ
∂γρ21αβ−ρ21γβ∂αβ

γ−ρ21αγ∂ββ
γ

+4ρ22γβ∂αβ
γ +2ρ26αβ +2t2βγαβ

γ = 0 (A.3h)

σ
′
∇

2
σ∇

2N : −4ρ23−β
γ
ρ24γ +β

γ
∂γh2−2c = 0 (A.3i)

σ
′
∂iσ∂

iN∇
2N : 4p4−β

α
∂αρ12 +8ρ23 +β

γ
ρ25γ = 0 (A.3j)

σ
′
∂iσ∂

iN∇
2gα : −4yα +β

γ
∂γρ7α +ρ7γ∂αβ

γ−4ρ24α−β
γ
ρ26γα = 0 (A.3k)

−σ
′
∇

2
σR : −a5αβ

α +4a+2c+β
α

∂αn = 0 (A.3l)

σ
′
∂iσR∂

igα : −2y5αγβ
γ−2χα +2∂αc

+β
γ
∂γa7α +a7γ∂αβ

γ−2a5γ∂αβ
γ = 0 (A.3m)

σ∇
2
σ
′
∂

igα
∂iN : −β

γ
∂γχ1α−χ1γ∂αβ

γ +2∂αc−2χα +ρ26αγβ
γ +2ρ25α = 0 (A.3n)

∂iσ∇
2
σ
′
∂

iN : 2h1 +4h2−2c+β
α

χ1α +4χ3−β
α

ρ7α−2ρ12 = 0 (A.3o)

σ
′
∂iσ∂

iN∂ jN∂
jN : 8p3−β

α
∂αρ11 +ρ9αβ

α +4p4 = 0 (A.3p)

σ∂iσ
′
∂ jgα

∂
jgβ

∂
iN : 4xαβ−ρ7γ∂β∂αβ

γ−ρ1γβ∂αβ
γ

−ρ1γα∂ββ
γ−β

γ
∂γρ1αβ +β

γxγαβ +4x2αβ = 0 (A.3q)

σ∂iσ
′R∂

iN : 4c+β
α

∂αh1−β
α

χα−4χ4 = 0 (A.3r)

σ
′
∇

2
σ∂

iN∂iN : 2χ4 +β
α

∂αχ3−β
αyα−2p4 = 0 (A.3s)

σ
′
∂iσ∂ jN∂

jN∂
igα : −2xαγβ

γ +β
γ
∂γρ8α +ρ8γ∂αβ

γ−2ρ9α−2yγ∂αβ
γ = 0 (A.3t)
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A.2 Anomaly ambiguities

As explained in Sec. 2.3.2 the freedom to shift counter-terms by finite amount makes

anomaly coefficients ambiguous. We list here the precise form of these ambiguities, in the ∂t∇
2

sector they are given for arbitrary z; else z = 2 is assumed :

A.2.1 ∂2
t Sector

δ f =−4D−β
αWα (A.4a)

δwα =−
[
β

γ
∂γWα +Wγ∂αβ

γ
]

(A.4b)

δbα =−2Wα−2X0αγβ
γ (A.4c)

δχ0αβ =−β
γ
∂γX0αβ−X0αγ∂ββ

γ−X0αγ∂ββ
γ (A.4d)

δd =−β
α

∂αD (A.4e)

δe =−β
α

∂αE (A.4f)

A.2.2 ∂t∇
2 Sector

δρ4 =−β
α

∂αP (A.5)

δx5αβ =−P3γ∂α∂ββ
γ−β

γ
∂γX5αβ−X5γβ∂αβ

γ−X5γα∂ββ
γ (A.6)

δρα =−β
γ
∂γPα−Pγ∂αβ

γ (A.7)

δ j =−β
α

∂αLδb8α =−β
γ
∂γP3α−P3γ∂αβ

γ (A.8)

δb =−β
α

∂αB (A.9)

δm = 2B+ zL−P3αβ
α (A.10)

δl1 =−2zP+2zL−β
αPα (A.11)
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δb7α =−2P3γ∂αβ
γ + z∂αL− zPα−2X5αγβ

γ (A.12)

δρ6α =−Xγ∂αβ
γ−β

γ
∂γXα (A.13)

δx3αβγ =−β
σ
∂σX3αβγ−X3σβγ∂αβ

σ−X3ασγ∂ββ
σ−X3ασβ∂γβ

σ−X4ασ∂γ∂ββ
σ (A.14)

δp4αβ =−β
γ
∂γP4αβ−P4γβ∂αβ

γ−P4αγ∂ββ
γ (A.15)

δb6α =−β
γ
∂γB6α−B6γ∂αβ

γ (A.16)

δx4αβ =−X4γβ∂αβ
γ−β

γ
∂γX4αβ−X4αγ∂ββ

γ (A.17)

δb5α =−β
γ
∂γB5α−B5γ∂αβ

γ (A.18)

δb9α = 2B5α− zB6α−β
γX4αγ (A.19)

δρ5α =−2zXα−2zB6α−P4αγβ
γ (A.20)

δx6αβ =−X4αγ∂ββ
γ−2X3αγββ

γ− zP4αβ (A.21)

δρ3 =−2P−β
αXα (A.22)

δb3αβ =−2X5αβ−X3γβαβ
γ (A.23)

δρ1α =−2Pα +∂α2L−P4γαβ
γ (A.24)

δl2 = 2L−B6αβ
α (A.25)

δb4α =−2P3α−X4γαβ
γ (A.26)

δk =−2B−B5αβ
α (A.27)

δ f1 =−β
α

∂αF1 (A.28)

δ f2αβ =−β
γ
∂γF2αβ−F2γβ∂αβ

γ−F2αγ∂ββ
γ−F5γ∂α∂ββ

γ (A.29)

δ f3α =−β
γ
∂γF3α−F3γ∂αβ

γ (A.30)

δ f4 =−β
γ
∂γF4 (A.31)

δ f5α =−β
γ
∂γF5α−F5γ∂αβ

γ (A.32)

δ f6 =−zF4−F5αβ
α (A.33)

δ f7 =−2zF1−F3αβ
α− zF4 (A.34)
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δ f8α =−zF3α−2F2γαβ
γ−2F5γ∂αβ

γ (A.35)

A.2.3 ∇4 Sector

δp3 =−β
α

∂αP3 (A.36)

δxαβ =−Yγ∂β∂αβ
γ−Xγβ∂αβ

γ−Xγα∂ββ
γ−β

γ
∂γXαβ (A.37)

δρ9α =−β
γ
∂γP1α−P1γ∂αβ

γ (A.38)

δp4 =−β
α

∂αP4 (A.39)

δyα =−β
γ
∂γYα−Yγ∂αβ

γ (A.40)

δχ4 =−β
α

∂αQ (A.41)

δχ3 = 2Q−β
αYα−2P4 (A.42)

δρ11 =−8P3−P1αβ
α−4P4 (A.43)

δρ8α =−2P1α−2Xαγβ
γ−2Yγ∂αβ

γ (A.44)

δxαβγδ =−β
σ
∂σXαβγδ−Xσβγδ∂αβ

σ−Xασγδ∂ββ
σ−Xαβσδ∂γβ

σ

−Xαβγσ∂γβ
σ−T2σαβ∂δ∂γβ

σ (A.45)

δxαβγ =−β
σ
∂σXαβγ−Xσβγ∂αβ

σ−Xασγ∂ββ
σ−Xαβσ∂γβ

σ−P26ασ∂γ∂ββ
σ (A.46)

δx2αβ =−X2γβ∂αβ
γ−X2γα∂ββ

γ−β
γ
∂γX2αβ−P24γ∂α∂ββ

γ (A.47)

δt2αβγ =−β
σ
∂σT2αβγ−T2σβγ∂αβ

σ−T2ασγ∂ββ
σ−T2αβσ∂γβ

σ−2P22σα∂γ∂ββ
σ (A.48)

δy5αβ =−A5γ∂α∂ββ
γ−Y5αγ∂ββ

γ−Y5βγ∂αβ
γ−β

γ
∂γY5αβ (A.49)

δa3αβ =−2X2αβ−β
γT2γαβ +2Y5αβ (A.50)

δρ1αβ =−4Xαβ−Xγαββ
γ−4X2αβ (A.51)

δtαβγ =−4Xασβγβ
σ−2T2σγβ∂αβ

σ−2Xαβγ (A.52)

δp5αβ =−β
γ
∂γP5αβ−P5γβ∂αβ

γ−P5γα∂ββ
γ (A.53)
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δρ25α =−β
γ
∂γP25α−P25γ∂αβ

γ (A.54)

δρ26αβ =−β
γ
∂γP26αβ−P26γβ∂αβ

γ−P26αγ∂ββ
γ (A.55)

δχα =−β
γ
∂γQα−Qγ∂αβ

γ (A.56)

δχ1α = 2Qα−2∂αH−2P25α−β
γP26αγ (A.57)

δρ10α =−4P1α−4P25α−2P5γαβ
γ (A.58)

δx1αβ =−4P5αβ−2Xαγββ
γ−2P26βγ∂αβ

γ (A.59)

δρ23 =−β
γ
∂γP23 (A.60)

δρ24α =−β
γ
∂γP24α−P24γ∂αβ

γ (A.61)

δc =−β
α

∂αH (A.62)

δh2 =−2H−4P23−β
γP24γ (A.63)

δρ12 =−4P4−8P23−P25αβ
α (A.64)

δρ13α =−2P24γ∂αβ
γ−2P25α−2β

γX2αγ (A.65)

δρ22αβ =−β
γ
∂γP22αβ−P22αγ∂ββ

γ−P22γβ∂αβ
γ (A.66)

δa5α =−β
γ
∂γA5α−A5γ∂αβ

γ (A.67)

δa4α = 2A5α−2β
γP22γα−2P24α (A.68)

δρ7α =−4Yα−4P24α−P26γαβ
γ (A.69)

δρ21αβ =−2T2αγββ
γ−4P22γβ∂αβ

γ−2P26αβ (A.70)

δa =−β
α

∂αA (A.71)

δn = 4A+2H−A5αβ
α (A.72)

δh1 = 4H−4Q−β
αQ1α (A.73)

δa7α =−2A5γ∂αβ
γ−2Y5αγβ

γ−2Qα +2∂αH (A.74)
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A.3 S-theorem: 0+1D conformal quantum mechanics

One may wonder whether the formalism that leads to the Weyl anomaly and consistency

conditions can be used for the case of d = 0. One encounters an immediate obstacle when

attempting this. There is no immediate generalization of the trace anomaly equation (2.23).

The problem is that there is no extension of the action integral that gives invariance under the

local version of rescaling transformations, because there is no extrinsic curvature tensor at

our disposal. The naive generalisation of the Callan-Symanzik equation specialized to d = 0,

H = βαOα, cannot hold. In fact, for example, the free particle is a scale invariant system with

H 6= 0.

The inverse square potential serves as a test ground for a simple realisation of the quantum

anomaly, where the classical scale symmetry is broken by quantum mechanical effects [250]

leading to dimensional transmutation i.e, after renormalization the quantum system acquires

an intrinsic length scale [251, 252]. Studies have been made of non-self-adjointness of the

Hamiltonian in the strongly attractive regime and how to obtain its self-adjoint extension, a

procedure that effectively amounts to renormalisation [253, 254]. The system is also shown to

exhibit limit cycle behaviour in renormalization group flows [255, 256]. This potential appears

in different branches of physics, from nuclear physics [256, 257] and molecular physics [258]

to quantum cosmology [259, 260, 261] and the study of black holes [262] Given this, it is of

interest to understand how quantum effects break scale symmetry in non-relativist quantum

mechanics. We will prove a general theorem concerning the breaking of scale symmetry.

In the quantum mechanical description of a scale invariant system, the Hamiltonian H

and the generator of scale transformations D obey the following commutation relation:

[D,H] = izH (A.75)

where z is the dynamical exponent of the theory. We will show an elementary S-Theorem, that
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(A.75) is incompatible with H being Hermitian on a domain containing the state1 D|E〉, where

|E〉 is any non-zero energy eigenstate. The S-Theorem can be used to deduce that classically

scale invariant systems, e.g., the inverse square potential, cannot be quantized without loosing

either unitarity or scale invariance if we insist on having bound states with finite non-zero binding

energy.

To prove the theorem, we consider the eigenstates |E〉 of the Hamiltonian H and take

expectation value of the [D,H] in these eigenstates. We have

〈E|[D,H]|E〉= 〈E|DH|E〉−〈E|HD|E〉 (A.76)

Assuming H is hermitian and D is well defined we have

〈E|[D,H]|E〉= 0 (A.77)

On the other hand, scale invariance, Eq. (A.75), implies

〈E|[D,H]|E〉= iz〈E|H|E〉 6= 0 (A.78)

Comparing (A.77) and (A.78), proves the theorem. It deserves mentioning that the mismatch is

not due to the real part of the quantity 〈E| [D,H] |E〉 since,

Re(〈E| [D,H] |E〉) = 0 (A.79)

is consistent with

Re(〈E|izH|E〉) = 0 (A.80)

That the mismatch between (A.77) and (A.78) lies in the imaginary part hints at the fact that

H can not be hermitian if we have scale invariance. We recall that hermiticity of H crucially

depends on vanishing of a boundary term, which is imaginary when we consider quantities like

〈E|H|E〉.
1That is, the action of D on non-zero energy eigenstates is well defined.
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For a simple illustration of S-theorem consider the free particle with one degree of

freedom, H = 1
2 p2 and D = 1

2(xp+ px)− tH. Consider first the particle in a finite periodic box

with length L. The operator algebra of the free particle holds regardless of the presence of the

periodic boundaries, so the S-theorem holds and it tells us that either H is not hermitian or D|p〉

is not a state. It is instructive to look carefully at the derivation of (A.77) and (A.78) in this

context. An elementary computation gives

〈p|(HD|p〉)−〈p|(DH|p〉) =−ip2 (A.81)

which is consistent with the scaling algebra

[D,H] = 2iH , (A.82)

but consistency comes at the expense of rendering H non-hermitian on a domain which contains

the state D|p〉. Indeed, for the periodic box D|p〉 does not belong in the Hilbert space since

〈x|D|p〉 is not periodic. Hence, the apparent loss of hermiticity is irrelevant as it involves

only functions that are not states. In the boundary free case (L→ ∞) the normalization of

the continuum of energy eigenfunctions is by a Dirac-delta distribution, and the norm of the

functions 〈x|D|p〉 involves up to two derivatives of the distribution. If we include these functions

in the Hilbert space the Hamiltonian is not hermitian. On the other hand, if we choose the Hilbert

space to be that of square integrable functions, then H is hermitian but neither 〈x|p〉 nor 〈x|D|p〉

are in the Hilbert space.

In contrast, consider the inverse square potential problem. For sufficiently strong attrac-

tive potential there are normalizable bound states |E〉, and the state D|E〉 is properly normalized.

The Hamiltonian is hermitian, but this case requires reguralisation and renormalization and scale

symmetry is broken.

This is in fact a statement of a more general result. A corollary of the S-theorem is that

we cannot have (properly normalized) bound states with non-zero energy in a scale invariant
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system if we insist on the Hamiltonian being hermitian on the Hilbert space. As in the previous

example, this follows from observing that if there exists a properly normalized state |E〉, then

D|E〉 is also a properly normalized state since the wave-function vanishes sufficiently fast at

infinity. This result is consistent with representation theory: a discrete spectrum {En} cannot

form a representation of a transformation which acts by E→ λzE for continuous λ, (except if

the only allowed finite energy value is E = 0). For example, it is well known that for the inverse

square problem in the strongly attractive regime, continuous spectrum is an illusion since in that

regime, H is no more Hermitian. To make H hermitian, we need to renormalize the problem,

breaking the scale symmetry.

The S-theorem can be generalised to to any Hermitian operator A with non zero scaling

dimension α, that is, [D,A] = iαA. The operator A can not be Hermitian on a domain containing

D|A〉 where |A〉 is the eigenstate of operator A. In particular, if we want A to be hermitian

on a Hilbert space, L2, then the state D|A〉 can not belong to L2. For example, A can be the

momentum operator p, which is hermitian on a rigged Hilbert space and has a non-zero scaling

dimension. This generalized S-theorem implies that D|p〉 can not belong to the rigged Hilbert

space, which is indeed the case.
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Appendix B

On the Heat Kernel and Weyl Anomaly of
Schrödinger invariant theory

B.1 Technical Aspects of Heat Kernel for one time derivative
theory

Here’s one more perspective of why δ(m) appears in heat kernel for one-time derivative

theory using the eigenspectra of the operator Mg with one time derivative. The Minkowski MM,g

operator is given by

MM,g = 2ım∂t− (−∇
2)z/2 (B.1)

and eigenspectra is given by 2mω− kz. Now, we can not directly define the heat kernel since

the eigenvalues range from −∞ to ∞, and therefore it blows up. A similar situation also arises

in relativistic theory where the eigenspectra is given by −ω2 + k2. There we define the heat

kernel by Euclideanizing the time co-ordinate so that the eigenvalues become ω2 + k2 ≥ 0 and

this positive definiteness allows for convergence. Technically, we can always define heat kernel

for an operator M as long as the eigenvalues of M have positive real part. Building up on our

experience to deal with the relativistic case, we use analytic continuation here as well. We define

the Euclidean operator as

ME,g = 2m∂τ +(−∇
2)z/2 (B.2)
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with eigenspectra given by λk,ω =−2ımω+ kz. Evidently, Re
(
λk,ω

)
≥ 0, hence we have a well

defined heat kernel, given by

KME,g
= Tre−sME,g =

∫ ddk
(2π)d e−skz

∫ dω

2π
e−2mısω =

δ(m)

2s
2

Γ(d
2 )

Γ
(d

z +1
)

d
(√

4πs
2
z

)d (B.3)

Similarly, the Euclidean heat kernel is well defined for the operator Mrc;d+2 = ∇2
t,x−

(−∇2
xi)

z/2, where i = 1,2, . . .d and x≡ xd+2. If we Wick rotate to Euclidean time τ, the eigen-

values of the operator Mrc;d+2 are given by ω2 +(kd+2)2 +(|kkk|2)z/2 ≥ 0. The presence of δ(m)

can more formally be treated with an extra regulizer η, as discussed in the last few paragraphs of

3.4.2 for z = 2; a similar argument, using the regulator η, applies to any z.

B.2 Riemann normal co-ordinate and coincident limit

In this appendix we show x− independence of quantities relevant to the computation of

the coincidence limit of the Heat Kernel when the light cone reduction technique is used. We

assume that the daughter theory is coupled to a Newton Cartan structure, satisfying the Frobenius

condition, i.e., nnn∧dnnn = 0 is satisfied. This condition allows a foliation of the manifold globally.

Thus, without loss of generality, the metric is given by

gµν = nµnν +hµν

nµ = (n,0,0, · · · ,0) , hτν = 0.
(B.4)

Using (3.9) and the fact hi j is a positive definite matrix, we thus have

hτν = 0 , vµ =
(1

n ,0,0, · · · ,0
)
. (B.5)

The form of the metric, to which the reduced theory is coupled, corresponds to a parent space-

time metric GMN , with non-vanishing components given by

G−+ = n , Gi j = hi j . (B.6)
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In addition, we assume that the parent space-time admits a null isometry so that hi j and n are

independent of x−.

In what follows, we will work with this particular choice of metric GMN (B.6). Without

loss of generality, we choose x1 = (0,0, · · · ,0) (we call it point P) and construct the Riemann

normal co-ordinate with the origin as the base point. The Riemann normal co-ordinate yM, is

given in terms of the original co-ordinate xM as follows [263]:

yM = xM + f M
ABxAxB + f M

ABCxAxBxC + · · · , (B.7)

where the index M runs over +,−,1,2,3, · · · ,d. In the coincident limit of the reduced theory,

i.e., xµ
2→ 0, for µ =+,1,2, · · · ,d (with x−2 possibly different from 0), we claim that

[
yµ

2
]
= 0,

[
y−2
]
= x−2 , (B.8)

where henceforth the square bracket is used to denote the coincident limit in the reduced theory.

We note that [ f M
ABC...x

AxBxC · · · ] = 0 whenever any of the indices is not −. Recall that

f M
ABC··· are constructed out of derivatives acting on metric. Thus, f M

−−·· ·−︸ ︷︷ ︸
N indices

can be non-zero only

if it contains N factors of the metric tensor G−Ki , where Ki is a running index with i = 1,2, · · · ,N.

This is because G−−= 0 and derivatives can not carry the “−” index as the metric components are

x−-independent. Moreover, by dimensional analysis f M
−−·· ·−︸ ︷︷ ︸

N

has N−1 derivatives f M
−−·· ·−︸ ︷︷ ︸

N

.

Schematically, this assumes one of the following forms

∂A1 · · ·∂AN−1G−K1 · · ·G−KN GMAiGAi1 K j1 GAi2A j2 · · ·GKi3K j3 · · · , (B.9)

∂A1 · · ·∂AN−1G−K1 · · ·G−KN GMKiGAi1 K j1 GAi2A j2 · · ·GKi3K j3 · · · . (B.10)

Here the derivatives are assumed to act on all possible combinations, resulting in different
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possible terms. For example, for N = 2, one can have the following terms:

GMA1GK1K2G−K2∂A1G−K1 ,

GMK2GA1K1G−K1∂A1G−K2 ,

GMK2GA1K1G−K2∂A1G−K1 .

(B.11)

There can not be any x− derivative for a term to be non-vanishing. This implies the indices Ai are

contracted among themselves, except possibly for one contracted with GMAi , and the indices Ki

are contracted among themselves. But since G−K = 0 except for G−+, and G++ = 0, any term

for which two factors of the metric tensor, G−Ki1
and G−Ki2

, are contracted via GKi1Ki2 vanish.

Next, we show that [∆V M] = 1. The expression for ∆V M, Eq, (3.56), involves bi-

derivatives of the geodetic interval, Eq. (3.55), and the determinant of the metric. To begin with,

we turn our attention to the determinant of the metric and note that

[
G′(y2)

]
= J2(0,x−2 ,0, · · · ,0)G(0,x−2 ,0, · · · ,0) , (B.12)

where a prime indicates quantities in Riemann normal co-ordinate and J is the Jacobian associated

with the co-ordinate transformation (B.7). The x− independence in the original co-ordinate

guarantees that G(0,x−2 ,0, · · · ,0) = G(0,0,0, · · · ,0), hence we have

[
G′(y2)

]
=

(
J(0,x−2 ,0, · · · ,0)
J(0,0,0, · · · ,0)

)2

G′(0). (B.13)

Next consider the geodetic interval from point P to point Q. In Riemann normal co-ordinates [263]

yM
2 = yM(Q) = yM

1 + sQ
dxM

ds

∣∣∣∣
s=0

, (B.14)

where sQ is the value of the affine parameter at Q and s = 0 at P, with yM
1 = yM(P). Using

Eq. (3.55), hence we have

2σ(y2,y1) = GMN(0)(yM
2 − yM

1 )(yN
2 − yN

1 ) = G′MN(0)(y
M
2 − yM

1 )(yN
2 − yN

1 ) (B.15)
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where we have used G′MN(0) = GMN(0). It follows that

∆V M =

(
G′(y2)

G′(0)

)−1/2

. (B.16)

We have continued back to Minkowskian signature (the definition in Eq. (3.56) is for metric

with Euclidean signature). Since ∆V M is a bi-scalar, use of Eqs. (B.13) and (B.16) and of

J(0,0,0, · · · ,0) = 1 gives

[∆V M] =

(
J(0,x−2 ,0, · · · ,0)
J(0,0,0, · · · ,0)

)−1

= J−1(0,x−2 ,0, · · · ,0) (B.17)

in the original co-ordinate system, xM. Equation (B.17) is consistent with the result that ∆V M = 1

when all the co-ordinates, including x−, coincide, i.e., when x−2 = 0.

We aim to show that [
det
(

∂yM

∂xN

)]
= det

([
∂yM

∂xN

])
= 1 (B.18)

From Eq. (B.7) we have[
∂yM

∂xN

]
= δ

M
N +( f M

N−+ f M
−N)x

−+( f M
N−−+ f M

−N−+ f M
−−N)x

−x−+ · · · (B.19)

Consider first the lowest two terms in the expansion. Explicitly, we have [263]

2 f M
N− = 2 f M

−N = Γ
M
N− =−1

2
GMi

∂iGN−−
1
2

GM+
∂+GN−+

1
2

GM+
∂NG+− . (B.20)

It follows that f M
N− 6= 0 only for M = − or N = +. Similarly, f M

(N−−) 6= 0 provided M = − or

N =+ , since [263]

6 f M
NIJ = Γ

M
NEΓ

E
IJ +∂NΓ

M
IJ (B.21)

By an argument analogous to that below Eqs. (B.11) one can show that [ f M
N−−···−] = 0 (at least

248



three − subscripts). Schematically

[(
∂yM

∂xN

)]
=



1 ∗ ∗ . . . . . . ∗

0 1 0 . . . . . . 0

0 ∗ 1 0 . . . 0
...

... . . . . . .

0 ∗ 0 0 1 0

0 ∗ 0 0 0 1


where a “∗” means a non-zero entry. Thus, the matrix has unit determinant and we have, using

Eq. (B.17),

[∆V M] = 1 . (B.22)

Lastly, we turn to the heat kernel expansion coefficients, an. They are determined by the

recursive relation [75],

nan +∂Mσ∂
Man =−∆

−1/2
V M M

(
∆

1/2
V Man−1

)
, (B.23)

and a0 = 1, where M is the relativistic operator in the parent theory. The condition of x−

independence of [an], [∂ian] and [∂i∂ jan] can be imposed on the recursion self-consistently. To

show this one uses x− independence of [∆V M], [∂i∆V M] and
[
∂i∂ j∆V M

]
, which follows from an

argument similar to the one used to establish Eq. (B.22)

B.3 Explicit Perturbative Calculation of η-regularized Heat
Kernel

In this appendix we give an explicit perturbative computation that shows the vanishing

of the anomaly for a class of curved backgrounds. This serves to verify the general arguments

presented in the body of the manuscript in a specific, simple example, and allows us to study
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explicitly the η regulated Heat Kernel asking in particular whether the η→ 0 limit is a well

defined limit as m 6= 0. To be specific, we compute the heat kernel on a curved background,

characterized by

nµ =

(
1

1−n(x)
,0,0

)
, vµ = (1−n(x),0,0) (B.24)

hi j = δi j ,
√

g =
√

det(nνnν +hµhν) =
1

1−n(x)
. (B.25)

where n(x) is a function of space only and hi0 = 0. The special choice is inspired by [80]and

additionally serves the purpose of affording a direct comparison with that work. We will perform

a perturbative calculation as an expansion in n(x). We will specialize to a 2+ 1 dimensional

Schrödinger field theory coupled to this background. The action is given by

S =
∫

dtd2x N
(

2mφ
†ı 1

N ∂tφ−hi j
∂iφ

†
∂ jφ−ξRφ

†
φ

)
(B.26)

where N(x) = 1
1−n(x) and R is the Ricci scalar of the 3+1 dimensional geometry, on which the

parent theory lives.

As we will see, the result of this calculation is that the Weyl anomaly, corresponding to

the theory described by Eq. (B.26) is given by

AG = 2πδ(m)
(
−aE4 + cW 2 +bR2 +dDMDMR

)
(B.27)

where the coefficients a,b,c,d are given by:

a =
1

8π2
1

360
, b =

1
8π2

1
2

(
ξ− 1

6

)2

,

c =
1

8π2
1

120
, d =

1
8π2

(
1−5ξ

30

)
.

(B.28)

These are exactly the same as in the expression for the Weyl Anomaly of a relativistic
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complex scalar field theory1 living in one higher dimension [49, 50, 51, 52, 53, 54, 55]:

AR =
(
−aE4 + cW 2 +bR2 +dDMDMR

)
. (B.29)

To arrive at this result, we proceed by considering the heat kernel of the following

Euclidean operator, corresponding to the action in Eq. (B.26), namely

ME,c = 2m 1
N ∂τ−D2 +ξR , (B.30)

where we have

D2 =
1
√

g
∂i
(√

ghi j
∂ j
)
= ∂

2 +(1+n)(∂in)∂i , (B.31)

R =−2∂
2n−2n∂

2n− 7
2

∂in∂in+ · · · , (B.32)

−g1/4D2
(

g−1/4
δ(x)

)
=−∂

2
δ(x)+δ(x)

(
1
2

∂
2n+

1
2

n∂
2n+

3
4

∂in∂in
)
. (B.33)

The Euclidean operator can be expressed as the one in flat space-time, perturbed by the

background field n(x):

〈xxx,τ|ME,c|xxx′,τ′〉= 〈xxx,τ|ME, f |xxx′,τ′〉+mP1(x)∂τδ(xxx− xxx′)δ(τ− τ
′)

+P2(x)δ(xxx− xxx′)δ(τ− τ
′) , (B.34)

where the subscript c and f denote the curved and flat space-time respectively while E denote

the Euclidean nature of the operator. Here we have introduced

P1(x) = 2n(x), P2(x) =
(

1
2

∂
2n+

1
2

n∂
2n+

3
4

∂in∂in
)
−ξ

(
2∂

2n+2n∂
2n+

7
2

∂in∂in
)
.

(B.35)

The heat kernel can be obtained as a perturbative expansion of the background fields as

1The Weyl anomaly of a complex scalar field is twice of that of a real scalar field.
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follows:

K(s) = exp
[
−s
(
ME, f +P

)]
=

∞

∑
N=0

(−1)NKN(s) . (B.36)

The KN(s) is defined as follows:

KN(s) =
∫ s

0
dsN

∫ sN

0
dsN−1 · · ·

∫ s2

0
ds1 G(s− sN)PG(sN− sN−1)P · · ·G(s2− s1)PG(s1) . (B.37)

where G(s) = e−sME, f and P is the perturbation (B.34), explicitly given by

〈xxx,τ|P|xxx′,τ′〉= mP1(x)∂τδ(xxx− xxx′)δ(τ− τ
′)+P2(x)δ(xxx− xxx′)δ(τ− τ

′). (B.38)

One can now complete the calculation by using the matrix element of G(s) as given by

Gg,E (s;(xxx2,τ2),(xxx1,τ1))≡ 〈xxx2,τ2|G(s)|xxx1,τ1〉

=
1
π

(
1

4πs

)d/2
[

sη

(2ms− τ2 + τ1)
2 + s2η2

]
e−

(xxx2−xxx1)
2

4s , (B.39)

which corresponds to the heat kernel expression for the η-regulated Euclidean operator: M ′
E,g =

2m∂τ −∇2 + η
√
−∂2

τ , as discussed in the last few paragraphs of 3.4.2.2 This reproduces

Eq. (3.46) as η→ 0.

The evaluation of Eq. (B.37) follows the procedure sketched out in the appendix of [80].

We separate the contributions from P1 and P2 to K1 as follows:

K1P1(s) =

(
η

2

m2 + η2

4

)(
−1

4m2 +η2

)
8m2

(4πs)2

(
P1 +

s
6∂

2P1 +
s2

60∂
2
∂

2P1 + · · ·
)
, (B.40)

K1P2(s) =

(
η

2

m2 + η2

4

)
2

(4πs)2

(
sP2 +

s2

6 ∂
2P2 + · · ·

)
, (B.41)

2In curved space-time, M ′
E,g includes a perturbation n(x)η

√
−∂2

τ , that, however, does not contribute to the

anomaly in the η→ 0 limit. This term’s contribution to K1 is proportional to
η(η2−4m2)

(η2+4m2)
2 that vanishes as η→ 0,

without giving a δ(m) (or any derivative of δ(m)). This term’s contributions to K2 also vanish as η→ 0. We omit
these terms for simplicity for rest of the appendix.
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and for K2, which gets contributions quadratic in P1 and P2, as follows:

K2P1P1(s) =

(
24m2−2η2)
(η2 +4m2)

2

(
2m2η

4m2 +η2

)
1

(4πs)2

(
P2

1 +
s
3P1∂

2P1 +
s
6∂iP1∂iP1

+
s2

180
(
6P1∂

2
∂

2P1 +5∂
2P1∂

2P1 +12∂i∂
2P1∂iP1 +4

(
∂i∂ jP1

)(
∂i∂ jP1

)))
(B.42)

K2P1P2(s) =

(
η

2

m2 + η2

4

)(
−1

4m2 +η2

)
8m2

(4πs)2

(
s
2P1P2

+ s2

12(P2∂
2P1 +P1∂

2P2 +∂iP1∂iP2)+ · · ·
)

(B.43)

K2P2P1(s) = K2P1P2(s) (B.44)

K2P2P2(s) =

(
η

2

m2 + η2

4

)
2

(4πs)2

(
s2

2 P2
2 + · · ·

)
(B.45)

The anomaly is determined by the s-independent terms in KN . In η→ 0 limit, factors of

δ(m) arise, after use of the following easily verifiable limits

lim
η→0

(
η

2

m2 + η2

4

)(
8m2

4m2 +η2

)
= πδ(m) ,

lim
η→0

(
η

2

m2 + η2

4

)
= πδ(m) ,

lim
η→0

24m2−2η2

(η2 +4m2)
2

(
2ηm2

m2 + η2

4

)
= 2πδ(m).

In η→ 0 limit, the s independent terms are given by

K1P1(s) 3
δ(m)

16π

[
− 1

30
∂

2
∂

2n
]
,

K1P2(s) 3
δ(m)

16π

[
1
3

∂
2P2

]
=

δ(m)

16π

[
1
3

((
1
2
−2ξ

)
∂

2
∂

2n+
(

1
2
−2ξ

)
∂

2n∂
2n+

(
1
2
−2ξ

)
n∂

2
∂

2n

+

(
5
2
−11ξ

)
∂in∂i∂

2n+
(

3
2
−7ξ

)(
∂i∂ jn

)(
∂i∂ jn

))]
,

K2P1P1 3
δ(m)

16π

[
1

90
(
6n∂

2
∂

2n+5∂
2n∂

2n+12∂i∂
2n∂in+4

(
∂i∂ jn

)(
∂i∂ jn

))]
,
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K2P1P2 +K2P1P2 3
δ(m)

16π

[
−1
3
(P2∂

2n+n∂
2P2 +∂in∂iP2)

]
=

δ(m)

16π

[
−1
3

(
1
2
−2ξ

)
(∂2n∂

2n+n∂
2
∂

2n+∂in∂i∂
2n)
]
,

K2P2P2 3
δ(m)

16π

[
P2

2 + · · ·
]
=

δ(m)

16π

[(
1
2
−2ξ

)2

∂
2n∂

2n+ · · ·

]
.

Using

R =−2∂
2n−2n∂

2n− 7
2

∂in∂in+ · · · , (B.46)

R2 = 4(∂2n)2 + · · · , W 2 =
1
3
(∂2n)2 + · · · , (B.47)

E4 = 2(∂2n)2−2(∂i∂ jn)(∂i∂ jn)+ · · · , (B.48)

DMDMR =−2∂
4n−2(∂2n)2−2n∂

4n−13(∂ jn)(∂ j∂
2n)−7(∂i∂ jn)(∂i∂ jn)+ · · · . (B.49)

one verifies the anomaly expression in Eqs. (B.27) and (B.28). Since our calculation only fixes

the value of 12b+ c, in oder to break the degeneracy we use the fact that for ξ = 1
6 the Wess-

Zumino consistency condition precludes an R2 anomaly [80] and assume c is ξ-independent.

We emphasize that the calculation carried out here does not rely on any null cone

reduction technique, hence, this lends further credence to the LCR prescription, which has

correctly produced the δ(m) factor, as elucidated before.
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Appendix C

Unitarity and Universality in non
relativistic Conformal Field theory

C.1 SL(2,R) invariant field theory

The SL(2,R) group is generated by the three generators H,D,C satisfying the following

algebra:

[D,H] = 2H , [D,C] =−2C , [H,C] = D. (C.1)

The spectrum of D is real and physically represents the dimension. H raises the dimension and

C lowers the same. The highest weight representation is the one, annihilated by C. A nice and

brief exposition of SL(2,R) invariant field theory can be found in the appendix of [105]. Here

we discuss them for the sake of completeness and make the paper self-contained.

An SL(2,R) invariant field theory is defined on a one dimensional manifold, parameter-

ized by τ (say time), where SL(2,R) group acts on the co-ordinate τ in following way:

τ 7→ aτ+b
cτ+d

, where (ad−bc) = 1 (C.2)

In terms of the generators above, the H generates a time translation, C generates a special

conformal transformation and D generates a scale transformation. The theory has a privileged
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class of operators (the highest weight representation) Oα satisfying

[C,Oα(0)] = 0 (C.3)

and carrying dimension ∆α i.e [D,Oα(0)] = ∆αOα(0). These are called SL(2,R) primaries. They

have following commutators with SL(2,R) generators:

[D,Oα(τ)] = (2τ∂τ +∆α)Oα(τ) , (C.4)

[C,Oα(τ)] =
(
−τ

2
∂τ− τ∆α

)
Oα(τ) , (C.5)

[H,Oα(τ)] = ∂τOα(τ) . (C.6)

It follows that under a finite SL(2,R) transformation, SL(2,R) primaries transform as

O(τ) 7→
[
(cτ+d)−2]∆

2 O(τ′) (C.7)

1

The correlators of the form 〈O(τ1)O(τ2)O(τ3) · · ·O(τn)〉will be of our “primary” interest.

As SL(2,R) preserves the ordering of time, the two distinct ordering of τi need not be related

to each other. In what follows, we will be assuming 0 < τ1 < τ2 < τ3 < · · ·< τn. The unitarity

for a SL(2,R) invariant theory is defined via existence of an anti-linear conjugation map taking

O 7→ O† such that following relations hold:

1. Time reversal:

〈O†(−τn) · · ·O†(−τ3)O†(−τ2)O†(−τ1)〉

= 〈O(τ1)O(τ2)O(τ3) · · ·O(τn)〉∗ (C.8)

1The presence of factor of 1
2 in the weight, as compared to the weight, noted in [105] is due to the presence of

extra 2 with τ∂τ in the expression for [D,Oα(τ)]. This is done, in hindsight, to make the notation consistent with the
dilatation operator in Schrödinger field theory i.e the dilatation operator acting on a Schrödinger primary at xxx = 0
becomes the dilatation operator acting on a SL(2,R) primary.
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2. Reflection positivity: One can define a state |Ψ〉

|ψ〉=
∫ (

∏dτi
)

g(τ1,τ2, · · · ,τn) |O(τ1)O(τ2) · · ·O(τn)|0〉 (C.9)

with

〈Ψ|Ψ〉 ≥ 0 (C.10)

In terms of correlator this reads:

∫ (
∏dτ

′
i
) ∫ (

∏dτi
)

g̃(τ′1,τ
′
2, · · · ,τ′n)g(τ1,τ2, · · · ,τn)

〈O†(τ′n) · · ·O†(τ′2)O†(τ′1)O(τ1)O(τ2) · · ·O(τn)〉 ≥ 0

where g̃(τ) = g(−τ)∗. Here g is an arbitrary function or distribution having support away

from coincident points to avoid singularity.

The SL(2,R) algebra fixes the functional form of the two point and the three point

correlator. One can choose a Hermitian basis of operators O = O† such that

〈Oα(τ1)Oβ(τ2)〉=
δαβ

(τ2− τ1)∆
(C.11)

〈O1(τ1)O2(τ2)O3(τ3)〉

=
c123

(τ2− τ1)
∆2+∆1−∆3

2 (τ3− τ2)
∆3+∆2−∆1

2 (τ3− τ1)
∆3+∆1−∆2

2

(C.12)

Time reversal symmetry guarantees that cγβα = c∗
αβγ

. In general, cαβγ can be complex numbers.

All the higher point correlator can be obtained using the operator product expansion, which

reads:

O1(τ1)O2(τ2) = ∑
α

c12α

1

(τ2− τ1)
∆1+∆2−∆α

2

[Oα + · · · ] (C.13)

where · · · are contributions coming from SL(2,R) descendants and fixed by SL(2,R) invariance.

Thus the knowledge of the spectrum of D i.e set of SL(2,R) primaries and three point coefficient
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cαβγ amounts to a complete knowledge of all the correlators.

C.2 Schrödinger algebra, Primaries and Quasi-primaries

Here we provide a detailed account of Schrödinger algebra. We expound the concepts of

primaries and quasi-primaries. The Schrödinger group acts on space-time as follows[96, 93, 94,

98]:

t 7→ at +b
ct +d

, rrr 7→ Rrrr+ vvvt + f
ct +d

(C.14)

where ad−bc = 1, R is a d dimensional rotation matrix, vvv denotes the Galilean boost and f is a

spatial translation. For the sector with non-zero charge, the representation is built by translating

all the operators to the origin and considering the little group generated by dilatation operator

D, Galilean boost generator Ki, and special conformal transformation generator C. The highest

weight states (φα) are annihilated by C and Ki i.e.

[C,φα(0,000)] = 0 , [Ki,φα(0,000)] = 0 . (C.15)

These are called primary operators. The commutators with D and particle number symmetry

generator N̂ dictate the charge and the dimension of these operators φα:

[D,φα(0,000)] = ı∆αφ(0,000) , [N̂,φα(0,000)] = Nαφ(0,000) (C.16)

The time and space translation generator H and P create descendant operators by acting upon

primary operators, consequently raising the dimension by 2 and 1 respectively. It deserves

mention that the concept of primaries and descendants breaks down within the neutral sector.

Since Ki and Pj commute in this sector, Pj acting on a primary spits out a primary in stead of a

descendant.

The subgroup defined by R= I, vvv = 0, f = 0 is generated by H, D and C and is in fact
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SL(2,R). This acts as follows:

t 7→ at +b
ct +d

, rrr 7→ rrr
ct +d

, (ad−bc) = 1 . (C.17)

It becomes evident that the (t,0) slice is a invariant domain of SL(2,R) . Now one can reorganize

the operator content using SL(2,R) algebra. A SL(2,R) primary O is defined by requiring

[C,O(0,000)] = 0. Thus all the primaries defined by (C.15) are SL(2,R) primaries but not the other

way around. As mentioned in the main text, the situation is reminiscent of 2D conformal field

theory where we have Virasoro primaries as well as SL(2,R) primaries and the SL(2,R) primaries

are called quasi-primaries. We have borrowed that nomenclature and called the Schrödinger

primaries as primaries and SL(2,R) primaries as quasi-primaries. We emphasize that the notion

of quasi-primaries goes through even for the neutral sector. The commutator of quasi-primary

O(t) [for notational simplicity, φ(t) (or O(t)) implies the operator φ(t,000)(or O(t,000))] with the

generators H, D, C are given by[81]:

[H,O(t)] =−ı∂tO(t) , (C.18)

[D,O(t)] = ı(2t∂t +∆)O(t) , (C.19)

[C,O(t)] = (−ıt2
∂t− ıt∆)O(t) . (C.20)

This follows from [C,O(0,000)] = 0 and

[D,H] = 2ıH , [D,C] =−2ıC , [H,C] =−ıD. (C.21)

In terms of Euclidean time τ = ıt, and D′ =−ıD, we have

[D′,H] = 2H , [D′,C] =−2C , [H,C] = D′ . (C.22)

and

[D′,O(τ)] = (2τ∂τ +∆)O(τ) , (C.23)
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[C,O(τ)] =
(
−τ

2
∂τ− τ∆

)
O(τ) , (C.24)

[H,O(τ)] = ∂τO(τ) . (C.25)

Thus we have a SL(2,R) invariant theory defined on (τ,000) slice. SL(2,R) acts on τ in the

usual manner:

τ 7→ aτ+b
cτ+d

, (ad−bc) = 1 . (C.26)

We note that if φ is a primary operator, then

A ≡−
(

Nd
2∆

∂τφ+
1
2

∇
2
φ

)
, A† ≡ Nd

2∆
(∂τφ

†)− 1
2

∇
2
φ

† (C.27)

are quasi-primaries but not primaries unless ∆ = d
2 . This follows from the commutation relations

[81]:

[C,φ(τ,xxx)] =
(
−τ

2
∂τ− τ∆− τxxx ·∇∇∇+

N|xxx|2

2

)
φ

[K j,φ(τ,xxx)] =
(
−τ∂ j +Nx j

)
φ

The operators A and A† played a crucial role in proving the unitarity bound. In fact, A† annihi-

lates the vacuum when ∆ = d
2 and at free fixed point, this is precisely the null operator.

C.3 Time reversal and Parity

The notion of time reversal and parity is subtle in 0+1-D conformal field theories. The

same subtlety is inherited by the Schrd̈inger field theory. Both of the symmetries come with a

transformation of the form τ→−τ, but the time reversal is realized as an anti-unitary operator

acting on the fields whereas the parity does not involve any complex conjugation. To be precise,
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time reversal symmetry guarantees that

〈O†(−τn) · · ·O†(−τ3)O†(−τ2)O†(−τ1)〉

= 〈O(τ1)O(τ2)O(τ3) · · ·O(τn)〉∗ (C.28)

while the parity invariance implies that

〈O(−τn) · · ·O(−τ3)O(−τ2)O(−τ1)〉

= (−1)np〈O(τ1)O(τ2)O(τ3) · · ·O(τn)〉 (C.29)

where p ∈ {0,1} is the parity of the SL(2,R) primary operator O.

The three point correlators, as pointed out earlier, are given by

〈O1(τ1)O2(τ2)O†
3(τ3)〉

=
CO1O2O3

(τ2− τ1)
∆2+∆1−∆3

2 (τ3− τ2)
∆3+∆2−∆1

2 (τ3− τ1)
∆3+∆1−∆2

2

(C.30)

Now the time reversal implies that CO1O2O3 =C∗
O†

2 O†
1 O†

3
. Since cyclic ordering is preserved

by SL(2,R) , we have CO2O1O3 =CO3O2O1 . Thus we have

CO1O2O3 =CO†
3 O†

2 O†
1

(C.31)

On the other hand, parity invariance implies that

CO1O2O3 = (−1)p1+p2+p3CO2O1O3 (C.32)

where pi is the parity of the field Oi.

We can easily show that the free Schrödinger field theory without any anti-particle

(discussed later in Sec. ??) does not satisfy the parity invariance. We recall that the two point

correlator on the (τ,000) slice is given by

〈φ(0)φ†(τ)〉= Θ(τ)τ−d/2 (C.33)
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If one assumes parity invariance with φ and φ† carrying opposite parity, the two point

correlator satisfies:

〈φ(0)φ†(τ)〉= 〈φ†(−τ)φ(0)〉= 〈φ(0)φ†(−τ)〉 . (C.34)

Here the last equality follows because the cyclic order of the operator insertion is unaffected by

SL(2,R) invariance. Thus 〈φ(0)φ†(τ)〉 has to be an even function of τ, which is not the case in

(C.33). The presence of Θ(τ) implies the absence of anti-particles.

On the other hand, when the parity symmetry is present one can write down a bootstrap

equation (4.17) even for a charged sector. The section 4 of [264] elucidates on the scenario

where a notion of parity is available. This motivates us to ask whether one can impose parity

invariance on top of Schrödinger invariance. It indeed can be done by defining a free field theory

such that the two point correlator takes the following form on (τ,000) slice:

〈ψ(0,000)ψ†(τ,000)〉= 1
|τ|d/2 (C.35)

where N < 0 is the U(1) charge carried by the field ψ. All the higher point correlators are

determined by Wick contraction. On (τ,0) slice, this theory is expected to behave like generalized

Bose/Fermi theory in 0+ 1 dimension [105]. We remark that even if it is possible to impose

parity invariance on (τ,000) slice, it is not clear whether one can impose such invariance even

away from the above mentioned temporal slice. This is because the boost invariance forces the

xxx dependence of two point correlator to be exp
(

ıN |xxx|
2

2t

)
which is clearly not symmetric under

t→−t unless one also imposes N→−N constraint. It would be interesting to consider another

scenario, where one can have the following two point correlator:

〈ψ(0,000)ψ†(τ,xxx)〉= 1
|τ|d/2 exp

[
N|xxx|2

2|τ|

]
, (C.36)

and it is obtained by different analytical continuation to imaginary time τ, depending on signature

of real time t. It is not clear at present whether it carries any physical significance and leads to a
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well defined theory. Nonetheless, one can indeed have theories which enjoy parity invariance on

the (τ,000) slice.

C.4 Free Schrödinger Field theory & Its Euclidean avatar

The free Schrödinger field theory in d +1 dimensions is described by

L = 2ıφ†
∂tφ+φ

†
∇

2
φ , (C.37)

where t is the real time and we have taken the mass to be unity. The propagator in momentum

space representation has a pole at

ω =
|kkk|2

2
. (C.38)

where ω is the energy and kkk is the momentum. This is in fact the dispersion relation of an on-shell

particle, described the field theory (C.37). The presence of a pole brings in ambiguity in defining

the position space propagator and thus necessitates a pole prescription. Similar ambiguity is

present in the relativistic theory as well at free fixed point, where there are two poles at ω =±|kkk|.

To circumnavigate the pole(s), one usually works in the imaginary time τ = ıt,ωE =−ıω (so

called Wick rotation), where the propagator is uniquely defined. Upon analytic continuation back

to the Minkowski space-time, this provides us with a pole prescription. In what follows, we will

follow the same procedure for the free Schrödinger field theory and come up with an expression

for the propagator consistent with the SL(2,R) algebra.

The Wick rotated Schrödinger theory has a propagator of the following form

1
|kkk|2−2ıωE

(C.39)

This does not have a pole on the real axis of ωE . Hence, the Fourier transform is well defined

263



and unique and one obtains the Euclidean propagator GE :

GE (τ1,xxx1;τ2,xxx2) =
∫ dωE

2π

∫ ddk
(2π)d

e−ı(ωE(τ1−τ2)−kkk·xxx)

|kkk|2−2ıωE

=
Θ(τ)

2

(
1

2πτ

) d
2

exp
(
−xxx2

2τ

)
(C.40)

where τ = τ2− τ1 and xxx = xxx2− xxx1. Upon Wick rotation back to the real time, we have the

following ıε prescription:

ı
2ω−|kkk|2 + ıε

(C.41)

Figure C.1: Contour in the Wick rotated plane (ωE plane). The wick rotation helps us to
evaluate the integral.

The pole prescription, in momentum space, can be visualized through a series of diagrams,

e.g. fig. (C.1,C.2). We recall that the Wick rotation involves defining τ = ıt and ωE =−ıω such

that eıωt = eıωE τ holds true. One can rotate the contour clockwise by an angle of π/2− ε on

the ωE plane, where ε is very small but a positive number, without affecting the integral (See

fig. C.1). At this point, one effects the wick rotation, which recasts the integral and the contour

as shown in the fig. (C.2) and leads to the pole prescription, as in eq. (C.41).

Several remarks are in order. First of all, the physical significance of Θ(τ) and hence, the

ıε prescription lies in the fact that there are no antiparticles in the theory. This has consequences
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Figure C.2: Contour in the real ω plane. This is related to the contour in Euclidean plane by a
Wick rotation.

e.g. the vacuum does not have any spatial entanglement entropy, the weyl anomaly is absent

upon coupling the theory with a non trivial Newton-Cartan structure[107]. Furthermore, one can

analytically continue the theory to live on a non integer dimensional space. The propagator as in

eq. (C.40) can be defined by an analytic continuation in d. The analytical continuation is always

understood to be in the number of spatial dimensions, without affecting the time co-ordinate.

The Schrödinger algebra constrains the real time two point correlator (G) of two primary

operators of dimension ∆O . It is given by

G(t1,x1; t2,x2) = ct−∆O eı NO
2
|xxx|2

t (C.42)

where t = t2− t1 and xxx = xxx2− xxx1. We wick rotate the expression, introducing τ = ıt and we

choose c = Θ(τ)
2

( 1
2πı

)d/2
where τ = τ2− τ1. Upon comparing this expression with the Euclidean

propagator, as in eq. (C.40), the dimension of free Schrödinger field is found out to be

∆φ =
d
2

(C.43)

which is precisely the engineering dimension as evident from the Lagrangian (C.37).

We emphasize that the real time propagator, given in eq. (C.42), is generic in the sense it

is suitable to describe any Schrödinger invariant fixed point including the interacting ones. Thus
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the take home message is that the usual trick of Wick rotation is consistent, as it should be, with

the notion of the Euclidean Schrödinger group and the Euclidean Schrödinger operator is indeed

given by (∂τ−∇2).

Time ordering: The time-ordered (or anti-time ordered) real time correlator is obtained from

the Euclidean correlator by proper analytic continuation. The Eq. (C.40) implies that

〈φ(0)φ†(τ)〉E ∝ Θ(τ) (C.44)

where we have put in the subscript E to clearly specify that it is a Euclidean correlator. Now we

will show that the time ordered correlator can be obtained by taking τ =−ıt while the anti-time

ordered one can be obtained by taking τ = ıt. For t > 0, we obtain the time ordered correlator by

analytic continuation (τ =−ıt)

〈0|φ†(t)φ(0)|0〉 ∝ Θ(−ıt) = ıΘ(−t) = 0 , (C.45)

while for t < 0, we obtain

〈0|φ(0)φ†(t)|0〉 ∝ Θ(−ıt) = ıΘ(−t) 6= 0 . (C.46)

Similarly, for t < 0, the anti-time ordered correlator can be obtained by (τ = ıt)

〈0|φ†(t)φ(0)|0〉 ∝ Θ(ıt) = ıΘ(t) = 0 (C.47)

while for t > 0, we have

〈0|φ(0)φ†(t)|0〉 ∝ Θ(ıt) = ıΘ(t) 6= 0 (C.48)

It is easy to verify that all the equations (C.45),(C.46),(C.47),(C.48) conforms to the fact

that the field φ annihilates the vacuum, which is a manifestation of absence of anti-particles.

We also remark that (C.46) has interpretation of the amplitude associated with a particle being
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created at time t < 0 and subsequently propagating to t = 0. In the main text, we have used the

analytic continuation τ = ıt, one could have equivalently choose the other analytic continuation

τ =−ıt and obtain similar results.

A different convention: The Euclidean time correlator can alternatively defined in following

way where Θ(−τ) appears in stead of (C.40):

Galt
E (τ1,xxx1;τ2,xxx2) =

∫ dωE

2π

∫ ddk
(2π)d

e−ı(ωE(τ2−τ1)−kkk·xxx)

|kkk|2−2ıωE

=
Θ(−τ)

2

(
1

2πτ

) d
2

exp
(
−xxx2

2τ

)
(C.49)

where τ = τ2−τ1 and xxx = xxx2−xxx1. With this convention, τ = ıt will yield time-ordered correlator

while τ =−ıt will give the anti–time ordered one. As mentioned earlier, in the main text, we

have adopted the convention as in (C.40).
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Appendix D

Existence and Construction of Galilean
invariant z 6= 2 Theories

D.1 Diagonalizable and finite dimensional dilatation genera-
tor

In this appendix, we re-derive some of the results in Sec. 5.2 under the stronger assump-

tion that the matrix � is both diagonal and finite dimensional. This discussion is intended for

clarity, since it is less abstract than the one presented in the main text.

We recall that

[D,Φ̃(xxx = 000, t = 0)] = ıDΦ̃(xxx = 000, t = 0) (D.1)

and D is renamed as � in the finite dimensional case.

To warm up, we show that both D and N are hermitian only if z = 2 or N = 0. From

[D,N] = ı(2− z)N, it follows that

[D,N ] = (2− z)N . (D.2)

Since D and N are assumed hermitian, [D,N ]† =−[D,N ] =−(2− z)N . Hence

−(2− z)N = [D,N ]† = (2− z)N † = (2− z)N ,
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which can only hold for z = 2 or N = 0. If one assumes N 6= 0 for some field, then z = 2. One

can have z 6= 2 and hermiticity if N = 0 for all fields. In this case the generator N is superfluous,

and one can extend the algebra by including the generator of special conformal transformations.1

Below we assume N does not identically vanish. Similarly, both D and K are hermitian only if

z = 1 or K = 0.

Now we consider the finite dimensional case where � is diagonal. Alternatively, one can

consider the case that � is hermitian (and therefore, as just proved, N is not hermitian). In the

finite dimensional, hermitian case, one can always choose to diagonalize �. Since � is diagonal,

[�,N] = (2− z)N implies that
(
�αα−�ββ + z−2

)
Nαβ = 0 (no summation over indices α,β is

implicit), which, in turn, for z 6= 2 implies that Nαα = 0 and at least one of Nαβ and Nβα vanish.

This implies that N is nilpotent,

NM = 0 , (D.3)

for some integer M no larger than the dimension of the representation. One can show this,

without loss of generality, by arranging the components of the fields �̃α so that N is an upper

triangular matrix. This result will play a pivotal role below.

Similarly, we assume that the field �̃(000,0) has the following commutation relation:

[Ki, �̃(xxx = 000, t = 0)] = Ki�̃(xxx = 000, t = 0) . (D.4)

For a finite dimensional case, we denote Ki by Ki. By the same argument as above, one can show

that either z = 1 or Ki = 0 or Ki is nilpotent. Thus we have

KLi
i = 0 , (D.5)

for some integer Li no larger than the dimension of the representation. One can consider the

1There are indeed examples of z 6= 2 theories without particle number symmetry; see, for example, Refs. [133,
134, 143].
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operator

�≡
i=d−1

∏
i=1

KLi−1
i (�̃) , (D.6)

where for any operator A and B, the action of the operator on the field is defined via

A(�̃)≡ [A, �̃] , (D.7)

BA(�̃)≡ B
(
A(�̃)

)
. (D.8)

It can be easily verified that

[Ki,�(xxx = 000, t = 0)] = 0 , (D.9)

[D,�(xxx = 000, t = 0)] = ı�′�(xxx = 000, t = 0) , (D.10)

[N,�(xxx, t)] = N�(xxx, t) , (D.11)

where �′ = (�− (z−1)∑i(Li−1)). We call ‘primary operators’ those that satisfy (D.9). One

could have considered operators obtained from these by analogous operations as above i.e.

operators of the form [NM−1,�], but that would not suffice to reveal the problems associated

with finite dimensional representations.

Consider the two point correlator of primary operators in such a realization of the algebra,

Gαβ ≡ 〈0|�α(x, t)�β(0,0)|0〉. Using Eqs. (5.9), the commutator in (D.9) translates to

[Ki,�] = (−ıt∂iI+ xiN)� . (D.12)

Galilean boost invariance of the vacuum, Ki|0〉= 〈0|Ki = 0, then gives

〈0|
[
K,�α(x, t)�β(0,0)

]
|0〉= 0

⇒ (−ıt∂iδασ + xiNασ)Gσβ = 0 . (D.13)
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The solution to the above differential equation is given by

Gαβ =

[
e−ı |xxx|

2
2t N
]

αγ

Cγβ(t) =
M−1

∑
`=0

1
`!

(
−ı
|xxx|2

2t

)̀
(N`C(t))αβ (D.14)

where |xxx|2 =∑i(xi)2, C is an as yet undetermined matrix function of t alone; the scaling symmetry

implies that Cαβ has a power law dependence on t. The above correlator (D.14) is consistent

with the one given in (5.15) with N1 = K1 = K2 = 0. The exponential becomes a finite degree

polynomial because N is nilpotent, and this is very specific to z 6= 2 theories. As explained above,

the correlators are badly behaved: polynomial rather than exponential dependence on |xxx| leads to

growth with spatial separation (and hence, cluster decomposition fails). In contrast, for z = 2 the

matrix N is diagonal and there is no truncation of the expansion of the exponential. An additional

constraint on the correlator follows from requiring that 〈0|
[
N,�α(x, t)�β(0,0)

]
|0〉= 0, which

implies NG+GNT = 0.

Consider next G′
αβ

= 〈0|�α(x, t)�
†
β
(0,0)|0〉. This is similarly given by

G′
αβ

=

[
exp
(
−ı
|xxx|2

2t
N

)
C′(t)

]
αβ

(D.15)

for some undetermined matrix C′ such that C′
αβ

is a function of t alone. Invariance under N

implies that NG′−G′N† = 0. Notice that the condition on G′ is different from that on G; one

may have non-trivial solutions to one but not the other. For example, one can consider the two

component field, �α=1,2 characterized by:

N=

0 1

0 0

 , C′ = g(t)

0 1

1 0

 , g(t) = t−(∆11+∆22)/z

�=

∆11 0

0 ∆22

 , ∆22−∆11 = (2− z) ,
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G′ = t−(∆11+∆22)/z

1 −ı |xxx|
2

2t

0 1


0 1

1 0


= t−(∆11+∆22)/z

−ı |xxx|
2

2t 1

1 0

 .

Note that for this example Gαβ = 0 so consideration of the long distance behavior of this

correlator alone does not, by itself, suggest the theory is ill-behaved.
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Appendix E

Hilbert Series and Operator Basis for
NRQED and NRQCD/HQET

E.1 Characters and Haar Measures

The characters for irreducible representations needed in the NRQED and NRQCD/HQET

Hilbert series for U(1), SO(3), SU(2), and SU(3) are

χ
U(1)(x) = x (E.1)

χ
SO(3)
3 (z) = z2 +1+

1
z2 (E.2)

χ
SU(2)
2 (y) = y+

1
y

(E.3)

χ
SU(2)
3 (y) = y2 +1+

1
y2 (E.4)

χ
SU(3)
3 (x1,x2) = x2 +

x1

x2
+

1
x1

(E.5)

χ
SU(3)
3̄ (x1,x2) = x1 +

x2

x1
+

1
x2

(E.6)

χ
SU(3)
8 (x1,x2) = x1x2 +

x2
2

x1
+

x2
1

x2
+2+

x1

x2
2
+

x2

x2
1
+

1
x1x2

(E.7)

The contours integrals with respect to the Haar measures used in this analysis are

∮
[dµ]U(1) ≡

1
2πi

∮
|x|=1

1
x

(E.8)
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∮
[dµ]SO(3) ≡

1
2πi

∮
|z|=1

1
2z
(1− z2)

(
1− 1

z2

)
(E.9)∮

[dµ]SU(2) ≡
1

2πi

∮
|y|=1

1
2y

(1− y2)

(
1− 1

y2

)
(E.10)∮

[dµ]SU(3) ≡
1

(2πi)2

∮
|x1|=1

∮
|x2|=1

I (E.11)

where I is given by

I =
1

6x1x2
(1− x1x2)

(
1−

x2
1

x2

)(
1−

x2
2

x1

)(
1− 1

x1x2

)(
1− x1

x2
2

)(
1− x2

x2
1

)
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Appendix F

Conformal Structure of the Heavy Particle
EFT Operator Basis

F.1 Normalsize Symmetries of Non-Relativistic Systems

In this appendix, we review the symmetries associated with non-relativistic systems.

Much of the details that we present below can be found in, for example, Refs. [265, 93, 97,

94, 98, 59, 81, 99, 137]. Newton’s equation of motion for a particle with mass m subject to an

external force F at time t and position x is:

F(t,x) = m
d2x
dt2 . (F.1)

Consider a change in time and space coordinates (t,x) to (t ′,x′) defined by the following

transformations:

t 7→ t ′ = t +b , xi 7→ x′i = Ri jx j + vit +ai . (F.2)

Here, Ri j is a rotation matrix, vi is the velocity, b is a translation in time, and ai is a translation in

space. Roman letters indicate space indices, and vi, b, and ai are all real constants, independent

of time. Eq. (F.1) becomes the following under such a transformation:

Fi(t,x) = m
d2xi

dt2 7→ F̃i(t ′,x′)≡ Ri jFj(t,x) = mRi j
d2x j

dt2 = m
d2x′i
dt ′2

, (F.3)
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which implies

F̃i(t ′,x′) = m
d2x′i
dt ′2

. (F.4)

The transformations defined in Eq. (F.2) leave the form of Eq. (F.1) unchanged and are, therefore,

symmetries associated with that equation of motion. The transformations in Eq. (F.2) are the

most general linear transformations that leave time and space intervals (defined at the same

moment in time) separately unchanged, i.e.,

t1− t2 = const, |x1−x2|= const, if t1 = t2. (F.5)

These transformations furnish what is known as the inhomogeneous Galilean group. We refer

to the inhomogeneous Galilean group as the Galilean group when no confusion is likely. The

group multiplication laws and inverses of group elements are straightforward to work out.

The elements of the Galilean group can be represented as exp[iθaXa], where θa’s are the

10 parameters needed to define a Galilean transformation, and the Xa’s are the generators of the

group. The following commutation relations define the Lie algebra:

= iεi jkJk , [Ji,K j] = iεi jkKk , [Ji,Pj] = iεi jkPk ,

[H,Ki] =−iPi , [Ki,Pj] = 0 ,

[Ki,K j] = [H,Pi] = [H,Ji] = [Pi,Pj] = 0 ,

(F.6)

where Pi generates spatial translations, H generates time translations, Ji generates rotations, and

Ki are generators of Galilean boosts (named as such to distinguish them from Lorentz boosts).

Here, we use the convention that the antisymmetric tensor ε123 = 1. Note that the specific

commutation relations [Ki,K j] and [Pi,K j] amount to the only differences compared to the Lie

algebra of the relativistic Poincaré group.

The Lie algebra of the Galilean algebra can also be derived from the Poincaré algebra

by reintroducing the speed of light, i.e., H→ H/c, Ki→ cKi, and letting c→ ∞. For example,

the generators of Lorentz boosts have the commutation relation [Ki,K j] =−iεi jkJk. Putting the
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factors of c back in: [Ki,K j] =−iεi jkJk/c2, and in the limit c→∞, one induces the commutation

relation for Galilean boosts: [Ki,K j] = 0. Likewise, for the commutator [Ki,Pj] = iHδi j →

[Ki,Pj] = iHδi j/c2 in the Poincaré group, this relation becomes [Ki,Pj] = 0 in the Galilean

group, i.e., when c→ ∞.

There exists the possibility that the Galilean group can be augmented with an additional

generator, called N, such that N commutes with all other generators:

[N,any] = 0 , (F.7)

and the commutation relation [Ki,Pj] becomes:

[Ki,Pj] = 0 −→ [Ki,Pj] = iNδi j . (F.8)

The augmentation of this kind is known as central extension1 [265]. When taking the c→ ∞

limit in the Poincaré algebra, one obtains the N = 0, i.e., the chargeless (neutral) sector of the

Galilean group, which is its own algebra.

It is interesting to consider the special case when F(t,x) = 0. Here, the classical equation

of motion is:
d2x
dt2 = 0 . (F.9)

This is invariant under the Galilean transformations. In addition to the transformations contained

in the Galilean group, one could consider a kind of scaling transformation that acts like:

xi 7→ x′i = λxi , t 7→ t ′ = λ
zt . (F.10)

For any value of z, the classical equation of motion is invariant under such transformations.

1Originally, the algebra without the central extension was called by Galilean algebra. Lately, the trend in the
literature is to call the centrally-extended algebra the “Galilean algebra,” and specify N = 0 as a special case.
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However, if the classical action, which appears as exp(iS) in path integral,

S =
∫

dt

[
∑

i

1
2

m
(

dxi

dt

)2
]
, (F.11)

is to be invariant under such transformations, then it is necessary that z = 2. This difference in

the requirements of the value of z illustrates the important point that the equation of motion,

being associated with the extremum of the action, is less constraining than the action, since the

latter contains information regarding all possible configurations of the system in time. There is

one additional kind of transformation which leaves both the classical equation of motion and the

classical action invariant:

xi 7→ x′i =
xi

(1+ kt)
, t 7→ t ′ =

t
(1+ kt)

, (F.12)

where k is a real number. These transformations are known as the special conformal transforma-

tions. Together, the Galilean transformations, the scaling transformations in Eq. (F.10) (when

z = 2) and the special conformal transformations form what is called the Schrödinger group,2

where temporal and spatial coordinates transform in the following way:

t 7→ t ′ = λ
2
(

t +b
1+ k(t +b)

)
, xi 7→ x′i = λ

(
Ri jx j + vit +ai

1+ k(t +b)

)
. (F.13)

The group multiplication laws and inverses are straightforward (albeit algebraically tedious) to

calculate.3

The elements of the Schrödinger group can be represented as exp[iθaXa], where in the

index a runs over the number of generators. The Lie algebra of the Schrödinger group is:4

2The group was popularized in the context of the free Schrödinger equation [93], hence the name. It does not
necessarily have to do with quantum mechanics.

3We note that the transformation of the time coordinate [81, 137] can be mapped on to a SL(2,R) group, i.e.,
transformations of the form

t 7→ t ′ =
at +b
ct +d

, ad−bc = 1 . (F.14)

In terms of these parameters, the inverse and the group multiplication is relatively less tedious to compute.
4These commutation relations are the same as those in Refs. [59, 81], but differ from those in Ref. [93] by some

sign conventions.
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= iεi jkJk , [Ji,K j] = iεi jkKk , [Ji,Pj] = iεi jkPk ,

[H,Ki] =−iPi , [Ki,Pj] = iNδi j ,

[D,Ki] =−iKi , [D,Pi] = iPi , [D,H] = 2iH , [D,C] =−2iC ,

[C,Pi] = iKi , [C,H] = iD ,

[Ki,K j] = [H,Pi] = [H,Ji] = [Pi,Pj] = [N,any] = 0 ,

[D,Ji] = [C,Ji] = [C,Ki] = 0 ,

(F.15)

where D is the generator of scaling transformations, and C is the generator of the special

conformal transformations. The Cartan generators for the Schrödinger group are E1 ≡ −iD,

E2 ≡ J3, and E3 ≡ N, i.e., the maximally commuting set of generators. The generators with

definite weight under these Cartan generators are given by:

J± ≡ J1± iJ2 , (F.16)

P± ≡ P1± iP2 , (F.17)

K± ≡ K1± iK2 , (F.18)

P3 , H, K3 , C . (F.19)

A generator X carries a weight w under a Cartan generator E if [E,X ] = wX . The factor of −i

with generator D makes the weights real. The weights follow directly from the algebra, and are

tabulated in Table F.1.

F.2 Symmetries, Operators, and States

If U is a group element, then assume there exists a Hilbert space with a vacuum state

such that all U’s leave the vacuum invariant:

U |0〉= |0〉 . (F.20)
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Table F.1: Table for weights of generators P±, P3, H, J±, K±, K3, C under the Cartan
generators E1 ≡−iD, E2 ≡ J3, and E3 ≡ N. The i j-th entry is the weight of the i’th generator
(i running over the possibilities P±, P3, H, J±, K±, K3, C under the Cartan generator E j.

E1 ≡−iD E2 ≡ J3 E3 ≡ N
P± 1 ±1 0
P3 1 0 0
H 2 0 0
J± 0 ±1 0
K± −1 ±1 0
K3 −1 0 0
C −2 0 0

If U can be represented as exp[iθaXa], where Xa are the generators of the group’s Lie algebra,

then all X’s annihilate the vacuum:

Xa |0〉= 0 . (F.21)

Consider that the Hilbert space is spanned by more states |OA〉 (where A is just an arbitrary label)

than just the vacuum, which are defined as local operators OA(τ,x) acting on the vacuum where

τ = it.5 For now, let us only consider (gauge invariant) states, created by operators acting at the

origin:

OA(0,0) |0〉= |OA〉 . (F.22)

Because acting on a state with a group transformation produces, in general, a linear combination

of states still within that Hilbert space, one can say acting with a generator produces a linear

combination of states:

X |OA〉= LAB |OB〉 , (F.23)

where L is some matrix, which depends on what X was chosen. All the generators annihilate the

vacuum, therefore

X |OA〉= [X ,OA(0,0)] |0〉= LABOB(0,0) |0〉 . (F.24)

Consider that the Hilbert space is spanned by operators that transform non-trivially under

5The states are prepared in Euclidean time τ to ensure finite norm as we will see later.
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the Schrödinger group transformations. The largest set of Cartan generators is −iD, N, and J3,

and we can always choose to label our states according the eigenvalues of these operators:

D |∆,n,m〉 = i∆ |∆,n,m〉 , (F.25)

N |∆,n,m〉 = n |∆,n,m〉 , (F.26)

J3 |∆,n,m〉 = m |∆,n,m〉 . (F.27)

The eigenvalue of D is complex, but we can see the significance of this in terms of the transfor-

mation properties of operators. Say that there exists an operator O[∆,n,m] that creates the state

|∆,n,m〉 at the origin:

|∆,n,m〉 ≡ O[∆,n,m](0,0) |0〉 . (F.28)

In terms of the O[∆,n,m](0,0), we have

[D,O[∆,n,m](0,0)] = i∆ O[∆,n,m](0,0) → eiλDO[∆,n,m](0,0)e−iλD = e−λ∆O[∆,n,m](0,0) .

(F.29)

The factor of i ensures the operator O[∆,n,m](0,0) gets scaled by a real number exp(−λ∆) under

the transformation generated by D.

After some algebra, one can find the following relations, which follow directly from the

Schrödinger algebra (see Table F.1):

DPi |∆,n,m〉 = i(∆+1)Pi |∆,n,m〉 , (F.30)

DKi |∆,n,m〉 = i(∆−1)Ki |∆,n,m〉 , (F.31)

DH |∆,n,m〉 = i(∆+2)H |∆,n,m〉 , (F.32)

DC |∆,n,m〉 = i(∆−2)C |∆,n,m〉 , (F.33)

or, written another way:

[
D, [Pi,O[∆,n,m](0,0)]

]
|0〉 = i(∆+1)[Pi,O[∆,n,m](0,0)] |0〉 , (F.34)
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[
D, [Ki,O[∆,n,m](0,0)]

]
|0〉 = i(∆−1)[Ki,O[∆,n,m](0,0)] |0〉 , (F.35)[

D, [H,O[∆,n,m](0,0)]
]
|0〉 = i(∆+2)[H,O[∆,n,m](0,0)] |0〉 , (F.36)[

D, [C,O[∆,n,m](0,0)]
]
|0〉 = i(∆−2)[C,O[∆,n,m](0,0)] |0〉 . (F.37)

Therefore, Pi and H act as lowering operators, and Ki and C act as raising operators, in analogy to

the representation of SU(2) or SO(3). If one assumes that the scaling dimension ∆ of operators

in this Hilbert space is bounded from below, then there will be a set operators OP such that:

[Ki,OP
[∆,n,m](0,0)] |0〉= 0 , and [C,OP

[∆,n,m](0,0)] |0〉= 0 . (F.38)

Such operators are called primary operators, which are associated with the highest-weight

states.6 Acting with Pi or H repeatedly on these primary operators produces a tower of operators,

where Pi and H raise the scaling dimension by either one or two units. Acting with Pi and H are

associated with space and time derivatives:

[Pi,O(t,x)] |0〉= i∂iO(t,x) |0〉 , [H,O(t,x)] |0〉=−i∂tO(t,x) |0〉 , (F.39)

which is true for any operator O.

The Schrödinger algebra permits further categorization of different kinds of primary

operators. Beginning with the Jacobi identity for any operators A, B, and C:

[A, [B,C]]+ [B, [C,A]]+ [C, [A,B]] = 0 , (F.40)

one can arrive at the following identities:

[Ki, [Pj,OP
[∆,n,m](0,0)]] = −inδi jOP

[∆,n,m](0,0) , (F.41)

[C, [Pi,OP
[∆,n,m](0,0)]] = 0 . (F.42)

For n 6= 0, [Pi,OP
[∆,0,m]] are not primary operators and are called descendants. Thus, when n 6= 0,

6These are actually states with lowest scaling dimension. Following the group theory literature, we call them the
highest-weight state.
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all descendants are total spatial or time derivatives of some primary operator. The distinction

between primary and descendants become obfuscated in the n= 0 sector. This is because if n= 0,

then [Pi,OP
[∆,0,m]] is also a primary operator, as evident from Eq. (F.41). In this scenario, one can

reorganize the operators by being agnostic to the action of Ki, following Ref. [137]. In particular,

one categorize the operators into quasi-primaries and its descendants, where the quasi-primaries

satisfy [C,O(0,0)] = 0 without making any requirements for the value of [Ki,O(0,0)], and the

descendants are obtained by action of H on quasi-primaries. This categorization exploits the

SL(2,R) subgroup generated by H,D,C which applies for both the neutral and the charged

sectors.

An operator can be written as a total time derivative of another operator if and only if it

is a descendant of a quasi-primary, which leaves out the possibility that a quasi-primary can be

a total spatial derivative of some operator. This necessitates further categorization: we define

OPA
[∆,n,m](0,0)] to be quasi-primaries of type-A if and only if satisfies

[C,OPA
[∆,n,m](0,0)] = 0 , (F.43)

OPA
[∆,n,m](0,0) 6= [Pi,O] , (F.44)

for any operator O. Quasi-primaries of type-B are those where Eq. (F.44) does not hold.

F.3 Constraints from Algebra and Unitarity bound

The Schrödinger algebra completely restricts the spacetime dependence of the two-point

correlation function between two primary operators. Consider two primary operators, O1 with

scaling dimension ∆1 and number charge n1 and a second, O2, with scaling dimension ∆2 and

number charge n2. Begin with the following expressions, which are explicitly zero, since all

generators annihilate the vacuum:

〈0| [Ki,O2(t,x)]O1(0,0) |0〉+ 〈0|O2(t,x)[Ki,O1(0,0)] |0〉 = 0 , (F.45)
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〈0| [C,O2(t,x)]O1(0,0) |0〉+ 〈0|O2(t,x)[C,O1(0,0)] |0〉 = 0 , (F.46)

〈0| [D,O2(t,x)]O1(0,0) |0〉+ 〈0|O2(t,x)[D,O1(0,0)] |0〉 = 0 , (F.47)

〈0| [N,O2(t,x)]O1(0,0) |0〉+ 〈0|O2(t,x)[N,O1(0,0)] |0〉 = 0 . (F.48)

One can use O(t,x) = e−i(Ht−Pjx j)O(0,0)ei(Ht−Pjx j) and Eq. (F.39) to generalize the relations in

Eq. (F.38) to an arbitrary point in spacetime:

[Ki,OP
[∆,n,m](t,x)] |0〉 = (nxi− it∂i)OP

[∆,n,m](t,x) |0〉 , (F.49)

[C,OP
[∆,n,m](t,x)] |0〉 =

(
−it∆+

1
2

x2n− itx j∂ j− it2
∂t

)
OP
[∆,n,m](t,x) |0〉 , (F.50)

[D,OP
[∆,n,m](t,x)] |0〉 = i

(
∆+ x j∂ j +2t∂t

)
OP
[∆,n,m](t,x) |0〉 . (F.51)

Inserting Eqs. (F.49) - (F.51) in to Eqs. (F.45) - (F.48):

〈0|(n2xi− it∂i)O2(t,x)O1(0,0) |0〉= 0 , (F.52)

〈0|
(
−it∆2 +

1
2

x2n2− itx j∂ j− it2
∂t

)
O2(t,x)O1(0,0) |0〉= 0 , (F.53)

〈0|
(
x j∂ j +2t∂t +∆1 +∆2

)
O2(t,x)O1(0,0) |0〉= 0 , (F.54)

(n1 +n2)〈0|O2(t,x)O1(0,0) |0〉= 0 . (F.55)

This system of differential equations can be simultaneously solved to give a non-trivial result

only if ∆1 = ∆2 ≡ ∆ and n2 = −n1 ≡ n, which can be satisfied if O1 = O†
2 ≡ O†, and if so

[59, 81]:

〈0|O(t,x)O†(0,0) |0〉= const · t−∆ exp
[
−inx2

2t

]
. (F.56)

This is true whether t is positive or negative, therefore we have the following result that the

time-ordered product 〈0|T O(t,x)O†(0,0) |0〉 has the same form.

There are additional constraints on operators that come from the requirement of unitarity.

There are various ways to arrive at the unitarity bound [59, 81, 137]. Here we will briefly sketch

the method described in Ref. [137]. Let τ = it, and assume the state |ψ(τ,x)〉 can be associated
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with a local primary operator, with scaling dimension ∆ and number charge n, acting on the

vacuum: |ψ(τ,x)〉 ≡ O†(τ,x) |0〉. Then, the requirement of unitarity can be written as:

〈ψ(τ,x)|ψ(τ,x)〉 ≥ 0⇔ lim
τ′→−τ

x′→x

〈0|O(τ′,x′)O†(τ,x) |0〉 ≥ 0 . (F.57)

Because these are primary operators, the form of this two-point correlation function from

Eq. (F.56) is

〈0|O(τ′,x′)O†(τ,x) |0〉= const · (τ′− τ)−∆ exp
[

n(x′−x)2

2(τ′− τ)

]
. (F.58)

The algebra does not constrain the overall constant in the above expression, so one is free to

choose it such that

const · (−τ)−∆ ≥ 0 , (F.59)

is always true. Because Eq. (F.57) is required for any state |ψ〉 in the Hilbert space, it must also

hold for a state |ψ̃〉 defined as any combination of partial (Euclidean) time and space derivatives

acting on the original primary operator: |ψ̃〉 ≡ (A∂τ +B∂i +C∂i∂ j + ...)O†(τ,x) |0〉, where A, B,

C, ..., are constants. Consider a particular state:

|ψ̃〉 ≡ (α∂τ +β∂i∂i)O†(τ,x) |0〉 , (F.60)

where α and β are real constants. The requirement that 〈ψ̃(τ,x)|ψ̃(τ,x)〉 ≥ 0 then leads to the

following inequality:

lim
τ′→−τ

x′→x

(−α∂τ′+β∂i′∂i′)(α∂τ +β∂i∂i)〈0|O(τ′,x′)O†(τ,x) |0〉 ≥ 0 , (F.61)

where the primes indicate that they only act on the primed spacetime variables. Using Eqs. (F.58)

and (F.59), this leads to the inequality:

β
2n2(d2 +2d)+2αβnd(∆+1)+α

2
∆(∆+1)≥ 0 , (F.62)
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where d is the number of spatial dimensions. For a fixed value of d, the Eq. (F.62) implies that

∆ /∈ (−1,d/2). Similarly, considering a state of the form (α′O†(τ,x)+∂τO†(τ,x)) |0〉, one can

rule out ∆ < 0 [137]. Combining these two bounds, we have a bound on ∆, i.e., ∆≥ d/2, which

occurs when α/β =−2n. If ∆ = d/2, then the state |ψ̃〉 is a null state with zero norm, where,

plugging these values for α and β back into Eq. (F.60), and setting ∆ = d/2:(
∂τ−

∂2
i

2n

)
|ψ(τ,x)〉= 0 . (F.63)

Identifying τ = it and −n (the charge of O† is −n > 0) as the mass of the particle, we have(
−i∂t +

∂2
i

2m

)
O† |0〉= 0 ,

(
i∂t +

∂2
i

2m

)
O |0〉= 0 . (F.64)

This is the Schrödinger equation. Because this is an example of a classical equation of motion

for a well-defined quantum field theory, the bound ∆≥ d/2 is therefore the strongest bound.7

7To prove this, assume there is a better (or as good) lower bound ∆∗ such that ∆≥ ∆∗ ≥ d/2. There exists an
example of a well-defined quantum field theory with ∆ = d/2, therefore ∆ = ∆∗.
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Appendix G

Nonrelativistic Conformal Field Theories
in the Large Charge Sector

G.1 Appendix A: Phonons in the Trap

We are solving equation (8.81) in the range of r ∈ [0,R] where R2 = 2µ
ω2 is the cloud

radius.

Inserting π ∝ eiεt f (r)Y` and expanding in spherical coordinates:

−ω2

d
(R2− x2)[∂2

r f +
(d−1)

r
∂r f − 1

r2 `(`+d−2) f ]+ω
2r∂r f = ε

2 f (G.1)

Defining the dimensionless variables x≡ r
R and λ≡ ε

ω
and changing variables to z = x2

−1
d
(1− z)[4z∂

2
z f +2∂z f +2(d−1)∂z f − 1

z
`(`+d−2) f ]+2z∂z f = λ

2 f (G.2)

Equation (G.2) is a hypergeometric equation with two independent solutions

f (z)∼ c1z
`
2 2F1(α−,α+,γ,z)+ c2z

1
2 (2−d−`)

2F1(α
′,β′,γ′,z) (G.3)

Our solution should be valid on the interval z ∈ [0,1] where it should be regular and finite at both

z = 0 and z = 1. Regularity at the origin kills the second solution immediately.

Therefore we have:

f (z)∼ c1z
`
2 2F1(α−,α+,γ,z) (G.4)
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where γ = `+ d
2 , α± = 1

2(`+d−1)±κ , and κ = 1
2(1−2d +d2−2`+ `d + `2 +dλ2)

1
2

The function 2F1(α−,α+,γ,z) is finite at z = 1 under one of the following possibilities:

1. The values α++α− < γ for any value of the arguments

2. If either α± is equal to a non-positive integer

To see this, we use the following identity and regularity of 2F1 around (1− z) = 0:

2F1(α−,α+,γ,z) =
Γ(γ)Γ(γ−α+−α−)

Γ(γ−α−)Γ(γ−α+)
2F1(α−,α+,α−+α++1− γ,1− z)

+
Γ(γ)Γ(α++α−− γ)

Γ(α−)Γ(α+)
(1− z)γ−α−−α+2F1(γ−α−,γ−α+,1+ γ−α−−α+,1− z) (G.5)

2F1(α−,α+,γ,z∼ 1)∼ Γ(γ)Γ(γ−α+−α−)

Γ(γ−α−)Γ(γ−α+)
+

Γ(γ)Γ(α++α−− γ)

Γ(α−)Γ(α+)
(1− z)γ−α−−α+ (G.6)

We can check explicitly that α++α− = `+d−1≥ γ for d ≥ 2, where the superfluid groundstate

is possible. Therefore option (1) is ruled out.

Define α− =−n where n is a non-negative integer.

The relation above implies α+ = (`+d−1)−α− = `+d +n−1

Consider the explicit product:

α+α− =
1
4
(`+d−1+2κ)(`+d−1−2κ) =

d
4
(`−λ

2) (G.7)

Substituting the integer relations for α± turns equation (G.7) into a quadratic equation which

can be solved for λ as:

λ
2 =

1
d
(4n2 +4dn+4`n−4n+d`) (G.8)

which yields the dispersion (8.82)
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G.2 Appendix B: Correlation Functions in Oscillator Frame

G.2.1 Two point function

In Galilean frame the two point function is given by

〈
O(t =−i/ω)O†(t = i/ω)

〉
= c
(
−2i

ω

)−∆O

(G.9)

Now we know

〈
O(t =−i/ω)O†(t = i/ω)

〉
= lim

t0→iω
τ0→−i∞

1
(1+ω2t2

0)
∆O

〈
O(τ = τ0)O†(τ =−τ0)

〉

= c lim
τ0→i∞

1
(1+ω2t2

0)
∆O

(
1

sin2(2ωτ0)

)∆O/2

= c(2i)∆O lim
τ
(E)
0 →∞

1
(1+ω2t2

0)
∆O

exp
(
−2ω∆Oτ

(E)
0

)
(G.10)

where ωt0 = tan(ωτ0). Comparing (G.9) and (G.10), we obtain an identity:

lim
t0→iω
τ
(E)
0 →∞

1
(1+ω2t2

0)
∆O/2 exp

(
−ω∆Oτ

(E)
0

)
= 2−∆O ω

∆O/2 (G.11)

where we have ωt = tan(ωτ) and τ(E) = iτ. We note that t =± i
ω

corresponds to Oscillator frame

Euclidean time τE =∓∞, this follows from

ωt = tan(−iωτE) (G.12)

Thus the operators are inserted at infinitely past and future Euclidean time.

In the oscillator frame, we have

〈O(τ1)O†(τ2)〉= c
[
1+ tan2(ωτ1)

]∆O
2
[
1+ tan2(ωτ2)

]∆O
2 (tan(ωτ1)− tan(ωτ2))

−∆O ,

which can be simplied into

〈O(τ1)O†(τ2)〉= c [sin(ω(τ1− τ2))]
−∆O , (G.13)
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using the identity

[1+ tan2(ωτ1)][1+ tan2(ωτ2)]

[tan(ωτ1)− tan(ωτ2)]2
=

1
sin2(ω(τ1− τ2))

. (G.14)

G.2.2 Three point function

In the Galilean frame, the general form of a three-point function is fixed to be:

〈O1(x1)O2(x2)O3(x3)〉 ≡ G(x1;x2;x3) = F(v123)exp
[
−i

Q1

2
xxx2

13
t13
− i

Q2

2
xxx2

23
t23

]
∏
i< j

t
∆

2−∆i−∆ j
i j (G.15)

where ∆≡ ∑i ∆i , xi j ≡ xi− x j , and F(vi jk) is a function of the cross-ratio vi jk defined:

vi jk =
1
2

(
xxx2

jk

t jk
−

xxx2
ik

tik
+

xxx2
i j

ti j

)
(G.16)

The matrix element (8.86) defines a 3-point function in this frame via (8.16) and (8.13)

〈ΦQ+q|φq(τ,yyy)|ΦQ〉= (1+ω
2t2)

∆φ

2 exp
[

i
2

q
x2ω2t

1+ω2t2

]
G
(
− i

ω
,0 ; t,xxx;

i
ω
,0
)

= F(v)(1+ω
2t2)

∆φ

2 exp
[

i
2

q
x2ω2t

1+ω2t2

]
exp

[
− iqx2

2
(
t− i

ω

)]∏
i< j

t
∆

2−∆i−∆ j
i j

= F(v)exp
[

q
2

ωx2

1+ω2t2

]
(1+ω

2t2)
∆φ

2 ∏
i< j

t
∆

2−∆i−∆ j
i j

= F(v)exp
[

q
2

ωx2

1+ω2t2

]
(2)

1
2 (−∆Q+q+∆φ−∆Q)(iω)

∆

2

(
1− iωt
1+ iωt

)∆Q−∆Q+q
2

= F(v)exp
(q

2
ωy2
)
(2)∆φ

(
iω
2

)∆

2

e−iω(∆Q−∆Q+q)τ

where

v =
1
2

(
x2

t− i
ω

+
x2

− i
ω
− t

)
=

iωx2

1+ω2t2 (G.17)
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Appendix H

The Spinful Large Charge Sector of
Non-Relativistic CFTs: From Phonons to
Vortex Crystals

H.1 Particle-Vortex Duality

Here we briefly review the particle vortex duality in nonrelativistic set up. The aim of the

appendix is to cast the vortex dynamics in terms of an electrostatic (in d = 3 the gauge field is 2

form field, hence we coin the term “gaugostatic”) problem, leveraging the duality. The idea is to

solve the gaugostatic problem to figure out the field strength, which in turn gives us the velocity

profile of the vortex, again using the dictionary of duality.

We consider the leading order superfluid Lagrangian in the presence of a potential

A0 =
1
2ω2r2, Ai = 0:

L = c0X
d+2

2 ≡ P(X) X ≡ ∂0χ−A0−
1
2
(∂iχ)

2 (H.1)

The number density and superfluid velocity are defined respectively as:

n =
∂L
∂χ̇

= c0

(
d
2
+1
)

X
d
2 vi =−∂iχ (H.2)
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The action (H.1) has a U(1) symmetry of χ→ χ+ c whose current can be written as:

jµ =
(
n,nvi) (H.3)

For simplicity and physical relevance, we’ll focus on the cases of d = 2 and d = 3. In d = 2, we

can define:

jµ = ε
µνρ

∂νaρ =
1
2

ε
µνρ fνρ (H.4)

for a one-form gauge field aµ and field strength fµν = ∂µaν−∂νaµ. This relates the superfluid

variables (H.2) to the dual electric and magnetic fields as:

n = ε
i j

∂ia j ≡ b vi =
εi j f0 j

b
≡

εi je j

b
(H.5)

Similarly, in d = 3 we’ll define the current in terms of a dual two-form gauge field Bµν

jµ = ε
µνρσ

∂νBρσ =
1
3

ε
µνρσGνρσ (H.6)

where Gµνρ = ∂µBνρ +∂νBρµ +∂ρBµν is the three-form field strength. The superfluid variables

are then expressible as:

n = ε
i jk

∂iB jk ≡ Y vi =
1
3

εi jkG0 jk

Y
(H.7)

Vortices act as sources for the gauge fields and couple minimally as:

d = 2 : JV
µ aµ d = 3 :

1
4

JV
µνBµν (H.8)

To implement the duality transformation, we note that internal energy ε(n) is given by nX−P(X)

and so we can rewrite the (H.1) as

L = nX− ε(n) = n
(

χ̇−A0−
1
2
(∂iχ)(∂

i
χ)

)
− ε(n) (H.9)

=
1
2

nv2− ε(n)+n
(
χ̇+ vi

∂iχ
)

(H.10)

292



where we have used vi =−∂iχ and n is understood as a function of χ and its derivatives.

The internal energy is given by:

d = 2 : ε(n) =
1

4c0
n2 d = 3 : ε(n) =

3
5

(
2

5c0

) 2
3

n
5
3 (H.11)

Using the relation (H.5) we can express the Lagrangian in d = 2 as:

L =
1
2

e2

b
− 1

4c0
b2−bA0 (H.12)

This equation describes a kind of non-linear electrodynamics with a modified Gauss law:

∂i

(
ei

b

)
= JV

0 (H.13)

Similarly the Lagrangian in d = 3 is given via (H.7) as:

L =
1
9

G0i jG0
i j

Y
− 3

5

(
2

5c0

) 2
3

Y
5
3 −YA0 (H.14)

with a “Gauss law” of:

∂
i
(

G0i j

Y

)
= JV

j0 (H.15)

Now consider a motion of charged particle under the gauge field, sourced by JV . In

what follows, we will show that to leading order we can treat this as a “gaugostatic” problem

and the velocity Vi of the charged particle is negligible. If Vi is negligible, one can potentially

drop the kinetic term in the Lagrangian. As a result, the equation of motion for the particle turns

out to be the one where there is no Lorentz force acting on the particle. This implies that Vi is

of the same order as |e|/b (in d = 3, this is
√

G0i jG0i j

Y ). For self consistency, we need to ensure

Vi is very small i.e. the ratio |e|/b is very small. This helps us to render the problem of vortex

dynamics into a problem of “gaugostatics”. In order to do that, we linearize (H.12) and (H.14)

around parametrically large magnetic field b and Y and we see that the coupling goes as b in

d = 2 and in d = 3, this goes like Y . Hence the electric field strength |e| in d = 2 and
√

G0i jG0i j
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in d = 3 goes like
√

b and
√

Y respectively and we have

√
ViV i ∼ |e|

b
∼ 1√

Q
, ind = 2 (H.16)

√
ViV i ∼

√
G0i jG0i j

Y
∼ 1√

Q
, ind = 3 (H.17)

Thus it is self consistent to assume that the charged particle is just drifting without any Lorentz

force acting on it.

H.2 A Contour integral

This appendix contains the evauation of contour integrals, needed to figure out the vortex

interaction energy in the multivortex scenario. In d = 2, the vortex interaction energy goes like

∫
dr rn(r)

∫
dθ vvvi · vvv j (H.18)

wherre as for d = 3, we have an extra integral along the z axis and r becomes the radius in

cylindrical coordinate. In both cases, the θ integral can be done using contour integral and

expressing vvvi in terms of complex variables given by

vi =
i

z̄− z̄i
, v∗i =

−i
z− zi

(H.19)

Hence the integral evaluates to

I =
∫

dθ vvvi · vvv j = Re
(∫

dz
−i
z

viv∗j

)
(H.20)

= Re
(∫

dz
−i
z

1
(z̄− z̄i)(z− z j)

)
(H.21)

Now we note that zz̄ = r2 and ziz̄i = R2
i to rewrite the integral in following manner:

I = Re
(∫

dz − i
zi

(r2zi−R2
i z)(z− z j)

)
= Re

∫
dz
−i
−R2

i

zi(
z− r2

R2
i
zi

)
(z− z j)

 (H.22)
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The poles are located at z = z j ,z = r2

R2
i
zi i.e. they lie on the circle of radius |z j|= R j and

| r2

R2
i
zi|= r2

Ri
.

Without loss of generality, we consider Ri < R j. Now there can be three scenarios:

1. r < Ri < R j implies r2

Ri
< r < R j, hence the pole at z = r2

R2
i
zi is picked, answer is

I = Re
(
−2π

1
r2− z jz∗i

)
=− 2π

r4 +R2
jR

2
i −2r2RiR j cos(φ)

(
r2−RiR j cos(φ)

)
(H.23)

2. Ri < R j < r implies R j < r < r2

Ri
, hence the pole at z = z j is picked. and the answer is

I =
2π

r4 +R2
jR

2
i −2r2RiR j cos(φ)

(
r2−RiR j cos(φ)

)
(H.24)

3. Ri < r < R j implies r < R j and r < r2

Ri
, so none of the poles is picked, the answer is 0.

Summing up we can write

I =
π
(
r2−RiR j cos(φ)

)
r4 +R2

jR
2
i −2r2RiR j cos(φ)

[
sgn(r−Ri)+ sgn(r−R j)

]
(H.25)
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