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Abstract: The SAT problem is maybe one of the most famous NP-complete problems. This paper

deals with the 3-SAT problem. We follow a sort of incremental strategy to save computational costs

with respect to the classical quantum computing approach. We present an heuristics that leads this

strategy, improving the performance of the purely random incremental scheme. We finally validate

our approach by means of a thorough empirical study.
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1. Introduction

The Boolean satisfiability problem (SAT) is the first known NP-complete problem [1].
It has applications in different fields, such as cryptanalysis [2], hardware verification [3], AI
planning [4] and medicine [5].

There are two main ways to face the SAT problem from the algorithmic perspec-
tive. On one hand, those supported by the Davis–Putnam–Logemann–Loveland (DPLL)
algorithm [6] focus on, in essence, backtracking, and on the other hand, those based on
local searching are led by some heuristics changing from one state to another one until
reaching an ending condition that corresponds to a valid interpretation. Some examples of
the second option are hill climbing/gradient descent and simulated annealing [7], where
the latter can be directly powered by annealing quantum computing.

SAT problems can be dealt with as a structured searching problem, as shown in [8].
This work presents a quantum algorithm for nested searching over structured problems.
First, a Grover’s search is carried out over the i first qubits out of a total of n. This uses an
oracle that inverts the phase of a possible solution, conditioned by the set of clauses that
contains the i first variables that were satisfied. The number of iterations of this first step is
√

2i

nA
, where nA is the number of possible solutions. The second step performs m ≈

√
2n−i

iterations of a standard search in the remaining n − i qubits. The last step applies r ≈
√

nA
nAB

iterations of It · U−1 · (Is ⊗ Is′) · U, where:

• U is the circuit of the two previous steps.

• U−1 is the inverse ordered U circuit (right to left).
• Is and Is′ are the conditional phase inversion of initial states of the i first qubits and

n − i qubits, respectively.
• It is the oracle for the solutions of the problem.
• nAB is the number of solutions of the problem.
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In order to develop such a structured quantum search, some extra information about
the number of tentative solutions at different levels, together with where these levels should
be located, is required. This is not available in our case.

A more restrictive version of this problem focused on exact satisfiabiality, XSAT, and
occupation problems, with n variables and m clauses has been studied in [9] and solved by

Grover’s algorithm in O
(√

2n−M′
)

, where M′ is the number of independent clauses for the

corresponding XORSAT problem that the original problem is reduced to. In fact, it provides
a reduction in the searching space by means of a transformation of the original problem.
The Oracle used in this article is formed of three main blocks. The first block is a mapping
between the k-configuration of the XORSAT problem and the n-configuration of the original
problem. The second block is devoted to computing the number of satisfied clauses. The
third block is a conditional phase inversion over the satisfied clauses (the phase inversion
is applied when the number of satisfied clauses equals the number of clauses).

In addition, Grover’s algorithm can be applied when solving a wide variety of prob-
lems, ranging from the most common decision problems to global optimization problems,
as [10] shows, where finding an input element x satisfying f (x) < f (y) for whatever y 6= x
is the goal. This method starts with a random element y and then repeats two steps until
no solution is found. The first step means executing Grover’s algorithm with f (x) < f (y)
as Oracle. The second step updates the value of y with x.

Variations in this sort of algorithms range from combining them with heuristics,
such as as Variable State Independent Decaying Sum (VSIDS) branching heuristics, or a
passing trough focusing on parallelism, with ManySAT solvers [11] using efficient Boolean
constraint propagation (BCP) together with an optimised decision strategy [12], to using
hardware solvers focused on FPGAs [13].

Other quantum computing approaches used to solve this problem can be seen in [14].
This work encodes each clause as a circuit called filter box, which holds that states satisfying
this clause have a higher amplitude than the rest. This is achieved by using ancillary qubits,
CNOT gates, rotation gates around y-axis, and two non-unitary transformations named
boost Hamiltonian and projection Hamiltonian. If a qubit is used for other clauses, that
qubit will be teleported to the other one by the circuit teleportation box; otherwise, it will
finish with a boost Hamiltonian transformation.

In [15], Leporati et al. propose three different algorithms to deal with the 3-SAT
problem. These algorithms are mainly leveraged by quantum parallelism, computing the 3-
SAT function for all states at once, and therefore obtaining a linear combination α|0〉+ β|1〉
such that either β = 0, when the instance on the problem is unsatisfiable, or β measures
a proportion of the number of solutions with respect to the domain of Boolean variables
when it is satisfiable (which obviously includes the first option). These different proposals
are focused on a quantum Fredkin circuit, a register in a quantum register machine, and
the energy of a given membrane in a quantum P system. All these proposals assume the
ability to discriminate a null vector from a non-zero one.

Other quantum computing approaches to solve 3-SAT problem can be found in [16],
where a sort of diabatic quantum annealing (not universal) is proposed, and [17], using
Rydberg Atom Graphs based on neutral atoms’ quantum computing. Both approaches are
supported by quantum systems that evolve mechanically.

Meuli et al. proposed, in [18], a way of synthesising CNOT gates in order to build the
Oracle operator within SAT problem-solving.

Cheng et al. proposed, in [19], a sort of cooperative quantum searching in which
Boolean variables are split into two sets. In one of them, the values of the variables are
set by a local search algorithm, such as, for example, GenSAT; in the other set, Grover’s
searching algorithm is applied.

The SAT problem has also been faced from a hybrid Classical/Quantum perspective,
as Zhang et al. addressed in [20], where an algorithm that first unfolds the branches of the
tree of states until reaching a given threshold, from which Grover’s algorithm is applied, is
presented. Finally, the solutions must be properly linked in order to obtain the solutions of
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the former SAT problem. Our proposal shares some similarities with this one but, as far as
we know, the amount of information we extract from the problem domain, together with
the size of the experiment set we provide, makes us quite confident that our proposal is
still value, and distinct from that of Zhang et al.

In this work, we focus on DPLL-based algorithms. Specifically, we focus on both the
GRASP (Generic seaRch Algorithm for the Satisfiability Problem) [21], based on conflict-
driven clause learning and non-chronological backtracking, and miniSAT [22], which is
based on VSIDS dynamic variable order and on conflict-driven clause learning.

This paper is structured as follows: Section 2 refreshes some preliminary notions,
Section 3 presents our proposal, Sections 4 and 5 are devoted to, first, describing the
experimental setup, and then gathering the results to empirically validate our algorithm.
Section 5 concludes the paper.

2. Preliminaries

2.1. SAT Problem

In this section, we are going to set the notation that is to be used in the rest of the
paper. We will consider a numerable Bool set of Boolean variables; two symbols—⊤ for
the constant true atomic formula and ⊥ for the constant false atomic formula; the ordinary
symbols ∧ and ∨ stand for conjunction and disjunction logical operators; the negation of a
formula ϕ is denoted by ϕ.

Definition 1 (Popositional formula). The set of propositional formulas is generated by the
following Backus–Naur Form BNF form:

ϕ ::= ⊥ | ⊤| p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ (1)

where p ∈ Bool.
We will denote the set of propositional formulas by Prop.
A truth assignment is a function v : Bool 7→ {0, 1}. We can extend v to the set of

propositional formulas v̂ : Prop 7→ {0, 1} in the usual way:

• v̂(⊥) = 0, v̂(⊤) = 1,
• if p ∈ Bool, v̂(p) = v(p),
• v̂(ϕ1 ∧ ϕ2) = min{v̂(ϕ1), v̂(ϕ2)}, v̂(ϕ1 ∨ ϕ2) = max{v̂(ϕ1), v̂(ϕ2)},
• v̂(ϕ) = (v̂(ϕ) + 1) mod 2

We say that v satisfies ϕ (written v |= ϕ) when v̂(ϕ) = 1; if v̂(ϕ) = 0 we write v 6|= ϕ.
The vocabulary of a formula φ, voc(ϕ), is the set of Boolean variables it contains. Formally,

voc(⊤) = voc(⊥) = ∅, voc(p) = {p},
voc(ϕ) = voc(ϕ), voc(ϕ1 ⋄ ϕ2) = voc(ϕ1) ∪ voc(ϕ2) ⋄ ∈ {∧,∨} (2)

A SAT problem is the problem of determining whether a truth assignment v can be
given to the variables of a given formula ϕ, such that v |= ϕ. If this is the case, the referred
formula is said to be satisfiable. Otherwise, i.e., when there is no such assignment, the
formula is said to be insatisfiable.

As SAT belongs to the class of NP-problems, there is no known algorithm capable of
solving SAT in sub-exponential time. Nevertheless, we could find algorithms capable of
solving quite large instances of the SAT problem by following some heuristics.

We will consider Bool as a numerable set of Boolean variables.
We are going to consider a restricted version of the SAT problem: k-SAT, k-satisfiability,

problem. This consists of determining whether the k-SAT formula is satisfiable. K-SAT is
also an NP-problem. Therefore, we then defined a k-SAT formula.

Definition 2 (K-SAT formulas). First, define the set of atomic formulas AT

AT = {⊥,⊤} ∪ Bool∪ {p | p ∈ Bool} (3)
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We will denote the elements of AT as x, x0, x1, . . . . We assume x = x.
An OR clause, or just a clause for us, is a Boolean formula with this shape C = x1 ∨ . . . ∨ xn,

where xi ∈ AT is an atomic formula. For simplicity, we assume that xi 6∈ {⊤,⊥} and xi 6= xj for
i 6= j. If n = 0, we assume that C = ⊥.

A k-SAT formula is a Boolean expression shaped as S f = C1 ∧ . . . ∧ Cm, where each Ci is a
clause with, at most, k variables. If m = 0, we assume that S f = ⊤.

Since the logical operators (∧ and ∨ are independent, commutative and associative),
we can see a k-SAT formula as a set of clauses (connected by ∧ operators), and a clause a
set of atoms (connected by ∨ operators).

An important metric for dealing with k-SAT problem is the density. This metric is
related to the difficulty associated with determining whether a formula is satisfiable.

Definition 3 (Density). The density of S f =
∧i=m

i=1 Ci a k-SAT formula is the ratio between the
number of clauses (m) and the number of Boolean variables : d(S f ) =

m
|voc(S f )|

In the related literature, it is assumed that ∀k(k > 1) ∈ N, and there exists a threshold
value for the density of k-SAT formulas dk such that:

• The farther d(S f ) is from dk, the fewer calls to the DPLL algorithm [6] are required to
solve the k-SAT problem.

• If d(S f ) > dk, the formula would be unsatisfiable with high probability, but the
opposite occurs when d(S f ) < dk, i.e., a high d(S f ) is usually associated with an
unsatisfiable formula.

Some examples are:

• For the 3-SAT problem, Mitchell, Selman and Levesque estimated in 1991 [23] that
d3 ∼ 4.55 for about 20 variables and d3 ∼ 4.3 for larger number of variables

2.2. Incremental SAT—Definition and Complexity

We perform an incremental solving approach also followed by [24]. In practice, we are
going to build a sequence of k-SAT formulas, which will finish either with the former k-SAT
formula S f when it is satisfiable or before in the other case. Figure 1 provides a graphical
view of this process.

SAT0 = ⊤ ⊆ SAT1, . . . SATn−1 ⊆ SATn = S f (4)

where SATi+1 = SATi ∪ NCi, being NCi ⊆ S f \ SATi a new set of clauses. In each step, we
assume that there is v, such that v |= SATi. The new set of clauses NCi is defined according
to the Algorithm 1. If there is no such NC, this identifies an unsatisfiability of S f .

In [24], the authors propose a branch and bound algorithm that can be used to find the
truth assignments in steps with numbers 5–7 within our algorithm. In our case, we will
use a Quantum Algorihtm based on the Grover Algorithm to solve the problem. In our
case, we propose a novel heuristic (see Section 3.3) to choose the most convenient clauses
in each step.
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Figure 1. Solver diagram.

Algorithm 1 Algorithm to extend the set of clauses

Find NC ⊆ S f \ SATi, SATi+1 = SATi ∪ NC if the following tests hold:

1. If {x}, {x} ∈ C, NC is unsatisfiable, it cannot be considered the new set.
2. NC can be simplified by removing the trivially true clauses, so there is no C ∈ NC

such that x, x ∈ C or ⊤ ∈ C.
3. NC is split into two sets: NC = NC1 ∧ NC2 where NC2 is the maximal set of clauses

of NC such that the variables in NC2 do not appear in SATi:

voc(NC1) ∩ voc(SATi) 6= ∅ , voc(NC2) ∩ voc(SATi) = ∅ (5)

SATi is also split into two sets: SATi = S1 ∧ S2 where S2 is the maximal set of SATi

whose variables are not contained in NC1:

voc(S1) ∩ voc(NC1) 6= ∅ , voc(S2) ∩ voc(NC1) = ∅ (6)

4. If v |= NC1, go to step 7.
5. Look to NC1 for a truth assignment v1 such that v1 |= NC1 and v1(x) = v(x) for all

x ∈ voc(S1). If such a truth assignment exists, go to step 7.
6. Look for a truth assignment v1 such that v1 |= S1 ∧ NC1. If such a truth assignment

does not exist, NC cannot be added to SATi.
7. Look for a truth v2 assignment for NC2.

2.3. Convert SAT to Oracle

To begin with, practice with an oracle is required to test satisfiability; for this reason,
we follow the usual [25] rewriting process. First, we eliminate the disjunctions according to
De Morgan laws. In this way, a clause such as C = x1 ∨ x2 ∨ · · · ∨ xl is transformed into the
equivalent formula c′ = x1 ∧ x2 ∧ · · · ∧ xl , whose negations can easily be implemented in a
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quantum circuit with the NOT operator. Since the conjunction is not a reversible connector,
we need to implement it as an oracle AND:

NOT AND

|x〉 |x〉// |x〉 • |x〉//

|y〉 • |y〉//

|z〉 |z ⊕ (x ∧ y)〉//

(7)

Therefore, implementing a k-SAT formula, which is a conjunction of m clauses, would
require m +

∣

∣voc
(

∪m
i=1Ci

)∣

∣+ 1 (one qubit per variable, one qubit per clause and one extra
qubit for the final result).

3. Heuristics to Save Space and Computational Complexity

3.1. Grover’s Algorithm

Grover’s algorithm [26] searches for an element in an unordered space within a
time belonging to O(

√
N), where N is the size of the search space. More precisely, the

input of the Grover Algorithm takes an oracle U f , which implements a Boolean function
f : {0, 1}n 7→ {0, 1} where the elements of the search space are encoded in {0, 1}n and, as
usual, 1 represents success (goal achieved) and 0 means failure.

One of the drawbacks of this method is the need to know the number of solutions
in advance in order to determine the number of rotations to perform. This problem can
be dealt by executing Grover algorithm with 1, 2, . . ., which can be costly; instead, Monte
Carlo algorithms can be used.

3.2. Grover’s Bounded Algorithm

In this section, we first refer to the corresponding version of Grover’s Algorithm [27],
based on which we developed our main contribution. This version reduces the work
domain to a subset of the original set of states to be searched.

Let us assume that we want to find the solutions of f (x) = 1, where
f : {0, 1}n 7→ {0, 1}.

We start from the following quantum circuit U f , which stands for the phase oracle of
f (x) = 1:

∣

∣

∣
{0, 1}n

〉

U f

∣

∣

∣
{0, 1}n

〉

// (8)

In a nutshell, our algorithm selects XG ⊆ X with X = {0, 1}n in order to search for the
solutions in XG. More precisely, if S was the set of solutions of f (x) = 1, our algorithm will
find unique solutions to the set SG = XG ∩ S. We denote SG = XG \ S as the complementary
of SG with respect to XG

As previously recalled, general Grover’s algorithm starts by setting the system into
a full superposed state by applying a Hadamard quantum gate over the former n qubits;
nevertheless, we are only going to apply a superposition to states belonging to XG. We call
this superposition operator UXG

.

UXG
|0n〉 = 1

√

|XG|
· ∑

x ∈ XG

|x〉 = |φ〉 (9)

The construction of the UXG
operator

|0n〉 UXG |φ〉// (10)

is discussed in Section 3.2 for our specific case. In general, this operator can be performed
as described in [28] when no extra qubits are required, and as described in [29] when some
extra ancillary qubits are required.

Figure 2 graphically presents how the first operator performs.
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|SG〉

∣

∣SG

〉

|φ〉 U f |φ〉

UφU f |φ〉

θ/2 θ/2

θ

U f UφU f |φ〉U f UφU f |φ〉

(UφU f )
2|φ〉

2θ

2θ

U f (UφU f )
2|φ〉

(UφU f )
3|φ〉

3θ

3θ

Figure 2. Modified Grover Rotations.

Once the previously described configuration is set, the evolution of our algorithm
is similar to the original one. As we will explain, it is based on rotations towards the
solution vector (see Figure 2). More specifically, we consider two ortonormal vectors: one
corresponds to the states that contain a solution and the other corresponds to the states that
do not.

|SG〉 =
1

√

|SG|
∑

x∈SG

|x〉,
∣

∣SG

〉

=
1

√

|SG|
∑

x∈SG

|x〉 (11)

Then |φ〉 =
√

|SG |
|XG | |SG〉+

√

|SG |
|XG |

∣

∣SG

〉

belongs to the vector subspace generated by |SG〉
and

∣

∣SG

〉

.
Hence, we obtain

U f

∣

∣SG

〉

=
1

√

|SG|
∑

x∈SG

U f (|x〉) =

=
1

√

|SG|
∑

x∈SG

|x〉 =
∣

∣SG

〉

U f |SG〉 =
1

√

|SG|
∑

x∈SG

U f (|x〉) =

=
1

√

|SG|
∑

x∈SG

(−|x〉) =

= − 1
√

|SG|
∑

x∈SG

|x〉 = −|SG〉

(12)

Therefore,

U f |φ〉 =
√

|SG|
|XG|

∣

∣SG

〉

−
√

|SG|
|XG|

|SG〉 (13)

This last equation shows that U f is symmetrical with respect to the vector SG.
The second step to be developed, as in Grover’s algorithm, is the inversion about the

mean, i.e., a symmetry with respect to the initial vector. In our case, we perform a symmetry
with respect to φ vector. The operator that performs this symmetry is the following:

Uφ = UXG
(2|0n〉〈0n| − I)U†

XG
(14)

Let us note that 2|φ〉〈φ| − I is symmetrical with respect to |φ〉 vector.
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Let us consider the angle θ, such that θ
2 is the angle between |φ〉 and

∣

∣SG

〉

.
The operator UφU f means a rotation of amplitude θ.

All this means rotating around and amplifying the distance to the vector SG until as
close as possible to the hyper-plane SG.

Since

|φ〉 =
√

|SG|
|XG|

|SG〉+
√

|SG|
|XG|

∣

∣SG

〉

= sin

(

θ

2

)

|SG〉+ cos

(

θ

2

)

∣

∣SG

〉

(15)

We obtain

(UφU f )
k = sin

(

2k + 1

2
θ

)

|SG〉+ cos

(

2k + 1

2
θ

)

∣

∣SG

〉

(16)

This procedure is graphically shown in Figure 2.
Similar to Grover’s algorithm, we assume for ours that |SG| << |XG|, so θ

2 ≈
sin

(

θ
2

)

=
√

|SG |
|XG | . The number of iterations k is determined such that 2k+1

2 θ ≈ π
2 ; therefore,

k ≈ π
4

√

|XG |
|SG | −

1
2 . If we measure the final state, we obtain the probability of the solu-

tion states as follows,
sin( 2k+1

2 θ)
2

|SG | ≈ 1
|SG | and the probability of the non-solution states is

cos( 2k+1
2 θ)

2

|SG |
≈ 0.

Specific Case

Let us consider F a k− SAT formula (or, equivalently, a set of clauses connected by con-
junctions) whose vocabulary is the set of Boolean variables in it, i.e.,
voc(F) = {p0, p1, . . . , pn−1}. We are creating an incremental approach, regarding the
amount of clauses considered, such that at any step i, we consider a subset of clauses
SATi ⊆ F that is satisfiable. At this point, we have a partial truth assignment v, i.e., a pair
of sets of indices I, J ⊆ {0, 1, . . . , n − 1} such that ∀i ∈ I.v(pi) = 1 and ∀j ∈ J.v(pj) = 0.
Let K = {0, 1, . . . , n − 1} \ (I ∪ J) represent the complementary set of indices, i.e., the set of
indices for which the truth value of v(pk) is not decided ∀t ∈ K.

∀i ∈ {0, 1, . . . , n − 1}, we define the unitary gate Mi as follows:

Mt =











X (t ∈ J)

I (t ∈ I)

H (t ∈ K)

(17)

The operator UXG
of Equation (9) in Section 3.2 is defined as follows

UXG
= Mn−1 ⊗ Mn−2 · · · ⊗ M1 ⊗ M0 (18)

where ⊗ stands for the tensorial product.
When this operator acts over |0n〉, the following outcome is obtained

|φ〉 = UXG
|0n〉 = 1√

2|K|
· ∑

zi=1, i∈I,
zj=0, j∈J,

zt∈{0,1}, t∈K

|zn−1 . . . . . . z0〉 (19)

3.3. Clauses Heuristics

We finally define a heuristic to lead the incorporation of clauses to the SATi process
until they conform with the whole (former) SAT formula, since the algorithm pseudo-coded
in 1 does not provide any criteria to develop this “incremental” procedure.
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Aiming to save computational costs, we defined a heuristic to detect conflict with the
decisions already taken on the variables in either I or in J as quickly as possible, meaning
that these unsatisfiable formulas are identified as soon as possible.

We propose an order on the clauses that extends the statistical fact that those atoms
whose variables appear less in the former formula would generate a lower number of
conflicts, i.e., contradictions.

Definition 4. Let us consider a k-SAT formula F, and a Boolean variable x; we define noc(x, F)
the number of occurrences of x in F, and noc(x, F) stands for the number of occurrences of x in F:

• If C = {x0, . . . , xk−1} is a clause (C = x0 ∨ · · · ∨ xk−1)

noc(x, C) = |{xc | xc ∈ C, x = xc}|, noc(x, C) = |{xc | xc ∈ C, x = xc}| (20)

• If F is a set of clauses (F = C0 ∧ C1 ∧ . . . )

noc(x, F) = ∑
C∈F

noc(s, C), noc(x, F) = ∑
C∈F

noc(s, C) (21)

Finally, we define NOC(x, F) = min(noc(x, F), noc(x, F)).

Intuitively, if NOC(x, F) is low, the probability of conflict coming from x when consid-
ering a clause containing x is low. We use this value for each of the variables in a clause in
order to grade the tentative conflictivity of clauses to be added to SATi, therefore leading
the previously referenced incremental fashion.

Definition 5. Let F be a k-SAT formula and C = {x0, . . . xk−1} a clause within F. The order
function is defined as follows

order(C, F) =
k−1

∑
i=0

1

kNOC(xi ,F)
− 1

kth(i,F)
(22)

where th(i, F) is i-th value of the decreasingly ordered list of the NOC of variables belonging to F,
i.e., [NOC(x, F) | x ∈ C, C ∈ F].

Finally, our incremental approach chooses the unitary set NC = {C} at any stage,
such that the clause C minimizes order(C, F).

4. Testing the Proposal

4.1. Testbed

In order to test the performance of the proposed algorithm, we measured four parameters:

• The first parameter is the maximum number of qubits superposed in the execution of
the algorithm. This parameter, in the original Grover’s algorithm, is the total number
of variables in the problem, whereas in our proposed algorithm it is the maximum
number of qubits superposed along all Grover’s bounded algorithm circuits that are
executed when applying the proposal.

• The second parameter is the maximum number of clauses in Oracle; that is, the
maximum number of clauses in Oracle along all Grover’s bounded algorithm circuits
that are executed.

• The third parameter is the total number of quantum iterations; that is, the total number
of requests to Oracle in both Grover’s algorithms and in Grover’s bounded algorithms.

• The last parameter analysed is the maximum number of qubits used in circuit; this is
the maximum number of qubits used along all Grover’s bounded algorithm circuits
that are executed.

This performance testing can be reproduced by executing the code of the repository [30],
typesetting the following commands to generate the test cases (Figure 3):
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$ python generator . py −v 5 6 7 8 9 10 11 12 13 14 15 16
−− d e n s i t i e s 2 3 4 5 −k 3 −e 10 −−seed 1

where:

• -v: number of variables for the test case (ranging from 5 to 16).
• --densities: densities for each test case (ranging from 2 to 5).
• -k: number of variables per clause (3-SAT).
• -e: number of examples per test case (below can be found more detailed).
• --seed: seed governing the stochastic behaviour in the process (1 in the proposed case).

Figure 3. Test cases generator diagram.

Additionally, this one can be used to execute our algorithm:

$ python main . py

More on detail:

1. A test case for us is a pair (density, number of variables). Ten examples per each test
case are generated.

2. The process of generating test cases was supported by CNFgen [31]. In particular,
10 3-SAT problems were generated for each pair (density, number of variables): in total,
4 × 12 different test cases, which compute 480 3-SAT problems. The density values
range from 2 to 5 (both included). The number of variables ranges from 5 to 16 since,
below 5, this incremental scheme is not needed because computing requirements
are affordable enough and, over 16, it is more computationally expensive which, as
evidence was found that the advantage we provide could be made smaller, meant
that we did not consider using bigger values.
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3. Each of the 480 3-SAT problems was executed in each of the three scenarios to be
compared and, for random measuring issues, five different seeds were also involved;
therefore, in the end, 5 · 10 · 4 · 12 different executions were performed over each of
the three scenarios under comparison.

4. The experimental set up was powered by Qsimov Quantum Simulator [32]. Un-
fortunately, the space computational complexity requirements prevented us from
running examples with more than five variables; therefore, for the remaining cases
we computed the probability amplitudes of the states instead of simulating the whole
quantum computing process, according to the well-known formulas in [33]:

αt+1 = αt ·
(

1 − 2 · k

N

)

+ βt ·
(

2 − 2 · k

N

)

(23)

βt+1 = −αt ·
2 · k

N
+ βt ·

(

1 − 2 · k

N

)

(24)

where t is the number of iterations, k is the number of solutions and N is the total
number of states. Afterwards, we randomly (five previously referenced seeds) chose
the final quantum state among the obtained solutions.

5. The algorithm finishes when there are no more clauses to be added before the former
SAT problem is reached.

We decided to start from scratch regarding the definition of function v : Bool 7→ {0, 1},
i.e., from an empty truth assignment over the set of Boolean variables. This is because once
we developed multiple experiments considering a variety of partial definitions of v to start
from (either considering random chosen values or values coming from a frequency data
analysis of variables in the SAT formula), the results we obtained did not improve on those
we have chosen; therefore, for the sake of simplicity, this is our decision.

Some other non-relevant assumptions we made are as follows:

• We know the number of solutions needed to determine the number of iterations in
each execution in advance for both original and modified Grover’s algorithms.

• The result of the measurement is always one of the maximum probability states. In
both cases, we have to repeat the algorithm to obtain a probability distribution, so we
simplified this step.

• Each 3-SAT problem has at least one solution because no version of Grover’s algorithm
works for problems with no solution.

To finish with, the scenarios we considered are as follows:

1. Grover’s algorithm.
2. New approach algorithm that is randomly ordered.
3. New approach algorithm with heuristic order.

4.2. Results

Once the experiments were performed, we summarised the outcomes as follows:
As the number of qubits on superposition is a key issue from the performance per-

spective, the following four graphs show a very noticeable improvement almost regardless
of the density of the 3-SAT formulas under consideration. This advantage was maintained
in cases in which there was no predefined order to the clauses added to our incremental
scheme, although it was not as big as that with respect to the former Grover’s algorithm
(Figure 4).
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Figure 4. Comparisons of number of superposed qubits for 3-SAT formulas according to densities.

Another very important part of the quantum algorithm is performing the oracle, where
the amount of clauses directly affects the number of ancillary qubits required; therefore,
the next four graphs are devoted to measuring this fact, again using the densities of 3-SAT
formulas. The results obtained clearly show the advantage of the proposed algorithm
(Figure 5):

Figure 5. Comparisons of number of clauses in oracle according to densities of 3-SAT formulas.

Finally, we conducted a space computational complexity analysis; in the following
four graphs, wepresent the results obtained when measuring the upper bound for the
number of qubits used along the whole of the proposed algorithm. In our opinion, these
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are the most representative graphs showing the improvement provided by our proposal
(Figure 6).

Figure 6. Comparisons of total number of qubits used stratified by the densities of 3-SAT formulas.

The next four raphs are devoted to capturing issues within the temporal computational
complexity. In particular, we measured the number of Grover’s iterations. The following results
show that our algorithm requires both a high number of variables as well as high-density
formulas in order to improve the results of the original Grover’s algorithm (Figure 7).

Figure 7. Comparisons of number of Grover’s iterations for different densities on 3-SAT formulas.

The results provided by our experiments show that, although the space computational
complexity of the proposed algorithm is the same than that of Grover´s algorithm, in prac-
tice, the number of qubits needed to perform the computations is reduced in a factor that
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can range between 1.5 and 2.2. This fact, in practice, represents a noticeable improvement
since the main drawback to dealing with quantum computing is the number of qubits that
are required.

Going beyond this, we found that the extra auxiliary qubits required for each clause
under consideration is reduced at least as much as the total number of qubits.

Finally, the biggest advantage pertains to the number of superposed qubits which,
as the graphs show, is really important. This last feature is of paramount importance in
quantum computing, whether actual or simulated.

Appendix A provides all the raw numbers we used to create the previous 16 maps
that summarize the performance in the comparative study we developed. Green numbers
highlight advantages, while red numbers highlight disadvantages compared to Grover´s
algorithm.

5. Conclusions and Further Work

We dealt with the classic problem of deciding whether any truth assignments exist
for a Boolean formula. This is a widely studied problem in the related literature in Maths,
Physics, Engineering, etc. From the quantum computing perspective, Grover’s algorithm
has proven to be a useful tool.

We presented an algorithm which, inspired by Grover´s one, has improved the amount
of quantum computational resources by a significant ratio. For this algorithm to be designed,
we described a sort of incremental strategy over the sets of clauses that conforms to
the 3-SAT formula under scope. The aim of this process is, on the one hand, to use
the advantages of Grover´s modified algorithm and, on the other hand, to choose an
appropriate conforming order (within this incremental scheme) such that the assumptions
required for Grover’s modified algorithm to be used are as useful as possible. This last
issue led us to define an heuristics for the set of clauses to be added to the previously
described incremental scheme.

This algorithm solves 3-SAT problems with significantly less quantum computational
resources, namely qubits, and fewer iterations than those required for former Grover’s
algorithm. As the ordinary bottleneck at quantum computing is strongly dependant on the
total number of qubits (especially those that are entangled) that are required, this algorithm
extends the scope of 3-SAT problems to be solved given a quantum computing machine.

As future work, we plan to further elaborate the heuristics and the process of incor-
porating clauses within our incremental scheme, mainly by incorporating more than one
clause at each step, perhaps under a dynamic criterion.

Author Contributions: Individual contributions are as follows. Conceptualization, J.J.P., L.F.L. and

F.L.P.; Formal analysis, J.J.P., L.F.L. and F.L.P.; Investigation, J.J.P., L.F.L., H.I.C., M.M., F.C. and F.L.P.;

Writing—original draft, J.J.P., L.F.L., H.I.C., M.M., F.C. and F.L.P.; Writing—review and editing, J.J.P.,

L.F.L. and F.L.P. All authors have read and agreed to the published version of the manuscript

Funding: This work has been supported by the Spanish MINECO/FEDER project AwESOMe

(PID2021-122215NB-C31), the Region of Madrid project FORTE-CM (S2018/TCS-4314) co-funded by

EIE Funds of the European Union and the Qsimov Quantum Computing project ‘Ampliación de la

plataforma QSIMOV aumentando su versatilidad y conectividad’ (220426UCTR).

Data Availability Statement: This performance testing study can be fully reproduced (data included)

by executing the code of the repository [30].

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 1888 15 of 24

Appendix A

Table A1. 5 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 5.0 0.0% 10.0 0.0%
2 2 0.78 −4.4% 3.88 −61.2%
3 2 0.76 −84.8% 4.46 −55.4%

1 3 5.0 0.0% 15.0 0.0%
2 3 1.14 −77.2% 8.48 −43.47%
3 3 1.48 −70.4% 9.88 −34.13%

1 4 5.0 0.0% 20.0 0.0%
2 4 2.22 −55.6% 14.9 −25.5%
3 4 1.84 −63.2% 12.78 −36.1%

1 5 5.0 0.0% 25.0 0.0%
2 5 1.82 −63.6% 15.36 −38.56%
3 5 1.68 −66.4% 13.14 −47.44%

1 2 1.1 0.0% 16.0 0.0%
2 2 1.92 +74.55% 7.28 −54.5%
3 2 1.98 +80.0% 7.94 −50.37%
1 3 2.4 0.0% 21.0 0.0%
2 3 2.88 +20.0% 13.16 −37.33%
3 3 3.14 +30.83% 15.28 −27.24%
1 4 3.3 0.0% 26.0 0.0%
2 4 4.12 +24.85% 20.66 −20.54%
3 4 4.18 +26.67% 18.24 −29.85%
1 5 3.6 0.0% 31.0 0.0%
2 5 3.94 +9.44% 20.64 −33.42%
3 5 3.7 +2.78% 18.78 −39.42%

Table A2. 6 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 6.0 0.0% 12.0 0.0%
2 2 0.85 −85.83% 6.55 −45.42%
3 2 0.8 −86.67% 5.65 −52.92%

1 3 6.0 0.0% 18.0 0.0%
2 3 1.38 −77.0% 12.4 −31.11%
3 3 1.05 −82.5% 9.75 −45.83%

1 4 6.0 0.0% 24.0 0.0%
2 4 2.05 −65.83% 17.3 −27.92%
3 4 1.9 −68.33% 14.05 −41.46%

1 5 6.0 0.0% 30.0 0.0%
2 5 1.85 −69.17% 21.55 −28.17%
3 5 2.2 −63.33% 21.05 −29.83%
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Table A2. Cont.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 1.3 0.0% 19.0 0.0%
2 2 2.6 +100.0% 11.85 −37.63%
3 2 2.2 +69.23% 10.5 −44.74%

1 3 2.5 0.0% 25.0 0.0%
2 3 3.3 +32.0% 18.3 −26.8%
3 3 3.05 +22.0% 15.0 −40.0%

1 4 3.9 0.0% 31.0 0.0%
2 4 4.7 +20.51% 24.3 −21.61%
3 4 3.8 −2.56% 20.35 −34.35%

1 5 4.9 0.0% 37.0 0.0%
2 5 4.15 −15.31% 28.55 −22.84%
3 5 4.95 +1.02% 27.45 −25.81%

Table A3. 7 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 7.0 0.0% 14.0 0.0%
2 2 0.92 −86.86% 7.62 −45.57%
3 2 0.82 −88.29% 6.36 −54.57%

1 3 7.0 0.0% 21.0 0.0%
2 3 1.58 −77.43% 14.76 −29.71%
3 3 1.42 −79.71% 16.16 −23.05%

1 4 7.0 0.0% 28.0 0.0%
2 4 2.36 −66.29% 21.42 −23.5%
3 4 1.52 −78.29% 20.28 −27.57%

1 5 7.0 0.0% 35.0 0.0%
2 5 2.78 −60.29% 27.7 −20.86%
3 5 1.86 −73.43% 26.18 −25.2%

1 2 1.6 0.0% 22.0 0.0%
2 2 2.9 +81.25% 14.02 −36.27%
3 2 2.32 +45.0% 11.52 −47.64%

1 3 3.3 0.0% 29.0 0.0%
2 3 4.16 +26.06% 21.98 −24.21%
3 3 4.04 +22.42% 23.76 −18.07%

1 4 5.5 0.0% 36.0 0.0%
2 4 5.72 +4.0% 29.36 −18.44%
3 4 4.44 −19.27% 27.92 −22.44%

1 5 7.2 0.0% 43.0 0.0%
2 5 5.4 −25.0% 35.7 −16.98%
3 5 5.58 −22.5% 33.76 −21.49%
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Table A4. 8 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 8.0 0.0% 16.0 0.0%
2 2 0.96 −88.0% 8.3 −48.12%
3 2 1.22 −84.75% 11.68 −27.0%

1 3 8.0 0.0% 24.0 0.0%
2 3 1.76 −78.0% 18.86 −21.42%
3 3 1.74 −78.25% 18.08 −24.67%

1 4 8.0 0.0% 32.0 0.0%
2 4 2.16 −73.0% 21.66 −32.31%
3 4 2.46 −69.25% 23.52 −26.5%

1 5 8.0 0.0% 40.0 0.0%
2 5 2.44 −69.5% 30.8 −23.0%
3 5 2.32 −71.0% 26.78 −33.05%

1 2 2.0 0.0% 25.0 0.0%
2 2 3.04 +52.0% 15.76 −36.96%
3 2 3.32 +66.0% 19.72 −21.12%

1 3 4.1 0.0% 33.0 0.0%
2 3 4.66 +13.66% 27.54 −16.55%
3 3 4.58 +11.71% 26.5 −19.7%

1 4 7.8 0.0% 41.0 0.0%
2 4 5.06 −35.13% 30.3 −26.1%
3 4 5.44 −30.26% 31.9 −22.2%

1 5 9.2 0.0% 49.0 0.0%
2 5 6.36 −30.87% 39.8 −18.78%
3 5 6.52 −29.13% 35.02 −28.53%

Table A5. 9 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 9.0 0.0% 18.0 0.0%
2 2 1.0 −88.89% 12.7 −29.44%
3 2 0.95 −89.44% 9.65 −46.39%

1 3 9.0 0.0% 27.0 0.0%
2 3 1.92 −78.67% 22.72 −15.85%
3 3 1.6 −82.22% 18.55 −31.3%

1 4 9.0 0.0% 36.0 0.0%
2 4 2.25 −75.0% 26.78 −25.61%
3 4 1.65 −81.67% 26.75 −25.69%

1 5 9.0 0.0% 45.0 0.0%
2 5 2.22 −75.33% 34.72 −22.84%
3 5 2.05 −77.22% 31.25 −30.56%

1 2 2.4 0.0% 28.0 0.0%
2 2 3.98 +65.83% 21.5 −23.21%
3 2 3.35 +39.58% 17.2 −38.57%



Mathematics 2023, 11, 1888 18 of 24

Table A5. Cont.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 3 5.8 0.0% 37.0 0.0%
2 3 4.97 −14.31% 32.7 −11.62%
3 3 5.15 −11.21% 27.1 −26.76%

1 4 7.8 0.0% 46.0 0.0%
2 4 6.28 −19.49% 36.22 −21.26%
3 4 4.5 −42.31% 35.9 −21.96%

1 5 11.3 0.0% 55.0 0.0%
2 5 7.4 −34.51% 44.72 −18.69%
3 5 5.95 −47.35% 40.55 −26.27%

Table A6. 10 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 10.0 0.0% 20.0 0.0%
2 2 0.85 −91.5% 12.3 −38.5%
3 2 0.92 −90.8% 8.6 −57.0%

1 3 10.0 0.0% 30.0 0.0%
2 3 2.17 −78.3% 23.15 −22.83%
3 3 1.8 −82.0% 20.1 −33.0%

1 4 10.0 0.0% 40.0 0.0%
2 4 2.15 −78.5% 31.6 −21.0%
3 4 2.2 −78.0% 27.15 −32.12%

1 5 10.0 0.0% 50.0 0.0%
2 5 2.9 −71.0% 40.78 −18.44%
3 5 2.55 −74.5% 36.85 −26.3%

1 2 2.5 0.0% 31.0 0.0%
2 2 3.75 +50.0% 21.0 −32.26%
3 2 2.92 +16.8% 15.85 −48.87%

1 3 6.7 0.0% 41.0 0.0%
2 3 5.18 −22.69% 33.5 −18.29%
3 3 5.15 −23.13% 29.75 −27.44%

1 4 12.8 0.0% 51.0 0.0%
2 4 6.25 −51.17% 42.6 −16.47%
3 4 5.75 −55.08% 36.9 −27.65%

1 5 18.3 0.0% 61.0 0.0%
2 5 8.07 −55.9% 51.78 −15.11%
3 5 7.45 −59.29% 47.35 −22.38%
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Table A7. 11 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 11.0 0.0% 22.0 0.0%
2 2 1.0 −90.91% 13.85 −37.05%
3 2 1.0 −90.91% 12.15 −44.77%

1 3 11.0 0.0% 33.0 0.0%
2 3 1.4 −87.27% 24.65 −25.3%
3 3 1.75 −84.09% 21.55 −34.7%

1 4 11.0 0.0% 44.0 0.0%
2 4 2.88 −73.82% 38.38 −12.77%
3 4 2.45 −77.73% 34.5 −21.59%

1 5 11.0 0.0% 55.0 0.0%
2 5 3.48 −68.36% 44.38 −19.31%
3 5 3.15 −71.36% 44.25 −19.55%

1 2 3.0 0.0% 34.0 0.0%
2 2 3.68 +22.67% 24.22 −28.76%
3 2 3.1 +3.33% 21.25 −37.5%

1 3 6.4 0.0% 45.0 0.0%
2 3 5.42 −15.31% 36.48 −18.93%
3 3 4.4 −31.25% 31.95 −29.0%

1 4 17.4 0.0% 56.0 0.0%
2 4 8.28 −52.41% 50.38 −10.04%
3 4 7.1 −59.2% 46.15 −17.59%

1 5 24.2 0.0% 67.0 0.0%
2 5 10.15 −58.06% 56.38 −15.85%
3 5 8.85 −63.43% 55.75 −16.79%

Table A8. 12 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 12.0 0.0% 24.0 0.0%
2 2 1.3 −89.17% 17.23 −28.21%
3 2 1.15 −90.42% 14.28 −40.5%

1 3 12.0 0.0% 36.0 0.0%
2 3 1.75 −85.42% 27.0 −25.0%
3 3 1.4 −88.33% 28.1 −21.94%

1 4 12.0 0.0% 48.0 0.0%
2 4 3.2 −73.33% 41.22 −14.12%
3 4 3.05 −74.58% 39.4 −17.92%

1 5 12.0 0.0% 60.0 0.0%
2 5 3.95 −67.08% 50.15 −16.42%
3 5 3.45 −71.25% 45.2 −24.67%
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Table A8. Cont.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 3.5 0.0% 37.0 0.0%
2 2 5.15 +47.14% 29.08 −21.41%
3 2 4.38 +25.14% 24.25 −34.46%

1 3 8.9 0.0% 49.0 0.0%
2 3 5.95 −33.15% 39.55 −19.29%
3 3 5.3 −40.45% 40.5 −17.35%

1 4 25.4 0.0% 61.0 0.0%
2 4 8.98 −64.65% 54.22 −11.11%
3 4 8.65 −65.94% 52.0 −14.75%

1 5 36.6 0.0% 73.0 0.0%
2 5 9.98 −72.73% 63.15 −13.49%
3 5 10.3 −71.86% 57.3 −21.51%

Table A9. 13 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 13.0 0.0% 26.0 0.0%
2 2 1.14 −91.23% 19.42 −25.31%
3 2 1.02 −92.15% 15.48 −40.46%

1 3 13.0 0.0% 39.0 0.0%
2 3 2.2 −83.08% 34.36 −11.9%
3 3 2.04 −84.31% 31.44 −19.38%

1 4 13.0 0.0% 52.0 0.0%
2 4 3.72 −71.38% 45.94 −11.65%
3 4 2.42 −81.38% 34.82 −33.04%

1 5 13.0 0.0% 65.0 0.0%
2 5 3.3 −74.62% 57.42 −11.66%
3 5 3.42 −73.69% 56.32 −13.35%

1 2 4.5 0.0% 40.0 0.0%
2 2 3.92 −12.89% 31.96 −20.1%
3 2 3.58 −20.44% 26.3 −34.25%

1 3 14.1 0.0% 53.0 0.0%
2 3 7.04 −50.07% 48.16 −9.13%
3 3 5.86 −58.44% 44.24 −16.53%

1 4 36.4 0.0% 66.0 0.0%
2 4 12.32 −66.15% 59.94 −9.18%
3 4 7.34 −79.84% 47.16 −28.55%

1 5 51.5 0.0% 79.0 0.0%
2 5 11.12 −78.41% 71.42 −9.59%
3 5 8.6 −83.3% 70.24 −11.09%



Mathematics 2023, 11, 1888 21 of 24

Table A10. 14 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 14.0 0.0% 28.0 0.0%
2 2 1.24 −91.14% 18.88 −32.57%
3 2 1.24 −91.14% 17.86 −36.21%

1 3 14.0 0.0% 42.0 0.0%
2 3 2.22 −84.14% 36.32 −13.52%
3 3 2.16 −84.57% 35.72 −14.95%

1 4 14.0 0.0% 56.0 0.0%
2 4 3.02 −78.43% 46.88 −16.29%
3 4 3.05 −78.21% 46.0 −17.86%

1 5 14.0 0.0% 70.0 0.0%
2 5 5.25 −62.5% 58.82 −15.97%
3 5 3.45 −75.36% 59.55 −14.93%

1 2 5.1 0.0% 43.0 0.0%
2 2 4.7 −7.84% 32.32 −24.84%
3 2 4.36 −14.51% 29.8 −30.7%

1 3 20.4 0.0% 57.0 0.0%
2 3 7.7 −62.25% 51.1 −10.35%
3 3 7.14 −65.0% 50.02 −12.25%

1 4 37.9 0.0% 71.0 0.0%
2 4 9.1 −75.99% 61.85 −12.89%
3 4 9.5 −74.93% 60.5 −14.79%

1 5 67.7 0.0% 85.0 0.0%
2 5 17.02 −74.86% 73.82 −13.15%
3 5 11.08 −83.63% 74.0 −12.94%

Table A11. 15 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 15.0 0.0% 30.0 0.0%
2 2 1.35 −91.0% 22.95 −23.5%
3 2 1.1 −92.67% 21.62 −27.93%

1 3 15.0 0.0% 45.0 0.0%
2 3 2.12 −85.87% 36.58 −18.71%
3 3 2.28 −84.8% 35.65 −20.78%

1 4 15.0 0.0% 60.0 0.0%
2 4 3.12 −79.2% 52.75 −12.08%
3 4 2.75 −81.67% 52.65 −12.25%

1 5 15.0 0.0% 75.0 0.0%
2 5 4.2 −72.0% 59.85 −20.2%
3 5 3.38 −77.47% 55.05 −26.6%
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Table A11. Cont.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 5.7 0.0% 46.0 0.0%
2 2 5.9 +3.51% 38.25 −16.85%
3 2 5.18 −9.12% 35.72 −22.35%

1 3 20.4 0.0% 61.0 0.0%
2 3 7.0 −65.69% 52.48 −13.97%
3 3 6.98 −65.78% 50.25 −17.62%

1 4 55.0 0.0% 76.0 0.0%
2 4 11.12 −79.78% 68.75 −9.54%
3 4 10.22 −81.42% 68.45 −9.93%

1 5 78.8 0.0% 91.0 0.0%
2 5 12.02 −84.75% 75.85 −16.65%
3 5 10.35 −86.87% 69.6 −23.52%

Table A12. 16 Variables.

Scenario Density
Max Qubits
Superposed

Comparison
with
Grover’s
Algoritm

Max Clauses
in Oracle

Comparison
with
Grover’s
Algorithm

1 2 16.0 0.0% 32.0 0.0%
2 2 1.42 −91.12% 25.55 −20.16%
3 2 1.25 −92.19% 21.95 −31.41%

1 3 16.0 0.0% 48.0 0.0%
2 3 2.33 −85.44% 41.9 −12.71%
3 3 2.15 −86.56% 41.65 −13.23%

1 4 16.0 0.0% 64.0 0.0%
2 4 4.8 −70.0% 56.9 −11.09%
3 4 4.35 −72.81% 56.55 −11.64%

1 5 16.0 0.0% 80.0 0.0%
2 5 4.0 −75.0% 64.28 −19.65%
3 5 4.4 −72.5% 67.5 −15.62%

1 2 6.7 0.0% 49.0 0.0%
2 2 5.68 −15.22% 42.2 −13.88%
3 2 4.9 −26.87% 36.4 −25.71%

1 3 19.4 0.0% 65.0 0.0%
2 3 9.65 −50.26% 58.9 −9.38%
3 3 8.2 −57.73% 58.0 −10.77%

1 4 104.5 0.0% 81.0 0.0%
2 4 18.1 −82.68% 73.85 −8.83%
3 4 13.25 −87.32% 73.15 −9.69%

1 5 131.4 0.0% 97.0 0.0%
2 5 13.68 −89.59% 81.28 −16.21%
3 5 13.85 −89.46% 84.0 −13.4%
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