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Abstract: Motivated by the neutron lifetime puzzle, it is proposed that neutrons may decay into new

states yet to be observed. We review the neutron star constraints on dark fermions carrying unit

baryon number with masses around 939 MeV, and discuss the interaction strengths required for the

new particle. The possibility of neutrons decaying into three dark fermions is investigated. While up

to six flavors of dark quarks with masses around 313 MeV can be compatible with massive pulsars,

any such exotic states lighter than about 270 MeV are excluded by the existence of low-mass neutron

stars around ∼1.2M⊙. Light dark quarks in the allowed mass range may form a halo surrounding

normal neutron stars. We discuss the potential observable signatures of the halo during binary

neutron star mergers.

Keywords: neutron lifetime; neutron star; dark matter

1. Introduction

Neutrons and protons are fundamental building blocks of the visible universe. Al-
though not considered as elementary particles, they are windows to the world below
femtometer scales that is challenging and costly to probe. Understanding their properties
is essential in testing the Standard Model (SM) and could also be instrumental in searching
for signatures of physics beyond the SM. For instance, the observed incredibly long lifetime
of protons has put severe constraints on supersymmetric and grand unified theories that
predict appreciable baryon number violating processes at low energies [1–3].

Unlike their electrically charged counterpart, neutrons are more challenging to study
in terrestrial laboratories. This difficulty is especially highlighted in recent years by the
neutron decay anomaly. It refers to a small yet distinctive discrepancy among the values of
neutron lifetime τn measured with two classes of techniques [3,4]. In the so-called “beam”
method, fluxes of beta-decay products, protons, and electrons are measured; in the “bottle”
method, one continually monitors an ensemble of ultra-cold neutrons in a trap, and the
lifetime is obtained by fitting the survival probability as a function of time.

Attempts by various groups yielded averaged values of τbottle
n = 878.4 ± 0.5 s [5–10]

for the bottle method, and τbeam
n = 888.0 ± 2.0 s [11–13] for beam measurements. This

tension, on the order of ∼10 s, has already grown above the 4σ level [3,4]. Since the bottle
method measures the total decay width, whereas, in the beam method, only the beta-decay
width is measured, the shorter lifetime reported using the bottle method could indicate a
hitherto unknown decay channel of neutrons [14].

On the theory side, current Standard Model calculations of the neutron lifetime do not
reveal particular preferences for either the beam or the bottle results [14,15]. For instance, if
one fix the CKM matrix element |Vud| to the Particle Data Group average [3], although a
few measurements of the axial vector coupling inferred larger values of gA & 1.275 [16–18],
favoring the bottle average, recent lattice calculations [19,20] and several early experi-
ments [21,22] point to the lower side gA . 1.270 predicting τn closer to the beam results.

As the neutron lifetime puzzle continues haunting the community, one shall not over-
look where neutrons abound. Containing over ∼1057 baryons, neutron stars (NSs) are gi-
gantic nuclei rich in neutrons. With masses on the order of solar mass M⊙ ≈ 1.99 × 1030 kg
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and radii around 10 km, neutron stars are compact objects of extreme densities. Their
compactness C = GM/Rc2 ∼ 0.1 − 0.3 (a parameter related to the escape velocity) is large,
only second to black holes (CBH = 0.5), suggesting an environment of extreme gravity. Due
to the strong gravitational field, baryons are compressed to densities nB a few times higher
than the nuclear saturation density n0 = 0.16 fm−3, the typical density encountered near
the center of nuclei. These conditions make neutron stars ideal laboratories to study new
degrees of freedom that mix with neutrons.

The remainder of this paper is organized as follows. In Section 2, we briefly review
proposals for neutron dark decays. Section 3 is a short introduction to the physics of neutron
stars, with a focus on the equation of state and the neutron star mass–radius relations. In
Section 4, we review existing neutron star constraints on dark neutrons [23–27], and discuss
neutron decays into dark quarks in Section 5. Below, we have outlined the natural unit
system in which h̄ = G = c = 1 is adopted.

2. Dark Neutrons and the Neutron Decay Anomaly

We begin by examining the general features of neutron dark decay scenarios required
to explain the puzzle surrounding τn. New decay channels are possible at tree levels if the
SM neutron couples to another spin one-half operator X, where X could be an intermediate
state or is composed of the decay products. The final state may consist of several fermionic
and possibly bosonic fields

n → X1X2 . . . , (1)

where at least one of them is not the content of the Standard Model. Based on kinematic
considerations, the dark decay may proceed if the sum of the masses of final state particles
does not exceed that of neutrons ∑i mXi

< mn. Additionally, the incredibly long lifetime
of protons suggests the proton decay process p → e+νeX1X2 . . . must be forbidden. This
can be achieved via kinematics when ∑i mXi

> mp − me = 937.76 MeV. A slightly stronger
bound is given by the stability of nuclei, and the strongest of such requirements comes
from the weakly bounded 9Be nucleus, which translates into ∑i mXi

> 937.90 MeV [14]. All
in all, neutron dark decay scenarios can be viable solutions to the lifetime puzzle provided
that the sum of final state masses lies in the narrow range

937.90 MeV < ∑
i

mXi
< 939.57 MeV. (2)

A number of models that can generate the operator nX and predict Equation (1) have
been proposed [14,23,26]. In this section, for concreteness, we shall focus on the possibility
in which the final state consists of the SM photon γ and a Dirac fermion χ carrying unit
baryon number [14,23], i.e.,

n → χγ. (3)

According to Equation (2), the mass of this dark fermion χ is constrained to the interval

937.90 MeV < mχ < 939.57 MeV. (4)

We further note that, if mχ < mp + me = 938.78 MeV, χ is stable, as guaranteed by the
conservation of baryon number and electric charge, and is a well-motivated dark matter
candidate.

The dark decay Equation (3) may arise from the effective Lagrangian

Leff = n̄
(
i6∂ − mn + µnσµνFµν

)
n

+ χ̄(i6∂ − mχ)χ − δ(χ̄n + n̄χ), (5)

where µn = −1.91e/mn = −0.3 GeV−1 is the neutron magnetic dipole moment. The
n − χ coupling δ can be generated by the dimension-6 operator 1

Λ2 χ̄udd. UV completions

of Equation (5) suggest that the value of this coupling is δ∼ 0.01 GeV3

Λ2 [28,29], where Λ is
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the characteristic energy of the UV theory. Taking Λ to be around the electroweak scale
Λ∼100 GeV, we see that the n − χ coupling is expected to be small δ∼10−3 MeV. In
particular, it is much smaller than the mass difference δ ≪ ∆m ≡ mn − mχ.

Diagonalizing the mass terms in Equation (5) is straightforward, and it leads to a
mixing between n and χ. To leading order in the mixing angle θ = δ/∆m and the mass
eigenstates are obtained by taking n → n + θχ, and χ → χ − θn. In the mass eigenbasis,
the operator responsible for the dark decay can be identified as

µnθχ̄σµνnFµν. (6)

It predicts n → χγ with a partial width

Γn→χγ =
µ2

nθ2m3
n

16π

(
1 −

m2
χ

m2
n

)3

≃ µ2
nθ2∆m3

2π
. (7)

Given a total width of Γn = 1/τbottle
n = (879.6 s)−1, the branching ratio for the dark decay

into χγ is

Brn→χγ = 0.01

(
∆m

1 MeV

)3( θ

7 × 10−10

)2

. (8)

A search for photons in the expected energy range was conducted shortly after the publi-
cation of reference [14], where the branching ratio is constrained to be less than ∼10−3 for
Eγ > mn − mp − me ≈ 0.78 MeV [30], thereby ruling out this χ as a dark matter candidate,
or that n → χγ as a complete solution to the neutron lifetime puzzle if χ is stable. We
shall demonstrate that neutron star constraints on neutron dark decays are complemen-
tary to and stronger than this terrestrial bound, as they can probe branching ratios much
less than required to explain the lifetime puzzle and do not require visible states in the
decay product.

Additional models are proposed in which neutrons decay into two dark states [14,27],

n → χφ, (9)

where χ is a fermion and φ is a boson.
In reference [27], baryon number B = 1 is assigned to the fermion χ, whereas in

reference [14], the scalar φ carries unit baryon number. We will briefly review the neutron
star constraints for this scenario in Section 4.4, and comment on future directions. In
Section 5, the possibility of neutron decaying into three dark fermions n → χiχjχk is
investigated [31], and its implications for neutron stars examined.

3. Neutron Stars

Here, we briefly review the physics of neutron stars relevant for the discussion on
neutron dark decay.

3.1. The Mass–Radius Relation

The hydrostatic equilibrium of spherically symmetric configurations in general rel-
ativity was first solved by Tolman and by Oppenheimer and Volkov almost a century
ago [32,33]. The resulting equations that govern compact star structures, dubbed the TOV
equations, are

dP

dr
= −ME

r

[
1 +

P

E

][
1 +

4πr2 p

M

][
1 − 2M

r

]−1

,

dM

dr
= 4πr2E .

(10)

Above, M is the enclosed mass, P is the pressure, and E the energy density of the stellar matter.
Equation (10) is written in a suggestive form to reveal its resemblance with its New-

tonian counterpart. The weak field, non-relativistic limit is obtained upon dropping all
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three terms in the bracket in the first line. In this limit, the equations can be understood
through analyzing the forces acting on an infinitesimally thin slab of the star. Equilib-
rium is achieved when the difference in pressure across the slab balances the gravitational
force per unit area sourced by this thin slab. Even though the relativistic corrections in
Equation (10) can be as large as factors of a few, the heuristic “pressure gradients balance
gravity” argument remains useful in construing global structures of relativistic stars.

Once an equation of states (EOS), a relation between the pressure and energy density
E(P), is specified, the TOV equations can be solved numerically as follows. For given
boundary condition P(r = 0) = Pc, specified at the center of the star r = 0 where M(r) = 0,
Equation (10) can be integrated all the way up to the surface r = R, defined by P(r = R) = 0.
The total stellar mass is then found as M = M(r = R). A family of parametric solutions
R(Pc) and M(Pc) can thus be generated by varying the central pressure Pc, from which
the mass–radius relation is obtained. Figure 1 shows a few such curves. The EOSs that
underlie these curves are discussed below.

8 10 12 14
R (km)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
 (M

)

stiff
APR
Fermi gas
DD2

Figure 1. The mass–radius relations for EOSs shown in Figure 2. Even for the extremely stiff EOS,

the maximum mass of hybrid stars containing non-interacting dark neutrons does not exceed 0.8M⊙.

Ubiquitous to all mass–radius relations is the existence of maximum masses, beyond
which points increasing the central energy density will only make lighter stars. That gravi-
tational binding energy grows faster than the baryonic contribution signifies gravitational
instability. In other words, the stars on the branch beyond the limiting mass are unstable,
and are not shown in Figure 1.

Known as the TOV limit, the value of the maximally attainable neutron star mass
depends on the details of the underlying EOS. Based on the “pressure gradients balance
gravity” argument discussed earlier, one could expect that EOSs predicting higher pressure
at given energy densities are more likely to support heavier neutron stars. An EOS that
has higher pressure at given energy densities is usually referred to as “stiff”, and those
with smaller pressure are typically called “soft”. The correlation between neutron star
maximum mass and pressure of the matter content suggests that observations of massive
neutron stars could provide valuable insights into the microscopic physics governing the
dense stellar medium. This avenue of research has been explored extensively in the nuclear
physics community in studying neutron-rich matter [34]. Here, instead, we aim to use this
connection to assess the possibilities of dark contents in neutron stars.

To date, three measurements of massive pulsars have been made with high confi-
dence and good accuracy. These are 1.97 ± 0.04M⊙ for J1614-2230 [35], 2.01 ± 0.04M⊙ for
J0348+0432 [36], and 2.08 ± 0.7M⊙ for J0740+6620 [37]. All of the pulsars being measured
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reside in binary systems. The rather accurate mass measurements are made possible thanks
to relativistic orbital effects which are used to break degeneracies among the Keplerian
elements. Below, we shall see these observations are powerful in setting limits on dark
particles that mix with neutrons.

3.2. Equation of State (EOS)

It is often stated in popular science books and introductory-level texts that neutron
stars are supported by the degeneracy pressure of neutrons. This is somewhat misleading.
In fact, it was known in the very early days by Oppenheimer and Volkov [32] that, if the
degeneracy pressure is the only source of stabilization, neutron stars cannot exist at all.

Although the ideal fermi gas is not appropriate to describe dense nuclear matter, it
will play a central role in the discussion below surrounding neutron dark decays. Here, we
present a brief review. The EOS for arbitrary relativistic ideal Fermi gas (with degeneracy 2
due to spin) is given by

E =
1

π2

∫ kF

0

√
k2 + m2k2 dk,

P = −d(E/n)

d(1/n)
=

1

3π2

∫ kF

0

3k4 dk√
k2 + m2

,

(11)

where n = k3
F/(3π2) is the fermion number density, kF is the Fermi momentum, and m

denotes the mass of the fermion. These integrals can be evaluated analytically, leading to
closed-form expressions

E =
m4

8π

[
x
√

x2 + 1
(

2x2 + 1
)
− sinh−1(x)

]
,

P =
m4

24π

[
x
(

2x2 − 3
)√

x2 + 1 + 3 sinh−1(x)
]
,

(12)

where we have defined the dimensionless quantity x = kF/m.
The resulting mass–radius relation is shown in green in Figure 1. Clearly, the predicted

maximum neutron star mass sits around 0.7M⊙, far below even the Chandrasekhar limit.
Such low masses are not only incompatible with observations of heavy pulsars but also in
stark contradiction with the neutron star formation mechanism. The main takeaway here is
that the degeneracy pressure alone is not adequate to support any realistic neutron stars,
and that the short-range nuclear repulsive forces are crucial in determining even the global
structure of neutron stars.

As discussed in the previous section, the Fermi gas EOS cannot support heavy neutron
stars because it is too soft, i.e., it predicts (much) lower pressure at given energy densities
compared to more realistic models (to be discussed below). This is evident in Figure 2. A
useful measure of the “stiffness” of an EOS is the isentropic speed of sound. It is related to
the slope of the EOS as

cs ≡
√

Cs =

√
dP

dE . (13)

For the ideal Fermi gas EOS, the sound speed squared takes the simple form

Cs =
1

3

[
1 +

m2

(3π2n)2/3

]−1

. (14)

It gradually rises with density and asymptotes to the ultra-relativistic limit 1/3. Note
that, depending on the mass of the fermion, the asymptotic value 1/3 may be achieved at
densities much higher than or comparable to values (around a few times n0) relevant for
the interior of neutron stars (see Figure 3). This is the key motivation for Section 5.
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Figure 2. Nuclear and hybrid EOSs. The standard nuclear matter EOSs are shown as solid curves.

The “Stiff” EOS makes a second-order transition to the causal EOS at nB = 1.5 ns. This is the stiffest

possible model and predicts a maximum mass ≃3.4M⊙ (Figure 1). Adding a dark baryon with

mχ = 939 MeV results in dashed curves, which are dominated by χ’s Fermi gas EOS (green). All

curves are truncated at maximum central densities inside stable neutron stars. The dashed blue curve

represents the hybrid EOS based on the stiffest possible nuclear EOS and is barely visible as it is very

close to the orange dashed line. Both of them are brought down to the vicinity of the Fermi gas EOS

shown in green due to the large population of χ’s in the star.

Figure 3. Speed of sound squared for ideal Fermi gas EOSs assuming different fermion masses.

We shall now turn to more realistic nuclear EOSs. Although it remains a daunting
task to describe neutron star matter, especially as one gets closer to the central regions of
the star, much progress has been made to improve our understanding of the EOS below
about twice the nuclear saturation density nB ≤ 2n0. In particular, the chiral effective
field theory (χEFT) [38–42] developed over the past three decades has produced fruitful
predictions for neutron-rich matter in this density range [43,44]. It is an effective low-energy
description of QCD in terms of explicit nucleonic degrees of freedom. All the operators
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consistent with the chiral symmetry are taken into account, and power counting schemes
are adopted to organize them into a series in nucleon momenta. This not only enables
systematically improvable calculations but also provides uncertainty estimates through
order-by-order comparisons. For instance, the recent many-body calculations based on
chiral potentials up to the next-to-next-to-next-to-leading order (N3LO) suggest that the
pressure of pure neutron matter is about 19 MeVfm−3 at nB = 2n0 with an uncertainty of
about 30% at the 1σ level [43–45].

In this work, we adopt a family of EOSs for nuclear matter in beta equilibrium [45–47]
based on the aforementioned state-of-art N3LO χEFT calculations. This model accounts
for both the central values and the correlated uncertainties through a simple and accurate
parameterization [45]. For baryon number densities above around 1.5n0, we shift to an EOS
with a constant speed of sound, i.e.,

P = CsE + P0, (15)

where the constant P0 is chosen so that the pressure is continuous. Since causality requires
the speed of sound to be no greater than one, the limiting case Cs = Cmax = 1 is the stiffest
possible nuclear EOS (assuming χEFT calculations are valid up to nB = 1.5n0). This is
shown in Figure 2 as the blue curve labelled “stiff”. Its prediction for the TOV limit, around
3.5M⊙, places an upper bound on how heavy neutron stars can be. Below, when neutron
dark decay channels are turned on, we shall show that new fermionic states carrying
baryon number drastically soften the EOS, which leads to lowered neutron star maximum
mass. This extreme EOS will provide the most conservative yet robust bounds on such
dark states, as the results are insensitive to the uncertainties associated with the poorly
understood high-density QCD phase.

Figures 1 and 2 show the EOSs discussed so far and their predictions for the mass-
radius relations. The EOS labelled APR, calculated by Akmal, Pandharipande, and
Ravenhal [48], has been widely used in the literature to describe neutron stars and it is
included here as a reference. The curve labeled DD2 is based on the relativistic mean
field calculation reported in reference [49]. All of these SM EOSs support two-solar-mass
neutron stars, and will serve as the baseline when dark decay channels are turned on.

4. Neutron Star Constraints on Dark Neutrons

Given the long lifetime of observed neutron stars tNS ≈ 106 − 108 years, one could
expect that any dark decay scenario aiming to explain the neutron lifetime puzzle, which
in vacuum has a characteristic time scale

τn→χ... = 1/

(
1

τbottle
n

− 1

τbeam
n

)
≈ 0.9 day (16)

will be efficient in bringing the decay products into equilibrium with the star. This general
expectation is indeed true, despite complications due to finite density effects. In a dense
baryon environment, each neutron feels strong interactions with a large number of nucleons
in the background, and thus the excitation spectrum of neutrons is modified. This leads to
a suppressed in-medium mixing angle. For the model described in Equation (5), the n-χ
mixing at finite density is given by

θ̃ =
δ√

∆̃m
2
+ Σ2

i

(17)

where ∆̃m = ∆m + Σr, and Σr and Σi are the real and imaginary parts of the neutron
dispersion relation, respectively. Since Σr and Σi are on the order of 10–100 MeV in neutron
stars [50], the suppression on the mixing angle θ̃/θ is expected to be around 0.01–0.1. The

enhanced energy level splitting ∆̃m, on the other hand, enlarges the available phase space
for n → χ . . . in the star. Since the production rate in Equation (7) is proportional to the
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mixing angle squared and the energy level difference cubed, it is safe to assume that χ
will come into equilibrium on a timescale much shorter than the typical age of neutron
stars as long as δ & 10−17 GeV, much less than the value required to explain the neutron
lifetime puzzle. In other words, even if the decay anomaly is resolved within the nuclear
experiment community, neutron star considerations remain relevant as they are sensitive to
n−χ mixings several orders of magnitude less than being probed at terrestrial laboratories.

Once in equilibrium, the large baryon chemical potential will source a considerable
population of dark particles carrying baryon number. Depending on the dark decay
products, the implications of those exotic states on neutron star structures will differ.
Below we will examine the impacts of three types of dark decay modes on neutron star
mass–radius relations.

4.1. Non-Interacting Dark Neutrons

In this section, we consider a Dirac fermion χ that carries unit baryon number. χ could
be the fermion in Equation (5), or it can be the final fermionic state in Equation (9). We
note that the search for the decay n → χγ already set a limit on this particular channel.
For 937.90 MeV < mχ < 938.78 MeV, the branching ratio is constrained to be less than
10−3 [30], a level insufficient to explain the neutron decay anomaly on its own. Neutron
stars can place stronger constraints on such a dark fermion with a mass close to that of
nucleons, independent of other accompanying decay products [23–25].

As discussed earlier, in equilibrium, the dark neutron χ will be sourced by the baryon
chemical potential µB. In the absence of strong repulsive interactions, as is the case for
models Equation (5) and in reference [14], the χ’s are described by the Fermi gas EOS
Equation (12). The chemical potential for this dark neutron gas is given by

µχ =
√

k2
F + m2

χ, where kF = (3π2nχ)
1/3. (18)

The equilibrium dark neutron number density nχ can be obtained by solving the condition

µχ = µB = (Pnucl + Enucl)/nnucl (19)

for given nuclear EOSs in beta-equilibrium where Pnucl, Enucl, and nnucl denote the pressure,
energy density, and number density, respectively. The hybrid EOS appropriate for neutron
stars admixed with dark neutron χ’s then follows as

Ptot = Pnucl + Pχ, (20)

Etot = Enucl + Eχ. (21)

The reduction in pressure and, consequently, the maximum mass due to χ’s is striking.
Even for the maximally stiff EOS, the presence of non-interacting dark neutrons reduces the
maximum mass to values well below observed neutron star masses. Thus, a dark neutron
with mχ ≃ mn and weak interactions is robustly excluded [23–25]. The drastic softening of
the EOS and the reduction to the TOV limit is universal across all nuclear models. This is
because, in the absence of repulsive interaction among χ’s it is energetically favorable to
convert neutrons into χ’s. Indeed, for the hybrid star based on the stiffest possible nuclear
EOS, there are almost eight times more χ’s than neutrons at the center of the heaviest star.
Consequently, the hybrid EOS is dominated by that of the weakly interacting χ’s, leading
to TOV limits decreased to around 0.7M⊙, the value predicted by the Fermi gas EOS. The
takeaway here, again, is that microscopic interactions are critical in supporting neutron stars.

4.2. Mirror Neutrons

A simple scenario in which dark neutrons may interact substantially is the possibility
that they are mirror copies of the SM neutrons [51–53]. Here, we will assume that the mirror
neutron is almost identical to its SM counterpart, except its mass mχ is slightly less than mn,
and falls in the narrow range in Equation (4). In this case, we have Pχ = Pn and Eχ = En.
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We may further ignore the small fraction of protons in the star and arrive at Pχ = Pnucl and
Eχ = Enucl. The resulting mass–radius relations are shown in Figure 4. Here, the reduction
to the neutron star maximum mass persists, but the effects are less prominent since nχ = nn

and since short-range repulsions experienced by χ’s provide additional stabilization. While
hybrid stars constructed based on the stiffest possible nuclear EOS can still reach around
2.4M⊙ , those assuming APR EOS as the underlying nuclear model can no longer satisfy the
massive pulsar bound. We find that the maximum speed of sound squared for neutron star
matter needs to be greater than about 0.6 (Cs & 0.6 in Equation (15)) for mirror neutrons to
be a viable neutron decay product.

8 9 10 11
R (km)

0.5

1.0

1.5

2.0

2.5

M
 (M

)

stiff
APR
Cs = 0.6
DD2

Figure 4. The mass–radius relations for neutron stars admixed with mirror neutrons. The brown

curve assumes the same nuclear EOS as the blue curve up to nB = 1.5n0, but then shifts to a constant

speed of sound (Equation (15)) with Cs = 0.6. Any nucleonic EOS with a maximum speed of

sound squared lower than this value would not admit mirror neutrons around 939 MeV as a viable

explanation for the neutron decay anomaly.

4.3. Self-Interacting Dark Neutrons

Another possibility to obtain sizable repulsion among dark neutrons is by charging χ
under a global U(1)A′ [23,26]. This leads to a class of well-motivated models that have rich
phenomenology if the new gauge boson mixes with the Standard Model photon Aµ [54].
The effective Lagrangian involving the new gauge boson A′ of mass mV that complements
Equation (5) is given by

LA′ = −1

4
F′µνF′

µν −
1

2
m2

V A′µ A′
µ − ǫ

2
FµνF′

µν + gχ̄ /A′χ. (22)

Above, F′µν = ∂µ A′ν − ∂ν A′µ, and ǫ is the kinetic mixing between the SM photon and
the dark photon A′. This mixing could open up another decay channel n → χA′ for
sufficiently light A′. The coupling g is responsible for the repulsive interactions among χ’s
mediated by the vector boson A′. At the relativistic mean field level, it leads to the following
contributions to the EOS in addition to those of the Fermi gas (e.g., references [55,56])

∆Pχ = ∆Eχ =
1

2

g2

m2
V

n2
χ, (23)

∆µχ =
g2

m2
V

nχ. (24)

Once again, besides making the EOS of χ’s stiffer, the interaction also raises the cost of
converting n’s to χ’s, as can be seen from Equation (24). This helps to keep the population
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of χ’s in check. A back-of-the-envelope estimate suggests that mediator mass on the order
of mV ∼ 100 MeV can achieve this by matching the self-energy of neutrons:

∆µχ ≈ 10 MeV

(
g2

0.1

)(
100 MeV

mV

)2(nχ

n0

)
.

Figure 5 shows the required dark neutron interaction strengths as functions of TOV
limits for the stiff and the APR nuclear EOSs. Assuming the coupling g = 1, the observed
massive pulsar would require a mediator lighter than about 100 MeV. If a three-solar-mass
pulsar is found in the future, the mediator mass will not be allowed to exceed about 30 MeV.
Such light gauge bosons may be subject to constraints from CMB, BBN, stellar cooling,
etc., [26] and could have interesting consequences in other contexts, for example, explaining
the DM small-scale structure puzzles [57].

2.0 2.2 2.4 2.6 2.8 3.0 3.2
maximum mass (M )

20

40
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80

100

m
V
/g

 (M
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)

stiff
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Figure 5. Dark neutron self-interaction strength as a function of the hybrid star maximum

mass. For the APR EOS, the observation of 2 solar mass pulsars requires the interaction strength

g/mV & (1/100) MeV−1. For the stiffest possible nuclear EOS, the mediator can be as heavy as

100 MeV given current evidence; a value could be halved if, for instance, the secondary component in

GW190814 is a neutron star [58].

4.4. Bosonic Dark Decay Products

In reference [27], it is proposed that appreciable repulsion may arise between neutrons
and the dark fermion χ in Equation (9), and can therefore evade the neutron star maximum
mass bound discussed above. However, we note that the boson φ in the decay final state will
thermalize with the χ’s and neutrons and, therefore, this scenario is subject to constraints
imposed by black hole formation. The general idea is that, in the absence of the Pauli
exclusion principle, the bosons will settle into a small sphere near the center of neutron
stars once thermalized. The characteristic sizes of this boson cloud

Rφ ∼ 10 m

(
T

108 K

)1/2( mφ

GeV

)1/2

are expected to be small. Without strong repulsions, the gravitational collapse of the boson
gas to a black hole is inevitable since the critical mass is tiny

Mcrit ≃ m2
pl/mφ ≈

(
GeV

mφ

)
10−19 M⊙.
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Such consideration has already been used to place constraints elsewhere, such as WIMP
capture by neutron stars [59] and dark bosons produced in supernovae [60]. In the context of
neutron dark decay, it is expected to impose even stronger bounds given the large number
of bosons produced in neutron dark decay. Furthermore, for sufficiently strong boson
self-interactions, the n − χ repulsion may not be required to stabilize heavy neutron stars.

It is interesting to note that, if the scalar carries baryon number, as is the case in
reference [14], and that their self-repulsion is adequate to evade the black hole formation
bound, a new baryon number superfluid phase could emerge inside NSs. For a similar
scenario that gives rise to a lepton number superfluid, see [60]. If, on the other hand, the
scalars are weakly interacting but are light (sub-MeV), they could leave the star, carrying
away considerable energies. This extra cooling channel will impact the early evolutions
of neutron stars, a scenario potentially constrained by the cooling trajectories of young
pulsars [61]. A detailed study on bosonic dark decay byproducts is underway and will be
reported in future work.

5. Neutron Star Constraints on Dark Quarks

Yet another possibility is that neutrons may decay into three dark fermions n →
χ1χ2χ3, each carrying baryon number 1/3. The fermions in the final state can be identical
χ1 = χ2 = χ3 or distinct. The only requirement is that the sum of their masses lies in the
range Equation (2) in order to explain the neutron decay anomaly while, at the same time,
to not destabilize 9Be. Due to their resemblance to quarks in the Standard Model, we refer
to these fermions as dark quarks.

5.1. Equal Masses

We first study the simplest cases where all the dark quarks share the same mass
mχ1

= mχ2 = mχ3 ≈ mn/3, while still allowing χ1,2,3 to be distinct states. Implementing
the dark quark admixed EOS is straightforward by noting that the dark quark chemical
potential is only 1/3 of that of baryons. Taking µχ = µB/3 in Equation (19), we obtain

µχ = µB/3 = (Pnucl + Enucl)/(3nnucl). (25)

Equation (18) can then be used to calculate the equilibrium dark quark densities, from
which Equation (12) yields the EOSs for each flavor.

Ptot = Pnucl +

N f

∑
i=1

Pχi
, (26)

Etot = Enucl +

N f

∑
i=1

Eχi
, (27)

where the subscript i is the dark quark flavor index.
The resulting mass–radius relations are shown in Figure 6. While the APR EOS does

not appear to support the dark quark hypothesis, for the maximally stiff nuclear EOS, dark
quarks are compatible with current observations unless there are more than six species
with masses equal to mn/3 ≈ 313 MeV. Note that, although the final state in this scenario
can only accommodate no more than three species, if additional flavors of light dark
quarks exist (see below), they will be sourced by the baryon chemical potential and become
relevant. Since the baryon chemical potential in the most massive neutron stars can reach
µB ≃ 2.3 GeV, any dark quark carrying baryon number 1/3 can populate neutron stars if it
is lighter than about 800 MeV.
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Figure 6. Mass–radius relations for dark quark admixed neutron stars assuming mχ2 = mχ2 = mχ3 ≈
313 MeV. The blue curves are generated with the stiff EOS, and the orange with the APR EOS, as

before. The dashed, solid, and dash-dotted lines represent models containing N f = 1, 3, 6 active dark

quark species, respectively.

The key insight into why weakly interacting dark quarks work is by noting the m2
χ

dependence in the speed of sound squared for the Fermi gas EOS Equation (14). Reducing
the fermion mass enables the asymptotic value Cs = 1/3 to be approached faster at lower
densities. Figure 3 shows the speed of sound for selected values of mχ. At mχ ≈ 300 MeV,
the dark quark matter is endowed with Cs a few times higher than that of the weakly
interacting dark baryon gas at densities above ∼n0. We therefore expect stiffer hybrid
EOSs for dark quarks compared to dark neutrons. Furthermore, the zero-temperature
thermodynamic identity C−1

s = d log n/d log µ suggests that, at fixed chemical potentials,
higher sound speeds imply lower densities. Hence, in the dense background of SM baryons
that source µB, the population of dark particles would be more restrained if they are
considerably lighter than dark neutrons. Both of these factors allow dark quarks to support
massive pulsars, even in the absence of strong repulsion.

5.2. Unequal Masses

One may further relax the assumption of equal dark quark masses. This would imply
the existence of new states lighter than about mn/3 carrying baryon number 1/3. In
the absence of additional symmetries, the lightest dark quark(s) would be the ground
state in vacuum into which heavier flavors decay on a time scale comparable to eq. (16).
The equilibrium configuration in a dense baryon background is specified by the baryon
chemical potential µχi

= µχj
= µχk

= µB/3, as in the previous section. Unlike the equal
mass case, however, additional considerations on neutron star stability arise here because
the dark quarks are no longer contained within the SM baryon surface.

The outer layer of a cold neutron star, known as the outer crust, is a solid primar-
ily composed of nuclei and electrons [62,63]. With increasing depth, the nuclei become
increasingly neutron-rich. The top layer of the outer crust is mostly 56Fe and is character-
ized by a vanishing density and pressure (ignoring the atmosphere). Since the binding
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energy of 56Fe is about 8 MeV per baryon, the dark quark chemical potential there is
µthreshold ≈ (mn − 8 MeV)/3 = 310 MeV. According to Equations (18) and (25), this chem-
ical potential would source a considerable population of dark quarks if their mass is less
than this threshold value:

nχ(µthreshold) ≈
[(mn/3)2 − m2

χ]
3
2

3π2
≈ n0

[
1 −

(
3mχ

mn

)2
] 3

2

(28)

where the approximation µthreshold ≈ mn/3 is implied. This nonzero density of dark quarks
at the iron surface implies a finite pressure that would push the dark quark gas outward
until a gradient of pressure is established outside, forming a halo surrounding the SM
neutron star.

We note that dark quarks do not “drip” out of isolated stable nuclei. This is guaranteed
by Equation (2). Their leakage outside neutron stars is a gravitational effect, as baryon
numbers are redistributed across the star to minimize the total energy. The time scale
associated with (re-)establishing hydrostatic equilibrium can be estimated as ∆t∼

√
R3/M

which, for typical neutron stars, is on the order of milliseconds. Since it is much shorter
than the n − χ conversion time scale in Equation (16), the hydrostatic equilibrium is always
maintained as the star readjusts itself. Once the chemical equilibrium is achieved, the true
ground state is characterized by a constant µB. In the presence of gravitational fields, this
constancy condition reads (e.g., reference [64])

µB(r)
√

gtt(r) = constant (29)

where µB(r) is the chemical potential in the local frame at radial coordinate r, and gtt(r) = eν(r)

is the temporal component of the metric tensor. This metric function is given by the equation

dν

dr
= −dP/dr

P + E (30)

which can be solved alongside Equation (10) with the boundary condition ν(r = R) =
log(1 − 2M

R ), i.e., matching the Schwarzschild metric at the surface of the star. In practice,
this boundary condition may be imposed after integrating Equation (30) using an arbitrary
value at the center of the star ν(r = 0) and noting that Equation (30) is shift-invariant. The
metric function for a 1.4M⊙ hybrid star is shown in Figure 7 as a solid black line.

To determine the structure of hybrid stars in the presence of dark quark halos, one
may adopt the iterative approach based on Equation (29) described in reference [65].
Alternatively, simplifications are possible by noting that the dark quarks are only charged
under the baryon number, so the equilibrium state of matter is uniquely specified by µB.
The simplified procedure is as follows. We first obtain the number density nχi

(µB) for
each flavor down to baryon chemical potential µB = mχi

/3 via Equations (18) and (26),
and compute the EOSs for every species according to Equation (12). The full EOS is then
obtained by summing all contributions due to SM baryons and χ’s via Equation (26), which,
once supplemented to the TOV equation, would yield the ground state of dark quark
admixed neutron stars.

Figure 7 shows the profile of an equilibrium configuration based on the APR EOS,
assuming N f = 2 and that the mass of the lightest state is mχ1

= 280 MeV. The mass of
the other flavor can either be (1) m2 = mn − 2m1 if n → χ1χ1χ2 or (2) m2 = (mn − m1)/2 if
n → χ1χ2χ2, where, for brevity, we have defined mi ≡ mχi

. The resulting stellar structure
is quite similar for these two cases and we picked the second possibility in Figure 7, since
χ2 would populate the star in greater abundance thanks to the lower threshold chemical
potential µthreshold = 3m2. Although the χ1 halo extends to a large radius of about 18 km,
the surface of SM baryons which determines thermal X-ray emissions sits at a radius of
about 12 km, consistent with astrophysical observations (Spins are ignored. The hybrid
stars most likely experience differential rotations due to the weak coupling between the
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halo and SM baryons, and the halo would remain intact in the presence of rapidly spinning
SM cores. We defer discussions pertaining non-zero angular momentum to future work).
And despite its large size, the halo only accounts for a small fraction of the total baryon
numbers in the star. The baryonic mass of SM degrees of freedom is about 1.5M⊙, whereas
for χ2, the share is close to 0.01M⊙ and for χ1 is around 0.07M⊙. Of the latter, just about
20% resides in the halo.
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Figure 7. Density profiles for a 1.4M⊙ dark quark admixed neutron star. The APR EOS is used

to describe SM baryons, and it is assumed that N f = 2 where mχ1 = 280 MeV and mχ2 = (mn −
mχ1 )/2 ≈ 329 MeV. The blue, orange, and green curves represent the number densities of SM baryons

χ1 and χ2, respectively. The second horizontal axis above the figure shows the baryon chemical

potential, and the threshold values for every species are explicitly marked. The black line shows

the metric function gtt. For comparison, the configuration containing the same total baryon number

NB = 1.88 × 1057 in the absence of exotic neutron decay channels is shown as the dotted lines.

Ignoring the thermal effects, the initial configuration can be found by searching for
the cold neutron star composed solely of SM baryons that contain the same total baryon
number as the hybrid one. Profiles of this normal neutron star are depicted as dotted lines
in Figure 7. Upon comparing the solid and the dotted curves, we see that the effects of light
dark quarks are mainly twofold. On one hand, the presence of dark quarks inside the iron
surface softens the EOS, which leads to a small contraction of the SM sphere and a slight
increase in the central density, thereby deepening the gravitational potential (shown in
black) near the center and raising the gravitational binding energy by a few percent. This is
similar to scenarios in previous sections and the upshot is mild reductions in the maximum
attainable masses of hybrid stars. On the other hand, the light state χ1 provides a means to
transport baryon numbers outside the iron surface. As noted earlier, the baryonic mass of
the halo is about 0.01M⊙ and has negligible impacts on the spacetime geometry. Indeed,
the tt component of the metric tensor (solid black line) is almost identical to that of the
Schwarzschild spacetime geometry gtt(r) = 1 − 2M/r outside the SM portion of the star
(dotted black line, very close to and hard to distinguish from the solid black). However,
since number densities at the iron surface in Equation (28) can be quite large for very light
dark quarks, the leakage of baryon numbers would be so severe that SM components do
not survive. We now examine this possibility and demonstrate that low-mass neutron stars
put stringent lower limits on dark quark masses.

Figure 8 shows the mass–radius relations for a few hybrid EOS models accommodating
dark quark halos. As expected, maximum masses are moderately reduced, an effect most
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sensitive to N f and that closely resembles those seen in equal mass scenarios (Figure 6).
With decreasing stellar mass (and decreasing total baryonic mass), the total number of dark
quarks decreases at first as µB in the core drops. But, as the halo grows in size, dark quarks
account for a larger share of the total baryon number as they are transferred to the halo.
Eventually, the whole star becomes unbounded, leaving the minimum attainable mass
above ∼M⊙ where dark quarks make up ∼20–30% of the baryonic contents. For instance,
if the mass of the lightest state m1 ≡ min{mχ} = 260 MeV, equilibrium configurations
below ∼1.5–1.8M⊙ are forbidden.
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Figure 8. Mass–radius relations for hybrid configurations supporting dark quark halos. In two-flavor

scenarios, we took m2 = (mn − m1)/2, and for N f = 3, we took m2 = mn/3 and m3 = 2mn/3 − m1.

Radii of iron surfaces (not shown) are barely affected and are less than ∼15 km, in agreement with

astrophysical observations. Dark quarks in the SM baryonic core reduce the maximum mass, an

effect sensitive to N f and only weakly dependent upon dark quark masses. Toward lower masses,

the halo grows rapidly and may become unbounded if the gravitational potential is too shallow. The

minimum allowed masses are marked by “×”.

It is helpful to estimate the size of the dark quark halo to better understand its impact
on minimum masses. Since the halo only accounts for a small fraction of the matter
contents, the gravitational potential is dominated by SM baryons. To a good approximation,
the spacetime outside the iron surface R⋆ is the Schwarzschild geometry defined by the
enclosed mass M⋆ ≈ M. In this gravitational potential, the constancy of the chemical
potential in Equation (29) suggests that µB at R⋆ and at the edge of the halo Rχ ≡ R are
related as mn

√
gtt(R⋆) = 3mχ

√
gtt(Rχ) where gtt(r) = 1 − 2M/r. It follows that

Rχ =
2M

1 − (1 − 2M/R⋆)(3mχ/mn)
−2

. (31)

For mχ = mn/3, we recover Rχ = R⋆ as expected. With decreasing mχ, the radii of the halo
Rχ increase rapidly until they blow up when the denominator vanishes. Requiring that Rχ

remains finite leads to

mχ ≥ mn

3

√
1 − 2M

R⋆

. (32)

Note that the right-hand side is the asymptotic dark quark chemical potential µχ(r → ∞) =
µB(r → ∞)/3. The origin of the lower limit on hybrid star masses is now clear. To have
bound states, the SM core needs to be sufficiently massive to provide the adequate redshift.
When it fails to do so, it becomes energetically favorable to get rid of all the SM baryons
via n → χiχjχk as the dense core expands and dissolves into the halo. The lowest energy
configuration would then consist solely of χ’s and would have much lower densities at the
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center where the baryon chemical potential is below the threshold ∼931 MeV. Indeed, such
dark quark stars are stable solutions of the TOV equation. For 100 MeV . mχ . mn/3,
they predict large radii R ∼ 100–5000 km in the mass range of interest.

The bound Equation (32) is depicted in Figure 9 as the solid black line, where we took
R⋆∼14 km. The minimum masses of hybrid stars predicted by EOSs discussed previously
are also presented. It is quite remarkable that the minimum masses are raised above
∼1.2M⊙ for min{mχ} . 270 MeV, regardless of the underlying SM baryonic EOSs and
the number or the mass of heavy dark quarks. This is in strong tension with most pulsars
observed to date as they are near the Chandrashekhar limit ∼1.3–1.4M⊙ [66,67]. Among
the handful of reliably measured pulsars, the secondary component of the neutron star–
neutron star binary system J1453+1559 is the lightest with M = 1.174 ± 0.004M⊙ [68].
The theoretical lower limits on neutron star masses stem from considerations regarding
their formation via core-collapse supernovae. While most cold EOSs predict very low
masses around ∼0.1–0.3M⊙, finite temperature lepton-rich models generally do not support
bound states below ∼M⊙. Numerical simulations suggest that the minimum is around
1.15–1.20M⊙ [69,70], consistent with J1453+1559. Everything considered, we conclude that
dark quarks need to be heavier than about mχ & 270 MeV to accommodate low-mass
neutron stars.

Additional impacts of dark quark halos may arise in binary neutron star mergers [65].
During the late inspiral phase, component stars develop quadruple deformations due to
tidal interactions within the binary. This deviation from point-particle dynamics acceler-
ates the coalescence and leaves unique imprints on the gravitational wave emissions [71].
Within the Post-Newtonian framework, the tidal effect is captured by a dimensionless
parameter commonly referred to as the tidal deformability Λ [72]. The detection of grav-
itational waves from the binary neutron merger event GW170817 [73] already provided
valuable insights into the Λ’s of the stars involved. Ref. [65] demonstrated that halos
of mass Mχ ∼ 10−3–10−4M⊙ and radius Rχ ∼ 30–200 km formed by generic sub-GeV
dark matter could significantly enhance tidal interactions. Here, the dark quark halos are
more massive Mχ ∼ O(0.01–0.1M⊙) and can achieve similar enhancement at smaller radii
R1.4M⊙ . 50 km.

The tidal deformability of 1.4M⊙ dark quark admixed neutron stars is shown Figure 10.
The calculation of Λ is described in detail in reference [65]. Λ1.4M⊙ grows rapidly with
decreasing dark quark masses. It is interesting to note that, in the limit mχ → mn/3, the
tidal deformability of hybrid stars does not converge to and is lower than predictions
in the absence of χ’s (marked by colored arrows). This is expected since hybrid stars
are slightly denser and smaller compared to their SM-only counterparts. Analyses of
GW170817 generally favor low values of Λ1.4M⊙ and have led to the putative bound
Λ1.4M⊙ . 600–800 (e.g., references [73–77]). This translates to a lower bound on dark quark
masses m1 & 270–290 MeV. However, we note that, during the last few cycles of the inspiral
phase, surfaces of dark halos would begin to touch and that the description of tidal effects
in terms of the single tidal deformability parameter is expected to break down. The halos
could be ejected as they merge, leaving the bare SM components behind. Since this occurs
at most ∼ seconds before SM baryons merge over a short dynamical timescale, n − χ
conversions would be effectively frozen and would not have the time (Equation (16)) to
reestablish new halos. The bottom line is that higher values of Λ1.4M⊙ due to dark quark
halos may still be compatible with gravitational waves from GW170817. Detailed studies
of the binary evolution are only possible with the help of self-consistent hydrodynamic
simulations accounting for dark halos, which will be reported in future work.



Universe 2023, 9, 484 17 of 21

250 260 270 280 290 300 310
min{m } (MeV)

0.5

1.0

1.5

2.0

m
in

im
um

 m
as

s (
M

)

stiff
APR
DD2
R * = 14 km

Figure 9. Minimum mass of stable hybrid configurations as a function of the lightest dark quark

mass denoted by m1. The colored curves are obtained assuming N f = 3 where m2 = mn/3

and m3 = 2mn/3 − m1. The solid black curve is obtained by taking the radius of the iron surface

R⋆ = 14 km in Equation (32). The black dotted line marks M = 1.15M⊙, around the minimum mass

suggested by supernova simulations and the lightest pulsar currently known (among those measured

with well-understood systematic uncertainties) [66–68].
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Figure 10. Tidal deformability of 1.4M⊙ hybrid stars as a function of the lightest dark quark mass

denoted by m1. Solid curves are obtained for N f = 3 where m2 = mn/3 and m3 = 2mn/3 − m1. For

the dashed curves, we assumed N f = 2 and m2 = (mn − m1)/2. The SM EOS underlying green

curves follow the central predictions of the N3LO χEFT calculation discussed earlier up to nB = 2n0,

where we switch to the sound speed parameterization with a constant Cs = 0.5 throughout. All the

hybrid EOSs, except for those based on the APR model, support maximum masses above 2.0M⊙.

Predictions of Λ1.4M⊙ within the Standard Model are marked by the colored arrows on the right side

of the figure.

A final possibility is the existence of a dark analog of the SM QCD (e.g., references [78,79]).
In this scenario, the sum of the masses of χ’s need not be greater than about mp − me.
Protons and nuclei can remain stable provided that the χ’s are confined to dark baryons in
vacuum. Thus, they behave similarly to mirror neutrons in terrestrial experiments. In the
dense neutron medium in the interior of neutron stars, however, the dark deconfinement
may trigger one (additional) phase transition. Since the zero-temperature phase diagram
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of SM QCD remains largely a mystery, little can be said about this potential dark QCD
phase transition, other than that, if the nature of the transition is first-order, the jump
in energy density cannot be too large (∆E ≤ GeV/fm3). Transport properties might be
useful in searching signatures of a dark QCD sector in neutron stars. We acknowledge that
considerable fine-tuning may be required for such scenarios, and a careful investigation of
the possibilities outlined above will be reported in future work.

6. Conclusions

Neutron stars are ideal laboratories for testing exotic neutron decays. Their long
lifetime and large neutron contents make them sensitive to partial widths several orders
of magnitude less than required to explain the current neutron lifetime puzzle [23,80,81].
Sourced by the large baryon chemical potentials, which can reach ∼2.3 GeV inside neutron
stars, dark decay products carrying baryon number would populate dense neutron-rich
matter with sizable abundance and affect the hydrostatic equilibrium configurations. Mea-
surements of neutron star masses are fruitful in constraining the properties of potential
dark decay products. These are summarized in Table 1.

Table 1. Summary of neutron star constraints on neutron dark decays. The bound based on the tidal

deformability (last row) is speculative as numerical simulations are required to clarify the evolution

of halos during binary inspirals.

Exotic Decay Sub-Model Constraint Observable Section

Dark Neutron non-interacting excluded
Mmax & 2.0M⊙

Section 4.1
n → χ . . . mirror neutron Cs,max & 0.6 Section 4.2

Fermion B = 1 self-interacting g/mV & 0.01 MeV−1 Section 4.3

Dark Quark equal masses N f ≤ 6 Mmax & 2.0M⊙ Section 5.1
n → χiχjχk . . .

unequal masses
min{mχ} & 270 MeV Mmin . 1.2M⊙ Section 5.2

Fermions B = 1/3 min{mχ} & 270 MeV Λ1.4M⊙ . 800

New fermions carrying unit baryon number with a mass close to that of neutrons
was first proposed in reference [14] as an explanation for the neutron lifetime puzzle.
The fermionic states drastically soften the equation of states and significantly reduce the
maximum mass of neutron stars. The existence of two-solar-mass neutron stars thus
places strong and robust requirements on the interaction strengths that dark neutrons must
possess. If the decay product contains exotic bosonic degrees of freedom, even stronger
interactions are required to ensure the bosons do not collapse and form black holes.

The neutron lifetime puzzle may also be explained by novel decays into three dark
fermions each carrying baryon number B = 1/3. We refer to these as dark quarks. Contrary
to the dark neutron scenario where mχ ≃ mn, massive neutron stars can remain stable even
if the dark quarks do not experience sizable repulsion, as their underlying Fermi gas EOS
supports a higher speed of sound at lower densities, akin to the weakly interacting quark
EOSs postulated for dense matter within the Standard Model. Assuming dark quarks have
equal masses mχi

≈ mn/3, up to six flavors of them can be compatible with 2M⊙ neutron
stars. The equal mass case appears to be first discussed in ref. [31], and later in ref. [82]. In
scenarios where the dark quark masses differ, light states with mχ . mn/3 would form
dark halos surrounding SM baryons, extending to large radii in the range ∼20–100 km. The
stability of low-mass hybrid stars in the presence of dark quark halos strongly depends on
min{mχ}, and the existence of pulsars around 1.1–1.2M⊙ rules out dark quarks lighter than
about 270 MeV. A dark quark halo could also affect the evolution of binary neutron star
mergers, and we will report in future work detailed numerical simulations including halos.
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