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Introduction

The physics of ultracold quantum gases has been the subject of a long-lasting and intense
research activity, which started almost a century ago with purely theoretical studies, with
the prediction in 1924 by Bose and Einstein of the existence of a novel phase of matter, the
Bose-Einstein condensate (BEC). The field had a fluorishing experimental development
after the implementation of laser and evaporative cooling techniques that led to the first
realization of a BEC in 1995 [1, 2].

In recent years, ultracold atoms have acquired an increasing relevance for their use as
platforms for quantum technologies, exploiting the macroscopic occupation, in the BEC,
of a single quantum state, and taking advantage of the high degree of control that can be
achieved, with the possibility of finely tuning most of the parameters that characterize the
system. These features make ultracold atoms an ideal platform for the study, in a clean
and well controlled environment, of physical phenomena analogous to those occurring in
other, more complicated or even inaccessible systems, for instance in the field of condensed
matter or high energy physics. This concept is at the heart of quantum simulation.

In the context of quantum technologies, an in-depth understanding of the state of the
quantum many-body systems that are involved becomes of fundamental importance. Not
only the final equilibrium target state of the system needs to be well known, but also
the processes needed to reach such state. These processes often involve the crossing of
second order phase transitions, which bring the system strongly out-of-equilibrium, mak-
ing the control more challenging. It becomes therefore crucial to better understand the
out-of-equilibrium dynamics occurring in the vicinity of a phase transition, as well as the
relaxation processes taking place during the re-equilibration of the system towards the
desired equilibrium condition.

In this thesis I present the results of the research activity that I performed during my
PhD at the BEC1 laboratory of the BEC center in Trento, working on ultracold gases of
23Na atoms confined in an elongated harmonic trap. This work was focused on two main
goals: the first regarded the study of the thermodynamic properties of an equilibrium Bose
gas at finite temperature, while the second was the investigation of the out-of-equilibrium
dynamics taking place when a Bose Einstein condensate is prepared by cooling a thermal
cloud at finite rate across the BEC phase transition.

The aim of the first project was the experimental determination of the Equation of
State (EoS) describing the thermodynamic behavior of the weakly interacting uniform
Bose gas at finite temperature. A measurement of such an EoS was obtained already in
the grand canonical formulation [3], but not yet in the canonical formulation, where the
pressure is expressed in terms of the volume and temperature p(v, T ). We also aimed at
investigating the behavior of the chemical potential as a function of temperature, in the
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vicinity of the critical point. Here a peak in the chemical potential is predicted to be
present as a consequence of superfluidity, but was not yet observed in the Bose gas.

From the density distribution of an atomic cloud, confined in an external potential, it
is possible to extract the EoS of the corresponding uniform system using the Local Density
Approximation (LDA), which consists in treating the confined system as a series of locally
homogeneous samples in thermodynamic equilibrium. Applying this idea to a partially
condensed Bose gas, confined in a harmonic trap, one can determine the thermodynamic
behavior across the critical point. It becomes therefore crucial to accurately measure the
in situ density profile of the trapped cloud. In a partially condensed cloud it is particularly
challenging to resolve with enough detail the region at the boundary between the BEC
and the thermal cloud, where the atomic density rapidly drops in a narrow spatial region.

This motivated an upgrade of the experimental setup, with the implementation of
a higher resolution imaging system and a partial rebuilding of the experimental setup
used for cooling the atoms. This created the occasion for an optimization of the whole
apparatus in order to obtain more stable working conditions. Concurrently I also realized
and included in the experiment an optical setup for the use of a Digital Micromirror
Device (DMD) to project time-dependent arbitrary light patterns on the atoms, creating
optical potentials that can be controlled at will. The use of this device opens up exciting
future perspectives, offering the possibility, for instance, to rapidly modify the trapping
potential in a well controlled way, independently in different parts of the gas, or to create
repulsive obstacles moving through the atomic cloud at tunable velocities.

Regarding again the measurement of the EoS, another challenge in imaging the in
situ density distribution is determined by the fact that the optical density (OD) in the
center of the BEC exceeds by several orders of magnitude the low OD in the thermal tails,
requiring the use of an ad-hoc measuring method. Combining the principles of partial
transfer imaging (PTAI) and of high-dynamic range (HDR) photography, we developed a
method [4] to accurately measure optical densities in a high dynamic range, obtaining a
reliable estimation of the optical density of the whole atomic cloud. From the measured
optical density we extracted, by means of the inverse Abel transform, the 3D density
profile, as well as the pressure, exploiting the LDA and general thermodynamic relations.
Together with an independent measurement of the temperature, this allowed us to obtain
the equation of state of the Bose gas in the canonical formulation p(v, T ). We found an
excellent agreement between the experimental data and the Hartree-Fock model [5], which
highlights the importance of interactions in the thermodynamic behavior of the gas. We
were also able to observe, for the first time in a Bose gas, the presence of a peak in the
chemical potential at the critical temperature Tc.

The second part of this thesis work is devoted to the study of the dynamical processes
that occur during the formation of the BEC order parameter within a thermal cloud. The
cooling at finite rate across the Bose-Einstein condensation transition brings the system
in a strongly out-of-equilibrium state, which is worth investigating, together with the
subsequent relaxation towards an equilibrium state. This is of interest also in view of
achieving a better understanding of second order phase transitions in general, since such
phenomena are ubiquitous in nature and relevant also in other platforms for quantum
technologies.

A milestone result in the study of second order phase transitions is given by the Kibble-
Zurek mechanism [6, 7], which provides a simple model capturing important aspects of
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the evolution of a system that crosses a second-order phase transition at finite rate. It
is based on the principle that in an extended system the symmetry breaking associated
with a continuous phase transition can take place only locally. This causes the formation
of causally disconnected domains of the order parameter, at the boundaries of which
topological defects can form, whose number and size scale with the rate at which the
transition is crossed, following a universal power law. It was originally developed in the
context of cosmology, but was later successfully tested in a variety of systems, including
superfluid helium [8], superconductors [9, 10] and trapped ions [11, 12].

The BEC phase transition represents in this context a paradigmatic test-bench, given
the high degree of control at which this second-order phase transition can be crossed by
means of cooling ramps at different rates. Already early experiments investigated the
formation of the BEC order parameter within a thermal cloud after quasi-instantaneous
temperature quenches or very slow evaporative cooling [13, 14, 15]. In the framework of
directly testing the Kibble-Zurek mechanism, further experiments were performed, both
in 2D and 3D systems, focusing on the emergence of coherence and on the statistics of
the spontaneously generated topological defects as a function of the cooling rate [16, 17,
18, 16, 19, 20, 21].

The Kibble-Zurek mechanism, however, does not fully describe the out-of-equilibrium
dynamics of the system at the transition, nor the post-quench interaction mechanisms
between domains that lead to coarse-graining. Most theoretical models are based on a
direct linear variation of a single control parameter, e.g. the temperature, across the
transition. In real experiments, the cooling process is controlled by the tuning of other
experimental parameters and a global temperature might not even be well defined, in a
thermodynamic sense, during the whole process. Moreover, the temperature variation is
usually accompanied by the variation of other quantities, such as the number of atoms
and the collisional rate, making it difficult to accurately describe the system and predict
the post-quench properties. Recent works included effects going beyond the Kibble-Zurek
mechanism, such as the inhomogeneity introduced by the trapping potential, the role of
atom number losses [22, 23] and the saturation of the number of defects for high cooling
rates[24, 25, 26]. Such works motivate further studies, in particular of the dynamics taking
place at early times, close to the crossing of the critical point.

The aim of the work presented in this thesis is to further investigate the timescales
associated to the formation and evolution of the BEC order parameter and its spatial
fluctuations, as a function of the rate at which the transition point is crossed. We per-
formed experiments producing BECs by means of standard cooling protocols, involving
evaporative cooling in a magnetic trap. We explored a wide range of cooling rates across
the transition and found a universal scaling for the growth of the BEC order parameter
with the cooling rate and a finite delay in its formation, which was already observed in
earlier works [14, 13]. The evolution of the fluctuations of the order parameter was also
investigated, with an analysis of the timescale of their decay during the relaxation of the
system, from an initial strongly out-of-equilibrium condition to a final equilibrium state.

This thesis is structured as follows:

• The first chapter presents the theoretical background, starting with a brief intro-
duction to the concept of Bose Einstein condensation and a presentation of different
models describing the thermodynamics of an equilibrium Bose gas. The second part
of this chapter then deals with the out-of-equilibrium dynamics that is inevitably
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involved in the crossing of a second-order phase transition such as the one for Bose-
Einstein condensation. The Kibble-Zurek mechanism is briefly reviewed and beyond
KZ effects are pointed out, motivating a more detailed investigation of the timescales
involved in the BEC formation.

• In the second chapter, I describe the experimental apparatus that we use to cool
and confine the atoms. Particular detail is dedicated to the parts that have been
upgraded during my PhD, such as the imaging system.

• In the third chapter I show our experimental results on the measurement of the
equation of state of the weakly interacting uniform Bose gas at finite temperature.

• In the fourth chapter I present our results on the out-of-equilibrium dynamics in
the formation of the condensate order parameter and its spatial fluctuations, as a
function of different cooling rates.

The main experimental results presented in this thesis are published in Refs. [4, 5, 27].



Chapter 1

Theoretical background

1.1 Ultracold Bose gas in thermal equilibrium

Bose-Einstein condensation can be considered as the transition from a classical to a quan-
tum regime for a gas of bosons, i.e., indistinguishable atoms of integer spin obeying
Bose-Einstein statistics. In this quantum regime, that is achieved in conditions of very
low temperature, the particles macroscopically occupy a single quantum state, the Bose-
Einstein condensate (BEC) state and the system presents long-range order. In the fol-
lowing, I first introduce the concept of Bose-Einstein condensation in the simplified case
of a non-interacting uniform Bose gas. I then consider the case of a weakly interacting
Bose gas at zero temperature, in the presence of a trapping potential, described by the
Gross-Pitaevskii equation. Then I move on to the Hartree-Fock formalism, which provides
a theoretical description for interacting Bose gases at finite temperature. In particular,
the relations describing the thermodynamic behavior of the uniform Bose gas are de-
rived, both in the ideal and in the interacting case. Then I introduce the local-density
approximation (LDA), that allows, under certain conditions, to treat an inhomogeneous
system as locally uniform. Finally, the effect of interactions on the critical temperature
for Bose-Einstein condensation is considered.

1.1.1 Ideal Bose gas

Uniform Ideal Bose gas

To introduce the concept of Bose-Einstein condensation, I first present the simplified pic-
ture of the Ideal Bose Gas (IBG): a dilute gas of non-interacting bosons is considered, in
a box of volume V , in the absence of external potentials. Figure 1.1, from Ketterle’s pop-
ular paper [28], gives an intuitive view of the phenomenon of Bose-Einstein condensation.
Each particle can be viewed as a quantum wave packet with a characteristic extent of the
order of the thermal de Broglie wavelength, which is defined as:

λT =

√
2πℏ2
mkBT

(1.1)

where T is the gas temperature, m the atomic mass, kB the Boltzmann’s constant and ℏ
the reduced Planck constant. At high temperatures, λT is small with respect to the average
interatomic distances (d ∼ 1/n1/3, where n is the atomic density), and the particles

5



6 CHAPTER 1. THEORETICAL BACKGROUND

behave like classical objects (“billiard-balls”) moving around independently. Decreasing
the temperature, λT increases and the quantum nature of the atoms starts to become
important. When λT becomes of the order of the interatomic distance d, the Bose-
Einstein condensation transition occurs, with the accumulation of a macroscopic number
of particles in the same coherent quantum state at lowest energy.

Figure 1.1: Cartoon sketch of the phenomenon of Bose-Einstein condensation, from [28].

Bose-Einstein condensation occurs when the quantity nλ3
T , often referred to as Phase-

Space Density (PSD), becomes of the order on unity. For the IBG, the condition for
Bose-Einstein condensation is given by [29]:

nλ3
T = g3/2(1), (1.2)

where g3/2(z) is defined as1:

g3/2(z) =
2√
π

∫ ∞

0

x1/2 1

z−1ex − 1
dx, (1.4)

and g3/2(z = 1) = ζ(3/2) = 2.612. The condition of Eq. 1.2 corresponds to a critical
temperature:

Tc =
2πℏ2

kBm

(
n

g3/2(1)

)2/3

. (1.5)

For temperatures T > Tc, the gas is fully thermal and has a negative chemical potential
µ, following the relation:

g3/2
(
eβµ

)
= nλT (1.6)

1g3/2(z) is a special case of the more general class of Bose functions:

gp(z) =
1

Γ(p)

∫ ∞

0

xp−1 1

z−1ex − 1
dx =

∞∑
l=1

zl

lp
, (1.3)

where z = exp (βµ) is the so-called fugacity (with µ the chemical potential and β = 1/kB) and Γ(p) is the
factorial function (p − 1)!. The Bose function evaluated in ζ = 1 coincides with the Riemann function:
ζ(n) = gn(1).
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For T < Tc, in the IBG, the chemical potential is, instead, µ = 0 and a finite fraction of the
total number of atoms N is in the condensate, while the rest in the thermal component.
In particular, the number of atoms in the thermal part is given by:

NT (T ) =
V

λT

g3/2(1) = N

(
T

Tc

)3/2

(1.7)

while the number of atoms in the condensate is:

N0(T ) = N

[
1 −

(
T

Tc

)3/2
]
. (1.8)

As the temperature approaches zero, the number of atoms in the thermal part becomes
negligible. Equations 1.7, 1.8 reflect the saturation property of the Bose-Einstein con-
densed gas: if more particles are added to the system, keeping the temperature constant,
there will be an increase of N0, but not of NT . Fig. 1.2 shows (in blue) the condensate
fraction N0/N as a function of the reduced temperature T/Tc for a uniform ideal Bose
gas.

0.00 0.25 0.50 0.75 1.00 1.25
T/Tc

0.0

0.2

0.4

0.6

0.8

1.0

N
0/N

uniform IBG
trapped IBG

Figure 1.2: Condensate fraction as a function of the reduced temperature in the uniform IBG (blue),
according to equation Eq. 1.2, and in the trapped IBG (orange), see Eq. 1.13.

Trapped Ideal Bose gas

The above holds for the uniform non interacting Bose gas. Below, I report also the
equations valid for a dilute, non-interacting Bose gas, confined in a harmonic external
potential Vext, which is the most common scenario in experiments. For a derivation see
[29]. The external potential can, in general, be written as:

Vext(x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (1.9)

where ωx,y,z/(2π) are the so-called trapping frequencies, which determine the size of the
atomic cloud along the three orthogonal directions x, y, z:

aho,i =

√
ℏ

mωi

, for i = x, y, z. (1.10)

The system’s characteristic lengthscale is the harmonic oscillator length:

aho =

√
ℏ

mωho

, (1.11)
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determined by the geometric average of the trapping frequencies ωho = (ωxωyωz)
1/3.

For an ideal Bose gas confined in such a potential, the critical temperature is given
by:

T 0
c =

ℏωho

kB

(
N

ζ(3)

)1/3

. (1.12)

The condensate fraction N0/N as a function of T/Tc is instead:

N0

N
= 1 −

(
T

T 0
c

)3

. (1.13)

It is worth noticing the different exponent with respect to the uniform case (Eq. 1.5), as
highlighted in Fig. 1.2.

1.1.2 Gross-Pitaevskii equation: trapped interacting Bose gas
at T = 0

To obtain a more realistic description of an interacting Bose gas confined in an external
potential, one has to go beyond the IBG model. At zero temperature, the physics of a
condensate of interacting particles in an external potential Vext is well described by the
Gross-Pitaevskii equation (GPE), which was independently derived by L. P. Pitaevskii
[30] and E. P. Gross [31] in 1961, providing a generalization of Bogoliubov’s theory to
nonuniform systems [29].

The Hamiltonian Ĥ for a dilute system of weakly interacting bosonic particles of mass
m in an external potential Vext, can be written in second quantization as:

Ĥ =

∫ [
Ψ̂†

(
−ℏ2∇2

2m
+ Vext

)
Ψ̂ +

g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

]
d3r. (1.14)

We consider only two-body interactions between the particles and express their strength
via the coupling constant g, which at low temperature is determined by the s-wave scat-
tering length a via:

g =
4πℏ2

m
a. (1.15)

The interaction term in Eq. 1.14 can be written in this simple form only when the dilute-
ness condition na3 ≪ 1 is satisfied, being n the atomic density.
At T = 0, the condensate state is macroscopically occupied. This allows to replace
the quantum field operator Ψ̂(r⃗, t), describing the particle distribution, with a classical
complex function, the condensate wave function Ψ(r⃗, t) = |Ψ(r⃗, t)|eiφ(r⃗,t), the modulus
of which is determined by the local density |Ψ(r⃗, t)|2 = n(r⃗, t), while the phase factor φ
has a crucial role in the coherence and long-range order properties of the BEC. These
assumptions lead to the GPE:

iℏ
∂

∂t
Ψ(r⃗, t) =

(
−ℏ2∇2

2m
+ Vext(r⃗, t) + g|Ψ(r⃗, t)|2

)
Ψ(r⃗, t). (1.16)

This equation is the main theoretical tool to investigate nonuniform Bose gases at low
temperature in the mean-field (MF) formalism.
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The ground-state of the condensate can be obtained as the lowest-energy stationary so-
lution of the GPE. Writing the condensate wavefunction as Ψ(r⃗, t) = ϕ(r⃗)e−iµt/ℏ and
substituting this expression in Eq. 1.16, one obtains the stationary GP equation:

µϕ(r⃗) =

(
−ℏ2∇2

2m
+ Vext(r⃗) + gϕ2(r⃗)

)
ϕ(r⃗), (1.17)

where µ is the chemical potential of the many-body system, related to the number of
atoms N by the normalization condition for the wavefunction:

N =

∫
|Ψ|2d3r. (1.18)

We now consider the case of a harmonic potential Vext, as the one defined in Eq. 1.9,
where the charcateristic length-scale of the trap is the harmonic oscillator length aho
(Eq. 1.11). Even though the diluteness condition is satisfied, the interactions between
the particles play an important role in the physics of such a trapped system. Repulsive
interactions (a > 0), indeed, cause the gas to expand, making the size of the cloud
larger than in the non-interacting ideal case. The mean-field interactions become the
predominant term in Eq. 1.17 when the parameter Na/aho, describing their strength,
becomes ≫ 1. Since a/aho has typical values of ∼ 10−3, this occurs frequently, and is
certainly the case for numbers of atoms of the order of N ∼ 106. In this case, the kinetic
energy term, also called quantum pressure, can be neglected, leading to what is known
as Thomas-Fermi approximation, valid at very low temperature and for large numbers of
atoms in the condensate. In this case the stationary GPE becomes:

µϕ(r⃗) =
(
Vext(r⃗) + gϕ2(r⃗)

)
ϕ(r⃗) (1.19)

from which the ground-state density profile of the trapped BEC can be extracted:

nTF (r⃗) = |ϕ(r⃗)|2 =
µ− Vext(r⃗)

g
. (1.20)

The chemical potential, calculated using Eq. 1.18, is given by:

µ =
ℏωho

2

(
15

Na

aho

)2/5

. (1.21)

Equation 1.20 shows that the shape of the condensate density distribution is determined
by that of the external potential. For Vext given by Eq. 1.9, the BEC shape is a truncated
inverted parabola, with radii given by:

Ri =

√
2µ

mωi

, for i = x, y, z. (1.22)

This allows to rewrite the density as:

nTF (x, y, z) = max

[
n0

(
1 − x2

R2
x

− y2

R2
y

− z2

R2
z

)
, 0

]
. (1.23)

At zero temperature, the equilibrium ground state of the condensate can be described
by a wavefunction Ψ = |Ψ0|eiϕ, where the amplitude is determined by the density
|Ψ0(r⃗)|2 = n(r⃗), having a smooth profile shaped by the confining potential. The phase
factor ϕ is uniform over the whole system, reflecting the long-range order associated with
Bose-Einstein condensation, which allows to consider the BEC as a giant matter wave
as sketched in Fig. 1.1. The wavefunction Ψ has the role of order parameter in the BEC
transition: we will come back to this aspect in Sec. 1.2.
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1.1.3 Hartree-Fock theory: weakly interacting Bose gas at T ̸= 0

To compare the experimental results on the thermodynamics of a Bose gas with a theoret-
ical model, we need a theory that treats a finite temperature Bose gas and takes interac-
tions into account. The simplest model satisfying these requirements is the Hartree-Fock
(HF) theory, which self-consistently accounts for the modification of the BEC density
due to thermal depletion and for interaction effects between the BEC and the thermal
component [29]. A good starting-point to derive the HF equations is the Hamiltonian of
Eq. 1.14, writing the field operator Ψ̂(r⃗) as:

Ψ̂(r⃗) =
∑
i

ϕi(r⃗)âi, (1.24)

where ϕi(r⃗) are single-particle wavefunctions normalized to unity, and âi (â†i ) are the corre-
sponding annihilation (creation) operators. The HF approximation consists in assuming
that at equilibrium the system can be described as a gas of statistically independent
single-particle states, with average occupation number:

ni = ⟨â†i âi⟩. (1.25)

The total energy E = ⟨H⟩ is evaluated by retaining only the terms containing at most
two particle operators, with the following rules:

⟨â†i âk⟩ = niδik, (1.26)

⟨â†i â
†
j âkâl⟩ = ninj, (δikδjl + δilδjk), for i ̸= j, (1.27)

⟨â†i â
†
i âiâi⟩ = ni(ni − 1). (1.28)

Separating the contribution of the condensate (i = 0, with occupation number N0 = ni=0)
from the other states, the energy of the system results to be:

E =

∫ [
ℏ2

2m
N0|∇ϕ0|2 +

∑
i ̸=0

ℏ2

2m
ni|∇ϕi|2 + Vext(r⃗)(n0(r⃗) + nT (r⃗))+

+
g

2
n2
0(r⃗) + 2gn0(r⃗)nT (r⃗) + gn2

T (r⃗)
]
d3r,

(1.29)

where
n0(r⃗) = N0|ϕ0(r⃗)|2 = |Ψ0(r⃗)|2 (1.30)

is the condensate density, fixed by the order parameter Ψ0 =
√
N0ϕ0, and

nT (r⃗) =
∑
i ̸=0

ni|ϕi(r⃗)|2 (1.31)

is the thermal density.
The single-particle state occupation numbers ni and the wavefunctions ϕi are deter-

mined by the minimization of the grand canonical potential Ω = E − TS − µN , where
N =

∑
i ni and, consistently with the assumption of statistically independent single-

particle excitations, the entropy S is calculated using the ideal Bose gas expression [29]:

S = kB
∑
i

[(1 + ni) ln(1 + ni) − ni lnni] . (1.32)
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From the minimization of the grand canonical potential (setting ∂(E−TS−µN)/∂ni = 0),
the occupation numbers are found:

ni =
1

exp [β(ϵi − µ)] − 1
, (1.33)

which corresponds to the standard result for Bose statistics. The energy ϵi of the ith
single-particle level is related to the total energy by the expression:

ϵi =
∂E

∂ni

. (1.34)

Bose-Einstein condensation starts when µ approaches the energy ϵ0 of the lowest-energy
single-particle state. Since S depends only on the occupation numbers ni, as shown by
Eq. 1.32, one can find the single-particle wavefunctions ϕi by minimizing the energy 1.29
at constant S and N , with the normalization condition

∫
dr|ϕi|2 = 1,∀i. This yields the

following equations, for the condensate wave function Ψ0:(
−ℏ2∇2

2m
+ Vext(r⃗) + g[n0(r⃗) + 2nT (r⃗)]

)
Ψ0 = µΨ0, (1.35)

and for the excited particle states:(
−ℏ2∇2

2m
+ Vext(r⃗) + 2gn(r⃗)

)
ϕi(r⃗) = ϵiϕi(r⃗). (1.36)

Together with the normalization relation

N =

∫
n(r⃗)d3r =

∫
(n0(r⃗) + nT (r⃗))d3r, (1.37)

the above equations are known as Hartree Fock equations. Solving them self-consistently,
one obtains the density profiles for the condensate and the thermal component.

It is worth noticing that, at T = 0, Eq. 1.35 corresponds to the GPE 1.16, which
can thus be considered as the HF equation for the ground-state of the system. At finite
temperatures, besides the interactions among the particles of the BEC, the HF model
includes also the interaction with the thermal component, through the term 2gnT in
Eq. 1.35, where the factor of 2 is due to exchange effects.

1.1.4 HF model for the uniform system

In a uniform system of bosons confined in a volume V , for Vext = 0, the solution of
the HF equations is rather simple. Above the critical point, when no single-particle
state is macroscopically occupied, each wave function can be written as a plane wave
ϕk = eikr/

√
V , labeled by the wavevector k. The particle density becomes

n =
∑
k

nk/V, (1.38)

and the energy of the system

E =
∑
k

ℏ2k2

2m
nk + gn2V. (1.39)
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The single-particle energies are then

ϵk =
∂E

∂nk

=
ℏ2k2

2m
+ 2gn, (1.40)

corresponding to the single-particle kinetic energy shifted by the contribution of the in-
teractions, described by the mean-field energy 2gn. In the thermodynamic limit2, the
density can be explicitly calculated replacing the sum in Eq. 1.38 with an integral over
the wavevectors k, which yields the expression:

n =
1

λ3
T

g3/2
(
e(µ−2gn)/(kBT )

)
. (1.41)

This is valid above the critical temperature Tc. If the temperature of the system decreases
at fixed density, the phase space density PSD = nλ3

T increases, which, according to
Eq. 1.41, means that also µ must increase. Bose-Einstein condensation occurs when µ
reaches the energy of the lowest-lying single-particle state, which is the one at k = 0, with
ϵ0 = 2gn. From this we find again the expression for the critical temperature:

Tc =
2πℏ2

mkB

(
n

ζ(3/2)

)2/3

(1.42)

which corresponds to the IBG expression 1.5, but in this case with the density given by
the HF theory.
Below Tc a macroscopic number of atoms occupies the lowest-energy state, whose con-
tribution must be separated from the other states. The wave function of the system
becomes:

Ψ̂(r⃗) =
√
n0 +

∑
k ̸=0

eikr√
V
ak, (1.43)

and the total energy of Eq. 1.29 takes the form:

E =
∑
k ̸=0

ℏ2k2

2m
nk + V

(
1

2
gn2

0 + 2gnTn0 + gn2
T

)
(1.44)

The chemical potential µ and the energy ϵk of the excitation states with k ̸= 0 are found
using Eq. 1.34:

µ =
∂E

∂n0

= gn0 + 2gnT , (1.45)

ϵk =
∂E

∂nk

=
ℏ2k2

2m
+ 2g(n0 + nT ). (1.46)

The thermal density is again defined as

nT =
∑
k ̸=0

nk/V =
1

λ3
T

g3/2
(
e(µ−2gn)/(kBT )

)
, (1.47)

while the total density is now given by:

n = n0 + nT . (1.48)

Combining Eqs.1.45 and 1.47, the condensate density is obtained:

n0 = µ/g − 2nT . (1.49)
2The thermodynamic limit is obtained when V → ∞, keeping the density n constant
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1.1.5 Thermodynamics of uniform Bose gas

The thermodynamic behavior of the uniform ideal Bose gas and of the weakly interacting
Bose gas, described by the HF model, are predicted to display important differences,
especially in the condensed phase.

Chemical potential In the case of the IBG, the chemical potential is µ = 0 for any
T ≤ Tc and given by Eq. 1.6 for T > Tc. On the contrary, the chemical potential predicted
by the HF model (Eq. 1.45) is equal to gn at T = 0, when n0 = n, and increases with
temperature in the condensed phase, reaching a maximum at the critical point, where
µ = 2gn due to exchange effects. Above Tc the contribution of the condensate ceases to
be relevant and the chemical potential becomes µHF = µIBG + 2gn, where µIBG is given
by Eq. 1.6.

Pressure Also the pressure of the uniform Bose gas shows important differences between
the non-interacting IBG case and the HF model. For the IBG, the pressure can be found
using the thermodynamic relation p = 2/3E/V , where E is the total energy and V the
volume occupied by the gas. Since:

E =
3

2
kBT

V

λ3
T

g5/2(1), for T ≤ Tc (1.50)

E =
3

2
kBT

V

λ3
T

g5/2(z), for T > Tc, (1.51)

where z = exp(µ/kBT ) is the fugacity, one finds that the pressure is

p = pc =
kBT

λ3
T

g5/2(1), for T ≤ Tc (1.52)

and

p =
kBT

λ3
T

g5/2(z), for T > Tc. (1.53)

Within the HF model, the equation for the pressure p in the uniform Bose gas can be
found from the grand-canonical potential Ω = −pV , and results to be:

p = gn2 − 1

2
gn2

0 +
kBT

λ3
T

g5/2
(
e(µ−2gn)/(kBT )

)
(1.54)

Isothermal compressibility The isothermal compressibility is defined as the relative
variation of density of the gas in response to a pressure variation, at constant temperature:

k =

(
1

n

)
∂n

∂p

∣∣∣∣
T

(1.55)

Since in the IBG the pressure is constant in the superfluid phase, the compressibility is
infinite for T ≤ Tc. Also the HF model predicts a divergence at the critical point, but a
finite compressibility below Tc [29]. The divergence of the compressibility at the transition
in the uniform Bose gas is a direct consequence of the second-order nature of the BEC
phase transition [32].
In Figs. 3.10, 3.8 and 3.9 of Chapter 3, we compare the theoretical predictions for the
behavior of the above thermodynamic quantities to the experimental results obtained in
our laboratory.
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1.1.6 Non-uniform Bose gas and Local Density Approximation

In presence of an external potential Vext, the HF equations describing the system are Eqs.
1.35 and 1.36, which should be solved self-consistently, together with the normalization
condition 1.37, to find the thermal and BEC density profiles.
If the system is sufficiently large and Vext varies smoothly in space, the so-called Local
Density Approximation (LDA) can be applied. In this framework, the trapped, inhomo-
geneous system can be viewed as an ensemble of locally homogeneous systems. The gas
occupying a small volume at a certain position r⃗ is supposed to be in thermal and chemical
equilibrium. This allows to write the global chemical potential µ0 for the whole system
as the sum of the local value of the chemical potential and of the external potential Vext:

µ0 = µ(n(r⃗), T ) + Vext(r⃗) (1.56)

In the case of the harmonic trapping potential of Eq. 1.9, µ0 corresponds to the value
of the chemical potential at the center of the trap, where Vext(r⃗ = 0) = 0. The above
Eq. 1.56 is an implicit equation for the density profile n(r⃗, T ) of the trapped gas at a
temperature T , and allows to relate the properties of the trapped system to those of the
corresponding (local) uniform system, by performing the substitution:

µ → µ0 − Vext (1.57)

in the equations for the uniform system.
If one applies the substitution of Eq. 1.56 to the weakly interacting Bose gas at T = 0,
where µ = gn, one immediately retrieves the Thomas-Fermi result n(r⃗) = (µ0−Vext(r⃗))/g
(Eq. 1.20).
For the weakly interacting Bose gas, in a potential Vext, the HF equation for the density
of thermal atoms becomes, in LDA:

nT (r⃗) =
1

λ3
T

g3/2
(
e(µ0−Vext−2gn(r⃗))/kBT

)
. (1.58)

One can obtain the same result by directly solving the HF equations in a semiclassical
approximation, approximating the k ̸= 0 single-particle wavefunctions with plane waves
[29], which requires similar assumptions as those underlying the LDA. In the same ap-
proximation the local condensate density is found making the substitution of Eq. 1.57 in
Eq. 1.49:

n0(r⃗) =
µ0 − Vext

g
− 2nT , with n(r⃗) = n0(r⃗) + nT (r⃗). (1.59)

The LDA is a reliable approximation as long as gradient terms and finite-size effects in
the density profile are negligible. For this reason, the system needs to be sufficiently large,
and the potential smooth enough on the lengthscales typical of the atomic system. The
LDA is not guaranteed to hold in presence of sharp local variations of the density profile,
as in the critical region at the boundary between the condensate and the thermal cloud.

Besides being useful to find a good approximation of the theoretical density profile in a
given potential, from an experimental point of view the LDA is a powerful tool also because
it allows to extract general properties of uniform matter by performing measurements on
trapped samples, which are easier to obtain experimentally. We used the LDA in our
study of the thermodynamic properties of the uniform Bose gas, the results of which are
in Chapter 3.
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1.1.7 Corrections to critical temperature and condensate frac-
tion

Besides modifying the density profile of a trapped gas, interactions also have an effect on
its critical temperature and on the condensate fraction as a function of T/Tc. The critical
temperature of an ideal Bose gas in a harmonic trap is given by Eq. 1.12. Since at the onset
of condensation the system is still rather dilute, interactions are not expected to cause
large variations of the transition temperature. Their effect can be quantified treating
the interaction in the mean-field approximation, using the HF theory. We consider the
expression for the density of thermal atoms given by Eq. 1.58. Bose-Einstein condensation
occurs at the temperature Tc where nT satisfies the following normalization condition for
the total number of atoms N :

N =

∫
nT (r⃗, Tc, µc)d

3r⃗, (1.60)

where µc is the chemical potential corresponding to the lowest single-particle energy ϵk
in Eq. 1.36. For systems with a large number of particles, the kinetic energy term in the
Hamiltonian governing Eq. 1.36 can be neglected with respect to the interaction term,
and µc = 2gn(0), where n(0) is the density at the center of the cloud. Expanding Eq. 1.60
around the IBG critical point (where Tc = T 0

c and µc = 0), one finds that interactions
cause a shift of the critical temperature δTc = Tc−T 0

c (see [29] and [33] for the derivation),
given by:

δTc

T 0
c

= −1.32
a

aho
N1/6, (1.61)

where a is the scattering length and aho the harmonic oscillator length defined in Eq. 1.11.
For repulsive interactions (a > 0) this shift is negative, meaning that the critical temper-
ature is lower than that of an ideal (non interacting) Bose gas in the same trap . The shift
is linear in the scattering length, while it has a weak dependence on the total number of
atoms.

Also other corrections to Tc are worth to be mentioned, such as the shift due to finite-
size effects, which are relevant in the case of systems with small numbers of atoms N
(while before we have considered N to be large). This shift can be quantified by (see Sec.
C of Ref.[34]):

δT 0
c

T 0
c

= −0.73
ω̄

ωho

N−1/3, (1.62)

where ω̄ = (ωx + ωy + ωz)/3 and ωho = (ωxωyωz)
1/3. In the case of systems with a large

number of atoms, as in our case, this finite-size correction can be neglected being much
smaller than the shift caused by interactions.

The Hartree-Fock model, taking the interactions between the particles into account,
also predicts a behavior of the condensate fraction with the relative temperature T/Tc

that is different from that of a non interacting Bose gas. In the approximation where
the contribution to the density given by thermal atoms can be neglected in the region
occupied by the BEC, one can write the condensate fraction as (see Eq. 13.40 in [29]):

N0

N
= 1 −

(
T

T 0
c

)3

− ζ(2)

ζ(3)
η

(
T

T 0
c

)2
[

1 −
(

T

T 0
c

)3
]2/5

, (1.63)
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where ζ(n) is the Riemann function and η = µ(T = 0)/(kBT
0
c ).

These expressions will be used in Chap. 4.

1.2 Bose-Einstein condensation: out-of-equilibrium

processes

1.2.1 Continuous phase transitions

In this section we consider the out-of-equilibrium processes that are intrinsically related
with the crossing at finite rate of the Bose-Einstein condensation phase transition.

A phase transition consists, in general, in the transformation of the equilibrium state
of a system from an initial phase to another one, having significantly different physical
properties. Phase transitions are traditionally divided in two classes, depending on the
thermodynamic behavior during the transition [35]:

• First order phase transitions exhibit a discontinuity in the first derivative of the
free energy with respect to some thermodynamic variable. Examples are the liquid
to gas or liquid to solid transitions occurring in water, where this discontinuity
manifests itself as latent heat.

• For second order or continuous phase transitions, instead, the first partial deriva-
tives of the free energy are continuous during the transition. Examples are the
paramagnetic to ferromagnetic and the normal to superfluid phase transitions. Sec-
ond order phase transitions involve a spontaneous symmetry breaking, with the
transformation from a disordered phase to an ordered one. An order parameter can
be defined, which is zero on one side of the transition and acquires a finite value
when the transition is crossed. The parameter whose variation causes the phase
transition is usually called control parameter. The value of the control parameter
at which the transition is crossed is defined critical point.

Bose-Einstein condensation can be classified as a second order phase transition. The
control parameter is the temperature T , whose decrease causes a transformation from an
initially disordered, uncorrelated thermal phase into the BEC phase, where the formation
of an order parameter takes place, corresponding to the condensate complex wavefunc-
tion Ψ = |Ψ|eiφ. The squared amplitude of Ψ represents the condensate density, while the
phase becomes the same in the whole system, a signature of the long-range order char-
acterizing the lowest energy state of an equilibrium BEC. This phase is chosen randomly
when the transition is crossed, determining a spontaneous symmetry breaking.

In general for a second order phase transition, one can define a dimensionless parameter
expressing the distance of the control parameter T to the critical point Tc:

ϵ =
Tc − T

Tc

. (1.64)

Statistical fluctuations of the order parameter play an important role in the crossing
of the transition. The spatial scale over which such fluctuations are correlated is called
correlation length ξ. At the transition the equilibrium correlation length exhibits a power-
law divergence:

ξ =
ξ0
|ϵ|ν

, (1.65)
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Also the relaxation time τ , needed by the system to establish such diverging correlations,
diverges at the transition:

τ =
τ0
|ϵ|zν

, (1.66)

where ξ0 and τ0 depend on the microscopic physical properties of the actual system, while
ν and z are exponents depending only on the universality class of the phase transition,
known as equilibrium correlation length critical exponent and dynamical critical exponent,
respectively [36, 37, 23].

The divergence of the relaxation time expresses the fact that the system requires an
increasingly long time to adapt even to small fluctuations of the control parameter. This is
a consequence of the general phenomenon of critical slowing down of the dynamics in the
vicinity of critical points, which is not limited to second order phase transitions only, but
extends in general to critical phenomena in complex systems. An accurate observation
of signs of this slowing down could be used, for instance, to determine the vicinity to
“no-return” tipping points, where a small fluctuation in the conditions can lead to a large
change in the state of the system, which could help to make predictions on the thresholds
for catastrophic climate change events, population collapse in ecosystems, and financial
markets collapse [38, 39, 40, 41, 42].

As a consequence of the divergence of the relaxation time, second order phase tran-
sitions are always crossed in a non-adiabatic regime: the system is inevitably out of
equilibrium when the control parameter is in the vicinity of the critical point. In an ex-
tended system, moreover, the information about the choice of the order parameter can
propagate only at a finite speed, determined by the causality principle. As a consequence,
the order parameter takes up different values in distant regions of the system, with the for-
mation of independent domains. Topological defects may then originate when the domain
boundaries merge in the relaxation of the system after the crossing of the transition.

1.2.2 Kibble-Zurek mechanism

The concept explained above is at the basis of the Kibble-Zurek mechanism (KZM) [6,
7], a milestone result for the general description of systems crossing a second order phase
transition. The idea was originally developed by T. W. B. Kibble [6, 43] to explain the
formation of cosmical anisotropies in the early universe, in the assumption of an original
unification of all fundamental interactions. Kibble proposed that the rapid cooling and
expansion of the universe after the Big Bang could have led to a spontaneous breaking of
the related gauge symmetry, with the formation of local domains of the order parameter
and the generation of topological defects such as monopoles, cosmic strings, and domain
walls, possible precursors of later cosmological structures. Kibble also pointed out an
analogy between this mechanism and the behavior of a ferromagnetic material cooled be-
low the Curie point, where independent magnetization domains can form as a consequence
of symmetry breaking. The extension of this idea to continuous phase transitions, taking
place in other condensed matter systems, was further developed by W. H. Zurek with a
paper titled “Cosmological experiments in superfluid Helium?” [7]. With this analogy,
an important background was provided for testing cosmological critical phenomena in a
variety of experimentally accessible platforms. Zurek also determined general scaling laws
relating the typical domain size and defect density to the rate at which the transition is
crossed [44]. Several reviews explain the Kibble-Zurek mechanism, for instance [36].
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t 0 t t
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Figure 1.3: Cartoon picture of the freeze-out condition represented in the adiabatic-frozen-adiabatic
approximation. During a linear quench, the variation of the reduced control parameter ϵ = t/τQ causes
the system to cross the transition point from the high symmetry, disordered, phase (t < 0) to the low
symmetry, ordered, phase (t > 0). The dashed orange line represents the time needed for the control
parameter to reach the critical point t = ϵ̇/ϵ, while the blue solid line the qualitative behavior of the
equilibrium relaxation time τ , diverging at the transition in t = 0. The freeze-out time t̂ is defined as
the times at which τ becomes equal to the time elapsed after crossing the transition. In this schematic
picture, the dynamics is frozen in the time interval [−t̂,+t̂] (gray region), and adiabatic outside.

A simplified scenario is generally considered, in which the temperature, representing
the control parameter, is lowered in a linear way across the transition. The reduced
control parameter of Eq. 1.64 can then be rewritten as:

ϵ(t) =
t

τQ
, (1.67)

where τQ = 1/ϵ̇ is the characteristic timescale of the temperature ramp (or quench) across
the transition. One obtains, then, for the equilibrium correlation length:

ξ =
ξ0τ

ν
Q

|t|ν
, (1.68)

and for the relaxation time:

τ =
τ0τ

zν
Q

|t|zν
. (1.69)

Figure 1.3 qualitatively clarifies the interplay between the finite quench rate and the
divergence of the relaxation time at the transition. Far away from the critical point (i.e.,
for |ϵ| ≫ 0), the equilibrium relaxation time is small with respect to the time required to
reach the transition: the system has in this case enough time to adapt to the externally
imposed variation of the control parameter, with an almost adiabatic dynamics. In the
vicinity of ϵ(t) = 0, instead, the dynamics becomes essentially frozen, due to the critical
slowing down. The system would, indeed, require an infinitely long time to adapt to
the temperature variation and becomes unable to follow the finite rate quench. On the
basis of this intuition, the dynamics is divided in three stages, as shown in Fig. 1.3:
adiabatic, frozen and adiabatic again, as the control parameter is varied from ϵ(t) < 0
to ϵ(t) > 0, crossing the transition at t = 0. This simplification is often referred to as
adiabatic-impulse approximation and captures the essence of the inevitable nonequilibrium
dynamics involved in crossing the transition at finite rate. The boundary between the
adiabatic and frozen stages is given by the so-called freeze-out time t̂, occurring when the



1.2. BOSE-EINSTEIN CONDENSATION: OUT-OF-EQUILIBRIUM PROCESSES 19

equilibrium relaxation time τ becomes equal to the time required by the control parameter
to reach the transition:

τ(t̂) = t̂. (1.70)

Using Eq. 1.69, one finds then:

t̂ =
(
τ0τ

zν
Q

) 1
1+zν . (1.71)

As a consequence of the critical slowing down, the order parameter cannot keep up with
the change of ϵ(t), and the correlation length remains frozen to the value ξ̂ at the freeze-
out time −t̂, for the whole duration of the frozen period.3 This length-scale determines the
average size of the domains of the order parameter that form upon crossing the transition:

ξ̂ = ξ(−t̂) = ξ0

(
τQ
τ0

) ν
1+zν

. (1.72)

Equation 1.72 predicts a universal power-law scaling of the average domain size with
the quench time τQ, with an exponent −ν/(1 + zν) that depends only on the values of
the critical exponents describing the system’s equilibrium state. After the freeze-out,
defects can form due to the merging of the boundaries of independent domains. The
average density of defects nd in the system can be determined, using Eq. 1.72, as the ratio
between the size of the defects ξ̂d and the size of the domains ξ̂D [24]:

nd ∼
ξ̂d

ξ̂D
=

1

ξD−d
0

(
τ0
τQ

)(D−d) ν
1+zν

, (1.73)

where D is the dimensionality of the system and d that of the defects. The higher the
rate at which the transition is crossed, the shorter becomes the characteristic quench time
τQ, with the correlation length also freezing out at a smaller value ξ̂, which leads to the
formation of a larger density of defects. This power-law dependence of the defect density
on the characteristic quench time n ∝ τ−α

Q is one of the main predictions of the KZM.
The above described adiabatic-frozen-adiabatic scenario is of course a simplification

of the actual dynamics, since the actual evolution of the system does not completely stop
at the freeze-out time, as pointed out in [45, 36, 22, 23, 46]. At the microscopic level,
the state of the system continues indeed to evolve, and local thermodynamic equilibrium
may even be maintained. Even the order parameter does not completely cease to evolve,
but in the frozen region it cannot follow its equilibrium value, that would be dictated by
the instantaneous change of the control parameter, catching up with it only locally after
the critical point has been passed, with a delay of the order of t̂. Below we will further
consider this aspect when considering the specific case of a trapped Bose gas. Another
limitation to the simplified scenario described above is given by the fact that the KZM
does not capture the coarse-graining processes leading to the merging of the initial small
domains, nor the later interaction dynamics that can take place between defects.

Because of the above points, the actual density of defects is often smaller by a factor
f ∼ 5−10 than the one predicted by Eq. 1.73, which provides only an order-of-magnitude
estimation, depending also on the system-specific quantities ξ0 and τ0. The main predic-
tion of the KZM remains then the fact that independent order parameter domains indeed
form upon crossing the transition, leading to the spontaneous formation of defects, the

3The freeze-out dynamics, in this simplified picture, is considered to be symmetric, with the frozen
region extending from −t̂ to +t̂ and the correlation length at −t̂ being equal to the value at t̂.
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number of which is determined by the average domain size and exhibits a power-law scal-
ing with the quench rate, with universal exponents dependent on the universality class of
the transition.

1.2.3 Experiments testing the Kibble-Zurek mechanism

Experiments testing the KZM, like the ones directly proposed by Zurek [7, 44], were
soon performed in a variety of different systems, demonstrating the universality of the
mechanism. The first of these experiments were performed in nematic liquid crystals [47,
48], fluids composed of rod-shaped molecules, which are randomly oriented at high tem-
peratures or low concentrations (isotropic phase), and aligned along a common direction
at low temperatures or high concentrations (nematic phase). Rapid temperature and
pressure quenches were shown to cause the formation of domains due to a local choice
of the alignment direction, with an average domain size in fair agreement with the KZ
predictions [48], and the generation of various types of topological defects [47]. Notably,
the considered phase transition is of first order, suggesting a more general validity of the
hypothesis at the basis of the KZM.
Following Zurek’s proposal, experiments on superfluid Helium were performed, showing
the generation of quantized vortices caused by quenches across the normal to superfluid
transition [49, 8, 50].
Other systems in which the Kibble-Zurek mechanism has been observed, upon crossing a
second order phase transition at finite rate, are superconducting films [9], annular Joseph-
son junctions [51, 52], ion chains [12, 53, 11], as well as ultracold atoms.

Kibble-Zurek mechanism in ultracold atom systems

Ultracold atomic gases were soon considered as ideal candidates to test the KZM [54],
thanks to the high degree of experimentally achievable control and tunability of the sys-
tem’s characteristic parameters, such as the temperature, density, interaction strength
and geometry of the system, which allow for the study of out-of-equilibrium processes in
a very clean environment.

Experiments testing the KZM have been performed in a variety of ultracold atom
systems, in different geometries and dimensionalities. In particular, the effect of the
finite-rate crossing of the BEC phase transition has been explored in 3D harmonically
confined Bose gases [55, 19, 56, 24, 25, 26], as well as in homogeneous Bose gases: in a
3D box potential [18], in an annular geometry, investigating the superfluid flow winding
number as in Zurek’s initial proposals [44, 20], and in a quasi-2D uniform potential [21].
These studies focused on the statistics of topological defect formation as a function of the
cooling rate [19, 21, 24, 25], and on the emergence of coherence [18], investigating the
evolution of the system’s correlation length [17]. The relation between the defect density
and the quench time was investigated, finding a good agreement with the predicted scal-
ing law behavior, at least for slow enough cooling rates, allowing for a determination of
the combination of critical exponents ν/(1 + νz) (see Eq. 1.73) [37].

The Kibble-Zurek mechanism was also generalized to quantum phase transitions at zero
temperature, that can be crossed by varying the interaction parameters, such as, for
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instance, the transition from the Mott insulator to the superfluid phase in a gas in an
optical lattice [57, 58, 59]. The effects of rapidly crossing a quantum phase transition have
been explored also in multi-component Bose-Einstein condensates, studying the effect of
quenches in the ferromagnetic phase of a spinor BEC, with the formation of spin-domains
and the occurrence of phase separation [16, 60, 61, 62, 63, 64, 65, 66]. The KZM has been
investigated also in fermionic systems [67, 68].

1.2.4 BEC formation in a trapped Bose gas: KZ and beyond

Several studies have been performed concerning the cooling, at variable rate, across the
BEC phase transition of a Bose gas confined in a harmonic external potential. The
spontaneous formation of quantized vortices, compatible with the KZM predictions, was
first observed in 2008 in the experiment of Ref.[55], in a 3D trapped Bose gas in an oblate
(pancake) geometry.

In 2013 in Trento, in the same experimental setup of this thesis work, the KZM was in-
vestigated, cooling a 3D Bose gas in a prolate (cigar-shaped) harmonic magnetic trap at
variable rates across the critical temperature for BEC formation [19, 24, 69, 70]. Topo-
logical defects, identified as solitons and solitonic vortices [56], were observed to be left in
the system after the quench, as a consequence of the generation of different axial phase
domains due to the crossing of the phase transition at finite rate. A power-law scaling
of the number of detected topological defects, in agreement with the KZ predictions, was
obtained for low enough cooling rates.

For high cooling rates (fast quenches), instead, a saturation of the detected number of
defects to a maximum value was observed, with a possible explanation consisting in the
post-quench pair-annihilation and interaction dynamics taking place between multiple
vortices [71, 24].

Such effects are not included in the simplified KZ model introduced above, which
considers an infinitely long cooling ramp and does not take into account the microscopic
details of the defect formation process, nor of the condensate order parameter onset and
growth after the quench. The investigation of beyond KZ effects has motivated further
studies, both theoretical and experimental.

Saturation of the defect density for rapid cooling ramps was recently observed also in an-
other experiment, performed on oblate quasi 2D Bose gases confined in an optical trap [25,
26]. The observed saturation was in this case attributed to a coarsening of the dynamics
at early times after the crossing of the critical point, which was verified by changing in
an independent way the cooling rate at the transition and after the expected freeze-out
regime [26].

In Ref. [72], the early-time coarsening after the crossing of the critical region was the-
oretically investigated and found to have a fundamental role in the dynamics after the
crossing of any second order phase transition, especially when considering fast cooling
ramps of finite duration. In particular, the authors show that after the system leaves the
freeze-out region, the evolution is initially nonadiabatic, with a finite delay time being
required before a well-defined condensate appears, during which the correlation length
increases due to parametric coarsening. This provides a motivation for the breakdown of
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the KZM for fast quenches, for which the condensate formation is predicted to become
insensitive to the rate at which the transition is crossed, explaining the experimentally
observed saturation of the number of defects [24, 25, 26]. A delay in the formation of
the order parameter, dependent on the quench time and constant for fast quenches, was
predicted also in Ref [73]. Recently, beyond KZ scenarios were investigated in [74], where
it was shown that, for quench rates above a critical value, the defect density as well as
the freeze-out time become independent of the quench rate. In particular, the authors
point out that the freeze-out time t̂, for a realistic cooling ramp ending at a finite time
tf , should be given by the maximum between the value of the relaxation time estimated
from Eq. 1.70 and the relaxation time evaluated at tf . This has the consequence that the
freeze-out time becomes independent of the quench time for rapid quenches, leading to
saturation of the defect density and to a universal post-quench dynamics.

In the regime of slow cooling ramps, where experiments have shown a good agreement
with KZ predictions, new simulations, based on a linearized stochastic Gross-Pitaevskii
equation were recently performed for an elongated trapped Bose gas [23], like the one
of our experiment, studying the effect of the different cooling rates on the condensation
dynamics. In order to more precisely model the processes occurring in typical experi-
ments, besides a linear temperature decrease also a variation of the chemical potential
was included in the simulations, to account for the decrease of the number of atoms that
occurs in experiments, where the temperature is lowered by means of evaporative cooling
(see Sec. 2.6.3). For slow enough ramps, a universal scaling of the condensate order pa-
rameter growth was found. In the early stage after crossing the transition, the condensate

growth is predicted to occur on a timescale dependent on t̂ ∝ τ
zν

1+zν

Q , with the value of the
exponent being compatible both with the mean-field prediction of 1/2, as well as with
the value of 0.57, which takes into account beyond-mean-field corrections. At later times,
instead, the condensate growth is shown to take place on timescales directly following the
quench time τQ. The simulations also predict a delay in the onset of condensation with
respect to the time at which the critical point is crossed, caused by the freezing-out of
the dynamics in the vicinity of the critical point. This leads to an overall shift of the
condensate growth curves, dependent on the quench time. The duration of this delay is
predicted to be proportional to the freeze-out time t̂, with a nonuniversal proportionality
factor depending on the system’s parameters.

An experimental observation of this delay in the condensate growth curve could pro-
vide a direct measurement of the freeze-out time, which is still lacking. The measurement,
in the same experiment, of the power-law scaling of the defect density and of the freeze-
out time would be of high interest, since the two quantities have a different dependence

on the critical exponents ν and z (t̂ ∝ τ
zν

1+zν

Q , while ξ̂ ∝ τ
ν

1+zν

Q , see Eqs. 1.71, 1.72), that
characterize the universality class of the transition and could in this way be determined
independently [36, 37].

In actual experiments, however, the temperature is not directly controlled, but changed
acting on other external parameters, such as the depth of the confining optical potential
or the frequency of an outcoupling radio-frequency field (see Sec. 2.6.3). This makes
also other timescales relevant for the characterization of the dynamics of the system in
response to the variation of the external parameter. A quantity that is particularly rel-
evant is the atomic system collisional time, which is involved in the determination of
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the timescales of thermalization and equilibration. It can be classically estimated as
τcoll = (n̄σv)−1, with n̄ being the average density, σ the scattering cross-section and v
the average atomic velocity [75]. In early works, before the KZ formalism was applied to
the study of cold atom systems, this finite collisional time was suggested to be the cause
of a finite delay in the onset of condensation after rapid temperature quenches [14, 13, 76].

The interplay of the above mentioned phenomena (critical slowing down and KZM,
coarsening dynamics after the transition, finite collisional time) causes Bose-Einstein con-
densation to be a highly non-trivial process, especially when considering a wide range
of cooling rates, from almost adiabatic slow ramps to quasi-instantaneous quenches, with
important details still requiring further investigation. The need, in particular, of achieving
a better understanding on the different timescales involved in the condensation process,
motivates the experimental work reported in Chapter 4, where I present a systematic in-
vestigation on the formation dynamics of the BEC order parameter as a function of the
rate at which the critical point is crossed.
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Chapter 2

Experimental apparatus

The aim of this chapter is to give a virtual tour of the laboratory, providing a description
of the experimental tools and procedures that allow us to cool, confine and image atomic
clouds and that are used in the experiments described in Chapters 3 and 4.

The atomic species used in our experiment is sodium 23Na, which has been one of the
first atomic elements for which Bose-Einstein condensation was obtained [1]. Thanks to
the favourable combination of its scattering cross-section (a = 54.54aB, where aB is the
Bohr radius) and low three-body recombination rate, it is particularly suitable for the
production of large BECs, since, in comparison to other elements, the evaporative cooling
process towards degeneracy is particularly efficient [77].

Most experimental setups for ultracold atoms have a series of elements in common,
that are required for the production and manipulation of ultracold atomic clouds. These
are:

• a vacuum system, used to separate the ultracold gas from the external environment;
• a laser system, used for cooling, manipulating and probing the atoms. The specific

frequencies of the laser light are chosen depending on the level structure of the
atomic species that is used;

• a system to confine the atoms: this can be done using optical, magnetic or hybrid
traps. In the experiments described in this thesis, a purely magnetic trap is used;

• radiofrequency and microwave signal generators and antennas for further manipu-
lation of the internal state of the atoms;

• an imaging system with ccd cameras to capture images of the atomic distribution;
• an electronic control system, that interfaces the various instruments, allowing to

tune their parameters and to control the sequence of actions required to perform an
experiment.

In the following, I briefly describe all these parts of our experimental apparatus, focusing
on the upgrades that were performed during my PhD thesis work. These upgrades mainly
regarded the imaging system, that was rebuilt to gain a better resolution, and other
technical improvements aimed at achieving an enhanced stability and a higher degree
of control on the experiment. One of my contributions was also the development and
implementation of the optical setup for the use of a Digital Micromirror Device (DMD),
that allows to project arbitrary light patterns, providing enhanced possibilities in the
manipulation of the cold atoms.

25
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2.1 Laser system

In Fig. 2.1 the hyperfine energy levels of 23Na are shown. To cool, probe and manipulate
the atoms, we use coherent laser radiation, of which we need to precisely tune and control
the frequency and optical power.
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Figure 2.1: Hyperfine energy levels of the D1 and D2 transitions of 23Na. The splittings are not to scale.
The transitions used for the 3D MOT cooling and repumping (red and orange) and for the GM cooling
and repumping (dark and light blue) are shown, as well as the transition used for probing the atoms
(yellow). The frequency-splitting data are from [78].

Two main laser systems are present in our experiment. The first one is based on a laser
source locked to the cycling transition 3 2S1/2 |F = 2⟩ → 3 2P3/2 |F ′ = 3⟩ (D2 line) at
589.16 nm and produces the radiation used for cooling and probing the atoms. Part of
the light is frequency shifted to be resonant with the 3 2S1/2 |F = 1⟩ → 3 2P3/2 |F ′ = 2⟩
transition (in orange in Fig. 2.1) and is used as an optical repumper, both in the cooling
stage, in a dark spot (DS) configuration [79], and to repump the atoms in |F = 2⟩ before
imaging them with the probe light. The other laser source is locked to the D1 line
3 2S1/2 |F = 2⟩ → 3 2P1/2 |F ′ = 2⟩ at 589.76 nm and is used for a gray molasses (GM) sub-
Doppler cooling stage [80]. The laser radiation at ∼ 589 nm is produced via frequency
doubling, starting from two infrared (IR) laser sources operating around 1178 nm. These
were initially extended cavity diode lasers (ECDL), then substituted with distributed
feedback (DFB) lasers [Innolume DFB-1178-YY-50]. The IR radiation of each source
(with an optical power of about 20 mW) is amplified by a Raman amplifier [MPB RFA-P-
8-1178-SF], pumped with an Yb fiber laser, to get an output power up to 7 W, on a single
transverse mode, maintaining the polarization of the input beam. The infrared radiation
is then frequency-doubled in a bow-tie cavity with a non-linear crystal [LEOS]. At the
end of this stage about 2.5 W of visible radiation are available from each source. Fig. 2.2
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shows a scheme of the optical setup for the D2 line (a) and for the D1 line (b).
The frequency of each laser source (D1 and D2) is locked to the corresponding atomic tran-
sition by means of frequency-modulated saturated absorption spectroscopy, performed on
a sodium vapour cell [81].

In order to independently control the laser beams used in the different stages of the
experiment, the beam at the output of each frequency-doubling cavity is split into several
secondary beams by means of polarizing beam-splitter cubes and half-wave plates. The
frequency and optical power of each beam is tuned by means of RF-driven Acousto-Optic
modulators (AOMs) [Gooch & Housego] and Electro-Optic Modulators (EOMs) [QuBig].
Mechanical shutters [Thorlabs SHB025T [82]] are placed on each beam path and are used
in combination with the AOMs to block the light when it must not reach the atoms.

For the D2 line, the various secondary beams are enumerated below, following the num-
bering of Fig. 2.2 (a):

1. the spectroscopy line, split in a probe and a pump beam. The frequency of the
pump beam is modulated with respect to the probe beam by means of a double-
pass AOM. The probe is split in two beams, one of which is overlapped with the
counterpropagating pump beam. Both probe beams propagate through the Na
heatpipe, and are detected by a differential photodiode, measuring the difference
in the two absorption signals. This differential signal is then sent to a lock-in
demodulator to obtain the error signal, which is finally fed to a PID controller,
that acts on the laser frequency. The D2 spectroscopy line locks the laser source
frequency to the F = 2 → F ′ = 3 transition, to which the detunings listed below
are referred;

2. the 3D MOT beam, offset by −23 MHz by means of two AOMs, which allow for a
further tuning of the cooling frequency (this corresponds to the transition indicated
in red in Fig. 2.1);

3. the atomic source line, split into the the 2D MOT beam, with a detuning of
−10 MHz, and the Zeeman Slower (ZS) beam, offset by about −300 MHz by means
of a double pass AOM. An EOM, operating at 1.713 GHz, provides repumper side-
bands for both lines;

4. the dark spot/ repumper line produces two independent laser beams at the repumper
frequency, resonant with the F = 1 → F ′ = 2 transition shown in orange in Fig. 2.1.
This is done by means of a sequence of three AOMs in double pass, of which the
first two (in common for the two beams) are driven at 228 MHz and the last one at
400 MHz, to produce a total frequency shift of 1.712 GHz. The two beams are used
as repumper in the Dark Spot MOT and for imaging;

5. the push beam, with a detuning of +12 MHz;
6. the probe beam, split into two independent beams for the horizontal (xy) and vertical

(z) probe direction. The probe light is resonant with the F = 2 → F ′ = 3 transition.
A fine tuning of the probe frequency is granted by two AOMs (one of which in
common with the push beam, which is used at a different stage of the experiment).

The D1 laser setup is instead composed only by a spectroscopy line, analogous to the one
described above, which locks the frequency of the laser source to the 3 2S1/2 |F = 2⟩ →
3 2P1/2 |F ′ = 2⟩ D1 transition. The frequency-stabilized light is then sent to the gray mo-
lasses line, where two AOMs, operated at ±200 MHz RF frequency, allow for a fine tuning
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Figure 2.2: Optical scheme of the D2 laser setup (a) and D1 laser setup (b). RF frequencies in MHz are
reported on top of the AOMs. Additional waveplates (not shown) are present in front of the AOMs to
tune the polarization of the input light to obtain maximum diffraction efficiency. This figure, as well as
the other optical setup schemes of this thesis, was drawn with the use of ComponentLibrary [83].
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of the laser frequency and of the optical power.

The laser sources are placed on a different optical table than the one of the experiment, to
which the light is delivered by means of polarization-maintaining optical fibers [Schaefter-
Kirchhoff PMC-630-4.2-NA12-3-APC]. To optimize fiber coupling and stabilization, λ/2
and λ/4 waveplates are added at the input of the fibers.

On the main experimental table, another laser source with its own amplification stage
is present [Innolight/Coherent Mephisto MOPA] that can provide up to 42 W at 1064 nm.
Through frequency-doubling in a free-space non-linear crystal [PPSLT], visible light at
532 nm can also be obtained. Since these frequencies are far detuned from the atomic
transitions, it is possible to use this light to obtain attractive (using the IR light) or
repulsive (using the green light) optical potentials [84].

The DMD setup, which will be used in future experiments, has been tested using 589 nm
and 532 nm light.

2.2 Vacuum system, atomic source, Zeeman slower

and 2D MOT

Fig. 2.3, from Ref. [79], shows a sketch of the first stages of the experimental setup used
to cool the atoms. A vacuum apparatus composed of two parts is present: a high vacuum
chamber (HV) with a pressure of ∼ 10−7mbar, where the atomic source is located, and
an ultra-high vacuum chamber (UHV) with a pressure ∼ 10−10mbar, where the science
chamber, where the experiments are performed,is placed. A differential pumping channel
with a diameter of 2 mm and a length of 22.8 mm connects the two parts of the vacuum
apparatus. Each part hosts one ion pump [Varian Starcell], with nominal pumping speed
of 55 L/s and a titanium sublimation pump (TSP) [Varian].

The gas of sodium atoms is obtained by heating a solid sample of sodium in an oven,
located in the lower part of the apparatus [see Fig. 2.3 (b)], up to a temperature of
∼ 240 °C. The hot atoms of the atomic vapour flow upwards and get captured by a 2D
Magneto Optical Trap (2D MOT, shown in Fig. 2.4a), obtained by means of two circularly
polarized retro-reflected laser beams and four stacks of neodymium permanent magnets
(red and blue in Fig. 2.3), that produce the quadrupole magnetic field. The capture
efficiency of the 2D MOT is improved by an integrated Zeeman Slower (ZS), realized by
means of a red-detuned beam propagating from top to bottom towards the atomic oven,
in the magnetic field gradient produced by the tails of the 2D MOT quadrupole field.
The cooled atoms are then pushed towards the science cell by means of a resonant push
beam, along the unconfined x direction. The resulting atomic beam finally reaches the
science chamber, where it loads a 3D Magneto Optical Trap (3D MOT).

The science chamber, shown in Fig. 2.4b, is constituted by an annealed quartz cell
made by Hellma Analytics, with outer dimensions of about 90 × 60 × 35 mm and 5 mm
thick walls (except the one on the far right in the figure, which is 4 mm thick). The cell
has the shape of an irregular polyhedron: the two long lateral faces are non-parallel, to
avoid spatial interference between the 3D MOT beams, while one of the short sides of the
cell is connected via a flange to the UHV system. The outer surfaces of the four largest
windows of the cell are covered by anti-reflection coating, which reduces the reflectivity
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to ∼ 0.5% over a spectral range from 530 to 1100 nm.

Figure 2.3: a) Sketch of the first stages of the experimental apparatus. b) Zoom on the first part of the
apparatus where the Na oven and the magnets for the 2D MOT and ZS are shown. Image adapted from
[79].

2.3 Magnetic fields

In the experiments described in this thesis, the atoms are confined in a magnetic trap. It
is possible to trap atoms in a nonuniform magnetic field [86, 28], exploiting the Zeeman
shift of the atomic energy levels [87]:

U|F,mF ⟩(r⃗) = −µ⃗atB⃗(r⃗) = µBgFmF |B⃗(r⃗)| (2.1)

where
µat = µBgFmF (2.2)

is the magnetic moment of the atoms, in units of the Bohr magneton µB. The potential
experienced by the atoms depends on their internal state |F,mF ⟩ and, in particular, on
the sign of gFmF :

• if gFmF < 0 the atoms are attracted towards regions where |B⃗(r⃗)| is highest (high-
field seeking states)

• if gFmF > 0 the atoms are attracted towards regions where |B⃗(r⃗)| is minimum
(low-field seeking states)

Since in 3D the magnetic field can have only local minima and not maxima, the atoms
can be magnetically trapped when they are in a low-field seeking state. In the case of
the ground-state manifold 3S1/2 of 23Na, gF = −1/2 for the F = 1 states and gF = 1/2
for F = 2 [78]. This means that the ground-states that can be magnetically trapped are
|F,mF ⟩ = |1,−1⟩, |2, 1⟩ and |2, 2⟩, while atoms in the states |1, 1⟩, |2,−1⟩ and |2,−2⟩ are
antitrapped and those with mF = 0 are, to first order in the Zeeman effect, insensitive to
the magnetic field.
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(a) 2D MOT

(b) Quartz cell: (a) view from the side and (b) from above,
from the technical drawing by Hellma Analytics. The faces
marked with λ are antireflection coated. (c) photograph from
[70].

Figure 2.4: (a) 2D MOT fluorescence, photographed through the ZS window [70]. (b) Drawing and
photograph of the quartz cell.

To confine the atoms we use a Ioffe-Pritchard (IP) trap [88], based on a static cylindrically
symmetric magnetic field, with a non-zero minimum at the center, in order to avoid losses
due to Majorana spin flips [28, 89]. This field is produced using the set of coils sketched in
Fig. 2.6. The large cyan coils, in anti-Helmholtz configuration (i.e. with the same current
flowing in opposite directions in the two coils, which are placed at a distance equal to their
radius), produce a 3D quadrupole field, which is used also in the 3D MOT stage. For the
conservative Ioffe-Pritchard trap, an additional set of three coils is used, formed by three
coils oriented along the x axis: a pinch coil (green) and a pair of compensation coils (red).
The pinch coil creates a magnetic gradient that cancels out the gradient component of the
quadrupole field along x. The two compensation coils are used to reduce the bias field of
the pinch coil B0 to a few G.
The resulting magnetic field is quadratic with a bias term along x: Bx = B0 + B′′x2/2,
and symmetric around the x axis. The total magnetic field can be derived using Maxwell’s
equations and, in polar coordinates, is given by [90, 70]:

B⃗(ρ, ϕ, x) = B0

0
0
1
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0

 +
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2

 −xρ
0

x2 − ρ2/2

 , (2.3)

where ρ =
√
x2 + y2 and ϕ is the angle between y and z. Only the modulus of B enters

in Eq. 2.1:
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Figure 2.5: Photograph of the 3D MOT, taken before the upgrade of the vertical imaging system. The
coils that generate the magnetic field are visible. A loop and a hook antenna are placed above the cell to
irradiate the atoms with an RF and a microwave field, respectively. Another hook antenna is placed on
the side of the glass cell. Image from [85].

Figure 2.6: Coils used for the generation of magnetic fields. In (a) the science chamber and some optical
beams (push beam, 3D MOT beams, in yellow) are also shown. Image adapted from [70].

For low-field seeking states this results in a trapping potential that, at low temperatures
(µatB0 > kBT ), can be written as:
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2

)
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are the axial and radial trapping frequencies, respectively, that characterize the strength
of the magnetic confinement. Their ratio ωρ/ωx is the aspect ratio of the trap, which
determines the spatial distribution of the confined atomic cloud.
Three pairs of additional smaller coils in Helmholtz configuration, called bias coils, are
present along all three orthogonal directions (not shown in the Figure). They are used
to actively compensate the variations of the environmental magnetic field in the central
region of the trap. This is needed in order to obtain a zero magnetic field to make the
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Figure 2.7: Electronic circuit used to drive the coils, labeled as P (pinch), C1,2 (compensation), Qup,dw

(quadrupole up and down). It is possible to switch between the different magnetic field configurations
acting on the IGBT swicthes (I) and relays (R).

gray-molasses cooling stage effective. The bias coils along the x axis are, moreover, used,
together with the compensation coils, to finely tune the value of the bias field B0 in the
magnetic trap, allowing to control its aspect ratio. The bias field also sets the minimum
energy of the trapping potential µatB0 (called trap bottom), which is often expressed in
frequency units νb = µatB0/ℏ and corresponds to the minimum Zeeman splitting of the
atomic energy levels in the magnetic field. Using the compensation coils, we tune the bias
field in order to have always the same trap bottom during a given stage of the experiment,
compensating the variation of external fields, as further explained in Sec. 2.6.4.
Using only the lower quadrupole coil, it is also possible to generate a vertical gradient,
used to compensate gravity and levitate the atoms when we want to image them after a
time of flight tTOF > 20 ms, (see Sec. 2.8).

The high-power coils of Fig. 2.6 are driven by a pair of remotely controlled, stabilized,
high power supplies (Delta Elektronica SM30-200), that erogate up to 200 A and are
water-cooled by a flow of pressurized water through the hollow core of the copper wire.
The coils are connected in series, which means that the current is the same in all of them,
suppressing fluctuations in the trap shape. We switch between the different field config-
urations, in the various stages of the experiment, using fast high-current insulated-gate
bipolar transistor (IGBT) switches [Semikron SKM400GAL12E4] and mechanical relays
[Kilovac EV200], by means of the circuit shown in Fig. 2.7.
The typical setting time for a 200 A current, used in the initial stage of the magnetic trap,
is of the order of 10 ms, limited by the switching time of the relays, while the switch-off
time for a current of 50 A, typically used for BEC trapping in the final stages of the
experiment, is ∼ 500 µs, limited by eddy currents.
A more detailed characterization of the magnetic field produced by the coils is given in
earlier theses [90, 70, 91].

2.3.1 Gravitational sag

Since the experiments are performed on Earth, when the atoms are confined in the central
region of the IP magnetic trap, their total potential energy is determined by the magnetic
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potential energy of Eq. 2.5, plus the contribution of gravity:

U|F,mF ⟩(x, y, z) = µatB0 +
1

2
mω2

ρ(y2 + z2) +
1

2
mω2

xx
2 + mgz (2.7)

where g = 9.81 m/s2 is Earth’s local gravitational acceleration. The effect of gravity is to
cause a displacement of the minimum of the potential with respect to the minimum of the
magnetic field. This shift, commonly known as gravitational sag, can be quantified as:

zsag = − g

ω2
z

= − g

ω2
ρ

(2.8)

The value of the gravitational sag is zsag ≃ 24.5 µm for the shallow trapping potential
(with trapping frequencies of the order of ωx/2π = 8.83 Hz, ωρ/2π = 101.3 Hz) used in
Sec. 2.9 and Chap. 3), while it is 13.2 µm in the tighter trap of Chap. 4, where the trapping
frequencies are ωx/2π = 12.3 Hz, ωρ/2π = 138 Hz.

2.4 Radio-frequency and microwave fields

To couple the different Zeeman and hyperfine sublevels, radiofrequency (RF) and mi-
crowave (µw) radiation is used, delivered to the atoms by means of antennas placed in
the vicinity of the science chamber (see Fig. 2.5). RF radiation in the MHz range cou-
ples the different Zeeman sublevels of the F = 1 ground-state manifold, and is used, for
instance, during the RF evaporative cooling in the magnetic trap (see Sec. 2.6.3). Such
RF signals are generated by means of direct digital synthesizer (DDS) boards, amplified
using Minicircuits 2W amplifiers [ZHL-1-2W-S+] and delivered to the atoms by means of
ring-shaped (loop) copper-wire antennas, as the one shown on top of the cell in Fig. 2.5,
which is used for RF evaporative cooling.
Other, hook-shaped, antennas are instead used to radiate the atoms with microwave ra-
diation at ∼ 1.7 GHz, to couple the F = 1 and F = 2 ground-state hyperfine levels (see
Fig. 2.1). This radiation is obtained by means of a function generator [Marconi 2024 [92]]
and amplified using a 100 W amplifier [Minicircuits [93]]. Such high-power amplification
for the microwave radiation is required to minimize the effect of the non-homogeneous
magnetic field on the transition frequency, when we perform partial-transfer imaging, as
described in 2.9. A pick-up antenna is also present to monitor the RF or µw radiation
sent to the atoms, by picking up a fraction of the signal, which can be measured on an
oscilloscope1. To optimize the matching of the antennas at the desired frequency, stub
tuners are used in the cases where a high efficiency is critical, such as for the high-power
microwave radiation.

2.5 Control of the experiment

Many different instruments are used at the various stages of the experiment, requiring
a precise management of the timing and parameters at which each of them is operated.
A typical experimental sequence lasts about 50 ms, during which operations need to be

1In case of µw radiation, which has a frequency outside the bandwidth of the oscilloscope, we observe
the beating of the pick-up signal with another known µw signal produced by a second Marconi function
generator.
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performed in a reproducible way, most of which with a timing precision better than 1 µs.
To this scope, most instruments are interfaced to a remote control system, based on field-
programmable gate arrays (FPGAs). During my PhD we integrated in the remote control
system more instruments, that were before controlled only separately.
The control system is based on a central FPGA [Xilinx Spartan XC3S250E], clocked
at 10 MHz, which receives a buffered list of instructions from a computer via USB. Each
instruction has a target slave board, identified by its address. The instructions are written
by the FPGA on a 24 bit parallel bus, with a time resolution of 100 ns and a maximum
instruction-rate of 2.5 MHz. The different boards are:

• Digital boards: each of these boards has 16 independent Transistor-Transistor Logic
(TTL) channels, which output a digital 0 − 5 V signal. They are used as trigger
signals to accurately control the timing of IGBT switches, RF and µw signals, laser
pulses, camera exposure, data acquisition from oscilloscopes, etc. In practice any
instrument that needs to be switched on-off at a precise time, is controlled by a
TTL. They are also used to control the motion of moving mirrors and shutters.

• Analog boards: these boards contain two 16-bit Digital to Analog Converter (DAC)
chips. They provide control over analog parameters, such as the current generating
the magnetic field, which is linearly ramped up and down during the experiment.
They are also used to tune the intensity of RF and µw signals through mixers.

• DDS boards: they are used to generate RF signals to drive the AOMs and control
the frequency and power of the laser beams, as well as to couple different Zeeman
sublevels (see Sec. 2.4 about the RF antennas and Sec. 2.10 on evaporative cooling).
Each board has a Direct Digital Synthesizer (DDS) chip [Analog devices AD9958],
which outputs RF signals through two independent channels, with frequencies in
a range from 200 kHz to 150 MHz, and a power up to 13 dBm. The DDS is pro-
grammed through a microcontroller [PIC18F2550], which reads the frequency and
amplitude parameters from a look-up-table (LUT) with a 32 bit resolution.

Given the large amount of boards, that need to be connected to the FPGA and are lo-
cated in different parts of the laboratory, a rather long bus would be needed to ensure all
connections. This would cause reliability issues, due to noise pick-up. As a solution, the
experiment is actually divided into two parts, located in different places, each controlled
by its own FPGA, allowing for a shorter cable. Each FPGA is connected to the control
computer via a USB connection. To avoid jitters in the timing, the two FPGAs are trig-
gered by a common signal, given by an Arduino when the communication over both USBs
is completed and in phase with the 50 Hz electricity network.

Each experiment consists in a timed list of instructions that is sent to the FPGAs. The
list of instructions is written and compiled using a software called Expcontrol, developed in
Python 2.7 [69] and continuously modified in the course of the years. This software has a
high-level user interface to create the timed sequence of instructions. It also allows to set
up and control other external devices and instruments that are not directly controlled by
the FPGA, such as oscilloscopes, RF signal generators and cameras, giving the possibility
to program sequences of experimental runs where different experimental parameters are
scanned. In order to optimize the control on an increasing number of instruments, and
the execution of multi-parameter scans, in the last few years we partially switched to the
Labscript suite [94, 95]. For each experimental run, the instructions, still written and
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compiled using Expcontrol, are stored together with all the experimental parameters in
an HDF5 file [96]. Labscript’s blacs module allows to supervise and manage the queue
of HDF5 files to be executed, changing, if needed, their order and pausing/restarting
the execution. It also enables a control of the settings of devices between experimental
shots. The various devices are not all connected to the same computer, but instead
the instructions are sent via a set of servers, located on different computers in the lab
network. At the beginning of each shot, each device’s server receives the list of instructions
it should execute. At the end of the execution of the program, the output data of the
various instruments (cameras, oscilloscopes, sensors, etc) are stored in the same HDF5
file where the program and parameters were saved, making it easy to retrieve all relevant
information for each experimental shot. The data can be read and analyzed by means
of ad-hoc written python scripts. To visualize the data and perform on-the-run analysis
during the execution of the experiments, we use the lyse tool of the Labscript suite.
Thanks to its integration with the blacs tool, this program allows to read the single-shot
HDF5 files as soon as they are saved to the disk, and provides an efficient way to perform
single-shot (on a single HDF5 file) and multi-shot analysis (combining the results obtained
for several files). To get a graphical view of the sequence of instructions of a program, we
use Labscript’s Runviewer tool.

2.6 Experimental sequence to produce Bose-Einstein

condensates

A typical experimental sequence to produce Bose-Einstein condensates is sketched in
Fig. 2.8. After the initial cooling stage in the 2D-MOT and ZS, the atoms are further
cooled in a 3D Dark-Spot (DS-MOT) and in a gray molasses (GM) stage. Then RF-
driven evaporative cooling in the magnetic trap takes place, eventually leading to the
formation of a BEC, for proper choices of the cooling conditions. The final system, is
then further manipulated or directly imaged at the desired time, either in situ or after a
certain time of flight (TOF).

DS-MOT GM
RF evaporation

in magnetic trap
imaging

time

BEC
?

20 s 10 ms 300 ms40 s 1 s0.5 s

Figure 2.8: Sketch of the different phases of a typical experimental run for the experiments performed in
this thesis. An indicative duration of the various stages is indicated, not in scale.

2.6.1 Dark-spot 3D MOT

The atoms are loaded from the 2D MOT, described in Sec. 2.2, in a three-dimensional
dark-spot magneto-optical-trap (DS-MOT) [97]. In a standard 3D MOT [98, 99], atoms
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are cooled and trapped exploiting the combined effect of a magnetic field gradient and
three pairs of counter-propagating laser beams with near-resonant, red detuned, frequency
and opposite circular polarizations. For alkali atoms, such as 23Na, this mechanism can be
implemented using light with a frequency close to the F = 2 → F ′ = 3 cycling transition
(in red in Fig. 2.1). The relatively small splitting between the F ′ = 3 and F ′ = 2 hyperfine
sublevels determines a finite probability for the atoms to end up in F ′ = 2 state, from
which they can decay in the dark F = 1 ground-state. An additional repumper beam (in
orange in Fig. 2.1) is therefore needed to re-cycle the atoms from F = 1 to F ′ = 2. In
the standard 3D MOT scheme, collective effects, such as light assisted two-body collisions
and the re-absorption of already scattered photons, causing an effective repulsive force
between atoms, pose an upper limit to the density that can be reached in the central region
of the trap and reduce the cooling efficiency. In our dark-spot configuration, instead of
sending the repumper light through the same optical path as the six cooling beams, a
hollow beam is used, propagating along a single axis in the horizontal plane. Hot atoms
are cooled in the outer part of the MOT and drift towards the center, where they are
pumped in the dark F = 1 state, due to the strong suppression of light-scattering in the
absence of repumper light.
In our experiment the magnetic field gradient for the 3D MOT is obtained using the
quadrupole coils described in Sec. 2.3, driven with a current of ∼ 10 A, yielding a vertical
gradient of about 15 G/cm in the central region of the science chamber, with a zero of
the magnetic field near the center. The cooling light is brought from the laser table to the
one of the experiment by a single fiber, at the output of which the beam is collimated to
a ∼ 1 inch diameter. The optical power is then split into three beams using combinations
of polarizing beam-splitters and λ/2 waveplates. These beams propagate through the cell
along the three orthogonal directions [x, y, z), in the coordinate system shown in Fig. 2.6
(a)] and each of them is retroreflected by a mirror. The six resulting beams are aligned in
such a way to intersect in the region of the cell where the magnetic field becomes zero. λ/4
waveplates are used to obtain the proper circular polarizations. Some of the mirrors that
define the optical path of the 3D-MOT beams are mounted on motorized translational
stages, in order to remove them after the MOT phase and make space for the imaging
beams, used in the final part of the experiment.
The hollow-profile DS beam is obtained by means of an axicon [Thorlabs AX252-A], that
converts a collimated Gaussian beam into a ring, with the highest light intensity at the
outer border. Residual repumping light in the central region is further blocked using a
disk-shaped obstacle placed in the DS beam path and imaged on the atoms by means of
a f = 150 mm spherical lens. The optical powers and polarizations of the 3D MOT and
DS beams, as well as the radius of the dark region, were experimentally tuned in order
to maximize the number of trapped atoms at the end of the 3D MOT cooling stage.
The duration of the DS-MOT stage can be varied in a range from 1 to ∼ 25 s, which
changes the final number of atoms. By means of a photodiode, we monitor the fluorescence
signal of the bright part of the 3D-MOT, which gives an indication of the loading efficiency.
This is used during the alignment and optimization procedures, and serves, as well, as
a feedback signal that allows to stabilize the final atom number, by tuning the loading
duration until a given fluorescence level is reached.
For a 20 s MOT loading time, typical atom numbers are of the order of 3.5 × 109 at a
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temperature ∼ 300 µK, corresponding to a maximum phase space density (PSD)2 of the
order of ∼ 10−7.

2.6.2 Gray Molasses

After the DS-MOT stage, a gray molasses (GM) stage takes place [100]. GM is a sub-
Doppler cooling mechanism that combines polarization gradient cooling with the presence
of velocity-selective coherent population trapping [101, 102, 103]. The working principle is
that the coupling with light is suppressed for already cooled atoms, which get in a coherent
dark state, allowing to reach temperatures below the Doppler limit TD = ℏγ/(2kB).
It exploits blue-detuned light on an F → F ′ = F or F → F ′ = F − 1 transition,
contrary to standard laser cooling methods that require, instead, red-detuned light on an
F → F ′ = F + 1 transition. For sodium atoms, it was demonstrated for the first time in
our laboratory [100], and a detailed description of the experimental implementation can
be found in Ref. [104].
Given the 23Na level structure (Fig. 2.1), the most convenient transition to implement
this cooling technique is the D1 line, with cooling light blue-detuned with respect to the
F = 2 → F ′ = 2 transition.

The GM light is produced using the D1 dedicated laser setup [see Fig. 2.2 (b)] and
delivered by means of an optical fiber to the experiment table, where it is then superim-
posed on the 3D-MOT optical path. Repumper light on the F = 1 → F ′ = 2 transition
is obtained generating frequency sidebands in the laser field by means of an EOM, driven
at ∼ 1771.6 MHz, the frequency splitting between the two hyperfine ground-state levels
at zero magnetic field.

For the GM cooling to be effective, a zero total magnetic field at the atoms is required,
since the coherent dark states that are involved are the degenerate Zeeman sublevels of
the ground-state manifold. For this reason, after the DS-MOT stage, the magnetic field
is switched off, and we further compensate for the environmental magnetic field tuning
the current in the bias coils. Right after the magnetic field transients have decayed (a
few hundred µs after the switching off of the currents in the coils), the GM cooling light
is turned on at maximum intensity (∼ 150 mW/cm2), with a blue detuning of 40 MHz,
corresponding to ∼ 4γ, with γ the natural linewidth. This first light pulse, lasting only
0.5 ms, has a capture efficiency of about 90% and cools the atomic gas lowering its temper-
ature by a factor ∼ 10. The detuning is then increased to 100 MHz and the light intensity
ramped to zero in a piecewise way in ∼ 5 ms, further reducing the temperature down to
∼ 6 µK, leading to a final number of atoms up to ∼ 3 × 109, corresponding to a PSD of
the order of ∼ 10−4. The optimum parameters were found experimentally, following the
procedure described in Ref.[100].

2.6.3 Evaporative RF-cooling in Magnetic trap

After the GM cooling, to further increase the PSD and reach Bose-Einstein condensation,
the atomic sample is loaded in the IP magnetic trap (see Sec. 2.3). This is done in two
steps, since a direct loading in the elongated IP trap would be highly inefficient due to
the difference in aspect ratio with respect to the isotropic GM. The atomic cloud is first

2The PSD is calculated as PSD = npλ
3
T , where np is the peak density of the atomic cloud, approxi-

mated with a Gaussian distribution, and λT the thermal De Broglie wavelength of Eq. 1.1
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Figure 2.9: Frequency shift of the ground state levels, for high (a) and low (b-c) magnetic field. The
frequency shift is calculated with respect to the energy of the |F = 1,mF = 0⟩ state at B = 0, using the
Breit-Rabi formula (Eq. 26 in [78]), which includes the Zeeman shift of Eq. 2.1 and the hyperfine structure
energy. (d) In-situ image of the trapped thermal cloud at an intermediate stage of the evaporation
(νRF ≃ 2.9MHz, see also Fig. 2.10). The ellipses represent magnetic field isosurfaces, corresponding
to decreasing resonance frequencies for the |1,−1⟩ → |1, 0⟩ transition, when moving from the outside
towards the center: 25MHz, 10MHz, 3MHz, 1.33MHz, 1.11MHz (indicated, in MHz, near each curve).
The bottom frequency is, also here, 1.076MHz, corresponding to a minimum field B0 = 1.53G. The
shown isosurfaces are obtained for the values of B indicated by same color vertical lines in panel (c).

loaded in a relatively shallow 3D quadrupole gradient at low current. Afterwards, the trap
is switched into the IP elongated configuration and compressed by increasing the current
to the maximum value of 200 A in a linear way. In this configuration the magnetic field
(see Eq. 2.3) is characterized by a bias field B0 ≃ 1.5 G, a gradient B′ ≃ 200 G/cm−1 and
a curvature B′′ ≃ 120 G/cm−1 [90, 70].

Being the magnetic trap conservative, a cooling mechanism needs to be exploited to
further cool down the cloud and increase the PSD to reach quantum degeneracy. This
can be done by means of evaporative cooling. This technique is based on the forced
removal from the trap of the atoms with the highest kinetic energy, and on the subsequent
rethermalization of the remaining atoms to a lower temperature, induced by atom-atom
collisions [28, 98, 105].

In a magnetic trap this can be performed exploiting the inhomogeneous magnetic field,
that causes a position-dependent Zeeman shift of the energy levels (see Fig. 2.9). A radio-
frequency (RF) field with narrow linewidth can be used to selectively remove atoms from a
certain region of the trap, by inducing spin-flipping transitions to untrapped states. Only
the atoms with the highest kinetic energy can reach the outer regions where the confining
potential is higher (see Eq. 2.1). By applying a RF field resonant with the atomic tran-
sition in the most external part of the cloud, it is thus possible to remove only the most
energetic atoms. The remaining atoms initially have an out-of-equilibrium velocity distri-
bution, but then thermalize to a lower temperature, through two-body elastic collisions.
This procedure can be iterated by gradually decreasing the energy of the RF photons,
which has the consequence of lowering the temperature of the system, at the expense of
a loss of atoms. If the initial number of atoms and PSD are high enough (hence the need
of the previous optical cooling stages), the PSD increases during the evaporation, leading
eventually to the conditions for the onset of Bose-Einstein condensation [106, 98].

In our case, RF-forced evaporation is performed by means of a RF field that couples
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Figure 2.10: Qualitative sketch of the current in the magnetic field coils (top) and RF evaporation
frequency (bottom) for the Equation of State measurements (orange) and for the study of the Out of
Equilibrium dynamics (blue). The initial part of the experimental sequence is the same, while the last
part of the evaporation differs for the two sets of measurements (see text). Shown RF-frequency intervals
are not in scale.

the magnetically trapped atoms, in the |1,−1⟩ state, to the untrapped |1, 0⟩ state.

To reach the lowest temperatures with the minimum atom loss, an extremely slow
evaporation ramp, performed using a very weak RF field, could appear as a good solution,
since ideally only few atoms would be removed. However, the evaporation would, in this
way, take an extremely long time, causing inelastic three-body loss processes to become
predominant [107]. An exponential RF-frequency ramp is a commonly used compromise,
since it has a steep derivative, corresponding to a high variation rate of the frequency, in
the initial stage, and gradually decelerates when the temperature and the atom number
become lower. The initial stages of the evaporation for our experiment were optimized
already previously, using exponential ramps [85, 104, 70, 69]. In particular, as shown in
Fig. 2.10, an initial exponential evaporation ramp is performed, with a duration of ∼ 20 s
and a time-constant τevap1 = 8 s. The RF frequency is decreased from ν0 = 25 MHz to
ν1 = 3 MHz, remaining far above the bottom frequency νb ∼ 1.08 MHz. The magnetic
trap is then decompressed, by lowering the current in the coils to 100 A, which reduces
by a factor 2 the gradient and curvature of the trap. This is done to reduce losses
caused by three-body inelastic collisions, whose probability decreases at lower density.
The evaporation continues with a second exponential ramp of the RF frequency, with a
duration of 12 s and a time constant ranging from 1.4 s to 1.7 s, until a frequency ν2 is
reached, where the temperature is close to the transition temperature Tc.

At this point the experimental sequence becomes different for the two experiments
reported in this thesis, as shown in Fig. 2.10.

For the EoS measurements, where a large, partially condensed cloud at equilibrium
is required, the magnetic trap is further decompressed, with a decrease of the current in
the coils to 50 A and a modification of the bias field to B0 ≃ 1 G, corresponding to a
bottom frequency νEOS

b = 0.70 MHz. This decompression decreases the magnetic gradient
in the trap, making it easier to implement the PTAI imaging described in Sec. 2.9, used
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for the reconstruction of the in situ density profile. The evaporation frequency is then
further decreased, as shown in Fig. 2.10, by means of a third slow exponential evaporation
ramp (of duration 3 s and time-constant 1 s) to further cool down the system and increase
the condensate fraction. After the end of the evaporation, before proceeding with the
measurements, the cloud is kept in the magnetic trap for 2 s, in order to ensure full
re-equilibration.

For the study of the out-of-equilibrium dynamics, instead, the magnetic trap is kept in
the intermediate confinement configuration at 100 A, since the higher density favors two-
body collisional processes, making the timescales for the condensate formation process
shorter. The bias field is in this case set at B0 = 1.53 G to keep the bottom frequency
at νb = 1.076 MHz for the whole evaporation. In this case, the second ramp ends at a
frequency ν2 = 1.33 MHz, corresponding to a trap depth of about kB × 12 µK. At this
point, the gas temperature is T ≃ 1.3Tc. To study the effect of different cooling rates
on the out-of-equilibrium process of condensate formation, the evaporation frequency is
ramped down linearly from νi ≡ ν2 to a final frequency νf ≡ ν3, at a rate q = dν/dt.
The critical temperature Tc for the onset of condensation is crossed during this ramp, as
further explained in Chapter 4.

During the final stage, in which the atomic cloud is kept in the magnetic trap for a
certain waiting time to reach its equilibrium condition, one should stop removing atoms
via the RF evaporation. This can be done either by setting the amplitude of the RF field
generated by the dedicated DDS to zero, or by keeping the RF on, but at a frequency
much higher than νf . This technique is known as RF-shielding [108] and is used in the
experiments of Chapter 4 to keep the total number of atoms constant in time after the end
of the linear evaporation ramp, allowing for the study of an, as much as possible, isolated
system. In particular, it is desirable to avoid collisions with high energy atoms of the
background gas, which would cause heating and removal of atoms from the BEC through
three-body collisions. For this aim, the RF frequency is set to νshield = νf + 400 kHz,
creating a resonance surface that is spatially far away from the BEC. This way, high
energy atoms, moving towards the center, cross this surface and are transferred to an
untrapped state, instead of hitting and heating the central cold cloud.

Depending on the specific program, the evaporation has a total duration between 30
and 50 s, making this stage, together with the DS-MOT loading stage, one of the longest
parts of the experimental sequence. To this regard, the study of the out-of-equilibrium
processes in the formation of the BEC was motivated also by the necessity of better un-
derstanding the physics occurring during the evaporation, with the final aim of developing
more efficient evaporation strategies, capable of producing equilibrium condensates with
a high number of atoms in a shorter time.

2.6.4 Typical preliminary experimental routines

“Warming up” the experiment Before taking measurements, we proceed with what
we call warm-up of the experiment. Since the temperature of the magnetic trap coils
influences the trap parameters and the cooling efficiency, we need to wait for it to reach a
steady state. This process, for our water-cooled coils, takes about half an hour, in which
we monitor the temperature of the coils while running continuously the same experiment,
where an equilibrium cloud just above Tc is produced in the final magnetic trap. The
cloud is imaged in TOF and the number of atoms and temperature are monitored (see
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Sec. 2.8). We start with a series of measurements only when these two quantities have
stabilized.

Trap bottom scan Another important preliminary measurement is the calibration
of the trap bottom, corresponding to the lowest frequency νb at which atoms are still
removed from the trap. As explained before, this frequency depends on the bias magnetic
field B0 and changes due to the fluctuations of the environmental magnetic fields. Such
fluctuations can be caused, for instance, by a different position of magnetic objects in the
vicinity of the experiment and by the activities in other laboratories. By making a scan
of the current in the bias compensation coils, we find the condition that compensates the
variation of the external field, keeping the total bias field - and thus the trap bottom
frequency - constant. This provides us with an absolute frequency reference, allowing for
comparisons between measurements performed on different days.

In case the trap bottom frequency is particularly critical, as for the measurements
reported in Chap. 4, we periodically repeat this scan, interleaving it to the measurement
shots, to monitor the eventual variation of νb and, if needed, change the compensating
magnetic field to keep it constant. This scan also serves as a check to monitor the variation
of external fields during the experiment, which can be critical in the case one performs
experiments coupling different internal states with microwave fields of low Rabi frequency.

Given the long stabilization time needed for the experiment to reach a steady working
condition, we usually let the experiment run continuously when taking measurements,
without pausing it after the single experimental run.

2.7 Imaging

This Section deals with the techniques and the experimental setup used to probe the
properties of the atomic clouds. This is done in our experiment, like in many others, by
imaging the atoms on a ccd camera, using resonant absorption imaging (RAI) techniques
[28, 109, 110, 111]. A laser beam resonant with an atomic transition propagates through
the atomic cloud, which absorbs a fraction of the light, dependent on the density of the
cloud along the beam path. The shadow of the cloud is then recorded on the sensor of
a camera, providing information about the optical-density (OD) of the cloud, which is
determined by the density integrated along the line of sight.

The imaging procedure is described in detail in Sec. 2.7.4, while here we first focus on
the needed optical system.

2.7.1 Optical design of the imaging systems

Different imaging systems in the experiment

To maximize the information that can be obtained by imaging the atomic cloud, a proper
system of optics is needed. The typical dimensions of a trapped BEC in our experiment
are of the order of a few hundred µm, while those of a cold thermal cloud of the order
of millimeters. The dimensions of the sensor of the ccd cameras we use [Allied Vision
Stingray F-201 [112]] are 1624 × 1234 pixel, with a pixel-size of 4.5 µm, corresponding to
an area of approx. 7.3 × 5.5 mm. Different needs of magnification thus arise, depending
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on the stage of the experiment at which the atomic cloud is imaged, and whether it is
imaged in situ or after a time-of-flight expansion.

Figure 2.11: Two-lens imaging system. f1 and f ′
1 are the front and back focal points of the first lens, used

as objective, and f2, f
′
2 of the second. O is the axial object positions and O’ the axial image position.

To obtain the desired magnification and an in-focus image of the atomic cloud on the
ccd, a common solution is provided by an optical system made of two lenses, as shown
in Fig. 2.11. Considering the general case in which the thin lens approximation does not
necessarily hold, a front and a back focal length characterize each lens : for the two lenses
of figure 2.11 they are f1(f

′
1) and f2(f

′
2), respectively. In case the two lenses are placed

at a distance d12 = f ′
1 + f2 equal to the sum of their focal lengths, an object, placed at a

distance d1 = f1 from the first lens, will produce a focused image at a distance d2 = f ′
2

from the second lens, with a nominal magnification determined by

M0 = f ′
2/f1. (2.9)

In the thin-lens appproximation, this is simply equal to the ratio of the two focal lengths.
More in general, considering an object at a distance d1 = f1 + s from the first lens, with
the two lenses placed at a distance d12 = f ′

1 + f2 + q, a focused image of the object is
obtained at a distance d2 = f ′

2 + s′ from the second lens, with q, s, s′ being related by:

q =
f1f

′
1

s
+

f2f
′
2

s′
, (2.10)

In this case the magnification is given by [113]:

M = M0
1

1 − sq
f1f ′

1

= M0

(
1 − s′q

f2f ′
2

)
(2.11)

In practice, we work with imaging systems in a nearly afocal configuration, where the
distance of the first lens from the atoms is approximately equal to its front focal length
f1, and the distance between the two lenses is equal to the sum of the two focal lengths
f ′
1 + f2. The position of the camera, roughly at f ′

2, is then adjusted to bring the image
of the atoms at focus on the camera plane, eventually correcting also the position of the
second lens, if needed. We therefore design the imaging systems considering the nominal
magnification, and afterwards measure it experimentally.

Besides the magnification, the design of the imaging system has to take into account
also the resolution, which determines the smallest size of spatial features that can be seen
in the atomic cloud. In particular, the optical quality and numerical aperture of the first
lens, used as objective, are particularly critical.
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Figure 2.12: Scheme of the new imaging optical setup for probing the atomic distribution along the three
orthogonal directions: (a) z imaging system, viewed from the side. (b) x and y imaging systems, viewed
from above. The probe paths are shown as solid red lines, while the MOT beam path, sharing part of
the optics, is represented in dashed yellow. Optics with a black arrow get removed after the MOT stage,
leving space for the probe beams to propagate. Focal lengths of lenses are reported in mm. Waveplates,
used to obtain the desired light polarizations, are not shown in the drawing for visual clarity.
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For an ideal, aberration-free, lens of focal length f and aperture diameter D, the
resolution is determined by the diffraction limit, which can be expressed by the radius of
the Airy disk [114, 115]:

RAiry = 1.22
λf

D
. (2.12)

RAiry corresponds to the minimum spot-size to which a light beam can be focused using
that lens. It is defined as the position of the first local minimum of the diffraction intensity
profile, from the center of the optical axis, as shown in Fig. 2.13, where a comparison with
the width of a gaussian profile is provided.
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Figure 2.13: Intensity profile of an Airy function (blue solid line), normalized to the peak intensity I0.
The Airy disc radius RAiry is defined as the position of the first zero of the intensity profile. The dashed
black line is a fit to a gaussian function, of which the width σ ≃ 0.345RAiry and RRMS = 2σ are reported.

The above is valid for an ideal lens. Optical aberrations can, however, further degrade
the resolution, making the actual minimum spot size larger. In particular, the imaging
system that was previously used to image the atoms along y, which was used also for
preliminary measurements of the in situ density distribution to extract the equation of
state [85], had a rather poor resolution, mainly caused by optical aberrations due to the
presence of the thick, oblique window of the science chamber (see Fig. 2.4b) on the imaging
optical path and by the geometrical aberrations of the achromatic doublet lens that was
used as objective [Thorlabs AC254-075-A, f=75 mm]. Figure 2.14 shows the simulated
spot diagram for this setup. The asymmetric shape is caused by the tilted glass window.
Other imaging systems with not much better resolution were present in the other direc-
tions.

We redesigned the imaging systems of our experimental apparatus to let the probe
beams for all three directions propagate perpendicularly through the science chamber win-
dows, after passing through the atomic cloud (see Fig. 2.12). Three imaging systems are
present, one for each direction, with different magnifications determined by the different
experimental needs. The three corresponding ccd cameras are called cam x1, cam y1 and
cam z1 3.

Regarding the resolution, according to Eq. 2.12, for equal lens diameter, the Airy disk
size is lower for decreasing values of the focal length. We therefore designed the imaging

3Additional cameras, indicated with a number 2, have also been implemented in the experiment, allow-
ing for different magnifications along the three imaging directions, but are not used in the measurements
reported in this thesis, and therefore omitted from the optical scheme
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systems in order to minimize the distance of the objective from the atoms, compatibly with
the existing setup and in particular with the coil mounts that surround the cell. Since the
geometry of the magnetic trap yields an ellipsoidal shape for the trapped atomic cloud,
with cylindrical symmetry around the x axis, the y and z direction are fundamentally
equivalent, from a geometrical point-of-view, for probing the atomic distribution along
the elongated direction.

The z direction offers, between the two, the best optical access and the advantage that
the upper and lower surfaces of the cell are parallel. Given the presence of the mechanical
mounts holding the coils, we can place 1 inch optics at a minimum distance of about
20 mm with respect to the glass surface, both above and below the cell, corresponding
to a distance of ∼ 37.5 mm from the center of the atomic cloud in situ. We therefore
place the imaging system for probing the atoms in situ along the vertical direction, with
the probe propagating from top to bottom, perpendicular to the cell, and being finally
collected by cam z1, after its propagation through the atoms and the optical system that is
described more in detail below. This imaging system has been used to obtain the density
profile for the EOS measurement.

To image the atoms after a TOF expansion, we use a probe beam propagating along
the horizontal y direction, since this allows to keep the atomic cloud at focus even when
it falls along z in case gravity is not compensated by a magnetic levitation gradient.
To reduce the aberrations, we let the probe beam enter through the oblique window,
and exit perpendicularly to the other side of the glass cell, where the imaging system
is placed, with the light being collected by cam y1. Since this system is generally used
to image the atoms after a TOF expansion or to monitor the MOT, it is designed with
a low magnification M ∼ 1. This imaging system has been used for the study of the
out-of-equilibrium processes and to extract the temperature for the EOS measurement.

Another camera cam x1 is placed along the x direction, to image the radial distribution
of the cloud. It was so-far used mainly for alignment purposes. The presence of the coil
mounts does not allow to place optics closer than ∼ 40 mm from the glass window in this
direction, limiting the achievable resolution.

The objectives close to the cell have a 1 inch diameter (25.4 mm) due to geometrical
constraints. The mirrors placed afterwards all have a diameter of 2 inch, chosen in order
to avoid further degradation of the resolution due to smaller apertures. The design of
the objective of the imaging setup is thus the most critical part in order to have a good
resolution.

Design of a composite objective

The main challenge regarding the objective of the imaging system, is that optical aber-
rations strongly limit the resolution for standard commercially available lenses of short
focal length, resulting in a non-diffraction limited performance. For this reason, many
ultracold atom experiments are equipped with expensive microscope objectives, with res-
olutions below ∼ 1 µm. Given also the lack of space to accomodate large optical systems,
we decided to build a simple and cost-efficient objective based on the combination of two
standard, commercially available, lenses. The first is an achromatic doublet with a short
focal length, close to the desired effective value. A plano-convex lens of long focal length
is then added at a proper distance, with the aim of correcting for most optical aberrations
of the first lens. A similar design, with the combination of four lenses, is presented in Ref.
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[116]. Later, another study appeared demonstrating an excellent resolution for a different
two-lens objective [117], built with ad-hoc manufactured lenses.

To design and simulate our objective, I used the program OSLO-EDU [118], which
allows for directly importing lens data from several commercial catalogues and simulating
the effect of a series of optical surfaces and apertures on the propagation of a laser beam4.
The problem was treated from the reverse point-of-view, considering a collimated input
laser beam and minimizing the dimensions of the spot to which the beam can be focused
by the optical system. The degrees of freedom in this optimization were the focal lengths
of the two lenses composing the objective and their relative distance. They were changed
in an iterative way, looking for the combinations that minimized the geometrical RMS size
of the spot diagram in the focal point. This RMS size is computed by OSLO considering
the input beam as composed of a tunable number of uniformly distributed light rays, for
each of which the propagation through the optical system is evaluated. In the focal plane,
the squared distance with respect to the optical axis (on which the optics are centered)
is calculated for each ray and the average over all rays is then taken to obtain the RMS
size. As an input beam, a collimated gaussian beam with a 5 mm waist was chosen, with
an input aperture diameter of 25 mm, slightly smaller than the optics nominal aperture of
1 inch. Up to 200 light rays were considered to increase the accuracy of the simulations.
Also the presence of the 5 mm thick quartz window, with the inner surface at 12.5 mm from
the desired focal plane, was taken into account in the simulations. Due to mechanical
constraints, that do not allow for placing optics closer than ∼ 20 mm from the cell’s
external surface, the minimum effective focal length that can be used for the objective is
∼ 50 mm.

Simulations were performed comparing different combinations of lenses, placed at vari-
able distance, for identical input conditions. Figure 2.14 provides a comparison between
(a) the old setup used for imaging along y, through the tilted cell window, (b) a single
f = 50 mm achromatic doublet and (c) the composite objective that we decided to imple-
ment for imaging along z. For each setup, from top to bottom, the figure shows: a set of
20 incoming rays propagating through the optical setup; the geometrical spot diagram,
composed by the intercepts of 200 incoming rays like the above with the focal plane; the
3D point-spread-function (PSF), computed by means of a Fast Fourier Transform (FFT);
a cut of the PSF through the global maximum, along the two axis in the focal plane. The
focal plane was obtained as the plane perpendicular to the optical axis on which the RMS
spot size is minimized.
The optical performance of the setup can be qualitatively evaluated comparing the value
of the geometrical RMS spot size RRMS with the diffraction limit expressed by the Airy
disc radius RAiry of an ideal system, with the same effective focal length and input illu-
mination conditions. If the lens-system has a performance close to the diffraction limit,
RRMS ≤ RAiry and most of the ray intercepts in the spot diagram fall within the Airy disc
radius, represented by a solid black circle in the spot diagrams of Fig. 2.14. If, instead,
a large fraction of the ray intercepts falls outside the Airy disc, it means that optical
aberrations are not negligible, determining an effective spot size larger than the ideal one.
The values of RRMS and RAiry are reported on the left of each spot diagram. Another
quantity that gives a measure of the quality of the actual optical system, in comparison

4The EDU version of OSLO puts a limitation of 10 on the maximum number of optical surfaces that
can be simulated simultaneously, which was exactly enough for the system composed of the two-lens
objective and the quartz cell.
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1stlens (achromatic) 2nd lens (spheric) dlenses dfocus EFL NA RAiry (µm) Strehl ratio used for
f = 60 f = 300 8.9 45.4 51.6 0.24 1.6 0.69 z imaging
f = 75 f = 400 1 58.2 63.6 0.21 1.7 0.76 DMD
f = 75 f = 300 3.2 56.9 60.9 0.21 1.6 0.73 BEC2
f = 100 f = 400 8.5 78.1 81.9 0.15 2.4 0.85 y imaging
f = 100 f = 300 3 73.3 76.1 0.16 2.2 0.80 x imaging

Table 2.1: Simulated combinations of (near) diffraction limited two-lens objectives. Distances are in mm
if not specified. All lenses, from Thorlabs catalogue, have a diameter of 25.4 mm and a slightly smaller
clear aperture when mounted. The first lens, an achromatic doublet, is the closest to the atoms, as in
Fig. 2.15. The other lens is a plano-convex spheric lens. The distance between the two lenses dlenses and
the front focal distance dfocus (corresponding to the optimal distance to the atoms) are defined from the
central point of the closest external optical surface of each lens. The center of the atomic cloud is at
∼ 12.5mm from the internal surface of the 5mm thick quartz window of the cell. The optimum positions
of both lenses have been adjusted in an iterative way, in order to minimize the simulated RMS spot size
to which the input beam is focused. Since the objective is definitely not a thin lens, the distance of its
closest surface from the atoms is much smaller than the EFL.

to the ideal diffraction-limited one, is the Strehl ratio, defined as the ratio between the
PSF peak intensity of the actual system and the peak intensity for the corresponding
diffraction-limited system. Values of the Strehl ratio > 0.5 indicate that most wavefront
aberrations are corrected [119]. The Strehl ratio is reported on the right of each PSF for
the three optical systems we are comparing.

In Fig. 2.14 (a) we observe that if the light propagates through the oblique cell window,
the spot diagram becomes asymmetric, with an extension much larger than the Airy disc
size. The corresponding PSF also has an asymmetric profile, with a rather low Strehl
ratio. The optical performance improves when the light propagates perpendicularly to
the quartz window, as shown in (b) and (c). A single achromatic doublet with a focal
length of f = 50 mm (b) still performs worse than the diffraction limit, as can be noticed
from the dimensions of the spot diagram and from the quite low Strehl ratio, mainly due
to the fact that a relatively high fraction of the total energy ends up in the secondary
maxima of the PSF. A composite objective with similar effective focal length f = 51.6 mm
is shown in (c), composed by a 60 mm achromatic doublet [Thorlabs AC254-060-A] and
a 300 mm plano-convex spherical lens [Thorlabs LA1484-A], placed at a relative distance
of 8.9 mm (measured between the centers of the two closest surfaces). In this case the
optical performance is close to the diffraction limit, with the simulated RMS spot size
(RRMS ≃ 1.6 µm) approximately equal to the Airy disk size, and with a Strehl ratio
of ∼ 0.7, meaning that the actual minimum spot size will be slightly larger, but still
of the same order as the Airy disc radius. The actual resolution has been measured
experimentally (see below).

This composite lens-system has been selected as objective for the z imaging system
and also as last lens for the setup that will be used to project, on the atoms, light patterns
created with the DMD (see Sec. 2.7.2).

Also other pairs of lenses (see Table 2.1) that I simulated yield good results, and
have been chosen as objectives for the other imaging systems and for the DMD setup, as
well as for the imaging system in the neighbouring laboratory (BEC2), hosting a similar
experiment [120, 121].

I performed analogous simulations also for the lens used to focus the image of the
atoms on the camera (2nd lens in the scheme of Fig. 2.11), finding that achromatic lenses
with focal length f2 ≥ 300 and a 2 inch diameter aperture are all good choices, since
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Figure 2.14: OSLO simulation of different optical systems: (a) the previous optical system used for
imaging along y, through the oblique surface of the cell window (tilted rectangle in the top panel), (b)
a 50mm achromatic doublet [Thorlabs AC254-050-A], considering an imaging path perpendicular to the
cell window (c) the final objective used for the z imaging, composed by a 60mm achromatic doublet and
a 300mm plano-convex lens, with the light propagating again perpendicularly to the cell window. From
top to bottom the panels show, for each lens: (top) propagation of 20 (out of a total of 200) geometrical
light rays propagating through the system, (second row) spot diagram obtained from the intercepts of the
200 input rays with the focal plane, with the geometrical RMS size and Airy disc radius (in mm) reported
on the left, (third row) three-dimensional PSF, with the Strehl ratio (corresponding to the relative peak
amplitude) reported on the right, (bottom) 2D cut of the PSF through its global maximum, along the
two coordinate axis in the focal plane. All distances are in mm.

optical aberrations are almost negligible and the simulated RMS spot size is well below
the diffraction limit. The minimum spot size is thus given directly by the Airy disk radius,
which is ∼ 4.2 mm in the case of the f = 300 mm lens. The second lens does therefore
not limit the resolution further, since in the image plane a higher limit to the minimum
size of resolvable spatial features is determined by the camera pixel-size of 4.5 µm5.

I tested the various combinations of lenses on a separate optical table, as shown in
Fig. 2.15. The two lenses that compose the objective are placed at the simulated relative
distance in a cylindrical optics-holding tube [Thorlabs SM1L10]. Cage systems [Thorlabs
[122]] are used, aiding the optical alignment and improving the mechanical stability of
the setup. As a test object, I used a microscope-calibration plate, shown in Fig. 2.15 (a),
with a ruler with sharp-edged ticks distanced by 100 µm one from the other. The camera
is the same Stingray camera used in the main setup and a second lens, analogous to that

5This is a limit to the dimensions of the smallest features that can be distinguished in the image. For
the magnification of the z imaging system (M ∼ 8), such dimensions would correspond to a minimum
size at the atoms of ∼ 0.55 µm, much below the resolution of the objective.
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d)

a)

b) c)

Figure 2.15: (a) Scheme of the optical setup to test the resolution of the imaging system. (b) Photograph
of part of the test setup. (c) Magnification measurement. We find the average distance on the camera
between the negative peaks of intensity, corresponding to the lines of the ruler on the microscope plate
(the distance marked by the arrows is 177 pixel, corresponding to 780 µm). Knowing that the ticks are
at a distance of 100 µm, we find the magnification of the tested imaging system to be M ∼ 7.8 µm. (d)
Resolution measurement. From the measurement of the average width, in the image, of the edges of the
sharp lines on the target, we estimate the actual Airy disc size.

of the z imaging system (400 mm 2 inch Thorlabs achromatic doublet), is used to focus
the image of the target on the camera. The composite objective and this second lens are
placed in a nearly afocal configuration, as shown in Fig. 2.15 (a). The presence of the
ruler on the test target allows for a simultaneous measurement of both the magnification
and the resolution of the system. The setup was tested using both green laser light at
λ = 532 nm and the yellow probe light at λ = 589 nm.

For the magnification measurement, we compared the relative distance between the
intensity dips corresponding to the lines of the ruler, measured on the image from the
camera, with the actual distance of 100 µm between the lines, as shown in Fig. 2.15 (c).
We measured a magnification of M = 7.8 which corresponds very well to the nominal
magnification of the equivalent thin-lens system M0 = f2/f1 = 7.79, calculated using as
value for f1 the simulated effective focal length (EFL) of the two-lens objective.

The finite resolution is responsible for smearing out the sharp edge of each side of
the ruler ticks, as shown in Fig. 2.15 (d). The resulting profile was fitted to a knife-edge
distribution [116]. The fitted width corresponds to an Airy disk size of Rmeas

Airy = 2.3(1) µm,
not much above the simulated value and considerably smaller than the resolution limit of
the previous setup.

2.7.2 Optical system for a Digital Micromirror Device

Although not-directly related with the measurements presented in this thesis, in this
section I would like to briefly describe the optical setup that I built with the aim of using
a Digital Micromirror Device (DMD) in our experimental apparatus. This device will
be used in future experiments to produce tunable optical potentials by projecting the
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corresponding light-patterns on the atomic cloud. The DMD optical setup was tested
and built at the same time of the imaging system and includes similar composite lens
systems.

Working principle of a DMD

A DMD is an electronically controlled optical device composed by a 2D array of mi-
cromirrors, each of which can take two different angular positions, corresponding to an
“on” or “off” state, respectively, as shown in Fig. 2.16. The DMD implemented in our
experimental apparatus is the Texas Instruments DLP7000 [DLP 0.7 XGA 2xLVDS Type
A DMD [123]], which is equipped with a 1024× 768 array of aluminum micrometer-sized
square mirrors, each of which has a 13.68 µm edge and can be tilted by ±12◦, to obtain
the “on” and “off” positions. The integrated control board, connected to a computer,
can be loaded with sequences of binary images, where the status of each mirror can be
controlled independently, providing the possibility of designing any arbitrary binary pat-
tern and of changing the patterns dynamically acting on the timing of the sequence of
images. Illuminating the DMD with a laser beam of large area, it is in this way possible
to create arbitrary light patterns corresponding to the designed binary patterns, as shown
in Fig. 2.16 (b).

Using far detuned laser light, it is this way possible to produce tailored optical dipole
potentials [84, 124, 125, 126, 127], that can be changed dynamically by sending to the
DMD a sequence of different patterns with the desired timing, opening the way to a wide
range of possibilities of controlling and manipulating the ultracold atoms. For instance
one can create a repulsive barrier moving through the BEC at a controllable speed, or
induce local changes in the potential confining the atoms.

Design of Optical system

A sketch of the optical setup that I designed to use the DMD in our experiment is
shown in Fig. 2.18 a), while b) shows a photograph of the experimental table after the
implementation of the DMD and of the new imaging systems.

The optical setup for the DMD was developed keeping in mind a few requirements.
It was designed planning to use laser light with two different wavelengths, blue-detuned
532 nm and near resonance 589 nm light, coming from two different fibers [green and yellow
in Fig. 2.18 (b)], and propagating along two different initial paths, which are combined
on a first polarizing beam-splitter. Part of the yellow light is directly sent to the atoms
without passing through the DMD, and is used as z probe beam.
The input light beam that illuminates the DMD should be collimated and have a suffi-
ciently large area to uniformly illuminate the whole DMD surface. After collimating the
laser beam at the fiber output, the lenses L1 and L2 in Fig. 2.18 (a) are used to further
increase the spot-size to illuminate the whole DMD with sufficient intensity. Since a
gaussian laser beam is used, when designing the DMD patterns, we will need to take into
account the reduced illumination near the corners.
The mirrors of the DMD tilt by θtilt = ±12◦ around their diagonal: in order to let the
reflected light propagate in the same horizontal plane of the incident light, the device is
mounted with a 45◦ rotation angle with respect to the optical table surface, as shown in
Fig. 2.16.
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a) b)

c) d)

Figure 2.16: (a) Working principle of a DMD (adapted from Ref. [123]). (b) Photograph of our DMD,
which is mounted with a 45◦ tilt with respect to the horizontal plane of the optical table. (c) The DMD
is here projecting a pattern that forms the word BEC. The “off” mirrors, which are the majority in this
case, project the ”negative” pattern. Also the specular reflection from the glass window that protects the
DMD surface is visible. Multiple copies of the projected pattern can be seen on the sides, corresponding
to different diffraction orders. (d) The different diffraction orders become spatially well separated after
propagating for a long enough optical path. The unwanted order are blocked placing an iris in the position
of the piece of paper in this photograph, after lens R1 of Fig. 2.18.

One has, moreover, to consider that the DMD is not a single reflecting surface, but
an array of micro-meter size mirrors, which determines a behavior similar to that of a
2D reflective diffraction grating, with the incoming light being reflected in a multitude
of diffraction orders, as shown in Fig. 2.16 (c). This can be a disadvantage for our appli-
cations, since it distributes the optical power over many directions of propagation, while
only one is used on the atoms. However, one can maximize the output power on a sin-
gle selected diffraction order by finding the angle θi of the incident beam that satisfies
the blazing condition. This occurs when the peak of the intensity envelope due to the
single-mirror diffraction, at an angle θr = −θi + 2θtilt with respect to the normal to the
DMD surface (where θtilt = 12◦ is the tilt of the mirrors in the position considered as
“on”), overlaps with the angular position θm of a single diffraction order m. The latter
satisfies the grating equation sin θi + sin θm = mλ/d (where λ is the laser wavelength, m
the diffraction order of interest, d = 13.68

√
2µm the size of the micromirrors along the

diagonal). The blazing condition for a given order m can then analytically be expressed
as a function of the angle of incidence [128]:

sin(θi) + sin(−θi + 2θtilt) −
mλ

d
= 0. (2.13)

The values of θin satisying this condition for various diffraction orders m correspond to
the intercepts with y = 0 of the curves in Fig. 2.17, which have been computed for the
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Figure 2.17: Blazing condition for a few diffraction orders m for the two different wavelengths: λ1 =
532 nm and λ2 = 589 nm.

two wavelengths of interest (λ1 = 532 nm, λ2 = 589 nm). For an input angle θi− ∼ 36.6◦,
corresponding to an output angle ∼ 12.6◦, a near-blazing condition can be found for both
wavelengths, exploiting the m = 10, 9 diffraction orders, respectively (solid dark gray and
dashed light gray curves).

In practice, after placing the optics at roughly the calculated angle, the blazing condition
is experimentally found, for each wavelength, by tuning the incidence angle to maximize
the power in the desired diffraction direction. We were able to reach a ∼ 70% diffraction
efficiency on a single diffraction order for each wavelength. The other orders are blocked
after spatially separating them by means of a long enough propagation. Also the reflection
of the protective glass window of the DMD and the light corresponding to the “off”-state
mirrors (see Fig. 2.16) are properly blocked.

To control the angle and position of the input beam, two mirrors are placed right
before the DMD on the optical path. Two additional mirrors on the laser path, placed
before the beam splitter that combines the two wavelengths, allow for small corrections
to the incidence angle to achieve the blazing condition for both wavelengths. Two further
mirrors after the DMD control the direction of propagation of the selected order output
beam, sending it through the center of the lenses in the following part of the setup.

Another point to consider in designing the optical system for the DMD is the necessity
of demagnification: we want to image the DMD light pattern onto the atomic cloud, which
has typical dimensions of the order of 300 µm in case of a trapped BEC, while the length
of the horizontal diagonal of the DMD (tilted by 45◦) is 17.5 mm. We intend to fully
illuminate the whole BEC with the DMD light pattern, and at the same time make sure
that the projected dimensions of a single DMD pixel on the atoms plane are much smaller
than the optical resolution, in order to design smooth potentials, avoiding effects due to the
discrete nature of the pixels. To achieve this, a relay optical system is present, composed
of two telescopes approximately in afocal configuration, made by the lenses R1, R2 and
R3, R4, whose specifications are reported in the caption of Fig. 2.18. The second telescope
is nominally identical to the one used for imaging the atoms along the z direction, with
a demagnification of ∼ 7.78. Together with the first system, having a demagnification of
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∼ 4.68, this provides a total demagnification of Mrelay ≃ 36.4, allowing to project light
patterns on the whole BEC, without an excessive waste of optical power. Irises placed in
the Fourier planes of the two telescopes can be used, if needed, to place a cutoff on the
maximum spatial wavevectors of the light patterns, washing out sharp features to create
smoother patterns [129, 130]. When all the irises are opened at maximum aperture,
the resolution of the relay optical system corresponds to an Airy disc radius of ∼ 2 µm,
equivalent to ∼ 5 DMD pixels, and is mainly determined by the diffraction limit of the two
compound lenses of short-focal length. The resolution was first tested using the same test
setup used for the imaging system, with the microscope calibration target as reference,
as well as by finding the minimum detectable size of few-pixel patterns projected by the
DMD.

2.7.3 Implementation in the experiment

a)
b)

at
o

m
s

R1R2

Im1

R4

Im2

R3

L1 L2

lenses polarizing beam splittermirror fiber

Upper breadboard

Figure 2.18: Optical setup for the DMD: scheme (a) and photograph of its implementation (b). The lenses
L1 (f = 30mm) and L2 (f = 150mm) are used to obtain a collimated input beam with large area, to
illuminate the whole DMD, the lenses R1 (f = 300mm 2 inch achromatic doublet), R2 (EFL = 63.5mm, 1
inch, compound lens, see Tab. 2.1), R3 (f = 400mm, 2 inch, achromatic doublet), R4 (EFL = 51.7mm, 1
inch, compound lens, see Tab. 2.1) form the relay system used for imaging the demagnified DMD pattern
onto the atoms. Im1 (EFL = 51.7mm) and Im2 (f = 400mm) are the two lenses of the z imaging setup.
The system has been tested both with a λ = 589 nm laser beam of repumper or probe light (yellow), that
can also be sent directly on the atoms without using the DMD, and with a λ = 532 nm beam (green),
that illuminates the DMD and will be used to create repulsive optical potentials. A photodiode is used
to monitor the optical power of the laser beams and could be integrated in a feedback electronic circuit
for stabilization.

After the preliminary tests on a secondary optical table, the new imaging systems and
the DMD setup were implemented in the main apparatus as shown in Fig. 2.18. This
involved a partial rebuilding of the experimental setup, aimed at placing the imaging
objectives as close as possible to the atoms and the cameras on the desired side of the
science chamber, which required a substantial modification of the DS-MOT and GM
optical setup. Since the MOT beams are used in a different stage of the experiment, much
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a) b) c)

Figure 2.19: Alignment of the z optical path. (a) Photograph of the DS-MOT. The narrow, almost
vertical, fluorescent line that crosses the DS MOT is the repumper beam under alignment. (b) Absorption
image of a thermal cloud, taken with cam y1, using the light of the beam that we are aligning to repump
the atoms. This image corresponds to the photograph in (a). (c) Absorption image taken after the
alignment of the vertical beam.

before the imaging of the BEC, the mirrors that retroreflect those beams are mounted
on translational stages, equipped with an electrical servo-motor. This way the mirrors
are removed after the 3DMOT phase, letting the imaging beams propagate through the
science cell. We choose to move the MOT mirrors, rather than the imaging ones, to
avoid perturbations of the probe beam paths due to vibrations, which would be highly
detrimental for the imaging, while the MOT is less sensitive, given its long loading time.

Most of the optics of the DMD setup are placed, together with the optics for the z
probe beam, on a secondary breadboard located above the cell, as shown in Fig. 2.18. The
light is then guided along a vertical optical path, used both for the z imaging and for
projecting the DMD light patterns on the atoms. The alignment of this optical path has
been quite challenging, because of the many mechanical elements located in the vicinity
of the cell, in particular below, reducing the access and visibility.

The z probe path was aligned first. To ensure a vertical propagation of the beam
through the atomic cloud, initially, instead of the probe beam, we used a narrow beam
of repumper light, turned on during the loading of a DS-MOT, as shown in Fig. 2.19.
This allowed us to visualize the direction of the optical path directly by eye, observing
the fluorescence of the MOT (a), as well as by imaging a thermal atomic cloud using
the horizontal cam y1 camera, repumping a line of atoms with the beam under alignment
(b-c). We then replaced the repumper light with probe light, without further changing
the input path, and finely adjusted the alignment of the imaging optics placed below the
cell, to image the atoms on the cam z1 camera, which was finally brought at focus on the
atoms plane (see Sec. 2.7.6). Cage systems are used to enhance the mechanical stability
and facilitate the alignment procedures.

The optical path of the DMD light was then aligned onto the atoms by making it
overlap with the previously aligned vertical probe path, used as a reference. Fine align-
ment and focusing was then further performed by imaging the DMD pattern on the same
cam z1 camera used to image the atoms. This allowed for a second characterization of the
demagnification and resolution properties of the DMD optical setup in its final alignment
conditions. Finally, a preliminary effect of repulsive potentials created by means of DMD
patterns with 532 nm light was observed on an atomic cloud.
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Future perspectives for the DMD The DMD was not used in the experiments that
are further described in the remaining part of this thesis. Its implementation, however,
opens the way to innumerable possibilities of manipulating the atoms by means of optical
potentials that can be designed at will and changed with precise timing. For instance,
repulsive potentials could be used to generate topological defects in an equilibrium BEC
in a well controlled way. This could pave the way, for example, to the investigation of the
formation of vortex rings induced by the motion of a repulsive linear barrier through the
superfluid and to the study of leapfrogging dynamics [131, 132, 133]. Another perspec-
tive regards the use of the DMD to locally modify the trapping potential for an atomic
cloud that is rapidly cooled across the transition, extending the investigation of the out-
of-equilibrium dynamics during the BEC order parameter formation, that is treated in
Chapter 4. Providing additional degrees of control on the system, the DMD could for
instance allow for shortcuts to reach more efficiently the final equilibrium condition.

2.7.4 Absorption Imaging procedure

To image the atomic distribution, one of the standard techniques used in ultracold atom
experiments is resonant absorption imaging (RAI) [28]. In this Section I first introduce
the working principle of this technique, referring to its implementation in our experiment.
Afterwards, the procedures used for calibration and focusing are explained. For further
details, see Refs. [85, 5, 28, 110, 111].

Let us consider a probe beam of intensity I propagating along the z direction through
the atomic cloud, of density n(x, y, z). The decay of intensity of the laser beam, due to
atomic absorption, is well described by the Lambert-Beer law:

dI

dz
= −ℏωRn, (2.14)

where R is the scattering rate between the light and the atoms. Approximating the atoms
as two-level systems, and considering π polarized light, R can be written as:

R =
Γ

2

I/(αIsat)

1 + I
αIsat

+
(
2∆
Γ

)2 , (2.15)

where Isat = ℏω3
atΓ/(12πc2) is the saturation intensity for a closed two-level transition, Γ

the natural linewidth of the excited atomic state, ∆ = ω − ωat the detuning of the laser
(angular) frequency ω = 2πν with respect to the atomic transition frequency ωat and α
is a corrective coefficient depending on the magnetic field where the atoms are imaged.

Replacing this expression of the scattering rate in Eq. 2.14, we get:

dI

dz
= −n

σ0

α
Isat

I/Isat

1 + I/Isat
α

+
(
2∆
Γ

)2 , (2.16)

where σ0 = 3λ2/(2π) is the resonant value of the absorption cross-section.
For resonant light (∆ = 0), integrating 2.16 along the direction of imaging z, we obtain

the following expression for the optical density (OD):

OD = α ln

(
Iin
Iout

)
+

Iin − Iout
Isat

, (2.17)
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where Iin = I(z = −∞) and Iout = I(z = ∞) are the input and output intensity of the
light, i.e. the intensities of the probe beam before and after the propagation through the
atomic cloud, respectively.

The OD is related to the column density n1, which is given by the atomic density
integrated along the line of sight:

n1(x, y) =

∫ ∞

−∞
n(x, y, z)dz = OD(x, y)/σ0. (2.18)

In practice, to measure the light intensity we record the counts C(i, j) on the pixels (xi, yj)
of the sensor of a camera. These counts, for a probe-pulse duration τp, are given by:

C(i, j) = ηGT

∫ τp

0

I(xi, yi, t)

ℏω

(
Lpix

M

)2

dt = χsat
I(xi, yj)

Isat
τp, (2.19)

where the intensity is assumed to be time-independent and χsat collects all the factors
characterizing the imaging system and the sensor, such as the detector efficiency η and
gain G, the optics transmittance T , the pixel size Lpix and the magnification M of the
imaging system:

χsat = ηGT

(
Lpix

M

)2
Isat
ℏω

. (2.20)

To measure the input and output light intensities Iin and Iout, we collect three images, as
shown in Fig. 2.20. These images are:

• (a) atoms picture: a picture of the atoms, illuminated by a pulse of probe light
of duration τprobe, resonant with the |F = 2⟩ → |F ′ = 3⟩ cycling transition. Before
the probe pulse, the atoms, initially in the |F = 1,mF = −1⟩ trapped ground state,
need to be transferred to F = 2 to become resonant with the probe frequency: in
our experiment this is done either by illuminating the sample for a short pulse-time
with an optical repumper beam, that transfers the atoms to the excited F ′ = 2 state
(orange arrow in Fig. 2.1), or by means of a pulse of microwave radiation, resonant
with the |F = 1⟩ → |F = 2⟩ transition, which can be used to outcouple and image
a small fraction of atoms (see Section 2.9).
For each pixel (i, j), the atoms image yields the counts C(i, j)out, which depend on
the time-integral of the output intensity profile I(x, y)out, over the duration of the
probe pulse.

• (b) probe picture: a picture taken in the same probe illumination conditions as the
previous, but without atoms, since no repumping to states resonant with the probe
light takes place. The corresponding pixel counts C(i, j)in give a measure of the
time- integral of the input intensity Iin.

• (c) background picture: a picture taken without atoms nor probe light. The pixel
counts C(i, j)bg depend on the background illumination conditions, determined by
external stray light and dark-counts of the sensor.

For each pixel xi, yj of the camera, the following relation holds between the atomic
OD and the camera counts:

OD = α ln

(
Cin − Cbg

Cout − Cbg

)
+

Cin − Cout

χsatτp
, (2.21)

where the probe-pulse duration τp is directly controlled in each experimental run and the
imaging parameters α and χsat are found using the calibration methods described in the
following paragraph.
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a) atoms b) probe c) background

Figure 2.20: The three images used to obtain the optical density of the atomic cloud, here imaged in situ
using the cam z1 camera.

2.7.5 Calibration of imaging system

Determination of χsat and α
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Figure 2.21: Calibration of α for the cam z1 camera, used for the measurements of the equation of state
reported in [5] and in Chapter 3. (a) Following the approach of [110] we determine α from the slope of a
linear fit of Nlin Vs Nlog, measured scanning the probe light intensity. We obtain α1 = 3.2(2). (b) Using
the method described in [111], the value of α is determined by minimizing the variation of the measured
atom number N for a scan of s0 = Iin/Isat. This yields α2 = 3.10(2). The two values are compatible,
with an average α = 3.15(12).

To get a quantitative measurement of the column density, one needs to calibrate the
imaging system first, finding the experimental values of χsat and α. We measure χsat

by scanning the probe light intensity and comparing the total pixel counts of the probe
images with the measurement of a calibrated power meter.
To calibrate α, two different, although equivalent, procedures can be followed [110, 111], as
described in [5]. Dividing Eq. 2.17 by σ0 to obtain the column density n1 via Eq. 2.18, and
then integrating over the region containing the atomic sample, we obtain the measured
total number of atoms N , which we can write as:

N = αNlog + Nlin, (2.22)

where Nlog and Nlin are the two contributions in the absorption signal coming from the
linear and logarithmic term, respectively. Each of the two quantities depends on s0 =
Iin/Isat, but their weighted sum is the number of atoms N , and must thus be independent
of the probe light intensity. Scanning Iin, we measure Nlin and Nlog for a dilute atomic
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sample. Following the method of [110] we can determine α from the slope of a linear fit of
Nlin against Nlog, as shown in Fig. 2.21a). Alternatively, for the same scan of Iin, we can
compute N(s0) for several values of α, as shown in Fig. 2.21 (b), finding the value that
minimizes the variation of N , as in [111]. We tested both calibration methods, finding
compatible results. In Fig. 2.21 we report those for the calibration of the cam z1 camera.

Determination of the magnification

To convert the length scales dpix, measured in pixels on the camera, into actual distances
in the plane of the atoms dat, we need to find the magnification M of the imaging system,
since dat = dpix

Lpix

M
, where Lpix is the camera pixel size (Lpix = 4.5 µm/pixel for our

Stingray cameras).
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Figure 2.22: The magnification of the cam y1 camera is extracted from the free fall of the |1, 0⟩ atoms.

For the horizontal cameras, we measure the magnification exploiting the free fall of
the atoms. By means of a pulse of the same RF field used for the evaporation, a fraction
of atoms is extracted from the trapped |F = 1,mF = −1⟩ sample, and transferred to
the |1, 0⟩ and |1,+1⟩ states (see Fig. 2.22). The cloud of |1, 0⟩ atoms is not sensitive to
the magnetic field of the trap, to first order in the Zeeman effect, and thus fall under
the effect of the gravitational acceleration g, while the |1,+1⟩ atoms are antitrapped
and fall thus with a higher acceleration, determined also by the vertical magnetic field
gradient. By means of the cam y1 camera, we record the z position of the center of
mass of the free-falling cloud of |1, 0⟩ atoms for various times of flight ttof (blue dots
in the right panel of Fig. 2.22). We fit the measured displacement with a second order
polynomial z[pixel] = at2tof + bttof + c (solid line). Comparing the fitted coefficient a with
the coefficient g/2 expected for the free fall, and considering the pixel size of the camera,
we find a magnification Mcam y1 = aLpix/(g/2) = 1.020(6).
In a similar way, we calibrate also the other horizontal cameras.

To measure the magnification for the vertical imaging system cam z1, we apply, instead,
a horizontal force through a pulse of a magnetic gradient along x, and measure the subse-
quent in-trap dipole oscillations with both cam y1 and cam z1, capturing the displacement
∆x as a function of time, as shown in Fig. 2.23. Comparing the oscillation amplitude A for
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Figure 2.23: Comparison of dipole oscillations along x measured with cam y1 (above) and cam z1
(below). Notice the different scale of the vertical axis. Knowing the magnification of cam y1, we obtain
that of cam z1.

the two cameras (obtained from a sinusoidal fit, solid line), we obtain the magnification
of cam z1, knowing that of cam y1: Mcam z1 = Mcam y1Acam z1/Acam y1 = 7.97(17).

The same data yield also a measurement of the axial trapping frequency ωx/2π =
8.83(2) Hz.

2.7.6 Focusing the imaging system

A precise focusing of the imaging system is important because an out-of-focus imaging
system yields blurred pictures, spoiling the resolution. Moreover, when the camera is not
at focus, non-resonant atoms in |F = 1⟩ can provide a non-negligible signal, that could
lead to a wrong estimation of the column density profile. This signal can be estimated as
follows [134], [85], [28], [135].

In conditions of weak probe intensity (I/Isat ≪ 1) or far detuned light (δ = 2∆/Γ ≫ 1)
the atomic response to light can be considered linear and the atomic cloud treated as an
optical medium with a density-dependent refractive index:

nref = 1 +
σ0λn

4π

(
i

1 + δ2
− δ

1 + δ2

)
, (2.23)

where the imaginary part, maximum at resonance, is responsible for the absorption (see
Sec. 2.7.4). The real part, instead, describes the accumulation of a phase factor eiϕ in the
probe beam that propagates through the atomic cloud, with ϕ proportional to the column
density n1 ≡

∫
ndz along the line of sight:

ϕ =
2π

λ

∫
Re(nref − 1)dz = −σ0

2

δ

1 + δ2

∫
ndz, (2.24)

where the “thin lens” approximation has been used, considering light to enter and exit
at the same (x, y) coordinate [28]. Assuming a flat intensity I0 for the incoming probe
beam, after a propagation over a distance D, the phase-shifted light produces an intensity
profile:

I(D) = I0

(
1 − λD

2π
∇2ϕ

)
, (2.25)
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which is proportional to the second derivative of the column density. This signal can be
used for a far-detuned non-destructive imaging technique known as shadowgraph imaging
[135]. Here D is the distance between the plane of the atoms and the object plane that
is at focus on the camera. The diffractive signal of Eq. 2.25 is cancelled if D = 0, which
occurs when the atoms are imaged perfectly at focus on the camera. We exploit this
fact to focus the camera with sub-millimeter precision, by moving it with a micrometric
translational stage while recording the shadowgraph signal. To obtain this signal, for each

100 µm

a) b) c)𝑧 = 𝑧𝑓 𝑧 = 𝑧𝑓 + 10 mm𝑧 = 𝑧𝑓 − 15 mm

Figure 2.24: Shadowgraph signal of the F = 1 atoms (top) and OD for the same shot, measured during
the focusing procedure of cam z1, where the position z of the camera along the optical axis is changed.
The camera is at focus (z = zf ) when the off-resonant signal is minimized, as shown in (b).

position in which we move the camera, we produce a condensed sample of |1,−1⟩ atoms
in the magnetic trap. The sample is then imaged taking 4 pictures, instead of only the
usual 3 images needed to reconstruct the OD. The first picture is taken illuminating the
atoms with the probe beam, but without any repumper, this way capturing the dispersive
signal of the F = 1 atoms, which is non-zero if the camera is not perfectly at focus. The
other three pictures are used to measure the OD of the cloud, which is useful to monitor
that the atomic signal is still present6. The third picture, in particular, is taken after
releasing the atoms from the trap to obtain the probe profile.

Figure 2.24, taken while focusing the z imaging system, shows how the first picture
(top) appears in case: (a) the camera is too far from the atoms, (b) the imaging system
is correctly at focus and (c) the camera is too close to the atoms. The bottom pictures
show the corresponding OD.

Moving the camera, we minimize the shadowgraph signal, which can be quantified
by integrating our F = 1 images over the rows, after subtracting the probe image, and
fitting the resulting profile to a function given by the second derivative of a Gaussian
A(x2 − 1)e−x2/2σ2

[85].

This procedure has been used to precisely focus all our cameras. We could not com-
pletely remove the dispersive signal for cam x1, given the long dimensions of the condensate
in the x direction, which do not allow to get the whole sample at focus.

We also scan the probe frequency to make sure that it is at resonance with the
|F = 2⟩ → |F ′ = 3⟩ transition.

6Otherwise a zero shadowgraph signal could simply be caused by a zero atomic density, in case of
failure in some previous stage of the experimental shot.
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2.8 Time of flight imaging

The typical dimensions of a BEC in our trap are of the order of a few hundred µm, with
typical central densities n0 ≥ 1020 m−3, corresponding to optical densities ≥ 102. This
impedes a correct estimation of the column density profile of the trapped cloud, when
the standard resonant absorption imaging technique, described before, is used. When
the optical density along the probe path is too high, indeed, saturation occurs: after
the absorption in the atomic medium, the remaining intensity Iout becomes comparable
with the background noise, yielding an inaccurate estimation of the column density of the
cloud.
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Figure 2.25: Optical density of a partially condensed cloud, imaged after a time of flight tTOF = 50ms.
The profiles on the left and below correspond to a central slice along z and x, respectively. The Bose
and Thomas-Fermi fits are shown. The black dot-dashed ellipse marks the extension of the BEC, given
by the fitted Thomas-Fermi radii, while the red dashed line indicates the dimensions σx,z of the thermal
cloud.

A frequently used solution to measure the number of atoms in the system, is to let
the cloud expand by releasing it from the trap and image it after a time of flight (TOF),
when its density has become low enough.
In order to perform TOF imaging, we switch off the magnetic trap and we either let the
atoms fall under the action of gravity, or levitate them by means of a vertical magnetic
gradient.
An example of a TOF image of a partially condensed cloud, taken after an expansion of
tTOF = 50 ms, is shown in Fig. 2.25.
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To extract the temperature and number of atoms from the measured optical density
of the cloud, we perform a fit to a 2D bimodal function, given by the sum of an integrated
Thomas-Fermi distribution to account for the condensed part and a Bose function for the
non-condensed thermal tails:

fbim(x, z) = fTF(x, z) + fBose(x, z) + offset, (2.26)

where the Bose function is:

fBose(x, z) =
Ath

ζ2
g2

{
exp

[
−(x− x0)

2

2s2x
− (z − z0)

2

2s2z

]}
, (2.27)

while the Thomas-Fermi function is:

fTF(x, z) = max

0, ATF

[
1 −

(
x− x0

rx

)2

−
(
z − z0
rz

)2
]3/2

. (2.28)

In the above expressions:

• (x0, z0) are the coordinates of the position of the center of the cloud in the image
(assuming a common center for the BEC and thermal cloud);

• sx,z and rx,z are the widths of the thermal distribution and the Thomas-Fermi
radii along the x, z directions, respectively, measured in pixels on the image. The
corresponding dimensions of the atomic distribution are obtained multiplying by
the camera pixel size and dividing by the magnification: σx,z = sx,zLpix/Mcam,
Rx,z = rx,zLpix/Mcam;

• Ath and ATF are the amplitudes of the two distributions;
• ζν is the Riemann function;
• g2(u) = −

∫ u

0
log (1 − t)/t dt is the polylogarithm of order 2 (also known as Spence’s

function).

From the amplitude Ath and widths σx, σz of the Bose function, the number of thermal
atoms Nth can be obtained:

Nth = 2π
ζ3
ζ2
Ath

σxσy

σ0

, (2.29)

where σ0 is the resonant scattering cross-section.
The number of atoms N0 in the BEC can be extracted from the Thomas-Fermi fit:

N0 = 1.25ATF
RxRy

σ0

(2.30)

The total number of atoms in the cloud is then given by N = Nth + N0.
During the TOF expansion, the density distribution of the cloud changes shape, due
to the conversion of the energy of the trapped sample into kinetic energy. For a BEC,
in the Thomas-Fermi limit of large number of atoms, the initial kinetic energy can be
neglected and the in situ energy is mainly determined by the mean-field interactions. In
this case the expansion is well described by the Castin-Dum equations [136], relating the
Thomas-Fermi radii after the TOF expansion to the in-situ radii Rρ(0), Rx(0):

Rρ(tTOF) = Rρ(0)
√

1 + (ωρtTOF)2 (2.31)

Rx(tTOF) = Rx(0)

{
1 + λ2

[
(ωρtTOF) arctan(ωρtTOF) − ln

√
1 + (ωρtTOF)2

]}
(2.32)
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where λ = ωρ/ωx is the aspect ratio of the elongated trap. The expansion is much faster in
the tightly confined radial directions than in the axial direction, which has the well-known
consequence that the BEC inverts its aspect ratio during the expansion, as can be seen
in Fig. 2.25, where the BEC is more elongated in the z direction, while in situ this is a
direction of tight confinement.

The expansion of the thermal cloud is instead governed by the kinetic energy of the
thermal atoms, determined by the temperature T . The width of the thermal cloud after
tTOF, assuming a purely ballistic expansion with isotropic velocity v0 =

√
kBT/m, can be

written as: σ2(tTOF) = σ2(0) + t2TOFkBT/m, which becomes linear in T for long enough
tTOF. A measurement of the temperature can thus be performed by taking images of the
thermal cloud at different expansion times, and performing then a linear fit of σ2(tTOF)
as a function of t2TOF.

The temperature can also be extracted from the widths σx and σz of the thermal
distribution of a single image, taken after an expansion for long enough time of flight
tTOF ≫ 1/ωx,ρ, to ensure the nearly-ballistic asymptotic expansion regime to be reached.
Following [137], we extract an effective temperature for each direction:

Ti =
mω2

i σ
2
i

(1 + ω2
i t

2
TOF)kB

, for i = x, z. (2.33)

For a thermal cloud that is released from an elongated trap, hydrodynamic collisions can
create a velocity imbalance between the axial and the radial directions, proportional to
the equilibrium collisional rate γcoll, making the expansion weakly anisotropic. For weak
deviations from the ballistic expansion (γcoll ≲ ωρ), kinetic energy conservation suggests
that the mean square expansion velocities take the form ⟨v2ρ⟩/v20 ∼ 1 + bγcoll/(2ωρ) and
⟨v2x⟩/v20 ∼ 1 − bγcoll/ωρ, where b depends in general on ωx, ωρ and tTOF. The temperature
of the cloud can then be estimated according to the following expression, independent of
the coefficient b:

T =
2ω2

xt
2
TOFTz + (1 + ω2

xt
2
TOF)Tx

1 + 3ω2
xt

2
TOF

, (2.34)

where hydrodynamic corrections are cancelled out to first order in γcoll/ωρ (see note 26 in
Ref.[137]). This formula has been used for the measurement of the temperature for the
Equation of State of the Bose gas, in Chapter 3.

To make the measurement of the temperature more reliable, one can limit the fitting
region for the Bose fit to the outer tails of the thermal distribution, where the effect of
interactions is minimized and the expansion is closer to the ideal case. If the condition
tTOF ≫ 1/ωi(i = ρ, x), required for a nearly ballistic asymptotic expansion, is well sat-
isfied only for the radial direction, but not for the weakly confined axial one, a reliable
measurement of the temperature can be obtained from Eq. 2.33, taking only the radial
expansion of the cloud into account, as shown in Ref. [138]. This was done in the case of
the measurements of Chapter 4.

The fact that via a long enough TOF expansion the in situ momentum distribution
is mapped into the TOF density distribution, can be exploited to measure the in situ
spatial phase fluctuations
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2.9 In situ imaging:

Partial Transfer Absorption Imaging and HDR

reconstruction

Although TOF imaging allows for the measurement of the number of atoms and of the
temperature of the ultracold gas, a direct measurement of the density profile of the trapped
gas can only be obtained by in situ imaging.

In this section I describe the partial transfer imaging (PTAI) and reconstruction tech-
nique that we developed [4] to obtain accurate in situ images of the optical density
distribution of a partially condensed trapped Bose gas, which was fundamental for the
measurement of the Equation of State [5].

The standard resonant absorption imaging (RAI) technique described in 2.7.4, if ap-
plied to a BEC in situ, does not yield accurate results, because of the high optical density
at the center of the cloud n0 ≥ 1020m3, corresponding to typical maximum OD values
≥ 100, much above the saturation limit of standard RAI . The consequence is that the
probe beam gets completely absorbed in the highest OD regions, yielding a signal com-
parable with the camera noise, with the result of producing a distorted OD distribution
as outcome of the measurement. In contrast, in the dilute thermal tails of the partially
condensed cloud, the OD is several orders of magnitude smaller. A high dynamic-range
imaging is therefore needed, to capture both high and low ODs with a good signal to
noise ratio (SNR).
The problem of imaging dense samples can be tackled by using saturated absorption and
high-intensity imaging [111, 139], but this still gives access only to an OD-range that
spans at most one order of magnitude, instead of the full desired range.
Moreover, RAI is fully destructive, since the interaction with the resonant probe photons
imparts large kinetic energy to the atoms, with the consequence that only a single image
of the atomic distribution can be taken per experimental cycle, which has a typical dura-
tion of up to one minute in our case. In addition, one has to rely on the reproducibility
of the experimental conditions, without being able to observe the same sample multiple
times.
Alternative imaging methods, such as phase-contrast [140, 141], Faraday [142] and diffrac-
tion contrast imaging [143], have the advantage of being non-destructive, but still suffer
from the same dynamic-range limitations as RAI.

The imaging technique we implemented is based on partial transfer absorption imaging
(PTAI), a method first demonstrated by [144, 145], which allows for minimally destructive
measurements.

The principle at the basis of PTAI is to transfer a fraction of atoms from the sample to
an auxiliary state, making sure that the outcoupled atoms maintain the original density
distribution, apart from a constant multiplicative factor determined by the extraction
ratio. The extracted atoms are then imaged using light that is resonant with a cycling
transition from the auxiliary state to an electronically excited state. The imaging light
is instead far-off-resonance for the remaining atoms in the original sample, which are
left practically undisturbed. This makes this method minimally destructive and enables
multiple measurements on the same sample, allowing, for instance, to study dynamical
processes in a reliable and time-efficient way, since only one (or a few) shots are needed to
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fully characterize the dynamics of interest. We exploited this feature to rapidly charac-
terize physical parameters of our system, such as the trapping frequencies of the potential
that confines the atoms or the Rabi frequency of the outcoupling microwave field.

Changing the fraction of extracted atoms, PTAI allows to image arbitrarily high ODs
with a high signal to noise ratio. We exploited this feature to optimally capture the full
OD range of the trapped atomic cloud, taking several images of the same system in a single
experimental shot, at increasing extraction ratios. These images are then combined, upon
proper recentering and rescaling, to obtain an accurate image of the full distribution in
a way analogous to High Dynamic Range (HDR) photography [146, 147, 148], where the
final image is the result of the combination of several frames taken at different exposure
conditions.
We used this reconstruction technique to accurately measure the column density profile
of the trapped Bose gas to obtain the Equation of State, which is the subject of Chapter 3.

2.9.1 Experimental implementation

In our experiment, to implement PTAI, we use a signal generator (Marconi Instru-
ments 2024 [92]) to generate a microwave field resonant with the |F = 1,mF = −1⟩ →
|F ′ = 2,m′

F = −2⟩ transition, in presence of the IP trap magnetic field. The radiation is
amplified by means of a 100 W amplifier [Minicircuits ZHL-100W-272+ [93]] and deliv-
ered to the atoms by means of a hook antenna [see Fig. 2.26 (a)], with predominantly σ−

polarization, which favors the chosen transition. The transferred atoms are then imaged
with probe light resonant with the |F = 2⟩ → |F ′ = 3⟩ cycling transition, as shown in
Fig. 2.26b).

The microwave field causes the system to undergo Rabi oscillations between the two
levels coupled by the radiation. The fraction of atoms transferred after a time τµw is:

P (τµw, δ) =
Ω2

Ω2 + δ2
sin

(τµw
2

√
Ω2 + δ2

)2

, (2.35)

where δ is the detuning of the microwave frequency from the atomic resonance. The
combination of the non-homogeneous magnetic field and gravity causes the detuning to
be spatially dependent:

δ(x, y, z) =
3m

2ℏ
(
ω2
xx

2 + ω2
yy

2 + ω2
z(z2 − 2zzsag)

)
(2.36)

where the origin of the coordinates is set at the center of the atomic cloud, m is the atomic
mass and zsag = g/ω2

z is the gravitational sag (Eq. 2.8), responsible of the displacement of
the center of mass of the cloud with respect to the minimum of the magnetic field. The
origin of the reference frame is set on the center of mass of the atomic cloud, where δ = 0.
The non-uniform detuning causes a local variation of the transferred fraction, potentially
introducing distortions in the measured optical density profile, as the outcoupled cloud
is not a rescaled copy of the original distribution. However, one can identify a regime of
parameters where the non-uniformity can be neglected.
For Ωτµw ≪ 1 the transferred fraction of Eq. 2.35 becomes ∼ Ω2τ 2µw/2, independent of the
microwave frequency. For a given product Ωτµw, a large Rabi frequency Ω ≫ δ reduces
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Figure 2.26: (a) Experimental apparatus used for the PTAI imaging. The coils generating the magnetic
field are shown in grey. The microwave field is delivered to the atoms (blue ellipse) by a hook antenna
placed on the side of the glass cell. (b) The atoms are initially in the |1,−1⟩ state. A tunable fraction
is transferred to the |2,−2⟩ state by means of a microwave pulse of Rabi frequency Ω and then imaged
in F ′ = 3 using resonant probe light (yellow arrow). On the side, a spectroscopy of the three allowed
microwave transitions between |1,−1⟩ and the F = 2 manifold are shown, obtained by scanning the
microwave frequency, keeping the same polarization. Image adapted from [4]

the distortions caused by the inhomogeneous detuning thanks to the power-broadening of
the resonance. More details about the effect of the inhomogeneous transfer are presented
in Sec. 2.9.6.
For a given pulsetime, we scan the microwave frequency to find the maximum transfer,
which occurs when the field is resonant with the center of the cloud, where the density is
highest. This agrees with our choice of setting δ = 0 at the center of the atomic cloud.

2.9.2 Multi- and single-shot measurement of the Rabi frequency
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Figure 2.27: Multishot measurement of the Rabi frequency of the microwave field. The fraction of
extracted atoms is measured scanning the duration of the microwave pulse τµw. The frequency is then
extracted from a fit (solid line), taking the nonuniform detuning into account (Eq. 2.40).
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In order to quantify the extracted fraction of atoms in Eq. 2.35, the Rabi frequency Ω
of the microwave field needs to be known. The standard way to measure Ω is by following
the Rabi flopping of the populations of the ground- and excited- state. This is done by
repeating the experiment several times, changing each time the duration of the microwave
pulse τµw. The populations of the two states are measured using a Stern-Gerlach [149]
technique, counting the fraction of atoms in the two clouds after spatially separating
them. This is done by letting the transferred atoms fall under the action of gravity and of
the magnetic field, in which they are antitrapped, for a time of flight tTOF ∼ 10 ms, after
which they are imaged with the cam y1 camera. The remaining atoms are then released
from the trap and also imaged with the same camera after TOF using an optical repumper
to bring them at resonance with the probe. The duration of this last TOF expansion is
chosen to be long enough to get a sufficiently dilute cloud, where the number of atoms
can be counted accurately. The Rabi frequency is then extracted from the period of the
oscillations of the relative populations of the two states (see Fig. 2.27). The nonuniform
extraction causes a damping of the oscillations due to loss of coherence, which becomes
evident for long pulse times, as further explained in Sec. 2.9.6.

The non-destructiveness of PTAI provides an alternative way to measure the Rabi

Figure 2.28: (a) Partial-transfer images of the same atomic cloud, taken consecutively using always the
same microwave pulse duration. (b) The number of atoms in each frame, with respect to the initial
number, decays as a geometric series with the number of extractions. The solid line represents a fit to
the function pk = (1− q)k. Image from [4].

frequency in a single shot. Fig. 2.28 shows the result of a sequence of microwave pulses,
each of which extracts the same small fraction of atoms from the trapped sample. The
extracted atoms are then imaged after a 4 ms TOF using a camera along y. For each
frame the number of extracted atoms is recorded. Applying microwave pulses of duration
τµw = 1.5 ms, we observe that we can repeat the process up to 20 times before emptying
the BEC: the number of atoms indeed decreases by a constant fraction q ≃ [sin Ωτµw/2]2

at each pulse. If Nk is the number of extracted atoms in frame k, after k + 1 pulses, the
relative number of extracted atoms pk = Nk/N0 follows a geometric series pk = (1 − q)k.
From a fit of pk(k) to this function (solid line in Fig. 2.28(b)), we can extract q and thus
Ω. For the data shown in Fig. 2.28 we find a value Ω/(2π) = 58.8(5) kHz, in agreement
with the results of multishot measurements performed in the same conditions. This
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method, besides being faster, has also the advantage of being less sensitive to the spatially
dependent detuning. Indeed, for the same intensity of the microwave field, much shorter
pulses can be used in this single-shot method, suppressing the effect of the local detuning
thanks to Fourier spectral broadening.

2.9.3 Single shot measurement of the trapping frequencies

Figure 2.29: (a) Sequence of PTAI images of the same cloud that allow the measurement in a single
experimental shot of the trapping frequency along x. (b) From a sinusoidal fit to the center-of-mass
oscillation in the three directions, we extract the trapping frequencies. For the x direction, the data
points of the single shot shown in (a) are sufficient to extrapolate the trapping frequency, while for the
y and z directions, the oscillation is sampled by interleaving the data from a few shots with a delay of
2ms in the starting time.

The non-destructiveness of the PTAI technique can be exploited in a similar way
to measure also other dynamical quantities in a single experimental shot, such as, for
instance, the trapping frequencies of the potential confining the atoms.

After briefly displacing the BEC in the trapping potential by means of a magnetic field
kick, we sample the oscillation of the center of mass by repeatedly extracting to |2,−2⟩
a small fraction of atoms from the sample every 16 ms, as described in the previous
paragraph. In this case, the extracted atoms are imaged using two cameras, along the y
and z axis, after a TOF of 4 ms, recording the position of the center of mass in time.

The sampling rate is set by the maximum frame-rate of the camera for the selected
height of each image, and is sufficient to measure the axial trapping frequency, but not
the radial ones. To obtain also these trapping frequencies, given the reproducibility of
the initial conditions, we repeated the experiment a few times, shifting the start time of
the sampling by 2 ms each time, and then interleaving the data points to get an effective
sampling rate of 500 ms. Fig. 2.29 (a) shows such a sequence of images taken along the y
direction during a single experimental run.
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The trapping frequencies are obtained by performing a sinusoidal fit to the center
of mass oscillation, as shown in Fig. 2.29(b). We find ωx/2π = 8.83(2) Hz, ωy/2π =
101.5(7) Hz, ωz/2π = 101.2(1) Hz, in agreement with the results of multishot measure-
ments, demonstrating the validity of this method, which is particularly suitable for pre-
liminary measurements, given its time-efficiency. From the same measurement one can
also obtain again the Rabi frequency with the method described above.

2.9.4 Measurement of the microwave pulse duration
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Figure 2.30: Trace (blue) and envelope (orange) of the pick-up signal of the microwave pulse, for τµw =
0.8 µs (top) and τµw = 2.5 µs (bottom). The black dashed line represents the equivalent rectangular pulse
having the same area as the pulse envelope.

In order to correctly estimate the extracted fraction of atoms, we need to accurately
know also the duration of the microwave pulse. A non-rectangular pulse-shape can be
indeed a source of systematic errors. Using the pick-up antenna mentioned in Sec. 2.4,
we directly measure the pulse shape during the experiment. Figure 2.30 shows the trace
captured by means of an oscilloscope of the pick-up signal for two different durations of
the microwave pulse. Fitting the pulse envelope, we find its rise and fall time, of the order
of τ ∼ 20 ns, corresponding to a deviation from a perfect square pulse of the order of
τ/t ∼ 3% for the shortest pulses (τµw ≃ 0.8 µs). To eliminate this small systematic source
of error, we define the pulse width τµw as the width of the rectangle with the same area
as the pulse envelope, measured in each shot.

2.9.5 HDR reconstruction technique

In this paragraph I explain the technique we developed to reconstruct the in situ optical
density profile of the trapped cloud, using multiple PTAI images of the same sample.
For these measurements, we produce partially condensed clouds, with a BEC fraction of
∼ 50%, to fully demonstrate the dynamical range of the method, and to find the optimum
parameters for the EOS measurements, which are performed in similar conditions.

We take a sequence of partial-transfer images of the same cloud, increasing each time
the duration of the microwave pulse and thus the effective optical density of the extracted
cloud, bringing different regions of the cloud into the optimum range of ODs for our
imaging parameters [110]. Short pulses, extracting only a few % of the atoms, allow to
accurately image the dense center of the BEC, as shown in the upper panel of Fig. 2.31
(a). The peak OD in the extracted cloud is ∼ 5, which is near the saturation limit for
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Figure 2.31: (a) Three partial-transfer images of the same sample, taken with the z camera, at different
extraction ratios (reported as % in the top right corner of each panel). Each image is rescaled by the
inverse of the extraction Pxy in the imaging plane. The nominal scaling factors 1/P0 are reported on the
right, next to each image. The dashed areas represent the cropped-out regions, where the OD > 4. (b)
HDR image obtained from the weighted mean of the frames in (a). The dotted ellipses correspond to
the boundaries of the cropped-out regions in each frame. (c) Profile of a central one-dimensional slice.
The black line represents the theoretical profile predicted by Hartree-Fock theory, which well agrees with
the experimental data. The OD in the reconstructed profile spans more than two orders of magnitude.
Figure adapted from [4].

our imaging conditions. This limit is defined as the value of optical density for which the
transmitted probe light becomes of the order of the noise level of the camera. For such
short pulses, the thermal tails of the extracted cloud are not visible. Longer pulses are
required to image also the tails with high enough SNR, as shown in the two lower panels
of Fig. 2.31 (a). In these conditions the central part of the cloud (dashed area) becomes
saturated.

The complete image of the atomic cloud is reconstructed combining the information
of the various frames in a way inspired by HDR photography. For each frame, we first
find the center of the cloud by means of a bimodal fit, then we shift the coordinate axes
in order to make the origin always coincide with the common cloud center. We crop away
the regions of the cloud that are above the saturation threshold ODth = 5. To avoid
the cropping to be biased by the camera noise, and to obtain a smooth edge, we select
as cropping region the largest convex hull of pixels where OD > ODth. No cropping is
performed on the image at the lowest extraction, since the pulse duration is chosen such
that even the densest regions of the cloud remain below the saturation threshold.

To reconstruct the original optical density, the various images are pieced together, after
rescaling each image by the inverse of the extraction fraction P0. To favor the frames with
higher SNR in the overlap region, each frame is weighted, in the reconstruction, by its
own SNR, where the signal is evaluated from the bimodal fit performed before rescaling,
and the noise level is the same in all images, being set by the photonic shot noise. Figure
2.31 (b) and (c) show, respectively, the reconstructed OD and a central one-dimensional
slice OD(x, y = 0). The good match in the overlap regions indicates that the rescaling
has been performed properly, with consistent scaling factors. In Fig. 2.31 (c) the OD has
been fitted to a Hartree-Fock profile (black solid line), to verify that the method yields
physically meaningful results. The shaded region around the data represents the errorbar
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(at one standard deviation), including the statistical noise due to the camera shot noise,
the systematic error due to the uncertainty in the Rabi frequency and the effect of the
spatial dependence of the detuning along the direction of integration z. Since the various
error sources are uncorrelated, we add them in quadrature.

2.9.6 Effect of the non-uniform detuning

As seen above, one of the error sources on the reconstructed OD is determined by the
local detuning of the microwave field. This effect can be reduced working at high Rabi
frequency Ω and using short pulses τµw. Fig. 2.32 shows, for different values of the Rabi
frequency Ω, the relative variation in the extraction fraction in the y = 0 plane (a)
and in the z = 0 plane (b) with respect to the zero-detuning value at the cloud center
P0 = P (τµw, δ = 0): ∆P/P0 = [P (τµw, δ(x, z))−P0]/P0, evaluated by combining Eqs.2.35
and 2.36. For each Rabi frequency, the pulsetime τµw has been chosen such to obtain a
nominal extraction of P0 = 0.2 in the center of the condensate. Grey ellipses indicate the
size of the BEC (Thomas-Fermi radius, inner solid ellipse) and of the thermal cloud (size
of the Bose distribution at 2.5 σ, outer dashed ellipse), of a typical atomic sample used
in the measurements of Chapter 3.
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Figure 2.32: Relative variation ∆P/P0 = [P (τµw, δ(x, z))−P0]/P0 of the extraction fraction in the y = 0
plane (a) and in the z = 0 plane (b), as a function of the spatial coordinates, for different values of Rabi
frequency Ω (indicated on the left) and a pulsetime τµw yielding a nominal extraction of P0 = 0.2 in the
center of the condensate. Grey ellipses mark the boundaries of the BEC (solid line) and of the thermal
cloud (dashed line). For the highest value of Ω, which has been used in the HDR reconstruction, contour
levels have been traced in white to more clearly show the quite small relative variation in the extraction
fraction. One can notice the z displacement of the center of the cloud with respect to the center of the
magnetic trap, due to the gravitational sag.

For the highest value of the Rabi frequency (Ω/2π = 60 kHz, upper panels), used for
the HDR reconstruction, the relative variation of the extraction in the xy plane (panel
b) is below 0.1% at the BEC boundaries and smaller than 5% in the thermal tails of the
cloud. This variation can actually be taken into account in the reconstruction, as done
in [4], where the OD of each pixel (x, y) of the various PTAI images is weighted by the
local extraction fraction Pxy = P (x, y) instead of the nominal value P0. However, for high
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enough Ω, this variation can be actually neglected, approximating Pxy with P0. Figure
2.32 highlights that this would not be a good approximation for much lower values of Ω.
For the same value of Ω/2π = 60 kHz, the variation ∆P/P0 in the xz plane is much more

Figure 2.33: (a) Map of the relative variation in the extraction ∆P/P0 in the xz plane, evaluated for
the parameters used in the HDR reconstruction. The three parts of the image, separated by the dashed
lines, correspond to the non-cropped regions of the three frames, in each of which a different pulsetime
τµw has been used. Notice that the scale of the colormap is different in the three sections in order to
highlight the great difference in the spatial variation of the extraction. (b) Relative error in the optical
density caused by the nonuniform extraction, calculated according to Eq. 2.37.

relevant for two reasons. The first reason is that in the region occupied by the atomic
cloud, the absolute value of the variation in the xz (y = 0) plane is much larger than
that in the xy plane, since the main contribution in Eq. 2.36 is given by the gravitational
sag term ∝ z. In the upper panel of Fig. 2.32 (a), we notice that for the Rabi frequency
used for the HDR reconstruction, there is a maximum relative variation of the extraction
of the order of 1% in the region occupied by the BEC, while for the thermal tails, the
top to bottom difference becomes larger than 20%. The other reason that makes this
variation more relevant is that the cloud is imaged along z, and thus the local variation of
the extraction modifies the OD of the imaged cloud in the direction of integration. This
means that the effect of the nonuniform detuning along the z direction cannot simply be
factored out considering a spatially dependent extraction factor, as in the xy plane. To
quantify the systematic error on the OD, we evaluate the integral:

∆OD =

∫
P (τµw, δ) − P0

P0

ndz, (2.37)

where n is the atomic density profile, obtained from the Hartree-Fock fit of the recon-
structed OD of Fig. 2.31. Figure 2.33(b) shows the relative error on the optical density
∆OD/OD along the x axis. Although the variation of the extraction is largest in the
thermal tails, the small density in these regions strongly reduces their contribution to the
total error in the OD, which remains below 1% in the region occupied by the condensate
and below 5% for the whole atomic distribution.
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Figure 2.33(a) highlights that for increasing microwave pulsetimes, the effect of the inho-
mogeneous transfer becomes more and more evident. If we measure the Rabi frequency
with the standard multishot technique, where the fraction of transferred atoms is mea-
sured as a function of the pulsetime (see Sec. 2.9.2), this effect needs to be taken into
account. Due to the local detuning, the transferred fraction of atoms has a damped os-
cillation.
The fraction of extracted atoms after a pulse of duration τµw can, indeed, be written as:

P̃ (τµw) =
N2

N1 + N2

=
1

N

∫
P [τµw, δ(r)]n(r)d3r (2.38)

where N1 is the number of atoms remaining in |F = 1⟩ and N2 the number of atoms
transferred to |F = 2⟩, with N = N1 + N2 the total number of atoms. To quantify the
effect of the inhomogeneous detuning, we approximate the density distribution n(r) with
a Gaussian and consider only the dominant term due to the gravitational sag in Eq. 2.367.
Integrating along x and y, we get:

P̃ (τµw) =
1√

2π∆0

∫
P (τµw, δ)e−δ2/2∆0dδ, (2.39)

where ∆0 is the range of detuning spanned by the atomic cloud, which for the Rabi
frequency used for the reconstruction is equal to ∆0/2π ≃ 20 kHz, for a BEC with a
Thomas-Fermi radius Rz ≃ 12 µm. The integral in Eq. 2.39 can be solved analytically,
yielding the function used in the fit of Fig. 2.27:

P̃ (τµw) =
1

2
√

1 + 2D2

(
1 − cos [T + arctan (b)/2]

(1 + b2)1/4

)
(2.40)

with D = ∆0/Ω, T = Ωτµw, b = TD2/(1 + 2D2). Without the effect of the local detuning
(i.e., if δ = 0 in the whole cloud), the oscillation would maintain constant amplitude,
following the function: P (τµw, δ = 0) = [sin τµwΩ/2]2. The damping of the oscillation
becomes evident for long pulsetimes and low values of Ω, as shown in Fig. 2.34.

Figure 2.34: Population of the F = 2 state as a function of the microwave pulsetime, for different values
of Ω. For long pulsetimes, the amplitude of the oscillation decreases because of the loss of coherence
caused by the local detuning.

7In this approximated calculation, we consider the detuning as uniform along the x and y directions,
which is justified by the fact that the relative variation of the extraction is much smaller along the x and
y directions than along z, as can be noticed from Fig. 2.32(a-b).
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2.9.7 Side effects: excitation of collective modes

The extraction process can excite collective modes in the BEC, potentially distorting
the density profile. The dipole mode just shifts the center of mass of the BEC, without
changing its shape: the BEC can be simply recentered without any problems of distortion
as long as the displacement is perpendicular to the imaging axis, while if it is along
the imaging direction, focusing errors might arise. However, also higher order modes are
naturally excited by multiple microwave extractions, such as the quadrupole mode. Figure
2.35 shows the variation of the Thomas-Fermi radius Rx, normalized by the value before
the first extraction, for different extraction fractions. We notice that the relative variation
of Rx becomes appreciable for extraction fractions above 5%. This effect gets hidden by

Figure 2.35: Quadrupole oscillation of the condensate caused by multiple extractions. The amplitude of
the oscillation increases with the extraction fraction, reported on the right of each plot.

arranging the sampling frequency to match the oscillation frequency, in a way that all
the subsequent images are consistent. Another option is to perform the extraction and
imaging process before any quadrupole oscillation can take place: indeed, if the sampling
frequency is much faster than the mode frequency, the shape of the BEC is essentially
frozen in all frames. Our cameras, however, have a limited frame rate: if the full sensor
area is acquired, there must be a minimum delay of 70 ms between the start of two
consecutive exposures [112]. In the above described HDR reconstruction, we take three
frames at different extraction fractions (∼ 3.5%,∼ 12.5%,∼ 44.8%). In this case, the
effect of the quadrupole mode excitation is minimized if we first take the frame at lowest
extraction fraction, which causes an almost negligible perturbation. The other two images
are taken 70 ms later, but with the two microwave (and probe) pulses only 600 µs apart (at
the end and at the beginning of the two exposures of the camera, respectively). Between
the two pulses, we remove the atoms that have been already imaged by illuminating them
with a 5 µs probe pulse along y, which pushes them away from the line of sight of the z
imaging. This sequence minimizes the effect of the quadrupole mode excitation on the
images.



76 CHAPTER 2. EXPERIMENTAL APPARATUS

2.9.8 Side effects: off-resonant scattering

The probe light is resonant with the F = 2 → F ′ = 3 transition, to image the atoms
that have been transferred to the F = 2 state. The remaining atoms in the F = 1 state,
however, interact off-resonantly with the probe light, with a detuning of 1.77 GHz. This
interaction can in principle cause a depletion of the atomic reservoir, leading to systematic
errors in the measurement of the number of atoms in the subsequent images. The imaging
intensity used in our experiment (I/Isat ≃ 4), anyway, leads to an off-resonant scattering
rate of the order of 103 s−1, making the losses negligible for probe pulses of a few µs
duration.

2.9.9 Conclusions & considerations on the PTAI+HDR method

In the Sections above I explained how we implemented a method based on PTAI and HDR
reconstruction to obtain the full optical density profile of a partially condensed cloud, with
a high dynamic range of ODs, from ∼ 10−1 to ∼ 102. The strengths and weaknesses of
performing multiple extractions on the same trapped cloud were investigated. Namely, we
found an efficient way to follow dynamical processes and measure characteristic quantities,
such as the trapping frequencies and the microwave Rabi frequency, in a single shot. We
found optimum parameters to reconstruct the column density profile using three images
of the same trapped sample. The final reconstructed profile is sufficiently smooth in the
overlap regions, and well agrees with a theoretical Hartree-Fock profile. The effect of
the local variation of the detuning, caused by the nonuniform magnetic field and by the
gravitational sag, was taken into account in the estimation of the extraction fraction and
the related error on the reconstructed OD was computed. This method was used, in
first instance, to reconstruct the column density for the EoS measurements. However,
the potential distortions in the profile caused by the excitation of quadrupole modes for
multiple extractions, together with the need of taking anyhow more experimental shots for
statistical reasons, made us change the final procedure. For the measurements reported in
Chapter 3, we still use the HDR reconstruction technique described above, but - profiting
from the equilibrium state of the system - the images are obtained by repeating the
experiment in identical conditions, taking only a single in situ PTAI image of each cloud,
at several variable extraction ratios yielding an optimum SNR in all regions of the sample.
Its high dynamic range makes our technique suitable for the imaging also of other dense
objects, such as, for instance, quantum droplets [150, 151, 152].



Chapter 3

Bose gas in equilibrium:
measurement of the equation of state

3.1 Introduction

In this chapter I present our results regarding the measurement of the equation of state
(EoS) of a 3D homogeneous weakly interacting Bose gas. An EoS is a relation between
three thermodynamic quantities, from which the full thermodynamic properties of the
system at equilibrium can be derived.

So far, experimental measurements on the EoS of Bose gases both in 2D [153, 154] and
in 3D [3, 155] have been obtained in the grand-canonical approach, where the pressure
of the uniform gas is expressed in terms of the chemical potential and the temperature.
This approach has enabled important observations, such as the identification, in a Bose
gas at zero temperature, of the Lee-Huang-Yang correction to the EoS, originating from
beyond-mean-field quantum fluctuations [156]. Our aim is to find the EoS directly in the
canonical framework, where the pressure p(v, T ) is expressed as a function of the specific
volume v = 1/n, at constant temperature T and fixed scattering length a.

In our experiment the atomic sample is confined in a nonuniform trapping potential.
Nevertheless we can use it to extract the thermodynamic behavior of uniform matter
by applying the local density approximation (LDA). As explained in Sec. 1.1.6, the LDA
establishes a connection between the local properties of the nonuniform system and the
bulk properties of the corresponding homogeneous system, assuming an effective local
chemical potential:

µ(x, y, z) = µ0 − Vext(x, y, z) (3.1)

where µ0 is the chemical potential in the center of the trap and Vext the non-uniform
trapping potential. Using the LDA, the non-uniformity of the system becomes for us an
advantage, rather than a problem. From the measurement of the column density, we ex-
tract the on-axis density profile n(x) = n(x, 0, 0). The variation of the density along the
x axis corresponds to a spatial variation of the reduced temperature T/Tc(x), at fixed T .
This enables us, in principle, to extract the full EoS from images of a single partially con-
densed cloud which can be considered as a continuous ensemble of homogeneous systems
at different reduced temperatures. We study the dependency of the chemical potential
on the reduced temperature, observing a non-monotonic behavior, with the presence of
a peak around the critical point. Such a peak was already observed in other superfluid
systems, such as Fermi gases [157], and in the thermodynamic behavior of liquid Helium

77



78 CHAPTER 3. EQUATION OF STATE

[158], suggesting that it could be a general signature that characterizes transitions from
the normal to superfluid phase. We provide a first observation of the presence of this peak
in the chemical potential also for the weakly interacting Bose gas, where this behavior is
predicted by HF theory.

Finally we derive also the grand-canonical equation of state, finding good agreement
with previous results [3].

The role of interactions in the thermodynamics of the Bose gas clearly emerges in this
study: it becomes evident, for instance, observing the major differences between the EoS
of our weakly interacting Bose gas and the model EoS of an ideal, non-interacting Bose
gas. We also observe the predicted interaction-induced shift of the critical point.

The achievement of these results was possible thanks to technical improvements in
the setup and in the experimental procedures. The measurement of the in situ density of
the 3D condensed gas, which spans over three orders of magnitude, was performed using
the partial-transfer absorption imaging technique (PTAI) and the HDR reconstruction
method described in Sec. 2.9 and in our paper [4]

The upgrade of the imaging system, with the achievement of a higher resolution was
highly beneficial for this measurement, since it enabled an accurate study of the thermo-
dynamic behavior even in the critical region, which corresponds to a rather narrow spatial
range of the density profile, and it allowed a clear observation of the predicted peak in
the chemical potential.

3.2 Experimental procedure

Through RF evaporation in the magnetic trap, a partially condensed cloud is produced,
as described in Chapter 2. Lowering the current in the magnetic trap coils to 50 A in
the final stages of the evaporation yields a quite shallow, harmonic confining potential,
with trapping frequencies of ωx/2π = 8.83(2) Hz and ωr/2π = 100.8(7) Hz, which were
measured both with the single-shot technique reported in Sec. 2.9.3 and with the stan-
dard multi-shot method. At the end of the RF evaporation ramp we hold the atoms in
the shallow magnetic trap, without evaporating further, and wait for 2 s to ensure that
thermodynamic equilibrium has been reached in the atomic cloud well before the time
at which we image it. Acting on the evaporation ramp parameters, we tune the final
condensate fraction and temperature. In order to optimize the signal-to-noise ratio, we
choose to work with a condensate fraction of about 50%.

To image the cloud in situ, we apply the PTAI technique described in Chapter 2, which
yields a good signal-to-noise ratio in the full range of ODs spanned by the atomic cloud.

We use a microwave field of Rabi frequency Ω/2π = 60.2(2) kHz to outcouple a small,
tunable, fraction of the atoms from the magnetically trapped |F,mF ⟩ = |1,−1⟩ state
to the non-trapped |2,−2⟩ state. The extracted atoms are then imaged along the z
direction with the cam z1 camera, using a π-polarized probe pulse of duration τp = 5 µs,
resonant with the F = 2 → F ′ = 3 cycling transition, with an intensity I/Isat = 4, as
described in Sec. 2.7.4. The extraction and imaging process has a total duration of less
than 10 µs, allowing us to safely neglect losses caused by spin-flipping collisions, which
could in principle occur given the probe polarization.

We repeat the experiment multiple times in identical conditions, tuning the duration
τµw of the microwave pulse to extract a different fraction P (τµw) of atoms from the sample,
as described in Sec. 2.9.
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Figure 3.1: Optical density of the trapped Bose gas imaged extracting a different fraction of atoms, by
means of different microwave pulse durations τµw. (a) For τµw = 0.8 µs, corresponding to an extraction
of ∼ 2.3%, we are able to image the central region of the condensate, where the column density is the
highest, without saturation. However, the thermal tails are barely visible. (b) Using a longer microwave
pulse τµw = 2.5µs, corresponding to an extraction of ∼ 20.6%, we manage to accurately image also the
tails. The central saturated part, where OD > 5 is discarded in the reconstruction of the total column
density profile.

Short pulses allow to extract a small fraction of atoms (between 1 and 8%) and ac-
curately image the dense condensate core at the center of the sample, without saturation
problems, as shown in Fig. 3.1 (a), where the optical density always remains below the
saturation threshold OD < ODth = 5. In these images the much more dilute thermal tails
are, however, barely visible and suffer from a poor signal-to-noise ratio (SNR). In order
to improve the SNR, we also take images where we extract a higher fraction of atoms
(up to 20%) in order to increase the absorptive signal, as shown in Fig. 3.1 (b). In these
images, the dense central region (shown in yellow) is saturated, while the low-density tails
are accurately imaged with high signal-to-noise ratio. We crop each image as described
in Sec. 2.9 in order to retain only the non-saturated part. Each image is then rescaled by
the corresponding extraction fraction to correctly estimate the original column density.

The various rescaled images are then averaged together after recentering them so that
the origin of the x axis is always at the center of the BEC and cropping them to the
area that contains the atomic cloud. The resulting column density n1(x, y) is shown in
Fig. 3.2, where each pixel is obtained from the average of 5 up to 80 images.

We could in principle extract the EoS from just one experimental run, reconstructing
the column density from multiple PTAI images of the same cloud, taken consecutively at
increasing extraction fractions, directly applying the procedure that was used to obtain
Fig. 2.31 in Sec. 2.9. However, in Fig. 2.35 we noticed that the microwave extraction
perturbs the density distribution of the sample by exciting the quadrupole mode. This
could introduce systematic errors in the estimation of the density from images taken after
the first one. Although these errors would be small for low extractions (see Fig. 2.35), we
prefer to avoid them by repeating instead the experiment, taking only one in-situ image
for each experimental realization.

After imaging the sample in situ, we release the remaining atoms from the trap and
let them expand for a time of flight tTOF = 50 ms, after which we image them along
y with the cam y1 camera to measure the temperature from the width of the thermal
cloud. We checked that the previous microwave extraction has no significant effect on
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Figure 3.2: Column density of the trapped Bose gas, reconstructed from multiple images taken at different
partial extractions. Each pixel of this figure is obtained from the average of 5 to 80 images at different
extraction ratios. Given the symmetry, we show only the x ≥ 0 half, where x = 0 corresponds to the
center of the sample.

this measurement.

3.3 Obtaining the relevant thermodynamic quanti-

ties

In this Section I explain how the relevant thermodynamic quantities are extracted from
the images of the atomic cloud.

3.3.1 Pressure

The pressure along the x axis of the trapped sample p(x) ≡ p(x, y = 0, z = 0) can be
directly obtained from the column density n1(x, y) of the reconstructed in-situ image,
following a method proposed by [159, 160] and already implemented in [161, 3, 162, 163].
The starting point is the Gibbs-Duhem thermodynamic relation [164]:

dp = ndµ + sdT, (3.2)

where s is the entropy density and µ the chemical potential. Integrating Eq. 3.2 at constant
temperature, and knowing that p(−∞) = 0, we can write:

p(x) = p(x, y = 0, z = 0) =

∫ µ(x)

−∞
n(µ)dµ. (3.3)

We use the LDA relation for the chemical potential:

µ = µ0 − Vext, with Vext =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (3.4)

where µ0 the chemical potential in the center of the trap and Vext the trapping potential.
For a given x, one can write dµ as [160]:

dµ = −dVext = −mωyωz

2π
dydz, (3.5)
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which finally yields the following expression for the pressure along x:

p(x) =

∫ ∞

Vext(x)

n(µ0 − Vext)dVext =

=
mωyωz

2π

∫ ∫
n(x, y, z)dydz =

mω2
ρ

2π

∫
n1(x, y)dy.

(3.6)

This equation shows that the pressure p(x) can directly be obtained by integrating along
the y axis the measured column density n1(x, y) =

∫
n(x, y, z)dz. Performing this inte-

gration on the column density profile of Fig. 3.2, we obtain the pressure profile shown in
Fig. 3.3.
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Figure 3.3: Pressure p(x) along the x axis of the trapped sample. The inset shows the same plot with
the pressure axis in logarithmic scale.

3.3.2 Density

To obtain the canonical EoS, which relates the pressure to the density n and to the
temperature T , we need to find the density profile along the x axis, n(x) ≡ n(x, y =
0, z = 0). For this scope, we tested two different methods.

The first method exploits again the Gibbs-Duhem relation of Eq. 3.2, following the
proposal of [160], and consists in finding the density via the numerical derivative of the
pressure:

n =

(
∂p

∂µ

)
T

= −
(
∂p

∂x

)(
∂µ

∂x

)−1

=

= − 1

mω2
xx

∂p

∂x
= −

ω2
ρ

ω2
x

1

2πx

∂(
∫
n1(x, y)dy)

∂x
,

(3.7)

where the LDA relation for the chemical potential has been used, and in the last expression
the pressure p has been written according to Eq. 3.6.

The second method to retrieve the on-axis density exploits, instead, the axial symmetry
of the system to find the density through the inverse Abel transform or Abel inversion
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Figure 3.4: Forward and inverse Abel transform, adapted from [165]. As in the text, r =
√
x2 + z2 and

z is the direction of the line of sight. The symmetry axis y lies in the image plane.

[166, 167, 168]. This is a powerful tool that allows to retrieve a 3D cylindrically symmetric
distribution from its 2D image. It has been used in various fields, including photoelectron
spectroscopy [169, 170], the study of the emissivity distributions of plasmas [171, 172],
flames [173, 174], planetary and cometary atmospheres [175, 176], as well as the imaging
of ultracold atomic clouds [177, 178, 157, 125, 179].

The imaging process intrinsically involves a forward Abel transform. This transfor-
mation takes a 3D cylindrically symmetric distribution f(x, y, z) = f(r, y) (with r =√
x2 + z2) and yields a 2D projection F (x, y), as shown in Fig. 3.4, via integration along

a line of sight, in this case z, perpendicular to the symmetry axis. The projection F (x, y)
given by the forward Abel transform, can be, in general, written as:

F (x, y) =

∫ +∞

−∞
f(x, y, z)dz = 2

∫ ∞

x

f(r, y)r√
r2 − x2

dr. (3.8)

Rearranging this equation for f(r, y), one obtains the inverse Abel transform, that allows
to retrieve a slice of the cylindrically symmetric 3D distribution f(r, y) from the projection
F (x, y):

f(r, y) = − 1

π

∫ ∞

r

∂F (x, y)

∂x

1√
x2 − r2

dx. (3.9)

Although Eqs. 3.8, 3.9 can be evaluated analytically for some mathematical functions, ex-
perimental data are affected by the discrete nature of the pixels of the camera, and subject
to noise, requiring a numerical evaluation of the inverse transform. Several algorithms
have been developed for this purpose, the main issues being the need for computationally
efficient algorithms and the necessity to obtain reliable results even in presence of noise.
The treatment of noise is, indeed, particularly delicate since the numerical differentiation
operation propagates and enhances noise-fluctuations at high-spatial frequencies.

In our case the atomic cloud has an ellipsoidal shape, with more than one axis of
symmetry. The density distribution n(x, y, z), besides being circularly symmetric around
the x axis thanks to the geometry of the IP trap (ωy = ωz = ωρ), has a cylindrical
symmetry also around any of the principal axes of the ellipsoid, for instance around the
y axis, after rescaling the x coordinate by the aspect ratio λ = ωρ/ωx of the trapping

potential : n(x, y, z) = n(r, y), with r =
√

(x/λ)2 + z2.
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Using the inverse Abel transform, starting from the projection n1(x, y), we retrieve
the central slice n(x, y, z = 0), that contains, thanks to the cylindrical symmetry, all the
information of the original 3D atomic density distribution. Since we are interested in the
on-axis density n(x, y = 0, z = 0), to increase the signal-to-noise ratio, we can further
exploit the symmetry of the trapping potential and azimuthally average the obtained
density over elliptical iso-density lines. To avoid beyond-LDA effects, which modify the
density profile and are stronger further away from the axis, we compute this average
considering only the points within a small angle (±10°) around the x axis.

The axial density profile n(x) = n(x, y = 0, z = 0) resulting from the Abel inversion
is shown in Fig. 3.5.
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Figure 3.5: Density n(x) along the x axis of the trapped sample, obtained applying the inverse Abel
transform to the reconstructed column density of Fig. 3.2. The inset shows the same plot with the axis
of ordinates in logarithmic scale.

We tested both the approach based on the Gibbs-Duhem equation (GD) and the one
based on the inverse Abel transform, to get the density profile from the experimentally
measured column density. The critical issue in both cases is the calculation of numerical
derivatives (see Eqs. 3.7 and 3.9), which amplify the noise at high spatial frequencies.
In case of the GD approach this problem is mitigated implementing a smooth numerical
differentiation based on the central difference scheme, which allows for a tunable degree of
smoothing depending on the size N of the averaging window [180]. For the inverse Abel
transform, noise is treated, as stated before, by using the recursive Hansen-Law algorithm
[181], in the version implemented in the PyAbel Python package, which includes noise-
reduction operations (Kalman filter) [168, 165]. In addition, the effect of noise is reduced
by azimuthally averaging the reconstructed 2D density slice. A comparison between the
density profiles obtained with the two methods is shown in Fig. 3.6a. We decided to use
the Abel transform because it yields a low-noise profile, while still preserving local sharp
features, which are fundamental for an accurate study of the behavior in the critical region
(see Fig. 3.6b and the related discussion in Sec. 3.4).
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Figure 3.6: Comparison of the axial density profile (a) and chemical potential Vs reduced temperature
(b), obtained using the Abel transform (blue dots) or the GD method, with different lengths N of the
filter window (solid lines). For low N, high-frequency fluctuations appear in the GD density profiles
(orange and green lines) due to the amplification of noise in the differentiation, yielding unphysical
features in the corresponding reduced chemical potential profile. Higher N provides a higher degree of
smoothing, mitigating such high-frequency fluctuations of the density, but also smears out local sharp
features, washing out almost completely the peak in the chemical potential, with an effect equivalent to
a worsening of the spatial resolution. Intermediate values of N were also tested, but did not yield better
results for the GD method compared to the Abel transform.

3.3.3 Temperature

The temperature T of the sample is found independently, using the images taken after a
tTOF = 50 ms time-of-flight expansion. We fit the column density distribution with a 2D
bimodal function, as described in Sec. 2.8 and extract the temperature from the widths σx

and σz of the thermal distribution, using Eq. 2.34 to account for hydrodynamic corrections
to the ballistic expansion. Also the total number of atoms in the cloud is obtained from
the TOF image and is compared with the number estimated from the PTAI images, to
check the consistency of the calibration of the extracted fraction.

The temperature of the samples was tuned by changing the final evaporation fre-
quency of the second exponential ramp in Fig. 2.10. For the derivation of the EOS we use
samples with a temperature T = 280 nK, where the condensate fraction is about 50%1.
Post-selection on the data was performed, eliminating the shots where the temperature
or atom number deviated significantly from the average or were not consistent with the
atom number obtained from the PTAI measurements.

From the measured temperature T and the axial density distribution n(x), we find
the local reduced temperature T/Tc(x), where Tc(x) is the critical temperature, estimated
using Eq. 1.42:

Tc(x) =
2πℏ2

mkB

(
n(x)

ζ3/2

)2/3

. (3.10)

In Fig. 3.7 the reduced temperature is shown as a function of the axial coordinate x.
At the center, where the density is maximum, T/Tc ∼ 0.2, while in the thermal tails it
rapidly becomes much larger than 1. The inset clarifies the fact that the critical region

1Measurements on colder samples, with a temperature T ∼ 150 nK and an almost negligible thermal
part, were also performed. They are shown in Sec. 3.4.3
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around T/Tc ≃ 1 corresponds to a quite narrow spatial region (T/Tc varies from 0.75 to
1.25 in less than 20 µm). This makes the study of the behavior near the critical point
rather challenging, motivating our efforts to increase the spatial resolution and to find
suitable techniques to treat the noise without excessively smoothing out local features in
the density data.
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Figure 3.7: Reduced temperature T/Tc(x) for T = 280 nK and Tc(x) calculated from the density n(x, 0, 0),
plotted as a function of the axial coordinate x. The inset is a zoom of the region around T/Tc = 1 (red
dashed line).

3.4 Results

In the following I show the main results that we obtained regarding the measurement of
the thermodynamic properties of the Bose gas.

3.4.1 Canonical EOS

We obtained the EoS of the uniform Bose gas in canonical variables, determining a rela-
tion p(v, T ) between the volume, the pressure and the temperature of the ultracold gas,
like the well-known classical ideal gas law.

From the density profile n(x), we find the specific volume v(x):

v(x) =
1

n(x)
. (3.11)

At the critical point, the specific volume vc is obtained from the definition of the critical
temperature (Eq. 1.42):

v

vc
=

(
T

Tc

)3/2

→ vc =
1

nc

=
λ3
T

ζ3/2
. (3.12)
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where λT is the De Broglie wavelength (Eq. 1.1). We also calculate the critical pressure,
from the IBG formula Eq. 1.52:

pc =
ζ5/2kBT

λ3
T

, (3.13)

Using the pressure and density profiles p(x) and n(x) of Figs. 3.3, 3.5, rescaled by the
critical values, we obtain the canonical EOS p(v) in reduced variables p/pc and v/vc, at
fixed temperature T = 280 nK, which is shown in Fig. 3.8.
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Figure 3.8: Canonical equation of state p(v).

For v/vc > 1, the prediction of the classical ideal gas law p = kBT/v is shown (IG,
green dotted curve). We observe that this curve captures the behavior of the Bose gas
only at high temperatures, i.e. for v/vc ≫ 1, showing the importance of quantum effects
in the vicinity of the critical point.

The prediction for the non interacting Bose gas is also shown (IBG, orange dashed
line). This curve correctly captures the experimental behavior until the critical point.
For v < vc the measured pressure strongly increases, instead of remaining equal to the
critical value as predicted by the IBG model of Eq. 1.52. This behavior highlights how
the thermodynamics is dominated by the effect of the interactions, not included in the
IBG model.

Let us now compare the experimental data with the EoS predicted by Hartree-Fock
for the uniform interacting Bose gas. The HF pressure profile for the uniform Bose gas,
given by Eq. 1.54

p = gn2 − 1

2
gn2

0 +
kBT

λ3
T

g5/2[e
(µ−2gn)/kBT ],

is shown in Fig. 3.8 as a solid black line. It was evaluated using the density profile data
n(x) and the measured temperature T = 280 nK, without any fitting parameters.
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An excellent agreement can be observed between this curve and the experimental
data, which confirms the validity of the mean field approach for the description of a
weakly interacting gas and of our LDA approach.

This agreement also holds for v ≪ vc, where the HF model predicts a divergence of
the pressure as (ξ23/2/ξ5/2)(a/λT )(v/vc)

2 for v/vc → 0. The explicit dependence on the

interaction strength and on the temperature, through a/λT , highlights the non-universal
character of the EoS.

3.4.2 Compressibility

The isothermal compressibility, defined according to Eq. 1.55 as the relative variation of
the density with respect to the pressure,

k =

(
1

n

)
∂n

∂p

∣∣∣∣
T

,

was calculated for the experimental data through numerical differentiation of the density
profile n(x).

The resulting profile is shown in Fig. 3.9, as a function again of the reduced specific
volume v/vc. The compressibility k is normalized by the HF zero-temperature value

k0 =
1

gn2
, (3.14)

for the density n(x).
The curve predicted by HF theory is shown in black. Good agreement can be observed for
small v/vc, while at the critical point the theory predicts the presence of a narrow peak,
which we did not observe experimentally. Several reasons could explain this disagreement:

• the mean field HF theory does not account correctly for the large fluctuations near
the critical point, in a region of width |µ − µc| ∼ m3g2k2

BT
2
c /ℏ6, where µc is the

chemical potential at the transition [33]. This corresponds to a temperature range
∆T/T ∼ an1/3 around the transition point. For the density at the transition
n ∼ nc and the temperature of our cloud this is a relative temperature range of
∼ an

1/3
c = (ζ3/2)

1/3a/λT ∼ 5 × 10−3 around Tc. The dependence on a/λT of the
width of this critical region is again a signal of non universality.

• The HF curve is obtained from the theory for uniform matter, assuming the LDA
to be valid everywhere, including the region near the boundary between the BEC
and the thermal phase. A proper description of the behavior in this region requires
instead corrections, that lead to a finite thickness d = (a4x/(2Rx))1/3 of the boundary
of the condensate, where Rx is the Thomas-Fermi radius along the x direction [182].
Since Rx scales with the number of atoms of the condensate, this can be regarded
as a finite size effect. For our system we have Rx ∼ 100 µm and thus d ∼ 2 µm, of
the same order of magnitude as the resolution of the imaging system.

• Finally, we should consider the effect of the finite resolution of the imaging system
(∼ 2 µm), which smears out the sharpest features in the density profile.
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In Fig. 3.9 the data are compared also with a theoretical curve, obtained applying the HF
model to the density profile convoluted with the resolution (grey dashed line). This curve
already agrees much better with our data, and shows the strong effect of the finite imaging
resolution in smearing out the narrow peak. Considering a two times worse resolution,
one obtains the curve represented in brown, which well agrees with the experimental data.
This may imply that the resolution has been underestimated. However, since the previous
two effects need to be taken into account anyway, the remaining differences are more likely
to be caused by the violation of LDA, as was concluded in the paper that we published
on this work [5]. A recent theoretical work [183] also showed that in a non-uniform Bose
gas the effect of the confining potential might completely wash out the divergence in the
compressibility at the critical point. This corresponds to admitting the failure of LDA in
a region with an extension at least equal to the width of the peak.

The compressibility peak was instead clearly observed in the unitary Fermi gas [157],
where the width of the critical region, where the peak appears, is much larger, since the
energy scale is fixed by the Fermi energy, reducing the impact of the effects described
above.
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Figure 3.9: Compressibility k, normalized to the T = 0 value k0, as a function of the reduced volume
v/vc. The solid black curve represents the HF prediction, while the dashed lines correspond to the HF
prediction for a density profile convoluted with the resolution of the imaging system (∼ 2 µm, grey) and
with a 2 times worse resolution (4 µm, brown).

3.4.3 Chemical potential

The study of the temperature dependence of the chemical potential has been one of
the main goals of this project. Indeed a non-monotonic behavior, with a peak at the
critical point, was predicted [158], but never observed before in a Bose gas. The chemical
potential µ should have a non-monotonic behavior with T/Tc due to the combination of
the following reasons:

• Below the critical point, µ(T ) is expected to increase with T because of two main
effects. For very low temperatures (T < gn/kB), the thermal excitation of phonons
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Figure 3.10: Chemical potential µ/gn as a function of the reduced temperature T/Tc. The dotted orange
curve represent the IBG prediction, while the solid black curve the HF prediction. The dashed lines
correspond to the HF prediction for a density profile convoluted with the resolution of the imaging
system (∼ 2 µm, grey) and with a 2 times worse resolution (4 µm, brown), as in Fig. 3.9.

determines a dependence as µ ∼ T 4. For higher temperatures, but still below Tc,
the chemical potential is predicted to increase as ∼ (T/Tc)

3/2 because of exchange
effects that characterize the thermal contribution to the energy of the system [29].

• above Tc the chemical potential is expected to decrease, reaching, for T ≫ Tc, the
behavior ∼ kBT ln (nλ3

T ), typical of a classical gas.

Since µ/gn is expected to increase for T < Tc and decrease for T > Tc, it must have a
maximum in between. The HF model predicts this to occur at the transition point, where
the exchange effects are maximized being n = nT , with µ/gn reaching the value of 2. The
peak in the chemical potential, rather than being peculiar to Bose-Einstein condensates
only, is a property of neutral superfluids in general. It was indeed observed already in the
unitary Fermi superfluid gas [157] and in the thermodynamic behavior of liquid 4He.

In our experiment we obtained a first observation of the non-monotonic behavior of
µ also in a Bose gas. Within the LDA, the chemical potential µ is directly known from
the external potential Vext up to the constant µ0. To determine µ0, we fit the density to
the HF profile obtained at T = 280 nK, finding µ0/kB = 66.7(2) nK. The experimental
profile for the reduced chemical potential µ/gn is shown as a function of T/Tc in Fig. 3.10
(blue dots), clearly revealing a peak around Tc. The relative temperature range across
the transition 0.2 ≤ T/Tc ≤ 1.5, shown on the x axis in Fig. 3.10, corresponds to a
spatial displacement along the x axis from the center of the trapped sample in the range
10 µm ≤ x ≤ 140 µm, as shown in Fig. 3.7.
Similarly to what was observed for the compressibility measurement of Fig. 3.9, also in
this case a discrepancy between the experimental data and the theoretical predictions
can be noticed near the critical point. The sharpest features predicted by the theory get
indeed smeared out by the effect of the finite resolution, besides being affected by the
other limitations discussed in Sec. 3.4.2. The discrepancy is, however, smaller than in
Fig. 3.9, and the presence of the peak in the chemical potential can be clearly observed.
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The gray dashed line in Fig. 3.10 shows the behavior predicted by the HF model for a
density profile convoluted with the imaging resolution of 2 µm.

In Fig. 3.10 we also plot the behavior for the IBG (orange dotted line), where the
chemical potential is zero for any T < Tc (see Sec. 1.1.4), as well as the universal behavior
µ/gn = 1 + (T/Tc)

3/2 (dash-dotted black line). The latter corresponds to the lowest
order approximation of the HF chemical potential µ in terms of the interaction strength
g and can be obtained by using the IBG expression for the thermal fraction nT . It is
worth noticing that the universal curve differs from the HF one only in the details of the
shape for T < Tc, but both curves show a clear non-monotonic behavior and are in good
agreement with the data.
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Figure 3.11: Chemical potential µ/gn as a function of the reduced temperature T/Tc, comparison between
the measurements performed on samples at two different temperature (T=280 nK light blue circles, T=150
nK dark blue squares).

We also took measurements at a lower temperature (T = 150 nK), where a fit to the HF
model is not needed for the estimation of µ0, since one can assume the zero-temperature
limit µ0 ≃ gn(0), given the strong suppression at low T of the thermal fraction at the
center of the trap. The central density n(0) was obtained from a fit to a Thomas-Fermi
profile in the central region (x < 60 µm, corresponding to T/Tc < 0.15), which yields
µ0 = 69.0(4) nK. We checked a posteriori, using HF theory, that the local thermal
fraction in this whole central region is < 0.02. The reduced chemical potential profile
µ/gn corresponding to this lower temperature measurement is shown in Fig. 3.11 (dark
blue squares ), where it is compared with the higher temperature result discussed before
(light blue circles). We observe again that µ/gn monotonically increases for T < Tc, in
agreement with the measurement at higher temperature and with the prediction of the
HF model. This behavior clearly indicates the contribution of exchange effects to the
energy of the system, that are captured even using a zero-temperature model to estimate
µ0.
The two different temperatures T = 150 nK and T = 280 nK of the samples correspond
to different values of the parameter a/λT , 3× 10−3 and 4× 10−3 respectively. In principle
we should thus notice a non-universal difference in the shape of the µ/gn curves for the
two datasets. This difference is however not discernible from our measurements: in both
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cases the experimental data well agree, within the errorbars, with the universal curve
1 + (T/Tc)

3/2 (dot-dashed line in Fig. 3.11). To find quantitative evidence of deviations
from the universal curve, more precise and systematic measurements of µ/gn as a function
of temperature would be needed. Such measurements could also provide evidence for
beyond mean field effects [184].

3.4.4 Grand canonical EOS

The above results can be discussed also in the grand canonical framework, finding the
EOS of the pressure p in terms of the grand canonical variable given by the chemical
potential µ instead of the canonical variable, i.e. the density n.
In figure 3.12 we show, for the dataset at T = 280 nK, the reduced pressure p/pc as a
function of the inverse fugacity ζ, which is related to the chemical potential µ and the
temperature T by the expression:

ζ = exp

(
− µ

kBT

)
. (3.15)

Outside the degenerate region, for ζ > 1, the reduced pressure has the behavior of the
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Figure 3.12: Grand canonical equation of state: p/pc as a function of the inverse fugacity ζ.

non-interacting Bose gas ∼ g5/2(ζ)/ζ5/2, which in the limit of ζ ≫ 1 eventually approaches
the classical gas law ∼ ζ−1. On the other side, for smaller ζ, the slope of the pressure
suddenly increases at the transition point for condensation ζc, as highlighted in the inset
of Fig. 3.12. In the deeply degenerate regime, for ζ → 0, the effect of interactions becomes
evident, causing the pressure to diverge as (λT/a) ln2 ζ. A similar measurement of the
grand canonical EOS was reported already in Ref. [3], where the authors show the presence
of a cusp in the pressure as a function of the inverse fugacity at the transition point, which
they identified at ζc = 1.0(1), in agreement with the value of ζc = 1 expected for the IBG,
being in their case the interaction induced mean-field correction compatible with the
experimental uncertainty.
From our measurements we find ζc = 0.95(1)<1, which highlights the presence of a
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shift in the transition point, compatible with the mean field shift caused by interactions.
This value of the critical fugacity corresponds indeed to a chemical potential of µc =
kB × 14(3) nK, which agrees with the mean-field shift 2gnc ≃ kB × 12.2(5) nK, calculated
using the critical density for the temperature of 280 nK, and also with the results for the
chemical potential shown in Sec. 3.4.3.

3.5 Conclusions

The work presented in this chapter provides an important contribution to the study of
the equilibrium thermodynamic properties of a 3D weakly interacting Bose gas [5]. The
Equation of State of the uniform Bose gas, across the critical point, was obtained for
the first time in its canonical formulation p(v), at fixed temperature T and scattering
length a. We also observed, for the first time in a Bose gas, the non-monotonic behavior
across the phase transition of µ/(gn) as a function of the relative temperature T/Tc, which
appears to be a consequence of Bose-Einstein condensation and a common feature in the
thermodynamic behavior of neutral superfluids.

Our measurements well agree with the predictions of the mean-field Hartree-Fock
model for the weakly interacting uniform Bose gas, when the effect of the finite resolution
of the imaging system is taken into account.

The achievement of these results was possible thanks to the high-dynamic-range partial-
transfer imaging and reconstruction technique that we developed to accurately measure
the density profile of the trapped gas [4] and thanks to the upgrade of the imaging system
described in Sec. 2.7.1.



Chapter 4

Study of out-of-equilibrium Bose
gases

4.1 Introduction

In this chapter I present the results of an experimental investigation on the formation
and growth dynamics of the BEC order parameter and its fluctuations, as a function of
the rate at which the ultracold Bose gas is cooled across the BEC transition point. In
particular, we focused on the study of the timescales associated to such dynamics, and
were able to identify a universal power-law scaling. The results of this study were recently
published in [27].

This chapter is structured as follows. In Sec. 4.2, I first present the experimental
sequence and the procedures to extract the relevant observables for these measurements.
Sec. 4.3 shows how the cooling rate and the initial number of atoms in the cold sample
influence the growth dynamics. Sec. 4.4 presents a discussion on the dynamics of the
phase fluctuations arising at the onset of condensation and on their subsequent decay as
the system relaxes towards its final equilibrium state.

4.2 Experimental procedure

This set of experiments is based on the cooling, by means of RF driven evaporation, of a
cold cloud of atoms, initially at equilibrium at a temperature above the critical point for
Bose-Einstein condensation. During the cooling process, the transition point is crossed
at a tunable cooling rate, and the subsequent evolution of the system is studied.

We exploit the cooling techniques described in Chap. 2: after the initial laser-cooling
stage in the DS-MOT and later in the GM, the pre-cooled gas of sodium atoms is trans-
ferred in the magnetic trap, where RF evaporation takes place, driven by a radio-frequency
field that transfers the |F,mF ⟩ = |1,−1⟩ trapped atoms to the non trapped |1, 0⟩ state
(see Sec. 2.6.3). A first evaporative cooling stage, in common with the experimental se-
quence used for the EoS measurements (Chap. 3), takes place by sweeping down the RF
frequency in two consecutive exponential ramps, as shown in Fig. 2.10.

During the cooling procedure, the sample is confined in the magnetic trap described in
Sec. 2.3, with the final cooling stage taking place in the configuration with a 100 A current
in the magnetic coils, as shown in Fig. 2.10. The axial and radial measured trapping
frequencies, in the final trap configuration, are ωx = 12.30(5) Hz and ωρ = 138(1) Hz,
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respectively. The bias field B0 is 1.53 G, corresponding to a trap bottom frequency of
νb = 1.076 MHz.
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Figure 4.1: Exploring the gas parameters during the evaporation ramp for a low (left column) and high
(right) evaporation rate. (a) Variation of the RF evaporation frequency ν in time; the evaporation rate
is defined as q = dν/dt. (b) Temperature and (c) condensed fraction, measured by interrupting the ramp
at different times t and either imaging the cloud immediately (light and dark blue circles) or keeping the
gas in trap for a waiting time of 1 s for equilibration (orange diamonds). Temperature is extracted from
a Bose distribution fit to the tails of the atomic distribution measured after a time of flight ttof = 50ms
and is normalized to the transition temperature Tc. The red vertical line represents the time tc at which
Tc is experimentally crossed in the instantaneous measurements. The horizontal blue dashed line in (b)
corresponds to the final temperature after equilibration, while the horizontal dashed line in (c) marks the
final condensate fraction. The insets show absorption images taken in points B, C (for t < tc) and B’, C’
(at t > tc). The light-blue shaded area marks the duration of the ramp.

At the end of the first two exponential evaporation ramps [point A in Fig. 4.1], the
RF frequency is ν2 ≃ 1.33 MHz, corresponding to a trap depth of about h(ν2 − νb) ∼
kB × 12 µK, and our sample is a cold atomic cloud in equilibrium at a temperature of
the order of 1.3 Tc. Two sets of atomic ensembles have been studied, characterized by a
different number of atoms, measured in point A:

• one set of ensembles is characterized by a high number of atoms Nhigh = 3.6(3)×107

and initial temperature Thigh = 1.14(3) µK = 1.28(7)Tc
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• the other set has a lower initial atom number Nlow = 1.7(9) × 107 and temperature
Tlow = 0.92(4) µK = 1.32(5)Tc. For the low atom number ensembles, in order to
keep the same initial relative temperature, and comparable conditions during the
linear ramp, the latter starts at νi ≡ ν2 = 1.27 MHz instead of 1.33 MHz.

At this point, a final evaporative stage, of interest for this work, takes place, where
the RF frequency is further lowered at a tunable rate q = dν/dt by means of a linear
ramp, starting from an initial frequency νi ≡ ν2, equal to the final frequency of the pre-
vious stage, and ending at a frequency νf = 1.11 MHz, which is reached at a time tf ,
corresponding to the duration of the linear ramp (shaded region in Fig. 4.1). More details
on the choice of the final frequency are provided below in Sec. 4.2.1. During this last
evaporation ramp, the critical temperature for BEC onset is crossed. We change the rate
q and study how this influences the dynamics of the BEC formation and growth.

The atomic cloud is imaged by means of resonant absorption imaging, using the cam y1

camera, after a time of flight tTOF = 50 ms from the switch-off of the magnetic trap (see
Sec. 2.8). Two different measurement schemes are interleaved for each quench rate:

• Instantaneous images capture the status of the system at different times t during
the linear cooling ramp. They are taken by interrupting the evaporation ramp and
immediately releasing the atoms [points B, B’ in panel (a) of Fig. 4.1].

• Equilibrium images probe the system after it has reached its equilibrium condition.
They are taken interrupting the evaporation at the same time t, but keeping the
atom cloud in trap for an additional hold time of 1 s before releasing and imaging
(points C, C’).

During the hold time, RF shielding is used (see Sec. 2.6.3): we set the evaporation fre-
quency to νhold = νi + 400 kHz, corresponding to a trap depth of ∼ kB × 31 µK, to ensure
thermalization without further loss of atoms. Using the shield, the number of atoms and
the temperature after equilibration remain ∼ constant on timescales much longer than
10 s.

• Instantaneous images are also taken after the end of the ramp, for times t > tf . In
this case the evaporation frequency is raised to νhold after the ramp has ended at
the final frequency νf , and the atom cloud is kept in trap to probe the post-quench
relaxation dynamics.

For all images, we fit the OD of the atomic cloud with a Bose function (see Sec. 2.8), to
measure the width and amplitude of the distribution, from which we extract the number
of atoms in the thermal component Nth. In order to obtain an accurate measurement, not
influenced by the eventual presence of a condensate in the center of the cloud, the Bose fit
is performed only on the outer part of the distribution, corresponding to the area of the
image outside a central ellipse of fixed dimensions, chosen to contain the whole BEC in
the case of maximum number of condensed atoms. Subtracting the fitted Bose function
from the data, we obtain an image of the condensate alone, that we integrate to obtain the
number of atoms N0 in the BEC. We do not perform a fit of the BEC to a Thomas-Fermi
profile (see again Sec. 2.8), since this function properly describes the condensate profile
only when the system is in its ground state and not in the presence of fluctuations. The
Thomas-Fermi approximation, moreover, is valid only when the number of atoms in the
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BEC is large enough. The total number of atoms N is then given by the sum of Nth and
N0.

As explained in Sec. 2.6.3, the evaporation process removes the most energetic atoms
from the distribution and leads to a decrease in the total atom number. This causes
the gas to be no longer in thermal equilibrium at the instantaneous times during the
evaporation ramp, especially for the fastest ramps. This means that the temperature
of the gas is instantaneously not well-defined in a thermodynamic sense. We introduce
an effective temperature T , extracted from the fitted width of the thermal cloud in the
direction z, according to Eq. 2.33:

T =
mω2

zσ
2
z

(1 + ω2
zt

2
TOF)kB

, (4.1)

where σz is the width of the fitted Bose distribution (Eq. 2.27) along the radial direction.
This choice is motivated by the fact that ωz ≫ ωx, which makes the distribution along z
closer to the momentum distribution for t = tTOF and therefore more reliable than that
along x to estimate the temperature. The duration of the time of flight tTOF was chosen
in order to satisfy the condition ωztTOF ≫ 1.

Figure 4.1 (b) shows, for two different ramp rates q, the measured temperature T in
units of the critical temperature for condensation Tc, estimated at each time t for the
instantaneous atom number N measured at such time. We compute Tc as Tc = T 0

c + δTc,
where T 0

c is the critical temperature for an ideal Bose gas in our harmonic trap (Eq. 1.12)
and δTc is a correction taking the shift caused by the effect of interactions (Eq. 1.61) into
account. For our experimental parameters, such correction is of the order of |δTc|/T 0

c ∼
3%. We instead neglect finite-size corrections to the critical temperature (Eq. 1.62), since
they are about one order of magnitude smaller.

In Fig. 4.1 (b-c), light blue circles correspond to instantaneous images taken before
the end of the linear evaporation ramp, while orange diamonds are the corresponding
equilibrium images. Dark blue circles are instantaneous pictures taken after the end of
the ramp. Each point corresponds to the average of up to 10 repetitions of the same
experimental shot, and error bars represent one standard deviation. The light red vertical
line marks the critical time tc, defined as the time at which T/Tc = 1, and obtained by
means of a linear fit to the data in the region around the critical point (solid black line).
The same linear fit yields also the characteristic quench time, defined as:

τQ =
Tc

|(dT/dt)tc |
. (4.2)

This allows for a direct comparison to theoretical models assuming a linear variation of
the temperature across the transition [23].

Figure 4.1 (c) shows the evolution of the condensate fraction N0/N , again compar-
ing the instantaneous and equilibrium configurations. The insets show examples of TOF
images taken before and after the transition point. If the ramp is sufficiently slow (left
panels of Fig. 4.1), we observe that the condensate forms during the evaporation ramp.
For a fast ramp, instead, no condensate fraction is present at the end of the ramp, but an
order parameter emerges afterwards, during the post-quench relaxation, on a timescale
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independent of the evaporation rate q, but rather intrinsic of the system, as will be shown
in Sec. 4.3.

Figure 4.2: Evolution of the condensate fraction N0/N as a function of the relative temperature T/Tc.
Higher evaporation rates induce strong out-of-equilibrium dynamics, as can be seen comparing the in-
stantaneous measurements (light and dark blue circles) with the equilibrium points (orange diamonds).
The arrows shown in the q = 300 kHz/s panel indicate the direction of the evolution. The dashed gray
and solid black curves represent the theoretical predictions for an ideal and an interacting trapped Bose
gas, respectively.
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Figure 4.3: For all evaporation rates, the equilibrium data points (orange to red diamonds) for the
condensate fraction as a function of the relative temperature follow the same curve for any q (the values
reported in the legend are in kHz/s). This behavior is well described by the HF prediction for the
interacting trapped Bose gas, represented by the solid black curve (see Eq. 1.63). The theoretical curve
for the ideal Bose gas (IBG) is also shown (dashed gray). Light and dark blue dots show the system’s
status during and after the ramp, respectively, as in Fig. 4.2. These instantaneous points, for high
evaporation rates, get far from the equilibrium curve.

The dynamical evolution of the gas across the transition can be observed, for different
quench rates q, in Fig. 4.2, where the condensate fraction N0/N is shown as a function
of T/Tc. This plot gives a clear view of the out-of-equilibrium evolution related to the
cooling process, by comparing the instantaneous data points (blue and dark blue) to the
equilibrium ones (orange). The arrows mark the direction of the evolution in time for the
two data sets.
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For the lowest evaporation rates the gas cools down almost adiabatically, as pointed
out by the overlap of the instantaneous and equilibrium curves for q = 50 kHz/s.

For higher evaporation rates, instead, the gas is driven in an increasingly out-of-
equilibrium state, as shown for instance in the q = 300 kHz/s panel. We observe that the
instantaneous state of the gas strongly diverges from the equilibrium one while driven by
the evaporation (the light blue points get further and further away from the orange curve),
and it relaxes towards the final equilibrium state after the end of the ramp (the dark blue
points gradually approach the orange ones, on which they finally collapse). The equi-
librium points (orange) for the different values of q actually collapse on the same curve,
as shown in Fig. 4.3. Making a quite long-ranged analogy, one could think of this curve
as an analogue of the Hertzsprung-Russel diagram, describing stellar evolution [185], for
the evolution of a condensate, discriminating between equilibrium and out-of-equilibrium
conditions in the BEC growth process. For comparison, we also show the theoretical pre-
diction given by Eq. 1.13 for the ideal Bose gas (gray dashed line) and the prediction given
by the HF model Eq. 1.63 for the interacting Bose gas (solid black line)1. We observe a
good agreement between the HF theoretical curve and the equilibrium data points, con-
firming earlier experimental observations for condensates at equilibrium [15, 138]. The
agreement between the measured equilibrium condensate fraction and the HF prediction
can also be used as a cross-check or as a stand-alone method [186] for the calibration of
the absorption imaging parameters α and χsat that enter in the calculation of the OD,
determining the number of atoms.

From these measurements, we find that the system reaches a stationary state, where
the relative temperature and condensate fraction remain constant and most of the exci-
tations have relaxed, already after t ≳ 500 ms, even for the highest evaporation rates (q
up to 4000 kHz/s). This means that, a posteriori, we can consider the images taken after
1 s waiting time as reliable equilibrium points.

4.2.1 Choice of final frequency for the linear ramps

The final frequency νf is the same for all measurements and has been chosen in order
to lie enough above the trap bottom value to avoid the removal of atoms from the BEC.
This is checked by performing a slow evaporation, ramping the frequency of the second
exponential evaporation ramp down to different values νf ≥ νb. The number of atoms in
the condensate is measured as a function of the final evaporation frequency (see above for
the measurement procedure), observing the behavior shown in Fig. 4.4 (a). Before these
measurements, we tune the compensation magnetic fields in order to keep a constant
bottom frequency νb = 1.076 MHz (see paragraph 2.6.4). Performing a slow evaporation
until increasingly lower frequencies, a growth of the number of atoms in the condensate
can be observed, until a ∼ 100% condensate fraction is reached. Soon after, the number
of atoms in the BEC rapidly drops, when the evaporation frequency approaches νb.

As a final frequency, we select the value νf = 1.11 kHz (black dashed line), for which
the condensate fraction has almost completely reached its maximum. This final frequency
is selected to stay well above the frequency where the RF field starts removing atoms from

1The approximation in which this curve is obtained holds only for temperatures enough below Tc,
where a high number of atoms is present in the condensate, but not in the close vicinity of the critical
point. For this reason the curve was plotted only for T ≤ 0.92Tc.
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Figure 4.4: Measurements to define the best final frequency for the evaporation ramp. (a) As a function
of the final frequency νf , reached by means of the continuation of the second exponential RF ramp, we
measure: (top) the total number of atoms N (blue dots) and the number of atoms in the condensate
N0 (orange diamonds); (center) the effective temperature T ; (bottom) the condensate fraction N0/N .
(Image E) For frequencies close to the bottom, corresponding to point E in panel (a), regular fringes are
observed in the density profile after a 50ms TOF expansion. (Image D) Such fringes are not present if the
evaporation is interrupted before, well above the bottom frequency (point A). (b) Similar measurement
performed with a q = 50 kHz/s linear RF ramp. For frequencies below 1.09MHz we observe an abrupt
decrease of the total (blue dots) and condensate (orange diamonds) atom number. (c) After producing
a partially condensed equilibrium cloud, we turn on the evaporation RF field for a 5ms pulse, with
the same amplitude as used for the evaporation. We scan the frequency νpulse and measure again the
number of atoms. The pulse depletes the BEC completely if the frequency is in the interval 1.06MHz ≥
νpulse ≥ 1.09MHz, centered on the bottom frequency. (d) Two images showing the OD of the atomic
cloud (cropped to area containing the BEC), corresponding to points D (νf = 1.085MHz) and E (νf =
1.13MHz) indicated in (a). Image E shows the presence of regular fringe patterns, which do not appear
in D. These results made us choose as final frequency for the main measurements νf = 1.11MHz [vertical
black dashed line in (a)].

the condensate, since this causes collective excitations that result in the appearance of
regular fringe patterns in the BEC density profile observed after a TOF expansion (image
E of Fig. 4.4), that are not present if the final frequency remains higher (image D). The
appearance of such fringes seems not to depend on the shape of the evaporation ramp,
since it occurs also if the last part of the evaporation towards the bottom frequency is
made by a slow linear evaporation ramp (e.g. with q = 50 kHz/s), instead of exponential.
Panel (b) of Fig. 4.4 shows that, if such a linear evaporation ramp is continued until final
frequencies νf < 1.09 MHz, the number of atoms in the BEC (and in the whole system)
gets depleted. For such low frequencies we again see the appearance of the same fringes.

To check the value of the bottom frequency νb and of the lowest final frequency νf
where we should stop the evaporation to avoid the above effect, we also perform another
experiment. We first obtain an equilibrium ∼ 50% condensed atomic cloud by means
of a slow exponential evaporation until νf = 1.2 MHz, followed by a sufficiently long
equilibration time without further evaporation. We then turn on the evaporation RF



100 CHAPTER 4. OUT-OF-EQUILIBRIUM BOSE GASES

field, with the same amplitude used in the evaporation, for a 5 ms pulse at a frequency
νpulse, which we scan in an interval around νb. We record the final number of atoms in the
whole cloud (N) and in the BEC (N0), measured as before from TOF images. As shown
in panel (c), in agreement with the other two measurements, of panels (a)-(b), we see
that the number of atoms significantly decreases for 1.06 MHz ≥ νpulse ≥ 1.09 MHz, with
a minimum around the bottom frequency. In this interval we again notice the presence of
the same fringes in the OD of the TOF images, which confirms that they are caused by
collective excitations due to the forced removal of atoms from the BEC. All these results
lead us to a choice of a final frequency νf = 1.11 MHz, which is kept the same for all
evaporation ramps to make an easier comparison between the different datasets.

4.3 Growth of the order parameter

In this section we give a closer look at the dynamical formation of the condensate order
parameter, following the evaporative cooling.

In all experiments, while the critical point tc always lies within the linear evaporation
ramp, the time evolution of the condensate depends on the evaporation rate. Two distinct
regimes can be observed, that we identify as high and low evaporation rates. The two
regimes are distinguished by the fact that, for the chosen frequency-span of the evaporation
ramp:

• for low evaporation rates (slow ramps) condensation is observed already in the
instantaneous images taken during the ramp, as shown by the absorption images in
the insets of Fig. 4.1c);

• for high evaporation rates, instead, no BEC is observed in the instantaneous images
during the evaporation process, but the emergence of the condensate order param-
eter occurs instead after the end of the linear ramp, driven by thermalization at
constant atom number.

The distinction between high and low evaporation rates is not determined only by the
absolute value of the rate q, but also by the initial number of atoms in the system and on
the choice of the initial and final RF frequency. To explore the dependence on the atomic
density, for both evaporation rate regimes, the same measurements have been performed
on two sets of atomic ensembles, having different atom number (see above) but the same
initial relative temperature Ti = 1.3Tc at the beginning of the linear ramp [point A of the
experimental sequence, see Fig. 4.1 (a)].

4.3.1 High evaporation rate: post-quench dynamics

We first consider the formation and growth of the BEC order parameter for high evapo-
ration rates.

Figure 4.5 (a) shows the growth of the BEC fraction in samples with Nhigh, for evapora-
tion rates q ≥ 400 kHz/s. For these ramps, although the critical temperature is crossed at
a time tc during the ramp, the order parameter forms only after the end of the ramp, after
a finite latency time ∆t past tc (in literature also referred to as initiation time [14]). As
can be observed in Fig. 4.5 (a-b), this latency time does not depend on q; its average value
∆t = 85(7) ms is indicated by the gray area in (b). After the BEC onset, the condensate
fraction grows and slowly reaches its final maximum value (N0/N)f , on a time-scale that
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Figure 4.5: Post-quench growth dynamics of the BEC order parameter for high evaporation rates. (a)
Condensate fraction as a function of time for atom number Nhigh, for different values of q. The time axes
are shifted by tc, defined in the text. The dashed lines indicate the equilibrium condensed fraction for
each evaporation rate, which results to be lower for increasing evaporation rates. (b) Same as (a), but
with the vertical axis normalized to the final condensed fraction that is reached for each evaporation rate
q. The gray area highlights the latency time ∆t (see text). (c) Final relative temperature T/Tc for the
various rates q. T/Tc is higher for higher evaporation rates. [(d)-(f)] Equivalent results as [(a)-(c)] but
for atomic samples with a lower initial number of atoms Nlow.

again appears to be independent of q. This becomes more evident when rescaling, for each
value of q, the condensate fraction of Fig. 4.5 (a) by its final value (N0/N)f , obtained by
averaging the data for (t − tc) > 500 ms, and marked by the dashed lines in (a). The
rescaled curves, shown in (b), all overlap within the errorbars, indicating that also the
growth dynamics of the order parameter is independent on q. For these reasons, these
ramps are effectively a quasi-instantaneous quench.

The final temperature (T/Tc)f reached after the post-quench relaxation, as shown
in Fig. 4.5 (c), increases with q, while the condensate fraction (N0/N)f [see Fig. 4.5 (a)]
decreases, meaning that the evaporation becomes less and less efficient for increasing
quench rates. Indeed the maximum rate q = 4000 kHz/s was selected in order to still
obtain a condensate after the post-quench equilibration, even if with a very low final BEC
fraction (around 1%, close to the detection limit). Especially in these cases, our choice of
measuring the number of atoms by integrating the residuals of the fitted Bose distribution
appears to be much more reliable than performing a Thomas-Fermi fit on the condensed
part. Our procedure, indeed, is not influenced by the choice of any fitting function for
the condensate profile, and has a detection limit determined only by the average noise,
allowing for a determination of the onset of condensation already from images with a few
thousand atoms in the condensate. Such BEC images do not fit well to a Thomas-Fermi
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profile, being far from the high-atom number condition at the basis of the Thomas-Fermi
approximation and in a strongly out-of-equilibrium condition (see Sec. 4.4).

Analogous results, shown in Figs. 4.5 (d)-(f), are obtained for the dataset with Nlow,
where the density of particles in the cloud is lower. Qualitatively, the behavior is the
same as for the high atom number case, but, quantitatively, the delay in the onset of
the order parameter becomes longer: ∆t = 161(16) ms. Also the growth of the order
parameter for less dense clouds occurs on longer timescales, with the final equilibrium
BEC fraction being reached after (t − tc) ≥ 750 ms. Both behaviors well agree with a
model where the latency time and BEC growth timescale depend on the re-equilibration
processes at constant atom number in the isolated post-quench system, which essentially
depend on two-body atomic collisions. In this framework, the larger timescales observed
for the ensembles with lower atom number well agree with the collisional time being larger
in the case of lower atomic density. We estimate the classical collisional time according
to [75], as

τcoll = (n̄σv)−1, (4.3)

where n̄ =
∫
n2(r)dr/

∫
n(r)dr is the average density of the thermal cloud, computed

at the transition time tc, σ = 8πa2 is the s-wave scattering cross-section and v =
4
√

kBT/(πm) is the average velocity. This yields a collisional time of τcoll ∼ 18 ms for
the Nhigh dataset and τcoll ∼ 32 ms for Nlow, suggesting that the delay in the onset of
condensation also obeys a universal behavior, resulting in ∆t ∼ 5τcoll. These observations
are in good agreement with early works on the BEC formation after a sudden quench [13,
14], which clarified the role of interactions in the condensation process, leading to the
development of a complete quantum kinetic theory [187], and indicating the existence of
a latency time in the condensation process.

4.3.2 Low evaporation rate: growth dynamics during the ramp

In Sec. 4.3.1 we discussed the formation and growth of the BEC order parameter taking
place after a fast evaporation ramp that can be considered as an almost instantaneous
quench. In this section, instead, we consider lower evaporation rates, with q ≤ 400 kHz/s
in the case of Nhigh and q ≤ 200 kHz/s for Nlow. This makes the dynamics conceptually
different, since the formation of the condensate occurs during the RF-driven evaporation,
which implies that both the atom number and temperature are decreasing during the
process, rather than staying constant as in the post-quench dynamics discussed before.

Figure 4.6 shows the evolution of the condensate fraction as a function again of (t− tc)
for the case of slow ramps. The data for different ramp rates q fit well to a smooth step
function, as shown in Fig. 4.6 (a). We fit the BEC growth data to the error function:

N0

N
(t) =

1

2

[
1 + erf

(
t− tc − t50%√

2τ1

)]
, (4.4)

which is centered at t50% (where the condensate fraction reaches 50%) and is characterized
by a growth time constant τ1. The fit is performed only on the data points corresponding
to N0/N < 0.5 [solid lines in Fig. 4.6 (a)], since we focus on the initial part of the
condensate formation process, and not on the final saturation of the condensate fraction.
As expected, the condensate growth is slower for slower evaporation ramps, corresponding
to smaller values of q (higher τQ). In Fig. 4.6 (b) the same data are shown as a function
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Figure 4.6: Growth of the BEC order parameter during cooling ramps with low evaporation rate. The
condensate fraction is shown for different evaporation rates on gases with initial atom number Nhigh, as
a function of (t− tc) (a) or (t− tc)/τQ (b). The curves correspond to the fitted error functions, defined
in the main text (solid lines represent the fitting functions in the interval where the fit is performed,
while dashed lines outside). Panel (c) shows the dependence on the characteristic ramp time τQ of the
sigmoidal fit parameters τ1 (triangles) and t50% (stars). The lines are linear fits of τ1(τQ (black solid)
and t50%(τQ) (red dot-dashed). The inset shows a zoom of the region close to the origin, highlighting the
presence of a finite offset for t50%, while τ1 → 0 when τQ → 0. Panel (d) shows that all growth curves,
when shifted by the t50% parameter obtained from the fit and rescaled by the time τQ of each ramp,
overlap onto a universal curve (in black). [(e)-(h)] Same as (a)-(d), but for a smaller initial number of
atoms, Nlow. The black curve in (h) is the same as in (d), showing that the universality holds also for
different atom numbers.

of the normalized time (t− tc)/τQ. In these units, the curves have the same growth rate
but are still relatively shifted in time. This highlights the fact that τQ is the timescale
dominating the process of condensate growth, while the shift indicates again the presence
of a delay in the condensate onset, having a dependence on τQ different than that of the
growth timescale τ1. The behavior of the timescales of condensate formation and of this
delay becomes clear in Fig. 4.6 (c), which reports the results for τ1 and t50%, obtained
from the erf-function fits performed in (a). A linear scaling of both parameters with τQ
clearly appears (the black solid and red dot-dashed lines represent linear fits of τ1(τQ) and
t50%(τQ), respectively). While, however, τ1 goes to zero in the limit of τQ → 0, i.e., for
increasingly faster ramps, t50% goes to a finite value. We find that the value of this finite
offset is of the same order as the latency time ∆t measured for the fast ramps (which are
the actual case of τQ → 0). This is consistent with the presence of a minimum latency
time required by the system, after the temperature has crossed the critical point at any
rate q, before exhibiting the onset of condensation.

This is confirmed by performing the same analysis for Nlow [see Figs. 4.6 (e)-(h)]. By
comparing the linear fits of t50%(τQ) [panels (c) and (g)], we notice that the minimum delay
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HIGH N
τ1 0.120(5)τQ − 1(4) ms
t50% 0.246(4)τQ + 92(3) ms

LOW N
τ1 0.128(4)τQ − 8(6) ms
t50% 0.259(9)τQ + 135(9) ms

Table 4.1: Results of the linear fits, reported in panels (c) and (g) of Fig. 4.6, for τ1 and t50% as a function
of τQ, for high and low N , respectively.

increases when the atom number decreases. The characteristic time τ1 appears instead
again to be proportional to τQ, with a similar proportionality factor for both regimes of
atom numbers.

The results of the linear fits on t50%(τQ) and τ1(τQ) are reported in Table 4.1.

Thanks to the above analysis, it is possible to identify a dimensionless universal time
(t − tc − t50%)/τQ. In panels (d) and (h) of Fig. 4.6, the same condensate growth data
are plotted as a function of this new timescale, for Nhigh and Nlow, respectively. Thanks
to the observed linear scaling of both τQ and t50% with τQ, all curves collapse on each
other. This occurs not only at the origin of the new horizontal axis, where the curves
overlap due to the definition of t50%, but also in any other point, indicating the presence
of universality. The universal growth curve is the same for both atom number ranges that
have been explored. In fact, the black line shown in Fig. 4.6 (h) corresponds to the best
fit for the Nhigh data of Fig. 4.6 (d) and perfectly overlaps also on the low atom number
data. This result goes beyond a simple interpretation in terms of instantaneous thermal
equilibrium: indeed the overlap occurs for ramp rates in a rather broad range, from the
quasi-adiabatic evaporation rates (e.g. q ∼ 20 kHz/s) to the higher ones (q ∼ 300 kHz/s),
where the condensate formation clearly occurs in an out-of-equilibrium condition, as was
observed in Fig. 4.2.

Conclusions & considerations on the formation of the BEC order parameter

Let us now draw some intermediate conclusions regarding the formation of the condensate
order parameter. We analyzed the role of the cooling rate q in the BEC onset and growth
dynamics, exploring a wide range of values of q, for two sets of atomic ensembles with
different initial atom numbers (Nhigh = 3.6(3) × 107, Nlow = 1.7(9) × 107). We found
that for fast ramps (q ≥ 400 kHz/s for Nhigh and q ≥ 300 kHz/s for Nlow) the condensate
order parameter formation takes place after the end of the ramp, as a post-quench process
during the equilibration at constant atom number. We observed the presence of a fixed
delay in the BEC onset with respect to the time tc, at which the critical temperature is
crossed. This delay does not depend on the cooling rate but rather on the density, which
determines the collisional time in the thermal cloud. Our observations are in agreement
with earlier studies of condensate formation after sudden quenches, where such a delay
was already identified as latency time [13, 14].

For linear evaporation ramps of lower rate q, we notice that the condensate formation
in our system is characterized, during the evaporation, by a universal exponential growth
taking place on a timescale τ1 ≃ 0.125τQ, for both regimes of atom numbers that were
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investigated. A finite delay was also identified, corresponding, in the limit of τQ → 0, to
the latency time observed for the post-quench dynamics.

The recent theoretical analysis of [23] pointed out the role of another timescale, as-
sociated with the Kibble-Zurek mechanism, the freeze-out time t̂, which is predicted to
affect the growth of the condensate at early stages and should scale with the square root
of τQ. Our experimental observations, that at the beginning were actually aimed at the
identification of effects related to this freeze-out time, however, do not show evidences of t̂.
This is likely caused by the effect of the latency time, associated with the finite collisional
time in our samples, which is not included in the theoretical model of [23]. An effect of
t̂ on the condensate formation dynamics might be possibly observed performing similar
experiments in samples with a much higher density, where the latency time is expected
to be shorter.

4.4 Evolution of the order parameter fluctuations

In Sec. 4.3 we investigated the timescales that characterize the growth of the BEC order
parameter as a function of the cooling rate.

We now focus on the evolution of the spatial fluctuations of the order parameter. In
fact, as shown in the theoretical simulations of Ref. [22], when the condensate forms, the
system is initially characterized by a turbulent regime, with strong spatial fluctuations of
the phase of the order parameter. Then a coarse-graining dynamics leads to the forma-
tion of phase domains, that eventually evolve into isolated quantized vortices during the
subsequent relaxation dynamics.

Different techniques can be used to detect spatial phase fluctuations in an ultracold
gas. For instance, one can take absorption images after a ballistic expansion of the
atomic cloud, and exploit the fact that spatial phase fluctuations present in situ evolve
into density ripples after a long enough TOF. This technique was used to measure spatial
phase fluctuations in Bose gases close to the 1D regime, where the reduced dimensionality
limits the long-range coherence, enhancing the phase fluctuations [108, 188, 189]. Bragg
spectroscopy techniques were also used in analogous systems, connecting the width of the
momentum distribution to the average length of the original phase domains [189, 190].

Quantum turbulence [191] in ultracold gases was recently studied also by mechanically
introducing it by rapid perturbations of the confining optical or magnetic potentials, and
observing its relaxation phenomena [192, 193, 106, 194, 195, 196, 197, 198]. In these works,
the turbulent regime was investigated by means of interferometric techniques or through
the direct detection and counting of the quantized vortices that remain as late-time relics
originating from the initial turbulence.

In our experiment, we investigate the phase fluctuations originated by a rapid cooling
across the BEC critical point. After such a temperature quench, the generated turbulent
regime typically relaxes towards the BEC ground state, sometimes leaving isolated topo-
logical excitations, such as vortices [25, 198] and transverse solitonic vortices in elongated
systems [199, 56, 200]. These defects can be detected after timescales of the order of at
least a few hundred of ms, and were used in previous experiments [19, 24, 25] to inves-
tigate the powerlaw scaling, predicted by the Kibble-Zurek mechanism, of the density of
defects with the cooling rate.

The aim of this work is instead the investigation of the early-time turbulent phase,
generated by the rapid cooling across the transition point, and the identification of its
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typical relaxation timescales.
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Figure 4.7: Relaxation dynamics of the fluctuations of the order parameter. (a) Pictures of the BEC
component as a function of the universal timescale of the condensate growth defined in Sec. 4.3.2. (b)
The residuals h(x, z) between the OD shown in (a) and the average OD at the same universal time,
normalized by the peak OD at each time, are larger shortly after the BEC onset and then decay when
the initially turbulent system relaxes to the smooth final equilibrium state. Panels (a), (b) and (c), (d)
correspond to evaporation rates of q = 50 kHz/s and q = 300 kHz/s, respectively. All images are taken
after the same time of flight ttof = 50ms and share the same spatial scale and coordinate axis indicated
in (a) and (b).

To measure the fluctuations of the order parameter, we exploit the method used by
[108, 188, 189], using the same TOF images that already allowed for the study of the
timescales of the order parameter growth (see Sec. 4.3). For this analysis we consider the
instantaneous images taken at times t > tc. We subtract the thermal component resulting
from the Bose fit to obtain the OD of the sole condensate. Panels (a) and (c) of Fig. 4.7
show the condensate OD of some of such images, in the dimensionless universal timeframe
(t− tc − t50%)/τQ found in Sec. 4.3.2, shortly after the condensation onset and during the
order parameter growth, for a low and a high evaporation rate, respectively. One can
clearly observe the presence of density ripples, similar to the ones observed in the TOF
expansion of nearly 1D clouds in [108], which were in that case caused by the reduced
dimensionality of the system, while in our case they are due to the in situ turbulent phase
originating from the finite-rate cooling.

In order to investigate the evolution of the fluctuations of the order parameter, we
compare each BEC profile to the average over several repetitions in the same experimental
conditions. Panels (b) and (d) of Fig. 4.7 show the residuals h(x, z; t), calculated as the
difference between the OD of each image in panels (a) and (c) and the average OD at the
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Figure 4.8: (a) Decay of the order parameter fluctuations H(t− tc) in the case of low evaporation rates,
normalized to the initial value H(0), as defined in the text. (b) Time constant τ2 of the exponential fit
of the decay of the fluctuations (dots), compared to the condensate growth rate τ1, as a function of the
ramp time τQ. Linear fits in the log-log scale highlight the power-law scaling of the two quantities, with
an exponent 1 (linear scaling) for τ1 (red, dot-dashed line) and an exponent 0.6 for τ2 (blue, solid line).
(c) Same as (a) but for high evaporation rates, notice the different scale of the t− tc axis. (d) In contrast
to the low evaporation rates, there is no clear dependence of τ2, extracted from the exponential fit, on
the quench time τQ, with τ2 resulting fairly constant at a value of (98± 25)ms (gray area)

corresponding time, normalized by the peak OD:

h(x, z) =
(OD − OD)

ODmax

. (4.5)

In the early stages after the appearance of the BEC, a large amount of fluctuations
is present, both at large and small scale, which then decay during the growth of the
condensate. Comparing the two evaporation rates, we notice the formation of a larger
amount of fluctuations for the higher cooling rate, which then decay on a longer timescale
in the universal time that characterizes the BEC growth. This means that for a higher
cooling rate, at the same stage of the BEC growth (i.e. for the same condensate fraction),
the order parameter presents a larger amount of fluctuations.

We quantify the total amount of fluctuations at each time by calculating the quantity:

H(t) =

∫
σOD(x, z; t)dxdz∫
OD(x, z; t)dxdz

, (4.6)

where σOD(x, z; t) is the root mean squared (RMS) deviation of the set of ODs at time t
and the integration is performed over the whole area of the image. In Fig. 4.8 the amount
of fluctuations H(t), normalized by its initial value H(0), is shown as a function of the ab-
solute time (t−tc) for different low [(a), q < 400] and high [(c), q ≥ 400] evaporation rates,
for the dataset with Nhigh. An exponential decay of the amount of fluctuations clearly
appears for all evaporation rates. By fitting H(t) to an exponential, we obtain the time
constant τ2 that characterizes such decay, as a function of τQ. Figure 4.8 (b) shows τ2(τQ)
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in log-log scale: the observed linear behavior corresponds to a power-law dependence,
with τ2 ∝ τ

0.63(5)
Q . The BEC formation characteristic timescale τ1, which scales linearly

with τQ (with a power law of exponent 1), is shown for comparison. The timescales τ1 and
τ2 clearly scale differently with the characteristic ramp time. This highlights a nontrivial
relation between the characteristic time for the BEC order parameter formation and the
relaxation timescale of its fluctuations. Figure 4.8 (d) shows the quantities of panel (b)
but for high evaporation rates (quasi-instantaneous quenches), where the growth of the
condensate and the relaxation of the fluctuations occur after the end of the evaporation
ramp. In this case, the decay time τ2 is fairly constant and on the order of 100 ms, as
shown in panel (d) of Fig. 4.8. We notice that this value is similar to that of the latency
time for the same range of atom numbers, suggesting also in this case a relation with the
collisional rate in the atomic cloud.

The parameters extracted from our analysis are reported in Table 4.2 for all the
combinations of atom numbers and evaporation rates that were explored. The large
atom number is particularly important for carefully studying the turbulence dynamics in
the condensate. Indeed, the atom number that we consider as “low” is actually still larger
than typical condensate atom numbers in the literature, especially if one considers other
atomic species.

Nhigh

q (kHz/s) tf τQ tc τ1 t50 τ2 ∆t
20 11 18(3) 3.41 (12) 2.17 (6) 4.43(5) 0.45 (9) -
50 4.4 6.6(3) 1.85 (2) 0.82 (2) 1.711 (11) 0.25 (3) -
100 2.2 2.7(2) 1.231 (16) 0.347 (13) 0.774 (7) 0.14 (3) -
300 0.73 0.602(15) 0.516 (3) 0.075 (2) 0.248 (2) 0.043 (9) -
400 0.55 0.30(2) 0.453 (5) 0.031 (2) 0.177 (3) 0.069 (4) 0.087 (10)
600 0.37 0.236(12) 0.307 (2) - - 0.109 (16) 0.090 (11)
1000 0.22 0.139(4) 0.193 (1) - - 0.12 (2) 0.088 (10)
2000 0.11 0.091(8) 0.0940 (9) - - 0.13 (3) 0.085 (15)
4000 0.055 0.052(5) 0.0525 (4) - - 0.061 (4) 0.083 (17)

Nlow

q (kHz/s) tf τQ tc τ1 t50 τ2 ∆t
20 7.5 11.0 (6) 3.87 (9) 1.41 (3) 2.74 (3) 0.80 (11) -
30 5 7.3 (5) 2.68 (10) 0.88 (6) 1.87(4) - -
40 3.84 5.4 (4) 2.39 (4) 0.75 (5) 1.57 (4) 0.23 (4) -
43 3.5 4.5 (3) 2.10(6) 0.60 (5) 1.28 (4) - -
50 3.0 4.0 (2) 1.98 (3) 0.54 (3) 1.17 (3) 0.19 (9) -
75 2.0 1.7 (4) 1.35 (4) 0.22 (4) 0.66 (3) - -
200 0.96 0.48 (5) 0.681 (7) 0.054 (3) 0.242 (2) - -
300 0.50 0.353 (8) 0.438 (9) - - - 0.140 (2)
750 0.20 0.17 (3) 0.192 (5) - - - 0.14 (2)
1500 0.10 0.06(1) 0.101 (11) - - - 0.20 (3)
3000 0.05 - 0.07 (2) - - - 0.18 (4)

Table 4.2: Relevant timescales for the different ramps for Nhigh (above) and Nlow (below). All timescales
are in seconds. ∆t is the latency time measured for fast ramps where condensation occurs as a post-quench
process.
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4.5 Conclusions and further perspectives

In the work presented in this chapter, the growth of the order parameter and the temporal
evolution of its spatial phase fluctuations were investigated. This was done by evapora-
tively cooling the gas across the critical point for Bose-Einstein condensation by means
of radio-frequency ramps of different rates. We studied the evolution of the atomic sys-
tem, by measuring the effective temperature and condensate fraction from time-of-flight
images, capturing the state of the system during and after the end of the cooling ramp.
An increasing out-of-equilibrium condition was observed when crossing the critical point
at higher rates, which was highlighted by comparing the instantaneous and steady-state
condition at each point of the cooling process.

The main focus of this work was the study of the timescales of order parameter for-
mation. We found that the condensate starts forming with a finite delay with respect to
the time at which the temperature crosses the critical point. This delay, observed already
earlier in rapidly cooled Bose gases, and defined in literature as latency time, is likely to
be determined by the finite collisional time of the gas. The comparison of measurements
performed in systems of different density, suggests, indeed, an inverse proportionality
between the delay and the classical collision rate.

As a consequence of this finite latency time, we observed that, for high evaporation
rates, the onset of condensation occurs after the end of the cooling ramp, although the
critical temperature is crossed during the ramp. The formation of the condensate follows
in this case a universal curve, with an intrinsic growth rate, that does not depend on the
quench time τQ. These ramps can thus be considered as quasi-instantaneous quenches.
In this regime, other works pointed out a break-down of the Kibble-Zurek scaling laws,
with the saturation of the number of defects. This is consistent with our results, where
the evolution timescales of the system appear not to depend on τQ for fast cooling ramps.

For slower evaporation ramps, instead, a condensate starts forming during the ramp.
We found that, also in this case, the order parameter follows a universal growth curve,
but with a characteristic timescale τ1 proportional to the quench time τQ, as predicted
in Ref.[23] for the late-time evolution. Interestingly, the proportionality factor between
τ1 and τQ does not seem to depend on the system’s density, since identical growth curves
were observed, upon rescaling the time-axis by τQ, for ensembles with different initial
atom numbers. After rescaling the time-axis, we identified, also for the slow ramps, the
presence of a constant delay, consistent with the one observed in the high evaporation rate
regime, that we attributed to the effect of the finite collisional rate. We could, instead,
not find evidence of a quench-dependent delay following the scaling expected for t̂ (as
∼ τ 0.5Q ), as predicted by [23].

We also studied the evolution of the spatial fluctuations of the order parameter formed
at the early stage of condensation. A different dependence on the quench time was in
this case observed, compared to the condensate density evolution. The decay time of the
fluctuations was indeed shown to scale as ∼ τ 0.6Q for the ramps where condensate formation
occurs during the evaporative cooling. In the case of fast ramps, instead, a fairly constant
decay time of the amount of fluctuations was observed, consistent with the idea that in
these cases the timescales of the post-quench dynamics do not depend on the previous
cooling rate.

The measurements reported in this chapter regard the cooling at finite rate of a sodium
Bose gas, in experimental conditions (trapping potential, temperature, number of atoms,
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ramp duration) very similar to those of previous studies made in our laboratory [19, 24].
In these works the presence of spontaneously generated topological defects was observed
by imaging the system at late times after the critical time, and the Kibble-Zurek scaling
was verified for slow enough quench rates. The KZ mechanism should therefore be valid
also for our measurements, as suggested by the formation of more pronounced phase
fluctuations for faster ramps, as observed in Fig. 4.8. However, further investigations
would be important to draw conclusions about the formation and evolution of defects
within the system.

A more detailed investigation of the order parameter fluctuations could in this sense
be important, for instance studying the evolution of the system correlation length as a
function of the cooling rate [76, 190] and comparing it with the timescales found in this
work for the order parameter growth and fluctuation decay. An investigation on the
evolution of the momenta and energy distributions during the different ramps and in the
subsequent relaxation could also be performed, following Ref. [179], in order to study the
evolution of the fluctuations spectrum [23].

The deeper understanding of the BEC formation timescales, obtained thanks to this
work, could be used as a benchmark for future studies in the same experimental setting.
For instance, the knowledge of the characteristic scaling of the BEC growth time with
the quench time could be used as a reference to study in real-time the dynamics during
the formation of the condensate within an initially thermal cloud. To this aim, one could
take multiple images of the out-of-equilibrium system, using a partial transfer imaging
technique similar to the one described in Sec. 2.9 or in Ref.[71], where it allowed to follow
the dynamics of vortex lines. In particular, it would be interesting to study in real time
the first stages of condensate formation, looking for evidence of the early-time coarsening
and studying how topological defects emerge out of the initial tangle of phase fluctuations
[22]. While for an equilibrium, well-defined condensate, the extraction of a small fraction
of atoms only minimally perturbs the system, as shown in Sec. 2.9, for the early stages
of condensate formation it is more challenging to apply the same technique. The main
challenge is represented by the fact that the outcoupling of atoms can act like an additional
evaporation process, modifying the PSD of the system, although minimally. This can
lead to modifications of the time at which the critical point is crossed, as well as of
the condensation onset time. Such modifications depend on the extraction parameters,
making the understanding of the evolution dynamics more difficult. The present work
could be used, in this context, to perform a comparison between the dynamics observed
in a cloud that is probed using the PTAI multi-frame technique during a cooling ramp
and the expected evolution for the same cooling rate.

Other perspectives involve the use of the DMD that I implemented in the experimental
apparatus (see Sec. 2.7.2), to study in a deterministic way the effect of local quenches,
performing sudden modifications of the optical potential by changing the light patterns
projected by the device.

Another important perspective of this work is the development of more efficient cooling
procedures, for the production of defect-free equilibrium condensates with a high number
of atoms, possibly in a short experimental time. This is particularly relevant in the
perspective of using ultracold degenerate quantum gases for quantum simulation, for
which systems with a clean and well-controlled state are highly desired. To this regard, the
observed different scaling with τQ of the timescales for BEC growth and fluctuations decay
is particularly relevant. The present work could be, indeed, extended, performing not
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only linear ramps across the phase transition, but also ramps where the RF evaporation
frequency has a more complicated time-dependence. Preliminary measurements were
already performed in this direction, implementing, instead of the single linear ramp of
this work, three linear ramps: the first one is used to bring the system in the close
vicinity of the critical point, the central one to cross the critical region, and the last
one to further cool the system and increase the condensate fraction. Such a cooling
protocol allows for an independent control of the evaporation rate in the various stages of
the condensate formation, providing the possibility of optimally tuning each part of the
cooling process. This could be a starting point for the implementation, for instance, of
cubic ramps or in general for changing the evaporation frequency in time following ad-hoc
designed functions.
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