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Covariant quantization of a multi-pronged open bosonic string junction is studied beyond
static analysis. Its excited states are described by a set of ordinary bosons as well as some
sets of twisted bosons on the worldsheet. The system is characterized by a certain large
algebra of twisted type that includes a single Virasoro algebra as a subalgebra. By properly
defining the physical states, one can show that there are no ghosts in the Hilbert space.

Subject Index B29, B39

1. Introduction

Since the 1990s, when D-branes and various string dualities were found, string junctions have
been studied by many authors in the context of superstrings and M-theory.! These analyses
mainly focused on the static properties such as BPS conditions or stability, with a few exceptions
(see, e.g., Refs. [3,4].) String junctions are dynamical objects formed by dynamical strings, so
that one can naturally ask their dynamical properties such as the spectra of their excited states
and other quantum features beyond static properties.

Going back to the 1970s, some earlier works studying classical motions [5—7] and a simple-
minded quantization [8] of string junctions appeared. In those days a string junction was con-
sidered as a model of the baryon, and they naively tried to quantize a three-string junction.
In the analyses, they did not reach a physical spectrum, which is largely due to the non-closed
property of the constraint algebra. In 1984, Ref. [9] analyzed the constraint structure of the
same system more carefully, and got a deeper insight into classical solutions, but still the full
quantum spectrum had been left undetermined.

In the present paper, the authors are going to revisit the problem. In particular, we propose a
set of physical state conditions under which we can show there are no ghosts in the spectrum.
In the following, we treat multi-pronged open bosonic string junctions in flat space-time. An
f-pronged open string junction is an object consisting of f open string segments, whose one
ends are tied together at a point and the other ends are free (see Fig. 1). We quantize such a
system based on so-called “old covariant quantization” (OCQ).

"We only cite work [1,2] that explains the essential points since there are so many papers and we cannot
list them all.
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Fig. 1. f-pronged open string junction.

Our system is different from that of multi free strings in the sense that string segments are
somehow interacting with each other through the connecting point. Therefore the constraint
algebra governing this system is not just a multiple of Virasoro algebra, but rather an infinite-
dimensional open algebra that includes a single Virasoro algebra as a subalgebra. Also, the
state space is not just a multiple of single string Fock space. One needs to introduce some sets
of twisted bosons in addition to a set of ordinary bosons on the worldsheet. Accordingly, the
operator algebra of the constraints is of twisted type; namely it contains both periodic and
anti-periodic parts, and we find many interesting and non-trivial features worth investigating
in their own right.

The paper is organized as follows. In Sect. 2, we formulate an f~-pronged open bosonic string
junction starting from a Nambu—Goto-type action. We determine the mode expansion of the
variables in the orthonormal gauge and study the structure of the primary constraints. In
Sect. 3, we investigate the physical state conditions in detail. In Sect. 4, we concretely deter-
mine the physical spectrum and discuss its properties. There are many things to be clarified,
some of which are discussed in the final section. Some useful algebraic relations are collected
in Appendices A and B. Some details of the physical states are given in Appendix C. We make
a remark on the light-cone gauge in Appendix D.

2. f-pronged open string junction

Let us consider the f-pronged open bosonic string junction shown in Fig. 1. We denote a coor-
dinate variable of the ith string segment by X*(t, o)(i=1, 2, ..., f), where u(=0,1, ..., D
— 1) is a space-time index and 7, o (o € [0, 7]) are the worldsheet parameters.” Each string is
connected to the other strings at o = 0, i.¢.,

XOr(z,0) = XD(z,0) for arbitrary 7 and j, (1)

while o0 = 7 is a free end. We also use a notation £% = (t, o)(e¢ = 0, 1) for the worldsheet
parameters. Then the Nambu—Goto-type action for the system is

S
S=-T)Y / dtdo\/ — det[0, XD, (1, 0) dp X D (2, 0)], )
i=1
where T'(= ﬁ) is the string tension and the determinant is taken with respect to the indices

a, B of the partial derivatives. In the following, we sometimes abbreviate a contraction of the

>We adopt n*¥ = diag.( — 1, 1, ..., 1) for the target space metric.
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space-time indices simply by a dot; e.g., 4 - B= A, B"*. We also denote X=0Xand X =0,X
as a customary use. We can write the action in a more explicit way as

;
S = _TZfdfdg\/_()'((i) X OYXD L XD 4 (XD X0)2, (3)
i=1

The action has a reparametrization invariance under the (local) transformation
SXO(r o) = — (1, 6) 3, X (1, 0), 4)
as long as the infinitesimal transformation parameters € ?%(z, o) satisfy
eM(z,0)=0 and ez, ) =0. (5)

Since the ith term in the action only depends on the ith variable X", (¢, o) can be taken
independently of each i except for the boundary condition

ez, 0) = (<, 0) for arbitrary i and j, (6)

which keeps the condition (1).
Taking a variation 8 X'’ in the action, we obtain a set of equations of motion

XOn(x'® . x 0y — xOnx® . x/@)

T
\/_( X0 . XO) XD . X0) 4 (X0 . Xy

X'Onx® . x Oy xOrx@ . x)

+ 05 =0 (7)
\/_( X0 . XO) X0 . X0y 4 (XD . X0y
and boundary conditions
YO YO . Oy _ yor(x O .y
\/_(j((i) X0 X0 X0) 4 (XD X0
f . . . . . Iy . o .
X' x® . x®Oy_ xOux® . x0
( ) — X I o
i—1 \/_(X(i) X O) XD L XD 4 (XD L X0))2 .
as a stationary condition for the action.
The canonical conjugate momentum for each variable X is
, X(i) X/ . xiy _ X/(i) YO . x1
PO =T L ( ' ) — X' ( . ) , (10)
\/_(Xm X)X . XD 4 (XD . X0y
from which we obtain the primary constraints
P;(j)P(i)M + TZX/i(i)X’(i)" =0, (11)
POX O =, (12)

The Hamiltonian given by the Legendre transform of the Lagrangian in Eq. (3) vanishes. There-
fore the total Hamiltonian consists only of primary constraints multiplied by arbitrary param-
eter functions u%’)(r, o) and ug’)(r, o):

S en
Hr=)Y_ / do [ug”(PW + 72Xy ) PO X/(i)] : (13)
i=1 70
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The above constraints are all first-class and there are no more constraints coming from their
time evolution.
Now let us take a gauge

ul? = % ) =0, (14)
which is equivalent to the so-called orthonormal gauge that imposes
X0 X0 4 x0 . x@ — g, (15)
X0 . x'0 =, (16)
or alternatively
XD+ X0y = 0. (17)

In this gauge, the equations of motion and the boundary conditions are largely simplified as
follows:

(Eq. of motion) (82 — 82)X " =0, (18)

(Boundary cond.) 9, XV|,_, =0, (19)
f’ I

D3 X =0. (20)

i=1
These equations combined with Eq. (1) are enough to determine the mode expansion of X*,
Note that in this gauge the canonical momentum variable becomes simply PO* = T X In
the following, after canonically quantizing the system, we will basically impose that physical
states should satisfy the relation

(phys|(P? £ T X"?)?|phys) = 0. (21)

Of course, in the quantized version, some central term can appear in the constraint algebra, so
we have to be careful about treating the zero-mode part of the constraints at the operator level,
which will be discussed later.

2.1 Mode expansion
A general solution X*(t, o) of the equations of motion (18) consists of left-moving and right-
moving modes:

X1, 0)= XM +0)+ XM —0). (22)
The boundary conditions also restrict the form of the functions of each mode: Eq. (19) gives
XM ) = XM —7) =0, (23)
while Eq. (20) gives
> (£ - K@) =o. 24)
i=1
Equation (1) leads to
X M)+ X (1) == X ) + X (), (25)
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which tells us that each term X L(i)“ (t)+ X Igi)“ (7) is equal to a certain i-independent function
¢H(t). Thus,

XM () = =X (1) + ¢"(7). (26)
Substituting this relation into Eq. (24), we have
S o ‘
23 XM = £ (o), 27)
i=1
which means
> 4
P (t) = 7 ZXL(W(T) + (28)
i=1

where ¢ is a constant. Then the right-mover is completely determined by the left-mover up to
the constant:

/
X)) =) Ay X (o) + o (29)

J=i

where 4;; = % — &8;;. Also the periodicity of the left-mover is obtained through Eq. (23) as

S
XM+ 2m) = 3 A X (0) = X o). (30)
=

It is easy to obtain eigenvalues and eigenvectors of the /" x f matrix 4 = (A4;). Writing 4 =

%Z — I with the matrix Z whose every element is 1 (Z; = 1) and the unit matrix /, we can first

solve the eigenvalue problem for Z. Apparently, a vector v; whose every element is ﬁ is a

normalized eigenvector of Z with eigenvalue f, and f — 1 vectors v, (a = 2, .. ., f) orthogonal
to v; and themselves (i.e., v; - v, = 0, v, - vy = 8,) are those with eigenvalue 0. Therefore, they
are also the eigenvectors for 4 as

Avi = vy, Avy=—v, (@a=2,..., ). (31)

The eigenvectors v; are determined by
1 1
b3
Note that one simple representation for v, (¢ = 2, .. ., f) can be chosen as follows:

| (i=1,...,a—1)

T
V1

) , Vi -ve =0, Vg vy =0a. (32)

JaaD
Va)i =1 _ “;al (i=a) (33)

0 (i=a+1,..../).
By defining a real orthogonal matrix U whose ith row is just v; (i = 1, ..., f), i.e, Uj = (vi);,

diagonalization of A is expressed as

UAUT =T = ' . (34)

5123

2202 J2qWIBAON Z| UO Jash UOJ}0JYOUAS usuodpial|g sayosinad Aq 9019699/L09E01L/0L/2Z20z/a101e/dayd/woo dnoojwapede//:sdily wouy papeojumoq



PTEP 2022, 103B01 Asano and Kato

Now let us define

Yin(r) = Xf: Ui X\ (1), (35)
=1
Conversely, j
X (1) = i UjiY'" (). (36)
=1
Then from Eq. (30), ]
- al P
V(e 4 27) = { le.ff()t) 8 . 3 37)
If we also define for the right-mover
Yir(r) = ﬁ Uy X" (v), (38)
=1
then j
g 1 ch (i =
=T U
where

;
F=c"y Uy=c"T. (40)
i=1

Now we see from Eq. (37) that Y'#(z) is periodic (up to constant) with periodicity 27 whereas

the Y**(t) (a = 2, ..., f) are anti-periodic. Therefore their mode expansions become
Yy = | g g pre 430 S @)
ﬁ n#0 n ’
I a;fﬂ —irt
Yr)=— Y e (a=2,..., /). (42)
Nt
r€Z+§

Bringing them all back to the original variables, we obtain (also making ¢* absorb a constant
ambiguity c¢*)

. 2 N
X0z, 0) = \/; g  +plit+ iZ %”e’”" cos(no)

n#0

f au
+V23 00 Y Te i sin(ro). (43)
=2 ezt |
One can easily check that this expression satisfies the equations of motion (18) and all the
boundary conditions (1), (19), and (20) by noting the property Z{; {(va)i = 0, which comes
from v, - vy = 0.
To quantize the system, we will set a canonical equal-time commutation relation in the inter-
val o, o’ € [0, ] with the canonical conjugate momentum P (1, o) = ;- X D (z, 0):

[X(i)ﬂ(.[’ O'), P(j)”(-[’ O'/)] = l]’)l“)3”8(0' - O—/)- (44)
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Here (and hereafter) we have taken 7' = % (o' = 1) for brevity. This relation leads to
[a#s a,l;] = n5n+m,0’7“v, [Ol,fm, ai}v] = r8r+s,08ahnﬂva [q“, pv] = in"’, (45)

wheren,m e Z, r,s € Z + % and oy = p*. Thus our total Fock space is described by D ordinary
bosons and (f — 1)D twisted bosons.

2.2 Constraints
Let us turn to the constraints (11) and (12). They can be combined into

Qr PV £ X' D) ~0, (46)

where the wavy equal is used in the sense of Eq. (21). Each of these can be written in terms of
the left- and right-movers:

- (i 2 - (i 2
(@) ~o0.  (¥@) ~o. (47)
Furthermore, in terms of the mode-diagonal variables Y, they become
f . . . . f ~ . . .
YK V@) o xo. Y K@) P o, (48)
Jik=1 Jik=1
Ky =U;Uy, K =TKT. (49)

Here we have used the matrix notation (K')j = K]".k and T' was defined in Eq. (34). The
constraints defined by K’ and those of K’ are interchanged when t goes to r + 27 since
Yit(tr 4 2) = ('Y (7). If we recombine them into those of K + K’ and K’ — K', then each
set of constraints has definite periodicity. So one may think that there are f periodic and f anti-
periodic independent constraints. The situation, however, is not so simple. To see this, let us
look at the structure of K'.

We first define the following three types of f x f symmetric matrices:

i |

P= , i = , 50
= 100 + 2000w (50)
1 4
|W(Vb)1
R=1, : (51)
W(Va)i

In other words, (P)i1 = 7, (Q")a = $0ra)(); + $0a); (s (R)1a = (R = = (), and
all other elements are vanishing. Then K’ and K’ can be decomposed as

K=P+0Q"+R, K'=P+0Q"—R. (52)
One can see that the matrices for the anti-periodic constraints K/ — K’ = 2R’ are not totally

independent because of the relation Zlf:  R' = 0asaresult of Z,f: 1 (va)i = 0. We may choose,
e.g., R“ as independent ones. Thus, we have f periodic and /' — 1 anti-periodic constraints:

S S
Y P+ 0N V() Yir)~0, > R4 YI(r) YH(r) ~0. (53)
Jik=1 Jik=1

7123
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In order to investigate the constraints in more detail, we introduce the so-called Fubini-
Veneziano fields ¢*(z) with a complex variable z( = ¢'):

m
oM (2) = ﬁY“‘(—ilnz):q" —ipt lnz-l—iza—"z_", (54)
n#0 n
ap
¢ () =V2Y U (—ilnz) =i Y “; = @=2..., 1) (55)
rGZ-‘r%
They satisfy the periodicity

9l(iz) = () 2mpt, () = (). (56)

It is convenient to define A7 (z) = id.¢™(z), i.e.,
A=Yk A= Y el (57)

nez l‘GZ—i—%

A'M(z) is periodic whereas the A% (z) are anti-periodic under the replacement z — >z, If we
define the operator Ty(z) for a given matrix M as’

f
1 ¢ ; . D
Tu () = 5 ]Z_:l M Al(2)- A(2) 0 + Tear(MP-), (58)
where : O :is a normal order of O with respect to the oscillators o/, o (and P_ = %(1 —-1)),
then the operators corresponding to the primary constraints (53) are given by Tp, i(z) and

Tra(z). These operators satisfy the relations
Tpygi(€™'z) = Tpy0i(2), Tra(e™'z) = —Tra(z), (59)

and they have a formal Laurent expansion with an integer power of z and a half odd integer
power respectively:

Tpygi(z) = Ly, (60)
neZ

Tre(z) = Z LR =2, (61)
r€Z+%

In terms of the oscillators, each mode operator is written as follows:

o1 1 , Df—1
L5+Q = — Z o PR S Z (va)i(vp)i Z : O(Z?S oy T——8,0, (62)
2f = 2 — — 16 f
m a,0= s€Z+5
§ 1 S
LE = —=>"0)a Y cef . (63)
\/7 b=2 meZ
Among the above operators, one special combination is

V, = ZL5+QU 64)

1 1 . D
=3 Z SO Oy +§ Z Z Lo Ay +1—6(f — 1)d,.0. (65)

meZ a=2 SEZJF%

3Note that the term 16%tr(M P_) in the definition of T(z) is added in order that the OPE relations
can be written in a unified manner (see Appendix A).
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They satisfy the Virasoro algebra with a central charge Df:

D
l—gn(n2 — D)8yem.0- (66)

Thus we have a single Virasoro algebra as a closed subalgebra of our constraints.

Vis Vil = (n —m)Vyym +

3. Physical state condition for an open string junction

3.1 Preliminary discussion

For the physical state condition, it is possible to impose that the positive modes of the constraint
operators should annihilate physical states just as in the case of the old covariant quantization
for a string:

LM% phys) =0, (>0, i=1,....[) (67)
LRphys) =0.  (r>0, a=2..../) (68)
Note that the algebras of L2 ~2" and L are not closed among themselves, as will be seen in

Appendix B. However, if A|phys) = 0 and B|phys) = 0, then [4, B]|phys) = 0, so that requiring
the above conditions will be sufficient. On the other hand, those of the zero-mode operators
LOQ” must be chosen more carefully. It is not straightforward to choose appropriate conditions
for general f since the set of /' — 1 operators L()QHH_Qh
case of =2, and go into the general discussion afterward.

is not closed. We first study the special

3.2 f=2case

We consider the = 2 case where the physical object is not a junction but an open string. In
fact, in this case, there are only one positive integer and half-integer mode oscillators o), and

a’=>" and the physical state conditions (67) and (68) are reduced to the following two simple
ones:
Valphys) =0, (n>0) (69)
LR *|phys) = ( Z e Oy :) |[phys) =0 (r>0) (70)
meZ

since P+ Q' = P + Q?*. Also, there is only one zero-mode operator V;, which counts the level
of the state (plus % p* and a constant) as usual for strings, and the zero-mode condition should
be taken as Vy|phys) = (ag + %)lphys ) with a normal-order constant or an intercept parameter
ap. If we replace all — \kaZn and /=" — %&gr , they satisfy @), @] = n84mon*’. Writing
Loy =2(V, — £8,0) and Ly = 2LRa ] —2LR 1 we can easily check that the L, satisfy the

Virasoro algebra with a central Charge b and the physmal state condition can be collected as
(Ln - 675,,,()) |phys> =0 (l’l = O) (71)
where @ = 2ay and
o 1 R N
anzz:an,m-am:. (72)
meZ
This is exactly the same condition as for the old covariant quantization of open string theory.

As is well known, the constant @ should be taken as @ < 1 and the dimension as D < 26 in order
to ensure that there is no ghost (negative norm) state in the physical spectrum (see, e.g., Ref.
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[10, 11]). From various discussions like the one-loop level unitarity or the modern BRS quan-
tization, we know that the consistent choice should be ¢ = 1 and D = 26.

3.3 Zero-mode condition

Now we deal with the general /> 3 case and discuss the physical spectrum and its properties.
We have already proposed a reasonable condition for positive modes of the constraint oper-

ators as Egs. (67) and (68). Here we consider the remaining discussion on zero modes of the

constraint operators given by

; Df—-1
L(I;+Q ZfZ Oy - Oy - + Z(Va) (vb)l Z . 7S-0[£ : +EfT (73)

meZ a b=2 seZ+%
These f operators are all independent and the commutation relations are
P+ i P+ JJ i 1]
[LOQ’LOQ] e Q]

Z Gaiv); Y rial, al s, (74)

ab 2 I€Z+2

which shows that the algebra is not closed within the f operators Lg 2" Thus we cannot impose
a condition such that a state |¢) should be a vector in the space of some finite representation
of Lg 2" 1In fact, in order to obtain a closed algebra including all f operators Lg T2 we have
to involve an infinite number of additional operators. On the other hand, the operator Vo =
Z P+Q in itself has a desirable property

1 D(f -1
VO|¢> = (Mevel + 5192 + %) |¢> (75)

where |¢) is a state whose level and the square of the momentum are Nj.,e and p? respectively.

(Note that we take o’ = 1.) We see that one reasonable physical state condition involving the

zero-mode operators is

D(f—1)
16

with some constant . In addition, for other zero-mode operators, it is at least possible to

impose the condition that Lg o |¢) is always physical if |¢) is physical.

Volphys) = (ao + ) |phys) (76)

3.4 Physical state condition

From the above discussion, the most reasonable physical state condition for the present system
is to impose the following set of conditions (I), (IT), and (III) for arbitrary non-negative integer
N, positive integer n, and positive half-integer r:

(I) LI+ ]‘[ LP+Q Iphys) =0, (>0, i ju=1,....1) (77)
k=ji,.

(1) LX HLP+Q Iphys) =0, (r>0, a=2,....f, Jju=l,....[) (78)
k=ji,..

D(f—1 1
(I1I) Volphys) = (Clo + %) iphys) (@» (Nleve] 3 ao) iphys) = 0). (79)
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P+Qkk .
0 is meant to be the product of N L

- PO,
In the above equations, [ [,_ i L 0 :

P+Q L PO PQRR2 P+QININ
[] Lo =17y - L (80)
k=jl e ,jN

for positive N and arbitrary j, (@ =1, ..., N), and Hk:jl,m,j/v LOPJ”QM =1 for N = 0. In what
follows, assuming that the physical state condition is indeed given by the set of these conditions,
we will identify the space of physical states.

First, we examine the properties of each of the above three conditions in detail. The sim-
plest condition (III) determines the relation between the level and the mass of the states. This
restriction does not affect the other two conditions since

Vo L57¢ | = —mLf=@ [V, L] = =L (81)

hold for any integer m or half-integer r. Thus we can continue the discussion within the space
of fixed level (and mass) states separately. Now we consider the conditions (I) and (II) for N =
0, i.e., the conditions LT Iphys) = 0 and LX'|phys) = 0. In this case, from the commutation
relations (B7), (BS8), and (BY), we can prove that if we assume that condition (I) of 7 =1, 2 and
condition (II) of r = %, % for N = 0 are satisfied, all the other conditions (I) and (II) for N =
0 are satisfied. In the process of this discussion, we can also show that a state |¢o) satisfying
conditions (I) and (II) for N = 0 always satisfies L7 |¢o) = LnQ”|d)o) =0 for n > 2. Next, we
impose conditions (I) and (IT) for N = 1 on a state |¢¢) satisfying the conditions for N = 0.
From the relations (B11) and (B12), the additional conditions that we have to impose on |¢y)

are
LELDIg) =0,  LPigy =0,  L2LZ"|go) =0. (r.n>0) (82)

In fact, it is sufficient to impose the conditions for r = 1/2 and n = 1, 2 since the other equa-
tions result from them. By continuing a similar discussion, we conclude that conditions (I) and
(IT) are rewritten by the following simpler set of conditions for any i, j, j, € {1, 2, ..., f} and a

e, .. .1

LPg)=LZ1$)=0.  (n>0) (83)
LE(LD) 19y =0, (>0, k=0,1,2,..) (84)
L2 (LOQ”” L™ ... Lff’”’”) 6)=0. (>0, N=0,1,2,...) (85)

1

In particular, since LZ = 37 P+ %J\va)el where ]\ﬁfv)el(z 3> wez  Com - oty 2) counts the level

for integer mode oscillators, the condition (84) must be satisfied independently for terms with
different Nl(;)el in |¢). Thus, by noting that Eq. (84) is equivalent to

L8 (L§) 1) =0

where L& = I3 taf o as given in Eq. (A17), we see that Eq. (84) is reduced to the set
of conditions

a 1
Lf()’s|¢)=0 <r>0,seZ+§,a=2,...,f). (86)

From the relations (B13), (B18), (B19), and (B21), we can show that any state satisfying Eqgs.
(83) and (86) also satisfies the remaining condition (85).
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Thus, the physical state conditions (I) and (II) are reduced to the simpler conditions (83) and

(86), which we name (I'), (I”), and (IT") respectively:

1) L7I$) =0, (n>0)

) Lgy =0, (>0ij=1,../)

() LI9¢)=0. (r>0,seZ+L a=2,... /)
In fact, it is sufficient to impose (I') forn =1, 2, (I”) forn = 1, (Il') for r = % since the other
conditions can be derived from them. Note that the conditions (I") and (IT") can be respectively
represented by LE|¢) = 0 and Lf(”m|¢) =0(a,b=2,---,f). Here LE and LHF(“M are given in
Egs. (A15) and (A16) respectively.

4. The physical spectrum and its properties

We will explicitly solve the physical state condition given by (I'), (I”), (IT"), and (III) and study
the properties of the physical spectrum. We represent a level Ny, state as |¢)y, ., and the vac-
uum state that is annihilated by all the positive frequency oscillators with momentum p as |0,

p)-

4.1 First three levels: Nigyw = 0, 1 35 1
We first identify the explicit form of the physical states for Nieye = 0, 4
on a constant ag.

For Nieyvel = 0, there is only one state |¢)o = |0, p) and p? is determined by the condition (III)
as 3p° = ag.

For Nigyel = %, a general state satisfying the mass-shell condition (III) is given by

, 3» 1 and find a restriction

9)y = Zf“ “110. p) (87)
with . 2 i =ay-3 Only the non-trivial condltlon for this state is given by (II') with r = 5 L and
s = 5. This restrlcts the /' — 1 coefficient vectors ] to satisfy

p- /=0 (88)
We see that the norm of the physical state | /*, p)1 = fa® |O p)i
PPy = Ef”-f” ) (89)

where (0, p| = (|0, p) )’L with (o) )T =a” (ozf‘")T =a®" and (0, p'|0, p) = 8°(p — p’). In this
case, if we take ao(= 1 3 i+ 2) > 5, we can choose py = 0 since p?> > 0. Then, from the same
discussion as in the case of the old covariant quantization of open string theory, f* can be
taken as a time-like vector and the corresponding state |f“, p has negative norm. On the
other hand, if we choose ¢y < 5 the physical states always have non negative norm since p> <
0. In particular, for ay = %, there are f — 1 zero-norm physical states p,a®/'|0, p) and (f — 1)(D
— 2) transverse positive norm physical states. Thus, in order to ensure the rio-ghost theorem for
this system, we at least have to choose

(90)

| —

ap =

which leads to —> p (_ m?) > Nievel — 5. If we assume this condition, all the states with a level
higher than . 5 have a real mass (m> > 0). We later show that this assumption is plausible from
the discussion of the ¢-function regularization calculation of the normal-ordering constant.
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For Nl = 1, general states are given by
601 = (guey + 3 o Haly 110, p) Q)

where h;’f; = hlv’z and the mass-shell condition is % p? = ag — 1. After imposing the set of non-
trivial conditions for this level, i.e., (II') with r = % and s = i% and (I”) with n = 1, we obtain
the general form of the physical states as

(Boms: P11 = Dl Va1 10, p) 92)
ab
where
nht =0, ptht =0, %pz =ap— 1. (93)
We see that the norm of this state is calculated as
s Pl P = 5 I 3% = ) 04

If we assume Eq. (90), the mass-shell condition for this (and all the higher) level(s) ensures p* <
0, and we can choose the frame p,, = 8,°po (po # 0 and p; . o) = 0). Then, from the conditions
(93), hl‘i’; = 0if pu or visequal to 0, and the norm (94) becomes positive for any non-trivial h,‘f).
Note that there is no zero-norm physical state for any ay < %

4.2 Physical states for an arbitrary level Nieye

We now investigate the physical state condition and obtain the general form of physical states
for an arbitrary level V. Fortunately, the physical state condition that we set is strong enough
to completely identify the space of physical states for any level. The result is the following: Any
state satisfying the physical state condition has the form

M
ayay---ag 2,y . f /’Lm aj, (T,
h[ul STl e pR 5 oW oo 020 (l_lla  m-1/2)" " * (- 1/2))1_[‘)[; 0.p) (95
m=
or
hﬂ]az ‘ag
A (T S T M%M§~~-M}M}u£~~-u'/»]owz~~-ak
2 I»LM+1 f uz\/l+1 .01

X O 1y 7(M+1/2) l_[o‘ (m 12" 7(m 1/2) HO‘ 1 10, p). (96)
Here, M and K are non-negative integers. Also, /.., ... is a tensor field with all the space-time

indices u' within the bracket [--] being anti- symmetrlc. The tensor field 4... given in Eq. (95)
should satisfy the relations

' hulag “dg = plijtrd2ax =0 97

p [ eyl et loron ok p [ b e pd gl pJorog o 7
f I}

T}J’u’"halfl‘} SK — nU,U]halﬂz Ak — 0’ (98)

[y 3" iy loror-ok [} 3" gyl oo

apaz-- aK

1s symmetric under a permutation (a;, 0;) < (a;, o; 99
! pud! i gy Jor ook y p (@i, 01) (aj,07) 99)

13/23

2202 J2qWIBAON Z| UO Jash UOJ}0JYOUAS usuodpial|g sayosinad Aq 9019699/L09E01L/0L/2Z20z/a101e/dayd/woo dnoojwapede//:sdily wouy papeojumoq



PTEP 2022, 103B01 Asano and Kato

for any i and j (i # j). Also, &... given in Eq. (96) satisfies the corresponding relations. Note that
the level of the state (95) is

M
K 1
S YO (= Don=1/2) = S(K+ (MM +1) = Mf+ M), (100)
m=1
and that of Eq. (96) is %(K + (M + 1)(Mf + f —1)). The proof that all the physical states are
given by states of the form (95) or (96) is given in Appendix C.
As a non-trivial example, we represent all the physical states for f = 3 and N = 5. There
are three types of physical states:

2,10 2 3t owl 2;4 3,ul
h[ﬂzﬂs/’-]/’vz#z]a 3 ‘o gza—lla K ?lo 28 (101)
ajay--ag w2 303 anor as. o2, 06
[u{uéué]mazwasa—la ! o “1 a% O‘,% 7% [0, p), (102)
K el 'y 700. ) 1o
where a; = 2 or 3. Each field satisfies the following relations:
p h[“z”";/“]/-"z#‘; 0, (104)
pulhalaz “dg — pzr,halaz “ag — 0’

[M1M2ﬂ3]olo'2 06 [N1M2ﬂ3]0152 ‘06

u.lalhlllaz “de

0;0; 1,412 -dg _
1 [M]Mz”f}]UlO'Z ‘06 =0 ]h[ﬂluzﬂz]ala2 ‘06 - O’ (105)
PR =0, T =0 (106)

and the appropriate symmetric properties.

4.3 Properties of general physical states
Now that we have fully identified the possible form of the physical states, we investigate and
summarize their general properties.

First, we consider the constant gy that appears in Eq. (76) and has not been determined yet.
In the case of string theory, the corresponding constant can be identified by calculating the
zero-point energy of the sum of all physical degrees of freedom and the result is confirmed by
the discussion of the BRS quantization method. For our system, a similar calculation can be
performed if we assume that the number of physical degrees of freedom is the same as that
of the transverse degrees of freedom. The sum of the zero-point energy corresponding to the
degrees of freedom for one space-time direction for our system is given by

Zn+(f—l)z<n+%> (107)
n=0 n=0

multiplied by —%. This type of summation can be performed by using the ¢-function regular-
ization method and the result is given by

i 1 > 1 1
. ) — 108
nX_;”_’ 12 ;(’”2)_)24 (108)

By using the result,
3
Zn+(f—l)z<n+ ) f24 , (109)
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and if we assume that the number of physical degrees of freedom is same as that of the trans-
verse degrees of freedom, which is the case for string theory, «y is given by Eq. (109) multiplied
by —% as

f=3
48
For any /> 3 (and for the string case f = 2 and D = 26), this result indeed leads to ay < %
This is the same condition that ensures that all the level Ny = % physical states have positive

a = —(D —2) (110)

norm. In particular, if we assume D = 26, we have ay = —%, and the on-shell condition (76)
becomes
1 1 -3
_§p2 (= §m2> = Nievel + 5 (111)

which means that all states satisfying the on-shell condition should have integer or half-integer
—1p? for every f including the string / = 2 case. In particular, m*> = f — 3 for Njeyer = 0 and m?
=f —210r Nieyel = % Thus, the physical spectrum for /> 3 is limited to the massive one except
for f'= 3 and Nl = 0 in which case the ground state |0, p) is massless and physical.

From Eq. (111), we can also study the relation between mass and spin for each level. In gen-
eral, the highest spin state for level N is given by a state of the form

aydy---dyN ap,oy ., d2,02 N ,ON
h(glgz___(w)oz_l a7 a0, p). (112)
2 2 2

Any other physical state for the level has spin less than that of this state: 0 < J < 2N( = Jiax ).
Thus, for arbitrary f > 3, the relation between mass m and spin J is represented by

J<m?—f+3, (113)

which is also applied to the f = 2 open string case. (Remember that we take o’ = 1.)

Next, we will show the no-ghost theorem that ensures that all the physical states have positive
norm under the assumption gy < % for general /> 3 and D > 2. We have already shown that the
theorem is indeed met for Nyl < 11in Sect. 4.1. As for the discussion on general Nieye, We first
note that any on-shell physical state has —% p* > 0for f> 3 and Niee > 0 under the assumption
ap < % Then, choosing the momentum frame as p,, = 1,0p°, we see that any component of the
tensor field 4,,,,... corresponding to any physical state of the form (95) or (96) always vanishes
if any space-time index v; = 0. That is, any non-zero physical state (95) or (96) includes only
space-like oscillators ', and «® . From the properties of the commutation relations of the
oscillators, we easily see that all such states have positive norm. Thus we have proven the no-
ghost theorem.

To summarize, for any /> 3 and D > 2, the no-ghost theorem is satisfied only if we have the
condition ¢y < % In particular, zero-norm physical states only appear in Njeye] = % if ap = %
For other cases, all the physical states have positive norm. Thus, if we believe the result (110),
we see that there are no zero-norm physical states in the spectrum for any /> 3, which is unlike
the case of the string theory case f = 2. Zero-norm physical states for string theory play an
important role in the theory being equipped with gauge symmetry. For f > 3, there seem to be
no gauge degrees of freedom in the physical spectrum.

5. Discussion

We have revisited the covariant quantization problem of the f-pronged open string junction and
found that its excitation is described by a set of ordinary bosons as well as f — 1 sets of twisted
bosons on the worldsheet. The constraints form an open algebra with operators obeying both
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periodic and anti-periodic boundary conditions. We have, for the first time, succeeded in giving
the physical state condition and identified the physical states that indeed have positive norm.
Several remarks and/or questions are in order.

One may wonder whether our result of physical states coincides with that of the light-cone
gauge analysis, which is familiar in the ordinary single string case. This question is not so easy to
answer because taking a light-cone gauge is a non-trivial issue for a string junction, as described
in Appendix D. Indeed, naive truncation to the transverse oscillators gives a slightly different
number of states in each level. For example, in the Njeye = 1 (With D > 3, f'> 2) case the number
of our physical states is

1
;U =D@=DI(f = DD =)+ 1]+ (f - DX(D - 2), (114)

while naive truncation to the transverse mode gives

1
S = D@ =I(f = DD =2) + 1]+ (D - 2). (115)

The number of constraints seems enough to eliminate light-cone degrees of freedom, but the
structure of the physical states is not the same as naive truncation to the transverse oscillators.

As explained in, e.g., Sect. 3.3, the constraint algebra is not closed. If we include all operators
newly appearing in the commutator one by one, then we eventually obtain a very large algebra.
It is interesting to understand this algebra and to interpret our physical states in terms of it. In
fact, by construction, our physical states in each level will become some sort of representation
of a zero-mode subalgebra of that. If we define

B =" et al: p=1,2,.., (116)

r

reZ+%

which appears in the zero-mode part of the above-mentioned large algebra, they satisfy

B, BY| = 80eBY " + (~ 1) 80 B + (— 1)1 80 B
+ (=128, (— 1) B, (117)
BY = (—1)»'BY. (118)

Note that BS)) =215 - 25 in terms of the operator defined in Eq. (A16). This algebra
is isomorphic to a twisted (Z..)-graded version of gl(f — 1), i.e, {E}, @ u** ' E, @ u** | k =
1,2,...; Ej; = iE;; € gl(f — 1); u € C}. We hope that this point will be clarified in the future.

Our analysis in the present paper has been within the so-called old covariant quantization
(OCQ). One can find other fine structures from new covariant or BRST quantization, which
will be our next task. After getting it done, we are also able to construct a free field theory for
string junctions. The authors have previously studied extended string field theory [12,13] where
multiple string Fock spaces are utilized to describe massless higher-spin modes with massive
towers, just as closed string field theory can be formulated by the doubled Fock space of an
open string with a suitable matching condition. The Fock space structure there is very simi-
lar to the current one, so that the adaptation of the formalism to the string junction may be
straightforward. Furthermore, if we analyze the system based on the BRST quantization, we
may identify the critical space-time dimension like D = 26 for the string case, which cannot be
obtained only from the spectrum analysis of the old covariant quantization.
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Another future task is to consider interactions. In Ref. [7] a single string emission vertex from
the free end of a string segment was considered. There may be more varieties of interactions,
some of which may need the introduction of another type of junction. In any case, they need
to be classified.
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Appendix A. OPE for T(z)

We study the OPE properties of the operators 7T',(z) defined by Eq. (58) for general M. The
product of two operators A*(z) and A™(w) is rewritten in a normal-ordered form by using the
commutation relations (45) as

AV A () = g s A A ) (A1)
(z—w)?
and
A (2)AP (w) = (; + €e(z, w)) S 4 A (2) AP (w) (A2)
(z —w)?
where
1
€(z,w) = N NN (A3)

By using these relations, the product of Ty (z) and Ty(w) for general f* x f symmetric matrices
M and N can be calculated as

Ty () Ty(w) ~ 2

2 1
tr(M o N) + ———= Tyon(W) + mawTMoN(M})

2 (z—w)* (z—w)?
* %_;W ([M, ND); (- @A’ () - AV (w) s = 2 A'(w) - 0,4/ (w) 2)  (A4)

where
1
MONEE(MN—FNM). (A5)
Note that, on the right-hand side of Eq. (A4), there remain terms that cannot be represented
only by T unless [M, N] = 0.

We investigate the properties of Eq. (A4) for general M and N. First, note that any symmetric
f x f matrix M can be expanded by the base matrices H4% = H?4 = (HA%)T (4,B=1,2, ...,

1

1
(H"B),; = 3 (8488 + 8i88j4) - (A6)
We also use the following expressions:
E = H“, F(ab) — Hab, G(a) — H(la) (A7)
where a =2, ..., /. We can divide these base matrices H“® into two classes and define
M+ = Span{H"!, H*}, M~ = Span{H'%}. (A8)
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For any matrix M* € M¥, from the definition of T,(z) given by Eq. (58), the following relation
holds:

Ty (€¥'z) = £ Ty (2). (A9)
The mode expansion of Tj,=(z) is given by

Toe(z) =Y LYz, Tu-(2)= Y LYz (A10)

nel I’EZ+%

Now that we have prepared the appropriate base matrices H4# and the mode expansion for
Tv(z), we can calculate the commutation relation [LY, Lf;f ] by operating

7§ aw [ 4z en gn (A11)
Co 27Tl C, 27Tl

on Eq. (A4) for any two matrices M and N. Here Cy and C,, represent contour integration
around w = 0 and z = w respectively. Note that & (or n) is an integer if the matrix M (or N)
belongs to M™, and a half-integer if M (or N) belongs to M ™. After performing the integration
calculation, we obtain the commutation relation

D
(L L)] = € = ML) + S TeM 0 N)(E — £)sen0

1 .
+ g (MND D (20 =& =)ty oo (A12)
¢

Here ¢ is an integer for j = 1 and and a half-integer for j = a.

In the following, we explicitly present the commutation relations for each pair of base matri-
ces HA®) (or E, F%Y) and G') after collecting the related useful relations.

The base matrices satisfy the relations

1
H(AB) o H(CD) — Z ((SACHBD + BADHBC + SBCHAD + (SBDHAC) i (A13)

1
[H(AB), H(CD)] =1 (84c(88i8p; — 888pi) + 84p(8midc; — S5;dci)
ij

+ 8pc(84i8p;j — 8.4;8pi) + 88p(84i8cj — 8.4;8¢4)) - (Al4)

The mode operators for base matrices are given by

1
LE = 3 D o (A15)
meZ
al 1 D
LF = 3 ol ol +1—65“b5"’0, (A16)
reZ-i-%
(a 1 a 1 a
L,G = 3 Loy, Oy 3 Z :oz§ D,y . (A17)
meZ seZ+4

The commutation relations are summarized as follows:

D
[LL. LE] = (m—n)L].,, + <sm+,1,oﬁm(m2 -1, (A18)

18/23

2202 J2qWIBAON Z| UO Jash UOJ}0JYOUAS usuodpial|g sayosinad Aq 9019699/L09E01L/0L/2Z20z/a101e/dayd/woo dnoojwapede//:sdily wouy papeojumoq



PTEP 2022, 103B01 Asano and Kato

2 2
Flayap) Fb1by) _ air1,bis1 1 Faibj
I:Lm L ] - Z Z g Z(m - n)Ln1+n
i=1 j=1

1 ) . . ‘
+ gi’ <: a/iql+n—r : af; L O‘/}4)1/+n—r : a;ll )}
D
+ 5m+n’0 (501,b15tlz,bz T 501,b2502,b1) ﬁm (m2 _ 1) ’ (A19)

(a) (b) (ab) b 1 X b . ) A
[Lf; LS ] (r —) <L,F+S + 8 L,E+§) + 3 Z t(al, o)t —a) al)

AR
D
+ 8,108 1 (P = 1), A
’ 24
[Lfv LG(“)] Z(fl - m) as+n m " %m < (Azl)
meZ
I:Lfl:(ab)’ LSG@)] — §4¢ Z Z(m —5): O‘é)+n—m “ O
meZ
1 a
+ 8" Z Z(Wl —3): X pn—m " Om - - (A22)
meZ

Note that i and j are taken as mod 2 values in Eq. (A19). We see that the operators L form a
Virasoro algebra with a central charge D. On the other hand, the set of all the operators LZ,

L "and LS does not form a closed algebra because of the last term of Eq. (A12).
Commutation relations for general matrices are obtained from the above relations by using
LN =L + LY, (A23)
which follows from
Ty (2) + Tn(z) = Ta4n(2). (A24)

Appendix B. Algebra of Lé” and related useful relations

We further investigate the properties of the algebra given by the operators Lé” obtained by the
mode expansion of T'y(z) especially for M = P, 0V, R'. The matrices P, 0V, and R' defined in
Egs. (50) and (51) are expanded by the base matrices E, F’), and G'® as

1
P= 7 E, (B1)
- S f
07 =" " (va)ive) ; F P, (B2)
a=2 b=2
. é b
R =) ——(,),GY. (B3)
a=2 \/7
We see that the relations
f f

Y oi=0, Y R= (B4)
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hold since

J S
D=0, Y (i) = Sup. (BS)
i=1

i=1
Note that the following relation is also useful:

f 1 -
> (a)iva); =8 —— (=Tr Q") . (B6)

a=2 f

From the general formula of commutation relations (A12), we can derive the following set
of relations that are useful for analyzing the physical state conditions:

1 i jj 1 Jj ii 1 ij
E[Lg L2 ]+§[Lg ,Lg]:(m—n)<8ij—7> o
o 1\* D
+ 8mtn,0 <5” - J—,) " (m* 1), (B7)
1 R R/ 1 R R 1 Qii 1 P
5 |:L) s Ls ] + 5 [Ll s Ls ] = (I” - S) 7Lr+5' =+ 85} - 7‘ Lr+s
1 1\ D
+ 8,,_,_&07 (8,] — ?) g}’ (}’2 — 1) y (Bg)
1 T 1 1 - 1 1 <
— (o R" _ o P R - - P RJ
; [Ln L ]+ : (ajk f) [Ln,LS ]+ : <5,k f) [Ln,LS ]
1 1\ 1\ w
= ﬁ(}’l — S) (S/k — ? Ln+s + (Sik — 7 Ln+s . (B9)
Also, note that
P P 1 P D 2
[Lm’ Ln] = (Wl - n)?Lm+n + 8m+n,0Tf2m(m - 1) (BlO)

Next, we give several useful commutation relations between zero-mode operators and non-
zero-mode operators:

j i 1 i 1 i j
(L8 15+ = (5,-,- - J-p) rLE 45 (2= 8,1) (L8 + ¥ 17, (BI1)
ii ij 1 ii i
[L{;+Q LY ] = i)+ [L,% ,LOQ“], (B12)
i ¢ 1 8 'kf - 1 ii ik 1 Sikf - 1 Yii ek
12 ,LQ“] = Ok T [LQ 12 ] e — [LQ 12 } B13
|: m##0’ 0 28ikf_1 m 0 +28jkf_1 m 0 ( )

In particular, since [L,?,H, LOQH] =(1- lf)m Lr%”,

i il 1 l il
Lo 1+ = L+ (1 - ?> mL2'. (B14)
Further, if we define the operators
Lrlzz’m = 10n—m " Qy LS(“”),I‘ = as—r ’ Oll},) 5 LrG("),s = Ol;l T Qs 5 (B15)

we can form a closed algebra (with central extension) by using them as generators by noting
that

Em _ vEn—-m Fab) oy pla)
[Em = [Enem  [Fr _ (B16)
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and

1 w1 ab) o 1 a
Ly=3 P ZACN S 3 I ZA Y S 3 o oLgs. (BI17)
meZ reZJr% seZJr%
For example, the right-hand sides of Eqgs. (A19)-(A22) can be written by using the operators
given in Eq. (B15). Also, the following relations are useful for analyzing the physical state con-

ditions:

) /
|8 18] = \/L? (5,-,- ~ }) S 0w Y S8, (BIS)
a=2

S€Z+%
I:LG(a)S LQii] 1 (va) Xf:( ) LG(b)S (B19)
o ly | = = Wa)i vp)isL,” 7,
N
and
i ij @,
(280 18] = < )Z(Va) (v); Y (m—s)Ly" " (B20)
seZ+2
_ (5__) Q”_i_ Z |: G(“)S G(b) m— s:| (le)
=8~
A€Z+2
where
[L,GW’S, Lgf),:f] = Sa(r — ) LE" =5 4 5905 o s LET, (B22)

Appendix C. General solutions of the physical state condition
We give a proof that the space of states satisfying the physical state condition given in Sect. 3.4
is spanned by the states of the form (95) and (96) with the conditions (97)—(99). The condition
that we have to impose is the set of relations (I') forn = 1, 2, (I”) for n = 1, (I') (or Eq. (86))
forr = %, and (III) as we discussed in Sect. 3.4.
We first consider the condition (86) for r = % 1e., Lf(u)’s|¢) = 0. Since
2

(a) b (a)

R R | ] Y R (1)
the operator L?W’S gives a non-trivial effect only on a state including the oscillator a®! for s >
0,and ol | s fors < 0. In fact, LG * causes the replacement of the oscillator as «® — sa”* il

- 2

for s > 0, and O‘il — (5 — s)ozs * for s < 0. From this property, a possible combination of
2

oscillators a®*

+and afH% (for s > 0) or cx ) and of" (for s < 0) within a state |¢) satisfying

a, g

the condition Lf(”)’ﬂq’)) =0 can be determmed as follows. For s > 2, if there is any «“/ in
2

the state |¢), then, in order to satisfy LE"(“)’S|¢) = 0, there should also be /' — 1 different types
2
of oscillators o/ﬁf” (b # a) and o e all of which should form the following anti-symmetric
St3
combination:

o .
—s —s —s —s+%

aza[ﬂzalm . ,af’“f ] (C2)

Also, there should exist no other mode —s oscillator a®* "in the state. Similarly, for —s < —%, if

)

there is any oz_s_l in the state |¢), then, in order to satisfy L? "|p) = 0, there should be /' — 1
2 2
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oscillators «®** (a =2, ..., f) and no other O‘M; , within the state, and the f oscillators should
T2

form the combination

2 3, y
a[“s a2 -aJ_[SM"]. (C3)
=53

Note that in this case any number of extra «”” can be included within the state. Finally, for
s = 5, to satisfy LG ! "|¢) =0, |¢) can include any number K of oscillators «“ " (i = 1,

I\)

2
K). However, if we write the corresponding combination as

daipdy---ag 4,01 Ao,y ag, K
hm/u k%1 oy o, (C4)
2

2 2
the coefficient should satisfy p*! hZ‘f;jz “x = 0. From the above discussion, we see that any state
satisfying the condition (II') for r = 5, i.e., LGW’_S|¢>) =0foralls e Z + %, must have the form
2
(95) and (96) with the condition p"'h””“2 s =0

U’z l‘Lll‘Lz I'Lf]O'IUZ 0K
Next, we impose the condition (I”) for n =1 on a state |¢r), ) satisfying (II') for r = % The
2

condition (II') can be rewritten as the following simpler form:
Ly"1g)=0  (ab=2,....[) (C3)
where L is given by Eq. (A16), and the condition for r = 1 is explicitly given by

a 1 a a
(b)|¢<uf>1 ) = (Ea‘f b ol o ol el ) l$ar), ) (Co)
2 2 2 2 2 2 2
1 a b
=5 ay|pary, ) = 0. (C7)
2 2 2

Here the second equality comes from the properties of |¢qr), ). This gives the traceless condition
2
on each pair of indices corresponding to the coefficients of a“", as Eq. (998).
Finally, we consider the condition (I') for n = 1, 2 on |$qr), ) From the condition (II'), the

2
integer mode oscillators of a state |¢r), ) have to have the form
2

|¢(H/)1 )= oz[ a LR o 1;;] (half-integer mode oscillators) |0, p). (C8)
Since L = lfo and
[LE, "] =ma)_,, (C9)
the relations
Lilgar,) = alig"] . ot] (half-integer mode oscillators) [0, p), (C10)
L2|¢(H/)% ) = 2(;1[7”11 ozg %ag coa f} (half-integer mode oscillators) |0, p) (C11

hold. This gives the condition on the coefficient as
PR ﬁk =0. (C12)

[y 3" iy loroa-og
(or the equivalent condition p“lhf“lazu v b oo = 0). This concludes the proof.
Appendix D. Remark on the light-cone gauge
Here we give a remark on the light-cone gauge. Let us first remind ourselves how the light-cone
gauge is taken for the ordinary string case. After the orthonormal gauge is taken, we utilize
residual gauge degrees of freedom that preserve the gauge condition to make light-cone oscil-
lators o, = 0. Then the Virasoro condition L, = 0, together with o/ = 0, becomes a second-
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class constraint that can be solved by representing the remaining light-cone oscillators «,, in
terms of the transverse modes (or by eliminating o with a Dirac bracket). Thus only transverse
variables are left to us.

Now let us turn to our string junction case. We can easily find the reparametrization trans-
formation (4), which preserves the orthonormal gauge condition (17). This should satisfy

eV =0, 9_eP =0, (D13)
where + stands for the worldsheet light-cone directions. The boundary conditions (5) and (6)
restrict them further:

V¥ (1,0) = e(t £ 0), (D14)
where €(7) is an i-independent function that satisfies €(t) = €(r 4+ 2r). Then we can use this de-
gree of freedom to make o;F = 0 as in the string case. So we are left with 2/ — 1 sets of oscillators
oo
whose number of degrees of freedom is also 2/ — 1 in total. These 2f — 1 constraints together
with o;F = 0 can be considered as a set of 2f second-class constraints of the system. Thus if we
were able to solve them in terms of transverse oscillators, then in principle we could reach the
light-cone gauge. But these relations are so complicated that we have not succeeded in explicitly
solving them yet. Indeed, even at the classical level, the authors of Ref. [9] concluded that it is
not possible, though their treatment of the remaining second-class constraints is not clear.

Thus, although the number of physical degrees of freedom is likely to coincide with that
of the light-cone gauge, the structure of the physical states may not be the same as the naive
truncation to the transverse modes.

.. . a—la—1_ Haa
o, , o ~ other than transverse modes. Our remaining constraints are V,,, RY, LnQ o
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