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Covariant quantization of a multi-pronged open bosonic string junction is studied beyond
static analysis. Its excited states are described by a set of ordinary bosons as well as some
sets of twisted bosons on the worldsheet. The system is characterized by a certain large
algebra of twisted type that includes a single Virasoro algebra as a subalgebra. By properly
defining the physical states, one can show that there are no ghosts in the Hilbert space.
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1. Introduction
Since the 1990s, when D-branes and various string dualities were found, string junctions have
been studied by many authors in the context of superstrings and M-theory.1 These analyses
mainly focused on the static properties such as BPS conditions or stability, with a few exceptions
(see, e.g., Refs. [3,4].) String junctions are dynamical objects formed by dynamical strings, so
that one can naturally ask their dynamical properties such as the spectra of their excited states
and other quantum features beyond static properties.

Going back to the 1970s, some earlier works studying classical motions [5–7] and a simple-
minded quantization [8] of string junctions appeared. In those days a string junction was con-
sidered as a model of the baryon, and they naively tried to quantize a three-string junction.
In the analyses, they did not reach a physical spectrum, which is largely due to the non-closed
property of the constraint algebra. In 1984, Ref. [9] analyzed the constraint structure of the
same system more carefully, and got a deeper insight into classical solutions, but still the full
quantum spectrum had been left undetermined.

In the present paper, the authors are going to revisit the problem. In particular, we propose a
set of physical state conditions under which we can show there are no ghosts in the spectrum.
In the following, we treat multi-pronged open bosonic string junctions in flat space-time. An
f-pronged open string junction is an object consisting of f open string segments, whose one
ends are tied together at a point and the other ends are free (see Fig. 1). We quantize such a
system based on so-called “old covariant quantization” (OCQ).

1We only cite work [1,2] that explains the essential points since there are so many papers and we cannot
list them all.
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Fig. 1. f-pronged open string junction.

Our system is different from that of multi free strings in the sense that string segments are
somehow interacting with each other through the connecting point. Therefore the constraint
algebra governing this system is not just a multiple of Virasoro algebra, but rather an infinite-
dimensional open algebra that includes a single Virasoro algebra as a subalgebra. Also, the
state space is not just a multiple of single string Fock space. One needs to introduce some sets
of twisted bosons in addition to a set of ordinary bosons on the worldsheet. Accordingly, the
operator algebra of the constraints is of twisted type; namely it contains both periodic and
anti-periodic parts, and we find many interesting and non-trivial features worth investigating
in their own right.

The paper is organized as follows. In Sect. 2, we formulate an f-pronged open bosonic string
junction starting from a Nambu–Goto-type action. We determine the mode expansion of the
variables in the orthonormal gauge and study the structure of the primary constraints. In
Sect. 3, we investigate the physical state conditions in detail. In Sect. 4, we concretely deter-
mine the physical spectrum and discuss its properties. There are many things to be clarified,
some of which are discussed in the final section. Some useful algebraic relations are collected
in Appendices A and B. Some details of the physical states are given in Appendix C. We make
a remark on the light-cone gauge in Appendix D.

2. f-pronged open string junction
Let us consider the f-pronged open bosonic string junction shown in Fig. 1. We denote a coor-
dinate variable of the ith string segment by X(i)μ(τ , σ )(i = 1, 2, . . ., f), where μ( = 0, 1, . . ., D
− 1) is a space-time index and τ , σ (σ ∈ [0, π ]) are the worldsheet parameters.2 Each string is
connected to the other strings at σ = 0, i.e.,

X (i)μ(τ, 0) = X ( j)μ(τ, 0) for arbitrary i and j, (1)

while σ = π is a free end. We also use a notation ξα = (τ , σ )(α = 0, 1) for the worldsheet
parameters. Then the Nambu–Goto-type action for the system is

S = −T
f∑

i=1

∫
dτdσ

√
− det[∂αX (i)

μ(τ, σ ) ∂βX (i)μ(τ, σ )], (2)

where T (= 1
2πα′ ) is the string tension and the determinant is taken with respect to the indices

α, β of the partial derivatives. In the following, we sometimes abbreviate a contraction of the

2We adopt ημν = diag.( − 1, 1, . . ., 1) for the target space metric.
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space-time indices simply by a dot; e.g., A · B ≡ AμBμ. We also denote Ẋ ≡ ∂τ X and X′ ≡ ∂σ X
as a customary use. We can write the action in a more explicit way as

S = −T
f∑

i=1

∫
dτdσ

√
−(Ẋ (i) · Ẋ (i) )(X ′(i) · X ′(i) ) + (Ẋ (i) · X ′(i) )2. (3)

The action has a reparametrization invariance under the (local) transformation

δX (i)μ(τ, σ ) = −ε (i)α(τ, σ ) ∂αX (i)μ(τ, σ ), (4)

as long as the infinitesimal transformation parameters ε(i)α(τ , σ ) satisfy

ε (i)1(τ, 0) = 0 and ε (i)1(τ, π ) = 0. (5)

Since the ith term in the action only depends on the ith variable X(i)μ, ε(i)α(τ , σ ) can be taken
independently of each i except for the boundary condition

ε (i)0(τ, 0) = ε ( j)0(τ, 0) for arbitrary i and j, (6)

which keeps the condition (1).
Taking a variation δX(i)μ in the action, we obtain a set of equations of motion

∂τ

⎛
⎝ Ẋ (i)μ(X ′(i) · X ′(i) ) − X ′(i)μ(Ẋ (i) · X ′(i) )√

−(Ẋ (i) · Ẋ (i) )(X ′(i) · X ′(i) ) + (Ẋ (i) · X ′(i) )2

⎞
⎠

+ ∂σ

⎛
⎝ X ′(i)μ(Ẋ (i) · Ẋ (i) ) − Ẋ (i)μ(Ẋ (i) · X ′(i) )√

−(Ẋ (i) · Ẋ (i) )(X ′(i) · X ′(i) ) + (Ẋ (i) · X ′(i) )2

⎞
⎠ = 0 (7)

and boundary conditions

X ′(i)μ(Ẋ (i) · Ẋ (i) ) − Ẋ (i)μ(Ẋ (i) · X ′(i) )√
−(Ẋ (i) · Ẋ (i) )(X ′(i) · X ′(i) ) + (Ẋ (i) · X ′(i) )2

∣∣∣∣∣∣
σ=π

= 0, (8)

f∑
i=1

X ′(i)μ(Ẋ (i) · Ẋ (i) ) − Ẋ (i)μ(Ẋ (i) · X ′(i) )√
−(Ẋ (i) · Ẋ (i) )(X ′(i) · X ′(i) ) + (Ẋ (i) · X ′(i) )2

∣∣∣∣∣∣
σ=0

= 0 (9)

as a stationary condition for the action.
The canonical conjugate momentum for each variable X(i)μ is

P(i)
μ = T

Ẋ (i)
μ (X ′(i) · X ′(i) ) − X ′(i)

μ (Ẋ (i) · X ′(i) )√
−(Ẋ (i) · Ẋ (i) )(X ′(i) · X ′(i) ) + (Ẋ (i) · X ′(i) )2

, (10)

from which we obtain the primary constraints

P(i)
μ P(i)μ + T 2X ′(i)

μ X ′(i)μ = 0, (11)

P(i)
μ X ′(i)μ = 0. (12)

The Hamiltonian given by the Legendre transform of the Lagrangian in Eq. (3) vanishes. There-
fore the total Hamiltonian consists only of primary constraints multiplied by arbitrary param-
eter functions u(i)

1 (τ, σ ) and u(i)
2 (τ, σ ):

HT =
f∑

i=1

∫ π

0
dσ

[
u(i)

1 (P(i)2 + T 2X ′(i)2) + u(i)
2 P(i) · X ′(i)

]
. (13)
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The above constraints are all first-class and there are no more constraints coming from their
time evolution.

Now let us take a gauge

u(i)
1 = 1

2T
, u(i)

2 = 0, (14)

which is equivalent to the so-called orthonormal gauge that imposes

Ẋ (i) · Ẋ (i) + X ′(i) · X ′(i) = 0, (15)

Ẋ (i) · X ′(i) = 0, (16)

or alternatively

(Ẋ (i) ± X ′(i) )2 = 0. (17)

In this gauge, the equations of motion and the boundary conditions are largely simplified as
follows:

(Eq. of motion) (∂2
τ − ∂2

σ )X (i)μ = 0, (18)

(Boundary cond.) ∂σ X (i)μ|σ=π = 0, (19)

f∑
i=1

∂σ X (i)μ|σ=0 = 0. (20)

These equations combined with Eq. (1) are enough to determine the mode expansion of X(i)μ.
Note that in this gauge the canonical momentum variable becomes simply P(i)μ = T Ẋ (i)μ. In
the following, after canonically quantizing the system, we will basically impose that physical
states should satisfy the relation

〈phys|(P(i) ± T X ′(i) )2|phys〉 = 0. (21)

Of course, in the quantized version, some central term can appear in the constraint algebra, so
we have to be careful about treating the zero-mode part of the constraints at the operator level,
which will be discussed later.

2.1 Mode expansion
A general solution X(i)μ(τ , σ ) of the equations of motion (18) consists of left-moving and right-
moving modes:

X (i)μ(τ, σ ) = X (i)μ
L (τ + σ ) + X (i)μ

R (τ − σ ). (22)

The boundary conditions also restrict the form of the functions of each mode: Eq. (19) gives

Ẋ (i)μ
L (τ + π ) − Ẋ (i)μ

R (τ − π ) = 0, (23)

while Eq. (20) gives
f∑

i=1

(
Ẋ (i)μ

L (τ ) − Ẋ (i)μ
R (τ )

)
= 0. (24)

Equation (1) leads to

X (1)μ
L (τ ) + X (1)μ

R (τ ) = · · · = X ( f )μ
L (τ ) + X ( f )μ

R (τ ), (25)
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which tells us that each term X (i)μ
L (τ ) + X (i)μ

R (τ ) is equal to a certain i-independent function
φμ(τ ). Thus,

X (i)μ
R (τ ) = −X (i)μ

L (τ ) + φμ(τ ). (26)

Substituting this relation into Eq. (24), we have

2
f∑

i=1

Ẋ (i)μ
L (τ ) = f φ̇μ(τ ), (27)

which means

φμ(τ ) = 2
f

f∑
i=1

X (i)μ
L (τ ) + cμ, (28)

where cμ is a constant. Then the right-mover is completely determined by the left-mover up to
the constant:

X (i)μ
R (τ ) =

f∑
j=i

Ai jX
( j)μ

L (τ ) + cμ (29)

where Ai j = 2
f − δi j . Also the periodicity of the left-mover is obtained through Eq. (23) as

Ẋ (i)μ
L (τ + 2π ) =

f∑
j=1

Ai jẊ
( j)μ

L (τ ) = Ẋ (i)μ
R (τ ). (30)

It is easy to obtain eigenvalues and eigenvectors of the f × f matrix A = (Aij). Writing A =
2
f Z − I with the matrix Z whose every element is 1 (Zij = 1) and the unit matrix I, we can first

solve the eigenvalue problem for Z. Apparently, a vector v1 whose every element is 1√
f

is a

normalized eigenvector of Z with eigenvalue f, and f − 1 vectors va (a = 2, . . ., f) orthogonal
to v1 and themselves (i.e., v1 · va = 0, va · vb = δab) are those with eigenvalue 0. Therefore, they
are also the eigenvectors for A as

Av1 = v1, Ava = −va (a = 2, . . . , f ). (31)

The eigenvectors vi are determined by

vT
1 =

(
1√
f

· · · 1√
f

)
, v1 · va = 0, va · vb = δab. (32)

Note that one simple representation for va (a = 2, . . ., f) can be chosen as follows:

(va)i =

⎧⎪⎪⎨
⎪⎪⎩

1√
a(a−1)

(i = 1, . . . , a − 1)

−
√

a−1
a (i = a)

0 (i = a + 1, . . . , f ).

(33)

By defining a real orthogonal matrix U whose ith row is just vi (i = 1, . . ., f), i.e., Uij = (vi)j,
diagonalization of A is expressed as

UAU T = � ≡

⎛
⎜⎜⎜⎜⎝

1
−1

. . .

−1

⎞
⎟⎟⎟⎟⎠ . (34)
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Now let us define

Y iμ(τ ) ≡
f∑

j=1

Ui jX
( j)μ

L (τ ). (35)

Conversely,

X (i)μ
L (τ ) =

f∑
j=1

UjiY jμ(τ ). (36)

Then from Eq. (30),

Ẏ iμ(τ + 2π ) =
{

Ẏ 1μ(τ ) (i = 1)
−Ẏ iμ(τ ) (i 	= 1).

(37)

If we also define for the right-mover

Ỹ iμ(τ ) ≡
f∑

j=1

Ui jX
( j)μ

R (τ ), (38)

then

Ỹ iμ(τ ) =
{

Y 1μ(τ ) + c̃μ (i = 1)
−Y iμ(τ ) (i 	= 1)

(39)

where

c̃μ = cμ

f∑
i=1

U1i = cμ
√

f . (40)

Now we see from Eq. (37) that Y1μ(τ ) is periodic (up to constant) with periodicity 2π whereas
the Yaμ(τ ) (a = 2, . . ., f) are anti-periodic. Therefore their mode expansions become

Y 1μ(τ ) = 1√
2

⎡
⎣qμ + pμτ + i

∑
n	=0

α
μ
n

n
e−inτ

⎤
⎦ , (41)

Y aμ(τ ) = i√
2

∑
r∈Z+ 1

2

α
aμ
r

r
e−irτ (a = 2, . . . , f ). (42)

Bringing them all back to the original variables, we obtain (also making qμ absorb a constant
ambiguity cμ)

X (i)μ(τ, σ ) =
√

2
f

⎡
⎣qμ + pμτ + i

∑
n	=0

α
μ
n

n
e−inτ cos(nσ )

⎤
⎦

+
√

2
f∑

a=2

(va)i

∑
r∈Z+ 1

2

α
aμ
r

r
e−irτ sin(rσ ). (43)

One can easily check that this expression satisfies the equations of motion (18) and all the
boundary conditions (1), (19), and (20) by noting the property

∑ f
i=1(va)i = 0, which comes

from va · v1 = 0.
To quantize the system, we will set a canonical equal-time commutation relation in the inter-

val σ , σ ′ ∈ [0, π ] with the canonical conjugate momentum P(i)μ(τ, σ ) = 1
2π

Ẋ (i)μ(τ, σ ):[
X (i)μ(τ, σ ), P( j)ν (τ, σ ′)

]
= iημνδi jδ(σ − σ ′). (44)
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Here (and hereafter) we have taken T = 1
2π

(α′ = 1) for brevity. This relation leads to[
αμ

n , αν
m

] = nδn+m,0η
μν,

[
αaμ

r , αbν
s

] = rδr+s,0δ
abημν, [qμ, pν ] = iημν, (45)

where n, m ∈ Z, r, s ∈ Z + 1
2 and α

μ

0 ≡ pμ. Thus our total Fock space is described by D ordinary
bosons and (f − 1)D twisted bosons.

2.2 Constraints
Let us turn to the constraints (11) and (12). They can be combined into

(2πP(i) ± X ′(i) )2 ≈ 0, (46)

where the wavy equal is used in the sense of Eq. (21). Each of these can be written in terms of
the left- and right-movers: (

Ẋ (i)
L (τ )

)2
≈ 0,

(
Ẋ (i)

R (τ )
)2

≈ 0. (47)

Furthermore, in terms of the mode-diagonal variables Yiμ, they become
f∑

j,k=1

Ki
jk Ẏ j (τ ) · Ẏ k(τ ) ≈ 0,

f∑
j,k=1

K̃i
jk Ẏ j (τ ) · Ẏ k(τ ) ≈ 0, (48)

Ki
jk ≡ UjiUki, K̃i ≡ �Ki�. (49)

Here we have used the matrix notation (Ki) jk ≡ Ki
jk and � was defined in Eq. (34). The

constraints defined by Ki and those of K̃i are interchanged when τ goes to τ + 2π since
Ẏ iμ(τ + 2π ) = (�Ẏ )iμ(τ ). If we recombine them into those of Ki + K̃i and Ki − K̃i, then each
set of constraints has definite periodicity. So one may think that there are f periodic and f anti-
periodic independent constraints. The situation, however, is not so simple. To see this, let us
look at the structure of Ki.

We first define the following three types of f × f symmetric matrices:

P =

⎛
⎜⎜⎜⎝

1
f

⎞
⎟⎟⎟⎠ , Qi j =

⎛
⎜⎜⎜⎝ 1

2 (va)i(vb) j + 1
2 (va) j (vb)i

⎞
⎟⎟⎟⎠ , (50)

Ri =

⎛
⎜⎜⎜⎜⎝

1√
f
(vb)i

1√
f
(va)i

⎞
⎟⎟⎟⎟⎠ . (51)

In other words, (P)11 = 1
f , (Qi j )ab = 1

2 (va)i(vb) j + 1
2 (va) j (vb)i, (Ri)1a = (Ri)a1 = 1√

f
(va)i, and

all other elements are vanishing. Then Ki and K̃i can be decomposed as

Ki = P + Qii + Ri, K̃i = P + Qii − Ri. (52)

One can see that the matrices for the anti-periodic constraints Ki − K̃i = 2Ri are not totally
independent because of the relation

∑ f
i=1 Ri = 0 as a result of

∑ f
i=1(va)i = 0. We may choose,

e.g., Ra as independent ones. Thus, we have f periodic and f − 1 anti-periodic constraints:
f∑

j,k=1

(P + Qii) jk Ẏ j (τ ) · Ẏ k(τ ) ≈ 0,

f∑
j,k=1

Ra
jk Ẏ j (τ ) · Ẏ k(τ ) ≈ 0. (53)
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In order to investigate the constraints in more detail, we introduce the so-called Fubini–
Veneziano fields ϕiμ(z) with a complex variable z( = eiτ ):

ϕ1μ(z) ≡
√

2Y 1μ(−i ln z) = qμ − ipμ ln z + i
∑
n	=0

α
μ
n

n
z−n, (54)

ϕaμ(z) ≡
√

2Y aμ(−i ln z) = i
∑

r∈Z+ 1
2

α
aμ
r

r
z−r. (a = 2, . . . , f ). (55)

They satisfy the periodicity

ϕ1μ(e2π iz) = ϕ1μ(z) + 2π pμ, ϕaμ(e2π iz) = −ϕaμ(z). (56)

It is convenient to define Aiμ(z) ≡ i∂zϕ
iμ(z), i.e.,

A1μ(z) =
∑
n∈Z

αμ
n z−n−1, Aaμ(z) =

∑
r∈Z+ 1

2

αaμ
r z−r−1. (57)

A1μ(z) is periodic whereas the Aaμ(z) are anti-periodic under the replacement z → e2π iz. If we
define the operator TM(z) for a given matrix M as3

TM (z) ≡ 1
2

f∑
i, j=1

Mi j : Ai(z) · Aj (z) : + D
16z2

tr(MP−), (58)

where : O : is a normal order of O with respect to the oscillators α
μ
n , α

aμ
r (and P− = 1

2 (1 − �)),
then the operators corresponding to the primary constraints (53) are given by TP+Qii (z) and
TRa (z). These operators satisfy the relations

TP+Qii (e2π iz) = TP+Qii (z), TRa (e2π iz) = −TRa (z), (59)

and they have a formal Laurent expansion with an integer power of z and a half odd integer
power respectively:

TP+Qii (z) =
∑
n∈Z

LP+Qii

n z−n−2, (60)

TRa (z) =
∑

r∈Z+ 1
2

LRa

r z−r−2. (61)

In terms of the oscillators, each mode operator is written as follows:

LP+Qii

n = 1
2 f

∑
m∈Z

: αn−m · αm : +1
2

f∑
a,b=2

(va)i(vb)i

∑
s∈Z+ 1

2

: αa
n−s · αb

s : + D
16

f − 1
f

δn,0, (62)

LRa

r = 1√
f

f∑
b=2

(vb)a

∑
m∈Z

: αb
r−m · αm : . (63)

Among the above operators, one special combination is

Vn ≡
∑

i

LP+Qii

n (64)

= 1
2

∑
m∈Z

: αn−m · αm : +1
2

f∑
a=2

∑
s∈Z+ 1

2

: αa
n−s · αa

s : + D
16

( f − 1)δn,0. (65)

3Note that the term D
16z2 tr(MP−) in the definition of TM(z) is added in order that the OPE relations

can be written in a unified manner (see Appendix A).
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They satisfy the Virasoro algebra with a central charge Df:

[Vn, Vm] = (n − m)Vn+m + D f
12

n(n2 − 1)δn+m,0. (66)

Thus we have a single Virasoro algebra as a closed subalgebra of our constraints.

3. Physical state condition for an open string junction
3.1 Preliminary discussion
For the physical state condition, it is possible to impose that the positive modes of the constraint
operators should annihilate physical states just as in the case of the old covariant quantization
for a string:

LP+Qii

n |phys〉 = 0, (n > 0, i = 1, . . . , f ) (67)

LRa

r |phys〉 = 0. (r > 0, a = 2, . . . , f ) (68)

Note that the algebras of LQi−1 i−1−Qii

n and LRa

r are not closed among themselves, as will be seen in
Appendix B. However, if A|phys〉 = 0 and B|phys〉 = 0, then [A, B]|phys〉 = 0, so that requiring
the above conditions will be sufficient. On the other hand, those of the zero-mode operators
LQii

0 must be chosen more carefully. It is not straightforward to choose appropriate conditions

for general f since the set of f − 1 operators LQi−1 i−1−Qii

0 is not closed. We first study the special
case of f = 2, and go into the general discussion afterward.

3.2 f=2 case
We consider the f = 2 case where the physical object is not a junction but an open string. In
fact, in this case, there are only one positive integer and half-integer mode oscillators α

μ
n and

α
a=2,μ
r , and the physical state conditions (67) and (68) are reduced to the following two simple

ones:

Vn|phys〉 = 0, (n > 0) (69)

LRa=2

r |phys〉 =
(

1
2

∑
m∈Z

: αa=2
r−m · αm :

)
|phys〉 = 0 (r > 0) (70)

since P + Q11 = P + Q22. Also, there is only one zero-mode operator V0, which counts the level
of the state (plus 1

2 p2 and a constant) as usual for strings, and the zero-mode condition should
be taken as V0|phys〉 = (a0 + D

16 )|phys〉 with a normal-order constant or an intercept parameter
a0. If we replace α

μ
n → 1√

2
α̃

μ

2n and α
a=2,μ
r → 1√

2
α̃

μ

2r, they satisfy [α̃μ
n , α̃ν

m] = nδn+m,0η
μν . Writing

L̃2n = 2(Vn − D
16δn,0) and L̃2n+1 = 2LRa=1

n+ 1
2

= −2LRa=2

n+ 1
2
, we can easily check that the L̃n satisfy the

Virasoro algebra with a central charge D, and the physical state condition can be collected as(
L̃n − ãδn,0

) |phys〉 = 0 (n ≥ 0) (71)

where ã = 2a0 and

L̃n = 1
2

∑
m∈Z

: α̃n−m · α̃m : . (72)

This is exactly the same condition as for the old covariant quantization of open string theory.
As is well known, the constant ã should be taken as ã ≤ 1 and the dimension as D ≤ 26 in order
to ensure that there is no ghost (negative norm) state in the physical spectrum (see, e.g., Ref.

9/23

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/10/103B01/6696406 by D

eutsches Elektronen Synchrotron user on 12 N
ovem

ber 2022



PTEP 2022, 103B01 Asano and Kato

[10, 11]). From various discussions like the one-loop level unitarity or the modern BRS quan-
tization, we know that the consistent choice should be ã = 1 and D = 26.

3.3 Zero-mode condition
Now we deal with the general f ≥ 3 case and discuss the physical spectrum and its properties.

We have already proposed a reasonable condition for positive modes of the constraint oper-
ators as Eqs. (67) and (68). Here we consider the remaining discussion on zero modes of the
constraint operators given by

LP+Qii

0 = 1
2 f

∑
m∈Z

: α−m · αm : +1
2

f∑
a,b=2

(va)i(vb)i

∑
s∈Z+ 1

2

: αa
−s · αb

s : + D
16

f − 1
f

. (73)

These f operators are all independent and the commutation relations are[
LP+Qii

0 , LP+Qj j

0

]
= [LQii

0 , LQj j

0 ]

= − 1
f

f∑
a,b=2

(va)i(vb) j

∑
r∈Z+ 1

2

r : αa
−r · αb

r : , (74)

which shows that the algebra is not closed within the f operators LP+Qii

0 . Thus we cannot impose
a condition such that a state |φ〉 should be a vector in the space of some finite representation
of LP+Qii

0 . In fact, in order to obtain a closed algebra including all f operators LP+Qii

0 , we have
to involve an infinite number of additional operators. On the other hand, the operator V0 =∑ f

i=1 LP+Qii

0 in itself has a desirable property

V0|φ〉 =
(

Nlevel + 1
2

p2 + D( f − 1)
16

)
|φ〉 (75)

where |φ〉 is a state whose level and the square of the momentum are Nlevel and p2 respectively.
(Note that we take α′ = 1.) We see that one reasonable physical state condition involving the
zero-mode operators is

V0|phys〉 =
(

a0 + D( f − 1)
16

)
|phys〉 (76)

with some constant a0. In addition, for other zero-mode operators, it is at least possible to
impose the condition that LP+Qii

0 |φ〉 is always physical if |φ〉 is physical.

3.4 Physical state condition
From the above discussion, the most reasonable physical state condition for the present system
is to impose the following set of conditions (I), (II), and (III) for arbitrary non-negative integer
N, positive integer n, and positive half-integer r:

(I) LP+Qii

n

⎛
⎝ ∏

k= j1,..., jN

LP+Qkk

0

⎞
⎠ |phys〉 = 0, (n > 0, i, jα = 1, . . . , f ) (77)

(II) LRa

r

⎛
⎝ ∏

k= j1,..., jN

LP+Qkk

0

⎞
⎠ |phys〉 = 0, (r > 0, a=2, . . . , f , jα =1, . . . , f ) (78)

(III) V0|phys〉 =
(

a0 + D( f − 1)
16

)
|phys〉

(
⇔

(
Nlevel + 1

2
p2 − a0

)
|phys〉 = 0

)
. (79)
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In the above equations,
∏

k= j1,··· , jN LP+Qkk

0 is meant to be the product of N LP+Qkk

0 :∏
k= j1,··· , jN

LP+Qkk

0 ≡ LP+Qj1 j1

0 LP+Qj2 j2

0 · · · LP+QjN jN

0 (80)

for positive N and arbitrary jα (α = 1, . . ., N), and
∏

k= j1,··· , jN LP+Qkk

0 ≡ 1 for N = 0. In what
follows, assuming that the physical state condition is indeed given by the set of these conditions,
we will identify the space of physical states.

First, we examine the properties of each of the above three conditions in detail. The sim-
plest condition (III) determines the relation between the level and the mass of the states. This
restriction does not affect the other two conditions since[

V0, LP+Qii

m

]
= −mLP+Qii

m ,
[
V0, LRa

r

] = −rLRa

r (81)

hold for any integer m or half-integer r. Thus we can continue the discussion within the space
of fixed level (and mass) states separately. Now we consider the conditions (I) and (II) for N =
0, i.e., the conditions LP+Qii

n |phys〉 = 0 and LRa

r |phys〉 = 0. In this case, from the commutation
relations (B7), (B8), and (B9), we can prove that if we assume that condition (I) of n = 1, 2 and
condition (II) of r = 1

2 ,
3
2 for N = 0 are satisfied, all the other conditions (I) and (II) for N =

0 are satisfied. In the process of this discussion, we can also show that a state |φ0〉 satisfying
conditions (I) and (II) for N = 0 always satisfies LP

n |φ0〉 = LQi j

n |φ0〉 = 0 for n ≥ 2. Next, we
impose conditions (I) and (II) for N = 1 on a state |φ0〉 satisfying the conditions for N = 0.
From the relations (B11) and (B12), the additional conditions that we have to impose on |φ0〉
are

LRa

r LP
0 |φ0〉 = 0, LP

n |φ0〉 = 0, LQii

n LQj j

0 |φ0〉 = 0. (r, n > 0) (82)

In fact, it is sufficient to impose the conditions for r = 1/2 and n = 1, 2 since the other equa-
tions result from them. By continuing a similar discussion, we conclude that conditions (I) and
(II) are rewritten by the following simpler set of conditions for any i, j, jα ∈ {1, 2, . . ., f} and a
∈ {2, . . ., f}:

LP
n |φ〉 = LQi j

n |φ〉 = 0, (n > 0) (83)

LRa

r

(
LP

0

)k |φ〉 = 0, (r > 0, k = 0, 1, 2, . . .) (84)

LQii

n

(
LQj1 j1

0 LQj2 j2

0 · · · LQjN jN

0

)
|φ〉 = 0. (n > 0, N = 0, 1, 2, . . .) (85)

In particular, since LP
0 = 1

2 f p2 + 1
f N (e)

level where N (e)
level(≡ 1

2

∑
m∈Z : α−m · αm :) counts the level

for integer mode oscillators, the condition (84) must be satisfied independently for terms with
different N (e)

level in |φ〉. Thus, by noting that Eq. (84) is equivalent to

LG(a)

r

(
LP

0

)k |φ〉 = 0

where LG(a)

r = 1
2

∑
r : αa

s · αr−s : as given in Eq. (A17), we see that Eq. (84) is reduced to the set
of conditions

LG(a),s
r |φ〉 = 0

(
r > 0, s ∈ Z + 1

2
, a = 2, . . . , f

)
. (86)

From the relations (B13), (B18), (B19), and (B21), we can show that any state satisfying Eqs.
(83) and (86) also satisfies the remaining condition (85).
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Thus, the physical state conditions (I) and (II) are reduced to the simpler conditions (83) and
(86), which we name (I′), (I′′), and (II′) respectively:

(I′) LP
n |φ〉 = 0, (n > 0)

(I′′) LQi j

n |φ〉 = 0, (n > 0; i, j = 1, . . . , f )
(II′) LG(a),s

r |φ〉 = 0. (r > 0, s ∈ Z + 1
2 , a = 2, . . . , f )

In fact, it is sufficient to impose (I′) for n = 1, 2, (I′′) for n = 1, (II′) for r = 1
2 since the other

conditions can be derived from them. Note that the conditions (I′) and (II′) can be respectively
represented by LE

n |φ〉 = 0 and LF (ab)

n |φ〉 = 0 (a, b = 2, · · · , f ). Here LE
n and LF (ab)

n are given in
Eqs. (A15) and (A16) respectively.

4. The physical spectrum and its properties
We will explicitly solve the physical state condition given by (I′), (I′′), (II′), and (III) and study
the properties of the physical spectrum. We represent a level Nlevel state as |φ〉Nlevel and the vac-
uum state that is annihilated by all the positive frequency oscillators with momentum p as |0,
p〉.

4.1 First three levels: Nlevel = 0, 1
2 , 1

We first identify the explicit form of the physical states for Nlevel = 0, 1
2 , 1 and find a restriction

on a constant a0.
For Nlevel = 0, there is only one state |φ〉0 = |0, p〉 and p2 is determined by the condition (III)

as 1
2 p2 = a0.

For Nlevel = 1
2 , a general state satisfying the mass-shell condition (III) is given by

|φ〉 1
2

=
f∑

a=2

f a
μα

a,μ

− 1
2
|0, p〉 (87)

with 1
2 p2 = a0 − 1

2 . Only the non-trivial condition for this state is given by (II′) with r = 1
2 and

s = 1
2 . This restricts the f − 1 coefficient vectors f a

μ to satisfy

p · f a = 0. (88)

We see that the norm of the physical state | f a, p〉 1
2

= f a
μα

a,μ

− 1
2
|0, p〉 is

1
2
〈 f a, p| f a, p′〉 1

2
= 1

2
f a · f a δD(p − p′) (89)

where 〈0, p| = (|0, p〉)† with (αμ
n )† = α

μ
−n, (αa,μ

r )† = α
a,μ
−r and 〈0, p′|0, p〉 = δD(p − p′). In this

case, if we take a0(= 1
2 p2 + 1

2 ) > 1
2 , we can choose p0 = 0 since p2 > 0. Then, from the same

discussion as in the case of the old covariant quantization of open string theory, fa can be
taken as a time-like vector and the corresponding state | f a, p〉 1

2
has negative norm. On the

other hand, if we choose a0 ≤ 1
2 , the physical states always have non-negative norm since p2 ≤

0. In particular, for a0 = 1
2 , there are f − 1 zero-norm physical states pμα

a,μ

− 1
2
|0, p〉 and (f − 1)(D

− 2) transverse positive norm physical states. Thus, in order to ensure the no-ghost theorem for
this system, we at least have to choose

a0 ≤ 1
2
, (90)

which leads to − 1
2 p2 (= 1

2 m2) ≥ Nlevel − 1
2 . If we assume this condition, all the states with a level

higher than 1
2 have a real mass (m2 > 0). We later show that this assumption is plausible from

the discussion of the ζ -function regularization calculation of the normal-ordering constant.
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For Nlevel = 1, general states are given by

|φ〉1 =
⎛
⎝gμα

μ

−1 +
∑
a,b

hab
μνα

a,μ

− 1
2
αb,ν

− 1
2

⎞
⎠ |0, p〉 (91)

where hab
μν = hba

νμ and the mass-shell condition is 1
2 p2 = a0 − 1. After imposing the set of non-

trivial conditions for this level, i.e., (II′) with r = 1
2 and s = ± 1

2 and (I′′) with n = 1, we obtain
the general form of the physical states as

|φphys, p〉1 =
∑
a,b

hab
μνα

a,μ

− 1
2
αb,ν

− 1
2
|0, p〉 (92)

where

ημνhab
μν = 0, pμhab

μν = 0,
1
2

p2 = a0 − 1. (93)

We see that the norm of this state is calculated as

1〈φphys, p|φphys, p′〉1 = 1
2

∑
a,b

hab
μνhab,μν δD(p − p′). (94)

If we assume Eq. (90), the mass-shell condition for this (and all the higher) level(s) ensures p2 <

0, and we can choose the frame pμ = δμ
0p0 (p0 	= 0 and pi( 	= 0) = 0). Then, from the conditions

(93), hab
μν = 0 if μ or ν is equal to 0, and the norm (94) becomes positive for any non-trivial hab

μν .
Note that there is no zero-norm physical state for any a0 ≤ 1

2 .

4.2 Physical states for an arbitrary level Nlevel

We now investigate the physical state condition and obtain the general form of physical states
for an arbitrary level Nlevel. Fortunately, the physical state condition that we set is strong enough
to completely identify the space of physical states for any level. The result is the following: Any
state satisfying the physical state condition has the form

ha1a2···aK

[μM
1 μM

2 ···μM
f ······μ2

1μ
2
2···μ2

f μ
1
1μ

1
2···μ1

f ]σ1σ2···σK

(
M∏

m=1

α
μm

1−mα
2,μm

2
−(m−1/2) · · ·α

f ,μm
f

−(m−1/2)

)
K∏

i=1

α
ai,σi

− 1
2

|0, p〉 (95)

or

ha1a2···aK

[μM+1
2 ···μM+1

f μM
1 μM

2 ···μM
f ······μ2

1μ
2
2···μ2

f μ
1
1μ

1
2···μ1

f ]σ1σ2···σK

× α
2,μM+1

2
−(M+1/2) · · ·α

f ,μM+1
f

−(M+1/2)

(
M∏

m=1

α
μm

1−mα
2,μm

2
−(m−1/2) · · ·α

f ,μm
f

−(m−1/2)

)
K∏

i=1

α
ai,σi

− 1
2

|0, p〉. (96)

Here, M and K are non-negative integers. Also, h[···], ··· is a tensor field with all the space-time
indices μm

a within the bracket [···] being anti-symmetric. The tensor field h··· given in Eq. (95)
should satisfy the relations

pμm
a ha1a2···aK

[μM
1 μM

2 ···μ1
1μ

1
2···μ1

f ]σ1σ2···σK
= pσi ha1a2···aK

[μM
1 μM

2 ···μ1
1μ

1
2···μ1

f ]σ1σ2···σK
= 0 (97)

ησiμ
1
k ha1a2···aK

[μM
1 μM

2 ···μ1
1μ

1
2···μ1

f ]σ1σ2···σK
= ησiσ j ha1a2···aK

[μM
1 μM

2 ···μ1
1μ

1
2···μ1

f ]σ1σ2···σK
= 0, (98)

ha1a2···aK

[μM
1 μM

2 ···μ1
1μ

1
2···μ1

f ]σ1σ2···σK
is symmetric under a permutation (ai, σi) ↔ (a j, σ j ) (99)
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for any i and j (i 	= j). Also, h··· given in Eq. (96) satisfies the corresponding relations. Note that
the level of the state (95) is

K
2

+
M∑

m=1

(m + ( f − 1)(m − 1/2)) = 1
2

(K + f M(M + 1) − M f + M ), (100)

and that of Eq. (96) is 1
2 (K + (M + 1)(M f + f − 1)). The proof that all the physical states are

given by states of the form (95) or (96) is given in Appendix C.
As a non-trivial example, we represent all the physical states for f = 3 and Nlevel = 5. There

are three types of physical states:

h[μ2
2μ

2
3μ

1
1μ

1
2μ

1
3]α

2,μ2
2

− 3
2

α
3,μ2

3

− 3
2

α
μ1

1
−1α

2,μ1
2

− 1
2

α
3,μ1

3

− 1
2

|0, p〉, (101)

ha1a2···a6

[μ1
1μ

1
2μ

1
3]σ1σ2···σ6

α
μ1

1
−1α

2,μ1
2

− 1
2

α
3,μ1

3

− 1
2

α
a1,σ1

− 1
2

α
a2,σ2

− 1
2

· · ·αa6,σ6

− 1
2

|0, p〉, (102)

ha1a2···a10
σ1σ2···σ10

α
a1,σ1

− 1
2

α
a2,σ2

− 1
2

· · ·αa10,σ10

− 1
2

|0, p〉 (103)

where ai = 2 or 3. Each field satisfies the following relations:

pμ2
2h[μ2

2μ
2
3μ

1
1μ

1
2μ

1
3] = 0, (104)

pμ1
1ha1a2···a6

[μ1
1μ

1
2μ

1
3]σ1σ2···σ6

= pσi ha1a2···a6

[μ1
1μ

1
2μ

1
3]σ1σ2···σ6

= 0,

ημ1
1σi ha1a2···a6

[μ1
1μ

1
2μ

1
3]σ1σ2···σ6

= ησiσ j ha1a2···a6

[μ1
1μ

1
2μ

1
3]σ1σ2···σ6

= 0, (105)

pσi ha1a2···a10
σ1σ2···σ10

= 0, ησiσ j ha1a2···a10
σ1σ2···σ10

= 0 (106)

and the appropriate symmetric properties.

4.3 Properties of general physical states
Now that we have fully identified the possible form of the physical states, we investigate and
summarize their general properties.

First, we consider the constant a0 that appears in Eq. (76) and has not been determined yet.
In the case of string theory, the corresponding constant can be identified by calculating the
zero-point energy of the sum of all physical degrees of freedom and the result is confirmed by
the discussion of the BRS quantization method. For our system, a similar calculation can be
performed if we assume that the number of physical degrees of freedom is the same as that
of the transverse degrees of freedom. The sum of the zero-point energy corresponding to the
degrees of freedom for one space-time direction for our system is given by

∞∑
n=0

n + ( f − 1)
∞∑

n=0

(
n + 1

2

)
(107)

multiplied by − 1
2 . This type of summation can be performed by using the ζ -function regular-

ization method and the result is given by
∞∑

n=0

n → − 1
12

,

∞∑
n=0

(
n + 1

2

)
→ 1

24
. (108)

By using the result,
∞∑

n=0

n + ( f − 1)
∞∑

n=0

(
n + 1

2

)
→ f − 3

24
, (109)
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and if we assume that the number of physical degrees of freedom is same as that of the trans-
verse degrees of freedom, which is the case for string theory, a0 is given by Eq. (109) multiplied
by −D−2

2 as

a0 = −(D − 2)
f − 3

48
. (110)

For any f ≥ 3 (and for the string case f = 2 and D = 26), this result indeed leads to a0 ≤ 1
2 .

This is the same condition that ensures that all the level Nlevel = 1
2 physical states have positive

norm. In particular, if we assume D = 26, we have a0 = − f −3
2 , and the on-shell condition (76)

becomes

−1
2

p2
(

= 1
2

m2
)

= Nlevel + f − 3
2

, (111)

which means that all states satisfying the on-shell condition should have integer or half-integer
− 1

2 p2 for every f including the string f = 2 case. In particular, m2 = f − 3 for Nlevel = 0 and m2

= f − 2 for Nlevel = 1
2 . Thus, the physical spectrum for f ≥ 3 is limited to the massive one except

for f = 3 and Nlevel = 0 in which case the ground state |0, p〉 is massless and physical.
From Eq. (111), we can also study the relation between mass and spin for each level. In gen-

eral, the highest spin state for level N is given by a state of the form

ha1a2···a2N
(σ1σ2···σ2N )α

a1,σ1

− 1
2

α
a2,σ2

− 1
2

· · ·αa2N ,σ2N

− 1
2

|0, p〉. (112)

Any other physical state for the level has spin less than that of this state: 0 ≤ J ≤ 2N( = Jmax ).
Thus, for arbitrary f ≥ 3, the relation between mass m and spin J is represented by

J ≤ m2 − f + 3, (113)

which is also applied to the f = 2 open string case. (Remember that we take α′ = 1.)
Next, we will show the no-ghost theorem that ensures that all the physical states have positive

norm under the assumption a0 ≤ 1
2 for general f ≥ 3 and D ≥ 2. We have already shown that the

theorem is indeed met for Nlevel ≤ 1 in Sect. 4.1. As for the discussion on general Nlevel, we first
note that any on-shell physical state has − 1

2 p2 > 0 for f ≥ 3 and Nlevel > 0 under the assumption
a0 ≤ 1

2 . Then, choosing the momentum frame as pμ = ημ0p0, we see that any component of the
tensor field hν1ν2··· corresponding to any physical state of the form (95) or (96) always vanishes
if any space-time index ν j = 0. That is, any non-zero physical state (95) or (96) includes only
space-like oscillators αi

−n and αai
−s. From the properties of the commutation relations of the

oscillators, we easily see that all such states have positive norm. Thus we have proven the no-
ghost theorem.

To summarize, for any f ≥ 3 and D ≥ 2, the no-ghost theorem is satisfied only if we have the
condition a0 ≤ 1

2 . In particular, zero-norm physical states only appear in Nlevel = 1
2 if a0 = 1

2 .
For other cases, all the physical states have positive norm. Thus, if we believe the result (110),
we see that there are no zero-norm physical states in the spectrum for any f ≥ 3, which is unlike
the case of the string theory case f = 2. Zero-norm physical states for string theory play an
important role in the theory being equipped with gauge symmetry. For f ≥ 3, there seem to be
no gauge degrees of freedom in the physical spectrum.

5. Discussion
We have revisited the covariant quantization problem of the f-pronged open string junction and
found that its excitation is described by a set of ordinary bosons as well as f − 1 sets of twisted
bosons on the worldsheet. The constraints form an open algebra with operators obeying both
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periodic and anti-periodic boundary conditions. We have, for the first time, succeeded in giving
the physical state condition and identified the physical states that indeed have positive norm.
Several remarks and/or questions are in order.

One may wonder whether our result of physical states coincides with that of the light-cone
gauge analysis, which is familiar in the ordinary single string case. This question is not so easy to
answer because taking a light-cone gauge is a non-trivial issue for a string junction, as described
in Appendix D. Indeed, naive truncation to the transverse oscillators gives a slightly different
number of states in each level. For example, in the Nlevel = 1 (with D ≥ 3, f ≥ 2) case the number
of our physical states is

1
2

( f − 1)(D − 2)[( f − 1)(D − 2) + 1] + ( f − 1)2(D − 2), (114)

while naive truncation to the transverse mode gives

1
2

( f − 1)(D − 2)[( f − 1)(D − 2) + 1] + (D − 2). (115)

The number of constraints seems enough to eliminate light-cone degrees of freedom, but the
structure of the physical states is not the same as naive truncation to the transverse oscillators.

As explained in, e.g., Sect. 3.3, the constraint algebra is not closed. If we include all operators
newly appearing in the commutator one by one, then we eventually obtain a very large algebra.
It is interesting to understand this algebra and to interpret our physical states in terms of it. In
fact, by construction, our physical states in each level will become some sort of representation
of a zero-mode subalgebra of that. If we define

B(p)
ab =

∑
r∈Z+ 1

2

rp−1 : αa
−r · αb

r : p = 1, 2, . . . , (116)

which appears in the zero-mode part of the above-mentioned large algebra, they satisfy[
B(p)

ab , B(q)
cd

]
= δbcB

(p+q)
ad + (−1)p−1δacB

(p+q)
bd + (−1)q−1δbd B(p+q)

ac

+ (−1)p+q−2δad (−1)q−1B(p+q)
bc , (117)

B(p)
ab = (−1)p−1B(p)

ba . (118)

Note that B(1)
ab = 2LF (ab)

0 − D
8 δab in terms of the operator defined in Eq. (A16). This algebra

is isomorphic to a twisted (Z>0)-graded version of gl(f − 1), i.e., {E+
ab ⊗ u2k−1, E−

ab ⊗ u2k | k =
1, 2, . . . ; E±

ab = ±E±
ba ∈ gl( f − 1); u ∈ C}. We hope that this point will be clarified in the future.

Our analysis in the present paper has been within the so-called old covariant quantization
(OCQ). One can find other fine structures from new covariant or BRST quantization, which
will be our next task. After getting it done, we are also able to construct a free field theory for
string junctions. The authors have previously studied extended string field theory [12,13] where
multiple string Fock spaces are utilized to describe massless higher-spin modes with massive
towers, just as closed string field theory can be formulated by the doubled Fock space of an
open string with a suitable matching condition. The Fock space structure there is very simi-
lar to the current one, so that the adaptation of the formalism to the string junction may be
straightforward. Furthermore, if we analyze the system based on the BRST quantization, we
may identify the critical space-time dimension like D = 26 for the string case, which cannot be
obtained only from the spectrum analysis of the old covariant quantization.
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Another future task is to consider interactions. In Ref. [7] a single string emission vertex from
the free end of a string segment was considered. There may be more varieties of interactions,
some of which may need the introduction of another type of junction. In any case, they need
to be classified.
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Appendix A. OPE for TM(z)
We study the OPE properties of the operators TM(z) defined by Eq. (58) for general M. The
product of two operators Aiμ(z) and Aiμ(w) is rewritten in a normal-ordered form by using the
commutation relations (45) as

A1μ(z)A1ν (w) = 1
(z − w)2

ημν + : A1μ(z)A1ν (w) : (A1)

and

Aaμ(z)Abν (w) =
(

1
(z − w)2

+ ε(z, w)
)

δabημν + : Aaμ(z)Abν (w) : (A2)

where

ε(z, w) = 1
2
√

zw(
√

z + √
w)2

. (A3)

By using these relations, the product of TM(z) and TN(w) for general f × f symmetric matrices
M and N can be calculated as

TM (z)TN (w) ∼ D
2

1
(z − w)4

tr(M ◦ N ) + 2
(z − w)2

TM◦N (w) + 1
z − w

∂wTM◦N (w)

+ 1
4

1
z − w

([M, N])i j

(
: (∂wAi(w)) · Aj (w) : − : Ai(w) · ∂wAj (w) :

)
(A4)

where

M ◦ N ≡ 1
2

(MN + NM ). (A5)

Note that, on the right-hand side of Eq. (A4), there remain terms that cannot be represented
only by T unless [M, N] = 0.

We investigate the properties of Eq. (A4) for general M and N. First, note that any symmetric
f × f matrix M can be expanded by the base matrices HAB = HBA = (HAB)T (A, B = 1, 2, . . .,
f):

(H (AB) )i j = 1
2

(
δiAδ jB + δiBδ jA

)
. (A6)

We also use the following expressions:

E = H11, F (ab) = Hab, G(a) = H (1a) (A7)

where a = 2, . . ., f. We can divide these base matrices H(AB) into two classes and define

M+ = Span{H11, Hab}, M− = Span{H1a}. (A8)
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For any matrix M± ∈ M±, from the definition of TM(z) given by Eq. (58), the following relation
holds:

TM± (e2π iz) = ±TM± (z). (A9)

The mode expansion of TM± (z) is given by

TM+ (z) =
∑
n∈Z

LM+
n z−n−2, TM− (z) =

∑
r∈Z+ 1

2

LM−
r z−r−2. (A10)

Now that we have prepared the appropriate base matrices HAB and the mode expansion for
TM(z), we can calculate the commutation relation [LM

ξ , LN
η ] by operating

∮
C0

dw
2π i

∮
Cw

dz
2π i

zξ+1wη+1 (A11)

on Eq. (A4) for any two matrices M and N. Here C0 and Cw represent contour integration
around w = 0 and z = w respectively. Note that ξ (or η) is an integer if the matrix M (or N)
belongs to M+, and a half-integer if M (or N) belongs to M−. After performing the integration
calculation, we obtain the commutation relation

[
LM

ξ , LN
η

] = (ξ − η)LM◦N
ξ+η + D

12
Tr(M ◦ N )(ξ 3 − ξ )δξ+η,0

+ 1
4

([M, N])i j

∑
ζ

(2ζ − ξ − η) : αi
ξ+η−ζ · α

j
ζ : . (A12)

Here ζ is an integer for j = 1 and and a half-integer for j = a.
In the following, we explicitly present the commutation relations for each pair of base matri-

ces H(AB) (or E, F(ab) and G(a)) after collecting the related useful relations.
The base matrices satisfy the relations

H (AB) ◦ H (CD) = 1
4

(
δACHBD + δADHBC + δBCHAD + δBDHAC)

, (A13)

[
H (AB), H (CD)

]
i j

= 1
4

(
δAC (δBiδD j − δB jδDi) + δAD(δBiδC j − δB jδCi)

+ δBC (δAiδD j − δA jδDi) + δBD(δAiδC j − δA jδCi)
)
. (A14)

The mode operators for base matrices are given by

LE
n = 1

2

∑
m∈Z

: αn−m · αm :, (A15)

LF (ab)

n = 1
2

∑
r∈Z+ 1

2

: αa
n−r · αb

r : + D
16

δabδn,0, (A16)

LG(a)

r = 1
2

∑
m∈Z

: αa
r−m · αm :

1
2

∑
s∈Z+ 1

2

: α(a)
s αr−s : . (A17)

The commutation relations are summarized as follows:[
LE

m, LE
n

] = (m − n)LE
m+n + δm+n,0

D
12

m(m2 − 1), (A18)
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[
LF (a1a2 )

m , LF (b1b2 )

n

]
=

2∑
i=1

2∑
j=1

δai+1,b j+1

{
1
4

(m − n)LF aib j

m+n

+ 1
8

r
(

: α
ai
m+n−r · α

b j
r : − : α

b j
m+n−r · αai

r :
)}

+ δm+n,0
(
δa1,b1δa2,b2 + δa1,b2δa2,b1

) D
24

m
(
m2 − 1

)
, (A19)

[
LG(a)

r , LG(b)

s

]
= 1

4
(r − s)

(
LF (ab)

r+s + δa,bLE
r+s

)
+ 1

8

∑
t∈Z+ 1

2

t
(
: αa

r+s−t · αb
t : − : αb

r+s−t · αa
t :

)

+ δr+s,0δ
ab D

24
r
(
r2 − 1

)
, (A20)

[
LE

n , LG(a)

s

]
= 1

2

∑
m∈Z

(n − m) : αa
s+n−m · αm :, (A21)

[
LF (ab)

n , LG(c)

s

]
= δa,c 1

4

∑
m∈Z

(m − s) : αb
s+n−m · αm :

+ δb,c 1
4

∑
m∈Z

(m − s) : αa
s+n−m · αm : . (A22)

Note that i and j are taken as mod 2 values in Eq. (A19). We see that the operators LE
n form a

Virasoro algebra with a central charge D. On the other hand, the set of all the operators LE
n ,

LF (ab)

n , and LG(a)

r does not form a closed algebra because of the last term of Eq. (A12).
Commutation relations for general matrices are obtained from the above relations by using

LM+N
ξ = LM

ξ + LN
ξ , (A23)

which follows from

TM (z) + TN (z) = TM+N (z). (A24)

Appendix B. Algebra of LM
ξ and related useful relations

We further investigate the properties of the algebra given by the operators LM
ξ obtained by the

mode expansion of TM(z) especially for M = P, Qij, Ri. The matrices P, Qij, and Ri defined in
Eqs. (50) and (51) are expanded by the base matrices E, F(ab), and G(a) as

P = 1
f

E, (B1)

Qi j =
f∑

a=2

f∑
b=2

(va)i(vb) jF (ab), (B2)

Ri =
f∑

a=2

2√
f

(va)iG(a). (B3)

We see that the relations

f∑
i=1

Qi j = 0,

f∑
i=1

Ri = 0 (B4)
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hold since
f∑

i=1

(va)i = 0,

f∑
i=1

(va)i(vb)i = δab. (B5)

Note that the following relation is also useful:
f∑

a=2

(va)i(va) j = δi j − 1
f

( = Tr Qi j )
. (B6)

From the general formula of commutation relations (A12), we can derive the following set
of relations that are useful for analyzing the physical state conditions:

1
2

[
LQii

m , LQj j

n

]
+ 1

2

[
LQj j

m , LQii

n

]
= (m − n)

(
δi j − 1

f

)
LQi j

m+n

+ δm+n,0

(
δi j − 1

f

)2 D
12

m
(
m2 − 1

)
, (B7)

1
2

[
LRi

r , LRj

s

]
+ 1

2

[
LRj

r , LRi

s

]
= (r − s)

(
1
f

LQi j

r+s +
(

δi j − 1
f

)
LP

r+s

)

+ δr+s,0
1
f

(
δi j − 1

f

)
D
6

r
(
r2 − 1

)
, (B8)

1
f

[
LQi j

n , LRk

s

]
+ 1

2

(
δ jk − 1

f

)[
LP

n , LRi

s

]
+ 1

2

(
δik − 1

f

)[
LP

n , LRj

s

]

= 1
2 f

(n − s)
{(

δ jk − 1
f

)
LRi

n+s +
(

δik − 1
f

)
LRj

n+s

}
. (B9)

Also, note that [
LP

m, LP
n

] = (m − n)
1
f

LP
m+n + δm+n,0

D
12 f 2

m(m2 − 1). (B10)

Next, we give several useful commutation relations between zero-mode operators and non-
zero-mode operators:[

LRj

r , LP+Qii

0

]
=

(
δi j − 1

f

)
rLRi

r + 1
2

(
2 − δi j f

) [
LRi

r + LRj

r , LP
0

]
, (B11)

[
LP+Qii

m , LP+Qj j

0

]
= 1

f
mLP

m +
[
LQii

m , LQj j

0

]
, (B12)

[
LQi j

m	=0, LQkk

0

]
= 1

2
δ jk f − 1
δik f − 1

[
LQii

m , LQkk

0

]
+ 1

2
δik f − 1
δ jk f − 1

[
LQj j

m , LQkk

0

]
. (B13)

In particular, since [LQii

m , LQii

0 ] = (1 − 1
f )mLQii

m ,[
LP+Qii

m , LP+Qii

0

]
= 1

f
mLP

m +
(

1 − 1
f

)
mLQii

m . (B14)

Further, if we define the operators

LE,m
n = : αn−m · αm :, LF (ab),r

n = : αa
n−r · αb

r :, LG(a),s
r = : αa

s · αr−s :, (B15)

we can form a closed algebra (with central extension) by using them as generators by noting
that

LE,m
n = LE,n−m

n , LF (ab),r
n = LF (ba),n−r

n (B16)
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and

LE
n = 1

2

∑
m∈Z

LE,m
n , LF (ab)

n = 1
2

∑
r∈Z+ 1

2

LF (ab),r
n , LG(a)

r = 1
2

∑
s∈Z+ 1

2

LG(a),s
r . (B17)

For example, the right-hand sides of Eqs. (A19)–(A22) can be written by using the operators
given in Eq. (B15). Also, the following relations are useful for analyzing the physical state con-
ditions: [

LRj

r , LQii

0

]
= 1√

f

(
δi j − 1

f

) f∑
a=2

(va)i

∑
s∈Z+ 1

2

sLG(a),s
r , (B18)

[
LG(a),s

r , LQii

0

]
= 1√

f
(va)i

f∑
b=2

(vb)isLG(b),s
r , (B19)

and [
LQii

m( 	=0), LQj j

0

]
=

(
δi j − 1

f

)∑
a,b

(va)i(vb) j

∑
s∈Z+ 1

2

(m − s)LF (ab),m−s
m (B20)

=
(

δi j − 1
f

)⎛
⎝LQi j

m +
∑

s∈Z+ 1
2

[
LG(a),s

m− 1
2
, LG(b),m−s

1
2

]⎞⎠ (B21)

where [
LG(a),s

r , LG(b),t
m−r

]
= δm,s+t (r − s) LF (ab),m−s

m + δa,bδs+t,0 s LE,r−s
m . (B22)

Appendix C. General solutions of the physical state condition
We give a proof that the space of states satisfying the physical state condition given in Sect. 3.4
is spanned by the states of the form (95) and (96) with the conditions (97)–(99). The condition
that we have to impose is the set of relations (I′) for n = 1, 2, (I′′) for n = 1, (II′) (or Eq. (86))
for r = 1

2 , and (III) as we discussed in Sect. 3.4.

We first consider the condition (86) for r = 1
2 , i.e., LG(a),s

1
2

|φ〉 = 0. Since[
LG(a),s

r , α
b,μ
−t

]
= sδa,bδs,tα

μ
r−s,

[
LG(a),s

r , α
μ

−t+ 1
2

]
= (r − s)δs,r−t+ 1

2
αa,μ

s , (C1)

the operator LG(a),s
1
2

gives a non-trivial effect only on a state including the oscillator α
a,μ
−s for s >

0, and α
μ

s−1/2 for s < 0. In fact, LG(a),s
1
2

causes the replacement of the oscillator as α
a,μ
−s → sαμ

−s+ 1
2

for s > 0, and α
μ

s− 1
2

→ ( 1
2 − s)αa,μ

s for s < 0. From this property, a possible combination of

oscillators α
a,μ
−s and α

μ

−s+ 1
2

(for s > 0) or α
μ

s− 1
2

and α
a,μ
s (for s < 0) within a state |φ〉 satisfying

the condition LG(a),s
1
2

|φ〉 = 0 can be determined as follows. For s ≥ 3
2 , if there is any α

a,μa
−s in

the state |φ〉, then, in order to satisfy LG(a),s
1
2

|φ〉 = 0, there should also be f − 1 different types

of oscillators α
b,μb−s (b 	= a) and α

μ

−s+ 1
2
, all of which should form the following anti-symmetric

combination:

α
2,[μ2
−s α

3,μ3
−s · · ·α f ,μ f

−s α
μ]
−s+ 1

2
. (C2)

Also, there should exist no other mode −s oscillator α
a,μ′
−s in the state. Similarly, for −s ≤ − 1

2 , if

there is any α
μ

−s− 1
2

in the state |φ〉, then, in order to satisfy LG(a),−s
1
2

|φ〉 = 0, there should be f − 1
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oscillators α
a,μa
−s (a = 2, . . ., f) and no other α

μ′

−s− 1
2

within the state, and the f oscillators should

form the combination

α
[μ
−s− 1

2
α

2,μ2
−s α

3,μ3
−s · · ·α f ,μ f ]

−s . (C3)

Note that in this case any number of extra αb,ν
−s can be included within the state. Finally, for

s = 1
2 , to satisfy LG(a),−s

1
2

|φ〉 = 0, |φ〉 can include any number K of oscillators α
ai,μi

− 1
2

(i = 1, . . .,

K). However, if we write the corresponding combination as

ha1a2···aK
μ1μ2···μK

α
a1,μ1

− 1
2

α
a2,μ2

− 1
2

· · ·αaK ,μK

− 1
2

, (C4)

the coefficient should satisfy pμ1ha1a2···aK
μ1μ2···μK

= 0. From the above discussion, we see that any state

satisfying the condition (II′) for r = 1
2 , i.e., LG(a),−s

1
2

|φ〉 = 0 for all s ∈ Z + 1
2 , must have the form

(95) and (96) with the condition pσi ha1a2···aK

[μM
1 μM

2 ···μ1
1μ

1
2···μ1

f ]σ1σ2···σK
= 0.

Next, we impose the condition (I′′) for n = 1 on a state |φ(II′ )1
2

〉 satisfying (II′) for r = 1
2 . The

condition (II′) can be rewritten as the following simpler form:

LF (ab)

n |φ〉 = 0 (a, b = 2, . . . , f ) (C5)

where LF ab

n is given by Eq. (A16), and the condition for r = 1
2 is explicitly given by

LF (ab)

1
2

|φ(II′ )1
2

〉 =
(

1
2
αa

1
2
· αb

1
2
+ α

(a
− 1

2
· α

b)
3
2

+ α
(a
− 3

2
· α

b)
5
2

+ · · ·
)

|φ(II′ )1
2

〉 (C6)

= 1
2
αa

1
2
· αb

1
2
|φ(II′ )1

2

〉 = 0. (C7)

Here the second equality comes from the properties of |φ(II′ )1
2

〉. This gives the traceless condition

on each pair of indices corresponding to the coefficients of α
aμ

− 1
2

as Eq. (98).

Finally, we consider the condition (I′) for n = 1, 2 on |φ(II′ )1
2

〉. From the condition (II′), the

integer mode oscillators of a state |φ(II′ )1
2

〉 have to have the form

|φ(II′ )1
2

〉 = α
[μ1

1
−1 α

μ2
1

−2 · · ·αμM
1 ]

−M (half-integer mode oscillators) |0, p〉. (C8)

Since LP
n = 1

f LE
n and

[LE
n , αν

−m] = mαν
n−m, (C9)

the relations

L1|φ(II′ )1
2

〉 = α
[μ1

1
0 α

μ2
1

−2 · · ·αμM
1 ]

−M (half-integer mode oscillators) |0, p〉, (C10)

L2|φ(II′ )1
2

〉 = 2α
[μ1

1
−1 α

μ2
1

0 α
μ3

1
−3 · · ·αμM

1 ]
−M (half-integer mode oscillators) |0, p〉 (C11)

hold. This gives the condition on the coefficient as

pμ1
1ha1a2···aK

[μM
1 μM

2 ···μ1
1μ

1
2···μ1

f ]σ1σ2···σK
= 0. (C12)

(or the equivalent condition pμ2
1ha1a2···aK

[μM
1 μM

2 ···μ1
1μ

1
2···μ1

f ]σ1σ2···σK
= 0). This concludes the proof.

Appendix D. Remark on the light-cone gauge
Here we give a remark on the light-cone gauge. Let us first remind ourselves how the light-cone
gauge is taken for the ordinary string case. After the orthonormal gauge is taken, we utilize
residual gauge degrees of freedom that preserve the gauge condition to make light-cone oscil-
lators α+

n = 0. Then the Virasoro condition Ln = 0, together with α+
n = 0, becomes a second-
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class constraint that can be solved by representing the remaining light-cone oscillators α−
n in

terms of the transverse modes (or by eliminating α±
n with a Dirac bracket). Thus only transverse

variables are left to us.
Now let us turn to our string junction case. We can easily find the reparametrization trans-

formation (4), which preserves the orthonormal gauge condition (17). This should satisfy

∂+ε (i)− = 0, ∂−ε (i)+ = 0, (D13)

where ± stands for the worldsheet light-cone directions. The boundary conditions (5) and (6)
restrict them further:

ε (i)±(τ, σ ) = ε(τ ± σ ), (D14)

where ε(τ ) is an i-independent function that satisfies ε(τ ) = ε(τ + 2π ). Then we can use this de-
gree of freedom to make α+

n = 0 as in the string case. So we are left with 2f − 1 sets of oscillators

α−
n , αa+

r , αa−
r other than transverse modes. Our remaining constraints are Vn, Ra

r , LQa−1 a−1−Qa a

n

whose number of degrees of freedom is also 2f − 1 in total. These 2f − 1 constraints together
with α+

n = 0 can be considered as a set of 2f second-class constraints of the system. Thus if we
were able to solve them in terms of transverse oscillators, then in principle we could reach the
light-cone gauge. But these relations are so complicated that we have not succeeded in explicitly
solving them yet. Indeed, even at the classical level, the authors of Ref. [9] concluded that it is
not possible, though their treatment of the remaining second-class constraints is not clear.

Thus, although the number of physical degrees of freedom is likely to coincide with that
of the light-cone gauge, the structure of the physical states may not be the same as the naive
truncation to the transverse modes.
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