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Abstract
Artificial intelligence (AI) and classical machine learning (ML) techniques have revolu-
tionised numerous fields, including quantum communication. Quantum communication
technologies rely heavily on quantum resources, which can be challenging to produce,
control, and maintain effectively to ensure optimum performance. ML has recently been
applied to quantum communication and networks to mitigate noise‐induced errors and
analyse quantum protocols. The authors systematically review state‐of‐the‐art ML ap-
plications to advance theoretical and experimental central quantum communication
protocols, specifically quantum key distribution, quantum teleportation, quantum secret
sharing, and quantum networks. Specifically, the authors survey the progress on how ML
and, more broadly, AI techniques have been applied to optimise various components of a
quantum communication system. This has resulted in ultra‐secure quantum communi-
cation protocols with optimised key generation rates as well as efficient and robust
quantum networks. Integrating AI and ML techniques opens intriguing prospects for
securing and facilitating efficient and reliable large‐scale communication between multiple
parties. Most significantly, large‐scale communication networks have the potential to
gradually develop the maturity of a future quantum internet.
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1 | INTRODUCTION

Quantum communication is the art of transferring a quantum
state from one place to another [1, 2]. Quantum states encode
quantum information and allow one to perform tasks that
afford secure and efficient communication surpassing the ca-
pabilities of classical information [3, 4]. Quantum communi-
cation harnesses the distinct characteristics of quantum
mechanics, such as the phenomenon of quantum entanglement
[5], when two objects can be instantaneously connected; su-
perposition [6], a case in which a single object can be in two
places at once; the uncertainty principle [7], which states that
there is inherent uncertainty in measuring a variable of a par-
ticle, and the quantum no‐cloning theorem [8], which prevents
perfect copying of an arbitrary unknown quantum state to
enable the secure and efficient transmission of information [3,

9]. Owing to these properties, any attempt by an eavesdropper
to access information encoded in quantum states can be
detected before confidential information is exchanged between
the legitimate parties. Classical communication relies on bits to
encode and transmit data, and its security is guaranteed by the
computational hardness of specific mathematical problems,
such as factorisation of large integers [10, 11]. The advances in
quantum computing pose a significant threat to classical al-
gorithms based on symmetric and asymmetric cryptography,
which are only computationally secure [12]. To break public‐
key cryptography, one needs the ability to solve problems
that are believed to be hard for classical and quantum com-
puters. For instance, Shor's algorithm, a quantum computing
algorithm can efficiently factor large numbers, breaking the
security of the Rivest‐Shamir‐Adleman (RSA) encryption al-
gorithm [13]. The RSA algorithm is widely used for secure data
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transmission and digital signatures, and its susceptibility to
Shor's algorithm potentially presents a critical challenge to
cybersecurity.

Quantum communication promises information‐theoretic
or unconditional security because it relies on the laws of
physics rather than the presumed computational hardness of
certain problems [3, 9]. The secure exchange of sensitive in-
formation could be transmitted via a quantum network, such as
quantum photonic chips [14, 15], optical fibre, or free‐space
channels [16, 17]. One of the main goals of quantum
communication is connecting quantum computers to build a
quantum network [18]. This could increase the total computing
power, especially if only processors with a few qubits are
available at each network node [19] and will enable the real-
isation of the envisaged quantum internet [20–22]. Neverthe-
less, the limitations faced by quantum information carriers,
such as losses at large distances or quantum decoherence, a
quantum network will also contain other elements, such as a
quantum repeater or quantum switch to enable the trans-
mission of quantum information over long distances without
degradation [21, 23]. Most significantly, the primary paradigms
of quantum communication are quantum key distribution
(QKD) [16], quantum teleportation [24], quantum secret
sharing (QSS) [25] and quantum networks [20]. Notably,
quantum communication technologies such as QKD for point‐
to‐point connection at short distances or by using trusted re-
peaters at large distances have gone beyond prototypes and
begun being commercialised [26–28]. Furthermore, the Inter-
national Organization for Standardisation has developed
standards governing the security requirements, test, and eval-
uation methods for QKD [29, 30]. This versatility of quantum
communication demonstrates its immense potential for
transforming the modern world, ranging from enhancing se-
curity to revolutionising long‐distance communication to
paving the way for a quantum internet [21]. The quantum
internet is expected to profoundly impact various technological
frontiers and everyday life through providing quantum secure
cloud‐based services [22, 31, 32]. Clearly, in addition to its
technological significance, quantum communication protocols
and networks are expected to have far‐reaching social, eco-
nomic, political, and geostrategic implications [33, 34].

Meanwhile, advances in artificial intelligence (AI) and
machine learning (ML) have revolutionised science and society
[35]. Precisely, AI and ML enable machines to perform com-
plex tasks autonomously, without human intervention [36, 37].
For instance, AI and ML promise unprecedented applications
in data processing problems such as data prediction, data
sorting, pattern recognition, and classification [36, 38–41].
These technologies have already begun transforming various
sectors such as banking and finance [42, 43], business [44, 45],
consumer [46, 47], education [48–51] and defence [52, 53].
Furthermore, AI and ML applications have become essential in
communication, resulting in improved, efficient, and secure
systems [54–60]. A suitable example is Rivest's 1991 discussion
on the relationship between cryptography and ML, high-
lighting how both fields have developed ideas and techniques
from each other resulting in improved security systems [61].

Recently, ML and more broadly, AI techniques have been
successfully applied to various aspects of quantum communi-
cations, such as identifying fundamental quantum protocols
[55], including quantum teleportation [62, 63], entanglement
purification [64–67], quantum repeaters [68, 69] and estimating
parameters of quantum devices [70–72]. AI and ML techniques
have demonstrated outstanding performance in addressing
noise, channel losses, and quantum state detection [55, 57].
Since quantum communication is highly susceptible to errors
due to noise and decoherence caused by environmental factors
and hardware imperfections [4, 73], AI and ML promises to
significantly contribute to addressing classical and quantum
error correction [74–78]. Specifically, ML algorithms allow the
optimisation of quantum systems and possibilities to identify
and correct errors more effectively [79–81]. This will improve
the reliability and accuracy of quantum communication sys-
tems [42, 75, 82–85].

The field of AI and ML dates back to the 1950s when Alan
Turing proposed developing intelligent machines and testing
their intelligence [86] and at the Dartmouth Summer Research
Project on Artificial Intelligence, a summer workshop widely
credited as the founding event of AI as a field [87, 88]. On the
other hand, quantum communication has existed since the 1980s
when Bennett and Brassard proposed a quantum physics‐based
solution to the key distribution problem [9, 16]. While these
fields have long existed, the application, development of AI and
ML, and impact on quantum communication technologies are
still relatively low, though it is proliferating [82, 89]. Conse-
quently, we present a concise overview of recent developments
regarding the main paradigms of quantum communication,
including quantum networks, as well as a brief discussion of
some of the main challenges. Specifically, we discuss howAI and
ML algorithms have been integrated into various components of
quantum communication systems in order to overcome imple-
mentation challenges. We advise the reader that due to the
subjective nature of the selection process and the pace at which
AI and ML applications and developments progress, some
contributions will inevitably be missed. We do not conduct an
extensive review of various quantum communication protocols.
However, we provide a comprehensive list of literature on sig-
nificant contributions to the field, covering the more detailed
issues that we can only briefly cover in a review. After discussing
the examples in our article, we hope the reader will appreciate
and understand the significance of AI and ML techniques in
quantum communication protocols and quantum networks.

2 | FUNDAMENTALS OF AI AND ML

AI refers to the development of computer systems with the
capacity to solve advanced problems based on analytical
models that generate predictions, rules, answers, recommen-
dations, or similar outcomes [37, 90–92]. These systems are
designed to analyse data, recognise patterns, and make de-
cisions or predictions based on the information they gather
[93, 94]. ML is a subset of AI that focuses on developing al-
gorithms and models that enable computers to learn from and
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make predictions or decisions without being explicitly pro-
grammed [94, 95]. The algorithms also adapt in response to
new data and experiences to improve their efficacy over time
[96]. With the capacity of systems to process vast amounts of
data and make intelligent decisions, AI and ML have opened
up new unprecedented possibilities and opportunities in
various fields [97, 98], including physical sciences [40, 99, 100]
and more specifically, quantum communications. The ML al-
gorithms can be grouped into supervised and unsupervised
learning [101]. The adjectives ‘supervised or unsupervised’
indicate whether there are labelled samples in the database [93,
96]. Moreover, reinforcement learning has emerged as a new
ML category inspired by behavioural psychology and neuro-
science [102]. Reinforcement learning concerns an agent's
specific form of reward or utility connected to its environment
via perception and action [103]. A subset of ML called deep
learning (DL), allows a computational model composed of
multiple layers of processing units to learn multiple levels of
abstraction in given data [93, 104]. Most significantly, DL is
excellent at discovering intricate structures in high‐dimensional
data and is therefore applicable to many domains of science
[105] and business [106]. The relationship among the AI, ML,
and DL techniques is shown in Figure 1.

The family of AI and ML algorithms can be categorised
based on their similarity in functionality and structure. This has
given rise to regression algorithms [107], instance‐based algo-
rithms [108], regularisation algorithms [109], decision tree (DT)
algorithms [110], Bayesian algorithms [111], clustering algo-
rithms [112, 113], artificial neural networks (ANNs) [114, 115],
DL algorithms [98], long short‐term memory (LSTM) algo-
rithms [116], dimension reduction algorithms [117], and
ensemble algorithms [118]. We discuss how the synergistic
integration of these AI and ML techniques has enhanced
quantum communication system capabilities, resulting in more
secure, reliable, and efficient quantum information transmission.

3 | APPLICATIONS OF AI AND ML TO
QUANTUM COMMUNICATION

On the one hand, AI and ML have become ubiquitous and
effective techniques for data processing and classification, and
on the other hand, the ability to manipulate and control
quantum states has resulted in a wide range of applications that
enable the secure and efficient transmission of information
through quantum systems. The increasing complexity of
quantum systems and communication technologies necessi-
tates powerful data processing and analysis tools [119]. One of
the most important developments is integrating or co‐existing
quantum signal channels into classical telecommunication
networks. While significant progress has been reported, various
implementation challenges remain [120]. Most significantly, AI
and ML have proven valuable tools for addressing these
challenges in recent years. The reason for this is that AI and
ML techniques thrive at learning highly complex input–output
mappings, which enables optimisation of systems [121, 122],
developing signalling and detection schemes for complex
channels or channels without analytical or numerical models
[123], and detecting ultra‐sensitive signals [124, 125]. Due to
the unprecedented progress in these fields, in the following
subsections, we examine how AI and ML techniques have been
applied to solve various theoretical and practical challenges in
QKD, quantum teleportation, QSS, and quantum networks. To
provide context, we offer a concise overview of the various
quantum communication paradigms. This is followed by
examining the current challenges and briefly discussing how
recent advances in AI and ML have been used to address them,
thus enhancing quantum communication applications.

3.1 | Quantum key distribution

QKD‐the establishment of information‐theoretically secure
random key, which guarantees a level of security that is inde-
pendent of any computational assumptions based on quantum
mechanics [3, 11, 16, 126]. The information about a secure key
is transmitted using qubits. The symmetric cryptographic sys-
tems such as the one‐time pad utilise the securely generated
secret keys for encryption and decryption of messages to
ensure confidentiality and prevent eavesdropping [9, 127, 128].
The secret key enables secure communication and authenti-
cation between spatially separated legitimate parties, known as
Alice and Bob. QKD protocols require a quantum channel,
through which qubits containing information about the
distributed key are exchanged, and a public channel, which is
used to check whether communication through the quantum
channel is distorted. An illustration of a general QKD protocol
where Alice and Bob share an insecure quantum channel and
an authenticated classical channel wishes to share a secret
secure key in the presence of an adversarial eavesdropper, Eve
is shown in Figure 2. While Eve can intercept a quantum
channel and extract information by measuring the transmitted
quantum states, she is prevented from doing so by the laws of
quantum mechanics, since any measurement, in general,

F I GURE 1 An overview of the relationship between AI, ML, and DL.
A classification algorithm and a regression algorithm are examples of
supervised learning, while a clustering algorithm is an example of
unsupervised learning. Notably, DL is a subset of ML in which multilayered
neural networks learn from data and examples include convolutional neural
networks and recurrent neural networks. AI, artificial intelligence; DL, deep
learning; ML, machine learning.
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modifies the state of the measured system [130]. Additionally,
Eve is forbidden by the quantum non‐cloning theorem [8] to
make a perfect copy of the state Alice sends to Bob while
keeping the original copy. Any action by the eavesdropper
would lead to her detection and Alice and Bob can abort the
protocol and discard the keys. The classical channel is
authenticated such that the eavesdropper can only listen to
communication about the basis Alice and Bob used to measure
the quantum states but not the actual measurement results.
Therefore, Eve cannot recover information about generated
secret keys. As a result, combining a QKD protocol with a
secure one‐time pad encryption algorithm promises
information‐theoretic or unconditional security [11, 131].

Since Bennett and Brassard's (BB84) [16] and Ekert 1991
(E91) [126] now represent protocols using QKD, various
QKD protocols and schemes have been developed to over-
come the mismatch between the theoretical security of the
communication model and the security of practical imple-
mentations [132–134]. These protocols belong to a class of
discrete‐variable (DV‐QKD) protocols because the informa-
tion is encoded in a discrete manner by using single photons to
carry information, exploiting, for instance, different polar-
isation directions to realise the two states of a qubit [3, 9].
Another approach to QKD is the continuous‐variable (CV‐
QKD), in which information is encoded in the properties of
light that are continuous, for instance, the quadrature com-
ponents of the electromagnetic field, yielding continuous
values as measurement results [135] and the distributed‐phase‐
reference protocols in which information is encoded in time
and phase of weak coherent pulses [3, 17]. Owing to the de-
mand for various practical implementation requirements has
led to developments such as decoy‐state QKD [136], device‐
independent QKD or measurement‐device independent
QKD (MDI‐QKD) [137] as well as Twin‐Field QKD (TF‐
QKD) [138] protocols. Detailed descriptions of these ap-
proaches, including proofs of their security, may be found in
Refs. [3, 9, 17, 139]. As a result of these developments, there
can be no doubt that QKD has emerged to be the most
advanced practical quantum communication technology [129].

QKD has two significant characteristics: practical security
and key‐rate performance [140, 141]. These characteristics
enable or limit QKD use in real‐life applications [17, 132, 133,
142]. The key rates of DV‐QKD protocols are evaluated using
analytical methods since most of them are symmetric [9, 143–
147]. However, symmetry assumptions usually fail for other
classes of protocols because of the differences in encoding.
This leads to new challenges in analysing the security of such
protocols. As a result, numerical methods based on convex
optimisations have been developed [148–151]. Typically, a
QKD system consists of three components: a source, a
channel, and a measurement device [3]. The source is relatively
simple and can be well characterised [152, 153]. The security of
the channel has been addressed in various QKD security
proofs [145, 154]. Nevertheless, quantum information trans-
mission over long distances is still a long way from becoming a
reality, possibly until functional quantum repeaters are realised
[155]. Quantum repeaters require quantum memories with
memory times close to a second [156]. As a result, the certi-
fication of the physical hardware remains a critical challenge
for quantum communication. While multi‐hop quantum net-
works are capable of providing better rates at longer distances,
they have limited achievable key rates [157].

Compared to DV‐QKD, the class of CV‐QKD protocols
have gained interest because of their potential technology
advantage such as offering an improved secret key rate and
being much more compatible with the existing standard optical
fibre communication system [17, 146, 158, 159]. The CV‐
QKD schemes depend heavily on coherent detection and
digital signal processing techniques, which are closely related to
classical coherent communication systems. Despite the signif-
icant differences between classical and quantum optical
communication systems, the knowledge gained through clas-
sical coherent communication systems over the past few years
can be applied to quantum optical communication systems,
making CV‐QKD implementations possible. However, due to
imperfect devices and insufficient assumptions, a practical CV‐
QKD system may still be vulnerable to various quantum
hacking attacks [160]. Most significantly, these challenges limit
practical QKD security.

Considering the difficulty of calibrating the measurement
device [161], an adversary could manipulate the measurement
device by sending unexpected signals [162–164]. The MDI‐
QKD schemes have been developed to address detection
loopholes in QKD systems [165], and TF‐QKD protocols
have been proposed for long‐distance communication with
QKD keys [166]. Although improved security can be achieved
by selecting optimal QKD resources, this requires time‐
consuming algorithms, such as exhaustive traversal or local
searches [167–169]. Theoretically, as aforementioned, CV‐
QKD protocols lack symmetry, and security proofs involving
discrete modulation rely mainly on numerical methods [150,
170]. Although numerical methods offer tight security bounds
for various QKD protocols [149], their high implementation
requirements remain a challenge [170–172] as they require large
amounts of computational resources and time. Furthermore,
numerical methods require minimising a convex function over

F I GURE 2 The schematic setting of a typical QKD protocol. The two
legitimate parties, Alice and Bob are connected by a quantum channel,
which an eavesdropper, Eve can tap without any restriction other than by
quantum mechanics. In the authenticated public classical channel, Eve can
only listen to the conversation but cannot modify the messages being sent
between Alice and Bob. A shared secure random key that meets the desired
properties is produced at the end of the protocol, or the protocol aborts.
Reproduced from Ref. [129]. QKD, quantum key distribution.
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all eavesdropping attacks related to the experimental data [173]
and depend on numerous QKD parameters. Unfortunately,
this may require a significant amount of time for the corre-
sponding optimisation [150, 170]. Due to these challenges, it is
imperative to develop techniques that are more useful than
standard numerical modelling methods.

ML and AI techniques provide powerful tools for learning
from unknown features or complex patterns [94]. They
demonstrate significant potential in predicting optimisation
parameters from noisy measurement data and address chal-
lenges in practical quantum communications [174]. Particularly,
AI and ML models have been developed for optimising various
system parameters, such as equipment parameters or mea-
surement device parameters [175], physical parameters of sig-
nals [176], and optimising the raw secret key [177].
Fundamentally, the integration of AI and ML in quantum
communication systems addresses both QKD characteristics
(e.g. key rate performance and practical security) as well as
system components (e.g. source, channel, and measurement
devices). This has resulted in improved QKD schemes and
long‐distance transmissions. Parameter optimisation refers to

the choice of intensities (i.e. signal states and decoy states) and
probabilities of sending them, which is an essential step in
attaining optimal performance [178], especially when one
realistically considers statistical fluctuations due to finite‐size
key in practical communications [179, 180]. Most often,
exhaustive search or local search is used to optimise parameters
in point‐to‐point QKD systems. Although these methods are
feasible for small‐scale QKD networks in the future, they are
not yet suitable for large‐scale networks. Accordingly, in the
following section, we examine how various AI and ML models
have been integrated to enhance QKD performance.

In 2020, Ding et al. [181] used random forest (RF) instead
of traditional search algorithms to directly predict optimal
parameters based on any given system conditions for finite
data for MDI‐QKD and MDI‐BB84 QKD protocols. An RF
model is particularly useful for various ML tasks such as
classification and regression. This is due to its high prediction
accuracy, tolerance to outliers and noise, and low overfitting
probability [93]. This method waives the simulation and iter-
ation methods, which are inherent in traditional search tech-
niques. The results of the RF model are shown in Figure 3.

F I GURE 3 (a) An illustration of the RF
model, where D denotes the original training
set, Dk(k = 1, …, K) denotes the subset
sampled with replacement from D, and fk
denotes a decision tree grown on Dk.
(b) Comparison of secure key rate between
RF and LSA for MDI QKD protocol. The
average ratio is 0.9941 and the standard
deviation is 0.0207. (c) Comparison of secure
key rate between RF and LSA for MDI‐BB84
QKD protocol. The average ratio is 0.9944
and the standard deviation is 0.1438.
(d) Typical search space of input features: e,
d, N and L for fibre loss α = 0.2 dB/km,
detector efficiency ηd = 14.5%, and error
correction efficiency fe = 1.16.
(e) Comparison of prediction accuracy when
using the RF and NN model and a better
generalisation is achieved in each situation.
Reproduced from Ref. [181]. LSA, local
search algorithm; MDI QKD, measurement‐
device independent quantum key
distribution; NN, neural network; RF,
random forest.
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Specifically, the RF model assumes the training set
D¼ fXi;Yigni¼1, where Xi are input features with responses
Yi. As part of the RF model, bootstrap aggregating or bagging
is applied repeatedly (i.e. K times) to randomly n examples,
with their replacement from the training set with an inde-
pendent bootstrap sample, Dk. Trees are grown based on Dk,
with each node selecting a random subset of features and the
best split being determined from those features. After training,
the predictors for a fresh sample X0 can be obtained by
averaging the predictions from all tress f ¼ 1

K
PK

k¼1fkðX
0Þ,

where fk(X0) is the prediction on X0 of an individual tree. For
the 3‐intensity MDI‐QKD protocol, Alice (Bob) should
optimise the intensities of signal state and decoy state (μ, v),
and the probability of intensities and bases (Pμ, Pv, PX|μ, PX|
v), where Pμ(PX|v) is the probability to choose signal (decoy)
state and PX|μ(PX|v) denotes the probability to choose the X
basis conditional on signal (decoy) state. These parameters are
grouped as vectors v!, which represent responses. Note that
the key rate is influenced by the system's conditions s!,
including the misalignment ed, the dark count rate d, the de-
tector efficiency ηd, the pulse number N, and the transmission
distance L between Alice and Bob. The key rate is calculated

using the equation r ¼ R
�
s!; v!

�
. Optimal secure key rate is

achieved by searching v!opt according to v!optðsÞ¼

argmax v!∈VR
�
s!; v!

�
, where V is the search space of v!.

Since v!opt is a function of the given system condition s! it is
challenging to simulate analytically. Particularly, using the RF
model results in reduced time and hardware overhead
compared to traditional search methods. Moreover, this model
achieves a high prediction accuracy of over 99% of the optimal
secure key rate. This holds significant promise for future QKD
applications.

In MDI‐QKD protocols, selecting parameters, such as the
probability of selecting an X‐basis or Z‐basis, the signal state
intensity and decoy state, as well as system calibration, be-
comes more challenging as the number of parties in the
network increases. The most common method for optimising
parameters at the moment is to use optimisation algorithms.
Even though the method is accurate, it is time‐consuming and
consumes hardware resources. Rather than searching for
optimised parameters, Lu et al. [182] present a novel back
propagation neural network (BPNN) capable of predicting
optimised parameters with fewer resources and at a higher
speed. Moreover, it is notable that the BPNN addresses the
challenge of system recalibration, which is experienced when
working with large‐scale MDI‐QKD networks. The BPNN
can be used to address system recalibration in real‐time. This is
achieved by requiring the use of some discarded data generated
by the communication process rather than the addition of
additional devices or a complete scan of the system.

On the other hand, Dong et al. [174] use the extreme
gradient boosting (XGBoost), BPNN, and RF model to pre-
dict the TF‐QKD optimisation parameters affecting the key
rate and transmission distance. While a TF‐QKD, overcomes
the basic limits of QKD without repeaters, in practice, it still
needs to optimise all parameters when a finite data size is

considered. Using these ML models, predictive parameters
significantly reduce optimisation time while maintaining high
accuracy. Notably, XGBoost's performance is better than
BPNN and RF in parameter prediction. This approach elimi-
nates the need for simulation and iterations in the search
method which requires real‐time optimisation of the future
QKD network.

Practical QKD implementations require efficient, real‐time
feedback control to maintain stability if there are disturbances
from either the external environment or imperfect compo-
nents within the system. The ‘scanning‐and‐transmitting’
programme is used to compensate for physical parameter
variations of the devices, which can provide accurate
compensation, but may require a considerable amount of time
to stop and calibrate the processes, which may reduce the
efficiency of key transmission. As a result, Liu et al. [183]
proposed a practical phase‐modulation in QKD that employs
an ML model, specifically the LSTM network to predict
physical parameters of devices in advance and actively perform
real‐time control on corresponding QKD devices. Figure 4
shows the schematic setup and results of the experimental
study. This experiment runs the BB84 QKD system by
applying either the traditional ‘scanning‐and‐transmitting’
programme or the proposed LSTM model. During trans-
mission, the 3‐intensity (μ = 0.5, v = 0.1, 0) decoy‐state
method is implemented and the corresponding quantum bit
error rate (QBER) and counting rates for 2 days are recorded.
The results are shown in Figure 4a–c. Notably, the ‘duty ratio’
of the traditional ‘scanning‐and‐transmitting’ programme and
the proposed LSTM model‐based system is 50% and 83%,
respectively. As a demonstration that the proposed LSTM has
the ability to predict continuously over an extended period, the
proposed LSTM model‐based QKD system was run for
10 days at a distance of 50 km, and the results are shown in
Figure 4d. Specifically, the results demonstrate no trend of
deterioration from start to finish, demonstrating the long‐term
reliability and stability of the proposed ML model. According
to these authors, this ML model is a promising candidate for
large‐scale quantum communication networks.

The implementation and performance of CV‐QKD are
threatened by various attack strategies. To counter these at-
tacks, various real‐time monitoring modules are exploited to
prevent different types of attacks. Due to the uncertainty
associated with the estimation of excess noise, this strategy
lacks a universal defence method, which prompted Mao et al.
[184] to propose a defence strategy to address these disad-
vantages and resist the majority of known attacks on CV‐QKD
systems. By analysing several pulse characteristics that are
affected by a variety of types of attacks, the authors deduce a
feature vector that is used as input to an ANN model for
analysis. As a result of the trained ANN model, attacks can be
automatically identified and classified with a precision and
recall rate exceeding 99%. By implementing most of the
known attack strategies, the proposed scheme significantly
increases system security. However, compared to a CV‐QKD
system that did not adopt any countermeasures against at-
tacks, the proposed scheme slightly decreased the transmission
distance and secret key rate.
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Another important approach to QKD practical systems is
underwater CV‐QKD. However, the implementation of un-
derwater QKD faces challenges such as such as equipment
imperfections, channel disturbances, and eavesdroppers, which
may cause invalid communication. As a result, Li et al. [56]
investigate the risk ensemble learning (EL) approach caused by
channel disturbance resulting in communication failure. To
improve the security of the CV‐QKD system with discrete
modulation, the authors present an EL approach with a self‐
adaptive structure and predictability of communication fail-
ures. Based on the EL approach, the current communication
status of the discrete‐modulated CV‐QKD (DM‐CV‐QKD)
system can be predicted based on Bob's phase data, enabling
adaptive judgement of the current communication status, and
ensuring typical QKD communications. As opposed to the
traditional ML process used for CV‐QKD systems, this
method does not require additional parameter detection
equipment. This means the scheme is not susceptible to se-
curity vulnerabilities caused by parameter detection equipment.
Moreover, the EL approach can reach 70%, which is higher
than other learners, especially in logistic regression, support
vector machines, and BPNNs. As a result, this ability to predict

communication failures contributes to improved practical
implementation feasibility of CV‐QKD. Due to the vulnera-
bility of CV‐QKD systems to various quantum hacking attacks,
Ding et al. proposed an ML‐based attack detection scheme
(MADS) as a universal defence strategy [160]. According to the
results, the MADS can detect most quantum hacking attacks
and revise overestimated secret key rates resulting from a CV‐
QKD system that does not employ a defence strategy to
achieve a tighter security bound.

Towards addressing measurement device or detection
challenges, using an ML‐assisted MDI‐QKD system, Zhang
et al. [185] demonstrate how phase drift between two users can
be predicted in advance and compensated actively in real‐time,
dramatically increasing key transmission efficiency. Specifically,
they demonstrate the application of the LSTM model to the
MDI‐QKD system for calibrations of reference frames. This
schematic setup and results are shown in Figure 5. By utilising
this model, the QKD system can predict phase drift between
two users in advance, and compensate for it in real‐time. The
MDI‐QKD scheme generally achieves lower secret key rates
than the BB84 QKD scheme, while achieving a balance and
practicality with finite data size effects. As a means of

F I GURE 4 Schematic of the experimental setup. BS, beam splitter; CB, control board; FM, Faraday mirror; FMI, Faraday‐Michelson Interferometer; OPM,
optical power metreer; PM, phase modulator; SPD, single‐photon detector; THD, temperature, and humidity detector. (a, b) Comparisons between applying the
traditional ‘scanning‐and‐transmitting’ programme and using present LSTM model‐based QKD systems with respect to time and average values at the
transmission distance of 50 and 150 km. Notably, the QBER of the traditional method is linked to the left Y‐axis, and of LSTM model is linked to the right Y‐
axis. (c) The key generation rate versus transmission distance. In each figure, the square points refer to the results of applying the traditional ‘scanning‐and‐
transmitting’ programme, and the circle points correspond to using our new method. (d) Comparisons between applying traditional scanning‐and‐transmitting
programme and using current LSTM‐model‐based QKD systems on QBER at the transmission distance of 100 km. Reproduced from Ref. [183]. LSTM, long
short‐term memory; QBER, quantum bit error rate; QKD, quantum key distribution.
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increasing the key rate, the authors demonstrate a variation of
the LSTM model based on a simple three‐intensity decoy‐state
MDI‐QKD scheme with biased basis choice, in which the
decoy pulses are only prepared in the X‐basis. This protocol
consists of signal pulses prepared either on a Z or X basis,
which is distinct from the traditional three‐intensity decoy state
schemes [186]. However, similar to the approach demonstrated
in Ref. [183], authorised parties randomly prepare phase‐
randomised weak coherent state pulses in three different in-
tensities (μ, v, 0) with certain probability values that corre-
spond to the intensity of the signal state, the decoy state, and
the vacuum state. The experimental demonstration demon-
strated improved secure key exchange for single‐mode fibres
over 100 and 250 km. By utilising this approach, MDI‐QKD
systems show a significant improvement in transmission effi-
ciency over conventional scanning‐and‐transmitting systems.

Furthermore, the method avoids potential vulnerabilities since
no additional quantum resources are required. The programme
optimisation can further improve the duty cycle and stability
time to match the requirements of different systems.
Furthermore, the proposed system maintains excellent stability
over a long period, conclusively demonstrating its effective-
ness. As a final point, this approach can serve as a valuable
reference when it comes to the implementation of future large‐
scale quantum communications.

Notably, Ismail et al. demonstrated using the EL technique
called RF to predict the strength of the atmospheric turbulence
in the quantum channel in free space using the Strehl Ratio [187].
The authors estimate the Strehl ratio of the quantum channel
with a mean absolute percentage error of 4.44%. The authors
also perform predictions using linear and support vector re-
gressors; however, the RF performs better. As part of the

F I GURE 5 (a) Schematic setup of the MDI‐QKD system. ATT, attenuator; BS, beam splitter; EPC, electronic polarization polarisation controller; FM,
Faraday mirror; IM, intensity modulator; Laser, continuous‐wave laser; PM, phase modulator; SNSPD, super‐conducting nanowire single‐photon detector.
(b) Theoretical and experimental results of the key rate's dependence on the transmission distance. The system parameters are as follows: dark counting rate per
pulse and overall efficiency of detection side are 4 � 10−8 and 60%; misalignment errors in Z and X bases are 0.15% and 1.5%, respectively. (c) Comparisons
between applying traditional scanning‐and‐transmitting programme and using current LSTM‐model‐based QKD systems on QBER at the transmission distance
of 100 km. Reproduced from Ref. [185]. LSTM, long short‐term memory; MDI‐QKD, measurement‐device independent QKD; QBER, quantum bit error rate;
QKD, quantum key distribution.
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process of characterising quantum channels, these values pro-
vide insight into the level of disturbances that must be overcome
during key distribution. This allows one to accurately charac-
terise quantum channels and assist in mitigating the challenges
related to information losses in transmission channels. Hence,
using ML to monitor free‐space quantum channels will enable
real‐timemonitoring ofQKD systems. In 2022, Lollie et al. [188]
demonstrated high‐dimensional encryption in optical fibres us-
ing spatial modes of light and ANNs. A particular feature of this
communication protocol is that it allows the recovery of mes-
sages and images with a high level of accuracy. This protocol
provides a way to increase the quantum information capacity per
photon while maintaining the fidelity of information transfer
that is essential for quantum technologies utilising structured
fields of light, particularly those whose propagation is challenged
by free space. Moreover, in 2018, Ou et al. [189] developed a
method to assist coexistence between quantum and classical
communication channels. They predicted the quantum channel
QKD quality in a dense wavelength‐division multiplexing
(DWDM) fibre network with multiple ML models. The authors
demonstrate that the K‐neighbours regression is the most ac-
curate model to spectrally re‐allocate the channels for stable
performance. The feasibility of the ML application was
confirmed by several field trials, which demonstrated robust key
generation and distribution. Furthermore, Liu et al. [176]
demonstrated the advantages of using a support vector regres-
sion model for optimising the performance and security of fibre
QKD systems. This SVR‐based approach provides optimal
performance and practical security for the QKD system. As the
system does not require additional resources and no real‐time
monitoring module, it supports automatic prediction of signal
physical parameters over time and can be applied to any signal
physical parameter that can be measured in a practical QKD
system. It is noteworthy that Okey et al. [169] showed that the
Tree‐CNN algorithm is an efficient method for selecting the
optimal QKD (i.e. BB84 for short distances and TF‐QKD for
long distances) for the implementation of large‐scale commu-
nication systems in real‐time. The proposed model is compared
to other ML techniques based on convolutional neural networks
(CNN). This study showed a 99.89% Area Under Curve during
testing and 0.65 s time‐cost performance, which outperformed
the results obtained in related studies in predicting the bestQKD
protocol. The proposed scheme was further validated using
different transmission distances and three QKD protocols to
demonstrate that the predictions and actual results matched one
another. The proposed model demonstrated a fast, reliable, and
precise solution to the problemof selecting an appropriateQKD
protocol based on performance and time. The authors suggest
that long distances established using TF‐QKD implementations
may eliminate the need for quantum repeaters in certain in-
stances. Particularly, other ML models have also been applied to
fibre‐based optical communication systems [101, 190] as well as
nanoscale devices characterisation and parameter estimation,
leading to improvements in quantum communication sys-
tems [125].

A NN is presented by Wang and Lo [178] in 2019 which
predicts the optimal parameters based on the characteristics of

devices and channels for four examples: MDI‐QKD, BB84,
and TF‐QKD. According to the authors, the approach is
general and does not depend on any particular protocol. With a
fraction of the power consumption of local search, this tech-
nique is suitable for low‐power devices and can achieve 2–3
orders of magnitude faster optimisation speed than local
search. The programme can be run on either NN acceleration
chips or on common CPUs with relatively low performance,
depending on their preference. Besides this being extremely
useful for free‐space QKD applications that require low la-
tency and low power budgets, it is useful for quantum internet‐
of‐things (IoT). The IoTs allow even a small portable device
connected to numerous users to optimise everything parame-
ters in real‐time. Furthermore, this simple demonstration
suggests that similar methods may apply to other optimisation
tasks commonly encountered in the design and control of
practical QKD systems, including the determination of the
optimal post‐selection thresholds in free‐space QKD and the
tuning of polarisation controller motors to control misalign-
ment. This could be useful for reference‐free independent
QKD schemes [191].

Moreover, in 2018, Li et al. [177] presented a distance‐
weighted K‐nearest neighbours (DW‐KNN) algorithm to a
DM‐CV‐QKD to preprocess the raw key data before per-
forming the reconciliation. This improves the accuracy of the
raw key data and the performance of DM‐CV‐QKD. The pro-
posed scheme could be employed to overcome several impair-
ments induced by the channel, thereby lowering the demand for
error correction codes on the signal‐to‐noise‐ratio threshold of
the quantum channel. Classical error correction techniques are
used to detect and correct errors in the transmission of classical
information [3, 9]. This technique plays a crucial role in
improving the security and reliability of QKD systems. Niemiec
demonstrates a key reconciliation technique that uses ANNs
(TPM machines) to reconcile errors in quantum channels [78].
The authors argue that error correction using ANNs is robust to
current attacks imposed by quantum computers. Furthermore,
Long et al. [81] presents an overviewof howMLhas been applied
to almost every stage of the QKD protocol, particularly CV‐
QKD. The study indicates that ML has been used in phase er-
ror estimation, excess noise estimation, state discrimination,
parameter estimation and optimisation, key sifting, information
reconciliation, and key rate estimation. To improve time and
resource consumption in CV‐QKD, Liu et al. [171] improve a
NNmodel predicting key rates in nearly real‐time by combining
the model with Bayesian optimisation. The combined model
automatically designs the best architecture of neural networks
computing the key rates for DM‐CV‐QKD protocols in real‐
time. Precisely, two variants of CV‐QKD protocols with qua-
ternary modulation were studied using the model. The results
indicate high reliability with a secure probability as high as
99.15%–99.59%, tight secure bounds, and high efficiency with a
speed‐up of approximately 107 than the numerical methods. A
key benefit of the model is that it allows real‐time automatic and
efficient computation of QKD. This will address the growing
demand for implementing QKD protocols on mobile platforms
such as handheld QKD systems, drone‐based QKD, or satellite‐
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ground QKD. The authors argue that using neural networks to
optimal parameters in their work outperforms results in Refs
[176, 178, 181, 182].

In 2020, Liao et al. [192] proposed a multi‐label learning‐
based scheme for discretely‐modulated CV‐QKD (ML‐CV‐
QKD). This scheme divides the quantum system into a trusted
state learning process for training and estimating classifier, and
an untrusted state prediction process for generating the final
secret key. To better represent the characteristics of modulated
coherent states, feature extraction was used. This study also
investigates how the multi‐label classification algorithm
embedded in ML‐CV‐QKD can be used for the prediction of
unknown signals. The results illustrate that the MLCA‐
embedded ML‐CV‐QKD is both feasible and effective at
predicting unknown signals. The numerical simulations show
that the proposed MLCA‐embedded ML‐CV‐QKD out-
performs existing CV‐QKD protocols, specifically in terms of
maximum transmission distance, and the performance of both
transmission distance and secret key rate will continue to in-
crease with the increase of modulation variance. Moreover,
Zhou et al. [172] developed an NN that can be used to predict
the information‐theoretically secure key rates of homodyne
detection DM‐CV‐QKD with high probabilities of up to
99.2% at distances of 0–100 km with <0.015 excess noise.
According to the authors, their method achieves a speed that is
six orders of magnitude higher than the numerical method in
Ref. [149]. Since it takes a certain time for the QKD system to
collect data, the predictability of the key rates by the NN meets
all practical requirements. This technique can in principle be
applied to any protocol with reliable numerical methods.
Furthermore, there is also increasing interest in applying ML
techniques to suppress noise [60, 171, 193]. For an extended
discussion on enhancing various CV‐QKD systems with ML,
including detection methods and attack methods, we refer the
reader to Refs. [78, 176, 177, 194]. These works demonstrate
that by strategically combining quantum mechanics and
advanced computational algorithms, various AI and ML
techniques can be used to optimise key generation rates, reduce
error rates, and increase the reliability and transmission dis-
tances of QKD systems. As QKD technology matures,
standardisation efforts are underway to ensure its sustainability
and reliability soon. Standardisation is critical to accommodate
a variety of potential use cases and several plausible QKD
protocols. Regarding the progress in standardisation and the
practical challenges that prevent the widespread implementa-
tion of QKD in our future communication networks, we refer
the reader to Refs. [29, 129]. The Table 1 provides a summary
of the AI/ML solutions proposed for each QKD scheme.
Moreover, it provides an overview of the main objectives or
outcomes of each application.

3.2 | Quantum teleportation

Quantum teleportation remains one of the most significant
protocols in quantum communication [5, 24, 195]. It enables
the nonlocal transmission of an arbitrary unknown quantum

state without transmitting the encoded particle itself [24, 196],
despite the quantum no‐cloning theorem [8]. This phenome-
non is influenced by the fundamental principle of quantum
entanglement and therefore cannot be simulated with classical
channels [63, 197, 198]. This enables it to serve as a valuable
resource for overcoming distance limitations in quantum
communication and quantum networks, as well as the difficulty
of establishing long‐range interactions among qubits in quan-
tum computation [199, 200]. An overview of the teleportation
scheme based on the Bennett et al. [24], is illustrated in
Figure 6. The quantum state teleportation scheme consists of
an unknown quantum state being transmitted from the sender,
Alice to the receiver, Bob. The two authorised participants are
connected by a quantum channel and a classical channel. The
quantum channel consists of an entangled pair shared between
Alice and Bob:

jψ−〉23 ¼
1
ffiffiffi
2
p ðj0〉2j1〉3 − j1〉2j0〉3Þ; ð1Þ

where particles 2 and 3 are held by Alice and Bob, respectively.
This shared entangled state is one of the four maximally
entangled Bell states jΦ�〉¼ 1ffiffi

2
p ðj0〉j0〉� j1〉j1〉Þ and

jΨ�〉¼ 1ffiffi
2
p ðj0〉j1〉� j1〉j0〉Þ. Notably, Charlie provides the

input particle 1 to be teleported to Bob in a general quantum
state:

jψA〉¼ αj0〉1 þ βj1〉1; ð2Þ

where the complex coefficients α and β satisfy |α|2þ |β|2 = 1.
Alice performs a Bell‐state measurement (BSM) and randomly
projects particles 1 and 2 each to one of the four Bell states with
equal probability. Finally, Alice informs Bob of the BSM result
through the classical channel, and Bob performs the corre-
sponding Pauli or combinations of operators {I, X, Z, ZX} on
his particle according to the results to recover the unknown
quantum state |ψA〉 of the particle of Charlie. Notably, the same
scheme can serve for entanglement swapping when the qubit to
be teleported is itself entangled with a fourth qubit held by
another party.

Since the Bennett et al. proposal in 1993 [24], quantum
teleportation has been demonstrated using various platforms
and technologies, including single atoms [201, 202], BSM
[203], photonic chips [14], time‐bins [204, 205], atomic en-
sembles [206], solid‐state quantum systems [207, 208], nuclear
magnetic resonance [209], quantum optics [195, 196, 210–
215], spins [199], photons [216], and superconducting qubits
trapped ions [217, 218], which have become integral to
numerous quantum computing architectures [200, 219], where
it allows quantum information to be ‘swapped’ between
different qubits. In awe of these developments, recent theo-
retical and practical advances in quantum teleportation focus
on understanding its nonclassical nature and its potential ap-
plications. In terms of practical applications, outstanding
teleportation distances of 100‐km [220], 1200‐km [221], and
1400‐km [222] using free‐space optical links as well as 100‐km
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[214] and 143‐km [223] via commercial optical fibre channels
are observed. These performances signify a key step towards
realising quantum communication at a global scale [22, 199,
220, 224–226] and establish a promising avenue towards a
quantum internet [23, 213, 227, 228]. Thus, quantum tele-
portation over long distances is essential for realising global
quantum communications as well as large‐scale quantum
networks. Over the years, several quantum teleportation
models have been widely investigated theoretically and
experimentally (see Refs [63, 199]), including quantum tech-
nology protocols and others that are conceptually valuable in

the theoretical model. These include entanglement swapping
[229–231], controlled quantum teleportation [232, 233], tele-
portation of a shared quantum secret [234, 235], quantum
teleportation network [236], port‐based teleportation [237,
238], quantum gate teleportation, and quantum computing
[239, 240].

Most significantly, various ML techniques have been
applied in detecting or classifying quantum entanglement, a
valuable resource in quantum teleportation, in various settings.
For instance, in 2018 Lu et al. [241] demonstrated a reliable
classifier for classifying entangled and non‐entangled states by

TABLE 1 Summary of AI/ML applications in QKD schemes.

QKD protocol or device AI/ML model Main objective or outcome

MDI‐QKD BPNN Predicted various optimised parameters using limited resources [182]

MDI‐QKD LSTM Addressed measurement device or detection challenges and predicted in advance
phases drifts between two users and compensates for it in real‐time [185]

BB84 & MDI‐QKD LSTM Predicted physical parameters in advance and actively performed real‐time control of
corresponding QKD devices [183]

MDI‐QKD & MDI‐BB84‐QKD RF Predicted optimal parameters based on any given system conditions for finite
data [181]

TF‐QKD XGBoost/BPNN/RF Predicted the TF‐QKD optimisation parameters influencing the key rate and
transmission distance. Eliminated the need for simulation and iterations in the
search method. Results of XGBoost outperform the BPNN and RF [174]

BB84 & TF‐QKD Tree‐CNN Accurately selected optimal QKD parameters [169]

MDI‐QKD, BB84 QKD and
TF‐QKD

Neural network Accurately and efficiently predicted the optimal parameters [178]

CV‐QKD LSTM Enhanced the performance and stability of the protocol [185]

CV‐QKD BPNN Adjusted the modulation variance to ensure an optimal system with a higher
achievable key rate under varied atmospheric turbulence intensities [54]

CV‐QKD ANN Detected quantum attacks in the communication system [184]

CV‐QKD Ensemble learning Predicted channel failure due to disturbance in underwater communication
systems [56]

CV‐QKD MADS Detected most quantum hacking attacks and revised overestimated secret key
rates [160]

CV‐QKD Support vector regression Optimised the performance and the practical security of a fibre QKD system [176]

CV‐QKD ANN Experimentally addressed a quantum attack defense strategy [184]

DM‐CV‐QKD KNN Improved the accuracy of the raw key data and secure distance of DM‐CV‐QKD
systems [177]

DM‐CV‐QKD Neural network þ Bayesian
optimisation

Computed key rates in real‐time on a low power platform [171]

DM‐CV‐QKD Neural network Predicted information‐theoretically secure key rates of homodyne detection DM‐
CV‐QKD with a great probability (up to 99%) at a distance of 0–100 km and an
excess noise of no more than 0.015 [172]

Quantum channel RF Predicted the atmospheric strength of quantum channels in free space [187]

Quantum channel KNN regression Predicted the quantum channel quality in a DWDM fibre network [189]

Optical fibre ANN Recovered messages and images with a high level of accuracy [188]

Key distillation ANN Corrected errors occurring during transmission [78]

Abbreviations: AI, artificial intelligence; ANN, artificial neural network; BPNN, back propagation neural network; CNN, convolutional neural network; CV‐QKD, continuous‐variable
QKD; DM‐CV‐QKD, discrete‐modulated CV‐QKD; KNN, K‐nearest neighbour; LSTM, long short‐term memory; MADS, ML‐based attack detection scheme; MDI‐QKD,
measurement‐device independent QKD; ML, machine learning; QKD, quantum key distribution; RF, random forest; TF‐QKD, twin‐field QKD.

212 - MAFU

 26328925, 2024, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12094, W

iley O
nline L

ibrary on [16/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



employing supervised learning techniques. Specifically, the
authors developed a reliable separability‐entanglement classi-
fier by combining supervised learning and the convex hull
approximation method. This method outperforms conven-
tional criteria for entanglement detection in generic cases in
terms of speed and accuracy. Furthermore, the authors claim
that the classifier can be extended to higher dimensions in the
future and incorporated into experiments involving entangle-
ment engineering. In 2021 Chen et al. [64] proposed a pro-
cedure for detecting quantum entanglement with an
unsupervised ML method (complex‐valued NN) for high‐
dimensional and multipartite quantum systems. A noteworthy
feature of this NN is that it achieves a detection accuracy of
97.5%. This work is critical since quantum features, such as
entanglement and coherence, are indispensable resources in
various quantum information processing tasks, such as QKD,
teleportation, and quantum computing [5]. Additionally, by
harnessing ML algorithms to detect entanglement, recently in
2023, Asif et al. [242] use supervised ML methods to construct
a classifier by employing the relationship between coherence
and entanglement. In particular, this method encodes multiple
Bell‐type inequalities (as an entanglement witness) for the
relative entropy of coherence into ANNs for detecting
entangled and separable states in a quantum dataset. Notably,
the classifier trained with the most straightforward NN dis-
tinguishes the quantum states with an accuracy of 78.18%, and
the classifier's performance increased by increasing the number
of neurons to result in a performance of 94.62%. As a result,
this brief review illustrates the potential of using ML tech-
niques to detect entanglement thereby enhancing quantum
communication protocols, including teleportation.

Furthermore, another important but different aspect,
Boerkamp (2023) demonstrates the utility of ML to calculate
the minimum number of qubits required and how they should

be coded to create a quantum wormhole with the Google
Sycamore quantum processor [243]. Through quantum infor-
mation passing through the system, the researchers sought
insights into gravitational dynamics. Most significantly, these
examples demonstrate that this field is advancing, and inte-
grating AI and ML algorithms promises significant potential to
optimise quantum state control and manipulation, which is
critical in teleportation. Broadly, this could facilitate the dis-
covery of novel teleportation techniques and enable long‐
distance and high‐fidelity quantum communication.

The research on quantum teleportation has demonstrated
significant progress, suggesting quantum teleportation of
complex quantum states (i.e. multiple degrees of freedom
[216], high‐dimensional quantum states [244, 245]) with high
fidelity under the premise of long distances [222] is possible in
these systems in the near future. However, since quantum
teleportation inherently depends on manipulating complex
quantum states, some inherent challenges remain. These
challenges are associated with the preparation of entanglement
[199, 246, 247], Bell‐state measurements [248], the randomness
of the spontaneous parametric down‐conversion [249] and
inefficient nonlinear processes [250]. Most significantly, efforts
such as implementing quantum teleportation via a determin-
istic photon source [251, 252], highly efficient on‐chip
nonlinearity [253], high‐dimensional entanglement of
trapped‐ion [254], nitrogen‐vacancy (NV) centres [255] and
superconducting qubits [256] have been poised as promising
solutions [63].

Due to some of these outstanding challenges, several ML
algorithms have recently been proposed to enhance and opti-
mise quantum teleportation protocols. A study conducted in
2019 by Wallnöfer et al. [55] develops the mathematical tools
needed to perform reinforcement learning of central quantum
communication protocols, specifically quantum teleportation,
entanglement swapping, and entanglement purification. This
was achieved by combining reinforcement learning techniques
with projective simulations. Particularly, a projective simulation
is a physically motivated framework for reinforcement learning
and decision‐making, based on deliberation in an episodic and
compositional memory (ECM) [55]. An example of this is
Figure 7, which illustrates the trial‐and‐error process of
learning quantum communication protocols through rein-
forcement learning interactions between an agent and the
environment. An agent is equipped with a universal gate set,
and it specifies the desired task through a reward scheme. By
trial and error, the agent manipulates quantum states to create
quantum communication protocols. When the agent (the
protocol) interacts with the protocol (the environment), the
agent perceives the present state of the protocol (the envi-
ronment) and selects one of its available options (actions).
Thus, the previous protocol is revised and the interaction step
is completed. A reward function specifies feedback given to
agents during each interaction step. This is based on the spe-
cific quantum communication task (a–d) illustrated in Figure 7.
Notably, a reinforcement learning agent interprets a reward and
updates its memory accordingly. The agent plays a more critical
role than mere parameter estimation since simple search

F I GURE 6 An illustration of a quantum state teleportation scheme.
The scheme consists of previously shared entanglement, BSM, classical
communication, and unitary operations. The red, yellow, and blue circles
represent particles in the quantum teleportation protocol. The SA, SB, SC

represent the quantum channels for transmitting particles A, B and C. The
states |ψA〉 and |ψB〉 represent the input quantum state and output
quantum state, respectively. The EPR pair is a maximally entangled
quantum state. Reproduced from Ref. [63]. BSM, Bell‐state measurement;
EPR, Einstein–Podolsky–Rosen.
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methods would not be sufficient for problems of this size (i.e.
the number of possible states in teleportation tasks). According
to Figure 7, the ECM is based on a random walk process,
which requires little computational effort and can be acceler-
ated via quantum walk processes, which result in a quadratic
speedup in deliberation time, making the projective simulation
model conceptually appealing.

Particularly, the learning process is depicted in Figure 8,
where the two particles 2 and 3 at the sender's station and
receiver station, respectively, are described in Equations (1) and
(2). Figure 8a, shows the learning curve, which is the number
of operations the agent applies to reach a solution in each trial.
The authors observe that the learning curve converges to some
average number of operations in both cases though the mean
square deviation does not go to zero. A learning curve, or the
number of operations the agent uses in each trial, is shown in
Figure 8a. According to the authors, the learning curves
converge to the same average number of operations for both

Clifford (magenta) and universal (blue) gates. As you can see
from the individual learning curves of two agents in Figure 8,
the mean squared deviation does not reach zero. A better
explanation can be found in Figure 8b by examining the in-
dividual learning curves of two example agents: the agent does
not arrive at a single solution to this problem setup, but rather
four different solutions. As shown in Figure 8c, the learning
curve has been averaged over 500 agents. However, a signifi-
cant number of trials are needed for the agent to discover a
solution due to the long action sequence. However, this illus-
trates that the agent can locate the quantum teleportation
protocol without being provided with an initial entangled state.
Thus, this study provides a demonstration of how reinforce-
ment learning is a more effective means of achieving quantum
communication than optimisation techniques, particularly
quantum teleportation over long distances. A key benefit of
this development is that it opens up the possibility of using ML
techniques, such as reinforcement algorithms, to design and
implement quantum networks, which do not have a wide range
of existing protocols.

Owing to difficulties associated with executing high‐
dimensional Bell‐state measurements, teleportation of high‐
dimensional quantum states remains challenging [199]. Zhang
et al. [62] demonstrated experimentally in 2022 that unknown
qutrits can be teleported by generating, transferring, and
manipulating photons and training quantum encoders on sili-
con chips. The use of quantum autoencoders can facilitate the
efficient compression of quantum data. Specifically, the authors
employ unsupervised ML to train an autoencoder to train an
encoder capable of teleporting a quantum state from a
particular d to n‐dimensions (i.e. compressing‐teleporting‐
decompressing a quantum state) using integrated photonic
chips for future scaling. Training the encoder involves mini-
mising the likelihood of the trash mode being occupied while
retaining all information regarding qubit modes. A lossless
compression occurs when the trashed state is unoccupied,
allowing the decoder to reconstruct the initial qutrit. Notably,
ML algorithms update the encoder parameters to achieve

F I GURE 7 An illustration of a reinforcement‐learning agent interacting with the environment. The agent performs actions that change the state of the
environment, while the environment communicates information about its state to the agent. The reward function is customised for each environment. ECM,
episodic and compositional memory; PS, projective simulation. The initial states for the different environments that we consider here are illustrated:
(a) teleportation of an unknown state, (b) entanglement purification applied recurrently, (c) quantum repeater with entanglement purification and entanglement
swapping, (d) scaling of quantum‐repeater concepts to distribute long‐distance entanglement. Reproduced from Ref. [55].

F I GURE 8 An illustration of a reinforcement learning algorithm in a
teleportation protocol. (a) Learning curves of an ensemble of projective
simulation agents: average number of actions performed to teleport
unknown quantum states. (b) Two learning curves (magenta and blue) of
two individual projective simulation agents. Four solutions of different
lengths are found by agents. (c) Learning curve in the learning setting that
is, the average number of actions performed to teleport an unknown
quantum state. In (a and c), the curves represent an average of over 500
agents. The shaded areas show the mean squared deviation γ/3. This
deviation appears not only because of the different individual histories of
the agents but also because of the difference in the individual solution
lengths shown in (b). Reproduced from Ref. [55].
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teleportation fidelity of 0.894. This work lays the foundation
for integrating ML techniques to develop reliable and efficient
quantum networks and quantum computations, which opens
the way to the quantum internet. Satellite‐based quantum
communications can also assist in establishing the infrastruc-
ture for a global quantum network [22, 222]. While satellite
quantum technologies have some significant potential, they
face challenges such as atmospheric turbulence, diffraction,
and regular refraction. These challenges cause drift or random
wandering and broadening of the transmitted beam. This re-
sults in fluctuations in transmittance, which complicate the
prediction process. Therefore, there is a need to combat the
effects of loss and noise in the transmission link.

Towards addressing challenges in satellite‐based quantum
communication, Xu et al. [257] proposed an ML‐assisted
approach to continuous‐variable quantum teleportation pre-
diction over the satellite‐ground link. The authors employ a K‐
nearest neighbour (KNN) algorithm and a DT algorithm to
predict the squeezing parameter r and satellite altitude H,
which can be derived from the traditional formula. The authors
simulate the difference between the real value and the pre-
dicted value using different zenith angles, turbulent intensities,
and fidelity of the continuous‐variable quantum teleportation
system at different wavelengths. The numerical simulations
indicate that the KNN algorithm has a significant error in the
prediction, while the DT algorithm has a reasonable agreement
with the actual results when the parameters are adjusted
accordingly. As a result of this approach, authors overcome the
challenges posed by numerical analysis approaches, which
show that predictions can be made within an acceptable error
range under certain conditions. Additionally, their procedure
addresses quantum channel losses and guides ML‐based
continuous‐variable quantum teleportation in practice. Thus,
integrating AI and ML algorithms with quantum teleportation
will shape quantum information processing, especially quan-
tum teleportation as shown in Table 2. Overall, these advances
will lead to the development of a global quantum networked
landscape in the future.

3.3 | Quantum secret sharing

Secret sharing is an essential cryptographic protocol for
sharing highly confidential information with trusted and
untrusted individuals. Secret sharing was independently intro-
duced by Shamir [258] and Blakley in 1979 [259] as a solution
to safeguard cryptographic keys. Generally, in a secret sharing
scheme, the distributor divides a classical or quantum secret
into multiple shares, and only the shareholders in the author-
ised set can retrieve the secret when a sufficient number of
shares are combined. Therefore, the shareholders in the non‐
authorised set are unable to leak any information or recover
the shared secret [260, 261]. Various secret sharing schemes
have since been realised can be classified as secret splitting
[262], threshold sharing schemes [258, 259], and verifiable se-
cret sharing scheme [263]. These schemes are utilised in
various cryptographic protocols [264], for instance secure
multiparty computation (MPC) [265, 266], secure aggregations
[267], multi‐signature [268, 269], and attribute‐based encryp-
tion [270, 271]. The security of these schemes is dependent on
the computational complexity of large prime decomposition.
As quantum computers and quantum algorithms develop, the
security of these classical secret sharing schemes is severely
compromised [13]. Accordingly, secret sharing has been
extended into various quantum versions. The first QSS scheme
was proposed by Hillery et al. using the Greenberger–Horne–
Zeilinger (GHZ) state, in which one party can share credible
classical information with other two or three parties in the
presence of an eavesdropper [25]. This was followed by Cleve
et al. proposal of a threshold QSS scheme using the quantum
error correction code theory [260]. While various schemes are
constantly being proposed, typically, QSS protocols are divided
into three categories: when the shared information is an un-
known quantum state, it is called quantum state sharing [25,
234], QSS when shares the classical information [272] and a
QSS of both of them [273]. These schemes are based on
quantum physical properties to share classical information,
while some schemes are based on quantum mechanics

TABLE 2 Summary of AI/ML applications in quantum entanglement or teleportation schemes.

Quantum protocol or
resource AI/ML model Main objective or outcome

Quantum entanglement Supervised learning Demonstrated a reliable separability‐entanglement classifier [241]

Quantum entanglement Complex‐valued neural network Detected a quantum entanglement in high‐dimensional and multipartite quantum
systems and achieves a detection accuracy of 97.5% [64]

Quantum entanglement Supervised learning Constructed a classifier by employing the relationship between coherence and
entanglement [242]

Quantum teleportation Reinforcement learning þ projective
simulation

Discovered various quantum communication protocols, including quantum
teleportation, quantum distillation, and end‐to‐end bipartite entanglement
distribution along a chain of quantum repeaters [55]

Quantum teleportation Unsupervised learning Trained an on‐chip autoencoder to encode 3‐D quantum state onto 2‐D quantum
teleportation, observing 3‐D teleportation [62]

Quantum teleportation KNN Predicted the continuous‐variable quantum teleportation squeezing parameter and
the satellite altitude [257]

Abbreviations: AI, artificial intelligence; KNN, K‐nearest neighbour; ML, machine learning.
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principles to share the arbitrary quantum state of information
[272]. These schemes have been followed by several proposals
based on various quantum principles, such as single photons
[274, 275], entangled states [276] and product states [277].
These schemes include general QSS [278], multiparty QSS [25,
273, 279], multiparty semi‐QSS [280], multiparty to multiparty
QSS [281, 282], threshold QSS [283, 284], access structure‐
based QSS [278, 285], circular QSS [286], and dynamic QSS
[287, 288] protocols.

As shown in Figure 9, the QSS scheme uses the GHZ
three‐qubit states [289]. The 3‐qubit entangled GHZ state can
be described as follows:

jψ〉GHZ ¼
1
ffiffiffi
2
p ðj0〉1j0〉2j0〉3 þ j1〉1j1〉2j1〉3Þ; ð3Þ

where |0〉 and |1〉 are orthogonal states in an arbitrary Hilbert
space. Each particle is labelled by one of the indices. As
illustrated in Figure 9, each of the three photons in the GHZ
state has its own mode. When the two beamsplitters located at
Alice's, Bob's and Charly's have their modes combined, the
probability of finding the three photons in the output ports
depends on the settings α, β, γ of the phase shifters:

Pi;j;k ¼
1
8
ð1þ ijk cosðαþ βþ γÞÞ; ð4Þ

where i, j, k = �1 denotes different output ports. Before each
measurement, Alice, Bob, and Charly will select randomly one
phase value from (0, π/2). Once a sufficient number of runs
have been completed, they identify cases where they all
detected a photon. Afterwards, Alice, Bob and Charly
announce the phases chosen and identify cases in which the
sum adds up to either 0 or π. Based on the probability function
depicted in Equation (4), a result of 1/4 is obtained for these
cases. Using l = cos(α þ β þ γ) = �1 and Pi,j,k = 1/4 yields i,

j, k, l = 1. At this moment Alice, Bob and Charly each know
two of the values i, j, k. When Bob and Charly come together
and combine their knowledge, they can establish three of the
four parameters. Additionally, they are able to determine the
last one, which is also known to Alice. By identifying ‘−1’ with
the bit value ‘0’ and ‘þ1’ with ‘1’, the correlated sequences of
parameter values can then be turned into a secret key.

While quantum entanglement constitutes a significant
resource in QSS protocols, Guo et al. surprisingly demon-
strated the implementation of a QSS protocol without entan-
glement, in which only product states are employed [290]. This
protocol is more applicable when the number of parties
sharing secrets is large. Notably, the authors demonstrate that
this scheme has a theoretic efficiency that can be doubled to
approach 100%. Due to the guarantee of quantum funda-
mental principles, QSS offers significantly enhanced security
than the computationally complex classical secrets. While most
of the proposed QSS schemes are designed based on two‐
dimensional quantum systems (i.e. qubits) with multi‐qubit
maximally entangled quantum state, QSS protocol design has
recently been extended to higher‐dimensional systems (i.e.
qudits) [291–293] and orbital angular momentum [294]. This
extension allows a higher degree of resource capacities and
enhanced security, leading to improved practical implementa-
tions. QSS schemes have an important role to play in quantum
communication, such as fibre network configuration [295] and
quantum secure transport system [296]. Specifically, they have
been utilised in a wide range of quantum cryptographic ap-
plications such as joint checking accounts containing quantum
money [297], joint financial transaction and quantum digital
signatures [298], share hard‐to‐create ancilla states [239],
perform a distributed computation [297], missile launching
codes [299], and electronic voting [17, 261, 300].

While QSS demonstrates promising potential, the schemes
face several challenges that must be addressed to achieve prac-
tical implementation and widespread adoption. As quantum
communication systems are vulnerable to interception, adver-
saries can exploit the vulnerability to intercept and gain unau-
thorised access to shared secrets [275, 277]. These schemes
require precise manipulation and measurement of quantum
states, which requires highly controlled and stable experimental
setups [291, 294]. The shared secrets can be compromised by
external noise, including decoherence and errors in quantum
gates, environmental disturbances, and hardware imperfections.
In addition to technical challenges and communication costs,
practical implementation requires a high level of control and
stability [284]. Furthermore, scalability and efficiency also pose
challenges [274]. What is more, the complexity of the secret‐
sharing scheme typically increases exponentially with the num-
ber of parties involved. As a result, key management, commu-
nication overhead, and computational resources are challenging
for secure sharing and reconstruction of secrets. These risks can
be mitigated with fault‐tolerant quantum computing architec-
tures and robust error correction techniques. As a result,
developing efficient algorithms and protocols for large‐scale
secret sharing is now an ongoing research area. A review of
the integration of various ML has been presented, particularly

F I GURE 9 An illustration of a QSS scheme using the 3‐qubit GHZ
states. A real implementation would have the source as part of Alice setup,
not that of a fourth party. Reproduced from Ref. [289]. GHZ,
Greenberger–Horne–Zeilinger; QSS, quantum secret sharing.
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concerning multi‐party computation protocols [301]. The au-
thors demonstrate how these algorithms and secret sharing can
be used to safeguard data privacy whenmulti‐party computation
is being performed.

ML models are typically trained on massive amounts of
data collected from multiple sources [92, 93]. These data
sources may contain sensitive data relating to finance, health-
care, personally identifiable information, and other confidential
data. However, these models are not equipped with privacy‐
preserving features [302]. Rather, the models anonymise the
data, which does not guarantee privacy [303]. This raises
concerns since models must not expose sensitive information.
For these reasons, various ML models incorporate secure MPC
[304], homomorphic encryption [305], and differential privacy
[306] as a means of protecting the privacy of collected data.
Although this enhances security, performance, and accuracy
still needs to be improved. Therefore, we are interested in an
ML model that can achieve both full data privacy for security
and efficiency for practicability. As a result, distributed ML
approaches have been proposed, which allow clients to store
their data locally but train collaboratively. This approach pro-
vides higher accuracy and improved performance, but security
still needs to be improved. As a result, in 2020, Dong et al.
[307] proposed a novel secure computation framework that
integrates distributed ML, specifically linear regression, multi-
layer perceptron, and CNN with secret sharing to achieve
reliable performance, accuracy and high‐level security in semi‐
dishonest parties. This work demonstrates an efficient practical
system that can be used to jointly learn an accurate model
under semi‐honest and server‐only malicious adversary secu-
rity, respectively. Notably, a client may not learn more infor-
mation than what is contained in the trained model, and a
parameter server may not learn sensitive information. As a
result, integrating distributed ML with secret‐sharing schemes
ensures that the model achieves the best overall performance
while still meeting security requirements.

Furthermore, in 2022, Wei et al. [308] presented a privacy‐
preserving K‐means clustering algorithm that employs repli-
cated secret sharing [309] with the honest majority in semi‐
honest models. The secret sharing‐based privacy‐preserving
K‐means clustering scheme is shown in Figure 10. Particu-
larly, a privacy‐preserving K‐means clustering, which has full
data privacy, allows the parties to cluster their combined
datasets without revealing any other information except for the
final centroid [310]. This means the information on interme-
diate centroids, cluster assignments, and cluster sizes should be
protected in the protocol. Therefore, the clustering task is
outsourced to three semi‐honest computing servers. Specif-
ically, the proposed protocol provides full privacy guarantees,
which allows different computing parties to cluster the com-
bined datasets without revealing any other information except
the final centroids. As a result, the protocol is secure against a
single corrupt server under a semi‐honest model. The pro-
posed secret sharing‐based privacy‐preserving K‐means clus-
tering scheme is illustrated in Figure 10. The scheme is
implemented and analysed and the experimental results are
shown in Table 3. Particularly, the authors use the 2D dataset

arff and 4D dataset Iris to evaluate accuracy. Particularly, they
compare the accuracy of ground truth, plaintext and privacy‐
preserving models for 2D dataset arff and obtain a value of
98.20%. The comparison of the experimental results of this
dataset is visually illustrated in Figure 11. However, for the iris
dataset, the privacy‐preserving model reaches an accuracy of
92.67%. Therefore, the proposed scheme achieves both full
data privacy for security and efficiency for practicability.

Experimental results demonstrate that the proposed pro-
tocol achieves the same level of accuracy as plaintext K‐means
clustering. By using the fast network, the privacy‐preserving
scheme can deal with datasets of millions of points in a
reasonable amount of time. Comparatively, this scheme ach-
ieves about 16.5–25.2 times higher computation speeds and
63.8–68.0 times lower communication rates than the existing

F I GURE 1 0 An illustration of the proposed efficient three‐party
computation protocol for secret sharing‐based K‐means clustering
algorithm. Based on the definition of full data privacy, the information
about the intermediate centroids, cluster assignments, and cluster sizes
should be protected. Thus, the only information that can be leaked is the
range of Dk. Hence, the protocol provides full data privacy. Reproduced
from Ref. [308].

TABLE 3 A description of datasets used in the experiments.

Dataset n K d Accuracy

Iris 150 3 4 92.67%

Arff 100 4 2 98.20%

Self‐generated {10, 000, 100, 000} {2, 5} {5, 10, 15, 20} ‐

Note: Each dataset has n data points, K clusters, and d dimensions. The accuracy of
different datasets is also evaluated if a ground truth model exists for the dataset.
Reproduced from Ref. [308].
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privacy‐preserving schemes. Additionally to its high efficiency
and practicality, the scheme is also suitable for large‐scale
clustering tasks. Overall, the privacy‐preserving scheme gua-
rantees full data privacy and is suitable for secure outsourcing
of computations based on secret‐sharing. The ability of ML to
optimise resource allocation, enhance security, identify vul-
nerabilities, mitigate noise and imperfections, and uncover
hidden correlations makes it a valuable tool for increasing the
effectiveness and reliability of various QSS schemes. Even
though this field is still undergoing development as summar-
ised in Table 4, these few examples demonstrate the potential
of integrating ML into secret‐sharing schemes show the po-
tential for improving QSS. Therefore, further research into
incorporating AI and ML into QSS may ultimately result in
more robust and secure methods for sharing secrets in the
quantum world.

3.4 | Quantum networks

A quantum network is intended to facilitate secure commu-
nication between quantum computers or secure cloud quantum
computing, as well as quantum‐enhanced measurement net-
works, ultimately leading to a quantum internet, a global
network capable of transmitting quantum data [20, 311]. Thus,
quantum networks promise to enhance existing classical net-
works as well as execute protocols that would be impossible in
a classical network. While significant progress has been made,
challenges remain, including transmission losses, decoherence,
and limitations imposed by the no‐cloning theorem. As a

result, to enable long‐distance end‐to‐end communication of
qubits, quantum networks rely on the following three primary
components: end nodes, which serve as processors, quantum
channels, which distribute information, and quantum repeaters,
which generate separate entanglement pairs and transmit
qubits from each pair to the respective nodes [20, 21]. Thus, in
this section, we will discuss the integration of AI and ML al-
gorithms to address the aforementioned challenges or limita-
tions and improve the performance of these components,
resulting in an overall improvement in quantum networks. An
illustration of a typical quantum network is presented in
Figure 12. Quantum network systems rely on existing network
infrastructure for exchanging classical messages in order to run
quantum protocols, as well as for controlling and managing the
network [311]. Due to challenges in building long‐distance
communication, a chain of automated quantum repeaters is
used in order to build links due to the limitations associated
with sending secure messages over long distances. Regarding a
comprehensive review of quantum networks, we refer the
reader to Refs [21, 312–315].

Particularly, quantum repeaters are hybrid devices that can
broadcast ‘flying’ qubits (photons) without measuring or
cloning them, which is against the quantum no‐cloning theo-
rem. The operation of quantum repeaters is intrinsically based
on the phenomenon of quantum teleportation, one of the
most fascinating applications of entanglement. Typically, a
quantum repeater comprises three elements: entanglement
generation, entanglement connection, and entanglement puri-
fication. By connecting repeaters, entanglement can be

F I GURE 1 1 The comparison of accuracy for ground truth, plaintext
and privacy‐preserving for secret sharing‐based K‐means schemes using the
2D dataset arff. (a) a ground truth model and (b) a plaintext and privacy‐
preserving model. Notably, the privacy‐preserving model achieves the same
accuracy level as a plaintext model. The accuracy is 98.20% compared to
the ground truth model. Reproduced from Ref. [308].

TABLE 4 Summary of AI/ML applications in secret sharing schemes.

Scheme AI/ML model Main objective or outcome

Secret sharing Linear regression, MLP, and CNN Improved the accuracy, reliability, security, and performance of privacy‐preserving distributed
ML based on secret sharing [307]

Secret sharing K‐means clustering Enhanced the efficiency and practicality of a privacy‐preserving secret‐sharing‐based secure
three‐party computation [308]

Abbreviations: AI, artificial intelligence; CNN, convolutional neural network; ML, machine learning; MLP, multilayer perceptron.

F I GURE 1 2 An illustration of a typical quantum network. The system
consists of several components including a quantum repeater, classical
links, and quantum links for establishing long‐distance quantum
communication or large‐scale quantum networks. Reproduced from
Ref. [311].
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extended by a significant distance, providing a viable option for
establishing long‐distance quantum communication or large‐
scale quantum networks [214, 222].

An example of a long‐distance end‐end‐QKD based on
trusted quantum repeaters is shown in Figure 13. Typically, the
sender and receiver are connected via a quantum channel and a
public channel. The two intermediate nodes with trusted re-
peaters are placed between the source node and the destination
node. Figure 13 illustrates how three secret keys are produced
between the source node and intermediate node 1, interme-
diate node 1 and intermediate node 2, intermediate node 2, and
the destination node. Most significantly, the produced three
secret keys have the same key size. Essentially, the procedure
consists of three steps: (1) Intermediate node 1 encrypts Ks1
using K12 and obtains the ciphertext Ks1 ⊕ K12. Then, the
ciphertext Ks1 ⊕ K12 is sent to intermediate node 2. (2) Using
K12, intermediate node 2 decrypts Ks1 ⊕ K12 to obtain Ks1.
Then, intermediate node 2 encrypts Ks1 using K2d, to obtain
the ciphertext Ks1 ⊗ K2d. The ciphertext Ks1 ⊗ K2d is sent to
the destination node. (3) Using K2d, the destination node de-
crypts the ciphertext Ks1 ⊗ K2d to obtain Ks1. As a result of the
above three steps, Ks1 can be shared between the source node
and the destination node. Notably, for end‐to‐end QKD over
long distances, several intermediate nodes with trusted re-
peaters can be placed between the source and destination
nodes, where all of the intermediate nodes must be trustworthy
because they will all know the real secret keys, for example, Ks1.

Although using trusted repeaters is a notable advance,
there are still challenges in transmitting information over large
distances due to turbulence and losses in the physical channels
[17, 53]. The advancements in integrated photonics remain
among the most stable, compact, and robust platforms for
miniaturising massive photonic circuits [317, 318]. Due to the
compatibility of integrated photonic chips with current inte-
grated photonic telecommunication hardware, seamless inte-
gration is assured with classical communication channels and
transceivers [319]. Through this integration, developments are
underway to realise hybrid classical and quantum communi-
cations, with a current distance of more than 100 km achieved
[320–322]. Notably, an integrated satellite‐ground quantum
communication network of over 4600 km has recently been
reported [323]. The capability of satellite‐ground QKD using
optical photons shows tremendous potential for long‐distance
and intercontinental quantum communication [324]. The

reason for this is that optical photons have low quantum in-
formation transmission losses and negligible quantum deco-
herence in space. This represents a significant development
that shows the possibility of building quantum networks across
continents.

Due to quantum properties such as quantum entangle-
ment, quantum uncertainty, and quantum no‐cloning theorem,
quantum networks can provide ultra‐secure information
exchanged over multiple technologies across numerous chan-
nels [20, 21, 247]. With advances in quantum computing
technologies, quantum networks can now complement classical
networks in processing and delivering information securely
since not all information transmitted must be encoded in
photons, for example, quantum teleportation [23, 31, 53].
Thus, combining classical and quantum networks to create a
quantum internet will result in capabilities that are unparallelled
by either technology alone [20]. For instance, the quantum
internet will provide new encryption services, enhance sensor
network sensitivity, and connect distant quantum computers to
facilitate computation, share quantum data, and expand the
class of complex problems that can be solved [311, 325].

Due to photon limitations, such as losses at more
considerable distances, quantum networks contain vital device
elements, including quantum nodes [326], quantum repeaters
or quantum switches [155, 156], quantum memories, and
quantum channels [327, 328]. The purpose of these devices is
to unlock the full potential of quantum networks. As a result,
despite their potential, unfortunately, some of these devices are
not capable of being successfully deployed with current tech-
nology. This presents an opportunity for AI and ML to fill the
gap. Quantum networks have the following applications:
quantum‐secure communications [2, 3, 16, 126, 139], secure
identification [329], blind quantum computing [330, 331],
network clock synchronisation [332], distributed quantum
computing [333, 334], and entanglement sensor network [335].
Notably, despite challenges and limitations, significant progress
has been made in developing quantum networks for sending
quantum information over reasonable distances, and they are
now available for use in QKD with trusted nodes [21].

While quantum networks hold significant potential for
secure communication and quantum computing, the develop-
ment and deployment of quantum information in a large‐scale
network face several significant challenges. These challenges
include: maintaining quantum entanglement, maintaining
quantum coherence, scaling and interoperability, distance and
connectivity, security, and integration with classical communi-
cation infrastructure [21, 227, 311]. Moreover, there are con-
cerns regarding the nature of the hardware platform and its
precise implementation requirements. As part of these chal-
lenges, scientists and researchers are actively addressing the
issue of storing and manipulating qubits by integrating quan-
tum error correction, quantum repeaters, quantum memories,
and quantum routers into quantum networks [53, 156, 313,
326, 336]. Among these efforts is a recent attempt to deter-
mine whether a quantum network of nodes connected by
quantum links has reached a particular development stage. This
is done by evaluating the robustness of noisy quantum

F I GURE 1 3 An illustration of a typical trusted quantum repeater. An
example of QKP for managing secret keys in a pair‐wise manner between
QKD node 1 and QKD node 2. Reproduced from Ref. [316]. QKD,
quantum key distribution; QKP, quantum key pool.
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networks [337] and quantum network benchmarking. By using
this process, it is possible to benchmark the quality of a
quantum network and measure its fidelity [338, 339]. Due to
the inherent complexity of manipulating quantum systems and
their vulnerability to noise, some challenges remain [340]. For
instance, a quantum repeater requires a quantum memory, a
device that stores conjugate quantum variables. However, no
reliable and practical quantum memory is currently available
[53]. As an intermediate step, trusted repeaters over long dis-
tances [166, 340–342], MDI‐QKD networks [53], and TF‐
QKD protocols [138] are being implemented, and distances
of up to 830‐km reported [343]. These advances constitute
significant steps towards the development of the quantum
internet.

Scalable quantum networks require various optimisation
models for efficiently assigning quantum information and re-
peaters in quantum networks. Various efforts have been made
to integrate AI and ML into quantum networks leading to
improved noise mitigation, network self‐configuration,
resource allocation efficiency, reliable error correction, self‐
optimisation, increased performance and security [129, 344–
346]. This has resulted in increased performance and secu-
rity, particularly concerning QKD‐secured optical networks.
For instance, Ou et al. [189] demonstrated how ML‐aided
software‐defined networking relying on optimal resource
allocation was constructed for investigating the coexistence of
hybrid quantum and classical channels in a QKD‐integrated
optical network. The authors present various supervised ML
methods to estimate channel QKD performance (noise, SKR,
and quantum bit error rate) when Ch‐Cs in various quantities,
spectrum allocations, launch power, and channel spacing are
present in the C‐band. As compared to various models such as
RF, least‐squares method, lasso regression, and ridge regres-
sion, the KNN was the most accurate model. Most signifi-
cantly, this work demonstrates the possibility of QKD
integration with conventional DWDM fibre networks, which is
crucial for the commercialisation and implementation of
quantum networks.

AI and ML techniques have been proposed for predicting
optimal channel allocation and quantum parameter values in
near real‐time, enabling reallocation of quantum channels while
ensuring excellent performance through the efficient evalua-
tion of parameter values [347–350]. Furthermore, various low‐
complexity, but near‐optimal wavelength assignment methods
have been employed to increase the achievable secret key rate
in hybrid quantum‐classical networks [228, 351, 352]. Partic-
ularly, due to their non‐reusable nature, secret key resources in
QKD networks are essentially finite and valuable, making their
assignment unique. Thus, the expansive cost and challenges
inherent in deploying QKD networks, multi‐tenancy has
become an attractive solution to improve cost efficiency for
future QKD networks, particularly for organisations with high‐
security demands [316]. Essentially, a multi‐tenant QKD
network is composed of multiple QKD tenants who can share
the same QKD network infrastructure in order to obtain their
keys for securing their data transfers. Specifically, the generated
secret keys can be allocated to multiple tenants over a QKD

network infrastructure. Considering that tenant requests arrive
on a dynamic basis, obtaining secret keys from the QKD
network infrastructure becomes a challenge when simulta-
neously adapting to the complicated network conditions of the
QKD network. As a result, there is an urgent need to develop
an effective online multi‐tenant secret‐key assignment (MTKA)
process that can accommodate multiple tenant requests in
QKD networks. According to Cao et al. [353], reinforcement
learning algorithms can efficiently allocate several network
resources, including secret keys, to achieve a MTKA algorithm
for QKD networks. According to the results, reinforcement
learning based on the MTKA algorithm significantly out-
performs benchmark heuristics (e.g. random, fit, best fit)
regarding tenant‐request blocking probability and secret‐key
resource utilisation. The reinforcement learning algorithm
based on the MTKA algorithm effectively reduces the likeli-
hood of tenant requests being blocked by more than half when
compared to the benchmark heuristics. Furthermore, a recent
study by Sharma et al. [120] illustrates how reinforcement
learning algorithms can be utilised to address the routing and
resource assignment challenge in quantum signal channels for
QKD optical networks. The authors present a Deep rein-
forcement learning (DRL)‐based routing and resource assign-
ment approach that relies upon proximal policy optimisation in
which the optimal route is selected and network resources are
efficiently utilised to satisfy quantum signal channel resource
requirements for QKD lightpath requests in QKD optical
networks. A major finding of the study is that the DRL‐based
routine and resource assignment scheme outperforms the
deep‐Q network method, as well as first‐fit and random‐fit
baseline schemes in terms of both blocking probability and
resource utilisation.

Quantum memories constitute an integral component of
quantum repeaters, which enables long‐distance quantum
communication and photonic quantum computation protocols
beyond that permissible by passive transmission [354]. A uni-
versal optical quantum memory can store unknown input
states of light and release them on demand with high efficiency
and without additional noise [355, 356]. A critical threshold of
50% total storage and recall efficiency may be required
depending on the application; however, coherence time will be
restricted to tens of microseconds [356]. Over the years,
various mechanisms for implementing optical quantum mem-
ory have been explored and developed. These include elec-
tronic induced transparency [357], Raman schemes [358], as
well as atomic frequency combs [359]. However, among other
schemes, the gradient echo memory has demonstrated the
greatest recall frequency with longer coherence times [356,
360]. Several ML methods have been applied, resulting in
significant improvements in optical depth. Accordingly, to
enhance these schemes, Leung et al. [361], the integration of
ML and compatible single photons improves gradient echo
memory performance and may facilitate quantum computation
by using it as quantum gates. Due to the analytical complexity
of the system, it is generally difficult to optimise a cold atomic
ensemble to achieve increased optical depth and lower tem-
peratures. A large optical depth should result in higher memory
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efficiencies with stronger atom‐light interactions. Particularly,
the authors employ reinforcement learning to optimise atom
trapping and develop high‐extinction filtering methods to
isolate single photons from bright pump light. As a result, the
cold atomic ensemble is optimised for higher optical depth and
lower temperature, which improves the efficiency and coher-
ence times of gradient echo memories.

Moreover, Buchler et al. [362] use an ANN to optimise a
laser‐cooled atomic ensemble of rubidium 87 atoms to achieve
the ‘stopped and stationary light’ optical quantum memory
with an efficiency of about 87% with a decay time of 1 ms with
a cold‐atom memory. An ML algorithm is used to expedite the
trial‐and‐error approach when maximising the on‐axis optical
depth of the magneto–optic trap. Despite various efforts to
develop efficient quantum networks, quantum memories still
have limited coherence times. Although various efforts have
been made to develop efficient quantum networks, quantum
memories still have a limited coherence time. Khatri suggests
that this challenge can be addressed by developing optimal
entanglement distribution protocols that take into account the
limitations of current and near‐term hardware [363]. This in-
cludes quantum memories with limited coherence times. The
author investigates quantum network protocols for entangle-
ment distribution using decision processes theory. To find the
optimal protocol the author leverages dynamic programming
or reinforcement learning algorithms. Notably, the author
optimises entanglement times on quantum channels across
paths in order to establish entanglement states between two
end nodes prior to the decay of the channel. The findings of
this research pave the way for a systematic investigation of the
limitations of near‐term quantum networks as well as their
physical realisation requirements.

Yun‐Hong et al. developed a method to predict the key rate
for satellite‐to‐ground quantum communication channels via
ML and stellar image recognition in quantum networks [364].
This work demonstrates a stellar image recognition accuracy rate
of approximately 88% and recommends whether to accept or
abort the protocol based on the predicted key rate. Specifically, if
satellite‐to‐ground QKD is accepted, the average rate of sifted
key at an elevation angle of 39.5° is 8.8 kbit/s, which is adequate
for satellite‐to‐ground QKD tasks involving multiple ground
stations. Considering the finite nature of QKD resources, the
present work improves the prediction and experimental verifi-
cation of satellite‐to‐ground quantum communication networks.
A deepNNtechniquewas presented in 2022 byLe et al. that took
account of the current network state to schedule the network's
demands, which were then routed by a qubit‐preserved short‐
path algorithm [328]. One of the critical challenges of next‐
generation network systems is routing in quantum networks.
The results indicate that in a qubit‐limited grid network, the deep
reinforcement routing schememaintains an average fulfiling rate
of 80% and approximately 60% of routed requests under
extreme conditions. According to the authors, deep reinforce-
ment routing schemes have polynomial complexity and
computational time based on quantum network sizes. Recently,
Reiß et al. [69] illustrates how DRL can be used to search for
optimal solutions for the memory storage time limits, typically

known as memory cutoff. This technique allows one to explore
general cut‐off strategies that dynamically adjust to quantum
repeater states. A recent paper by Robertson et al. [365] dem-
onstrates how a genetic algorithm may be used to optimise the
write control for Gaussian signal pulses of an optical memory.
This work shows that it is possible to reduce pulse energy by 30%
without compromising efficiency. The results of this study are
consistent with those of Shinbrough et al. in Ref. [366] and
support the development of optical quantum memories with
high efficiency. A significant aspect of quantum networks is their
evolution towards practical maturity, which makes stand-
ardisation efforts increasingly crucial. Among these efforts are
the standardisation of AI andML‐enabled QKD networks [129,
367]. The standardisation efforts are intended to address the
requirements, architectures, functional capabilities, and appli-
cation programming interfaces needed to implement converged
future networks. Accordingly, Table 5 summarises the progress
in applying AI/ML algorithms in quantum network schemes.

4 | DISCUSSION AND CONCLUSION

Quantum communication is arguably one of the most suc-
cessful fields that have evolved from quantum theory. Ad-
vances in research and development have resulted in the
commercialisation of several quantum communication tech-
nologies that have transformed a variety of industries. Addi-
tionally, standards and certification processes have been
developed to address regulatory considerations, interopera-
bility, performance, and security requirements. This facilitates
the integration of quantum systems into existing industries. A
certification framework fosters the adoption and acceptance of
quantum communication products and services by ensuring
quality and reliability. Quantum communication relies on
manipulating quantum states in order to ensure reliable and
efficient transmission of quantum information. Although sig-
nificant progress has been made in this area, a number of
fundamental challenges still need to be addressed in order to
accomplish this goal. Towards addressing these challenges, this
work has examined several key milestones demonstrating how
AI and ML algorithms have been integrated to optimise
various components or implementation parameters to enhance
quantum communication protocols and quantum networks,
leading to large‐scale deployment and ultimately shaping both
fields. Moreover, this has the potential to open up new avenues
for improving customer experience, optimising network op-
erations, and increasing the efficiency of a network.

The discussion on QKD demonstrates examples of how
AI and ML algorithms have been utilised to predict physical
parameters, improve the accuracy of raw key data, predict
quantum channel quality or failure due to a disturbance as well
as recover messages and images with a high level of accuracy.
These intelligent techniques adjust communication parameters
in real‐time and improve the overall key generation and man-
agement, security, and efficiency of the protocol. Furthermore,
AI and ML methods have been used to detect and mitigate
various types of attacks, thereby ensuring the integrity of
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quantum communications. Most significantly, this has also
resulted in enhanced security, improved efficiency, and ensured
the confidentiality and integrity of information.

We discuss implementations demonstrating the use of AI
and ML to mitigate noise and decoherence, leading to
enhanced performance of quantum teleportation schemes.
Various works have shown that AI and ML techniques can
improve several quantum error correction codes, making
quantum teleportation systems more fault‐tolerant and reliable.
In particular, AI and ML algorithms have been used to identify
central quantum protocols as well as detect and classify
quantum entanglement. This could reduce the risk of eaves-
dropping and maintain confidentiality while enabling secure
data transmission. Leveraging various AI and ML techniques
leads to improved efficiency, reliability, and security of quan-
tum teleportation protocols. This could enable longer and
more secure quantum communication.

Several authors discuss how ML algorithms can be used to
enhance data transmission rates and optimise the allocation of
network resources based on the specific resource requirements
of different communication tasks. The results demonstrate a
significant improvement in resource utilisation and a reduction
in the overall cost of quantum communication systems. Notably,
noise mitigation is imperative for all quantum communication
protocols and networks since they affect scalability. It has been
demonstrated that ML algorithms can be trained to adjust QSS
parameters dynamically based on real‐time feedback and miti-
gate noise. This has led to improved performance, reliability,
security, and defence capabilities of QSS schemes against
emerging threats. AI and ML algorithms can predict and
compensate for signal degradation or noise by analysing quan-
tum channels. This will enhance the efficiency and practicality of
various privacy‐preserving secret‐sharing‐based schemes. To-
wards the future, AI and ML have a significant potential to
optimise various quantum communication channels used in se-
cret sharing protocols.

Considering the challenges in achieving long‐distance
transmission, we have explored how AI and ML have been
applied in quantum communication networks. AI and ML al-
gorithms have been used to optimise the existence of hybrid
quantum‐classical channels, optimise routing and resource
allocation, optimise solutions to memory storage time limits,
and improve scalability. As quantum communication networks
evolve, AI and ML will be crucial to unlocking their potential.
Besides this significant progress, some limitations must be
overcome in order to harness the full potential of integrating
AI and ML in quantum communication. For instance, a key
aspect of AI and ML is the need for vast amounts of data to
train models. However, the quantum communication field
often deals with sensitive data, such as encryption keys, that
require stringent security measures. Balancing the need for data
with the desire for privacy poses a significant challenge.
Furthermore, quantum communication schemes, including
quantum networks are inherently susceptible to noise, dis-
rupting the transmission of information. Developing algo-
rithms that can efficiently handle and mitigate quantum noise is
crucial for the successful integration of AI and ML in quantum
communication. Moreover, integrating AI and ML algorithms
with quantum communication requires optimising them for
quantum hardware. This optimisation process can be chal-
lenging due to the limited computational power currently
available in quantum computers.

As a future direction, it is critical to continue to expand
efforts to improve the performance of quantum devices
while overcoming their limitations. Moreover, improving the
predictability of quantum systems will help AI and ML al-
gorithms make more accurate predictions and perform
efficient quantum computations. Another key aspect is
developing algorithms to efficiently process and interpret
quantum data. These algorithms need to be robust, scalable,
and capable of handling the complex nature of quantum
information. While there are still challenges and limitations

TABLE 5 Summary of AI/ML applications in quantum network schemes.

Quantum network or device AI/ML model Main objective or outcome

QKD þ DWDM fibre network KNN To investigate and optimise the coexistence of hybrid quantum‐classical channels in a QKD‐
integrated optical network [189]

Hybrid quantum‐classical networks Reinforcement learning To increase the number of achievable secret keys for securing data transfers in a multi‐tenant
QKD network architecture [316, 353]

Optical networks DRL Optimise routing and resource assignment problem in the quantum signal channel of QKD‐
secured optical network [120]

Quantum memory ANN To optimise a laser‐cooled atomic ensemble to achieve ‘stopped and stationary light’ optical
quantum memory with an efficiency of about 87% [362]

Quantum memory Reinforcement learning To develop the mathematical tools needed to perform reinforcement learning of entanglement
distribution protocols in general quantum networks [363]

Quantum network ML To accurately and quickly predict the key rate for satellite‐to‐ground quantum communication
channels via ML and stellar image recognition in quantum network [220]

Quantum repeaters DRL To search for optimal solutions to memory storage time limits [69]

Abbreviations: AI, artificial intelligence; ANN, artificial neural network; DRL, deep reinforcement learning; DWDM, dense wavelength‐division multiplexing; KNN, K‐nearest
neighbour; ML, machine learning; QKD, quantum key distribution.
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in quantum communication, with continued advancements in
AI and ML, this field is poised for significant progress in
the future. This review sets the stage for delivering the
envisaged secure quantum internet.
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