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Abstract

Finding string duals of gauge theories is an important outstanding problem in the-
oretical physics. In recent years, some progress has been achieved: the AdS/CFT
correspondence is a proposal of an exact duality between strings moving on an
AdSs x S® background and N = 4 Super Yang-Mills theory. The search is now on
for finding string duals of more realistic gauge theories. A fruitful avenue of research
in this context has been the study of theories involving stacks of D3-branes placed
at conifold singularities. These theories have reduced supersymmetry and can also
break conformal symmetry. Explicit supergravity solutions corresponding to these
theories have been constructed. This dissertation is concerned with the study of
one such solution, the warped deformed conifold, and its dual gauge theory. We
develop a procedure for calculating correlation functions in the gauge theory by
solving equations of motion for supergravity fluctuations in the warped conifold
background. Using this procedure, we compute the high energy behavior of two
point correlation functions of the gauge theory R-current and energy-momentum
tensor, and show that these correlators are consistent with anomalous breaking of
R-symmetry and dilatation symmetry. We also investigate a possible baryonic sym-
metry in the theory. We conclude by computing masses of low-lying glueball states

in the gauge theory, explicitly demonstrating the presence of a mass gap.
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Chapter 1

Introduction

1.1 Overview

The remarkable proposal (1, 2, 3] of an exact duality between N = 4 superconformal
Super Yang-Mills (SYM) theory in four dimensions and type IIB superstring the-
ory on AdSs x S® - known as the AdS/CFT correspondence - and the substantial
evidence amassed to support that proposal, have revived interest in the idea that
gauge theories have dual descriptions as strings. In order to find such dual descrip-
tions for gauge theories of physical interest, two problems have to be addressed:
first, finding the supergravity (SUGRA) backgrounds corresponding to these field
theories, and second, going beyond the supergravity approximation to construct
sigma models of strings moving on these backgrounds. The latter problem is very
difficult and we will not comment on it in the present work. A particularly useful
approach towards addressing the former problem has been the investigation of field
theories, and corresponding supergravity solutions, obtained by placing stacks of
D3-branes at conifold singularities. In a series of 'papers [4, 5, 6, 7, 8, 9]', it was
shown that the field theories (and their dual SUGRA solutions) obtained in this
way break the extended supersymmetry (SUSY) of N = 4 SYM down to N =1
SUSY [4]. Adding fractional D3-branes - D5-branes wrapped around the 2-cycle of

1See also [10, 11].
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the conifold - results in a supergravity solution, the Klebanov-Strassler (KS) solu-
tion [9], that corresponds to a field theory in which the conformal symmetry is also
broken, and one of the coupling constants runs. This field theory is confining at low
energies, and confinement can be seen directly from the SUGRA background. The
investigation of this SUGRA solution and its correspondence with the dual gauge
theory is therefore of obvious interest both in itself, and as a stepping stone on the
way to understanding the string duals of realistic field theories.

The present dissertation is concerned with aspects of such an investigation. The
original AdS/CFT correspondence provided a concrete prescription for computing
correlation functions in the (conformal) quantum field theory by solving linearized
equations of motion for fluctuations around the (AdS) SUGRA background (2, 3].
Mathematically, this prescription relied on properties of AdS space. and there is a
challenge in extending it to non-asymptotically AdS spaces. In chapter 3, we show
that such an extension is possible for the Klebanov-Strassler solution, whose asymp-
totics are described not by AdS but by the logarithmically warped space found by
Klebanov and Tseytlin - the Klebanov-Tseytlin (KT) solution [8]. We develop a
procedure for extracting the high energy behavior of field theory two point functions
by solving equations of motion for fluctuations around the KT background. As an
example, we compute the two point function of a minimal massless scalar; this is the
first such computation for a non-asymptotically AdS background. In chapter 4, we
apply this procedure to study the anomalous breaking of R and dilatation symme-
tries in the field theory. We derive and approximately solve the equations of motion
for the SUGRA fields dual to the field theory R-current and energy-momentum
tensor, and find the high energy behavior of two-point correlation functions for
these operators. This behavior is consistent with anomalously broken symmetry.
In chapter 5, we use the SUGRA background to ask if the field theory has a non-

trivial conserved baryonic current. The answer is somewhat inconclusive: there is
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no globally defined conserved current, but there may be an effective conserved cur-
rent at high energies. The SUGRA vector dual to such a current disappears in a
novel mechanism similar to but distinct from Higgsing. In chapter 6 we explicitly
demonstrate the existence of a mass gap in the gauge theory by computing masses
of low-lying glueball states. The remainder of the present chapter is devoted to a
concise review of relevant preliminary material, which closely follows the perspective
of [12]. Readers interested in a more extensive review may consult (13, 14].

Before we proceed, let us establish notation. Whenever we are in Minkowski
space, the signature is (—, +, ..., +); we will not be too careful about distinguish-
ing Minkowski from Euclidean space. We will use Greek indices u,v... for flat
4-dimensional (Minkowski or Euclidean) space, lowercase Latin indices i,J... for
the 5-dimensional space of noncompact dimensions (z#,r) and uppercase Latin in-
dices M, N ... for the full 10-dimensional space. The operator 0 will denote the
4-dimensional flat space d’Alembertian, Oyo the full 10-dimensional Laplacian. A
will always be used to denote the metric warp function h(r) for 10-dimensional
spacetimes; we will often suppress the r-dependence. For spacetimes with a reduced

number of dimensions D < 10 we will use H(r) to denote the metric warp function.

1.2 Black p-branes, D-branes and the AdS/CFT
correspondence

String theory has its origins in an attempt to understand the strong interactions
[15]. The mass m(J) of the lowest-lying meson state of angular momentum J was

found in experiments to roughly obey the Regge relation
m?(J) =m2 +d'J.

This relation can be simply explained by supposing the mesons to be excitation

- modes of a rotating string. It inspired the earliest string models for the strong
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interactions.

String theory has since become of interest to physicists as a candidate for a uni-
fied theory of all interactions, as it is a covariant, finite theory that includes gravity
[16]. The strong interactions, as we now know, are correctly described by a non-
abelian gauge theory with gauge group SU(3), known as Quantum Chromodynamics
or QCD. At low energies, however, this theory becomes strongly coupled, and a per-
turbative description in terms of gauge theory quanta is not useful in understanding
such effects as color confinement and the presence of a mass gap. For this reason.
physicists have continued to search for an effective description of strongly coupled
gauge theory. In fact, the most natural gauge-invariant objects of the theory are
not pointlike, but closed curves known as Wilson loops. Further, it can be shown
that confinement of color charges follows from the fact that the expectation value
of a Wilson loop obeys the area law: it is inversely proportional to the exponential
of the area of the minimal area surface enclosed by the loop [17]. This behavior is
naturally explained by assuming that the theory is effectively described by strings
propagating subject to the boundary condition that the Wilson loop is the boundary
of the string worldsheet. Thus, a string description of strongly coupled gauge theory
naturally leads to confinement.

A very important step in the search for dual string descriptions of gauge theories
was taken by 't Hooft [18]. He considered theories with N colors, where we now
take NV to be large (generalizing from the QCD case N = 3). He showed that if
we take N to be large while keeping the 't Hooft coupling A = ¢%,,N fixed, then
each Feynman diagram in the perturbative expansion of the field theory carries a
topological factor NX, where x is the Euler characteristic of the graph representing
the Feynman diagram. This suggests that we may think of the sum over diagrams
of a given topology as a sum over string worldsheets of that topology. Now, since
spheres, corresponding to string tree diagrams, are weighed by V2, tori - the string

1-loop diagrams ~ by N etc. the closed string coupling constant is of order 1/N.
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Thus, taking NV large results in a weakly coupled string thecry, with 1/.V corrections
corresponding to perturbative string corrections. Since 1/3 is a relatively small num-
ber, we might even hope that the 1/N expansion would give a good approximation
to QCD.

The above considerations suggested that gauge theories should have dual descrip-
tions in terms of strings. However, it was still not clear what such string theories
looked like. One clue came from work by Polyakov [19, 20] on strings moving in a
non-critical number of dimensions: D # 26 for bosonic strings, or D # 10 for su-
perstrings. Classically, string theory has worldsheet Weyl symmetry: it is invariant
under the rescaling of the string worldsheet. However, in a noncritical number of
dimensions, the Weyl symmetry develops a quantum anomaly. As a result, the field
o corresponding to the scale of the worldsheet, which classically can be gauged away,
becomes a physical field, known as the Liouville field. This field effectively behaves
as an extra dimension for the strings to move in. Moreover, the (D + 1)-dimensional
space consisting of the fields (.X*, ), where X* is the original (flat) target space of
the non-critical string and ¢ is the Liouville field, typically becomes warped, with a
metric that can be written as ds? = d? + a®()(d.X)?. Polyakov’s insight was that
the strings dual to four-dimensional gauge field theories should effectively move in
such warped five-dimensional target spaces. However, it was still not clear what the
warp factor a®(¢) looked like, or how to construct such string theories.

The answer emerged from seemingly unrelated research in superstring theory.
The low energy effective supergravity theory of superstrings is known to contain
form-field degrees of freedom known as Ramond-Ramond (RR) fields. The low
energy effective action for type IIB string theory, which is the theory we will work

with in the present dissertation, can be written as [21]

__i 10 — _l 2_124’ 2_i -b 2__1_ 'b"Z_
S=-73 / 4z (V/gR - 5(09)° — 5¢™(3C) — T59s H} — T50.€" F

1 " 2
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where

F3 = dC, Hj = dB,y, F5 = dCsy,
F3=F3—'CH3, P5=F5+BQAF3.
Here C, C, and C, are the RR 0, 2 and 4-forms respectively, B, is the NS-NS 2-form

and & is the dilaton. The gravitational coupling constant « is related to the string

tension o' and string coupling g, by
k =812g,(a)? (1.2)
The resulting equations of motion are:

1 1 1 .- -
Ryn = 50uP0N® + §ez‘°3A1CaNC + %QEFMPQRSFA{DQRS +

+%(e_¢HMqu;Q + €¢FMprAfQ) -

1 . -
_@gMN(e—d’HPQRHPQR +e®FporF PR, (1.3)

d* (eq’FS) = g,F5 A Hj,
dx(e"®Hy — Ce®F3) = —g,Fs A F3, (1.4)

dxd® = e?*dC A »dC - %’;e-"’H3 AwHs + 92—’e°F3 A Fy,
d(e*® x dC) = —g,e® Hs A F3. (1.5)
These equations are supplemented by the self-duality condition
*Fs = F5. ’ (16)

It has long been known that the above action and equations of motion have
solutions that are charged under the RR form fields (22, 23]. The typical form of
a solution magnetically charged under an RR form field is that the field strength



=1
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Fy41 = dC, of the RR g-form field C, has flux over a g + 1-dimensional sphere S7*!.
The metric has the form

ds? = K™V (r)(—dt* + Zp:(dx“)z) + RY2(r)(dr? + r2d93+l), (1.7)

p=1

so that ¢ = 7 — p. h(r) is a harmonic function of r in 10 — p dimensions. These
solutions are known as (magnetically charged) black p-branes®. They can be dimen-
sionally reduced to black holes in 10 — p spacetime dimensions by compactifying the
p flat spacelike directions. They have a horizon at r = 0, and preserve 16 of the
original 32 supersymmetries of the string theory. Although these solutions were well
known, their precise role in string theory was not yet understood.

All this changed with the realization by Polchinski [24] that in addition to
p-brane solutions, string theory has fundamental objects charged under Ramond-
Ramond fields. The existence of such objects was required by string dualities {23],
but Polchinski found a simple way to embed them in perturbative string theory.
Type II string theories have only closed strings. Ordinarily, open strings, when they
are present in a string theory, obey Neumann boundary conditions, meaning that
the ends of the string have to move at the speed of light. Instead, one can consider
adding to type II string theory a different kind of open strings, allowing a set of
9 — p directions (X?P*!,..., X% to end on a (p+ 1)-dimensional hypersurface of 10-
dimensional spacetime located at some point ((X?*!)',...,(X'?)"). In other words,
while p + 1 directions (X?,..., X?) of the open string continue to obey the usual
(Neumann) boundary conditions, the remaining directions obey Dirichlet boundary
conditions. The resulting object is known as a Dirichlet p-brane, or Dp-brane.

Polchinski showed that a Dp-brane carries a flux of the RR Cp+1 form-field on
its worldvolume. Thus D-branes are the sought-for fundamental objects that carry
RR charges. They are BPS states, preserving 16 of the 32 supersymmetries of string

theory. For a single D-brane, it can be shown that the open string degrees of freedom

2For electrically charged branes, C, has flux over the worldvolume of the brane, so ¢ =p + 1.
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ending on the brane are described by a U(1) gauge field, together with 9 — p scalars
and fermionic superpartners. We can also consider the situation of V parallel D-
branes located at different points in the transverse space. In this case there are
N? degrees of freedom corresponding to open strings beginning and ending on each
brane (open strings are directed so the beginning and end are distinguishable). One
can show that the mass of a vector corresponding to a string stretched between
two branes is propotional to the separation between the branes. In the case of NV
branes at different points, we have .N massless vectors generating a U(1)V gauge
theory, as well as N2 — N massive vectors. If we bring all the branes together.
then all vectors are massless. The minimal gauge symmetry required to describe .V
massless vectors is U(N). Thus we have arrived at the remarkable conclusion [26]
that the low energy degrees of freedom of a stack of .V coincident Dp-branes are
described by the maximally supersymmetric U(N) gauge theory in p + 1 spacetime
dimensions.

Since our interest is mainly in 3+1 dimensional gauge theory, we will now focus
on D3-branes, which are present in type IIB superstring theory. From the above.
it follows that at low energies, the degrees of freedom a stack of V coincident D3-
branes are described by N' = 4 SYM with gauge group U(V). In addition to the
massless gauge bosons, this theory contains 6 massless scalar fields in the adjoint
representation of U(V). Their geometrical interpretation is also clear: they describe
the location of the stack of branes in transverse 6-dimensional space. Because of
translation invariance, the 3-branes can be located anywhere, so there can be no
potential for these scalar fields: their values are moduli of the theory.

Now, D-branes are tensile objects; the tension of a D3-brane is known to be

7=V~ (1.8)

where & is the 10-dimensional gravitational constant. Because there is no force

between parallel D-branes, the tension of a stack of N D3-branes is just N times
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that,or N @ For large N, such a stack is a heavy object that curves the surrounding
space. Thus, it must have a description as a SUGRA solution. Such a solution must
have the same quantum numbers as the stack of 3-branes; it must preserve 16
supersymmetries and be charged under the RR 4-form field. All these properties
are possessed by the black 3-brane solution described by the metric (1.7). The warp

function for the metric in this solution takes the form

R
h(r) =1+, (1.9)

where R is a radius related to the RR charge of the solution. At small r, the metric
(1.7) has the limiting form

7'2

R2
= I—zadx,‘d.r“ + 7_—2dr2 + R%dQ2. (1.10)

ds?

This is a direct product of 5-dimensional Anti de-Sitter space (AdSs) with a 5-sphere
S5, where both have radius of curvature R. This geometry is non-singular at small
r, and, if R is large, all components of the curvature tensor are small when measured
in terms of the string tension o’. Thus for R > Vo', the SUGRA approximation
accurately describes type IIB superstrings on this background. The full geometry
(1.7) looks like a semi-infinite throat of radius R which for r > R opens up into flat
(9+1)-dimensional space.

To match the description in terms of D3-branes with the p-brane SUGRA solu-
tion, we equate the tension of a stack of N D3-branes with the ADM tension of the

solution [27]. We obtain

B

2
SR = NI, (1.11)
K K

where Q5 = 73 is the volume of a unit 5-sphere. From the relation (1.2), and from
the expression g2,, = 4mg, for the Yang-Mills coupling on the D3-branes in terms

of the string coupling g,, we get

R' = gy N(@)?, (112)
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so the size of the throat in units of the string tension is measured by the 't Hooft
coupling A = gZ,,N of the gauge theory on the D3-branes. Also, the condition
R > Vo for the validity of the SUGRA approximation translates into the condition
of large 't Hooft coupling in the gauge theory. This is precisely when the theory is
strongly coupled and ordinary perturbation theory is not applicable.

We have arrived, so far, at the following picture: the low energy degrees of
freedom of a stack of coincident D3-branes are described by A" = 4 SYM with gauge
group U(N); at higher energies, these degrees of freedom also interact with the
closed string modes of the ambient 10-dimensional space. On the other hand, the
stack curves space and can be described by a SUGRA solution with a geometry that
looks like a semi-infinite throat opening out into flat 10-dimensional space. The size
of the throat in string units is given by the 't Hooft coupling of the gauge theory:
at large 't Hooft coupling, SUGRA is a good description of type IIB superstring
theory on this background.

What tests can we perform to see if this picture is actually correct? A natural
set of tests is suggested by the fact the the gauge fields living on the branes interact

with the closed string modes in the bulk. Such an interaction has the generic form
Sine = / d*z6(z)O(z). (1.13)

Here ¢(z) denotes some closed string mode such as the dilaton or the graviton,
evaluated at the position of the branes. O(z) is the gauge-invariant field theory
operator that couples to the mode ¢.

We would now like to consider the process consisting of a quantum of the mode ¢
being absorbed by the brane [28, 29, 30]. Such a pfocess is allowed by the presence of
the interaction term (1.13). If ¢ is a massless closed string mode such as the dilaton
®, the operator O has naive dimension 4 on the worldvolume, so the bosonic part
of the operator is typically quadratic in the field strength of the gauge field living
on the branes (® in fact couples to trF2). Thus one can think of the field ¢ being
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swallowed by the brane, emitting two gluons that travel along the brane. The
absorption cross-section for this process can be read off from the two-point function
of the operator O. Such a two-point function has an absorptive part. resulting in
a discontinuity across the negative real axis in momentum space. It can be shown

that the cross-section for the absorption of a mode of energy w behaves as [30]
1
Oass ~ —Disc(O(k)O(-k)), (1.14)

where k% = w?. For a dimension 4 operator. (O(z)O(z')) ~ IITK;,Tg, SO in momentum

space
(O(K)O(—k) ~ K*w' logw. (1.15)

The logarithm produces a discontinuity, so we have o4, ~ xK%.2. For a stack of .V
branes, there is an additional factor of order N? to account for the number of gluon
degrees of freedom. The exact result for dilaton absorption is [28]

K2w3 N2

1.16
327 ( )

g =

To check the validity of the correspondence between the D-brane picture and the
SUGRA picture, we would like to compare this result to a SUGRA computation.
It is clear that in the SUGRA picture, it is the throat region that in some sense
corresponds to the branes. Thus we can imagine a dilaton wave incident on the
throat from r = oo. Part of it gets reflected back, and a part is absorbed by
the throat. Because the dilaton is a minimal massless scalar, it obeys the simple

equation of motion
O ¢ =0, (1.17)

where the 10-dimensional Laplacian 0,¢ is taken with respect to the black 3-brane
background metric (1.7), with A(r) = 1 + % To calculate the absorption cross-

section, we need to compare the flux in the near horizon region r < R to the flux
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in the asymptotic region r > R. We will describe such calculations in detail in
the next chapter. For now, we will simply quote the result [28]: a calculation of
the cross-section for the absorption of such a massless scalar by the throat yields
precisely eq. (1.16).

This is a spectacular confirmation of the correspondence between the two pic-
tures. Similar calculations have been performed for absorption of other fields,
such as the traceless graviton polarized along the brane and the RR scalar. In all
cases, an exact agreement was found between the D-brane picture and supergravity
(28, 29, 30, 31).

Let us pause to reflect on what exactly has happened here. The key is to note
that eq. (1.14) not only allows us to read off the absorption cross-section of a closed
string mode from the discontinuity of the two point function of the appropriate gauge
theory operator, but conversely, we can derive the leading behavior of the two point
function from the absorption cross-section {30, 31]. This is because the leading
behavior is given by the non-analytic part of the two point function in momentum
space, which is exactly the part that is picked up by the absorption cross-section.
The leading behavior in position space can then be obtained by taking a Fourier
transform. In this way, by doing a SUGRA calculation of the absorption of a mode
such as the dilaton, we are effectively computing a correlation function in the field
theory on the stack of D-branes!

The notion of an exact correspondence between the two pictures was decisively
sharpened in a paper by Maldacena [1]. He realized that the universal region of
the SUGRA solution is the throat r « R, and that this region should be directly
identified with the low energy N' = 4 SYM on the stack of branes. The reason
is that the low energy limit @’ — 0 can be directly taken in the geometry, and is
equivalent to the 7 — 0 limit. In terms of the absorption considerations above, a
particle incident from asymptotic infinity in the D-brane picture is converted into

an excitation of the gauge theory degrees of freedom; as we saw, this is described in
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SUGRA as a particle tunneling from large r into the throat r < R. This provides
more support for the direct identification of the throat limit of the geometry with
the low-energy limit of the theory on the D3-branes.

Maldacena was thus led to formulate the following famous proposal, known as
the AdS/CFT correspondence: type IIB string theory on the space AdS; x S®,
described by the metric (1.10), is exactly dual to the superconformal N = 4 SYM
in 4 spacetime dimensions.

In addition to the initial dynamical evidence for this proposal outlined above,
it is possible to perform a detailed matching of the symmetries (for a review, see
(13]). The isometry group of AdS; is SO(2,4), and this is also the conformal group
in 3+ 1 dimensions. We also have the SO(6) isometry group of the product S®; this
precisely corresponds to the R-symmetry group of N' = 4 SYM. If one includes all
fermionic generators required by SUSY, the full isometry supergroup of AdS; x N
is SU(2,2|4) which is just the A” = 4 superconformal symmetry group. A final
note on symmetry is that in both pictures, taking the low-energy, or throat, limit,
produces enhanced supersymmetry: the full theory on the stack of branes, as well
as the black 3-brane solution, have 16 supersymmetries, but N' = 4 SY)I, as well as
the AdSs x S® geometry, have the maximal 32 supersymmetries of type IIB string
theory.

The next step was to provide an exact prescription for matching the SUGRA
excitations of the AdSs x S° background with operators in the corresponding gauge
theory. This was done in important papers by Gubser, Klebanov and Polyakov (2],
and Witten [3]. Again, the motivation comes from the absorption calculations. A
particle incident on the throat in the full 3-brane geometry has to go through the
region where the throat opens out to asymptotic infinity. In the AdS limit, this
region itself is asymptotic and forms the boundary of the AdS space. Thus the in-
terface between the closed string modes corresponding to the SUGRA fluctuations,

and the dual gauge theory correlation functions, must be on the boundary. As we
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saw earlier, the interaction between the SUGRA modes and gauge theory opera-
tors is mediated by interaction terms generically described by eq. (1.13). Adding
these terms to the gauge theory action yields the generating functional W{¢] of con-
nected correlation functions in the gauge theory. This functional is a functional of
4-dimensional fields ¢(z), which are in one-to-one correspondence with the SUGRA
excitations. Since the SUGRA excitations depend on 4 + 1 noncompact coordinates,
it is natural to think of the 4-dimensional fields ¢(z) as boundary conditions. The
AdS/CFT correspondence then leads to the following proposal {2, 3]: The generat-
ing functional W([¢(z)] of connected correlation functions in N = 4 SY'M should be
identified with the extremum of the classical SUGRA action I[¢(r,r)], where the
fields ¢(z,r) solve the SUGRA equations of motion subject to the boundary con-
dition ¢(z,r — o0) ~ @(z). The terms coupling to the gauge theory operators in
the generating functional reproduce the boundary behavior of SUGRA fields. The
exact scaling is determined by the dimension of the operator.

This prescription allows one to compute gauge theory correlation functions in
N = 4 SYM at large 't Hooft coupling by solving classsical SUGRA equations of
motion on the AdSs x S® background®. Many such calculations have now been
performed on both sides, with exact agreement in every case. Thus the AdS/CFT
correspondence provides the first realization, at least in the supergravity limit, of
the long-held hope for finding dual descriptions of gauge theories in terms of strings.
The main ideas outlined earlier in this section - 't Hooft’s large NV limit, and the
propagation of strings in a higher-dimensional curved background - are all realized
in this duality. At large A, the AdSs x S° solution has small curvature and is an
accurate description of string theory. This solution is a compact 5-sphere times
a warped space of non-compact 4 + 1 dimensions. The fifth (radial) dimension of
AdSs is analogous to the fifth Liouville dimension proposed by Polyakov. For N’ = 4

SYM, this geometry answers the question: what is the target space that strings dual

3This aspect of the correspondence is reviewed in more detail in section 3.2.
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to gauge fields propagate in?

Although of some interest, N' =4 SYM is not a very realistic gauge theory. For
one thing, the maximal SUSY severely constrains the dynamics of the theory. Also,
this theory is conformal, meaning that there is no interesting renormalization group
flow. The coupling constant is the same at all scales; there is no confinement and
no asymptotic freedom. The goal now is to use the powerful apparatus of matching
stacks of D-branes and SUGRA solutions to try to obtain string duals of more
realistic field theories.

In chapter 3 we will begin discussing the progress made towards this goal by
considering theories living on branes placed at conifold singularities, rather than in
flat space. Before doing that, we note that one way to break conformal invariance
is actually to consider the full theory living on the stack on D3-branes in flat space,
governed by the full DBI action which describes both the open string modes associ-
ated with the branes, and the bulk closed string modes that they interact with. The
low energy limit of this theory is conformal; this is the limit taken in the AdS/CFT
correspondence. However, at energies comparable to the string scale, the theory
contains irrelevant operators that explicitly break conformal symmetry. In the next
chapter we will study these operators and the corresponding SUGRA modes, the

so-called fixed scalars.



Chapter 2

Fixed scalars and the breaking of

conformal symmetry

As we indicated in the Introduction, the black p-brane solutions of superstring theory
can be dimensionally reduced to black hole solutions by wrapping the p spacelike
dimensions of the branes on a torus 7?. Research on such black hole backgrounds
has shown that the spectrum of their fluctuations contains scalar fields known as
fized scalars that couple nonminimally to the background (their equations of motion
contains potentials in addition to the usual Laplacian term of eq. (1.17)). Due to
the nonminimal couplings, the low-energy absorption cross-sections for such fields
are suppressed compared to those of the minimally coupled scalars [32, 33, 34, 35].
This suppression has a natural explanation in terms of the coupling (1.13) between
the closed string modes corresponding to such scalars and operators living on the
worldvolumes of branes: while the minimal scalars couple to marginal operators,
the non-minimal ones couple to irrelevant operators [33, 34, 35]. Such operators
are ignored in the conformal limit, but are well-known to be present in the non-
polynomial actions of the DBI type that describe the full (not just low-energy)
theory on the branes.

The theories of main interest to us are related to (D = 7)-dimensional black hole

solutions corresponding to type IIB D3-branes, reviewed in the Introduction, as well

16
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as the so-called M2-brane and M5-brane backgrounds. We have not mentioned these
solutions until now. The reason is that they are solutions, not of type I[IB SUGRA
in D = 10, but of the non-chiral maximal supergravity in D = 11 dimensions.
This SUGRA has a 3-form field. In analogy to type IIB SUGRA, this implies
the existence of electrically charged 2-brane solutions, corresponding to black holes
in D = 9 dimensions, and magnetically charged 5-brane solutions, corresponding
to black holes in D = 6 dimensions. 11-dimensional SUGRA is not the low-energy
theory of any string theory, although it is suspected to be the low-energy theory of an
as yet mysterious model known as M-theory. Thus, we have no explicit description
of the theory on the worldvolume of M-branes in terms of string worldsheets with
certain boundary conditions on the strings. What makes these theories particularly
fascinating, and in some ways similar to the much better understood theory on the
worldvolume of the D3-branes, is that in all cases, the low-energy limit of the theory
is conformal. This can be seen from the fact that the near-horizon geometries of the
solutions corresponding to these branes are all products of .AdS spaces with spheres:
AdSs x S%, AdS,; x S7 and AdS; x S* for the D3-brane, M2-brane and M5-brane
solutions respectively. Another sign of conformality is that none of these solutions
possess a nontrivial dilaton background (hence the term “nondilatonic branes”).
In what follows, we will be able to treat all these solutions in terms of a single
framework involving the dimensionally reduced action!.

We obtain a charged black hole in D = 10 — p by wrapping some number of
Dirichlet p-branes over T?. The part of the D-dimensional effective action that will

be relevant for our calculations is [22]

S~ / 4z =g (R - %amxa"u _ ef’*anF"'") , (2.1)
where
_ D=1
s= 0=, (2.2

! This chapter is based on parts of the paper [36].
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and F, is the field strength of the 1-form-field that results from the dimensional
reduction of the RR (p + 1)-form field Cpy; under which the branes are charged.
The fixed scalar A is a certain linear combination of log V" and the 10-dimensional
dilaton & (V is the internal volume of the brane measured in the 10-dimensional

Einstein metric):

The static charged black hole solution is

ds? = Ho=3 (~ H™'df? + dr® + r2dQ%,_,) (2.1)
1 - 8
F.=—0,H' \A=ZlogH 2.5
¢ 7 5 log (2.3)
RD—S 2Q
H(T’)—I'*'r—oj—l'l'zﬁ-_—g)m. (2.6)

This is the dimensionally reduced form of the black p-brane solutions discussed in
chapter 1.

In considering fluctuations around this background, one may be concerned that
the D = 7 case should be treated separately because the solution also includes the

5-form background G = xF'. Thus, a priori the action is

t)
/ d'z\/~g (R - %6,,,/\6’"/\ — PP F™ — ée—ﬂ*amb,_mscml--'ms) :

However, we may dualize the G? term into the F? term, so that the action is
equivalent to
1
/ d'z\/=g (R — SOmA"A - 2e-""anF”‘") :
This makes it look essentially the same as the problem in D # 7. The extra factor
of 2 in front of the F? term is compensated by the fact that the classical electric

field has an extra 1/v/2: in this case

1
Fre=30,H" .
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However, it should be noted that this dualization is sufficient ouly for analyzing
spherically symmetric fluctuations. A more careful treatment would be required to
study the higher partial waves.

In studying the propagation of fixed scalars, special care needs to be taken to
account for mixing with the gravitational field. This mixing can be traced to the
fact that A couples to background electric field of the black hole. Fortunately, the
methods for disentangling this mixing have been developed in [35]. We now follow
the steps outlined there.

We write the general spherically symmetric metric as

d82 — _62.4dt2 + e?Bdr2 + 7‘262UdQ2D_2. ( .

(8]
-~
—

where we keep U constant and vary A and B. The electric field is then given by

_ Qe=A~B-(D-2U-5A

F b=z (2.8)
The gravitational equations that follow from (2.1) are
1
Ry - 50,09,A - eM2F,,F 59" — 59w F?) =0. (2.9)
In particular, the 'rt’ equation reads
. 1.
—(D=-2)r"'(1+rU")B + §AA' =0. (2.10)
Varying, we find
AL
6B = 2 A 2.11
2(D-2)(1+rU") (2.11)
Varying the angular equation we get
20B
A /=______2 " D—-2 ! _
§A' — 6B r(1+rU’)[ r?U" — ( yrU' = (D = 3)] +
25Q° e AP35k (2.12)

D=2 + U)o
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The fixed scalar equation is

\/—1_-_—!} (g™ /=98.) + BB F? = 0. (2.13)

Varying this and inserting the above expressions for the metric fluctuations. we

obtain the general formula for the fixed scalar potential:

2(D - 1)*(D - 3)?Q?
" 72[(D-1)Q + (D - 2)(D - 3)rP-3)¥

V(r)= (2.14)

We define the radius R in terms of the charge Q through R?—3 = Dl-qi' Then the

fixed scalar fluctuations in D dimensions obey the equation

D-3
[r=(P=29.rP25, + L (1 + 55) -
-
—1)2(D — 3)2RAD-3)
2AD -1 (D - 3R ]6A =0. (2.15)

" ?[(D - 1)RDP-3 4+ 2(D - 2)rDP-3]2
It remains to find an approximate solution of this equation for low energies and derive
the absorption cross-section. As in previous work [32, 33, 34, 35|, we divide space
into three regions and match. These regions are the near region, where r << R.
the far region, where r >> R and the intermediate region where the w term can be

neglected. In the near region the equation is

—(D- _ wR)P-3  2(D -3)?

where p = wr. Letting

p=AZ6G-D) AP = 4((31?2; : (2.17)
we find
A = P-DP=8 g (7)), (2.18)
where
y=3P-3) (2.19)
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In the intermediate region the w term is irrelevant and we get the solution

Brb-3

A = . 2.
ra(r) (D ~1)RP-3+ 2(D — 2)rD-3 (2.20)
Matching with the near region, we obtain
4 - _5 (D =1)I(v)2¥ —o(D— _
B = (3-D)/(D-5) R)~AD-3)/(D-5) 2.21
In the far region we have the equation
[r=P=29,rP-29, + w?| Arir = 0. (2.22)
Its solution is
At = Cp™#Ju(p), (2.23)
where 1 = (D — 3)/2. Matching to the intermediate region, we get
22T (pn+1)
=—_—— 7 2
C TR B. (2.24)
The invariant flux is given by
F = (1/2))(A0,rP2) — c.c). (2.25)

Taking the ratio of the flux at the horizon to the the incoming part of the flux at
infinity, we get the absorption probability
4 (D-3)

. D-3
SR 2
which translates into
4 3(D-3)/(D-5)
P=(D-5
(D -5) [( 4 0)2] x
(D — 2)? 872 (D=3)(D+1)

X (D — 1)2 22+0) (T (0))2(T (1 + 1))2(wR) D3

The s-wave absorption cross-section is given by

T)P- Dol
0‘=(2\/-) 3F( 2 )P.

wD-2
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Thus, we find

- 4 ~3)/(D-
o=(D- O)[(l)——5)_2]3(0 /(D=5

2 2 D-3
y (D-2) 8m%(2y/7) ‘D'z,’ii’*”d"g:;“_ (2.27)
(D —1)2 22+9)(['(v))2C (ke + 1)

Let us exhibit the scaling of the cross-section with the number of branes and the
energy:

D+1 5D—-13
o~ ND-5y D=5, (2.28)

For NV coincident D3 branes, which correspond to the D = 7 black hole, we find
op3 ~ Kjg Vit (2.29)

For \V coincident M5 branes, which correspond to the D = 6 black hole, we find
Oars ~ nﬁ/sN?w”. (2.30)

For NV coincident M2 branes, which correspond to the D = 9 black hole, we find
Orr2 ~ n{?/:’./\fs/zws. (2.31)

Let us now try to interpret these results in terms of the worldvolume theory on
the stack of branes. The first question to ask is: what is the gauge theory operator
O that couples to the fixed scalar fluctuations? The answer is essentially contained
in eq. (2.3) which shows the origin of the fixed scalar A. For D =7, corresponding
to the stack of 3-branes, we see that A does not involve the dilaton, but only the
volume V" of the 3-branes. Now, in the case of M-branes, there is no dilaton in any
case, so A can only involve this volume. Thus in all cases of interest, A corresponds
to dilatation of the branes. The size of the branes is obviously governed by the
trace of the graviton polarized along the branes. The worldvolume coupling of the

graviton is given by

[t %hw(r)T“"(x), (2.32)
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where T#¥ is the stress-energy tensor of the field theory on the branes.

Now, consider the trace k. This is the mode corresponding to the fixed scalar
A. Its dual operator T# decouples in the conformal limit. It follows that, for D3
branes, h/ does not couple to a marginal (dimension 4) operator. We may deduce
the leading operator to which it couples from the well-known structure of the DBI

action [37, 38, 39]. To order F*, we have

1
2

/cf‘x [ TeF2, ~ (27a')?Og + .. ] i (2.33)
49y ar

Sper =

The operator?

1 1
O = g TI’(F“,,F,,,,F“,\FP,\ + §F#UFlePI\FIM -

1 1
—ZF,‘,,FWF,,,\F,,A - gFu,,Fp,\F,“,Fp,\) (2.34)

has bare dimension 8 and obviously breaks conformal invariance. Thus, the trace
of the stress-energy tensor calculated from this term is also of dimension 8, i.e. the

lowest dimension coupling of the fixed scalar to the worldvolume is of the form
/ d'z h# Og(27a)? . (2.35)

The leading contribution to the 2-point function (Og(z)0s(0)) is a 3-loop diagram,

which scales as

N? (Ng\2/1u)2
16 :

(O()O5(0)) ~ (2.36)

Let us compare this scaling to the absorption cross-section (2.29). Using once again
the relation (1.14), performing the Fourier transform and isolating the discontinuity,

we find that the absorption cross-section should behave as

Oaps ~ Nigtw!l. (2.37)

2We have not exhibited the dependence of this operator on the scalars and the fermions. We
believe that these extra terms are determined by supersymmetry.
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This has precisely the same scaling as the absorption cross-section found in (2.29).
We have shown that the exact dimension of the operator s, which the fixed scalar
couples to, is in fact equal to 8. Thus, its anomalous dimension vanishes. We have.,
therefore, found a situation where gravity gives us a “proof” of a non-renormalization
theorem for an operator in the worldvolume theory. We believe that in the gauge
theory this theorem follows from the existence of the supersymmetric DBI action.
and from the fact that insertions of Og can be obtained by differentiating the path
integral with respect to o'.

While our route towards the operator Qg involved using the DBI action. which
breaks conformal invariance, the operator itself is expected to be one of the chiral
operators of the A/ = 4 SYM theory. This is required by the statement that the
chiral operators are in one to one correspondence with the massless modes of type
IIB supergravity (2, 40, 3]. Chiral operators involving trF* have indeed been found
in [41]. From the form of the fixed scalar equation in the throat region (2.16), we

find that the AdS mass-squared of the corresponding state is
m? = 32/R%.

Thus, we believe that Oy should be identified with the k¥ = 0 (the SO(6) singlet)
state in the tower

m? = (k + 4)(k + 8)/R?,

which appears in type IIB supergravity on AdSs x S° [42].

A parallel analysis may be performed also for the coincident M5 and M2 branes.
In all cases we find that hl‘j is the fixed scalar field. From the results (2.30,2.31) we
can then read off the dimension of the trace T* on the worldvolume of the branes.
Taking the Fourier transform, we find a dimension 12 operator on the 6-dimensional
worldvolume of the M5-branes, and a dimension 6 operator on the 3-dimensional
worldvolume of the M2-branes. Thus we see that in all three cases, the dilatation

- symmetry is explicitly broken by an operator having twice the marginal dimension.
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For the M-branes, we do not currently have an explicit worldvolume action. so the
fixed scalar absorption calculations can be taken as a prediction about the form of
symmetry breaking operators in these theories.

Although the theories living on stacks of branes do break conformal symmetry.
they are not of much help in our search for string duals of realistic field theories.
This is because conformal symmetry is broken at energies where the gauge fields
living on the branes no longer decouple from the closed string modes in the bulk.
At such energies these theories are not really local 4-dimensional field theories at
all. What we would like is to find situations where we can take the decoupling
limit, so that we are dealing with bona-fide 4-dimensional local gauge theories. and
still manage to break conformal symmetry and some supersymmetry. We will now

describe one way of achieving this goal.



Chapter 3

Branes at conifold singularities

3.1 Introduction

Until now we have been looking at stacks of D3-branes placed in flat 10-dimensional
space. A natural generalization of this is to consider string backgrounds of the form
R3! x Y, that is, products of flat Minkowski space with Calaby-Yau manifolds (i.e.
manifolds that are Ricci-flat and preserve some supersymmetry) [43, 44, 4, 43]'. A
simple class of such manifolds are cones over 5-dimensional Einstein manifolds. A
manifold X° is known as an Einstein manifold (of positive curvature), if its Ricci
tensor and metric obey the equation R,3 = \g3 (for A > 0). A cone over such a

manifold has the metric
ds® = dr® + r’ds?, (3.1)

where ds? is the metric on X5. The cone is Ricci-flat only if X° is an Einstein
manifold. X° is known as the base of the cone. Note that flat 6-dimensional space
RS can also be thought of as a cone; it has the metric (3.1) with base S°. Of course,
this is the maximally supersymmetric example. Another example is provided by the

so-called conifold [47, 4]. This is a manifold that can be described by the following

1See [46] for a review.
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equation in four complex variables:
Y 2Z2=o. (3.2)

That this space is a cone can be seen from the fact that eq. (3.2) is invariant under
the rescaling of all complex variables. It is a 3-dimensional complex space, so it has
6 real dimensions. It turns out that the base of the cone is the well-known space
TV = (SU(2) x SU(2))/U(1) [48, 4]. In what follows we will need the structure
of the manifold T!!. This is a compact five-dimensional Einstein manifold with
topology S? x S3: it has a nontrivial two-cycle and a nontrivial three-cycle. The
coordinates on T"! are the angles v, 8,, 6;, ¢1, ¢, with 8,, 6, € [0.7], &1, &2
€ [0,2n], ¥ € [0,47]. We define the 1-forms

L el—g 2_62_64
g = \/Q » g = ‘/5
s e+, e?+et
g __7—2_79 - 5 y
g’ =€, (3.3)

where

el = —Sin01d¢1, 62 = d01,
€3 = cos ¥ sin ,dd, — sin Ydbs,,

e! = sin 1 sin ,d¢, + cos db,,

e’ = dy) + cos 0,d¢; + cos G2d¢,. (3.4)
The metric on T4 is
a1 50 13, i -
ds5 = 5(9 )* + gZ(g )" (3.3)
=1

The closed nonexact forms corresponding to the nontrivial cycles are

1
Wy = 5(91 NP+ NgY), ws=g°Aw,. (3.6)
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The metric of the conifold (3.2) is given by (3.1) with ds? given by (3.5).

We will need yet another description of the conifold. We define the variables

I, -
2ij = 7 Za:o,jza, (3.7)

where the o° are Pauli matrices for ¢ = 1,2,3 and o* is ¢ times the unit matrix.

The eq. (3.2) becomes

det(z;;) = 0. (3-8)
This can be solved by setting

;= AiBjy (3.9)

where A;, B; are unconstrained. In terms of the description of the conifold as a
cone over T!!, the overall scale of the A’s and B’s corresponds to the radial variable
of the cone. Once this overall scale is set to 1, what remains is a product of two
SU(2) orbits. This needs to be divided by a U(1) that rotates the two doublets
by opposite phases and clearly leaves (3.9) unchanged. Thus we see again that the
conifold is a cone over (SU(2) x SU(2))/U(1) = T"'. The isometry group of this
space is SU(2) x SU(2) x U(1).

Let us now imagine placing a stack of N D3-branes at the singularity of the
conifold, that is, at r = 0 [4]. What is the resulting low-energy gauge theory? Let
us begin with a single brane. The moduli (4;, B;) are charged under the gauge fields
corresponding to open strings ending on such a brane; the charges are separate for
each doublet. Thus we must have a U(1) x U(1) gauge theory. A careful analysis of
the situation with N branes shows that they are described by an SU(N) x SU(N)
gauge theory. This theory is conformal, and has N' = 1 SUSY with a U(1) R-

symmetry group. It has an exactly marginal superpotential given by

W= EijEkltTA,'kaljB[, (310)
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determined up to an overall normalization. The chiral fields (A4,;. A;) transform in
the (N, N) representation of the gauge group, and the fields (B, By) in the (V, V)
representation.

In analogy to flat space, to obtain the supergravity dual of the theory on the

stack of 3-branes, we make the usual warped ansatz for the metric:
ds? = h='?(r)dz,dz* + h'*(r)(dr? + rids?), (3.11)

which is again solved by the harmonic function h(r) =1 + %i. Once again, we can
take the throat limit on both sides. On the stack of branes, this results in the usual
decoupling of the gauge degrees of freedom from the closed string modes, that is,
the throat limit is described by the N' =1 SU(N) x SU(N) SCFT. On the SUGRA
side, taking the throat limit results in the geometry

r2

2
= ﬁdrud:r“ + %dr2 + R%ds?. (3.12)

ds®

This is the product space AdSs x T'!. We have arrived at the conclusion, obtained
by Klebanov and Witten [4], that the superconformal SU(N) x SUN) N =1
gauge theory is dual to type IIB superstring theory on AdSs x T*!. The conformal
symmetry is evident from the fact that the SUGRA background is still AdS. A
detailed matching of SUGRA excitations with gauge theory operators confirms this
conclusion [49].

We have now been able to find a string dual of a less supersymmetric field theory.
However, this is still a conformal theory, so there is no RG flow and no confinement.
But, as realized by Klebanov and a series of collaborators [3, 7, 8, 9], it is in fact
possible to break conformal symmetry in this setup. As we saw, the space T'!
has nontrivial 2- and 3-cycles. Consider wrapping a D5-brane around the 2-cycle
of T"! [5]; the remaining 3 + 1 spacetime dimensions are along the flat R*!. From
the point of view of the 3 + 1 dimensions this D5-brane looks like a D3-brane, and

will change the rank of the gauge group. But, because it is wrapped around one
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of the two S%s of T'}, open strings emanating from this brane are charged only
under one of the factors of the gauge group. Such a wrapped D5-brane is known as
a fractional D3-brane. A careful analysis shows that it changes the gauge group to
SU(N + 1) x SU(N) [5]. Wrapping M such branes around the same S? makes the
gauge group SU(N + M) x SU(N).

To find the SUGRA dual of this gauge theorv [7, 8, 9], we again take the warped

ansatz (3.1). Also, to get the correct number of wrapped D3-branes, we require

F;= %Ma'wg.

It turns out that to find a solution of the equations of motion, we must turn on the
NS-NS 2-form B,. As a result, the D3-brane charge cannot be kept constant and

begins to flow. The full solution is given by (8]

R+ 2L*(log(r/ro) + 1/4 2L 2L2
h(r) = ( gE [ro) + 1/ ), By = —log(r/ro)ws, F3 = ——ws,
r 3 9g;
F5 = (6,h " )d'z A dr + g;-gl A...Ag &=C=0, (3.13)

where h(r) is the warp factor in the metric (3.1) and the radii R, L are given by

L2 = ggsll[a', R'= 24—‘g,N7r(a')2. (3.14)

This is the Klebanov-Tseytlin solution [8]. Note that in addition to the string scale
o', the solution involves an arbitrary scale ry. This scale is related to the confinement
scale; we shall see the precise relation in the next section. As we flow toward the
IR, the solution becomes singular at a radius r = ry where h(r;) = 0, and is only
reliable away from the singularity, or for 7 >> r,;. In this region the curvature R
satisfies 'R ~ o log(r/re)™3? <« 1, so supergrévity is a good approximation to
the dual gauge theory. Importantly, the KT solution is not asymptotically AdS in
the UV, ot at large r: the warp function h differs from the AdS warp function by
a logarithmic factor. Because the difference is only logarithmic, though, there is

hope that some of the methods developed for AdS/CFT can be applied to the KT
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background; we will see that this is in fact the case. For now let us note that the
fact that the SUGRA background is non-AdS indicates that the dual field theory is
no longer conformal.

A striking feature of the solution is that the D3-brane charge is scale dependent,

namely

1 - 3 )
Negs (1) = ey [, Bo= N + 500 log(r/ro). (3.15)

As shown in (9], this logarithmic running of the effective number of colors corre-
sponds on the gauge theory side to a cascade of Seiberg duality transformations
[50]. The basic point is that the field theory has two coupling constants, 1 /g% and
1/g2, one for each gauge group factor. The matching between the gauge coupling

constants and corresponding SUGRA moduli is given by [4]

472 472 s
T E T e (3.16)
r? dm?. 1 .
(?%‘ - ?%-)g,e = %( - B,) — . (3.17)

Since the dilaton is constant, we see that the sum of the two couplings does not run.
However, because B is turned on, the difference of the couplings does run, so they
flow in opposite directions. If we follow the RG flow, there is a scale at which the
SU(N + M) coupling g; diverges. To continue past the infinite coupling, we perform
an N' = 1 Seiberg duality transformation on this group factor. The SU(N + M)
gauge factor has 2NV flavors in the fundamental representation (because of the two
pairs of chiral fields (A;, B;) in an N-dimensional representation of the other gauge
factor). Under a Seiberg duality transformation [50], this becomes an SU(2N -
(N + M)) = SU(N — M) gauge group. In this wa).f, we get an SU(N) x SU(N — M)
gauge theory, with the same properties as the one that we started with, but with
the ranks of both gauge groups shifted by M. This theory undergoes the same kind
of RG flow, the coupling of the larger gauge group diverges, and we have to perform

Seiberg duality again, and so on. Thus this gauge theory undergoes a cascade of
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Seiberg dualities, each of which changes the rank of each of the gauge factors by M.
As a result, the effective number of colors in the theory flows with scale, and this is
reflected in the behavior of Fy in the SUGRA solution.

The process described above has to stop eventually. as we “run out of colors™.
And indeed, as the RR 5-form field strength flux approaches 0, the KT solution
runs into a naked singularity. Normally, this might signal that SUGRA is no longer
a good approximation to string theory at this point. Remarkably, the singularity
of the KT solution can be resolved in supergravity, and a SUGRA solution that is
nonsingular at all scales can be obtained [9]. It turns out that the right thing to
do is to replace the conifold, (3.2), by the deformed conifold [48. 9], given by the

equation
4
Y 2=¢ (3.18)
a=1

The motivation for this comes from the fact that chiral symmetry is expected to be
broken in the dual field theory. Eq. (3.18) is a natural way of breaking this U(1)
symmetry at low energies, while maintaining an effective symmetry at high energies.

The deformed conifold described by eq. (3.18) has the metric [48, 51, 52]

45t = 3Ky (dr® + (6°)) + cosh?(r/D((6") + (6) +
+sink®(r/2)((g' + @), (319)
where
K(r) = (sinh(27) — 27')‘/3. (3.20)

21/3sinh T
r is a dimensionless radial variable. For large 7 we may introduce a dimensionful

radial coordinate r via

3 .
r? = ﬁge”‘/se? /3, (3.21)

In terms of this coordinate, ds? — dr? + r’dsZ....
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To find a SUGRA solution corresponding to branes moving on a deformed coni-

fold, we once again take the warped ansatz [9]
ds? = h™\*(1)dz,dz* + h'/*(T)ds}. (3.22)
Solving the SUGRA equations of motion, the metric warp factor h(r) is found to be
h(r) = (g Ma')2223e783 (), (3.23)
where
I(r) = /Too dzﬁs%%—l-(sinh(‘h) - 2r)3, (3.24)

This is the Klebanov-Strassler, or KS solution [9]. In the UV, that is, for large T,
it approaches the KT solution. At small 7 we have I(r) — ao, where ag = 0.7. In
other words, the SUGRA solution described by (3.22) is nonsingular and has small
curvature everywhere; so it correctly describes the dual field theory at all scales.
The solution has no horizon in the IR. Consider now a Wilson contour positioned at
fixed 7, and calculate the expectation value of the Wilson loop. The minimal area
surface bounded by the loop will tend toward smaller 7. Because the coefficient of
dz,dz* in the metric is finiteat 7 =0, a fundamental string with a surface extending
down to T = 0 will have finite tension, so the Wilson loop will obey the area law.
The Klebanov-Strassler solution is thus an example of a SUGRA background
dual to a confining N’ = 1 SUSY gauge theory. So far, it is perhaps the closest
thing we have to a SUGRA dual of a realistic field theory. We now turn to an
investigation of various aspects of the correspondence between this gauge theory

and its supergravity dual.

3.2 Field theory correlators from the KT solution

Our purpose in this section, based largely on the paper [53], is to extend the stan-

dard AdS/CFT procedure for extracting gauge theory correlation functions from
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supergravity to the KT background and its field theory dual, using as an example
the massless scalar and its dual dimension 4 operator. We will outline that calcu-
lation and indicate how to use the same method to derive correlation functions of
other field theory operators from this supergravity background.

Let us first recall how one extracts gauge theory correlation functions from the
dual supergravity background in standard AdS/CFT. We follow the method of [2].
As explained in the Introsuction, for every SUGRA field ¢ there is a corresponding
gauge theory operator O such that a term W{¢] = [ d'z¢(z)O(z) can be added to

the gauge theory action. The gauge theory/SUGRA correspondence then states

(e-W[¢(z)]) = ¢~ Sl (3.23)

where S[¢(z)] is the classical SUGRA action evaluated on the field ¢(z, r) that solves
the supergravity equations of motion subject to the following boundary conditions:
in the UV, i.e. for r = oo, ¢(z,r) = r*¢(r) where A is related to the dimension
of the operator O. We also require ¢(z,r) be regular at the IR, i.e. for small
r. In other words the classical SUGRA action evaluated on the classical solution
¢(z,r) subject to these boundary conditions generates the connected gauge theory
correlation functions of the operator O.

In particular, suppose we want to calculate the two point function (Oy(z)Oy(z2))
for an operator Oy corresponding to a minimal massless scalar ¢ propagating in the
geometry (3.11), where ds? is the metric on some Einstein manifold X°. The action

for such a scalar is

1 10 1 mw V a [P sra 4\2 RYPPEy
S=55 Jd 2v/8l59" 0ud0ne] = 7 / d'z. / drrd[(8,6) + h(r)* 0,00,
(3.26)
where V is the volume of the X° and p is a UV cutoff to be taken to oo in the end.
We have tacitly switched to Euclidean signature. The indices M, N run over the

entire 10-dimensional space, the indices u,v over 4-dimensional Euclidean space.
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The equation of motion resulting from this action is
(r=%9,r%0, + h(r)o)¢ = 0. (3.27)
Integrating by parts in the action (3.26), we get

|4 P ) )
S = m/d“x/ drr5[_¢(r—5arr5ar +h(r)nyuauau)¢+ r""a,(d)r" r¢)] _

_ __‘L[Jr(r),zp — F(r)r=al,

42
where F(r) = ¢(r)rd,¢(r) is the flux factor. We have used the equation of motion
and the fact that there are no boundary terms from integrating by parts in the r*
directions since the fields are assumed to vanish at 4-dimensional infinity. Going to

momentum space, we find

S =

‘/f
7 [ Ada80,2m) 8 (k + o) . (328)

where ¢(z) = [ d*k¢re’** and
Fi = [ox7°0, 0§ (3.29)

¢ are momentum modes normalized to ¢(p) = 1. From (3.25), the corresponding

2 point function in momentum space is then

&S ) v
(OuBION0)) = 550 = (2m) '8k +0) 5 P (3.30)
q

Thus, to extract the 2 point function we need to solve the equations of motion

for the momentum k Fourier mode of the field ¢ with the boundary conditions
#(p) = 1, ¢(r — 0) regular, and find the flux factor F;. Note that ultimately,
we are interested in terms nonanalytic in k, since the analytic terms correspond
to contact terms in position space. However, there is a subtlety due to the fact
that some of these contact terms diverge as p — oo, and need to be canceled by
covariant counterterms [54, 55]. These covariant counterterms will generally change

the prefactors in front of the 2-point functions [55]. In the particular case of the
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minimal massless scalar, though, we will show that the prefactors are unchanged for
both AdS and KT backgrounds?.
In the standard AdS/CFT correspondence h(r) = R*/r* and the equation of

motion (3.27) in momentum space becomes

(r=%0,r°0, — kzl—z:—)tb = 0.
r
Changing variables to y = kR2%/r this is:

(¥°9,y7°3, — 1)o(y) = 0. (3.31)

This is equivalent to a Bessel equation whose solution with the desired boundary

conditions is

2 -
_ ¥y K (y)
W) = g, (k)
where € = R?/pis a UV cutoff. This function has the small y expansion
¢()—1—12—i*lo + (3.32)
y)= 43/ 16!/ gy + ... .

The logarithmic term gives the leading nonanalytic contribution, so that
(O4(k)Os(=k)) ~ (ke)* log(ke), (3.33)

or

1
|z —I2|8.

(O(z1)O4(z2)) ~ (3.34)

Let us note at this point that this is exactly the same correlator as eq. (1.13) derived
in section 1.2 from the absorption cross-section of a minimal massless scalar. This is
not surprising, since we are solving exactly the same equation (1.17) in both cases;
the difference is that for the absorption calculation, we needed to solve the equation
in the full (asymptotically flat) D3-brane background, whereas now it is enough to

solve it in the near-horizon limit, where the background is an AdS space. The point

2For a discussion of the AdS case see [6, 56).
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is that all the information from the asymptotically flat region is encapsulated in the
boundary conditions at the boundary of AdS.

Turning now to the Klebanov-Tseytlin background, our strategy will be simply
to repeat the above steps. Consider again the minimal massless scalar. Starting
from the action (3.26) with X3 = T!!  we arrive in the same way as before at the
result (3.30). With the warp factor A(r) defined as in (3.13), the mode ¢x(r) now

satisfies the equation
1
[r°8,r°0, — .42k2:—: log(r/rs)]o(r) =0, (3.35)

where we have defined

ry = roe”VARY2LY 42 = Z_rL; (3.36)
Changing variables to
y = ’”;’"3 Y = Akr,, (3.37)
eq. (3.35) becomes ]
40,470, ~log -lola) =0, (3.38)

To find the 2-point function (3.30), we need to solve eq. (3.38) with appropriate
boundary conditions. This equation is valid for y « Y. As y — Y, we run into a
singularity. Recall that we would like to impose the boundary condition that ¢(y)
is regular in the IR, i.e. for large y. The rigorous way of doing this would be to look
at the full Klebanov-Strassler spacetime [9] which resolves the KT singularity. But
the KS solution is rather complicated and one would have no hope of solving the
equations analytically. Instead, note that for largé enough k, i.e. at high energies,
Y is a large number. Thus there is a region where 0 « y < Y. If we can solve eq.
(3.38) in this region, we can impose the boundary condition that ¢ be regular at
large y. If Y > 1 then this boundary condition will mimic the correct one, whatever

the details of singularity resolution are. Next, note that if we take 1/Y < y K Y,
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then |logy| < |logY’| and eq. (3.38) reduces to
(yaayy-say —logY)o = 0. (3.39)

This is Bessel's equation, just like (3.31). Now we take the solution that is regular

at large y. This is the same solution as we needed in (3.32):
orr = B(1 - -y 2logY — ——y *log’ Y log(y/log Yy) + ...). (3.40)

where B is an arbitraty constant. In the UV, i.e. for sufficiently small y, we solve
(3.38) by expanding in y, and treating the log(Y"/y) term as a perturbation. Namely.
we make the ansatz

O=¢g+d +Pr+.... (3.41)

where
[4°0,y7°0y)6n+1 = [log(Y/y)]én, ¢-1 = 0. (3.42)

As before, we impose the boundary condition ¢(0) = 1, where we have already taken

the UV cutoff to infinity. We find

4

1 Y Y
v = (1— Zy2 log; +y4[ log — + —log2 + @log Y +Ci] +...) (3.43)

where Cy is an undetermined constant. The information about the 2 point function
is hidden in the constant Cy since all other parts of the above expression are analytic
in k£ (note that Y/y doesn’t depend on k). We will now match ouyv to @rr. Let us
first identify the overlap region. We said before that the solution (3.43) is valid for
small y. By looking at this solution we see that it has the form of an expansion
in y?log(Y/y), so we are allowed to use this solution when y?log(Y/y) < 1. On
the other hand, the condition for the validity of eq. (3.39) is 1/Y < y < Y. We
see that when Y is large, these conditions are compatible and there is an overlap
region 1/Y < y <« 1/VlogY. In this region we can drop the logy terms in (3.43)
since |logy| < |logY|. Matching (3.43) to (3.40) order by order, the first two terms

~ match if we set B = 1. However, if we look at the terms multiplying y*, we see that
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¢yv has a log3 Y term, whereas the leading term in ¢;z is a log2 YloglogY term.
We must now use the undetermined constant Cy to cancel this leading log® Y term.

Thus, we find
__ L. 3 __1. 3. L.
Cr = 4Slog Y+...= 48log Akry + ... (3.44)

where we have kept only the leading nonanalytic term. Using equations (3.43,3.44)
and (3.29,3.30), we are now ready to compute the 2 point function. It is of the form

Atkir8

(O4(k)O4(=k)) ~ e 2 log® Akr,. (3.43)

After Fourier transforming, this produces a position space 2-point function that

behaves as follows:

log?(r2|z) — z2|?/ (g, M')?)
|z — 128 .

(04(21)Os(z2)) ~ gsM* (3.46)

The range of validity of this result is ¥ > 1, which using eqs.(3.36,3.14) translates
into k£ > r,/(g,Ma'). The new scale A ~ r,/(g;Mc') is the only scale that appears
in the field theory correlation functions; this is the confinement scale. Our result for
the 2-point function is valid at energies higher than this scale, i.e. in the deconfined
phase.

Equations (3.45,3.46) are our first encounter with powers of the log(z) appearing
in the numerator of the 2-point correlation function. The above derivation shows
how the log(r) factor in the KT metric warp function translates into position (or
momentum) space logarithms in the 4-dimensional field theory. These logarithms,
with varying powers, will appear in all the correlation functions that we compute.
We will discuss their interpretation in the concluding chapter.

The above calculation has both important similarities with, and interesting dif-
ferences from the RG flow backgrounds investigated in [57]-[61]. On the one hand,
the calculation follows, step by step, the method of holographic renormalization-
[54, 55, 56]: we first solve the equations of motion in the UV. The solution involves
an undetermined coefficient which encodes all information about the 2-point func-

tion. To obtain this coefficient, we need input from the IR. The difference is mainly
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that the KT metric is not asymptotically AdS, meaning that the dual gauge theory
is non-conformal at arbitrarily high energies. As a result, even the extreme UV
behavior of correlation functions such as (3.45,3.46) is nontrivial, and that is indeed
what we will be interested in. In contrast, the geometries studied in [537]-[61] are
asymptotically AdS in the UV; the breaking of conformal and R-symmetries are IR
phenomena, achieved by either adding relevant operators to the AdS Lagrangian, or
turning on VEVs of scalar fields. This fact gives our work a somewhat different fla-
vor from that of [57]-[61]. The authors of those papers were concerned with the IR
behavior of correlation functions, since in the models they considered the UV behav-
ior is conformal. They found that to obtain a sensible IR behavior with the correct
pole structure in momentum space, they needed to go beyond the naive AdS cutoff
regularization [58, 59] and develop a holographic renormalization scheme [60, 61]
(for a review, see [56]). This scheme involves adding covariant counterterms to the
regularized SUGRA action to cancel divergent contact terms. In the UV, these
counterterms do not change the qualitative behavior of “naive” 2-point functions
obtained by simply throwing out the contact terms, though they may renormalize
the numerical coefficients [55]. Since in our paper we are concerned with the UV
behavior of correlators, and since holograhic renormalization does not qualitatively
change that behavior, we will not be careful about including these covariant coun-
terterms. Moreover, in one case of interest (the minimal massless scalar) we will
argue that the numerical prefactor is not renormalized. In general, though, one must
include covariant counterterms to obtain the exact correlators®. Another feature of
the present work is that unlike in [58, 59, 60, 61], the fluctuation equations we derive
are not exactly solvable, but we have developed an iteration and matching procedure
that allows us to extract the leading high-energy behavior of the correlators.
Having said this, let us briefly address the issue of renormalization. In terms of

the variable z = Ar2/r, the on-shell action (3.28) needed to compute the 2-point

31 am indebted to Kostas Skenderis for pointing this out to me.
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function is proportional to
S ~ ¢(2)270.¢(z), (3.47)

where the action is to be evaluated on the surface z = =. Since o(2) = oo(l -
1k22%log z + Cik*z* +...), where ¢ is determined by the boundary condition at
z = 0, all terms in this action, starting from the leading divergent contact term
@2k?/e?, will be proportional to k2. To cancel them, we need to introduce covariant
counterterms that are local on the surface z = ¢ and use the induced metric on
that surface. The most divergent such counterterm involving two derivatives (i.e. a
power of k?) is ~ k%¢(z)?/(z%logz). We see that the leading contribution to this
counterterm from the term Cik*z* in the expansion of ¢(z) is at order z2 — 0, so
Ck does not get renormalized. Thus, in the case of the minimal massless scalar,
holographic renormalization does not change the leading order behavior of the 2-
point function, including the overall coefficient (which we do not explicitly derive
here).

It is straightforward in principle to extend our method to modes other than the
minimal massless scalar. Suppose first that we have succeded in isolating a single
mode ¢ whose flucutation equation decouples from other modes. Then it is still true
that after we perform the change of variables (3.37), in the region 1/Y < y € Y we
can replace all logarithms by constants, obtaining exactly solvable equations. We
will then choose the solutions of these equations that are regular at large y. At small
y we can solve the equations by the same sort of iterative expansion as in (3.41,3.42)
with appropriate boundary conditions. Again, we will find that all the terms in the
expansion are analytic in k with the exception of an undetermined constant C;.
Matching the UV and IR solutions, we will find as a rule that to match the behavior
of the IR solution, we will have to choose C} so as to cancel the leading log of the

UV solution. From this we can then extract the 2-point functions.
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In some cases we will encounter the following situation: we are interested in ob-
taining the correlator for an operator O whose dual field ¢ couples to other SUGRA
fluctuations collectively denoted by ¢;. Our task is then to solve the fluctuation

equations for ¢, ¢; subject to the boundary condition

o(z,r = ) ~ ¢(z), iz, r = oc) = 0, (3.48)
where ¢ denotes the boundary condition for the field ¢. We will find that we can still
perform the iterative expansion (3.41,3.42) and solve in the UV for the fields . ;
with boundary conditions (3.48), but that the solution of the equations in the IR
limit becomes too cumbersome. Nevertheless, emboldened by our experience with
the diagonal modes, we will assume that as before, the arbitrary constant that will
appear on our UV expansion must be chosen so as to cancel the leading log coefficient
in the critical term when the IR limit is taken. This is an extremely plausible
assumption that yields sensible results for the correlation functions; unfortunately,
in such cases we are only able to compute the leading order correlator up to a

numerical factor?!.

4Note that this is related not to renormalization, but to the difficulty of solving the IR equations.



Chapter 4

Correlation functions of operators

in the R-symmetry multiplet

4.1 The R-current and its dual vector

In this chapter, based largely on the paper [65], we will use the method developed in
the previous chapter to calculate new correlation functions from the KT background.
In particular, we consider the SUGRA modes dual to the gauge-theory R-current
Jf and the gauge theory energy-momentum tensor T},,. By solving the appropriate
fluctuation equations, we are able to extract the leading high-energy behavior of the
2-point functions (JR(k)JF(—k)) and (T, (k)T,0(—k)). Because R-symmetry and
conformal symmetry are broken, these correlators are expected to have longitudinal
and trace parts, respectively, in addition to the transverse parts present in CFT.
Indeed, these parts are found. Because the operators Jf and T,, belong to the
same supermultiplet (the supercurrent), their 2-point functions should be related
to each other by supersymmetry Ward identities [61]. While we do not check these
identities in detail, the form of the correlators we find suggests that they are in fact
satisfied. We will have more to say on this in the concluding chapter.

The cascading SU(N + M) x SU(N) gauge theory has a classical U(1) R-

- symmetry that gets broken down to Zyj at the quantum level. As pointed out

43
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in [67], this quantum phenomenon of the gauge theory can be described classically
in the supergravity dual. In our SUGRA solution, the R-symmetry corresponds to
translation of the angular coordinate . Naively, the solution (3.13) is invariant
under this gauge symmetry. However, this is not exactly true, because of a subtlety
involving the RR 3-form field strength F3. The 3-form given in (3.13) comes from a
2-form potential

C;.: = ;."[O'wwg. (41)

Y is periodic with period 47, so this C; is not single-valued as a function of v: but

it is single-valued up to a gauge transformation. Under a translation v — v + =,
1 /. 9
Co->Cy+ 51‘[0 £Wy. (4.2)

As discussed in [67], a gauge transformation can only shift C, by an integer multiple
of ma'wy, S0 Y — ¥ + < is a symmetry if < is an integer multiple of 27 /M. Since =
is defined mod 47, a Z,5; subgroup of U(1) remains a symmetry of the solution. As
usual, the global R-symmetry of the gauge theory becomes gauged in supergravity.
As described in [67] this gauge symmetry is spontaneously broken via a Higgs mech-
anism, and the vector field dual to the gauge theory R-current acquires a mass'. In
this section we will derive the equation of motion for this vector and compute its
mass. We will then use the method of the previous section to compute the 2-point
correlation function of the R-currents. The most general form of this correlation

function allowed by the symmetries is

k.k,

(JEk)TR(—K)) = A(K®)m, (k) + B(kz)—Ez-—, (4.3)
where
kuk,
“yu(k) = 6yu T T (4.4)

!For a supergravity description of spontaneous R-symmetry breaking and R-current correlators
in the Coulomb branch of N=4 SYM see [66].
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is the transverse projector in 4 dimensions. A and B are the form factors we would
like to compute. Note that if R symmetry is conserved, 8- J® =0, so B = 0 in this
case. Thus a nonzero B indicates R-symmetry breaking.

The natural metric ansatz for fluctuations of the gauge field is
ds? = h™'%(r)dz,dz* + h"?(r)(dr? + 7‘2[%,\(2 + é i:l(g‘)z]), (4.3)
where, following [67], we have defined the 1-form
X =g° - 24Aidz’, (1.6)
which is invariant under the gauge transformations
U= yY+20 Ao A+dA (4.7)
The RR 3-form field strength varies as:

2 912

92 (g5 + 26,0dl‘i) ANuwy = %(X + 2”"-,‘(11'1) A wo, (48)

F=

where
Wi=4A,+ 096 (4.9)

is a gauge-invariant vector field. In the above formulae the index i ranges over the
5 dimensions (z#,r). To obtain self-consistent equations of motion, we must also
vary the RR scalar C, and the RR 4-form C;. The most general variation of the

RR 4-form C; consistent with the symmetries of the problem is
6Ci=K°'A...Ag*"+K'Ag®Adg® + K*Adg® + K3 A ¢°, (4.10)

where the K's are r-forms. In what follows we will be considering the linearized
equations of motion for the fluctuations W}, 6, K7 ; around the KT background.

The relevant equations of motion are the self-duality condition for Fj, the Einstein

equations, and the equations of motion for the RR scalar C and the RR 2-form Cs:

6Fs = 6 x Fy, (4.11)
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2 el -
‘sRix = 6(%FiPQFxPQ - %CH&PQFXPQ + g—é ,'pQRstPQRS). (4.12)
§(dxdC) = —g,Hs A6 % (Fs — CHs). (4.13)
0d « (F3 - CH3) = g,0F5 A H;. (4.14)

Let us turn to the self-duality equation first. We define the following forms:

& = P P 0 ppe = =1, d2M = P 0 1P € o da
1 P |
d*c* = =P 0" € podx? A dz%, d°z* = —P* €, 0d” A d? A d2°,
2 W' po 6 uvpo
1
d*r = —e,,,,dz* A dz¥ A d1® A dz°, (4.15)
24 nvpo

where €,,,, is the totally antisymmetric tensor in 4 dimnsions, and Nuv is the flat

Minkowski metric. The following identities are helpful:

dg’ Adg® = —2¢g' A ... A g,
x(drAgtn...AgP) = —-;_—d“x/\g‘"’,
*(dT* Ag' A...AgP) = —%d:‘z“ Adr A g°,
*(dr* Adr A g° Adg®) = %d:‘x“ A dg®,
x(dz* Adz¥ A g° Ndg®) = —%d%‘“’ Adr A dg. (4.16)
With 6C; given by (4.10), and using the identities (4.16), the variation 6 F of the
RR 5-form field strength is

6F5 = d6Cy+ByN6Fy = (dK°+2KY)Ag'A. . Ag*+dK ' AgEAdgS+(dK2— K3) AdgP+dR3AgP.
(4.17)

The variation of its dual is

§(xFy) = *(dSCy + By AS6F3) + (6%)F5 =

§R4 + 2L*log(r/ro)
9 h(r)r3

= (—Elf—s(dK" +2K"), — W,)d3z" A dr A g5+
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§R“ + 2L log(r/ro)
9 h?r3

+ ——(dK° 2K, - W.)d'z A g°+

h2r3
3
hr(

+-§(dK2 — K3) 2" A g° A dg® + '—(d1<2 ~ K3),,dz"° Adr A ¢° A dg®—

dK*'), d*z* A dg® - §(dK )™ A dr A dg®+

( (dK3),,,,p, dz"? + (li’4 + 2L log(r/ro))W,dz*) A gt A ... A g*+

h2 3
( (sz)“,,pa ThPT 4 7(R4 + 2L log(r/ro))W.)dr A g  A...A g, (4.18)

where we have used the identities (4.16), and set the gauge & = 0. The terms
involving W; come form the variation dx of the Hodge dual, which depends on the
metric. At this point, it is convenient to introduce a slightly unusual version of
the 5-dimensional Hodge dual, 5. In this Hodge dual, 4-dimensional indices are
raised with flat Minkowski metric, while the r-index is raised with ~A~!(r). Thus for

example
*x5dT, = n,‘,,/c“ dz¥ Adz? Adz’ Adr, *sdr = h™'(r)€,p0dz* AdT” AdZ? AdZ?, (4.19)

etc. With this notation, we find that the self-duality condition (38) reduces to the

following two equations:

27r?

K* =dK® + g x5 dK!, (4.20)
12 8(R* +2L*log L)
3 -0 To r_ .

dK3 + 5% (dK° +2K') + T xs W =0. (4.21)

Without loss of generality, we can set K® =0 and K2 = 0. Then the above reduces
to

3 _ 3 ' .
K™= - x5 dK, (4.22)
1 8 . 8(R'+2L'log(r/r)),,.
hrarﬁ(arKy._a#Kr)'*'hay(ayK“_auKy) _r_2[\“" 277‘2 ‘/‘/” = 0,
(4.23)
2L%1 '
h@ K, — 8,8 - K)) — %Kr _ 8B +2L log(r/ro)) yp (4.24)
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where we now denote the vector K! simply by K. We have separated the r# and
r components of the equations of motion for K; 9 - K denotes the 4-dimensional
divergence.

We now turn to the Einstein equations (4.12). The variation of the Ricci tensor

in terms of the metric variation is

SRyn =010 harn+DarDnhE =Dy DPhpy—Dy DP harp—2RarpsihP5+Rijhpx+RE hare.
(4.23)

where O, is the 10-dimensional Laplace operator, hasy = dgarn, and all covariant

derivatives, as well as raised indices, are taken with respect to the background

metric. Plugging this into eq. (4.12) and using equations (4.5,4.8) as well as the

equations of motion (4.22,4.23,4.24) for K' and K, this becomes

L
E%a,hrT(B,W,, -9, W,) + hd, (0.W, — 9, W,) — %W,‘ -
(R*+2L*log(r/ro))? ... 27 o
16 h2rto (W + RY +2L% log(r/ro)““) =0, (4.26)
; . 8Lt . 3C
h@ Wy = 0:(0-W)) = .5 (W, = 57) -
(R*+ 2L*log(r/r0))? .+ 27 N _
- vr r) = 0, 4.
10 h2r10 (W + R* +2L4 log(r/ro)l\ ) (4.27)

where again we have separated the z# and r components.

In general, whenever we have Lorentz-invariant equations of motion involving a
vector mode A,2, they can be separated into transverse and longitudinal components
.-’L, and 0 - A by setting

Ag=A,+ -8%"4). (4.28)

The transverse mode A, that satisfies 8- 4 = 0 then decouples from all scalar

fluctuations and can only couple to other transverse vectors.

2By “vectors” we mean vectors with respect to the 4-dimensional Lorentz group; the r-
components A4, are scalars with respect to that group.
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In the present case we have two vector fields K, W,. Defining their transverse

parts as above, we find that they only couple to each other, and satisfy the equations:

1 - 8L .
(Fr—.{:arh"ja,- + hD)”# - m‘p“ -
(R*+2L*log(r/r))? s, 27 o |
16 — (Wt T aLriognrg ) = (4.29)
1 - 8 - 8(R'+2L*log(r/re)) ..
(hrarﬁar + h.l:l)[\“ - r_2K“ - 3772 ”I‘ =0. (430)

These coupled equations can be diagonalized by taking the following linear combi-

nations:
1 . o4 2 ;2T
W= == =V + —K. 1.
W W hr“K’ 8% hr*A (4.31)

Then the transverse components W'! and 12 satisfy the equations:

1 4L8

—_— 7 -
(7 O 0 + A0 — e S e log( o) & )

)W =0, (4.32)

1 7
(F&hr 0.+ ho -
_ 8B+ 3RLY + (4RL* + 6L°) log(r/ro) + 24L° log?(r/ro)
r2(RY + 2L*(log(r/ro) + 1))?

)W2=0. (433)

By inspection we see that W? is massive in the AdSs x T!! limit where we take
L = 0; the mode we're interested in is W!. This is the Goldstone vector that
acquires a mass, corresponding to the spontaneous breaking of R-symmetry.

The authors of ref. [57] made a general prediction for the mass of a vector
associated with such symmetry breaking. We can now compare that prediction to

our result. Eq. (193) of [57] reads

-2T 5 2T -2T o°T YU
(e aqe 8,, +e€ a +2-a—q2-)‘“ =0, (4.34)
where V), is related to W,} by a rescaling and ¢, T are such that the reduced metric
in 5 dimensions is

ds? = dg* + €T dz,dz". (4.35)
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In terms of the r coordinate, the reduced KT metric (6) in 5 dimensions is
ds2 = (h(r)r/R3)3/% (/% (r)dr? + h~Y2(r)dz,dz"), (4.36)

where Ry is some reduction scale. Comparing this to (4.35) we get

dr

dg = —5/3(}24 + 2L*(log(r/mo) + 1/4))%/3, (4.37)
rRy

el = r2Ry "°(R* + 2L* (log(r /o) + 1/4))'. (4.38)

We now transform (4.34) to the r coordinate. To obtain agreement between the

kinetic terms we also need to rescale:
Vi = (h(r)r* | R)?PW . (4.39)

Plugging the above expressions in, we get

4L8

r2(R* + 2L4(log(r /7o) + i))2)”/'ul =0, (4.40)

1 -
(Eﬁ&hr‘ar + ho -

which is precisely our eq.(4.32). In terms of the gauged supergravity conventions of

ref. [57], the vector W' has picked up a mass

a*T 4 (gsM)?
2 _ _ - s , 141
m 2 dg> o' (3m)3/2 (g,N)3/2 (441)

where we have used the relations (3.14).

Before proceeding to derive the remaining equations of motion for the scalar
sector, let us first calculate the leading order 2-point functions (J}*(z)J1?(z")) for
the transverse components of the gauge theory currents J'2 dual to the supergravity
modes W'? we have found. We follow the method outlined in the previous chapter.

Using the change of variables (18,19), egs. (52,53) in momentum space become

1

g V! = 4.4¢
Vg log(Y/y))W" =0, (4.42)

¥ -1
(mayy log(Y/y)9,
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(—Y 5,4 log(V/y), — 2B Y/ ~6log(¥/y) +1 5o viie g

log(Y/y) ™ y?log*(Y/y)
(4.43)
In the IR region 1/Y <« y < Y, these reduce to Bessel equations:
(y0,y~'9, — log Y)W}, =0, (4.44)
-1 24 12 -
(yo,y~'0, - i log Y)W/, =0, (4.45)

where we have also used Y > 1. Note that in going from eq. (4.42) to (4.44),
the mass term 1/(y?log?(Y/y)) is left out since it becomes suppressed by a factor
of 1/(logY)?. This is the term responsible for the anomalous dimension of the R-
current, so we see that this anomalous dimension will not show up in our calculations,
which are at leading order in high energy. If this term were included, it would
modify the order of the Bessel function, and thus the power of k£ in the correlator.
The solutions of these Bessel equations (4.44,4.45) that remain regular at large y

are, up to a multiplicative constant

W's~1+ Bjy’logYloglogY +... (4.46)
- 1
W2~ ——— + ... log*(Y)loglogY +... 4.47
ir y4logY+ + By’ log™(Y) loglog Y + (4.47)

where we have only included the terms relevant to our matching. B,, B, are con-
stants whose exact value will not matter to us. In the UV region y < 1, we perform

an iterative expansion similar to eqs. (23,24). We find

- 12log(Y/y)—1 1 i Y
Wi, ~ = — Zy?log? —_— ... 1.48
- 1 1 '
2 o~ = —3Slog’(Y 64+... 4.49
Wov Y 1oe(V/3) —o0Y log”(Y/y) + Cay” + ( )

where again we omitted terms not relevant to the matching. Performing the match-
ing, we find that, just as in the case of the minimal scalar, the UV expansions W2
have a higher power of log Y in the coefficient of the critical power of y than the IR

* functions that remain regular at large y. We must use the arbitrary constants C},



(S]]
[SV]

4.1. The R-current and its dual vector

C, to cancel this leading log; these constants then encode the leading-order 2-point

functions. Thus we have

1 -
=_—log®Y +... = Y +... 4.5
C 6 og + , Ca 230400 log’Y + (4.30)
Restoring the k-dependence of y and Y, we obtain
- 4k2
Wiy ~1 log*(k/A) + ..., (4.51)

+ 3r2log(r/rs)

- 4 Lk log®(k/A)
W2y ~ ——— +
oV log(r/r,) T T 72000

where A is given by A ~ r,/(M¢c'). As usual, the momentum space 2-point functions

are proportional to the lowest-order nonanalytic terms in k, so we have
(JE(k)TE(—k)) ~ g2M my (k)K? log®(k/\), (4.53)

(J2(K)J2(=k)) ~ gl M (a/)3m, (k)K" log® (k/A), (4.54)

where we have renamed J! = J® since it is in fact the R-current. The transverse

projector m,, is defined in (4.4). These translate into position space 2-point functions

- <R/ , 0,0, log*(Alx — £’ .
(Jf(I)Jf(l‘ )) ~ g2MY (S, — =) g";i _l P li , (4.53)

¥ T ! ! a ay 10 4 ./\ - II -
(JE(@)T2(2) ~ g M (@)} (B — =) g|£ _'“; e D (4.56)

We now make a brief digression to compute yet another transverse current-current
correlator; the purpose is to once again demontrate the general pattern of these

calculations. First, we note® that if we vary the NS-NS 2-form as
B, - B, + A,-dxi A gs, (457)

while leaving all other fields in the KT solution constant, the transverse components

of the vector field A; decouple from all other modes. Inserting the variation (4.57)

3This observation is due to Igor Klebanov.
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into the equation of motion (2) for B,, and, as usual, expanding to linear order in

Ai, we find that these transverse components ‘-iu obey the equations of motion
(r=%0,7%0, + ko -%)A,, =0. (4.58)
Performing once again the change of variables (18,19), this becomes
(40,570, -  ~log(¥/y)) &, = 0. (4.59)

The IR and UV expansions are obtained in the usual way:

~ 1
Ar~ 7 +...+ By'log’YloglogY +... (4.60)
N R T (461)
27T o .

Again we see that in the matching region the UV expansion has a higher power of
logY in the critical term coefficient, and we use the constant C to cancel it. Thus

_ log'Y
192

(4.62)

With the usual transformations, we find a corresponding position space 2-point

function
0,0, | log*(Ajz — ')

) (4.63)

(T (@) M) ~ (B =

The lesson from the above calculations is that, to leading order, the high energy
behavior of the 2-point functions can be extracted from the UV iterative expansion
alone; the matching with the IR solution always has the consequence that we must
choose the undetermined constant Cj. in the UV expansion in such a way as to cancel
the leading log coefficient of the critical power of y in the IR limit. We will now use
this shortcut to compute the longitudinal part of the R-current correlator (J2JZ).
First, we need to derive the remaining scalar equations of motion. Eqs. (4.13,4.14)
yield

16L* 3C
3 (e = 55) =0, (4.64)

(r=°8,m°3, + ho)C +
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108 R+ 2L log(r /o) ... 1 r,... 3C .
T?’IE(K'. + 27 Wr) - 'Q—rar(E(Lvr - ‘27)) (4'60)

Also, by taking divergences of egs. (4.23,4.26) we find

@-W)=-

1 8
hrd,—8,(9- K) - —(a - K) —

_ §(R* +2L*log(r/m0))
27r2

(8- W) - hrd, — DK =0, (4.66)

4
—a o8- W) - 2L g w -

hré
4 2
(R +2L*log(r/ro)) @ W+ 27
h2rto R+ 2L% log(r/ro)

hr7a hr’a W, = 0. (4.67)

—-16

0-K) -

Equations (4.64-4.67), along with eqs. (4.24,4.27) are the equations of motion in
the scalar sector. The independent fields may be taken to be the scalars C, W, K;
it is possible to check, as must of course be the case, that these six equations for
three independent fields are consistent.

We now want to extract the longitudinal part of the (JFJF) correlator. As
discussed above, we only need to solve the equations to the critical order in the
UV expansion. Recall once again that in practice, this means that in the 0-th
approximation, we drop all the 'O’ terms, since they scale as r—*, whereas all other

-2

terms scale as 2. The 'O’ terms operating on the 0-th order solution are then

included in the equations for the 1-st order solutions, etc. Since the vector dual
to the R-current operator is W' as defined in eq. (4.31), we impose the boundary
conditions
3 -Wir,z)(r = o0) = 8-W'(z), 8- -W?3(r,z)(r = 00) =0,
C(r,z)(r 5 00) =0, W.(r,z)(r = 00) =0, K.(r,z)(r = o00) —>0. (4.68)
As usual, we transform to momentum space, and seek normalized solutions of the

form

- -Wir k) (r = o) =1, 8 -W3(rk)(r - o0) =0,
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C(r,k)(r = 00) = 0, W.(r,k)(r > o0) =0, K.(r.k)(r -oc)—=0. (4.69)

We are indeed able to find a solution with these boundary conditions. To first order

in the UV expansion (i.e. iterating once), the solution is:

Wl 1 lkzL4 1 1 k2L°
a-wi(r)y=1 3 log(r/r,)+Cl-——,,lo /) a-W?r) = =
2L4 1 k28 L

Clr)=--= tom T log*(r/rs) — -Cl—log(r/rs),

1L} 2k2L8
W.(r) = —gﬁlog(r/r,) + s log® (r/rs) + QCl— log(r/rs),

218 4 lch12
K.(r)= gl-r—310g (r/rs) — 513 5 log*(r/rs) — —C[ logz(r/rs (4.70)

where we have kept only the leading log terms at each power of r, and C; is the
undetermined constant that contains the information we need. Looking at the solu-
tion (4.70), we see that in going to the IR limit 1/Y < y € Y with y, Y defined as
in (3.36,3.37), to cancel the leading log in the critical term, we have to choose the

undetermined constant
Ci ~ k*L*log*(k/A), (4.71)
which leads to the longitudinal momentum space R-current 2-point function
(JAk)TV(=F)) ~ g2 Mk, k, log?(k/A). (4.72)
Mulitplying the above by k,k,, we also get
(8- JR(k)D - JR(—k)) ~ g2 M*k* log?(k/A). (4.73)

Thus, the 2-point function of the R-anomaly scalar 8- J® has a different leading-order
logarithmic behavior from that of the minimal scalar (3.45) found in the previous
section.

Unfortunately, the above analysis does not in itself allow us to determine the

numerical value of the constant C); to do that, we would need to diagonalize the
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fluctuation equations in the IR and match them in detail to the UV solution (4.70).
which we are unable to do at present. Thus, by combining egs. (4.53,4.72) we can

write the total R-current 2-point function as
(JR(K)IR(=K)) = g2 M*(Com ()R log* (k/A) + Cik,k, log?(k/N)),  (474)

where we could in principle compute the prefactor Cy exactly (though we do not

bother do that here), but we have not been able to determine the prefactor C,.

4.2 The EM tensor and the graviton

In this section we would like to compute the short-distance behavior of the field the-
ory energy-momentum tensor 2-point function (T}, (z)T,s(z')). This is an object of
interest because in a conformal theory, the structure of this correlator is completely
determined by conformal symmetry. Thus, any deviation from the CFT result will
exhibit some of the structure of the breaking of conformal symmetry, and yield in-
formation about the flow of the beta function. More specifically, the most general

form of the (T'T) correlator allowed by translation invariance is
(Tuo (k)T o (—k)) = C(k*)Tppo (k) + D(K?)T 0 (k)T oo (K), (4.73)
where m,, is the transverse projector defined in eq. (4.4), and
Tuvpe = %(ﬂ#,n’up + TppMye) — 571',“,77,,,, (4.76)

is the transverse traceless projector. Qur purpose is to compute the form factors C
and D. Note that in a scale invariant theory, T#“ = 0, and therefore D = 0; thus
a nonzero D is an indication of the trace anomaly. Moreover, conformal symmetry
dictates C(k) ~ k*, so a nontrivial C also manifests the breaking of conformal
symmetry.

The supergravity field dual to the EM-tensor operator T}, is the graviton v*

along the brane directions, normalized with respect to the background metric (see
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ref.[68]). In other words, we vary the 4-dimensional part of the metric as follows:

Guw = Guv + Gup?- (4.77)

The 2-point function is then

825 (7, ¢:)
Yy (2)0%pe (')

(Tu ()T (2')) = (4.78)

where 7 denotes the graviton along the branes and ¢; denotes collectively all other
supergravity fields, and the action S is evaluated at the solution to the linearized

SUGRA equations of motion with the boundary conditions
7‘:/(1:'7- - w) - ;Yuu(x)v ¢i(1'v r —oc) — 0. (479)

In what follows, we will not be careful about distinguishing upper and lower indices:
rather, we will assume that all indices are raised and lowered with flat metric, and
tacitly insert appropriate factors of h(r) as needed.

Our task is to solve the linearized SUGRA equations of motion around the KT
background with boundary conditions (4.79). The graviton +,, couples to other
fields, so we must include their fluctuations as well. To simplify the calculations
somewhat, we will set R = 0 in the definition of ~(r) (see eq. 3.13). A self-consistent

ansatz is:

ds® = h“ﬂ( (n,w + Vo (T, 7))dT*dr” +
4
+h1/2( )(7rr(~r T')dT +7'2[ 1+ 31 z,T) Z 1+82 z,r)) 2])

o
3
Cy = (6,h7Y)(1 + 6C(z, r))d*z, & = §&(z, r)(4.80)

B‘2=

log(r/r0)(1 + 6 B(z, r))wo,

with all other fields equal to their background values. The self-duality condition

(1.6) for Fy allows us immediately to solve for the field C:

6C =4B + %(')’ + Yrr — 3), (481)
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where we have defined the traces
Y= 0" Y4, s =81 + sa. (4.82)

We now turn our attention to the Einstein equations (1.3). Using the expansion

(4.25) and looking at the 'uv’ and 'ur’ components, we obtain

(hD +63 + ;3,)’7,“, + ha“ay('Y + Yrr + 3) - hapap"/pu - hauapA/up +
[l log(r/rO)
“rlog(r/ro) + 1/4
_432 log?(r/ro) + 4log(r/ro) + 1
r?(4log(r/re) + 1)2

0,(7 +S5 = Yr — Q(SB) -

(Yr —5+26B)] =0  (4.83)

and

5 A | 1 K 1 log(r/ro)
Ot + (2 + 55)0utrr = 00, (v + ) = (— + 3-)dus rlog(r/ro) + 1/4

d,0B = 0.
(4.84)
where we have used the relation (4.81). Following ref. [69], we define the transverse

traceless part of the graviton ¥,, as

_ 1 1 0,0,
Yov = T — Eauap%w - Eauap'hm + #Bpaf/ﬁa +
1,0,0, 1 -
+5(#? - 6;11/)(7 - Eapaa'"/ﬂd)' (480)
This tensor satisfies:
0", =0, 0,9 =0. (4.86)

From the index structure of eq. (4.83), it is clear that Yuv decouples from all other

fields and satisfies the equation:
(ha +r=%8,r°8,)7,, = 0. (4.87)

This is precisely the equation for the minimal massless scalar, so following the steps
outlined in section 3, we obtain the transverse traceless (TT) part of the energy-

momentum tensor 2-point function:

(T (k)T oo (—k)) 11 ~ g2 M T, 00 (k) K logd(k/A), (4.88)
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where the transverse traceless projector Tuvpe Was defined in eq. (4.76). In terms of
the form factors C, D defined in (4.75), we find C(k) ~ k*log® k. This is different
from the &* behavior required by conformal symmetry.

Of course, eq. (4.87) does not exhaust the information contained in eq. (4.83).
By substituting (4.85) into (4.83) and taking the trace or multiplying it by Oy, we
obtain

r720,r%0, 7 + h(~20,0, Y + 207 +Q(Ypr + 5)) + 417 =0, (4.89)
r7%0,1°8,(0,7,,) + h((=084.0,05%ps + 0,0 (7 + Yrr + 5)) + 3,1 = 0. (4.90)

where we have defined

1 log(r/ro)
V=- {7 = Yrr — -
rlog(r/ro) + 1/40 (y+s=-2 20B)

_ 32log’(r/ro) + 4log(r/ro) + 1

Aer — 5+ 20B). 1.91
r?(4log(r/ro) + 1)2 Crr =+ ) (191)

Next, we define a new scalar field ¢ by
au"/;w =Oup + Cu(l‘). (492)

@ is well-defined because eq. (4.84) shows that the r-derivative of the vector v Vv
is a 4-dimensional gradient. Hence it is itself a 4-dimensional gradient up to an

r-independent vector C,(z). With the definition (4.92), we have

1720, r°0y + h(Q(2y — 2¢ + Yer +5) — 20,C,) + 1 =0, (4.93)

Orp+ X =0, (4.94)

where we have also defined

K 1 N 4 log(r/re) .
2 =+ s) — (L Py 2 5B. (49
* 2h)7" (v +s) (r M 2h)s rlog(r/ro) + 1/4 b (1.95)

Let us now write out the equations of motion for the other scalar fields S1, 82, Yrr, 0B, 60.

X =

NP

Expanding eqs. (1.3-1.5) linearly in these fields with the ansatz (4.80), we get

4
(hQ +r-38,r39,)3 — %(r@r[log(r/ro)dB] + %(32 ey —26®)) =0, (4.96)
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2
h 5 rlog (r/ro)a

h R .)0B
(he +rlog2(r/r0) h )08 +
1
+mar(’7 — Yrr + 52 — 200) +
h(8,h~1) _ o~
m(—2'ﬁr + 232 + 8 26(1)) = 0, (491)

log(r/ro) log(r/r0)
r(log(r/ro) + 1/4)6,.63 + 3r(log(r/ro) + 1/4)0,
64 log?(r/ro) + 36log(r/ro) + 5 2(8 log*(r/ro) + 6log(r/re) + 1)

hO Y + 0%(s +7) +6 Y-

r(4log(r/re) +1)2 Oyer + r(4log(r/rg) +1)? Ors—
_ 4(32log?(r/ro) + 4log(r/ro) +1) g 2 _
r2(4log(r/rg) + 1)2 (Yrr =5 r2(log(r/ro) + 1/4)3l
4 8(32log?(r/ro) — 12log(r/re) = 3) . _
—r2(log(r/r0) + 1/4)26@ - r2(4log(r/ro) + 1)2 08 =0. (198)
_ 1 ( 32log(r/ro) 3
(ha +r7°0,r°0,)s1 + r(log(r/ro) + 1/4)6"(7 8= ) + r(4log(r/ro) + 1)8,53

_4(11210g2(r/r0) + 8log(r/ro) + 3) B 64 log(r/ro)(4log(r/ro) — 1)

r2(4log(r/ro) + 1)? 51 r2(4log(r/ro) +1)2 2=
16(12log(r/rq) + 1) 32(32log?(r/ro) + 4log(r/ro) + 1) . o |
- r2(4log(r/re) +1)? rr r2(4log(r/re) + 1)2 08=0, (1.99)
~54 .5 1
(hD +r 56,-1’ ar)32 + 47’(10g(7‘/7’0) + 1/4)ar(7 +s - 7rr) -
____8log(r/ro) 968 — 16(4 log?(r/ro) — log(r/ro)) 3
r(4log(r/re) +1) r2(4log(r/ro) +1)2 !
_4(64 log?(r/ro) + 28log(r/re) + 5) _ 4 log(r/re) — 1) +
r2(4log(r/re) +1)2 52 r2(41og(r/ro) + 1)2 Ter
8(321log?(r/ro) — 4 log(r/rg) — 1) 1669 _
r2(4log(r/ro) +1)2 0B + r2(4log(r/ro) +1) 0. (4.100)

The 5-dimensional graviton v;; includes 3 unphysical degrees of freedom associated

with the (linearized) gauge transformations

Yij = vij + Di&; + Dj&, (4.101)
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where &; is an arbitrary 5-dimensional vector. In choosing Yur = 0 in the ansatz
(104), we used 4 of these 5 degrees of freedom, so we still have to make one more
gauge choice before solving the equations of motion. We find it convenient to choose

the gauge
0rv =0, (4.102)

so that the trace v of the 4-dimensional graviton is r-independent and completely
determined by its boundary value 4. With this gauge choice, the graviton v
decouples from the scalar equations (4.96-4.100). The solutions of these equations
then enter into the graviton equations (4.93,4.94) through the quantities V, X’ defined
in (4.91,4.95). Using egs. (4.96-4.100), we find that 1, X satisfy the equations

4

r i 1 )
a’(log(r/ro) eyl 2L (30:(s =) +
2 2 log(r/ro) 1 12log(r/ro) +5 A
R T loglr/ro) + U100 Y B log(rfr) + 1A ¢ T ) (109)

2. 9 1 15 5 .
(6 + (; - r(log(r/ro) + 1/4))8,. + (r_2 B r2(log(r/ro) + 1/4) DX =
= hn(-gap,,, ~ }lars -

1 12log(r/ry) +5 1 4dlog(r/ro) = 1 8 log(r/ro)

- - : 6B). (4.104
2r 4log(r/rg) +1 K 2r 4log(r/ro) + 1° r(4log(r/ro) + 1) ) ( )

Looking ahead, we see that in the UV expansion, the right-hand sides of the above

equations are treated as perturbations, so to Oth order we have

i log(r/ro) +1/4 ) log(r/ry) — 1/4 1 _
Vo = 4 g(/r"f /, Xo = A, g(/:s) / + Ay (4.105)

Substituting the above into eq. (4.93), and using again the gauge choice (4.102), we
find

Ao = LY(k* ~ kukui ), (4.106)

S0 A is completely determined by the boundary data. We see that to find the

leading order 2-point function, we need to solve the eqs. (4.96-4.100) to first order
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in the UV expansion. The first order solutions will have 2 arbitrary constants which
we can express in terms of Ay and A,. Then plugging the Oth order part of the first
order solutions into the right-hand-side of eq. (4.104), we will solve for X to lst
order, and choose 4; so as to eliminate the leading order log term in the IR limit.
In solving eqs. (4.96-4.100), the boundary conditions (4.79) mean that all scalar
fields should approach 0 at r — oc. The first order solutions with these boundary

conditions, and with (4.103,4.106) are:

= _olog(r/re) Ay o Ao A

ey = L AT

740 Ay 134 54, 40 134,
. T 2% e 20 L 0% 4.107
T 362 T34 2T Tqgr2 T 1004 6r2 " 124 (4.107)

where we have only kept the leading log terms. Plugging these into (4.95), we find
1
."1[ = —5.40. (4108)

Substituting the solutions (4.107) into the right hand side of (4.104) and going to

next order, we obtain

log(r/ro) = 1/4 5 log®(r/ro) | H»
X= —Ao 273 - ﬁ‘40L4k2—r_5—_ + F,

(4.109)

where we have again kept only leading logs. From this we see that in taking the

usual IR limit, we will need to choose

kukyYuw
Az ~ AgL*k? log?(k/A) = L¥:* log?(k/A) (5 — “—k,]“—). (1.110)

As in the previous section, the above considerations only allow us to determine the
coefficient A, up to a constant factor.

To complete the calculation of the EM tensor 2-point function, we now have
to substitute the above solutions into the SUGRA action. We only need to be
concerned with the gravitational part of the action; this is because our boundary

conditions stipulate that all scalar fields (except v and ) approach 0 at r — oc, so
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all contributions to the 2-point function from nongravitational parts of the action

will vanish. The quadratic gravitational action is (see e.g. [69]):

S~ -—12 /d‘rdr\/ﬁ(DKhMND“hMN — 2Dy hyDERMY
K +
+2Dyh — Dach DY A) (4.111)

Integrating by parts in the usual way, and using eqs. (4.80,4.85,4.92), this becomes

290% _ L3)oro — 16,270 +5)) (4112)

1 57 = _ 1-
S~ E/mm dirr (7,“,6,7,,,,+(§ - 3

Substituting eqs. (4.94,4.107,4.109,4.110) the terms conspire to add to a transverse

momentum space 2-point function

628
(Tuu (k) Tpo (—K)) = o
~ GE MK (Mo (k) log? (k/A) + Crr (k)70 (k) log? (k/\)), (4.113)

where the projectors 7, and m,,,, have been defined in eqs. (4.4,4.76) and we are
unable to determine the numerical value of the constant C. Note that by multiplying

eq. (4.113) by 6,,8,,, we find
(TH(E)TA(—k)) ~ g2M*k* log?(k/A). (4.114)

Thus the leading order logarithmic behavior of the 2-point function of the trace
anomaly scalar T,* is different from that of the minimal massless scalar discussed
in section 3, but the same as that of the R-anomaly scalar 8 - J® discussed in the

previous section (see eq. (4.73)).



Chapter 5

Is there a baryonic symmetry?

Consider the following transformation of the chiral fields A;, B; of the superconformal
SU(N) x SU(N) gauge theory corresponding to the AdSs x T! background (see

section 3.1 for a review):
A = €4, B - e B, (5.1)

This transformation leaves the superpotential (3.10) invariant, and is therefore a
U(1) symmetry of the theory. Moreover, it is a nontrivial symmetry: there are
gauge-invariant operators that are charged under it. The simplest (having the lowest

dimension) such operators are the baryon-like color singlets
B:- = det(A,-), B‘_ = det(B,'), (52)

so that we can think of the transformation (5.1) as a baryonic symmetry. The
SUGRA picture of this symmetry, which we will review below, is well understood.
The string modes corresponding to the baryonic operators are D3-branes wrapped
around the 3-cycle of T"! [5]. The SUGRA spectrum contains a massless vector
arising from a topological mode of the RR 4-form that corresponds to the conserved
baryonic symmetry current [6, 49].

In this chapter we would like to address the question: does a nontrivial baryonic

symmetry akin to (5.1) exist in the cascading SU(N + M) x SU(N) gauge theory?

64
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The problem is that while the transformation (5.1) can still be defined and appears
to leave the action invariant, the running of N makes it difficult to construct globally
well-defined charged operators like (5.2). This question was discussed qualitatively
in ref. [71], where it was argued that for M > 0, the symmetry is broken and there
is no nontrivial conserved baryonic current. We will use the SUGRA dual of the
cascading theory to try to obtain a better understanding of whether, and how, the
symmetry gets broken. We will argue that in the full warped deformed conifold (KS)
background, there can indeed be no well-defined baryon number. However, in the
UV limit of that background, the KT background, where the conifold is warped but
not deformed, the situation may be more subtle. We will see that there is no way to
define a bulk massless vector dual to a conserved baryon current, because, in a novel
mechanism resembling but not identical to Higgsing, the vector degrees of freedom
are dualized into 2-form degrees of freedom from which one cannot recover a vector
in the bulk. On the other hand we will show that the dimension of this 2-form
receives no corrections, so it might still be possible to dualize it into a nontrivial
conserved current at the boundary. There seems to be no spontaneous symmetry
breaking and we find no Goldstone mode. Thus, although there is no baryonic U(1)
symmetry in the full field theory, it is possible that there is an effective (nontrivial)
symmetry at high energies.

Let us first review the M = 0 case in more detail. As shown by the authors
of [5], a D3-brane wrapped around the 3-cycle of T"! should be identified with a
baryonic operator By as defined in (5.2). As evidence for this, it can be noted
that since the A;, B; have dimension 3/4, the operators B have dimension 3N/4;
a D3-brane wrapped around the S® of T!! has a mass equivalent to exactly that
dimension [5]. The two types of baryonic operators defined in (5.1) correspond to
D3-branes localized at either of the two S%s of T!!, i.e. either at (8,,¢,) or at
(62, ¢2). Moreover, by forming appropriate linear combinations with Clebsh-Gordan

coefficients of the operators By, they are seen to fall into (N +1,1) and (1, N + 1)
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representations of the SU(2) x SU(2) global symmetry of the field theory; these are
precisely the SU(2) x SU(2) quantum numbers of a D3-brane wrapped around the
3-cycle of T'! and localized at one of the S2s.

Since the baryonic charge in the SUGRA picture is carried by D3-branes wrapped
around the 3-cycle, and since D3-branes carry RR 4-form charge, it follows that the
bulk SUGRA mode that we expect to be dual to the baryonic current should be an
excitation of the RR 4-form with 3 indices along the w; of T'!. This is indeed the

case. Consider the following fluctuation of the RR 4-form:
0Cy = BAws + Ky Aw,, (5.3)
and the resulting RR 5-form field strength
6Fs = dB A w3 + dKy A ws. (5.4)

The fields B, K, decouple from all other SUGRA fluctuations. The self duality
equation, F5 = *F; implies

dK, = g*s dB, (5.5)

where the 5-dimensional Hodge dual s is defined as in (4.19). From this we obtain
d% x5 dB =0, (5.6)

so that B is a massless vector, dual to a conserved current of dimension 3 - the
baryonic current [49]. Choosing the gauge B, = 0, we find 8,(3- B) = 0, so that
(0 - B) does not propagate. Thus B contains 3 propagating degrees of freedom,
corresponding (in this gauge choice) to the transverse components of B,. The 2-
form K, is not an independent field but is expressed through B by eq. (5.5), up to
another gauge choice. At this point it is important to note that we could just as
well have chosen our degrees of freedom to reside in the 2-form K,. From eq. (5.5)

we can also obtain

drhxsdK, = 0. (5.7)
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This is the equation for a massless 2-form field, which again has 3 propagating
degrees of freedom; they can be chosen as the transverse components of K’ - It is
dual to a field theory 2-form operator of dimension 2. What is the meaning of that
operator? For any 4-dimensional conserved current J, the continuity equation can
be written as d x; J = 0, where x4 is the ordinary flat space Hodge dual. Thus, the
3-form *4J is closed, from which it follows (in flat space) that it is exact. So there

is a 2-form S, such that
*x3J = dS,. (5.8)

This relation also shows that S, is 1 dimension lower than J, so if J has dimension
3, S; has dimension 2. Thus either S, or equivalently *;S, must be the 2-form
operator of dimension 2 dual to the SUGRA field K,. In ordinary electrodynamics,
if J is the usual electric current, S, is simply the dual of the EM field strengh =, F,,,.

Note that conversely, given any 2-form operator S, we can in principle use eq.
(5.8) to define an associated conserved current J. However, for the associated charge
Q = [d®zJy = lim(|z| = o) 52 %3S to be nontrivial, S, must scale as 1/|zf?, i.e.
it must have dimension exactly 2.

The conserved baryonic current J is a component of a conserved superfield 7,
whose other components are of course related to it by supersymmetry. This su-
perfield can be written as J = Tr(Ae" Ae™" — BeV Be~") [49, 6]. This superfield
includes the dimension 2 scalar ¥ = Tr(AA — BB). Since each pair (4;, B;) of
chiral fields is associated with an S? of T"!, we might guess that the SUGRA mode
dual to U corresponds to turning on the difference between the volumes of the two
S2%s. This is known as resolving the conifold, and the related scalar s as the Kihler

modulus. We take a graviton fluctuation of the form
6(ds?) = 2r2h'2s(z, r)(g' g + g°¢*), (5.9)

which when written out in coordinates is proportional to 6(ds®) ~ d6? +sin® 8,d¢? —

-d0§ — sin®@,d¢2, i.e. the difference between the volumes of the S2%s. The scalar s
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decouples from all other SUGRA fluctuations and satisfies the equation
-59 .5 4 =
(ha +r7°0,r°9, + ;2-)3 =0. (5.10)

In the UV, this has the solutions s(r) = (A + Blog(r))/r?, which shows that the
operator U dual to s indeed has dimension 2.

Before moving on to M > 0, we will consider some other SUGRA fluctuations
at M = 0. The reason is that for A/ > 0 these modes will couple to modes in the
baryonic multiplet, so it is important to establish their behavior for 3/ = 0 and
count the associated degrees of freedom. Consider first varying the RR and NS-NS

2-forms:
(SBQ = LQ, (5C2 = .“[2. (511)

The fields L, M, couple to each other and decouple from all other SUGRA fields.

They satisfy the equations of motion:
d*dMy = Fs AdLy, dxdLy = —g°F5 AdAL. (5.12)

Using the L, equation of motion and substituting the background value of F, we

can express L, through M, as

27m(a’)2Ng?

x5 Mo
r5h2 2 ?

dL2 =
and plugging this into the M, equation of motion, we obtain
-5 512 16 =
(T *g dr’h *3 d~- —E)l‘[g = 0. (013)
r

M, is thus a massive 2-form field. We now separate the equations (5.13) into equa-
tions for transverse 2-forms, transverse vectors, and scalars. For any 2-form G,,,
we can define its transverse part by

_ 3uathw _ auapGup_

5.14
a a (519
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This 2-form satisfies
3,G = 0.

Transverse 2-form can only couple to other transverse 2-forms. In this case we have

only one transverse 2-form M,‘,, that satisfies the equation
ha +r-8,r8, — )i, =0 5.15
(ha +r7'0,r0, - :2-)1 w = 0. (5.15)

In the UV this has the solutions M(r) = Ar* + Br—*, so the operator that couples
to M has dimension 6. There are three degrees of freedom associated with this

transverse 2-form. From eq. (5.13) we also derive the conservation law:

rar#M,.“ -9d,M,, =0.

Thus there is one independent transverse vector, and no propagating scalars (since

0,M,, is purely transverse). The transverse vector M,, satisfies the equation
(ha +r~70,170, — #)Mw =0. (5.16)

In the UV this has the solutions M, = Ar + Br~7, so the operator that couples to
M;, also has dimension 6. There are three degrees of freedom associated with this
transverse vector.

Finally, we would like to consider fluctuations of the form
8Cy = A'Ag°, 6By = A’ A g°. (5.17)

The vectors A!, A% decouple from all other fields (and from each other). They obey
identical equations of motion
2 -1 8\ 12 -
(rh® x5 dr~" x5d — ;2')’1 “=0. (5.18)

As usual, the transverse components decouple and satisfy the equation

ha +7730,r%, — S)tAl? = 0. (5.19)
7'2
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In the UV, this has solutions A'2(r) = Ar2 + Br—4, so A'2 are transverse mas-
sive vectors that couple to operators of dimension 5. Each carries three degrees of

freedom. From (5.18), the scalars satisfy the conservation law
1 -1 412 1,2
;6,(rh A®) +9,4,° = 0.

Thus in each case there is one independent scalar. These scalars have the equation

of motion
(hO +17%8,r%, + =) A2 = 0. (5.20)
r

In the UV this has the solutions AM?(r) = Ar~!+ Br=7, so these are massive scalars
that couple to operators of dimension 5. Each carries one degree of freedom.

Let us now investigate the situation for M > 0. Our main interest lies in the
mode coupling to the baryon current. However, now B; and F; have background
values, and fluctuations of these modes will couple to the mode we're interested in.

We are led to consider the following ansatz for fluctuations of the fields:

1
6Cy = §B Aws + Ky A ws,

5By = —— Ly,

Mao'
0C, = 2 My + 41 A g°
27T 3g. Mo 2 3g. Mo "9
The vector field B would be the natural candidate for the mode dual to the baryon

number current. The fluctuations are normalized for future convenience. The vari-

ation of the self-dual RR 5-form field strength is then
1
0F; = §(L2 +dB + log(r/ro)dA) A ws + (dKa + log(r/ro)dMa) A ws.

We see that B will only appear in the equations of motion in the combination
L, +dB. Since L, is a gauge 2-form, all physical fields are invariant under the gauge

transformations

B—)B‘—A, L2_)L2_dAv



1

where A is an arbitrary vector field. From this we see that the field B can be gauged
away ~ it is swallowed by the 2-form L,. Henceforth we set B = 0. So far this looks
like a Higgs mechanism: a field which is a physical field at M = 0 (the vector B) is
now swallowed by gauge invariance of a higher index field (the 2-form L,).

From the self-duality condition
*0F5 = 0 Fj,
we find
dK; + log(r/ro)dAM, = 53; *5 (Lg + log(r/rg)dAt), (5.21)

Eq. (5.21) allows us to express the 2-form L, through the 2-forms K, and M, and

the vector A!:

Ly + log(r/ro)dA! = —?;—h(ng + log(r/ro)dAM,). (5.22)
Next, look at the equation of motion for the NS-NS 2-form,
dx Hy; = —ngs A F;.
Taking the variation, this becomes
dxdL, = —é(gs.Ma’)2dK2 A wa A ws.
This is solved (up to a gauge choice) to yield
*xdL, = —%(g,l\*[a')sz A u@ A ws,
or
dL, = &El;;;hl—ly x5 K. (5.23)

Eq. (5.23) immediately results in the conservation law

1
d;‘s_h x5 K2 = 0.



Explicitly, this is

1

.|
&,K‘w =T harﬁ

K,,, (5.24)

so we can express the vector J, K, through the vector K,,. Furthermore, by sub-
stituting L, from eq. (5.21) into eq. (5.23) we obtain the equation of motion

r~th x5 d rh*s (dK, + log(r /ro)dMa) + 237 *y dAL - 8—l(ga,Ma’)2£

=0, (3.25
2 réh 0. (525)

where all indices in x4 are raised with flat metric.

Next, consider the equation of motion for the RR 2-form.
dx F. 3 = F5 N Hg.
Taking the variation, this becomes

d*(d.Mg-#—;-dA/\gs— %A/\dgs) = —g(g,AIa')z(dL2+(L2+log(r/r0)dA)Ag)/\wz/\w3+

9
+Z(g,Ma’)2(dK + log(r/ro)dM) A (—i;- A wy A ws.

This equation has three components. The first gives the conservation law

d(r x5 A') =0,
or explicitly,
dud, = —%a,(rh-‘A}). (5.26)

Thus we have expressed the scalar 9, A} through the scalar A}. The second compo-
nent gives the A! equation of motion:

8 27(gsMa')?

T 3h x5 dr3h x5 dA' — ﬁA = = xs (dK, + log(r/ro)dM).  (5.27)

The third component gives the equation of motion for M,:

1A/\2
75 %5 dToh® x5 dM, + 81(932A+)h *5 (*s(dKy + log(r/ro)dML) Adr) +

16 log(r /7o)

r2(log(r/re) + 1/4)2 Kz =0. (5.28)
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We now separate the above equations into equations for transverse 2-forms, trans-
verse vectors, and scalars. As usual, transverse 2-form can only couple to other
transverse 2-forms. In our case we have the three transverse 2-forms M,,. K, and

F,,, where F is related to the vector A! by
F= *4(1.‘11.

Note that F' is automatically transverse. The equations (5.25.5.28,5.27) translate
into the following equations of motion for the transverse 2-forms K, M, F, where we

have dropped the indices:

4

-1 _ >
(hQ +r™0,r0, r¥(log(r/ro) + 1/4) JK +
+(ha log(r/re) + r~'0,r log(r/re)d,) M + %F 0 (3.29)
4 16 log(r/ro) 5

(et a oM g Frar w17 * 7 Iogtr o) + /AP

27(g,Ma')?
-

(ha +7739,r39, — —)F - a(K + log(r/ro) ) = 0. (5.31)

In the UV (i.e. for large r), we can solve these equations by retaining all terms of

order 1/r?, and dropping all the O terms that go as 1/r. The solution is

M(r,k)=C,+C, log(r/ro) + 1/4 — G (log(r/ro) + 1/4) )

log(r/ro) +1/8 3 ' 3r2

-Cs - Cs (5.32)
ri(log(r/ro) + 1/4) 64r+(log(r/ro) + 1/4) A(log(r/ro) + 1/4)"

-2C;

1 N rilog(r/ro)
4(log(r/ro) + 1/4) 3log(r/ro) +1/4
c, 2log?(r/ro) + (5/4) log(r /7o) + (1/4)
ri(log(r/ro) + 1/4)

K(rk) = Ca;




_ .~ 6log(r/ro) +3 3r? log(r/ro) (5.33)
5128(log(r/ro) + 1/4) * ~*8(log(r/ro) + 1/4) '
F(r,k) = Csr—14- + Cer. (5.34)

From these solutions we see that the fields K, M and F contain a mixture corre-
sponding to an operator of dimension 6, a mixture corresponding to an operator of
dimension 5, and a mixture corresponding to an operator of dimension 2. Before
discussing them, let us see what happens to the remaining degrees of freedom. The
vector A! contains, in addition to the transverse vector A! which is equivalent to
the transverse 2-form F', also the scalars A; and d,4). Eq. (5.26) shows that only
one of them is independent. Let us take that to be A!. Using equations (5.26, 5.27),
we find that A! obeys the equation:

1121log?(r/ro) — T2log(r/ro) +
r2(4log(r/rg) + 1)2

(ha +r~'h%0,rh™%0, + 7).4: =0. (5.33)

In the UV, this has the solution

llog(r/ri) 14 CQIog(r/r:) +1/4 (5.36)

A4, =C

so Al corresponds to a scalar operator of dimension 5. Next, the 2-forms K,
M, contain also the vectors K,,, 0,K,,, M;,, 0,M,,. From eq. (5.24) we can
eliminate d,K,,. Using equations (5.25, 5.28), we find that the vector K,, satisfies

the equation

112log?(r/ro) + 136 log(r/ro) -
r2(4log(r/rg) 4+ 1)2

21
(ho +r°h39,r°h™3%0, — JKry =0 (5.37)

In the UV, this has the solution

C 321log?(r/re) + 20 log(r/ro) + 3

Ky, = Cur(log(r/ro) +1/4) + Co = (538)

so K, corresponds to a transverse vector of dimension 6. Note that because of eq.

(5.24), 8,K;, = 0. Finally, the vectors M,, and J,M,, only appear in the equations
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of motion in the gauge invariant coombination d, (dM),,, and, using equations (5.25.
5.28) this can be expressed through K, so it is not an independent field.

Let us now address our main question: what happened to the baryonic current?
Surveying the above modes, we see that there is no vector of dimension 3: the vector
B was swallowed by the 2-form L, and gauged away. However, we still have a 2-form
of dimension 2. Looking at the equations (5.29,5.30), we identify, to leading order
in the UV, the mixture K, + log(r/ ro)zf[z as the dimension 2 2-form. Indeed. from

equations (5.32,5.33), we find that this mixture has the leading UV behavior
K, + log(r/ro)zflg = C, + Cy log(r/ro),

which is the behavior expected of a 2-form of dimension exactly 2 (with no correc-
tions). Note that this precisely the mixture related by eq. (5.21) to the 2-form L,
that has swallowed the vector B. Comparing eq. (5.21) to its M = 0 counterpart,
eq. (5.5), we see that, up to trivial normalization factors, the crucial difference
is that in the M > 0 case we can no longer recover a bulk vector from the bulk
2-form: the right hand side of eq. (5.22) is no longer exact. Thus, while for A/ =0
we could choose the relevant bulk degrees of freedom to be either a dimension 3
vector, or equivalently, a dimension 2 2-form, for M > 0 only the latter choice is
possible. This is a different phenomenon from Higgsing: the vector B has not been
swallowed by a massless 2-form that became massive, rather it has been dualized
into a massless 2-form with a source from which one can no longer recover a vector
in the bulk. Indeed, counting the degrees of freedom, we see that the 2-forms A
and M and the vector A! still contribute three degrees of freedom from a transverse
2-form of dimension 2, three from a transverse 2-form of dimension 6, three from
a transverse vector of dimension 6, three from a transverse vector (or equivalently,
transverse 2-form) of dimension 5, and one from a scalar of dimension 5, just as for
M = 0. There is no exchange of degrees of freedom between different modes that

‘is characteristic of Higgsing, and we do not find a Goldstone mode associated with



symmetry breaking.
To shed more light on the situation, let us see what happens to the Kahler
modulus s which resides in the same supermultiplet as the dimension 2 2-form. We

have to consider a fluctuation of the form
5ds® = 2r2h'%s(g'g® + ¢%¢*), 0B, = A2 A g . (5.39)

The transverse vector A2 decouples from all other modes and satisfies the same
tion of moti 1! 50 thi i erse v f dimension 5. Th
equation of motion as A',;so this remains a transverse vector of dimension 3. The

scalars s and A2 couple to each other. Their equations of motion are:

2 (
(log(r/ro) + 1/4)

- 4 2
(ha +r7%0,7°0, + r—z)s =5 - §r.-l,2.), (5.40)

ho A% + (r~'h*9,mh 20, +
112log?(r/ro) — T2log(r/ro) + 7., » 9 . _ )
r2(4log(r/ro) + 1)2 )(A; 2 s)=0. (541)

T

We see that, to leading order in the UV, the linear combination 42 —9s/2r decouples
and is a scalar of dimension 5. Setting this combination to 0, we find that to this

leading order, s satisfies the equation for a scalar of dimension exactly 2:

(r=%0,r°0, + :—2)3 = 0.

Since s is related by supersymmetry to the 2-form of dimension 2 K, +log(r/ro) Mo,
the equation of motion for s provides further evidence that in the UV, there is no
correction to the dimension - not even a small correction that vanishes as 1/ log(r).
Once again, there is no Higgsing: we still have three degrees of freedom from a
transverse vector of dimension 5, one from a scalar of dimension 5, and one from a
scalar of dimension 2.

So far we have been considering the UV limit of the SUGRA solution. What
happens in the full (deformed conifold) KS solution? It is a well known fact about

conifolds that they cannot be deformed and resolved at the same time - we have
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to choose between complex structure and Kahler structure. In our case, this means
that in the full deformed conifold background, the Kahler modulus s can no longer
have zero modes that behave as 1/r2. Thus, in the IR, the dimension of s must be
modified, and by SUSY, the same is true for the dimension of Ky + log(r/ro)dLs.
Since this form has IR dimension different from 2, there can be no nontrivial baryonic
current in the IR (see the discussion after eq. (5.8)). Another argument for the same
conclusion is that in the IR, the gauge group becomes simply SU()M), and there is
no way to define nontrivial baryonic operators like (5.2).

The bottom line seems to be that while there is certainly no barvonic symmetry
and no charges at low energies, the situation at high energies remains somewhat
mysterious. There is no bulk dimension 3 vector dual to a baryonic current, but
there is a 2-form of UV dimension exactly 2. Thus, at high enough energies, there
may still be an effective baryonic symmetry. This correponds to the fact that for a
given NV > 0, the SU(N + M) x SU(N) theory contains baryonic operators like (5.2),
though it is not clear what happens to them as V cascades. It would be interesting

to obtain a better understanding of this.



Chapter 6

Glueballs in KS background

In this chapter, based on parts of the paper [53], we demonstrate explicitly the
existence of a mass gap in the KS solution given by the metric (3.22) by computing
the spectrum of low-lying glueball modes. This calculation proceeds as follows(64.
72, 73]: we need to go from Euclidean to Minkowski space, and find solutions to
eq. (3.27) that are normalizable both in the UV and the IR. We will see that such
solutions exist only for a discrete set of k2 which give the glueball masses. The IR
can no longer be ignored, so we need to use the full KS background with the metric
of (3.22). The equation of motion for a massless minimal scalar in this background
is

(mR)?sinh? 7

: -2/35 (o 2/3
[(sinh 27 — 27)~2/39, (sinh 27 — 27)%/%3, + (Sinh 2r —21)773

e =0. (6.1)

Here m? = k? is the mass squared of the 4-dimensional mode. Our goal is to find
values of m? for which eq. (6.1) has solutions that are normalizable at both the UV

and the IR. This means that the flux factor
F = ¢(7)(sinh 21 ~ 27)¥30,¢(7) (6.2)

must remain finite at both 7 = oo and 7 = 0 (in fact for the normalizable solutions it
will vanish at both ends). Let f(r) = (sinh 27 —27)%3, and define the new field ¢(7)
by ¢(1) = f~Y2(1)¥(7). Then the equation (6.1), written in terms of ¢, reduces to
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the more familiar “Schroedinger” form

(@2 - K (r)]v =0, (6.3)

4 sinh2r 8 (cosh2r —1)* (mR)%sinh® T

2
= - — — h )
(T) 3 Si[lh 27_ _ 2T 9 (Sinh 27_ _ 27.)2 (Sinh 27. . 2T)2/3 (T) (6 4)

with the flux (6.2) now expressed as
1
F = vo,v — 5(3, log f)w?. (6.5)

At T = o0, k2 — 4/9 and we have the solutions v5 ~ e¥27/3; only v is normaliz-

able. At 7 — 0, the normalizable solution behaves as ¥ ~ sinh(k(0)7), where

2 g2 [, Tcothz —1
m?(AR) /0 dr =

mn-zr

k%(0) = (sinh(2z) — 2x)%/3. (6.6)

[SLN N ]

We now find the eigenvalues of eq. (6.3) using the WKB approximation (see e.g.
[74]), which gives a sensible estimate for a smooth potential like k2 and is increasingly

accurate for more excited states. In this approximation, (6.3) has the solutions
Ya(r) ~ k2 (r)e [k

which are valid away from the turning points k = 0. At a turning point 7g. the
exponentially decreasing solution on one side is matched to an oscillatory solution

on the other through
ke [TR@E _y g=1/2 cos(( (1) = 7/4),

where k% = —k? when k? < 0, and

In our case, it’s not hard to see that the function k2(r) increases monotonically

with 7 from its value k2(0) < 2/5 to k2(co) = 4/9 (see fig. 6.1). When m? is small
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Figure 6.1: k*(r) vs.  for m? = 0.5 (solid line) and m? = 2 (dashed line)

enough, k2(0) > 0 and there are no turning points at all. Then the exponentially
decreasing solution, which is not normalizable at the IR, is valid for all 7, so there
are no normalizable modes; in other words, there is a mass gap, as advertised. For
sufficiently large m? there are normalizable modes determined by the transcendental
equation

To(m?) 3r

/ k(z)dr = T +(n-1)r (6.7)
0 ,

where n = 1,2, 3... and 7, is given by 1}2(1'0) = 0. The phase in (6.7) must be such
that ¥ behaves as a pure sine wave near 7 = 0. Solving this equation numerically

we obtain the glueball modes:

with the first few coefficients being
¢ =1.79,¢0 =4.03,¢c3 = 7.16,c4 = 11.2,¢5 = 16.2,c6 = 22.0, ¢, = 28.8

and so on. The overall normalization of these coefficients is of course arbitrary but

their ratios are dimensionless numbers that constitute a prediction for the gauge
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theory. As expected, we have m? ~ A2/(g,M)?, where A, ~ 1/R is the string

tension scale. This demonstrates dimensional transmutation.



Chapter 7

Discussion

Let us restate our main results. To leading order at high energies, we have found
the following momentum space 2-point functions for the R-current and the energy-
momentum tensor:

(RE)IE(=K) = G2 R (Ao (k) og) (K/) + Bo™i5 log?(k/X). (7.1

(T (k)T (—K)) = g2MAk*(Comppo (k) log® (k/A) + Dom,, (k)T pe (k) log?(k/X)XT.2)

where Ay, By, Co, Dy are k-independent constants. The most general structure of

the correlators allowed by the symmetries is

(TER)IF(H) = AR k) + BT, (739
(T#U(k)Tpd(_k)) = C(k2)7ruupa(k) + D(k‘z)ﬂ'uu(k)ﬁpo(k)’ (7.4)

where A, B,C, D are k-dependent form factors. The presence of nonzero form fac-
tors B and D indicates, respectively, the anomalous breaking of R and conformal
symmetries. Indeed, the longitudinal part of the (JJ) correlator should be propor-
tional to the R-symmetry anomaly 8,J,, and the trace part of the (T'T) correlator
should be proportional to the trace anomaly 7. Moreover, supersymmetric Ward

 identities are expected to relate A to C and B to D [61]. From the functional form of
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the form factors in eqgs.(7.1,7.2) (the identical powers of the leading order logarithm
in A and C and in B and D), it seems plausible that these identities are indeed
satisfied. This provides a qualitative check on our results. Note that although the
(JJ) and (TT) correlators are related to each other by Ward identities, the sectors
of SUGRA fluctuations that are dual to them are completely decoupled from each
other; there is no interaction between the modes considered in section 4 and those
in section 5. In this, the KT background is similar to AdS, and markedly different
from the RG flows studied in refs. [58, 60, 61]. The reason for this is unbroken chiral
symmetry. In the above papers, it is the breaking of chiral symmetry, which is an
IR phenomenon, that mixes the T and J modes. If we were interested in the IR
behavior of the same correlators in the full KS background, and not only in its UV
limit -~ the KT background - we would encounter the same kind of mixing. Unlike
the RG flow backgrounds, we see little hope of obtaining analytic results in the KS
background.

It is interesting to contrast our results with the correlators of irrelevant operators
responsible for the breaking of scale symmetry in the full DBI action on 3-branes
that we computed in chapter 2. In that case, we found that the trace of the energy-
momentum tensor had twice the dimension of the traceless part. In the case of KT
solution, the R and dilatation symmetries are broken not by explicitly adding irrele-
vant operators to the action, but via quantum anomalies. This results in correlators
whose behavior differs only logarithmically from the behavior of correlators present
in the conformal theory.

In all the 2-point functions we have computed, we encounter at leading order
logarithmic factors of the form log™(k), where n is a positive integer (an exponent
of n in momentum space translates to an exponent of n — 1 in position space). From
the way these logarithms arise in the UV solutions to the fluctuation equations, it is
easy to see that in general, the larger the dimension of the field theory operator O

whose 2-point function (OO) we are calculating, the more times we need to iterate
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the UV expansion, and since in each iteration we effectively pick up a factor of
gsM log(k), the higher the power of the logarithm that will appear in the 2-point
function. The interpretation of these logarithms from the field theory point of view
is somewhat mysterious. On the one hand, the SU(N + M) x SU(M) gauge theory

has a nontrivial beta function [75], with the relative coupling flowing as

1

1
— — = ~ Mlog(u), (7.

g1 92

=1
Ut
~—

where y is the energy scale; the Yang-Mills coupling 1/g, ~ 1/g? + 1/g2 remains
constant in the supergravity approximation [9]. Thus a perturbative expansion in
the coupling would be an expansion in inverse powers of the logarithm, but it is
difficult to see how it could give rise to the large positive powers expected to appear
for operators of large dimension. It is tempting to speculate that the logarithmic
growth of the correlators is a manifestation of a logarithmic growth with scale of
the effective number of degrees of freedom in the theory. Indeed, as noted above,
the logarithms always appear in the combination M log(k) which perhaps somehow
represents the “effective number of colors” in the UV. Some support for this is
provided by the fact that when the finite temperature theory is considered, one
finds an entropy that grows logarithmically with scale [70]. It would be interesting
to better understand the field theory origin of these logarithmic factors.

Finally let us say that a lot remains to be done. Even in the context of the
Klebanov-Strassler solution, there are many outstanding problems involving both
the IR limit (there is still no systematic description of all glueball states) and the
UV limit - how can one tighten the cascade interpretation of the theory in the UV
and really count the number of degrees of freedom as a function of the scale? Beyond
this, of course, lies the continuation of the search for supergravity duals of yet more
realistic gauge theories, in particular, theories that are not only confining in the IR,
but also asymptotically free in the UV; and in the end, we will have to go beyond

the supergravity approximation and describe sigma models of strings moving on



Ramond-Ramond backgrounds. All this is surely in the future.
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