(Tuesdey Afternoon: - Theoretical Session, J. Schwinger presiding.)

Klein preeented the first paper in the session on the results which have

been obtained bybthe past year from studyihg the renormalizable field theories

- in the low energy iimit, that is the theorems on gamma ray scattering, photo’

. meson production, and meson nucleon scattering.  These investigations have
.‘served to clarify fhe meaning of the coupling constant‘in the meson theory,

and tﬁose.cxperiments which can be expected to determine this coupling constant.
The techniques which have been used to date can also be extended to the problem
of nuclear forces and other pﬁenomena. Klein first presented a tabular.summary
of the theorems which have been proved, and then presented a typical demonstra-
tion of one of the theorems, These theorems all concern the scattering matrix
T(k), where k represents an external bosommomentum; 1 ig proportional to the

cross section., All the theorems are of the general structure that
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where T, 1is the scattering matrix, B, 1s the Bord abproximation result, and the
mass which occurs is a renormalized mass characteristic of the system., The
“theorems state that as the momentum of the external boson k goes to zero and the
-mass of the external boson goes to zero that the scattering matrix is given by
this Born approxngtion result, Thus to carry out a‘measuremcnt of‘the coupling
constant, one looks for a process which is first order in the electromagnetic
or meson field, that is an experiment which is quadratic in the coupling con=

stant. The theorems which have been proved and their authors are listed in

.Table 1.



Process Partial Wave Matrix Element Measured Author
Y- ' S (Thomson limit) e Thirring
' P e;l/u_ Gell-Manu and Goldbers
Low

S ‘2% Kroll and Rudermann
8- P} nucleon current{ g/‘P) % U Low; Schwinger and Kle
meson current 433, Low; Schwinger and Kle

-1 P wave 3, Schwinger and Klein

The gamma bgarmna process is gamma ray scattering or meson scattering from a
particle of spin 1/2; Low remarked that the theorems can easily be extended to
particles with other spin.

Klein then presented a paraphrase of a unified demonstration of all these
theorems given by Schwinger, using as an example the gamma ray theorem. One has

for the scattering matrix in this case the expression
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in this expression the d -function is four dimensiona l, p and k refer to the

proton momentum and photon momentum respectively, G is the Green's‘function'in
the absence of the external field. Hence G—l operating on the free particle
spinnor ulp) éives zeré unless there is some part of the second variational
derivative which has a second order pole on the free particle energy shell.

If one carries out the variationsl derivative, one obtains an expression such as
that given by Gell-Mann or Goldberger; then it becomes impossible to give a
simple proof of the theorem. That is, the prodf depends on the eimple structure

of G in the low energy limit. To continue with the derivation of the Thomson
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" theorem, we consider the free particle Green's function in the absence of the

external field which is
G = + JG(Xk)
3P+971

The statement that there is a stable state of motion of the system with mass m

implies that the additional coatributien onG is analytic in the neighborhood
of ¥p +m=0. Inorder to obtain the gamma ray scattering to zero order in |
the frequency, we need only kuow the dependence of G on a uniform electro-
magnetic potentisl. This can be obtained simply by allowing p t§ be replaced
by p-e A, In this case the veriotional dgrivative can be replaced by an ordinary
defivative and since G is still an analytic function of p-e A, it can give no
contribution at ¥ p = —m except from the first term,

In extending the theorem to first ofder in the frequency, it is more con-
venient to work with the eeconﬁ order Green's function 2m/(p2-# m?); Then the
theorem states that to first oraer in the frequency it is sufficient to take

2 _
(P - eh)? 4 m° Z s ¥/2 where o F = g,F

One'can easily see that there would be a éontribution to the scattering if there
were an additional term of the form Gy A<§ F Gy, that such a term would arise
from an expansion to first_prder of an additional magnetic moment term, Hence
if we haﬁe defined the magnetic moment term appearing in the denominator cor-
rectly, it is impossible for such a térm to éppear. bf course one also needs
that statement that to first order in the frequency, G can only depend ono F
and ‘(p, thls is not immediately obvious but can be proved by invoking relativ-
istic invariance, gage invariqnce, and charged invariance, In our expansion

of G about.Gi ,.we‘can fall back on the statement that the next term must be

'an;analytic function of Gl alone beczuse of our definition of//w . Hence the
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first term which can occur is [TACT F,.Gil*.‘ which is second order in the
frequency., . There»cannot be a term in AF, It is possible to have a term in
(Cf'F)z, bnt again in order not to give a contribution to the megnetic moment
we can shoW‘thct the leading term must be 62 (G'F)z, and when one takes a
variational derivative this term will not contribute in the order to which we
are working.

The essential content of all this is that simply by virtue of our defin-
ition of charge, mass, and magnetic moment, we have so determined the structure
of G in the neighborhood of the singularity that there can be no further con-
tributions to it. The proof of the p wave theorem for meson scattering is
entirelj analogous, If one looks explicitly at the structure of the Green's
function, one finds that if it 1is second ordcf in the meson wave function it
cannot give p wave scattering, so that the analog to the gamma ray s wave theorem
is‘the meson p wave theorem, One can further show that the Kroll-Rudermann
‘theorem on photomeson production is the consequence of the p wave meson theorem
and gauge invariance.

Low then presented a summary of work that he and Chew have been doing.

They had first intended to report on the Kroll-Rudermann theorem for p‘wave"'
scattering, which has already been mentioned by Klein above. They believe this
can be used to determine thé coupling constant from the p wave meson nucleon

scattering., The theorem states simply that
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They can prove that the correction term is finite as'w goes to zero, and that
the coefficient f is the Krollqﬁudermann renormalized coupling constant.
The theorem can be stated for all four p states znd, including the correction term

is of the form
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X
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where 7 = (q2 + g )l/2 + q /M

In the 33 case it can be proved in the static theory thet the coefficient of the
correction térm is negative. This can also be proved in the relativistic theory,
if one neglects pairs and external nucleon recoil, By external nucleon recoil

is meant the following. Consider the following diagram.

meson ' héi\\hﬁ

-q

Novmatter what occurs in the center of the disgram or how high the momente, if
one can simply drop the term -q, which corresponds to the momentum of the nucleon
both at the beginning ana the end of the diagram, then the sign of the correction
térm must be negative, Hence if one can somehow find pair damping in the pseudo-
scalar meson theory, one can hope to obtain agreement between thc theory and
experiméﬁt, The coefficients of the correction term in the four states as given
above are a consequence of thé crossing theorem of Geil-Mann and Goldberger as
applied to the p wa?e. By explicit calculation using the cutoff theory, the
correction term coefficlent x is found to be fairly small. It is presumably
small in the relativistic theory also at least at low energy. Hence if the

33 state is enhanced, the 11 state is depressed, and if it is not justifisble

to use Born approximetion on the 33 state, it is also not justifiable to use it



on the 11 state. The above expression is therefore the form which the Kroll=-
Rudermann theorem and the Gell-Mann Goldberger crossihg theorem take for meson
nucleon sqatteringe

So far at least the Kroll-Rudermann theorem for the photo effect does not"
appear to be as usefﬁl, since so far no way has been found tb extrapolate it to
zero. However it 1s possible using the cutoff theory to calculate the photo=
production explicifly and obtain an expression which, cutside of dependence on
masses, cqugling constant, and magnetic moments, involves only the sine of
the measured pion nucleon scattering phase shift. This expression is in re-
markable agreement with experiment in the low energy region.

Low then turned to a great calculational advancé vhich has been made in
thét an easily soluble equétion has been found for the pion nucleon scattering.
The equations do not produce divergences on interactions so lorg as pairs are
neglected, so that the 11 equation is Just as easy to solve as the 33 equation.,
Unfortunately the éq&ations are non~-linear so that at present it is not known
whether they possess solutions in general; however in all the special cases
that haQe been tried so far, exact solutions can be found.

o For simplicity this equation will be derived using the static theory.
In-ﬁhét follows the wave functions which are used are exact wave functions of
the entife Hamiltonian, For example an exact incoming wave eigenstate with
n mesoﬁé and a physical nucleon present will be symbolized by EZ%;t?

and the matrix element of the interaction we are interested in will be
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where f  1s the unrenormalized coupling constant and v(k) is the momentum cutoff



function of the theory. The claim is that the S matrix for the scattering is

given by

(n1S14) = (n}1] )= 2T e ) (27,Ve B)

In order to derive the equation, Low had permicslon from Wick to use a tricx

of his which goes as follows. Ve write

Gl=az v X

where CZ;; is the creation operator for the scattering state. oSubstituting this

expression into the Schroedinger equation one obtains directly that

:{/“ H- urgu‘e ¢ Lo
Note that although recoil can be included with no trouble, it is impossible to
use this trick at present if there are pairs present, since nc one knows how

to write down correctly the asymptotic eigenstate in this case. Now having

_obtained an explicit solﬁtion, we substitute this into the metrix element giving
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Since Vy is a function only of &, ?5,,45, it commutes with aq. However, since
EZ?; is a physical nucleon eigenstate, CQ?_Efi) does not vanish because there

are virtual mesons present in the meson cloud surrounding the nucleon. In fact

one can show quite easily that C?,ué?; 927
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This expression holds provided that the total Hamiltonian is normalized to be

zero operating on a free nucleon state. Thus the scattering matrix becomes
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The fifst term is normal, corresponding to absorption with a normal energy denome
inator und then emission of the final meson, whereas the second term corresponds
to the final meson being emitted before the 1nitial meson is absorbed. In order
to eveluate the energy denominators one introduces the projection operators for

the scattering eigenstates, that is the eigenstates of the complete Hamiltonian,

SEONE -

Note that when we have the terms corresponding to 1 meson scattering states this

by writing

gives us immediately an integral equation for the matrix element., Note in par-
ticular that the k dependence of the matrix element and of the equation is
trivial, which leads to a tremendous simplification for the static theory,
If in particular we restrict ourselves to the approximation of keeping only
thoce intermediate states in which there is one meson present asymptotically,
one obtains an equation for the q state itself involving only the q state.
(That is, if one solves this equation once, one has immediately solved for the
momentum dependence of the phase shifts over the entire range where the equa-
tion is applicable.)
In this one meson apgroximation, the equation for the phase shift can be
obtained immediately and is
84(21(3) f(;) /L( cg U'(@) i/) o/w[/a‘,m J’[p) A(.ﬂg(p;
w (f) ”p*“?q
The term in this equation which couples the phase shifts of different momentum
and isotopic spin is the term which enables this equation to satisfy the Gell-
Menn-Goldberger crossing theorem. That is, thanks to this term if you inter-
change q and k and the isotopie spin 'Yfé and /Z% and change the sign of W7,

the equation ie reproduced. HNote that in the static theory the 13 and 31



scattering states are identical so that there are only 3 phese shifts. The
relativistic theory without recoil has the same property since in Born approx-
imation one has this property and the Gell-Mann-Goldberger theorem insures it

for the correction term. The matrix coupling the different phase shifts is

il 13 33

A n /% - & %
D(l(?) - 13 % *é %
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and the coefficient 1s given by Born approximation, that is

/i8/3 1°
M= [0 £
4/3 £
Note that the Gell-Memn-Goldberger crossing theorem states that ;NA must be
an eigenvector of Axﬁ with eigenvalue -1; that is, for even powers of ¢4 'the
elgenvalue is +1 and for odd powers ~1, If one now substitutes into this

equatlon the state in which no mesons are present one obtains simply é?;) N% é%i};

but according to all the standard methods of renormalization we

have <£ﬁ;)*§;§~ﬁ%>: ';((«LJ fﬂ'f&(«i)a

Hence the equation we have written down above contains the renormalized coupling
constant, If the coupling term %ﬁ’fa is dropped‘the,equation can be solved
exactly, with one numerical integral. This numerical integral turns out to be
the original one Chew wrote down to give the phase shifts, which was preseated
at this conference a couple of years ago. That is Chew's original equation in

the zero order approximation in the iteration solution of this equation.



The equation which can be solved exactly hae the form

hycg) = heesyy = fey) (cten | hyp)”

Its solution is simply 7 £ ) &)P"wﬁ“zé
h = C(‘"")//__L [y £ /@0_ w)]
The approach to so}ving the equations with the coupling term ﬁy%g present is to
make a reasonable guess at the effect of the coupling and put this into the
Born approximation for the non—linear equation; then an equivalent equatlon can
be found which can be solved. It is possible to do the integrals, so that
relatively complicated guesses can be done quite easily and the consistency of
these checked5 This in fact is how the one meson approximation results given |
in the pion session by Chew were obtained.
It is also possible to.find a simple equation for the photo meson produc-

tion problem and to solve it in a very good approx1mation. The matrix element

which is celculated is (S_Z;‘)) [g (%) e° E_P—)

and 1s given in this approximation by the expression
- = > 3
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The two terms in the curly braces are the Born approximation: the first of

these is the Kroll-Rudermsnn term and the second is the term which comes from the P
wave low energy limit theorem. The only important correction to this result is
given in the third term and arises from the 33 state. Low believes that this
result is, in fact, much more general than the one meson approximation. Two

meson corrections were estimated for the scattering in the forward direction
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in Born approximation, and are about 15%, but so far these corrections have not
been estimated for the photoproduction problem. The anomolous magnetic moments
of neutron and proton appear in the formula because the calculatlion was done
using the felativistic theory and the entire current between the two nucleon
 states; the terms which gave rise to this coefficient then could be identifiéd
as the static moment of the nucleon to order (v/c)z. Low does not believe

this 1s the same as introducing a Pauli moment 1nto the calculation since that
would give transitions to negative energy states, which have not been allowed
for here,

To summarize what has been proved by Low and Chew: first it has been shown
that if the function of the phase shifts given above is extrapolated to zero for
ali four p states, this should giﬁe the same f2; second if one can neglect éairs
in the relativistic theory then the slope of the extrapolated straight line has
the correct sign to give the resonant solution for the 33 state; third it has
been proved that a third parameter i1s needed to give the phase shifts in this
linear approximetion for the other three p states. Finally this calculation
makes it much clearer why the cutoff theory is in such good agreement with the
experiment, since the two free parameters of the theory can be used to give the
correct intercept and slope for the effective range function of the 33 state.

Serber then reported on a calculation of Lee and Friedman which is a2 dif-

ferenﬁ approximation to the same mathematlcsl problem:tackled by Chew and Low,
that is the cutoff meson theory. They are interested brimarily in doing a cal-
culation of multiple meson production in the Bloch-Nordsiek approximation but
in order to get parameters for this calculation, they have calculated the
Tomonaga approximation to meson scattering with a finite source. The radial

dependence of the wave function is factored out, and its Fourier transform is

-F( ) ///w’//,(w-b*'))



Here ¥ is the normalization constant chosen so that %;; ) lj/l4%))}?:= / ;
u(k) is a square cutoff function, and the parsmeter )\ is determined by a varia-~
tional equation. In order to fit the 33 scattering, the cutoff had to be chosen
s 6.%/1 , the unrenormalized coupling constant was 0.712, the ratio ZQ/Zl = 0.384,
and hence the renormelized coupling constant 1s 0,105, It is interecting to
recall that in the:extreme strong coupling limit 22/21 is 1/2, In fact, strong
coupling is a good approximation to this part of the problem, Thie is similar
to other results, such as for example Watson found in scattering, that the
strong and the weak coupling approximstion give the same result except for a
numerical factor. Also the location of the peaks of the wave functions agrees
with the strong coupling result; however, the wave functions are wider and lave
longer tails, On the other hand, since for the weak or strong coupling limit
the parameter )ﬂ 1s zero, this result is rather far from either limit in
that sense.

In order to calculate the anomalous magnetic moments, the electromagnetic
field is introduced in a gauge invariant way. The particular method chosen is

such thet only the term (J JA) contributes to the calculution of the

meson
anomalous moments, The result is# 1,48, If this calculation were done the

way Pauli and Dancoff did it, you would édd .16 to this result. The strong
coupling limit would give the anomalous moment of the proton as 2.76; the dif-
ference here 1is primarily due to the fact that the parameter ) is 3.39 instead
of zero. The average number of mesons in the field ls of the order of two, but

because of the tail on the wave functions the probability amplitudes for more

mesons in the fleld are important,



The results for the p phase shifte as the function of energy are given in

Table 2
@auﬁ 70 Mev 120 140 169 187 210 217
d 9.69°  33.19° 52.67° 74.75° 87.75° 100.2° 101.2°
Jn:ng -0,35° o =1,029 -1,36° -1.60° -1.91°
Cﬁl 2,50% 5,00  5.72° 5.99°  6.20°

1f oné makes a plot of (¢33 using these values and’the Chew~Low function, this

does not glve a straight line and does not extrapoclate back to the correct value

of the coupling constant. Another anomaly is that £>(ll is positive, and there-

fore to satisfy the low energy limit theorem and also the Gell-Mann and Goldberger

crossing theorem, will have to change sign at some lower energy. Hence these

restdls either indicate that effective range theory is a bad approximation to

this problem, or that the Tomonaga appreach does not yield'adequate results,
Egzgggg then suggested another approximation approach to this problem,

If one neglects nucleon recoil and so on as is being done here,,then you are

calculating the properties of the following operator

exp [ Jlaz), (o G Fle-nLeds
where °;0“ -
Fle-=f < 7 Q@) 0]
The Tomonaga approximation consists of replacing this function by an exponential.
However, if you actually plot the logarithm of this function, you find that it
is made up of the sum of two exponentials, one of which has a very rapid variation

determined essentially by the cutoff mass, and superimposed on this a very slowly

varying weak tail, Therefore it would seem reasomable to use the exponential



approximation for the strongly varying part of the function, which you are not
interested in, and after you have taken care of this,treat the weak tail as a
perturbation; all the'difficult& of the problem and all the labor is involved
in the first part which is precisely the part you are not actuaiiy interested in.
Breit then reported on an investigation of the corrections to be expected
in the coulomb scattering of two protons due to relativistic effects. If one
were to calculate in the center of mass system and ignore pairs, presumably one
should obtain Mgller's matrix element. Howefer if one tries to do this it is
not so immediate. One has the equation
[Etrpy-528C,, = |) d: ,
“lhp)-t-ié PP w»mh’m’ ¢ ) el !
This would be easy to solve were it not for the fact that the Mgller matrix
element M contains factors like 1/(py - py+1)* « Using Dirac's method for
célculating the wave function in momentum space and transforming to coordinate

space one has )/ﬁfa‘ 67/Lg2 . Expanding this one
-4
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Hence when k =ko there are quaératically divergent terms; so if one tries to
solve by an iteration procedure, one would never obtain the phase shifts
characteristic of the old-fashioned Gordon-Mott solution in the non-relativistic
limit, One could presumably introduce an artificial coordinate intermediaté
variable and solve the problem in much the same way as was done by Mott and
Gordon in the noh—relativistic case, However it 1is simpler to use a connection
between the energy and the phase shifts. If one has a quantizing sphere, then
the number of wave lengths of the wave functions inside this sphere will be
very large compared to the radius of the sphere. If one introduces a small shift

in the energy, then in order to keep the same number of nodes in the wave

functiéns and hence the same quantum numbers one gets a connection between the
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phase shifts and the energy. To first order one obtains a characteristic

asymptotic Jorm for the coulomb wave functions namely

M /%)Z'Qf—émf«’élz - L% - GM,? r'(l_ + ]+,¢'/)7)>
Hence all that is needed to solve the problem is an expression for the change

in energy. To first order this change in energy is simply given by the:matrix
) ——
| =l %__
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the same energy, ) 1s infinite so that the cosine factor does not appear.

elements of Qo 207 }Upp" » If one uses wave functions of

One. obtains in this way a change in phase given by

_E + P2 2
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hence one has that,

- & *+ P e ﬁ’i
fand 2z P, EV

‘where ' is the velocity of the first proton in the laboratory system, a result
already deduced by Garren., This is all there is to it for singlet states.

However for triplet states, one has
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The essential point to note about this result is that in the triplet scattering
there are L.S and tensor-like terms which can éouple states of different angular
aomentum.

Yang faised the question of whether it is true that every conservation law
is related toia gauge trensformation. This has already been discussed in a |
published paper in connection with isotopic spiﬂ conservation. The essential
point is that the conservation laﬁ is related to invariance under certain trans~
formationé;~ﬁhich implies that there is some indeterminacy in the phase. What has
to be asked is whether this ihdeterminateness of phase should have a local
character, This idea dan also be appliéd to the conservgtion of heavy particles,
If ;ou asked what group of transformations generates the conservation of heavy
particles the simplest one is the transformation

%——} E‘d% ; Pm > &% In

where the phase.is the same for both neutrons and protons. If the phase depends
on space time it is easy to show and in order to preserve invariance, one needs
to introduce a vector field with zero charge and zero mass. In this case there
is no complication such as the non-linear terms which arose invﬁhe cése of iso-
topic spin, The consequence of this vector field is a heavy particle number
agssociated with any system and.a repulsive force between any two objects, If the
number-df nucleons in the two objects are Al and A2 this force plus the gravita-

tional force will then be

%1 M - GQM:Mz
nr? n*

Since M and A are not strictly proportional, the observational coasequence of this

would be in apparént difference between gravitational and inertial mass for differ-

ent otjects, This ﬁas studied experimentally quite extensively by Eotvos up to

about 1920 and he found‘that the ratio between gravitational and inertial mass is

constant for'all objects with an accuracy of 1 part in 10‘8, Since the packing

fraction in nuclel varles by a factor of 1000, this means that the repulsive

force postulated here can be at most only lONS of the gravitational foree. Thia



accuracy could be sharpened by comparing objects with a Very large difference
ingpacking'fraction directly, such as hydrogen and oxygen. The negative exper-
imental results seem to indicate either that the idea that every conservation law
is associaféd with a gauge transformation is groundless, or that one needs to
look for ansther type of group to generate the constitution of heavy particlés.
In reply to a question of Feynman's, Yang noted that the coupling constant
associated with this force cannot go to zero since then the phase, which is
proportionalJto the coupling constant, vanishes and one cannot preserve the
invariance. In response to a question of Breit's as to whether this violates

the principle of equivalence, Oppenheimer noted that there is no difficulty

here since the transformation law obeyed by this field is different_from that of
the gravitational field. He noted howevervthat there might be a muchi moré sensi-
tive test, in that with e vector field velocity dependent effects could be

quite large in nuclel, and these might contribute terﬁs which would go the other
way from the static term given here. Foldy raised the point that since the sun
is largely composed of hydrogen, one might also be able to find a ;ensitive

test in astronomical effects.,

EEEEE had some remarks to make on the dangers.of using certain models to
give a clue as to the'behavior:of quantum electrodynamics. For example Thirring
has shown that part of_the propagation function of the theory whose Hamiltonian
s H = (grut $)'t $74 97
cannot be expanded in pdﬁers of thé 80~célled.coupling constant. However one /
can see very immediétely that such a thedry cannot be developed at all in powers
of the coupling constant., Inksuéh a theory the classical limit is contained,
sovone can simply look ét the classical theory, The energy of such a field is
not positive defiﬁité, so 1t 1s always possible to mske the system unstable. One

can write down the solutions of the classical theory and show in fact that they



can never be developed in powers of the coupling constant. If one used.instead

a .G'd)l* coxlvxpling’ term, t;hen the energy is positive definite but G=0 is an

essential éihgularity of the theory, since if the sign of G 1s reversed one

again gets‘instability. However one can't conclude anything about quéntum

| electrodynamics from such a model. In the Pauli-Weisskopf theory the energy

essent ially must be positive defihite no matter what you assume about the

~ value of the charge. Because of gauge and energy conservation the fields are

always liﬁited, However in Dirac theory there 1s no‘classical limit and such

arguments cannot be used., So Fierz wanted to warn that it is probably a bad idea

- to try to draw any conclusions about quantum electrodynamics from such models,

Feynman talked about possible ways you might start to calculate the specific

: felativistic theory with the interaction given by 3 (7; Kg T (/’

There is lots of evidence that this theory is wrong and Feynman doesn't believe

it, so this is presénted_in case someore else wants to calculate this theory.

In the first place the existence of the strange particles shows that the inter-

action betweeh 7T'mes§n and proton 1s not completely described by this theory,

to pit it mildly, Secondly the successes of Chew have shown that nature is

correctly represented if the interaction is predominately through P waves and the

| S interaction is extremely small, Yet in this theory almost certainly the §
wave will be large. Further Feynman does not like the theory because it is'so
~close to electrodynamics; you just replace é; by '5'5 and introduce a mass

into the propagator and nature certainly has a better imagination than that.

- Finally all honest attempts to solve this theory which don't start with perturba-

| tion theory and eﬁpéct to improve on what you start with (which is evidently

false with the coupling constant ofcthe order of 10) but start at the other end,

fall flat on their face after a few stages, and one comes to the conclusion as

»Wéhtzel has that the consequénces of this theory, if they could be worked out,

would be completely different from what nature looks like.



}The specific approach Feynman reported on was a way to include the contribution
due to cloéed loops before you start the caleulation. This 1s usuelly ignored in
.thé Tamm-Dancoff -calculations which have been dQne, but can be handled in the fol-
lowing way, The usual action used in the theory is |

Qs =%—, [copy-a"¢) LU
where the wave fun§£ion that occurs here is the wave function customzrily used
multiplied by the coupling constant of the theory. Usually one starts with this
action and then calculates the effect of closed loops; this is equivalent to
uéing-another acﬁion in célculating without the inclusion of closed loops. - Hence
if this new action is very different from the old one, this takes the carpet out
from under aqyoné who célculates ignoring any closed loops. Consider for example

a perticle moving from poiht 1 to point 2 through a fixed (i.e. not quantized)

external field, If we denote the action with no field by To(qb), then we‘have
@) q S '
- - — / iS@ =+ L[]
To< [ o)< " LPd = [T, e”Pe” 9y
whereby Té we mean the action with no closed 1oops present and

| [4] - fF(q%,x)aﬂx

Here F is the amplitude to go around any loop completely., If qﬁ is small com-
pared to M, then it is a good approxihation to expand in power series in ?5 and
all the gradiant terms are easily included, On physical grounds one would ;xpect
that, if this theory i3 ever going to work, in some region the gradiant of the
wave function should be of the order of/a/. For example for the usual static
theory the wave function ig the order of/;x and the ratio of the gradiant of the
wave function to the wave function itself is also of the order of‘/Ll. The loop

contribution is essentially au average of $t> over a region of the order of % s
&
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s that the first approximation 1s to assume §b=3constant. If one calculates this
’
one ébtains S‘ - ?'(@1“/{0??> + %: BA‘Z”MR’&A%) ¢1 "';"*Qi%(‘,f,"
HL gV l198) 47 ¢

The first correction terms cdue to the gradient are

E Lk 0l )b L (14 )b (B2
: A2y @
Feynman has also calculated the fourth order corrections, although these were

not given.

What are the consequences of having this new action? One had hoped that in
some crude sense one would have a new action of the form

;- L gj 2 2 42
S = %?:i (’ o A 76

where g, and/;kl are new constants; but does the new action in fact look like
this? Note that the constants which appear here are not yet the experimental
constants since further renormalizations have to be carried out, but one can
get some idea, presumably, of what is going on if one substitutes the experimental
constants in the above expressions, One finds that in fact the results are very
different from what one woulcd hope to find and it is sheer wishful thinking to
believe that the next renormalization operation would bring about agreement
between the modified action and what we are looking for. If one introduces the
cutoff, then the new constants are related to the unrénormalized ones by mateh-
ing the terms as ?5 goes to zero and as the gradient of ?6 goes to zero, These

give the two expressions

) = 5 *_, ?%Azj' A ::lz"‘,@’/ A}—
G g Rl gt s



'stever if one actually adjuste the new coupling constant in order to fit these
equatidns,»then one finds that it is no longer true that to the sixth and higher
terms are hegligible, that is if you carry out the renormalization you make the
original action so small es to allow the correction terms to completely dominate
the desired result, and have completely changed the physics of the situation.
This situation 1is illustratedlin Table 3 where the renormalized Lagrangian is
given for certain order of magnitude for the field and‘the gradiant of the field

in comparison with the various closed loop contributions.

~¢ A M

nvp s o M AU 12
Renormalized L 2 1/16000 1/16000 1/400 1/400
| (9¢)? 1/16000 1/1,00 1/4,00 1/10

Closed Loops ¢2 1/10 1/10 L 4

9§ 1/1600 1/40 1/40 1

'¢“ 1/1600 1/1600 1 1

¢6 1/128,000 1/128,000 1 1

(dog )2 1/64,000 - 1/40 1

(929 | 1/6n,000 1/50 1/1600 1

( vt 1/61,,000 - - 1

It is clear frcmvthis that unless something very pecuiiar happéns with the next
renormalizatioq the situation is hopeless. Dyson commented that he had approached
the theory éf‘nuclearAséturation using very similar ideas and had also run into
precisely this kind of éituation and these kind of numbers. Feynman summarized
by saying that almost certainly if you permit a cutoff and chdde it to be, say,
of order of 2M and require g2 to be positive and allow any theoretical mass,

then he believes you can diSprové the relativistic 65‘meson theory. .



Peierls reported on some general consideratlions sbout what the general
features of the propagator in the meson nucleon theory must look lixe, in par-
ticular as to where its singularities must lie., One knows of course to begin
with that it is the function of {§ p. In the complex plane it has a pole at M,
and also at M +#u it must have a branch point, where one is at threshol?d for
single meson production, a branch point at M *2«, which is threshold for double
meson production and so on. If the coupling 1s strong enough so that there are
real isobarié states in the theory, then these will contribute either poles or
branchi points as well depending on what the selection rules are, What happeas
if one has virtual isobaric states with a finite lifetime and hence a complex
energy? It would seem obvious, off hand, that these should also give poles in
the co@plex plane. However one has against this the following arguments: that
in'the first place the upper half plane is free of poles as lehmann has proved,
and secondly that one can see from the way the equations look that the whole
plane is symmetric about the real axis, so one concludes there can be no poles
in the whole complex plane, except along the axis. Thus it seems there are two
~ contradictory cbnclusions, but these can be reconciled if one remembers that one
is dealing with ambiguous functions which involved a square root. While one gets
no poles in the functions as they appear in the expressions considered here,
if one continues these functions instead on to the other portion of the Reimann
surface, it turns-out that one indeed finds the poles’there corresponding to
virtual iéobaric states, Some of these poles are fixed and others depend on the
resonance levels of the system. It islimportant to know where these poles are,
of course, since they can very drasticglly limit the region in which expansions

are possible.



Pejerls then reported on some vork of Sala very briefly, aund a more detailed
writeup is given here. |

The investigation which I wish to describe started from the work of Edvizrds
and Peierls, who set out to solve the functional differential equations propqsed
by Schwinger (Proc. HNat. Acad. Sciences) for the one particle Green's Function.
They succeeded in obtaining a solution to the equations if all closed loops are
neglected. Dr. Mathews and mycelf tried to include them and found that the
simpiest probedure is to start from the definition of the Green's function in
terms of Feynman's "sum over paths" formulation, rather than from the differential

equation approach. In Feynman's formulation, the Green's function

-(O} C/)(;) %(?))O>is define-d as
EAL g € de dpdp

The integral on the right denotes summation over all fields CP s ¢ and ?5 1

I is the total action
&
T (g% Fu)el
. L T
N is a normalizing constant, which equals f@x cF‘P J“’ Crgb « The fields

Sb ‘and 91’ are to be treated as classical quantities, except that the ferml fields
have a prescribed order and two such flelds anticommute, The sb and C,Z— inte~

grations can readily be perforned giving the final result:
: ATy
7{7 {SF' (,'2”6)6 D[¢)CJ’)¢

Here Sp (l‘,2;¢) is the one particle OGreen's function in an externsl field §b 5
Ib 1s the action for a Bose field ¢ and D(<P) the vacuum to vacuum transition
amplitude in our external ¢ field, D(?S) turns out to be the Fredholm determin-

ant for an integral equation with the kernel % | SF- (1,2) ¢(2) l, (Here we

assume o?f«,; =9 b ¢ P , for simplicity) The result obtained by

Edwards and Pelerls, im which closed loops were neglected, is obtained from the



present result in replacing D(¢>) by 1.

The n particle Green's function, likewise turns out to be

L (et s, (24, ] "€ DA T

The Fredholm determinant can be written in the form of an exponential

~L(d) ,
N and this is the form which Feynman used in his talk. This

representation 1s certainly valid if % ?ﬁ SF (4?) ¢ (2) )qaﬂ-/ c[z < 1 '

Pelerls reported on some work that Edwards has been doing along these lines,

—————

Since-in order to use the above approach one needs to know the Green's function
in an arbitrary meson fileld, this approach would at first sight appear hopeless
for an actual calculation, but it is in fact not quite so hopeless as it seems.
Starting with the‘simpleSt case, that is the netural scalar theory with no recoil,
one can in fact obtain the linear differential equation of the first order which.
can be solved exactly, and when the solution is introduced into the functional
integration, this can also be carried out exactly. This is the only case where
this ic possible, however, When one looks at the charged scalar theory with no
recoil one cannot’write down the solution as a function of <76 , but it is useful
as in ordinary integration to_introduce a new variable for 9% o If one in fact
introduces a part of the‘sdlution as the variable of Integration, the integral
becomesban explicit functional integral which still cannot be done exactly;.
however one can makevfurther algebraic transformations of the remaining variables,
The first such transformation gives in fact an exact solution for the case of both
weak and strong coupling and hence something that should Le reasonable in the
intermediate region as well, The qualitetive properties of the singularities
turn out to be what one would expect from the discussion above. It appears that
a similar method will be workeble for pseudoscalar theory with recoil, only the

algebra gets very much more complex. Klein commented thst the functional inte-
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~gretion could also be carried out for the pair theory, but that the separation of
renormalizétion effects in this case was less explicit; it did have certain advan-
tages, however, in that the scattering could be obtained explicitly. Pelerls
noted that‘in the cases he has studied, if one gets anywhere near an explicit
solution one can very easily recognize the renormalization terms.

Oppenheimer added a brief comment about what Pelerls had said about the
propagator and what Feynman had said about how Violenﬁ the renormalization program is.
This is in connection with theories for which the renormalization can be done
explicitly and in which when the cutoff goes to infinity the connection between
the old coupling constant'and the new is not a happy one, In the case considered
by lee one gets singularities which are not of the kind that Pais and Uhlenbeck
worrled about and not of the kind that Pelerls has worried about. These singular-
ities happen to be tremendous; they move away as the coupling constant goes to
zero but with a finite coupling constant they are still around. This is another
illustration of the fact that when you go into a theory in a violent way with
strong renormalization you have no guarantee that the propagator will retain the
analytic character‘which Peierls described and which is heeded.

Feynman remarked that a student §f his had calculated the interaction of
‘scalar nucleons with mass zero scaler mesons, and if the self energy of the
nucleon is calculated ineluding recoil but with a cutoff, this self energy goes
negative for large coupling constants.,

Lehmann started his presentation ty remarking thet in spite of the various
statements we have had that something 15 way wrong with the existing field theories,
he feels it is important to find out just where the trouble is in order that this
part of the theory can be changed if possible. The problem is complicated since
even in the renormalizable theoriles one has to split off infinite terms, It is
therefore difficult to discuss whether solutions to these basic equations exist.

He has tried to reformulate the theory so that the theory contalns only finite
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parameters from the start and no renormalization is necessary. In order to do
this, it is necessary to avoid use of the field equations in terms of the Hamil-
tonian function. In theories with no stable bound states, one can express all
relevant quantities by means of the vacuum functions, that is the vacuum expec-
taﬁion values of time ordered operators. Usually one sets up equations for
these functions using the field equation and they contain renormalization con=
stants. ‘However Lehmamn has found it possible to set up these equations from
general reqﬁirements of Lorenz invariance the caqulity requirement; that is,
that the field operators commute at space like points, and an asymptotic cone-
dition on the matrix elements of the field operator in the remote past and the
remote future. The advantage of introducing these assumptions explicitly is
that one can then relax on some of them if something goes wrong., One expects
that if these equations for the vacuum functions have solutions at all, they
will have very many solutions since the interaction has not been specified
explicitly, He finds a set of time ordered equations which are non-linear; these
have some similarity to those found by Low for the meson theory which we have
already discussed in this session. (It was made clear in subsequent discussion
that although the Low equation as given above is for a specific interaction
linear in the meson field, it is readily generalizable to other interactions and
can be”ﬁritten down without specifying these in detail.,) In order to obtain
unique solutions, one can impose some condition on thése functions in addition
to those general requirements stated above, for example the asymptotic form in
momentum space, It is then possible to make a power series expansion of thé
solution and it can be shown that‘this power series expansion is identical with
the renormalized formulation of field theory. Lehmann feels it should be pos=

sible to derive the renormalized expressions from some set of finite equations
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directly; The real problem, of course, is to find a general proof that one can
have solutions which are not restricted toc perturbation theory expansionse

Lehmann feéls this discussion might well be facilitated by having finite equations
to work withe In comnection with the preﬁious discussion on difficulties with

the singularities in the propagators, Lehmann mentioned the case where in addi-
tion to the pole corresponding to the real mass of the particle, there is another

pole corresponding to a "ghost state® with a mass given by

_ C Ll

=4 VAR BN
where the coupling constant appearing in this expression is the renormalized
coupling constant. It would be interesting to know if this case corresponds to
the situation in quantum electrodynamics. Of course no one has solved this
problem in general, but one can treat an approximation in which this can be
worked out. In lLees! example where this happens, the exact propagation function
is given by the sum of a series of simple bubble diagrams. One can use the same

appfoximation in quantum electrodynamics and one then finds also that for any

2
e such a pole occurss This could be a possible source of trouble in the theory.

(End of theoretical session.)
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