
(Tuesday Afternoon: Theoretical Session, J. Schwinger presiding.) 

Klein presented the first paper in the session on the results which have 

been obtained by the past year from studying the renormalizable field theories 

in the low energy limit, that is the theorems on gamma ray scattering, photo 

meson production, and meson nucléon scattering. These investigations have 

served to clarify the meaning of the coupling constant in the meson theory, 

and those experiments which can be expected to determine this coupling constant. 

The techniques which have been used to date can also be extended to the problem 

of nuclear forces and other phenomena. Klein first presented a tabular summary 

of the theorems which have been proved, and then presented a typical demonstra­

tion of one of the theorems. These theorems all concern the scattering matrix 
2 

T(k), where k represents an external bosoavmomentum; T is proportional to the 

cross section. All the theorems are of the general structure that 
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where ^ is the scattering matrix, is the Born approximation result, and the 

mass which occurs is a renormalized mass characteristic of the system. The 

theorems state that as the momentum of the external boson k goes to zero and the 

mass of the external boson goes to zero that the scattering matrix is given by 

this Born approximation result. Thus to carry out a measurement of the coupling 

constant, one looks for a process which is first order in the electromagnetic 

or meson field, that is an experiment which is quadratic in the coupling con­

stant. The theorems which have been proved and their authors are listed in 

Table 1 . 
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The gamma ^arnma process is gamma ray scattering or meson scattering from a 

particle of spin l/2j Low remarked that the theorems.can easily be extended to 

particles with other spin. 

Klein then presented a paraphrase of a unified demonstration of all these 

theorems given by Schwinger, using as an example the gamma ray theorem. One has 

for the scattering matrix in this case the expression 

in this expression the é-^function is four dimensional, p and k refer to the 

proton momentum and photon momentum respectively, G is the Green 1s function in 
« 

the absence of the external field. Hence G ^ operating on the free particle 

spinnor u(p) gives zero unless there is some part of the second variational 

derivative which has a second order pole on the free particle energy shell. 

If one carries out the variational derivative, one obtains an expression such as 

that given by Gell-Mann or Goldbergerj then it becomes impossible to give a 

simple proof of the theorem. That is, the proof tfepends on the simple structure 

of G in the low energy limit. T 0 continue with the derivation of the Thomson 



theorem, m consider the free particle Green's function in the absence of the 

external field which is 

The statement that there is a stable state of motion of the system with mass m 

implies that the additional contribution JG is analytic in the neighborhood 

of Yp + n i - 0. In order to obtain the gamma ray scattering to zero order in 

the frequency, we need only know the dependence of G on a uniform electro­

magnetic potential. This can be obtained simply by allowing p to be replaced 

by p~e A. In this case the variational derivative can be replaced by an ordinary 

derivative and since G is still an analytic -function of p-e A, it can give no 

contribution at K p - - m except from the first term. 

In extending the theorem to first order in the frequency, it is more con-

venient to work with the second order Green's function 2m/(p 4~ m )•• Then the 

theorem states that to first order in the frequency it is sufficient to take 

One can easily see that there would be a contribution to the scattering if there 

were an additional term of the form Ĝ  A<5* F tjiat such a term would arise 

from an expansion to first order of an additional magnetic moment term. Hence 

if we have defined, the magnetic moment term appearing in the denominator cor­

rectly, it is impossible for such a term to appear. Ûf course one also needs 

that statement that.to first order in the frequency, G can only depend on crF 

and Ypj\this is riot immediately obvious but can be proved by invoking relativ-

istic invariance, gage invariance, and charged invariance.» In our expansion 

of G about Ĝ  , we can fall back on the statement that the next term must be 

an analytic function of Ĝ  alone because of our definition o f • Hence the 



first term which can occur is ^Ad* F, Ĝ jh which is second order in the 

frequency., There cannot be a term in AF 0 It is possible to have a term in 

but again in order not to give a contribution to the magnetic moment 
2 2 

we can show that the leading term must be G (<T F) , arid when one take? a 

variational derivative this term will not contribute in the order to which we 

are working. 

The essential content of all this is that simply by virtue of our defin­

ition of charge, mass, and magnetic moment, we have so determined the structure 

of G in the neighborhood of the singularity that there can be no further con­

tributions to it. The proof of the p wave theorem for meson scattering is 

entirely analogous. If one looks explicitly at the structure of the Green*s 

function, one finds that if it is second order in the meson wave function it 

cannot give p wave scattering, so that the analog to the gamma ray s wave theorem 

is the meson p wave theorem. One can further show that the Kroll-Rudermann 

theorem on photomeson production is the consequence of the p wave meson theorem 

and gauge invariance. 

Low then presented a summary of work that he and Chew have been doing. 

They had first intended to report on the Kroll-Rudermann theorem for p wave 

scattering, which has already been mentioned by Klein above. They believe this 

can be used to determine the coupling constant from the p wave meson nucléon 

scattering. The theorem states simply that 

They can prove that the correction term is finite as'w goes to zero, and that 
2 

the coefficient f is the Kroll-ftudermann renormalized coupling constant.. 

The theorem can be stated for all four p states and, including the correction term 

is of the form 



In the 33 ca^e i t can be proved in the static theory that the coefficient of the 

correction term is negative. This can also be proved in the re la t iv i s t i c theory, 

i f one neglects pairs and external nucléon reco i l . By external nucléon recoi l 

is meant the following. Consider the following diagram. 

Wo matter what occurs in the center of the diagram or how high the momenta, i f 

one can simply drop the term -*q, which corresponds to the momentum of the nucléon 

both at the beginning and the end of the diagram, then the sign of the correction 

term must be negative. Hence i f one can somehow find pair damping in the pseudo-

scalar meson theory, one can hope to obtain agreement between the theory and 

experiment. The coefficients of the correction term in the four states as given 

above are a consequence of the crossing theorem of Gell-Mann and Goldberger as 

applied to the p wave. By explici t calculation using the cutoff theory, the 

correction term coefficient x is found to be fa i r ly small. I t is presumably 

small in the re la t iv is t ic theory also at least at low energy. Hence i f the 

33 state is enhanced, the 11 state is depressed, and i f i t is not just if iable 

to use Born approximation on the 33 state, i t is also not just if iable to use i t 



on the 1 1 state. The above expression is therefore the form which the Kroll-

Rudermann theorem and the Gell-Mann Goldberger crossing theorem take for meson 

nucléon scattering. 

So far at least the Kroll~&udermann theorem for the photo effect does not 

appear to be as useful, since so far no way has been found to extrapolate it to 

zero. However it is possible using the cutoff theory to calculate the photo-

production explicitly and obtain an expression which, outside of dependence on 

masses, coupling constant, and magnetic moments, involves only the sine of 

the measured pion nucléon scattering phase shift. This expression is in re­

markable agreement with experiment in the low energy region. 

Low then turned to a great calculational advance which has been made in 

that an easily soluble equation has been found for the pion nucléon scattering. 

The equations do not produce divergences on interactions so long as pairs are 

neglected, so that the 1 1 equation is just as easy to solve as the 33 equation. 

Unfortunately the equations are non-linear so that at present it is not known 

whether they possess solutions in generalj however in all the special cases 

that have been tried so far, exact solutions can be found. 

For simplicity this equation will be derived using the static theory. 

In what follows the wave functions which are used are exact wave functions of 

the entire Hamiltonian. For example an exact incoming wave eigenstate with 

where f Q is the unrenormalized coupling constant and v(k) is the momentum cutoff 

n mesons and a physical nucléon present will be symbolized by 

and the matrix element of the interaction we are interested in will be 

Here 
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function of the theory. The claim is that the S matrix for the scattering is 

given by 

In order to derive the equation, Low had permission from Wick to use a trick 

of his which goes as follows, We write 

where &?L is the creation operator for the scattering state, substituting this 
f 

expression into the Schroedinger equation one obtains directly that 

Note, that although recoil can be included with no trouble, it is impossible to 

use this trick at present if there are pairs present, since no one knows how 

to write down correctly the asymptotic eigenstate in this case. Now having 

obtained an explicit solution, we substitute this into the matrix element giving 

Since is a function only of <T; t} J&>> it commutes with a^« However, since 

Cj?0 * s a physical nucléon, eigenstate, does not vanish because there 

are virtual mesons present in the meson cloud surrounding the nucieon. In fact 

one can show quite easily that 

This expression holds provided that the total Hamiltonian is normalized to be 

zero operating on a free nucléon state* Thus the scattering matrix becomes 



The first term is normal, corresponding to absorption with a normal energy denom­

inator and- then emission of the final meson, whereas the second term corresponds 

to the final meson being emitted before the in i t ia l meson is absorbed. In order 

to evaluate the energy denominators one introduces the projection operators for 

the scattering eigenstates, that is the eigenstates of the complete Hamiltonian, 

by writing 

In this one meson approximation, the equation for the phase shift can be 

obtained immediately and is 

The term in this equation which couples the phase shifts of different momentum 

and isotopic spin is the term which enables this equation to satisfy the Gell-

Mann-Qoldberger crossing theorem. That i s , thanks to this term i f you inter­

change q and k and the isotopic spin / £ and ^ and change the sign of Uf9 

the equation is reproduced. Note that in the static theory the 13 and 31 

Note that when we have the terms corresponding to 1 meson scattering states this 

gives us immediately an integral equation for the matrix element. Note in par­

ticular that the k dependence of the matrix element and of the equation is 

t r i v i a l , which leads to a tremendous simplification for the static theory. 

I f in particular we restrict ourselves to the approximation of keeping only 

those intermediate states in which there is one meson present asymptotically, 

one obtains an equation for the q state i t se l f involving only the q state. 

(That i s , i f one solves this equation once, one has immediately solved for the 

momentum dependence of the phase shifts over the entire range where the equa­

tion is applicable.) 
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scattering states are identical so that there are only 3 phase shifts. The 

relat ivis t ic theory without recoil has the same property since in Born approx­

imation one has this property and the Gell4fenn-Goldberger theorem insures i t 

for the correction term. The.matrix coupling the different phase shifts is 

and the coefficient is given by Born approximation, that is 

Note that the Gel1-Mann-Goldberger crossing theorem states that must be 

an eigenvector of IL^ with eigenvalue -JLj that i s , for even powers of £4/the 

eigenvalue is -M and for odd powers ~ l f If one now substitutes into this 

equation the state in which no mesons are present one obtains simply 4̂ 

but according to a l l the standard methods of renormalization we 

have 

Hence the equation we have written down above contains the renormalized coupling 

constant. I f the coupling term & is dropped the equation can be solved 

exactly, with one numerical integral. This numerical integral turns out to be 

the original one Chew wrote down to give the phase shifts, which was presented 

at this conference a couple of years ago, That is Chew*s original equation in 

the zero order approximation In the iteration solution of this equation. 



The equation which can be solved exactly has the form 

Its solution is simply 

The approach to solving the equations with the coupling term A present is to 

make a reasonable guess at the effect of the coupling and put this into the 

Born approximation for the non-linear equation; then an equivalent equation can 

be found which can be solved. It is possible to do the integrals, so that 

relatively complicated guesses can be done quite easily and the consistency of 

these checked. This in fact is how the one meson approximation results given 

in the pion session by Chew were obtained. 

It is also possible to find a simple equation for the photo meson produc­

tion problem and to solve it in a very good approximation. The matrix element 

which is calculated is 

and is given in this approximation by the expression 

The two terms in the curly braces are the Born approximation: the first of 

these is the Kroll-Rudermann term and the second is the term which comes from the p 

wave low energy iimit theorem. The only important correction to this result is 

given in the third term and arises from the 33 state. Low believes that this 

result is, in fact, much more general than the one meson approximation. Two 

meson corrections were estimated for the scattering in the forward direction 



in Born approximation, and are about 15$, but so far these corrections have not 

been estimated for the photoproduction problem. The anomolous magnetic moments 

of neutron and proton appear in the formula because the calculation was done 

using the relativistic theory and the entire current between the two nucléon 

states; the terms which gave rise to this coefficient then could be identified 

as the static moment of the nucléon to order (v/c) • Low does not believe 

this is the same as introducing a Pauli moment into the calculation since that 

would give transitions to negative energy states, which have not been allowed 

for here. 

To summarize what has been proved by Low and Chew: first it has been shown 

that if the function of the phase shifts given above is extrapolated to zero for 
2 

all four p states, this should give the same f ; second if one can neglect pairs 

in the relativistic theory then the slope of the extrapolated straight line has 

the correct sign to give the resonant solution for the 33 state; third it has 

been proved that a third parameter is needed to give the phase shifts in this 

linear approximation for the other three p states. Finally this calculation 

makes it much clearer why the cutoff theory is in such good agreement with the 

experiment, since the two free parameters of the theory can be used to give tte 

correct intercept and slope for the effective range function of the 33 state. 

Serber then reported on a calculation of Lee and Friedman which is a dif­

ferent approximation to the same mathematical problem 1 tackled by Chew and Low, 

that is the cutoff meson theory. They are interested primarily in doing a cal­

culation of multiple meson production in the Bloch-Nordsiek approximation but 

in order to get parameters for this calculation, they have calculated the 

Tomonaga approximation to meson scattering with a finite source. The radial 

dependence of the wave function is factored out, and its Fourier transform is 



Here M is the normalisation constant chosen so that / £ f - / > 

u(k) ia a square cutoff function, and the parameter ^ is detenrdned by a varia­

tional equation. In order to fit the 33 scattering, the cutoff had to be chosen 

as 6 . 2 ^ / , the unrenormaliaed coupling constant vas 0-712, the ratio Z2/Z^ — 0.3S4, 

and hence the renormalized coupling constant is 0.105. It is interesting to 

recall that in the extreme strong coupling limit ^ \ * s ^ * * n ^ a c^> strong 

coupling is a good approximation to this part of the problem. This is similar 

to other results, such as for example Watson found in scattering, that the 

strong and the weak coupling approximation give the same result except for a 

numerical factor* Also the location of the peaks of the wave functions agrees 

with the strong coupling result; however, the wave functions are wider and have 

longer tails. On the other hand, since for the weak or strong coupling limit 

the parameter )\ is zero, this result is rather far from either limit in 

that sense. 

In order to calculate the anomalous magnetic moments, the electromagnetic 

field is introduced in a gauge invariant way. The particular method chosen is 

such ttet only the term (jr
jne60n^) contributes to the calculation of the 

anomalous moments. The result is3L If this calculation were done the 

way Pauli and Dancoff did it, you would add .16 to this result. The strong 

coupling limit would give the anomalous moment of the proton as 2.76; the dif­

ference here is primarily due to the fact that the parameter X is 3.39 instead 

of zero. The average number of mesons in the field is of the order of two, but 

because of the- tail on the wave functions the probability amplitudes for more 

mesons in the field are important. 



The results for the p phase shifts as the function of energy are gi\m in 

Table 2* 

I f one makes a plot of £^33 using these values and the Chew-Low function, this 

does not give a straight line and does not extrapolate back to the correct value 

of the coupling constant* Another anomaly is that O^n is posi t ive, and there­

fore to satisfy the low energy l imit theorem and also the Gell-Mann and Goldberger 

crossing theorem, w i l l have to change sign at some lower energy., Hence these 

resMts either indicate that effect ive range theory is a bad approximation to 

this problem, or that the Tomonaga approach does not yield adequate results, 

Feynman then suggested another approximation approach to this problem. 

I f one neglects nucléon recoi l and so on as is being done here, then you are 

calculating the properties of the following operator 

where 

The Tomonaga approximation consists of replacing this function by an exponential. 

However, i f you actually plot the logarithm of this function, you find that i t 

is made up of the sum of two exponentials, one of which has a very rapid variation 

determined essentially by the cutoff mass, and superimposed on this a very slowly 

varying weak t a i l . Therefore i t would seem reasonable to use the exponential 



approximation for the strongly varying part of the function, which you are not 

interested in, and after you have taken care of this,treat the weak tail as a 

perturbation; all the difficulty of the problem and all the labor is involved 

in the first part which is precisely the part you are not actually interested in, 

Breit then reported on an investigation of the corrections to be expected 

in the coulomb scattering of two protons due to relativistic effects. If one 

were to calculate in the center of mass system and ignore pairs, presumably one 

should obtain Miller's matrix element. However if one tries to do this it is 

not so immediate. One has the equation 

This would be easy to solve were it not for the fact that the Miller matrix 

calculating the wave function in momentum space and transforming to coordinate 

Hence when k-rko there are quaaratically divergent termsj so if one tries to 

solve by an iteration procedure, one would never obtain the phase shifts 

characteristic of the old-fashioned Gordon-Mott solution in the non-relativistic 

limit. One could presumably introduce an artificial coordinate intermediate 

variable and solve the problem in much the same way as. was done by Mott and 

Gordon in the non-relativistic case. However it is simpler to use a connection 

between the energy and the phase shifts. If one has a quantizing sphere, then 

the number of wave lengths of the wave functions inside this sphere will be 

very large compared to the radius of the sphere. If one introduces a small shift 

in the energy, then in order to keep the same number of nodes in the wave 

functions and hence the same quantum numbers one gets a connection between the 

element M contains factors like l/(pi - Pi«) • Using Dirac fs method for 
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Expanding this one 



phase shifts and the energy. To first order one obtains a characteristic 

asymptotic lorm for the coulomb wave functions namely 

Hence all that is needed to solve the problem is an expression for the change 

in energy* To first order this change in energy is simply given by theiimatrix 

elements of I jgf QlT hjppf & If one uses wave functions of 

the same energy, ^ is infinite so that the cosine factor does not appear. 

One. obtains in this way a change in phase given by 

hence one has that 

where "2r is the velocity of the first proton in the laboratory system, a result 

already deduced by Garren. This is a l l there is to it for singlet states. 

However for triplet states, one has 

If one disregards (temporarily) 

the combination 

the factor for singlets giving 

by means. oJ 

reproducing 



The essential point to note about this result is that in the triplet scattering 

there are L.S and tensor-like terms which can couple states of different angular 

momentum. 

is related to a gauge transformation. This has already been discussed in a 

published paper in connection with isotopic spin conservation. The essential 

point is that the conservation law is related to invariance under certain trans­

formations, which implies that there is some indeterminacy in the phase. What has 

to be asked is whether this ihde te rminat ene s s of phase should have a local 

character. This idea dan also be applied to the conservation of heavy particles. 

I f i ou asked what group of transformations generates the conservation of heavy 

particler the simplest one is the transformation 

where the phase is the same for both neutrons and protons. If the phase depends 

on space time it is easy to show and in order to preserve invariance, one needs 

to introduce a vector field with zero charge and zero mass. In this case there 

is no complication such as the non-linear terms which arose in the case of iso-

topic spin. The consequence of this vector field is a heavy particle number 

associated with any system and.a repulsive force between any two objects. If the 

number of nucléons in the two objects are A^ and Ag this force plus the gravita­

tional force will then be 

Since M and A are not strictly proportional, the observational consequence of this 

would be in apparent difference between gravitational and inertial mass for differ­

ent objects. This vas studied experimentally quite extensively by Eotvos up to 

about 1920 and he found that the ratio between gravitational and inertial mass is 

constant for all objects with an accuracy of 1 part in 10 * Since the packing 

fraction in nuclei varies by a factor of 1000, this means that the repulsive 

force postulated here can be at most only 10~ 5 of the gravitational force. TM« 

Yang raised the question of whether it is true that every conservation law 
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accuracy could be sharpened by comparing objects with a very large difference 

in packing fraction directly, such as hydrogen and oxygen. The negative exper-

imcntal results seem to indicate either that the idea that every conservation law 

is associated with a gauge transformation is groundless, or that one needs to 

look for another type of group to generate the constitution of heavy particles. 

In reply to a question of Feynman fs, Yang noted that the coupling constant 

associated with this force cannot go to zero since then the phase, which is 

proportional to the coupling constant, vanishes and one cannot preserve the 

invariance. In response to a question of Breit's as to whether this violates 

the principle of equivalence, Oppenheimer noted that there is no difficulty 

here since the transformation law obeyed by this field is different from that of 

the gravitational field. He noted however that there might be a much more sensi­

tive test, in that with a vector field velocity dependent effects could be 

quite large in nuclei, and these might contribute terms which would go the other 

way from the static term given here. Foldy raised the point that since the sun 

is largely composed of hydrogen, one might also, be able to find a sensitive 

test in astronomical effects. 

Fierz had some remarks to make on the dangers of using certain models to 

give a clue as to the behavior of quantum electrodynamics. For example Thirring 

has shown that part of the propagation function of the theory whose Hamiltonian 

is 

cannot be expanded in powers of the so-called coupling constant. However one 

can see very immediately that such a theory cannot be developed at all in powers 

of the coupling constant. In such a theory the classical limit is contained, 

so one can simply look at the classical theory. The energy of such a field is 

not positive definite, so it is always possible to make the system unstable* One 

can write down the solutions of the classical theory and show in fact .that they 
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can never be developed in powers of the coupling constant. If one used instead 

a #tyh coupling term, then the energy is positive definite but G-0 is an 

essential singularity of the theory, since if the sign of G is reversed one 

again gets instability. However one canft conclude anything about quantum 

electrodynamics from such a model. In the Pauli-Weicskopf theory the energy 

essentially must be positive definite no matter what you assume about the 

value of the charge. Because of gauge and energy conservation the fields are 

always limited. However in Dirac theory there is no classical limit and such 

arguments cannot be used. So Fierz wanted to warn that it is probably a bad idea 

to try to draw any conclusions about quantum electrodynamics from such models « 

Feynman talked about possible ways you might start to calculate the specific 

relativistic theory with the Interaction given by ^ (p ^5 ^ 

There is lots of evidence that this theory is wrong and Feynman doesnst believe 

it, so this is presented in case someone else wants to calculate this theory. 

In the first place the existence of the strange particles shows that the inter­

action between 7T meson and proton is not completely described by this theory, 

to put it mildly. Secondly the successes of Chew have shown that nature is 

correctly represented if the interaction is predominately through P waves and the 

S interaction is extremely small* Yet in this theory almost certainly the S 

wave will be large. Further Feynman does not like the theory because it is9so 

close to electrodynamics; you just replace by *6 ^ and introduce a mass 

into the propagator and nature certainly has a better imagination than that« 

Finally all honest attempts to solve this theory which donft start with perturba­

tion theory and expect to improve on what you start with (which is evidently 

false with the coupling constant <bfethe order of 10) but start at the other end* 

fall flat on their face after a few stages, and one comes to the conclusion as 

Wentzel has that the consequences of this theory, if they could be worked out, 

would, be completely different from what nature looks like. 



-?6-

The specific approach Feynman reported on was a way to include the contribution 

due to closed loops before you start the calculation. This is usually ignored in 

the Tamm-Dancoff calculations which have been done, but can be handled in the fol­

lowing way. The usual action used in the theory is 

where the wave function that occurs here is the.wave function customarily used 

multiplied by the coupling constant of the theory* Usually one starts with this 

action and then calculates the effect of closed loops; this is equivalent to 

using another action in calculating without the inclusion of closed loops. Hence 

if this new action is very different from the old one, this takes the carpet out 

from under anyone who calculates ignoring any closed loops. Consider for example 

a particle moving from point 1 to point 2 through a fixed (i.e. not quantized) 

external field. If we denote the action with no field by T then we have 

whereby T^ we mean the action with no closed loops present and 

Here F is the amplitude to go around any loop completely. If <j> is small com­

pared to M, then it is a good approximation to expand in power series in <j> and 

all the grediant terras are easily included. On physical grounds one would expect 

that, if this theory is ever going to work, in some region the gradiant of the 

wave function should be of the order of^/Uu* For example for the usual static 

theory the wave function is the order of j/. and the ratio of the gradiant of the 

wave function to the wave function itself is also of the order of JU. The loop 

contribution is essentially an average of <j) over a region of the order of ^ , 
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sô that the first approximation is to assume <p~ constant. I f one calculates this 

one obtains 

The first correction terms due to the gradient are 

Feynman has also calculated the fourth order corrections, although these were 

not give n« 

What are the consequences of having this new action? One had hoped that in 

some crude sense one would have a new action of the form 

where g-j aaà^/c^ are new constants; but does the new action in fact look like 

this? Note that the constants which appear here are not yet the experimental 

constants since further renormalizations have to be carried out, but one can 

get some idea, presumably, of what is going on i f one substitutes the experimental 

constants in the above .expressions. One finds that in fact the results are very 

different from what one would hope to find and i t is sheer wishful thinking to 

believe that the next renormalization operation would bring about agreement 

between the modified action and what we are looking for. I f one introduces the 

cutoff, then the new constants are related to the unrenormalized ones by match­

ing the terms as <j> goes to zero and as the gradient of j> goes to zero* These 

give the two expressions 



However if one actually adjusts the new coupling constant in order to fit these 

equations, then one finds that it is no longer true that to the sixth and higher 

terms are negligible, that is i f you carry out the renormalization you make the 

original action so small as to allow the correction terms to completely dominate 

the desired result, and have completely changed the physics of the situation. 

This situation is illustrated in Table 3 where the renormalized Lagrangian is 

given for certain order of magnitude for the field and the gradiant of the field 

in comparison with the various closed loop contributions. 

It is clear from this that unless something very peculiar happens with the next 

renormalization the situation is hopeless. Dyson commented that he had approached 

the theory of nuclear saturation using very similar ideas and had also run into 

precisely this kind of situation and these kind of numbers. Feynman summarized 

by saying, that almost certainly if you permit a cutoff and chcfèe it to be, say, 

of order of 2M and require g to be positive and allow any theoretical mass, 

then he believes you can disprove the relativistic $r*meson theory. 



Peierls reported on some general considerations about what the general 

features of the propagator in the meson nucléon theory must look like, in par­

ticular as to where its singularities must lie. One knows of course to begin 

with that it is the function of If p. In the complex plane it has a pole at M, 

and also at ÏÏ+£jt it must have a branch point, where one is at threshold for 

single meson production, a branch point at M , which is threshold for double 

meson production and so on. If the coupling is strong enough so that there are 

real isobaric states in the theory, then these will contribute either poles or 

branch points as well depending on what the selection rules are. What happens 

if one has virtual isobaric states with a finite lifetime and hence a complex 

energy? It Would seem obvious, off hand, that these should also give poles in 

the complex plane. However one has against this the following arguments? that 

in.the first place the upper half plane is free of poles as Lehmann has proved, 

and secondly that one can see from the way the'equations look that the whole 

plane is symmetric about the real axis, so one concludes there can be no poles 

in the whole complex plane, except along the axis. Thus it seems there are two 

contradictory conclusions, but these can be reconciled if one remembers that one 

is dealing with ambiguous functions which involved a square root. While one gets 

no poles in the functions as they appear in the expressions considered here, 

if one continues these functions instead on to the other portion of the Reimann 

surface, it turns out that one indeed finds the poles there corresponding to 

virtual isobaric states. Some of these poles are fixed and others depend on the 

resonance levels of the system. It is important to know where these poles are, 

of course, since they can very drastically limit the region in which expansions 

are possible. 
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Peierls then reported on some work of Sal am very briefly, and a more detailed 

write up is given here. 

The investigation which I wish to describe started from the work of Edv/ards 

and Peierls, who set out to solve the functional differential equations proposed 

by Schwinger (Proc. Nat. Acad. Sciences) for the one particle Green*s Function. 

They succeeded in obtaining a solution to the equations if all closed loops are 

neglected. Dr. Mathews and myself tried to include them and found that the 

simplest procedure is to start from the definition of the Greenes function in 

terms.of Feynman*s "sum over paths 1 1 formulation, rather than from the differential 

equation approach. In Feynman fs formulation, the Green fs function 

is defined as 

The integral on the right denotes summation over all fields 

I is the total action 

N is a normalizing constant, which equals 

<f> and <•/> are to be treated as classical quantities, except that the fermi fields 

have a prescribed order and two such fields anticommute. The and lp inte­

grations can readily be performed giving tjae final results 

The fields 

Here S F ( 1,2;^) is the one particle Green*s function in an external field j> , 

X k is the action for a Bose field <p and D(<£> ) the vacuum to vacuum transition 

amplitude in our external <f) field. D ( ^ ) turns out to be the Fredholm determin­

ant for an integral equation with the kernel ^ / S p '̂i *) $ | # (Here we 
assume <^Z~fi ~ *} & & $ , for simplicity) The result obtained by 

Edwards and Peierls, iru which closed loops were neglected, is obtained from the 



present result in replacing D(a> ) by 1 . 

The n particle Green's function,, likewise turns out to be 

The Fredholm determinant can be written in the form of an exponential 

Peierls reported on some work that Edwards has been doing along these lines. 

Since in order to use the above approach one needs to know the Greenes function 

in an arbitrary meson field, this approach would at first sight appear hopeless 

for an actual calculation, but it is in fact not quite so hopeless as it seems « 

Starting with the simplest case, that is the netural scalar theory with no recoil, 

one can in fact obtain the linear differential equation of the first order which, 

can be solved exactly, and when the solution is introduced into the functional 

integration, this can also be carried out exactly. This is the only case where 

this is possible, however. When one looks at the charged scalar theory with no 

recoil one cannot write down the solution as a function of ^ ; but it is useful 

introduces a part of the solution as the variable of integration, the integral 

becomes an explicit functional integral which still cannot be done exactly;, 

however one can make further algebraic transformations of the remaining variables. 

The first such transformation gives in fact an exact solution for the case of both 

weak and strong coupling and hence something that should bo reasonable in the 

intermediate region as well. The qualitative properties of the singularities 

turn out to be what one would expect from the discussion above. It appears that 

a similar method will be workable for pseudoscalar theory with recoil, only the 

algebra gets very much more complex. Klein commented that the functional inte-

as in ordinary integration to introduce a new variable for If one in fact 

and this is the form which Feynman used in his talk. This 

representation is certainly valid if 
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gration could also be carried out for the pair theory, but that the separation of 

reformaiization effects in this cas*3 was less explicit; it did have certain advan­

tages, however, in that the scattering could be obtained explicitly* Peierls 

noted that in the cases he has studied, if one gets anywhere near an explicit 

solution one can very easily recognize the renormalization terms* 

Oppenheimer added a brief comment about what Peierls had said about the 

propagator and what Feynman had said about how violent the renormalization program is* 

This is in connection with theories for which the renormalization can be done 

explicitly and in which when the cutoff goes to infinity the connection between 

the old coupling constant and the new is not a happy one, In the case considered 

by Lee one gets singularities which are not of the kind that Pais and Uhlenbeck 

worried about and not of the kind that Peierls has worried about• These singular­

ities happen to be tremendous; they move away as the coupling constant goes to 

sero but with a finite coupling constant they are still around. This is another 

illustration of the fact that when you go into a theory in a violent way with 

strong renormalization you have no guarantee that the propagator will retain the 

analytic character which Peierls described and which is needed. 

Feynman remarked that a student of his had calculated the interaction of 

scalar nucléons with mass zero scalar mesons, and if the self energy of the 

nucléon is calculated including recoil but with a cutoff, this self energy goes 

negative for large coupling constants. 

lehmann started his presentation by remarking that in spite of the various 

statements we have had that something is way wrong with the existing field theories, 

he feels it is important to find out just where the trouble is in order that this 

part of the theory can be changed if possible. The problem is complicated since 

even in the renormalizable theories one has to split off infinite terms* It is 

therefore difficult to discuss whether solutions to these basic equations exist* 

He has tried to reformulate the theory so that the theory contains only finite 



parameters from the start and no renormalization is necessary. In order to do 

this, it is necessary to avoid use of the field equations in terms of the Harail« 

tonian function* In theories with no stable bound states, one can express all 

relevant quantities by means of the vacuum functions, that is the vacuum expec­

tation values of time ordered operators* Usually one sets up equations for 

these functions using the field equation and they contain renormalization con~> 

stants* However Lehmann has found it possible to set up these equations from 

general requirements of Lorenz invariance the causality requirement^ that is* 

that the field operators commute at space like points, and an asymptotic con« 

dition on the matrix elements of the field operator in the remote past and the 

remote future* The advantage of introducing these assumptions explicitly is 

that one can then relax on some of them if something goes wrong* Que expects 

that if these equations for the vacuum functions have solutions at all, they 

will have very many solutions since the interaction has not been specified 

explicitly* He finds a set of time ordered equations which are non-linearj these 

have some similarity to those found by Low for the meson theory which we have 

already discussed in this session* (It was made clear in subsequent discussion 

that although the Low equation as given above is for a specific interaction 

linear in the meson field, it is readily generalizable to other interactions and 

can be written down without specifying these in detail*) In order to obtain 

unique solutions, one can impose some condition on these functions in addition 

to those general requirements stated above, for example the asymptotic form in 

momentum space* It is then possible to make a power series expansion of the 

solution and it can be shown that this power series expansion is identical with 

the renormalized formulation of field theory* Lehmann feels it should be pos­

sible to derive the renormalized expressions from some set of finite equations 
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directly* ïhe real problem, of course, is to find a general proof that one can 

have solutions which are not restricted to perturbation theory expansions* 

Lehmann feels this discussion might well be facilitated by having finite equations 

to work with* In connection with the previous discussion on difficulties with 

the singularities in the propagators, lafrmann mentioned the case where in addi­

tion to the pole corresponding to the real mass of the particle, there is another 

pole corresponding to a "ghost state** with a mass given by 

where the coupling constant appearing in this expression is the renormalized 

coupling constant* It would be interesting to know if this case corresponds to 

the situation in quantum electrod3ma2d.es© Of course no one has solved this 

problem in general, but one can treat an approximation in which this can be 

woiked out* In Lees8 example where this happens, the exact propagation function 

is given by the sum of a series of simple bubble diagrams* One can use the same 

approximation in quantum electrodynamics and one then finds also that far any 

2 

e such a pole occurs* This could be a possible source of trouble in the theory* 

(End of theoretical session.) 
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