

## Study of ring-like and jet-like events in heavy-ion collisions using R/S analysis technique

A. Ahmed<sup>1</sup>, N. Subba<sup>1</sup>, T. Biswas<sup>1</sup>, A.N. Tawfik<sup>2</sup>, and P.K. Haldar<sup>1\*</sup>

<sup>1</sup>Department of Physics, Cooch Behar Panchanan Barma University,

Panchanan Nagar, Vivekananda Street, Cooch Behar, 736101, India and

<sup>2</sup>Future University in Egypt (FUE), Fifth Settlement, 11835 New Cairo, Egypt

### Introduction

The intricate dynamics of multiparticle production processes can be studied using heavy-ion collisions at relativistic energies. Two types of substructures were revealed in relativistic heavy ion collisions, which might be referred to as “jet-like” and “ring-like” substructures [1]. The “ring-like” substructures are the result of multiple pions being produced in confined places along the rapidity ( $y$ ) axis and then diluted across the entire azimuth. In the case of “jet-like” substructures, pions are emitted in a narrow area along both pseudorapidity ( $\eta$ ) and azimuth ( $\phi$ ).

In the last few years, complex network analysis has enabled a paradigm shift in the analysis of high energy heavy-ion collisions. Many novel techniques have been introduced to investigate the fractal structure and long-range relationships of time series. The term “fractal” was first used by Mandelbrot [2]. An index, which is termed as fractal dimension  $D$ , can be used to characterise fractal patterns. Such a fractal dimension has an numerous application in several fields, including medicine, human physiology, etc. Fractal dimension  $D$  is introduced, by which we can get information regarding experimental datasets. Knowledge of the multifractal spectrum is, in theory, totally similar to knowledge of the stochastic process. In case self-similar time series, the relationship between the Hurst exponent  $H$  and the fractal dimension  $D$  can be expressed as  $D = 2 - H$ . This Hurst exponent ( $H$ ) is used

to quantify the smoothness of fractal objects. If the value of  $H > 0.5$ , then it indicates the persistency of the time series and if  $H < 0.5$ , then it is called anti-persistent. In this analysis we have used experimental datasets from  $^{16}O - Ag/Br$  interactions at 60 AGeV [3] and we compared the experimental findings with the Monte Carlo simulated event samples.

### Method of Analysis

Arold Edwin H. Hurst introduced the rescale range analysis method[4], which is the most well-known as well as oldest method for the study of complex network analysis. The details analysis are given in ref [4]. Here, we just state the important relation from the R/S analysis method. The entirety of the statistical information can be summed up in the five steps that are given in detailed below:

- Consider a set of data with  $N$  nodes, each of which is represented as  $X_N = (x_i)$ . From these nodes  $N$ , a sub-series with  $M$  number of nodes is defined such as  $Y_M = (y_j)$ , where  $M = sN$ , and  $s \in (0, 1)$ .
- Then, the mean of this sub-series is calculated using the expression  

$$\bar{y}_s = \frac{1}{M} \sum_{k=1}^M y_k.$$
- Create a cumulative data series of the partial summations  

$$z_i = \sum_{k=1}^i y_k \sim \bar{y}_s \quad \text{where} \quad i = 1, 2, \dots, M.$$
- The range can then be obtained as  

$$R_s = \max z_i - \min z_i.$$

\*Electronic address: [prabirkhaldar@gmail.com](mailto:prabirkhaldar@gmail.com)

- The range is rescaled by the standard deviation  $\sigma_s$ , such as  $(R/S)_s = \frac{R_s}{\sigma_s}$ .

where the sample standard deviation  $\sigma_s$  is given by

$$\sigma_s = \left[ \frac{1}{M} \sum_{k=1}^M (y_k - \bar{y}_s)^2 \right]^{\frac{1}{2}}$$

## Discussions

In order to investigate the fractal behaviour of the multi-particle production dynamics, the rescaled range method is applied to the experimental datasets of  $^{16}\text{O} - \text{Ag}/\text{Br}$  interactions at 60 AGeV.

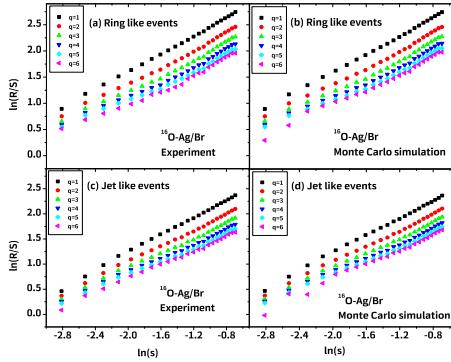



FIG. 1: Variations of  $\ln(R/S)$  with  $\ln(s)$  for ring-like and jet-like events

In addition to the experimental data, the equivalent Monte Carlo simulation data is also being examined and compared. In this case, the rescaled range was calculated using a large number of randomly selected subsamples with scales  $s$  ranging from 0.06 to 0.5 with an interval of 0.01.

The rescaled range ( $R/S$ ) is calculated for a variety of scale  $s$  for a specified  $q$ -norm of a randomly selected subsample of events. Then, in that case, it is averaged over a sub-sample. Such calculations are performed for each event and then averaged across all events. Then the logarithm of rescaled range  $\ln(R/S)$  are drawn against  $\ln(s)$ , which is shown in Fig. 1. In Fig. 2, we have plotted the variation of

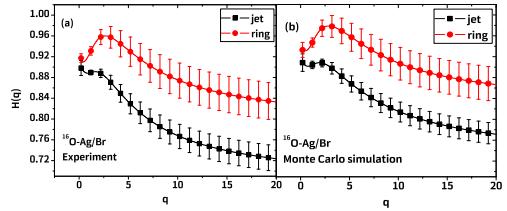



FIG. 2: Variation of Hurst exponent ( $H_q$ ) with respect to  $q$

$H(q)$  vs.  $q$  for both the ring-like and jet-like events in case of  $^{16}\text{O} - \text{Ag}/\text{Br}$  interactions at 60 A GeV for both experimental as well as Monte Carlo simulated data respectively. From the figure, it is evident that the ring-like events are more multifractal compared to the jet-like events for both experimental and MC simulated data. From the study, it has been found that for  $^{16}\text{O} - \text{Ag}/\text{Br}$  interactions at 60 AGeV the ring-like events show more persistence compared to the jet-like events for both the experimental and Monte Carlo simulated datasets.

## Acknowledgments

One of the authors (A.Ahmed) expresses gratitude for the financial assistance provided by the Government of West Bengal, India, in accordance with G.O. No. 52-Edn(B)/5B-15/2017 dated 7.6.2017 read with 65-Edn(B)/5-15/2017 dated 11.7.2017 for the Swami Vivekananda Merit-cum-Means Scholarship.

## References

- [1] D. Ghosh, A. Deb, P.K. Haldar, S. Guptaroy, *Indian Journal of Physics* **80** 807-813 (2006).
- [2] B.B. Mandelbrot *New York: Academic Press* (1983).
- [3] N. Subba, A. Ahmed, P.K. Haldar, A.N. Tawfik, *Int. J. Mod. Phys. E* **30**(1) 2150002 (2021).
- [4] H.E. Hurst, *Trans. Am. Soc. Civ. Eng.* **116** 770 (1951).