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Abstract: This paper explores the application of quantum game theory to optimize cloud
resource allocation. By leveraging the principles of quantum mechanics, the proposed
framework aims to enhance efficiency, reduce costs, and improve scalability in cloud
computing environments. The study introduces a quantum-based game-theoretic model
and compares its performance with classical approaches. The results demonstrate signif-
icant improvements in resource utilization and decision-making efficiency. While prior
works have explored classical game theory and auction-based methods, this study is
among the first to implement quantum game theory in a practical cloud computing context,
propose a resource allocation mechanism that incorporates both fairness and efficiency
while leveraging the computational advantages of quantum systems, and highlight the
strategic benefits of quantum entanglement in fostering collaboration between competing
entities in cloud environments. This work not only addresses the current limitations of
resource allocation but also redefines the possibilities for optimization in complex sys-
tems, making a substantial contribution to both quantum computing and cloud resource
management domains.

Keywords: quantum computing; game theory; cloud resource allocation; classical game theory

MSC: 68Q09; 91A99; 68U99

1. Introduction
1.1. Background on Cloud Resource Allocation

In the era of rapid technological advancements, cloud computing has emerged as
a cornerstone of modern IT infrastructure [1]. It offers scalable, on-demand access to
computing resources, enabling businesses to operate with flexibility and efficiency. Cloud
service providers (CSPs) manage vast pools of computational resources, which are dy-
namically allocated to meet the varying demands of users. Efficient resource allocation is
crucial to ensuring optimal performance, cost-effectiveness, and user satisfaction in cloud
environments [2,3].
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Traditionally, resource allocation in the cloud has been addressed using various ap-
proaches, including heuristic-based methods, auction models, and machine learning algo-
rithms. These methods aim to allocate resources such as processing power, memory, and
storage to users in a way that maximizes resource utilization while minimizing costs. How-
ever, as cloud computing environments grow in complexity and scale, traditional resource
allocation methods face significant challenges [4]. These include handling large-scale data,
managing multi-tenancy, dealing with the variability of demand, and ensuring fairness
and efficiency. In [5,6], the authors conducted an experimental analysis using quantum
key distribution (QKD) [6] to enhance the security of mobile ad hoc networks (MANETS),
demonstrating significant improvements in securing dynamic, decentralized networks.

1.2. Challenges in Classical Resource Allocation

One of the key challenges in classical resource allocation lies in the inherent trade-
offs between conflicting objectives. For instance, optimizing resource allocation for cost
efficiency may compromise performance, while prioritizing performance could lead to
underutilization of resources. Moreover, the dynamic and unpredictable nature of cloud
workloads makes it difficult to maintain an optimal balance. The complexity of managing
these trade-offs is exacerbated by the increasing heterogeneity of cloud environments,
where diverse applications with varying requirements compete for shared resources.

Game theory, a mathematical framework for modeling strategic interactions among
rational agents, has been used to address some of these challenges. In cloud comput-
ing, game theory models can be used to predict and optimize the behavior of different
stakeholders, such as cloud providers and users, in resource allocation scenarios. By
treating resource allocation as a game, in which each participant aims to maximize their
utility, game theory provides a structured approach to finding equilibrium solutions that
balance competing interests. However, classical game theory has limitations when ap-
plied to large-scale, complex systems such as cloud computing. Ref. [7] explored the
integration of large language models in quantum architecture design, demonstrating how
these models can optimize the development of quantum algorithms through advanced
computational strategies.

1.3. Introduction to Quantum Game Theory

Quantum computing, an emerging paradigm that utilizes the principles of quantum
mechanics, promises to revolutionize the field of computation. Unlike classical computers,
which process information using bits that represent either 0 or 1, quantum computers
use quantum bits, or qubits, which can represent and process a combination of states
simultaneously due to superposition. This allows quantum computers to perform certain
types of calculations exponentially faster than their classical counterparts [8].

Quantum game theory is a novel extension of classical game theory that incorporates
the principles of quantum mechanics. In quantum game theory, players can make use of
quantum strategies, which involve entangled states and superposition, to achieve outcomes
that are impossible or inefficient in classical settings. This adds a new dimension to strategic
interactions, enabling more efficient exploration of the solution space and potentially
leading to better equilibria [9,10].

In the context of cloud resource allocation, quantum game theory offers a promising
approach to overcoming the limitations of classical methods [11]. Using quantum strategies,
it is possible to optimize resource allocation in a way that balances conflicting objectives
more effectively and adapts to the dynamic nature of cloud environments.
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1.4. Motivation

The motivation for this study comes from the need to address the growing challenges
of resource allocation in cloud computing. As cloud environments become more complex,
there is a pressing need for innovative solutions that can manage resources more efficiently
and equitably. Traditional resource allocation methods often struggle with scalability,
fairness, and adaptability in dynamic environments. Quantum game theory, with its
potential to improve decision-making processes and optimize complex systems, represents
a promising avenue for research [6]. By leveraging quantum strategies, it becomes feasible
to navigate the intricate trade-offs between performance, cost-efficiency, and fairness,
making it an ideal tool for modern cloud computing challenges.

1.5. Addressing Current Research Gaps
Addressing Gaps in Current Research:

*  Scalability: While classical models often struggle with scalability issues, this work
lays the groundwork for quantum-based scalable solutions.

* Novel Application of Quantum Auctions: Building on quantum auction theory, this
paper proposes innovative mechanisms for faster, fairer resource allocation.

¢  Dynamic Strategy Evolution: The iterative adjustment of quantum strategies intro-
duces a level of adaptability previously unexplored in cloud computing.

* Interdisciplinary Innovation: By merging quantum computing and cloud resource
management, the study opens up a new interdisciplinary research avenue, setting a
precedent for future work in utilizing emerging quantum paradigms to solve complex
resource allocation problems.

1.6. Key Contributions

This paper makes several significant contributions:

¢ Development of a Quantum Game Theory-based Cloud Resource Allocation
(QGT-CRA): Presents an innovative model that utilizes quantum strategies (e.g.,
superposition, entanglement) to efficiently allocate cloud resources. Specifically tai-
lored to solve scalability, fairness, and efficiency challenges in intricate, dynamic
cloud scenarios.

¢  Performance Advantages Over Classical Approaches: Exhibits rapid convergence to
equilibrium (12 iterations vs. 25+ in classical models). Registers improved resource
utilization (93.7%) and cost savings (27.5%). Outperforms cooperative and auction-
based models in fairness (Jain’s Index 0.94).

*  Quantum-Integrated Nash Equilibrium (QiNE): Introduces a quantum-enhanced
Nash equilibrium with time-evolving strategies within an entangled environment. En-
ables improved decision-making by considering multiple strategy outcomes concurrently.

*  Dynamic Strategy Evolution: Facilitates adaptive action through repeated updates of
quantum strategies to enhance responsiveness to evolving cloud environments.

*  Quantum Auction Integration: Expands quantum auction concepts to enhance fair-
ness and efficiency in allocation processes without a central auctioneer.

e  Practical Quantum Implementation Using Qiskit (Software Version: 0.39.0): Ex-
ceeds theory by executing the model on actual quantum circuits and unitary strategy
operations, presenting practical real-world applicability.

* Entanglement-Driven Collaboration: Utilizes quantum entanglement to enable im-
plicit coordination among cloud service providers and users, minimizing wastage of
resources and enhancing overall system fairness.

*  Benchmarking Against New Algorithms: In comparison with next-generation models
such as deep Q-network (DQN), particle swarm optimization (PSO), and genetic
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algorithm (GA), QGT-CRA outperforms consistently across service level agreement
(SLA) compliance, energy efficiency, and user satisfaction.

*  Scalable and Hybrid-Friendly Design: Suggests a modular deployment model that is
compatible with existing cloud platforms (e.g., Kubernetes, OpenFaa$S), available for
phased adoption as quantum hardware evolves.

1.7. Structure of the Paper

This paper is organized to provide a clear and comprehensive understanding of
quantum game theory applied to cloud resource allocation. The Introduction outlines the
challenges in traditional cloud resource allocation and introduces the motivation behind
leveraging quantum game theory for optimization. The Literature Review surveys existing
methods, including classical and quantum approaches, and highlights research gaps that
this study addresses.

In the Proposed Architecture section, we present a quantum game-theoretic framework
tailored for efficient and fair cloud resource allocation, along with its theoretical under-
pinnings. The System Model explains the mathematical formulation and the dynamics of
quantum strategies used by cloud service providers and users.

The Time Complexity, Theorems, and Proofs section provides preliminary details
regarding the theoretical framework and usability of the developed algorithm. The Qiskit-
based Implementation section then provides details on the implementation of the algorithm
in real life using Qiskit, including quantum circuit creation and measurement methods. The
Results and Performance Analysis section provides a comparison of the performance of the
developed framework with conventional methods with its advantages and computational
efficiency. Furthermore, the Deployment Strategy and Implementation Feasibility addresses
the deployability of the framework and its current constraints and potential lines of future
research. Lastly, the Conclusion overviews the key contributions of the study, states its
limitations, and lays out promising areas of future work, highlighting the cross-disciplinary
use case and disruptive capability of the proposed methodology.

This structure ensures a logical flow from theoretical foundations to practical im-
plications, offering valuable insights into the integration of quantum computing in
cloud environments.

1.8. Novelty of the Paper

The novelty lies in the following aspects:

* Integration of Quantum Strategies: Unlike traditional methods that rely on classi-
cal game theory or heuristic-based optimization, this work incorporates principles
of quantum mechanics, such as superposition and entanglement. This allows for
the simultaneous exploration of multiple allocation scenarios, achieving outcomes
unattainable through classical models.

¢  Quantum-Integrated Nash Equilibria: The introduction of quantum-integrated Nash
Equilibria in resource allocation provides a new framework for balancing competing
objectives like cost efficiency, resource utilization, and fairness. This approach sur-
passes classical equilibrium models by exploring a broader solution space enabled by
quantum strategies.

*  Enhanced Resource Optimization: The proposed framework demonstrates significant
improvements in efficiency, scalability, and decision-making compared to classical
methods. This is achieved through the adoption of dynamic quantum entanglement
to facilitate collaboration between CSPs and users.

*  Practical Implementation Framework: Leveraging IBM Qiskit, the study moves
beyond theoretical modeling to simulate quantum strategies in a real-world program-
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ming environment. This positions the work as a practical blueprint for future quantum
computing applications in cloud systems.

2. Literature Review

Cloud computing has emerged as a pivotal technology in modern IT infrastructure,
providing on-demand services to users. The resource allocation problem within cloud com-
puting refers to the efficient and fair distribution of computational, storage, and network
resources among users and service providers. Ref. [12] introduced a practical quantum
sealed-bid auction scheme that removes the dependency on an auctioneer, enhancing the
feasibility and security of quantum-based auction protocols in resource allocation scenar-
ios. The dynamic nature of cloud environments, characterized by fluctuating workloads,
heterogeneous resources, and varying user demands, makes this problem particularly chal-
lenging. In the context of auction-based resource allocation, ref. [13] proposed a quantum
sealed-bid auction mechanism that eliminates the need for a trusted third party, leveraging
quantum mechanics to enhance security and fairness in strategic interactions. In recent
advancements, ref. [14] demonstrated significant improvements in quantum error decoding
accuracy, highlighting the potential for enhanced fault tolerance in quantum processors.

Traditional resource allocation methods leverage optimization techniques, auction
mechanisms, or game-theoretic models to achieve equitable distribution. However, these
approaches face computational bottlenecks as the scale and complexity of cloud sys-
tems increase. The advent of quantum computing introduces novel paradigms, par-
ticularly quantum game theory, which holds promise for addressing these challenges
more efficiently.

2.1. Game Theory in Cloud Resource Allocation

Game theory has been extensively used in cloud resource allocation to model the
interaction between CSPs and users. Key game-theoretic approaches include the following:

1. Non-Cooperative Games: Users compete for resources, optimizing their strategies
without collaborating. Examples include pricing strategies and load balancing models [15,16].

2. Cooperative Games: Users and CSPs collaborate to achieve mutual benefits, often
resulting in higher efficiency and fairness [17,18].

3. Evolutionary Games: Dynamic strategies evolve over time, adapting to changes in
user behavior and resource availability [19].

While effective in many scenarios, classical game-theoretic models often require signif-
icant computational resources, especially when modeling large-scale systems or incorporat-
ing real-time data.

2.2. Quantum Computing in Optimization Problems

Quantum computing leverages the principles of superposition, entanglement, and
quantum interference to solve complex problems exponentially faster than classical meth-
ods. In optimization problems, quantum algorithms like Grover’s search [20] and the
quantum approximate optimization algorithm (QAOA) have demonstrated significant
potential [21,22].

Quantum game theory extends classical game theory into the quantum domain by
representing strategies and payoffs using quantum states. This approach enables the
exploration of novel equilibria and resource allocation strategies that are infeasible in
classical settings.

2.3. Related Work on Quantum Game Theory

The application of quantum game theory (QGT) to cloud computing and resource
allocation is a new confluence of quantum information science and strategic optimiza-
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tion. QGT builds upon classical game theory by adding quantum physics concepts—
like superposition, entanglement, and unitary transformation—to represent strategic in-
teractions between agents in complex, multi-agent systems. Although there is founda-
tional literature on quantum game theory itself, its extension to dynamic cloud systems is
largely underdeveloped.

One of the most basic ideas in QGT is the idea of quantum Nash equilibria.
Eisert et al. [11] and Meyer et al. [23] were the first to demonstrate that quantum analogs of
classical games, such as the Prisoner’s Dilemma, can yield results where players receive
higher payoffs than in classical equilibrium situations. Based on this, Lowe et al. [24]
generalized the Nash equilibrium framework to quantum settings based on Hilbert spaces
for representing mixed and entangled strategies. Based on their results, they showed that
quantum strategies not only expand the space of strategies but also allow convergence to
socially more optimal equilibria. Yet, many of these are still in theoretical settings, without
being applied to real-time scheduling or distributed cloud systems—a matter directly
addressed by our QGT-CRA framework.

Quantum auction mechanisms have also been of interest for secure and efficient re-
source allocation in competitive settings. Han et al. [25] presented a quantum-sealed-bid
auction protocol, leveraging quantum measurement properties to ward off bid tamper-
ing and protect privacy. Subsequent work by Li et al. [26] introduced an entanglement
swapping-based quantum Vickrey auction protocol for resource sharing between decentral-
ized nodes. Shi et al. [12] also introduced a quantum combinatorial auction for decentralized
networks with emphasis on the advantages of quantum encoding for multi-item bidding.
Although these are worthwhile contributions, they are primarily centered on security and
auction fairness as opposed to systemic optimization or strategic adaptation—deficits our
entanglement-based, Nash equilibrium-based QGT-CRA framework fills.

A second essential area is the application of quantum entanglement to facilitate im-
plicit collaboration. Di Salvo et al. [21] and Blekos et al. [22] examined the use of entangled
states in cooperative games and distributed systems. Their research proved that entangled
quantum strategies shared by players can lead to globally optimal results without direct
communication. Likewise, Piotrowski and Stadkowski [27] illustrated the potential of
entanglement in enhancing efficiency and stability in models of financial decision-making.
Igbal et al. [28] investigated quantum Stackelberg duopoly games, where entanglement
provided first-mover advantage mitigation and greater social utility. Our own work capi-
talizes on these principles by representing user and CSP strategies as entangled unitaries,
enabling resource decisions based on global fairness instead of self-interest optima.

On the implementation front, more recent works have started investigating the possi-
bility of applying quantum game strategies in the cloud. Mohammed et al. [20] introduced
a quantum-secure model for cloud resource allocation, employing game-theoretic reason-
ing to enhance edge—cloud trust and cybersecurity. Hazarika et al. [29] showed quantum
decision models in federated cloud environments, but without incorporating equilibrium
computation or auction-based scheduling of resources. Our contribution improves upon
this with the inclusion of quantum equilibrium search and entangled cooperation into a
deployable Qiskit-based algorithm with simulation-supported performance benchmarking.

Though these are important contributions, none of the current models integrate all the
aspects of quantum strategies, Nash equilibrium calculation, quantum auction reasoning,
and dynamic entanglement in a scheduling and resource allocation setting for practical use.
Our QGT-CRA model bridges this by merging all these aspects into one unified, actionable
architecture and testing its performance via comparative analysis against both current and
classical methods.
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2.4. Proposed Approach

This paper proposes a quantum game-theoretic framework for cloud resource alloca-
tion that leverages dynamic entanglement and quantum algorithms for real-time strategy
optimization (QGT-CRA). Ref. [30] demonstrated the potential of quantum computers
in solving complex optimization problems such as routing, providing a foundation for
applying quantum techniques to challenges like resource allocation in cloud environments.
The framework aims to balance efficiency, fairness, and scalability, offering a practical
solution for next-generation cloud systems.

This review highlights the current studies and transformative potential of quantum
computing in cloud resource allocation, emphasizing the need for interdisciplinary research
to realize its full capabilities.

3. System Model

We offer the mathematical formulation of the cloud resource allocation model based
on quantum game theory. Distributed quantum computing frameworks provide the
foundation for handling resource allocation across cloud systems, emphasizing modularity
and scalability in quantum compiler design, as detailed by [31]. After describing the
participants, resources, and strategies in the quantum game, we go on to discuss the
theoretical underpinning of the quantum game and how it is utilized to allocate resources
optimally. Ref. [32] provided an effective methodology for mapping nearest neighbor-based
quantum circuits into 2D, which can enhance the spatial efficiency and performance of
quantum computation frameworks.

3.1. Players and Resources
Consider a cloud computing environment consisting of the following:

* A set of CSPs denoted by
P:{PerZ/-"/Pm} (1)

where each CSP P; offers a finite set of resources R;, such that
R; = {Rj1,Rip, ..., Ry, } 2)

where R;; represents the j-th resource provided by P;.
* A set of users or applications denoted by

u:{UlIUZI"-/ui’l} (3)
where each user U; has specific resource requirements represented by a demand vector
dj = (dp,dp, ..., djx;) 4)

where dj; denotes the amount of the I-th resource required by U;. The goal is to allocate
the available resources R; among the users U to maximize the overall utility, minimize
costs, and ensure fairness.

3.2. Objectives
The goal is to allocate the available resources R; among the users U to:

(i) Maximize overall utility:

maxz U]-(d]-) (5)
]

where U;(d;) is the utility function for user U;.
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(ii) Minimize costs:

min Z 2 Cz] (6)
)

where C;j; is the cost of allocating resources from P; to U;.
(iii) Ensure fairness: This can involve proportional fairness or max—min fairness.

3.3. Constraints
The allocation is subject to the following constraints:

e  Resource constraints: Each CSP has a finite amount of resources:

n
ijiSRi, Vie{l,...,m} 7)
=1

where x;; is the allocation of resource R; to user U;.

3.4. Quantum Game Theory Approach

To model the interaction between CSPs and users as a game, we adopt a quantum
game theory approach. Unlike classical game theory, where strategies are deterministic,
quantum game theory allows for quantum superposition of strategies, which can lead to
more optimal outcomes [33,34].

3.4.1. Quantum States and Strategies

In a quantum game, the strategy space is expanded by allowing players to choose
quantum states as strategies. Let Hp and Hy; denote the Hilbert spaces associated with the
CSPs and users, respectively. The quantum state of the game can be described as a vector

|¢) € Hp® Hy (8)

where ® represents the tensor product of the individual Hilbert spaces.

Each player’s strategy is represented by a quantum operation (unitary transformation)
Up for CSPs and Uy for users, acting on their respective Hilbert spaces. The overall state of
the system after the application of these strategies can be written as:

') = (Up @ Uu)lyp) ©)

where Up and Uj; are unitary operators corresponding to the strategies chosen by the CSPs
and users, respectively.

3.4.2. Payoff Function

The payoff function in a quantum game determines the utility that each player receives
based on the strategies employed by all players. For each user Uj, the utility function u; is
defined as:

ki
ui(rj) = z; wji fi(ri, djp) (10)

where r; = (rjl,rjz, .. ,r]-kj) is the vector of resources allocated to Uj, w;; is the weight
representing the importance of resource Rj; to user U;, and f;; is a utility function that
measures the satisfaction of user U; with the allocation ;. A typical form of f;; could be:

fiu(rjp,dj) =1 —exp <—;ﬂ> (11)

jl
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This function reflects the principle of diminishing returns, where the utility increases
as the allocated resources approach the demand but at a decreasing rate.

For the CSPs, the utility function #; depends on the revenue generated from resource
allocation minus the cost of providing those resources. Let c;; represent the cost of allocating
resource R;; to user Uj, and p;; denote the price charged by CSP P; for resource R;;. The
utility function for CSP P is given by:

0-13

n L=

(pijrjl - Cijrjl) (12)

where 7; = (rj1,7i, ..., Tix;) is the vector of resources allocated by CSP P; to all users.

3.4.3. Nash Equilibrium in Quantum Games

The concept of Nash equilibrium is central to game theory, including quantum game
theory. A Nash equilibrium is a state in which no player can improve their payoff by
unilaterally changing their strategy. In the context of quantum game theory, the Nash
equilibrium can be defined as a quantum state |i*) such that:

VUp, Uy = ui(Up, Uy | [¥)) < u;(Up, Uy | [¢7)) (13)

and
wj(Up, Uu | ) < u;(Up, Uy | [$7)) (14)

For all CSPs P; and users U;, where U and Uj; represent the equilibrium strategies of
the CSPs and users, respectively.
The Nash equilibrium can be computed by solving the following optimization problem:

m n
max | Y ui(r) + Y ui(r;) (15)
Uplu | i =1
subject to the constraints:
n
Z 1’]‘1 < Rilr Vl, Vi (16)
=1

where R;; represents the total amount of resource R;; available to CSP P;.

Efficiency of QiNE: The QiNE used in the suggested algorithm generalizes the tradi-
tional concept of a Nash equilibrium by including time-evolving quantum strategies in an
entangled state space. In traditional games, a Nash equilibrium is a stable strategy profile
{st}X | where no player i can increase their utility by unilaterally deviating:

ui(si,s*;) > u;(s;,s*;) VsieS; 17)

In contrast, a QiNE features a coincidence of player strategies written as local unitary
operations to be implemented on a common entangled quantum state:

lpe(t)) =T <®u )>]|¢o> (18)

where | is the entanglement operator, U;(6;, ¢;) are time-evolving unitary strategy operators,
and |¢p) is the initial state.
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The dynamic arises from iterative optimization of (6;, ¢;) to maximize expected utility
over the measurement outcomes of the quantum:
t+1 t t+1 t+1
91.( ) = arg max E[u;(6, 4)1( )), ‘Pz‘( ) = argmq?x E[ui(()l-( ),qb)] (19)
The results from Section 9’s experiments reveal that QGT-CRA converges in 12 itera-
tions to the classical 25+ while providing a satisfactory boost to total utility. Such advantages

arise from quantum parallelism and entanglement of payoffs to globally optimal equilibria
out of reach within classical systems.

3.4.4. Quantum Superposition of Strategies

Quantum game theory allows the use of superposition to explore multiple strategies
simultaneously. Let |S) represent the superposition of different strategies:

K

1S) = ) alSk) (20)

k=1

where |Sy) represents the k-th strategy combination of the CSPs and users, and «; are
complex coefficients such that:

K
Yo lmlr =1 1)
k=1
The expected payoff for a player using the superposition of strategies is:

K
(u;) = kZ |ty |? (] Sk)) (22)
=1

where u;(|S)) is the payoff associated with strategy |Si). Players aim to maximize their
expected payoff by adjusting the coefficients a.

3.5. Resource Allocation Mechanism: The Algorithm Outline

Efficient request scheduling is critical in quantum networks to ensure optimal resource
utilization and minimize latency, as explored by [35]. The quantum game theory-based
resource allocation mechanism operates as follows:

1. Initialization: The cloud system initializes the quantum state |¢), representing the
initial allocation of resources among the users.

2. Strategy Selection: Each CSP and user selects their quantum strategies Up and Uj;.

3. Quantum Operations: The selected strategies are applied to |i) to generate a new
state [¢').

4. Payoff Calculation: The payoff functions u; and u; are calculated based on [¢).

5. Equilibrium Search: Players adjust their strategies iteratively to reach a Nash equilibrium.

6.  Final Allocation: The resource allocation corresponding to the equilibrium state
is implemented.

4. Proposed Architecture of the QGT-CRA Algorithm

In this section, we present a proposed QGT-CRA mechanism, formulated in a pseudo-
code algorithm. As demonstrated by [36], quantum strategies leverage unitary transforma-
tions and entangled states, which are instrumental in achieving error correction below the
surface code threshold [37]. The algorithm is designed to optimize the allocation of cloud
resources by leveraging the principles of quantum game theory. These strategies allow
simultaneous exploration of multiple allocation scenarios, reducing convergence time [38].
Following the algorithm, we discuss the time complexity and provide some theorems with



Mathematics 2025, 13, 1392

11 of 31

corresponding proofs to establish the correctness and efficiency of the proposed mechanism
(Algorithm 1).

Algorithm 1 QGT-CRA

Require: Set of cloud service providers P = {Py, Py, ..., Py}
1: Setof usersU = {Uy, Uy, ..., Uy}
2: Resource vectors R; for each P;
3: Demand vectors d; for each Uj;
4: Initial quantum state |¢)
Ensure: Optimal resource allocation R* for each user U;
5: Initialize quantum state |i) to represent initial resource allocation
6: for each CSP P; € P do
7: Initialize unitary strategy operator UZP
8: end for
9: for each user U; € U do

10: Initialize unitary strategy operator U]U
11: end for

12: repeat

13: foreach CSP P; € P do

14: Apply quantum operation Uip to |¢)
15: end for

16: for each user U; € U do

17: Apply quantum operation U]-u to )
18: end for

19: Compute payoff u; and u; for each CSP P; and user Uj;
20: Update strategies U’ and Uju based on payoff

21: until Nash equilibrium is reached
22: Compute final resource allocation R* based on |¢)
23: return R*

4.1. Explanation of the Algorithm

The algorithm is designed to allocate cloud resources efficiently using quantum game
theory. It involves multiple CSPs and users, where each participant (CSP and user) uses
quantum strategies to maximize their utility. The steps of the algorithm are as follows:

4.1.1. Initialization (Lines 5-11)

The quantum state |¢) is initialized to represent the initial allocation of resources. This
state evolves as the game progresses. Each CSP P; and user U; initializes their quantum
strategies, represented by unitary operators U and Uju, respectively.

4.1.2. Quantum Strategy Application (Lines 12-18)

Quantum operations are applied sequentially by each CSP and user to the quantum
state |¢). This modifies the state according to the chosen strategies.

4.1.3. Payoff Calculation and Strategy Update (Lines 19-20)

The payoffs for each CSP and user are calculated based on the current quantum state.
These payoffs are used to update the strategies of both the CSPs and users.

4.1.4. Nash Equilibrium Check (Line 21)

The algorithm checks if a Nash equilibrium has been reached. At Nash equilibrium, no
player can unilaterally improve their payoff. If equilibrium is reached, the loop exits [39].
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4.1.5. Final Allocation (Line 22)

The final resource allocation is computed based on the equilibrium quantum state,
and the optimal resource allocation is returned.

5. Time Complexity Analysis

The time complexity of the proposed algorithm depends on several factors, including
the number of CSPs (1), the number of users (1), and the complexity of quantum operations.
Below is the breakdown of the time complexity for each step:

5.1. Initialization

Initializing the quantum state and strategy operators for each CSP and user takes
O(m + n) time.

5.2. Quantum Operations

Applying quantum operations (unitary transformations) to the quantum state takes
O(q) time, where g is the complexity of the quantum operation. Since this operation is per-
formed for each CSP and user in each iteration, the total time complexity is O((m + n) - q).

5.3. Payoff Calculation
Calculating the payoff for each CSP and user is an O(m + n) operation.

5.4. Strategy Update
Updating the strategies based on the payoffs also takes O(m + n) time.

5.5. Convergence to Nash Equilibrium

Let k be the number of iterations required to reach Nash equilibrium. The total time
complexity of the algorithm is O(k - (m +n) - q).

Thus, the overall time complexity of the proposed algorithm is O(k - (m + n) - q),
where k is the number of iterations required to reach equilibrium, m is the number of CSPs,
n is the number of users, and g is the complexity of the quantum operations.

6. Theorems and Proofs
6.1. Theorem 1: Convergence to Nash Equilibrium

Statement: The proposed quantum game theory-based resource allocation algorithm
converges to a Nash equilibrium in a finite number of iterations.

Proof.

*  Existence of Nash Equilibrium: By Nash’s theorem, every finite game with mixed
strategies has at least one Nash equilibrium. The quantum game defined in our model
is a finite game, as there is a finite number of strategies available to each player (CSPs
and users). Therefore, a Nash equilibrium exists.

¢ Convergence: The algorithm iteratively updates the strategies of CSPs and users
based on the payoffs calculated from the quantum state |¢'). Since the strategy space
is finite and each update is based on maximizing the payoff, the algorithm makes
progress toward equilibrium in each iteration. Once a Nash equilibrium is reached, no
player can improve their payoff by unilaterally changing their strategy, thus leading
to the termination of the loop.

¢  Finiteness: The number of possible strategy combinations is finite, and the game
is played with discrete updates. Therefore, the algorithm must converge to a Nash
equilibrium in a finite number of steps.
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Thus, the proposed algorithm converges to a Nash equilibrium in a finite number of
iterations. [J

6.2. Theorem 2: Optimal Resource Allocation

Statement: The resource allocation R* achieved at the Nash equilibrium of the quan-
tum game is optimal in the sense that it maximizes the overall utility of the cloud system
while ensuring fairness among users.

Proof.

e  Utility Maximization: At Nash equilibrium, the payoffs u; for CSPs and u; for users
are maximized given the strategies of the other players. Since the payoff functions
represent the utility of resource allocation for CSPs and users, the equilibrium state
|¢*) corresponds to an allocation R* that maximizes the overall utility of the system.

e  Fairness: The quantum strategies in the game allow for the exploration of multiple
allocation scenarios simultaneously, helping to achieve a balance between competing
objectives, such as maximizing CSP revenue and ensuring user satisfaction. This
balance is reflected in the Nash equilibrium, where no player can unilaterally improve
their payoff, indicating a fair allocation.

»  Efficiency: The use of quantum operations and superposition enables efficient explo-
ration of the solution space, leading to a more optimal resource allocation compared
to classical methods.

Therefore, the resource allocation R* at Nash equilibrium is optimal, maximizing
overall utility and ensuring fairness. [

6.3. Theorem 3: Time Complexity Bound

Statement: The time complexity of the proposed quantum game theory-based resource
allocation algorithm is bounded by O(k - (m + n) - q).

Proof.

e Initialization: As established earlier, the initialization step takes O(m + n) time.

*  Quantum Operations: The complexity of applying quantum operations is O(q),
and this is repeated for each player (CSPs and users) in each iteration, leading to a
complexity of O((m + n) - q) per iteration.

*  Total Complexity: The algorithm continues to iterate until it converges to Nash equilib-
rium, requiring k iterations. Therefore, the total time complexity is O(k - (m +n) - q).

*  Bound: Since k, m, n, and g are finite, the time complexity is bounded by O(k - (m +n) - q).

Thus, the time complexity of the algorithm is bounded as stated. [

7. Qiskit-Based Implementation Strategy

The quantum implementation for resource allocation uses the Qiskit framework,
which is used to create and simulate quantum circuits. The implementation includes the
initialization of quantum states, application of dynamic strategies, and the measurement of
quantum states after applying various quantum operations. This section outlines the code
used for the simulation, from circuit creation to result visualization.

7.1. Code Overview

Community code sharing and reproducibility: We provide a set of processing scripts
QGT-CRA Code: accessed on 23 April 2025 https:/ /github.com/KAUSHTAB/Quantum-
Game-Theory-Based-Cloud-Resource-Allocation, aiming to facilitate future research and
familiarize researchers and practitioners who can largely exploit and use our work on
quantum game theory-based cloud resource allocation.


https://github.com/KAUSHTAB/Quantum-Game-Theory-Based-Cloud-Resource-Allocation
https://github.com/KAUSHTAB/Quantum-Game-Theory-Based-Cloud-Resource-Allocation
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7.2. Quantum Circuit Initialization

The quantum circuit starts by initializing qubits to a uniform superposition using
Hadamard gates, ensuring all quantum states are equally probable and preparing the
system for further strategy application. The algorithmic depiction (Algorithm 2) of the
implemented code is given below:

Algorithm 2 Quantum State Initialization

Require: Number of qubits n
Ensure: Quantum circuit gc with qubits initialized in superposition state |)
1: fori =0ton —1do

2 Apply Hadamard gate H to qubit g; > Creates superposition
3: end for .
4: Resulting state: |¢p) = \/127 326261 |x)

This step ensures that the quantum system is in an unbiased state, ready for applying
different strategies.
Key Observations:

¢  Uniform Superposition: All qubits are initialized to equal probabilities using
Hadamard gates.

¢ Quantum Circuit Design: The initial circuit contains only Hadamard gates applied to
all qubits.

*  Significance: The uniform state supports unbiased strategic decision-making in the
quantum game.

Visualization: Figure 1 shows the quantum circuit after applying Hadamard gates to
all qubits.

meas: 4/

Figure 1. Quantum circuit initialized with Hadamard gates applied to each qubit, generating a
uniform superposition state.

After initialization, measurements of the quantum states were performed on the
simulator. The distribution of quantum states is shown in a histogram, highlighting the
counts for each measured state.

Key Observations:

*  Measurement Counts: Each quantum state was observed multiple times across
1000 shots, demonstrating the superposition principle.
e  Probabilities: Each state had approximately equal probabilities, as shown in Figure 2.
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Figure 2. Histogram showing the distribution of quantum state measurements after initialization.

7.3. Entanglement and Measurement
7.3.1. Role of Quantum Entanglement in Cloud Resource Optimization

Quantum entanglement is central to the QGT-CRA model. It is the distinguishing
factor in quantum mechanics suited for quantum-based resource allocation over classical
resource allocation paradigms. Entanglement allows for interdependent decision-making,
whereby the state of one agent (e.g., user or provider in the cloud) is instantaneously corre-
lated with others, resulting in global optimization strategies unavailable under classical,
isolated reason.

Conceptual Overview of Entangled Strategies: In traditional game theory, strategies
are independently chosen by each player. In QGT-CRA, strategy profiles are represented
on a quantum Hilbert space, with players’ states entangled to capture strategic interdepen-
dence. Consider a 2-player quantum game with strategies over qubit states |0) and |1). A
classical strategy is a tensor product:

|l/Jclassica1> = |Sl> ® ‘52> (23)

A quantum entangled strategy is:
[Yentangled) = &[00) + B|11),  with [a|* + B> =1 (24)

This entangled state guarantees correlated measurement results, i.e., if one player
chooses strategy |0), the other will do so as well, depending on the phase of entanglement.
In resource allocation, this enables cloud providers and users to implicitly coordinate
without explicit communication, essentially reaching a distributed equilibrium.

Mathematical Model with Entanglement Operator: We add entanglement to the
QGT-CRA formalism through a global entangling operator ], given by:

J(7) = exp(iy ox ® 0%) (25)

where v € [0, 5] determines the amount of entanglement, and 0y is the Pauli-X gate. The
joint initial state is acted upon by | prior to players applying local strategy operators
Ui (6, ¢i):

[9s) = J" (U @ Ua)] |tpo) (26)

Payoffs are subsequently calculated by observing [i¢) in the computational basis and
using the formula for expected utility.

Impact on Optimization Dynamics: Entanglement facilitates the existence of quantum
Nash equilibria, wherein players make better decisions more quickly because of strategic
symmetry. In real life, we have the following:

e Wastage of resources is reduced through concerted action.

e  Fairness improves, as entangled strategies allocate surplus and scarcity more evenly.

e  Convergence is quicker, as players tend to “agree” through entanglement instead of
iterating over opposing classical responses.
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This results in the optimization of cloud measurements such as efficiency of allocation,
load balancing, and cost-cutting.

Simulation-Based Comparison: To measure the entanglement benefit quantitatively,
we simulated QGT-CRA with and without the entangling operator (). The system
consisted of 10 users and 5 CSPs for 100 allocation cycles. The findings are as follows:

Interpretation: The simulation verifies that entanglement increases system-level coor-
dination, with a faster and more equitable equilibrium than in separable (non-entangled)
quantum methods. Although both versions utilize quantum benefits such as parallelism
and unitary updates of strategies, only the entangled version makes use of correlated utility
topologies, enabling the agents to adapt together cost-effectively.

These results confirm entanglement as an essential design element in quantum-
enhanced cloud scheduling systems. Future research can explore entanglement control
mechanisms, multi-player generalizations, and hybrid schemes with classical game strate-
gies incorporated in entangled qubit systems (Table 1).

Table 1. Performance comparison of QGT-CRA with and without quantum entanglement.

Metric QGT-CRA (Entangled) = QGT-CRA (Unentangled)
Resource Utilization (%) 93.7 86.2

Fairness (Jain’s Index) 0.94 0.81
Convergence Time (Iterations) 12 21

Cost Reduction (%) 27.5 17.3

7.3.2. Illustrative Scenario

There are two cloud service providers (CSPs)—CSP1 and CSP2—and two users—
UserA and UserB. Both users make requests for compute resources, and CSPs have to
determine how to allocate them efficiently and equitably.

Classical Case (Without Entanglement):

*  (CSP1 and CSP2 make their allocations independently.

*  UserA and UserB react to proposals and can compete for the identical resource.

*  Both CSPs, without coordination, would favor high-paying UserA, and thus, UserB is
treated unfairly.

e  Outcome: Overloaded CSP1, starved UserB, and underloaded CSP2.

Quantum Entangled Case (With Entanglement):

. Step 1: CSPs’ and users’ strategies are entangled, i.e., their decisions are correlated.

¢  Step 2: When CSP1 decides to give more to UserA, the entangled state naturally
corrects CSP2’s choice to offset this by leaning towards UserB.

*  Step 3: The system converges through repeated updates until a balanced and optimal
distribution is achieved (quantum Nash equilibrium).

¢  Step 4: The resultant quantum state is measured, and a resource allocation plan is
derived wherein both users receive equitable access without conflict.

Interpretation:

* Entanglement enables implicit cooperation: the providers do not have to actually
communicate—the coordination occurs through quantum correlations.

*  Reduces conflict of allocation and prevents redundant work.

*  Enhances fairness: Proportionate access is provided to all users.

*  Accelerates convergence: Optimum state is attained in fewer steps than in classical
feedback loops.
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7.3.3. Code-Based Implementation of Quantum Entanglement

The code also introduces controlled entanglement between the CSPs and users using
CNOT gates, ensuring collaboration between the two groups. After applying the strategies,
measurements are added to the quantum circuit Figure 3 to record the state of the system.
The algorithmic (Algorithm 3) depiction of the code is given below.

Algorithm 3 Dynamic Entanglement Between CSPs and Users

Require: Number of CSPs m, Number of Users n

Ensure: Entangled quantum state between CSPs and Users
1: fori =0tom —1do
2: forj=0ton—1do

3: Apply CNOT gate: control g;, target g, > Entangles CSP P; with User U,
4 end for
5. end for
1 [
ge: {HH Ry(n/a) 7_4M}7
—
q_1: { H H Rry(n/a) = fml
- YA
9 2: { H H Ry(w/3) fmp—
i : b
a3:{HH rRe(/3) = {mp
L1 L
c: 4
meas: 4,

e 1 2 3

Figure 3. Quantum circuit showing the application of strategy rotations (Ry) and entanglement
(CNOT gates) for CSP and user qubits.

The measurements are then recorded, and the results are displayed using both his-
tograms and bar charts to visualize the distribution of quantum states.

7.4. Dynamic Strategy Application

The strategy unitary operations are defined for both the CSPs and the users, with
specific angles for the rotation gates. The algorithmic depiction (Algorithm 4) of the code
for applying the rotation gates to the CSP and user qubits is given below.

Algorithm 4 Strategy Initialization using Rotation Gates

Require: Number of CSPs m, Number of Users n
1: Strategy angles 057 = (07,67, ..]
2: Strategy angles 6Y5" = [1 64 .. .]

Ensure: Quantum circuit qc with initialized strategies
3: fori=0tom—1do

4 Apply R, (67) to qubit g; > Strategy unitary for CSP P;
5: end for

6: forj=0ton —1do

7: Apply Ry (9}1) to qubit g, > Strategy unitary for User Uj;
8: end for

Dynamic strategies were applied to the qubits using rotational gates (R, ) with specific
angles. Controlled entanglement was introduced between the CSP and user qubits.
Key Observations:

*  Strategy Angles: CSPs and users adopted specific angles for their R, rotations:
chp = /4 and GUSEr =7t/3.

¢  Entanglement: CNOT gates created quantum entanglement, enabling collaborative
decision-making.
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Measurement Results: The measurement results, after applying the strategies and
entanglement, are shown in Figure 4. The results demonstrate the influence of strategy
evolution on quantum state probabilities.

Final Quantum Measurement Results

0.419

Probability

5 PSS P PP P PP
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Quantum State

Figure 4. Histogram showing the final quantum state distribution after strategy application
and entanglement.

Statistics:

e  Total Shots: 2048;
. Unique States: 24 = 16;

Probabilities: Table 2 summarizes the probabilities for each quantum state.

Table 2. Quantum state probabilities.

State Count Probability (%)
10000) 128 6.25%
10001) 132 6.44%
[1111) 120 5.86%

Over 10 iterations, the strategy angles evolved dynamically, as illustrated in Figure 5. The
average angles for CSP and user qubits converged to optimal values for resource allocation.

Strategy Evolution

—— €SP Strategy
— User Strategy

Average Angle (radians}
)

Reration

Figure 5. Evolution of strategy angles for CSPs and users over 10 iterations.

8. Computational Cost and Scalable Quantum Design

The computational complexity of running QGT-CRA on quantum simulators or hard-
ware is a function of:

*  Qubit Count Q = m + n, with m providers and n users.
e Gate Depth G = O(Q?) as a result of all-to-all entanglement.
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For instance, for Q = 15, the present IBM Q hardware accommodates shallow circuits
(G < 100 gates) with reasonable fidelity. On simulators (e.g., Qiskit Aer), this setting
executes with higher latency but is still computationally viable.

To host millions of users, we suggest three approaches:

1.  Federated Quantum Scheduling: Divide users into small clusters and execute QGT-
CRA in parallel.

2. Approximate Quantum Modeling: Employ reduced density matrices or tensor net-
works to approximate entanglement in larger systems.

3. Hybrid Quantum—Classical Cascades: Employ QGT-CRA for SLA-critical work while
offloading background workloads to classical schedulers.

These methods capture the theoretical benefit of QGT-CRA but are still flexible to
NISQ (Noisy Intermediate-Scale Quantum)-era hardware limitations.

9. Comparative Performance Evaluation with Classical Strategies
9.1. Classical Game Theory

To highlight the novelty and performance of the QGT-CRA framework, it is essential
to compare its conceptual and performance differences with established classical resource
allocation methods. This section provides a comprehensive comparison of three prominent
classical paradigms: cooperative game theory (CGT), non-cooperative pricing models
(NCPMs), and auction-based allocation (ABA), which assess each method on strategic mod-
eling, scalability, computational overhead, fairness, convergence efficiency, and security.

9.1.1. CGT

Cooperative game theory frameworks are based on coalition formation between CSPs
and users to achieve maximum joint utility [17,40]. The frameworks employ transferable
utility notions and bargaining solutions (e.g., Nash bargaining or Shapley value) to ob-
tain allocation decisions. Mathematically, cooperative games seek to maximize a group
utility function:

Ugoral = Y, ui(x;) subjectto } x; <R (27)
ieC
where C represents the coalition set, x; represents the resource allocated to user 7, and R
represents the amount of available resource.

Whereas CGT is guaranteed to provide fair and Pareto-efficient allocations, it has the
drawback of excessive computational complexity in large-scale systems because it requires
considering all feasible coalition structures. In addition, CGT typically makes rational,
cooperative behavior assumptions that do not necessarily apply in real-world, competitive
multi-tenant cloud systems. In contrast, QGT-CRA enables the joint consideration of both
cooperative and competitive behavior through entanglement-aided strategy modeling
and superposition.

9.1.2. NCPM

NCPMs model CSPs and users as autonomous rational agents competing for resources
through pricing and utility maximization [41,42]. The utility function of each user is
given by:

Ll]' = Z)]‘ - p]x] (28)

where v; is valuation, p; is price per unit resource, and x; is the quantity of the
resource purchased.

While NCPMs are easy to apply and computationally inexpensive, they inevitably
benefit users with greater willingness or capacity to pay at the expense of others, leading
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to low fairness and likely resource monopolization. They are also non-agile to changes
in system dynamics without regular price re-tuning. QGT-CRA integrates agility in the
quantum strategy evolution process and attains fair allocations via probabilistic outcome
modeling in superpositioned decision states.

9.1.3. ABA

Auction mechanisms (first-price, Vickrey, combinatorial) have been heavily employed
in cloud resource markets. They work by requesting users place bids, and the allocation is
made by the auction rules [43,44]. An ordinary sealed-bid auction can be represented as:

max b; subject to le- <R (29)
ic -
1

where b; is the bid submitted by user i, and x; is the allocation.

While auctions guarantee incentive compatibility and decentralized control, they are
susceptible to strategic manipulation (e.g., collusion or false bidding) and tend to lead to
non-optimal resource allocation due to bid volatility. ABA does not have the mechanism to
guarantee fairness or cost minimization from a global system perspective. On the other
hand, QGT-CRA obtains globally optimal equilibria through dynamic entangled strategies
that balance utility, fairness, and cost.

9.2. Models Used to Advocate the Classical Game Theory-Based Comparison
9.2.1. CGT-SBCG

*  Model Used: Shapley value-based coalition game (SVCG).
¢  Functioning: Users and CSPs create coalitions, and resources are allocated based on
the Shapley value, providing equitable contribution-based rewards.

Limitations:

*  Requires listing of all coalition structures—computationally intensive for large systems.
*  Not real-time scalable.

QGT-CRA Advantage:

*  Obtains coalition-like behavior through quantum entanglement, eliminating the ne-
cessity of explicit coalitions or intricate bargaining computations.
* Converges at a faster rate while being fair.

9.2.2. NCPM-SGPC

*  Model Used: Stackelberg game-based pricing model (SGPC).
*  Functioning: CSPs are leaders, determining prices; users are followers, deciding
resource quantities to achieve maximum utility given those prices.

Limitations:

*  Incentivizes monopolization of resources by high-budget users.
*  Tends to have low fairness and wasteful outcomes.

QGT-CRA Advantage:

e  Enables fair competition with balanced quantum strategies that bar dominance by
one user.
e Provides better fairness (0.94 Jain’s Index compared to 0.76 in Stackelberg model).

9.2.3. ABA-FPSB
*  Model Used: First-price sealed-bid auction (FPSB).
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*  Functioning: Hidden bids for resources are submitted by users; highest bidder pays
their own bid and wins.

Limitations:

*  Susceptible to strategic manipulation, e.g., underbidding or collusion.
*  Does not necessarily guarantee efficient or fair resource allocation.

QGT-CRA Advantage:

*  Enforces quantum auction mechanisms, e.g., quantum-sealed bids and superposi-
tioned strategies, which provide improved security, fairness, and speed.
*  Enables faster convergence and greater cost savings.

9.3. Comparitive Analysis
9.3.1. Resource Utilization (%)

Resource utilization indicates the extent to which the system can allocate available
cloud resources (CPU, memory, storage) to users. The suggested QGT-CRA approach at-
tains a resource utilization rate of 93.7%, much higher than the rates attained by CGT-SBCG
(87.1%), ABA-FPSB (85.3%), and NCPM-SGPC (82.4%). This is because QGT-CRA can
analyze various allocation strategies at the same time through the power of quantum super-
position. The parallelism inherent in quantum computation enables the algorithm to skip
suboptimal local maxima that classical algorithms tend to be stuck in. Although CGT-SBCG
emphasizes group utility, even they are susceptible to negotiation overhead and delays in
reaching decisions. NCPM-SGPC and ABA-FPSB, however, under-utilize resources when
users bid inefficiently or hold back resources because of price dynamics. In contrast, QGT-
CRA constantly adapts to world system conditions via entangled strategic decisions, with
high degrees of resource saturation and little idle capacity. Table 3 and Figure 6 represent
the resource utilization percentages via tabular and graphical representations.

Comparison of Resource Utilization
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Resource Utilization (%)
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]
QGT-CRA CGT-SBCG NCPM-SGPC ABA-FPSB

Figure 6. Comparison of resource utilization (%) in various strategies.

Table 3. Benchmarking Results: Comparison of QGT-CRA with classical resource allocation methods.

Method Resource Con}f:;ience Fairness Index Cost
Utilization (%) . (Jain’s) Reduction (%)
(Iterations)
QGT-CRA 93.7 12 0.94 27.5
CGT-SBCG 87.1 25 0.89 15.3
NCPM-SGPC 82.4 30 0.76 12.1

ABA-FPSB 85.3 22 0.81 18.7
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9.3.2. Convergence Time (Iterations)

Convergence time assesses how efficiently a resource allocation algorithm converges
to a final stable equilibrium with no additional improvement in strategy resulting in better
utility. In terms of this metric, QGT-CRA substantially outperforms its traditional predeces-
sors by converging within 12 iterations. CGT-SBCG converges in 25 iterations, ABA-FPSB in
22, and NCPM-SGPC in a whopping 30 iterations. This is made possible by the QGT-CRA
harnessing the power of quantum entanglement and strategy superposition to explore
the entire space of strategies simultaneously, as opposed to sequentially. All the classi-
cal approaches are based on iterative feedback loops—coalition formation in CGT-SBCG,
multiple rounds of auctions in ABA-FPSB, and pricing equilibrium adjustments in NCPM-
SGPC—and hence are slow. Conversely, quantum strategies achieve equilibrium more
quickly because of the constructive interference of optimal states, lowering computational
overhead along with allocation latency. Table 3 and Figure 7 represent the convergence
time iterations via tabular and graphical representations.
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Figure 7. Comparison of convergence time (iterations) in various strategies.

9.3.3. Fairness Index (Jain’s Index)

Fairness is a vital measure in multi-tenant cloud environments where resource distri-
bution equally is paramount. Calculated based on Jain’s Fairness Index (where 1 represents
optimal fairness), QGT-CRA has a score of 0.94, which represents nearly even distribution
across all users. CGT-SBCG is second at 0.89 since coalition-based decision-making tends
to look at fairness but yet permits marginal imbalances. ABA-FPSB has a moderate rating
of 0.81, as bidding mechanisms inherently benefit more powerful buyers. NCPM-SGPC is
rated the lowest at 0.76, where great disparity occurs as aggressive buyers can dominate
resources. QGT-CRA maintains high fairness due to the application of entangled strategies,
which balance personal utility in accordance with system-wide optimization. This mecha-
nism naturally allocates resources in a more equal manner since quantum superpositions
take into account all possible allocations simultaneously, thereby minimizing bias toward
any one stakeholder. Table 3 and Figure 8 represent the fairness index via tabular and
graphical representations.

9.3.4. Cost Reduction (%)

Cost saving analyzes the effectiveness of the allocation strategy in optimizing the
total system cost while fulfilling user requirements. QGT-CRA achieves a maximum cost
saving of 27.5%, and then it is auction-based allocation at 18.7%, cooperative game theory
at 15.3%, and non-cooperative pricing models with a mere 12.1%. All such savings in
QGT-CRA are due to its adaptive updating of strategies and dynamic reallocation of idle
resources, resulting in minimal redundancy and wastage. In contrast to traditional models
wherein overprovisioning of resources or competitive inefficiencies add to the operational
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costs, QGT-CRA takes advantage of quantum computations in order to quickly determine
optimal, cost-effective configurations. This not only lightens infrastructure load but also
reduces power usage and virtual machine sprawl; therefore, the setup is especially suited
for green cloud computing projects. Additionally, since it achieves equilibrium faster,
QGT-CRA also minimizes the runtime and scheduling overhead generally associated with
iterative allocation systems. Table 3 and Figure 9 represent the convergence time iterations
via tabular and graphical representations.
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Figure 8. Comparison of fairness index (Jain’s) in various strategies.
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Figure 9. Comparison of cost reduction (%) in various strategies.

9.3.5. Fairness-Efficiency (Resource Allocation) Trade-Off in QGT-CRA

One of the greatest strengths of QGT-CRA is its potential to reconcile fairness and
efficiency, two goals that habitually confront each other in traditional models. In the
traditional context, fairness prioritization tends to lead to inefficient use (underexploitation
of resources), whereas efficiency maximization might translate to monopoly by high-paying
or hostile users.

The trade-off in QGT-CRA is avoided by employing the quantum entangled strategies
and superposition in order to make the system assess various resource allocation outcomes
concurrently. Fairness is attained as the quantum state converges towards a common point
that represents collective utility for all the users, while efficiency is maintained in order to
avoid the maximum idle capacity and optimal allocation trajectories.

For example, if a high-demand user and a low-demand user are coupled, the choice
made for one will automatically rescale the other’s allocation to ensure system-wide
equilibrium. This eliminates the explicit requirement of centralized arbitration or iterative
negotiation in CGT-SBCG and instead achieves an efficient and equitable equilibrium
more quickly.
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The results confirm this balance: QGT-CRA attains both the highest resource usage
(93.7%) and the best fairness score (0.94 Jain’s Index), showing that it is able to optimize for
both extremes of the spectrum without giving either up (Table 3).

10. Comparitive Analysis with Recent Optimization and
Quantum-Inspired Techniques

10.1. Recent Optimization and Quantum-Inspired Techniques

¢  DOQN-Based Allocator: A reinforcement learning agent is trained to acquire optimal
resource allocation policies through experience. It learns to map states (e.g., current
load, resource supply) to actions through a deep neural network. DQN performs
well in adaptive environments but tends to need large datasets and precise reward
tuning [45,46].

*  GA-Based Scheduler: An evolutionary method where allocation strategy populations
are evolved across generations through selection, crossover, and mutation. GA is
strong in dealing with multi-objective constraints but tends to converge slowly and
can result in inconsistent fairness results [47,48].

e PSO: A swarm intelligence method where particles (solutions) traverse the solution
space based on their own and neighbors’ experiences. PSO is light and flexible but
can be prone to local optima and does not enforce equilibrium [49,50].

*  Quantum-Inspired Genetic Algorithm (QGA): A traditional simulation of quantum
behavior with probabilistic bit representations (Q-bits). It emulates superposition but
not genuine quantum entanglement. It strikes a balance between exploration and
exploitation but is computationally more expensive than traditional GA [51,52].

10.2. Comparative Analysis

In order to further establish the attestations of improvement of the new QGT-CRA
approach, we broadened the scope of our study to compare it with some of the most recently
developed optimization methods and quantum-inspired algorithms that are commonly
known to be highly responsive and perform well in dynamic conditions. Specifically, we
compared QGT-CRA with a DQN-based resource allocator, a GA-based scheduler, and a
PSO-based allocation model. These algorithms are recognized for their ability to resolve
non-convex, multi-objective problems common in cloud environments.

The DQN-based method uses reinforcement learning to incrementally refine a pol-
icy that transforms system states (e.g., workload, availability of resources) into optimal
allocation decisions. Although this algorithm scales well with varying demands, it needs
extensive training time and is reward-sensitive. In our experiments, it showed good fair-
ness and usage but fell behind in convergence time and suffered from sporadic instability
at inference because of policy overfitting. On the other hand, QGT-CRA accomplishes
stable, real-time convergence with entangled decision-making without episodic training or
reward engineering.

The GA-based model, based on evolutionary computation, worked reasonably well
in achieving near-optimal allocations in the long run but had the drawback of slow con-
vergence (frequently more than 50 iterations) and unstable fairness because of its use of
random mutation and crossover. PSO, though quicker than GA, still did not have the strate-
gic equilibrium coordination that existed in QGT-CRA. Both algorithms could not compare
with QGT-CRA in resource efficiency, SLA adherence, and energy-aware scheduling.

Quantum-inspired heuristics and quantum mechanics-inspired models (e.g., Q-bit-
based genetic models) analyze quantum behavior with classical resources. They provide
some probabilistic advantage over classical heuristics but do not have the real parallelism or
entangled utility modeling of QGT-CRA. Our comparative simulations showed QGT-CRA
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with quantum entanglement always outperforming these models in key metrics—greater
fairness (0.94 vs. 0.87), faster convergence (12 vs. 34+ iterations), and lower SLA violation
rates (3.2% vs. 5-8%).

In summary, QGT-CRA not only outperforms traditional algorithms but also outper-
forms or is equal to state-of-the-art optimization methods and quantum-inspired models.
Its capacity to utilize entangled strategies gives it a distinct and quantifiable edge in dy-
namic, multi-agent cloud resource allocation environments—attesting to the strength and
originality of our proposed framework (Table 4).

Table 4. Comparison of QGT-CRA with recent optimization and quantum-inspired models.

Utilization Fairness Convergence Service Level Cost User Energy

Method %) (Jain’s) (Iter) Agreement (SLA)  Reduction .00 vion  Efficienc
Violations (%) (%) Y

QGT-CRA (Entangled) 93.7 0.94 12 3.2 27.5 0.92 4.1
QGT-CRA (Unentangled) 86.2 0.81 21 8.4 17.3 0.81 3.1
DQN-Based Allocator 88.6 0.87 34 55 19.2 0.88 35
GA-Based Scheduler 84.1 0.79 52 7.3 15.6 0.76 3.2
PSO Allocator 83.7 0.77 44 6.9 14.9 0.74 29
Quantum-Inspired GA (QGA) 85.9 0.84 36 6.1 18.1 0.83 34

11. Deployment Strategy and Real-World Integration of QGT-CRA:
A Futuristic Approach

Although the theoretical basis and simulated behavior of the QGT-CRA framework
have been soundly established, its instantiation in real-world, production-level cloud
infrastructures requires a well-defined methodology. This section describes the end-to-end
deployment structure, elaborates on integration points with current cloud platforms, and
shows real-time usage scenarios that prove its viability.

11.1. Modular Hybrid Deployment Architecture

Considering the present constraints in quantum hardware, we suggest a hybrid cloud,
modular design that gradually adds QGT-CRA as a strategic optimization module in
conjunction with keeping classical components for operation control and orchestration.

Core Architectural Components:

*  C(lassical Frontend Orchestrator (e.g., Kubernetes, OpenStack): Orchestrates resource pro-
visioning, monitoring, and autoscaling. Connects with QGT-CRA through middleware.

*  Quantum Optimization Module (QOM): Holds QGT-CRA logic executed on sim-
ulators or NISQ hardware through cloud APIs. Consumes system state inputs and
generates optimal allocation vectors.

¢  Middleware Adapter: Maps classical inputs to quantum-ready encodings and handles
data transfer to the QOM.

*  Result Translator and Actuator: Maps quantum outputs into actionable resource
decisions and returns them to the orchestrator.

This architecture causes minimal disruption to legacy cloud systems while increasingly
adding quantum optimization capabilities (Figure 10).

11.2. Applicability to Real-Time Scenarios

In spite of current latency during the execution of quantum circuits, QGT-CRA can be
employed for near real-time scenarios like the following:

*  Scheduling Batch Jobs: Recalculating VM-job allocations on a periodic basis of every
15-30 min.
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Multi-Tenant Fair Scheduling: Proportionate allotment across organization partitions
in federated clouds.

Green Resource Utilization: Power-aware placement of tasks using optimized global
strategies.

Marketplace-Based Pricing: Dynamic pricing powered by quantum computing for
edge-cloud and serverless environments.

Classical Cloud Orchestration Layer
(Kubernetes, OpenStack)

A
Resource Scheduler
Monitoring & Autoscaling

Middleware Adapter Layer
(REST/gRPC API)

Feature Encoder
(Workload to Qubit State)

Quantum Optimization Module
(QGT-CRA Engine)

N

Quantum Backend
(Qiskit, IBM Q, Braket)

Entangled Strategy Evaluator

A
Result Translator & Actuator Layer

4

Measurement Vector — Allocation Decision

Figure 10. Flowchart-based representation of the deployment roadmap for real-world integration
of QGT-CRA.

11.3. Step-by-Step Adoption Plan for Industry

Table 5 represents the Step-by-Step Adoption Plan for Industry.

Table 5. Recommended phased strategy for deploying QGT-CRA in operational cloud environments.

Phase Strategy Tools/Platforms

Proof of Concept Simulate batch allocation using QGT-CRA IBM Qiskit, Rigetti Forest

Hybrid Simulation Connect QGT to orchestration systems REST/gRPC APIs, Docker, Kubernetes
Semi-Realtime Ops ~ Use QGT-CRA in idle system cycles OpenFaaS, Apache Airflow, Qiskit Cloud

Quantum Transition

Shift QGT-CRA to real hardware gradually IBM Quantum, AWS Braket

11.4. Benefits of Incremental Deployment

Scalability: Start with small workloads before large-scale deployment.
Compatibility: QGT-CRA is a plugin to current schedulers.

Explainability: Payoff results can be visualized and debugged.
Future-Readiness: Built to scale from simulation to actual quantum systems.

By adopting a step-wise, modular hybrid deployment path, QGT-CRA can be seam-

lessly integrated into current cloud infrastructures. Although full real-time quantum
operation might not currently be an immediate possibility, half-real-time integration al-
ready provides definite benefits and places cloud platforms ahead of the next breakthroughs

in quantum computing.
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12. Implementation Feasibility and Deployment Considerations

Although the QGT-CRA framework has shown promise in simulation, its real-world
deployment within cloud environments has some practical implications. The section
presents those practical implications under five technical pillars: hardware constraints,
hybrid integration, scalability, cost of operation, and future readiness.

12.1. Quantum Hardware Constraints

The essential restriction of carrying out QGT-CRA stems from the potential of today’s
quantum processors, which are mostly in the NISQ regime. Those machines are identified
by a small number of qubits, limited coherence times, and high gate error rates. For
example, an m cloud service provider versus n users quantum game needs a quantum state

within a joint Hilbert space:
m+n

Hiotal = ® Hi (30)
i=1
where H; denotes the state space of each participant. The dimensionality of this space
is 2" which implies exponential growth in required resources with the number
of participants.

In addition, quantum circuits implementing QGT involve several layers of entangling
gates (e.g., CNOTSs) to represent strategy correlation. These gates are the most noise-prone,
exacerbating the issue even further. On existing quantum hardware, this puts a practical
constraint on problems with greater than 5 players, making the full version of QGT-CRA
presently unscalable on hardware.

12.2. Integration with Classical Cloud Systems

A full deployment of QGT-CRA would require a hybrid quantum-—classical architec-
ture, where classical cloud infrastructure manages orchestration, billing, and real-time
monitoring, and quantum processors address hard optimization sub-problems. This does
add latency due to quantum circuit execution and readout.

Let T; be quantum runtime and T; be classical processing overhead. The overall
decision-making time becomes:

Ttotal =T+ Tq + Ttransfer (31)

where Ty anster includes serialization, deserialization, and data transfer. Even with optimistic
assumptions, when Tj is minimal, frequent transitions between classical and quantum
systems add unacceptable latencies for real-time scheduling.

12.3. Scalability and Circuit Complexity

Quantum scalability is also limited not only by the total number of accessible qubits
but also by how qubits interact. In a QGT-CRA protocol with m providers and n users,
under the assumption of 2 strategy parameters per player (e.g., rotation parameters 6;, ¢;),
the quantum circuit needs at least:

Qmin = m+n qubits (32)
and at most:
Gaepth = O((m +n)?)  gates (33)

because of the requirement of pairwise entanglement and multi-layer unitary updates.
This increase in gate depth results in higher decoherence probability P;, lowering fidelity.
Therefore, the model is still only suitable for small-scale problems.
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12.4. Cost, Accessibility, and Workforce Readiness

Quantum computer access is also available only on cloud platforms, and the price can
be exorbitant. Additionally, the execution of moderately sized QGT-CRA instances is very
computationally expensive. The monetary cost, along with unavailability and scheduling
latencies, poses a challenge to the deployment of quantum solutions in scale.

Moreover, the development and upkeep of quantum modules is specialized knowledge
that most cloud engineers lack, having not been educated in quantum programming
frameworks like Qiskit or Cirq. Closing this knowledge gap will need to be addressed
through specialized training or the recruitment of interdisciplinary professionals.

Despite these limitations, the future of QGT-CRA is bright. In the near term, it can be
embedded in hybrid workflows where quantum solvers serve as offline decision-making
engines for batch optimization problems. Quantum-inspired algorithms can simulate
quantum behavior and yield advantages without true quantum hardware. As quantum
systems advance, complete integration of QGT-CRA will be possible.

Although the QGT-CRA approach has superior simulation theoretical abilities and
performance benefits in simulation, its current limitations of hardware, latency, scalabil-
ity, and cost will hold it back from real-world deployment. Nonetheless, the approach
is forward-compatible and can possibly be incrementally embraced through quantum-
inspired methods and offline quantum modules, as well as hybrid workflows. With
continued hardware and compiler progress in quantum computers, QGT-CRA poten-
tially has the future to transform the optimization of cloud resources in the near term.
Table 6 represents a practical feasibility comparison of classical and quantum resource
allocation approaches.

Table 6. Practical feasibility comparison of classical and quantum resource allocation approaches.

o Cooperative Auction-

Criterion GT Based NCPM QGT-CRA
Hardware Availability High High High Low
Real-Time Responsiveness Moderate High High Low
Scalability Medium High High Low-Medium
Circuit Complexity N/A N/A N/A High
Implementation Cost Low Low Medium High
Fairness Potential High Medium Low High
Long-Term Potential Medium Low Low Very High

13. Limitations of the Proposed QGT-CRA Algorithm

Despite its promising results, this study on quantum game theory-based cloud resource
allocation has certain limitations:

*  Scalability Constraints: The proposed framework has primarily been tested on simu-
lated environments with limited scalability. Real-world cloud systems with large-scale
users and providers may present unforeseen challenges.

*  Quantum Hardware Availability: The reliance on advanced quantum hardware poses
a significant limitation, as current quantum computers lack the capacity to execute
large-scale quantum simulations effectively.

*  User-Centric Considerations: While the model optimizes for system-wide efficiency,
the specific preferences or satisfaction levels of individual users are not deeply ad-
dressed, potentially affecting adoption rates.

¢  Complexity of Implementation: The integration of quantum algorithms with classical
systems may involve high computational and developmental overheads.
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14. Future Work

Building on the insights from this study, future research can explore the
following avenues:

*  Scalability Enhancements: Developing algorithms that can seamlessly scale with the
complexity of real-world cloud computing environments.

¢ Integration with Hybrid Systems: Exploring hybrid quantum-—classical algorithms to
leverage the strengths of both paradigms for enhanced resource allocation.

*  Dynamic Adaptation: Introducing mechanisms for real-time adjustments to strategies
based on continuously evolving workloads and user demands.

e User Satisfaction Models: Incorporating models that prioritize individual user satis-
faction and fairness to ensure wider adoption and equity.

e  Hardware Optimization: Collaborating with advancements in quantum hardware to
test and refine the framework on practical, large-scale quantum systems.

e Energy Efficiency: Investigating the energy consumption of quantum strategies and
developing sustainable allocation models for green cloud computing.

These directions aim to address the current limitations and expand the applicability of
quantum game theory in cloud computing.

15. Conclusions

This paper proposed a new QGT-CRA model based on the principles of quantum
mechanics, particularly entanglement and superposition, to better optimize resource dis-
tribution in cloud computing. By quantizing the user—CSP interaction as a quantum
game, the new algorithm achieved far better resource utilization (93.7%), fairness (Jain’s
Index = 0.94), cost-saving (27.5%), and speed of convergence (12 iterations) compared to tra-
ditional approaches. Employing QiNE allowed adaptive, equitable, and efficient allocation
results that are impractical to compute in traditional domains. In addition, the deployment
through Qiskit illustrates the pragmatic viability of quantum strategy simulation with
existing tools.

Notwithstanding these developments, the real-world deployment of QGT-CRA is
presently limited by the limited scalability of quantum hardware, the complexity of inte-
gration with classical systems, and real-time scheduling latency. Nevertheless, the hybrid
simulation frameworks, modular deployment approaches, and cloud orchestration support
provide a solid basis for real-world applicability as quantum hardware matures.
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