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Abstract: This paper explores the application of quantum game theory to optimize cloud

resource allocation. By leveraging the principles of quantum mechanics, the proposed

framework aims to enhance efficiency, reduce costs, and improve scalability in cloud

computing environments. The study introduces a quantum-based game-theoretic model

and compares its performance with classical approaches. The results demonstrate signif-

icant improvements in resource utilization and decision-making efficiency. While prior

works have explored classical game theory and auction-based methods, this study is

among the first to implement quantum game theory in a practical cloud computing context,

propose a resource allocation mechanism that incorporates both fairness and efficiency

while leveraging the computational advantages of quantum systems, and highlight the

strategic benefits of quantum entanglement in fostering collaboration between competing

entities in cloud environments. This work not only addresses the current limitations of

resource allocation but also redefines the possibilities for optimization in complex sys-

tems, making a substantial contribution to both quantum computing and cloud resource

management domains.

Keywords: quantum computing; game theory; cloud resource allocation; classical game theory

MSC: 68Q09; 91A99; 68U99

1. Introduction

1.1. Background on Cloud Resource Allocation

In the era of rapid technological advancements, cloud computing has emerged as

a cornerstone of modern IT infrastructure [1]. It offers scalable, on-demand access to

computing resources, enabling businesses to operate with flexibility and efficiency. Cloud

service providers (CSPs) manage vast pools of computational resources, which are dy-

namically allocated to meet the varying demands of users. Efficient resource allocation is

crucial to ensuring optimal performance, cost-effectiveness, and user satisfaction in cloud

environments [2,3].
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Traditionally, resource allocation in the cloud has been addressed using various ap-

proaches, including heuristic-based methods, auction models, and machine learning algo-

rithms. These methods aim to allocate resources such as processing power, memory, and

storage to users in a way that maximizes resource utilization while minimizing costs. How-

ever, as cloud computing environments grow in complexity and scale, traditional resource

allocation methods face significant challenges [4]. These include handling large-scale data,

managing multi-tenancy, dealing with the variability of demand, and ensuring fairness

and efficiency. In [5,6], the authors conducted an experimental analysis using quantum

key distribution (QKD) [6] to enhance the security of mobile ad hoc networks (MANETs),

demonstrating significant improvements in securing dynamic, decentralized networks.

1.2. Challenges in Classical Resource Allocation

One of the key challenges in classical resource allocation lies in the inherent trade-

offs between conflicting objectives. For instance, optimizing resource allocation for cost

efficiency may compromise performance, while prioritizing performance could lead to

underutilization of resources. Moreover, the dynamic and unpredictable nature of cloud

workloads makes it difficult to maintain an optimal balance. The complexity of managing

these trade-offs is exacerbated by the increasing heterogeneity of cloud environments,

where diverse applications with varying requirements compete for shared resources.

Game theory, a mathematical framework for modeling strategic interactions among

rational agents, has been used to address some of these challenges. In cloud comput-

ing, game theory models can be used to predict and optimize the behavior of different

stakeholders, such as cloud providers and users, in resource allocation scenarios. By

treating resource allocation as a game, in which each participant aims to maximize their

utility, game theory provides a structured approach to finding equilibrium solutions that

balance competing interests. However, classical game theory has limitations when ap-

plied to large-scale, complex systems such as cloud computing. Ref. [7] explored the

integration of large language models in quantum architecture design, demonstrating how

these models can optimize the development of quantum algorithms through advanced

computational strategies.

1.3. Introduction to Quantum Game Theory

Quantum computing, an emerging paradigm that utilizes the principles of quantum

mechanics, promises to revolutionize the field of computation. Unlike classical computers,

which process information using bits that represent either 0 or 1, quantum computers

use quantum bits, or qubits, which can represent and process a combination of states

simultaneously due to superposition. This allows quantum computers to perform certain

types of calculations exponentially faster than their classical counterparts [8].

Quantum game theory is a novel extension of classical game theory that incorporates

the principles of quantum mechanics. In quantum game theory, players can make use of

quantum strategies, which involve entangled states and superposition, to achieve outcomes

that are impossible or inefficient in classical settings. This adds a new dimension to strategic

interactions, enabling more efficient exploration of the solution space and potentially

leading to better equilibria [9,10].

In the context of cloud resource allocation, quantum game theory offers a promising

approach to overcoming the limitations of classical methods [11]. Using quantum strategies,

it is possible to optimize resource allocation in a way that balances conflicting objectives

more effectively and adapts to the dynamic nature of cloud environments.
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1.4. Motivation

The motivation for this study comes from the need to address the growing challenges

of resource allocation in cloud computing. As cloud environments become more complex,

there is a pressing need for innovative solutions that can manage resources more efficiently

and equitably. Traditional resource allocation methods often struggle with scalability,

fairness, and adaptability in dynamic environments. Quantum game theory, with its

potential to improve decision-making processes and optimize complex systems, represents

a promising avenue for research [6]. By leveraging quantum strategies, it becomes feasible

to navigate the intricate trade-offs between performance, cost-efficiency, and fairness,

making it an ideal tool for modern cloud computing challenges.

1.5. Addressing Current Research Gaps

Addressing Gaps in Current Research:

• Scalability: While classical models often struggle with scalability issues, this work

lays the groundwork for quantum-based scalable solutions.

• Novel Application of Quantum Auctions: Building on quantum auction theory, this

paper proposes innovative mechanisms for faster, fairer resource allocation.

• Dynamic Strategy Evolution: The iterative adjustment of quantum strategies intro-

duces a level of adaptability previously unexplored in cloud computing.

• Interdisciplinary Innovation: By merging quantum computing and cloud resource

management, the study opens up a new interdisciplinary research avenue, setting a

precedent for future work in utilizing emerging quantum paradigms to solve complex

resource allocation problems.

1.6. Key Contributions

This paper makes several significant contributions:

• Development of a Quantum Game Theory-based Cloud Resource Allocation

(QGT-CRA): Presents an innovative model that utilizes quantum strategies (e.g.,

superposition, entanglement) to efficiently allocate cloud resources. Specifically tai-

lored to solve scalability, fairness, and efficiency challenges in intricate, dynamic

cloud scenarios.

• Performance Advantages Over Classical Approaches: Exhibits rapid convergence to

equilibrium (12 iterations vs. 25+ in classical models). Registers improved resource

utilization (93.7%) and cost savings (27.5%). Outperforms cooperative and auction-

based models in fairness (Jain’s Index 0.94).

• Quantum-Integrated Nash Equilibrium (QiNE): Introduces a quantum-enhanced

Nash equilibrium with time-evolving strategies within an entangled environment. En-

ables improved decision-making by considering multiple strategy outcomes concurrently.

• Dynamic Strategy Evolution: Facilitates adaptive action through repeated updates of

quantum strategies to enhance responsiveness to evolving cloud environments.

• Quantum Auction Integration: Expands quantum auction concepts to enhance fair-

ness and efficiency in allocation processes without a central auctioneer.

• Practical Quantum Implementation Using Qiskit (Software Version: 0.39.0): Ex-

ceeds theory by executing the model on actual quantum circuits and unitary strategy

operations, presenting practical real-world applicability.

• Entanglement-Driven Collaboration: Utilizes quantum entanglement to enable im-

plicit coordination among cloud service providers and users, minimizing wastage of

resources and enhancing overall system fairness.

• Benchmarking Against New Algorithms: In comparison with next-generation models

such as deep Q-network (DQN), particle swarm optimization (PSO), and genetic
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algorithm (GA), QGT-CRA outperforms consistently across service level agreement

(SLA) compliance, energy efficiency, and user satisfaction.

• Scalable and Hybrid-Friendly Design: Suggests a modular deployment model that is

compatible with existing cloud platforms (e.g., Kubernetes, OpenFaaS), available for

phased adoption as quantum hardware evolves.

1.7. Structure of the Paper

This paper is organized to provide a clear and comprehensive understanding of

quantum game theory applied to cloud resource allocation. The Introduction outlines the

challenges in traditional cloud resource allocation and introduces the motivation behind

leveraging quantum game theory for optimization. The Literature Review surveys existing

methods, including classical and quantum approaches, and highlights research gaps that

this study addresses.

In the Proposed Architecture section, we present a quantum game-theoretic framework

tailored for efficient and fair cloud resource allocation, along with its theoretical under-

pinnings. The System Model explains the mathematical formulation and the dynamics of

quantum strategies used by cloud service providers and users.

The Time Complexity, Theorems, and Proofs section provides preliminary details

regarding the theoretical framework and usability of the developed algorithm. The Qiskit-

based Implementation section then provides details on the implementation of the algorithm

in real life using Qiskit, including quantum circuit creation and measurement methods. The

Results and Performance Analysis section provides a comparison of the performance of the

developed framework with conventional methods with its advantages and computational

efficiency. Furthermore, the Deployment Strategy and Implementation Feasibility addresses

the deployability of the framework and its current constraints and potential lines of future

research. Lastly, the Conclusion overviews the key contributions of the study, states its

limitations, and lays out promising areas of future work, highlighting the cross-disciplinary

use case and disruptive capability of the proposed methodology.

This structure ensures a logical flow from theoretical foundations to practical im-

plications, offering valuable insights into the integration of quantum computing in

cloud environments.

1.8. Novelty of the Paper

The novelty lies in the following aspects:

• Integration of Quantum Strategies: Unlike traditional methods that rely on classi-

cal game theory or heuristic-based optimization, this work incorporates principles

of quantum mechanics, such as superposition and entanglement. This allows for

the simultaneous exploration of multiple allocation scenarios, achieving outcomes

unattainable through classical models.

• Quantum-Integrated Nash Equilibria: The introduction of quantum-integrated Nash

Equilibria in resource allocation provides a new framework for balancing competing

objectives like cost efficiency, resource utilization, and fairness. This approach sur-

passes classical equilibrium models by exploring a broader solution space enabled by

quantum strategies.

• Enhanced Resource Optimization: The proposed framework demonstrates significant

improvements in efficiency, scalability, and decision-making compared to classical

methods. This is achieved through the adoption of dynamic quantum entanglement

to facilitate collaboration between CSPs and users.

• Practical Implementation Framework: Leveraging IBM Qiskit, the study moves

beyond theoretical modeling to simulate quantum strategies in a real-world program-
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ming environment. This positions the work as a practical blueprint for future quantum

computing applications in cloud systems.

2. Literature Review

Cloud computing has emerged as a pivotal technology in modern IT infrastructure,

providing on-demand services to users. The resource allocation problem within cloud com-

puting refers to the efficient and fair distribution of computational, storage, and network

resources among users and service providers. Ref. [12] introduced a practical quantum

sealed-bid auction scheme that removes the dependency on an auctioneer, enhancing the

feasibility and security of quantum-based auction protocols in resource allocation scenar-

ios. The dynamic nature of cloud environments, characterized by fluctuating workloads,

heterogeneous resources, and varying user demands, makes this problem particularly chal-

lenging. In the context of auction-based resource allocation, ref. [13] proposed a quantum

sealed-bid auction mechanism that eliminates the need for a trusted third party, leveraging

quantum mechanics to enhance security and fairness in strategic interactions. In recent

advancements, ref. [14] demonstrated significant improvements in quantum error decoding

accuracy, highlighting the potential for enhanced fault tolerance in quantum processors.

Traditional resource allocation methods leverage optimization techniques, auction

mechanisms, or game-theoretic models to achieve equitable distribution. However, these

approaches face computational bottlenecks as the scale and complexity of cloud sys-

tems increase. The advent of quantum computing introduces novel paradigms, par-

ticularly quantum game theory, which holds promise for addressing these challenges

more efficiently.

2.1. Game Theory in Cloud Resource Allocation

Game theory has been extensively used in cloud resource allocation to model the

interaction between CSPs and users. Key game-theoretic approaches include the following:

1. Non-Cooperative Games: Users compete for resources, optimizing their strategies

without collaborating. Examples include pricing strategies and load balancing models [15,16].

2. Cooperative Games: Users and CSPs collaborate to achieve mutual benefits, often

resulting in higher efficiency and fairness [17,18].

3. Evolutionary Games: Dynamic strategies evolve over time, adapting to changes in

user behavior and resource availability [19].

While effective in many scenarios, classical game-theoretic models often require signif-

icant computational resources, especially when modeling large-scale systems or incorporat-

ing real-time data.

2.2. Quantum Computing in Optimization Problems

Quantum computing leverages the principles of superposition, entanglement, and

quantum interference to solve complex problems exponentially faster than classical meth-

ods. In optimization problems, quantum algorithms like Grover’s search [20] and the

quantum approximate optimization algorithm (QAOA) have demonstrated significant

potential [21,22].

Quantum game theory extends classical game theory into the quantum domain by

representing strategies and payoffs using quantum states. This approach enables the

exploration of novel equilibria and resource allocation strategies that are infeasible in

classical settings.

2.3. Related Work on Quantum Game Theory

The application of quantum game theory (QGT) to cloud computing and resource

allocation is a new confluence of quantum information science and strategic optimiza-
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tion. QGT builds upon classical game theory by adding quantum physics concepts—

like superposition, entanglement, and unitary transformation—to represent strategic in-

teractions between agents in complex, multi-agent systems. Although there is founda-

tional literature on quantum game theory itself, its extension to dynamic cloud systems is

largely underdeveloped.

One of the most basic ideas in QGT is the idea of quantum Nash equilibria.

Eisert et al. [11] and Meyer et al. [23] were the first to demonstrate that quantum analogs of

classical games, such as the Prisoner’s Dilemma, can yield results where players receive

higher payoffs than in classical equilibrium situations. Based on this, Lowe et al. [24]

generalized the Nash equilibrium framework to quantum settings based on Hilbert spaces

for representing mixed and entangled strategies. Based on their results, they showed that

quantum strategies not only expand the space of strategies but also allow convergence to

socially more optimal equilibria. Yet, many of these are still in theoretical settings, without

being applied to real-time scheduling or distributed cloud systems—a matter directly

addressed by our QGT-CRA framework.

Quantum auction mechanisms have also been of interest for secure and efficient re-

source allocation in competitive settings. Han et al. [25] presented a quantum-sealed-bid

auction protocol, leveraging quantum measurement properties to ward off bid tamper-

ing and protect privacy. Subsequent work by Li et al. [26] introduced an entanglement

swapping-based quantum Vickrey auction protocol for resource sharing between decentral-

ized nodes. Shi et al. [12] also introduced a quantum combinatorial auction for decentralized

networks with emphasis on the advantages of quantum encoding for multi-item bidding.

Although these are worthwhile contributions, they are primarily centered on security and

auction fairness as opposed to systemic optimization or strategic adaptation—deficits our

entanglement-based, Nash equilibrium-based QGT-CRA framework fills.

A second essential area is the application of quantum entanglement to facilitate im-

plicit collaboration. Di Salvo et al. [21] and Blekos et al. [22] examined the use of entangled

states in cooperative games and distributed systems. Their research proved that entangled

quantum strategies shared by players can lead to globally optimal results without direct

communication. Likewise, Piotrowski and Sładkowski [27] illustrated the potential of

entanglement in enhancing efficiency and stability in models of financial decision-making.

Iqbal et al. [28] investigated quantum Stackelberg duopoly games, where entanglement

provided first-mover advantage mitigation and greater social utility. Our own work capi-

talizes on these principles by representing user and CSP strategies as entangled unitaries,

enabling resource decisions based on global fairness instead of self-interest optima.

On the implementation front, more recent works have started investigating the possi-

bility of applying quantum game strategies in the cloud. Mohammed et al. [20] introduced

a quantum-secure model for cloud resource allocation, employing game-theoretic reason-

ing to enhance edge–cloud trust and cybersecurity. Hazarika et al. [29] showed quantum

decision models in federated cloud environments, but without incorporating equilibrium

computation or auction-based scheduling of resources. Our contribution improves upon

this with the inclusion of quantum equilibrium search and entangled cooperation into a

deployable Qiskit-based algorithm with simulation-supported performance benchmarking.

Though these are important contributions, none of the current models integrate all the

aspects of quantum strategies, Nash equilibrium calculation, quantum auction reasoning,

and dynamic entanglement in a scheduling and resource allocation setting for practical use.

Our QGT-CRA model bridges this by merging all these aspects into one unified, actionable

architecture and testing its performance via comparative analysis against both current and

classical methods.
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2.4. Proposed Approach

This paper proposes a quantum game-theoretic framework for cloud resource alloca-

tion that leverages dynamic entanglement and quantum algorithms for real-time strategy

optimization (QGT-CRA). Ref. [30] demonstrated the potential of quantum computers

in solving complex optimization problems such as routing, providing a foundation for

applying quantum techniques to challenges like resource allocation in cloud environments.

The framework aims to balance efficiency, fairness, and scalability, offering a practical

solution for next-generation cloud systems.

This review highlights the current studies and transformative potential of quantum

computing in cloud resource allocation, emphasizing the need for interdisciplinary research

to realize its full capabilities.

3. System Model

We offer the mathematical formulation of the cloud resource allocation model based

on quantum game theory. Distributed quantum computing frameworks provide the

foundation for handling resource allocation across cloud systems, emphasizing modularity

and scalability in quantum compiler design, as detailed by [31]. After describing the

participants, resources, and strategies in the quantum game, we go on to discuss the

theoretical underpinning of the quantum game and how it is utilized to allocate resources

optimally. Ref. [32] provided an effective methodology for mapping nearest neighbor-based

quantum circuits into 2D, which can enhance the spatial efficiency and performance of

quantum computation frameworks.

3.1. Players and Resources

Consider a cloud computing environment consisting of the following:

• A set of CSPs denoted by

P = {P1, P2, . . . , Pm} (1)

where each CSP Pi offers a finite set of resources Ri, such that

Ri = {Ri1, Ri2, . . . , Riki
} (2)

where Rij represents the j-th resource provided by Pi.

• A set of users or applications denoted by

U = {U1, U2, . . . , Un} (3)

where each user Uj has specific resource requirements represented by a demand vector

dj = (dj1, dj2, . . . , djkj
) (4)

where djl denotes the amount of the l-th resource required by Uj. The goal is to allocate

the available resources Ri among the users U to maximize the overall utility, minimize

costs, and ensure fairness.

3.2. Objectives

The goal is to allocate the available resources Ri among the users U to:

(i) Maximize overall utility:

max ∑
j

Uj(dj) (5)

where Uj(dj) is the utility function for user Uj.
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(ii) Minimize costs:

min ∑
i

∑
j

Cij (6)

where Cij is the cost of allocating resources from Pi to Uj.

(iii) Ensure fairness: This can involve proportional fairness or max–min fairness.

3.3. Constraints

The allocation is subject to the following constraints:

• Resource constraints: Each CSP has a finite amount of resources:

n

∑
j=1

xji ≤ Ri, ∀i ∈ {1, . . . , m} (7)

where xji is the allocation of resource Ri to user Ui.

3.4. Quantum Game Theory Approach

To model the interaction between CSPs and users as a game, we adopt a quantum

game theory approach. Unlike classical game theory, where strategies are deterministic,

quantum game theory allows for quantum superposition of strategies, which can lead to

more optimal outcomes [33,34].

3.4.1. Quantum States and Strategies

In a quantum game, the strategy space is expanded by allowing players to choose

quantum states as strategies. Let HP and HU denote the Hilbert spaces associated with the

CSPs and users, respectively. The quantum state of the game can be described as a vector

|ψ⟩ ∈ HP ⊗ HU (8)

where ⊗ represents the tensor product of the individual Hilbert spaces.

Each player’s strategy is represented by a quantum operation (unitary transformation)

UP for CSPs and UU for users, acting on their respective Hilbert spaces. The overall state of

the system after the application of these strategies can be written as:

|ψ′⟩ = (UP ⊗ UU)|ψ⟩ (9)

where UP and UU are unitary operators corresponding to the strategies chosen by the CSPs

and users, respectively.

3.4.2. Payoff Function

The payoff function in a quantum game determines the utility that each player receives

based on the strategies employed by all players. For each user Uj, the utility function uj is

defined as:

uj(rj) =

kj

∑
l=1

wjl f jl(rjl , djl) (10)

where rj = (rj1, rj2, . . . , rjkj
) is the vector of resources allocated to Uj, wjl is the weight

representing the importance of resource Rjl to user Uj, and f jl is a utility function that

measures the satisfaction of user Uj with the allocation rjl . A typical form of f jl could be:

f jl(rjl , djl) = 1 − exp

(

−
rjl

djl

)

(11)
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This function reflects the principle of diminishing returns, where the utility increases

as the allocated resources approach the demand but at a decreasing rate.

For the CSPs, the utility function ui depends on the revenue generated from resource

allocation minus the cost of providing those resources. Let cij represent the cost of allocating

resource Rij to user Uj, and pij denote the price charged by CSP Pi for resource Rij. The

utility function for CSP Pi is given by:

ui(ri) =
n

∑
j=1

kj

∑
l=1

(

pijrjl − cijrjl

)

(12)

where ri = (ri1, ri2, . . . , riki
) is the vector of resources allocated by CSP Pi to all users.

3.4.3. Nash Equilibrium in Quantum Games

The concept of Nash equilibrium is central to game theory, including quantum game

theory. A Nash equilibrium is a state in which no player can improve their payoff by

unilaterally changing their strategy. In the context of quantum game theory, the Nash

equilibrium can be defined as a quantum state |ψ∗⟩ such that:

∀UP, UU : ui(UP, UU | |ψ⟩) ≤ ui(U
∗
P, UU | |ψ∗⟩) (13)

and

uj(UP, UU | |ψ⟩) ≤ uj(UP, U∗
U | |ψ∗⟩) (14)

For all CSPs Pi and users Uj, where U∗
P and U∗

U represent the equilibrium strategies of

the CSPs and users, respectively.

The Nash equilibrium can be computed by solving the following optimization problem:

max
UP ,UU

[

m

∑
i=1

ui(ri) +
n

∑
j=1

uj(rj)

]

(15)

subject to the constraints:
n

∑
j=1

rjl ≤ Ril , ∀l, ∀i (16)

where Ril represents the total amount of resource Ril available to CSP Pi.

Efficiency of QiNE: The QiNE used in the suggested algorithm generalizes the tradi-

tional concept of a Nash equilibrium by including time-evolving quantum strategies in an

entangled state space. In traditional games, a Nash equilibrium is a stable strategy profile

{s∗i }N
i=1 where no player i can increase their utility by unilaterally deviating:

ui(s
∗
i , s∗−i) ≥ ui(si, s∗−i) ∀si ∈ Si (17)

In contrast, a QiNE features a coincidence of player strategies written as local unitary

operations to be implemented on a common entangled quantum state:

|ψ f (t)⟩ = J†

(

N
⊗

i=1

Ui(θi(t), φi(t))

)

J|ψ0⟩ (18)

where J is the entanglement operator, Ui(θi, φi) are time-evolving unitary strategy operators,

and |ψ0⟩ is the initial state.
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The dynamic arises from iterative optimization of (θi, φi) to maximize expected utility

over the measurement outcomes of the quantum:

θ
(t+1)
i = arg max

θ
E[ui(θ, φ

(t)
i ), φ

(t+1)
i = arg max

φ
E[ui(θ

(t+1)
i , φ)] (19)

The results from Section 9’s experiments reveal that QGT-CRA converges in 12 itera-

tions to the classical 25+ while providing a satisfactory boost to total utility. Such advantages

arise from quantum parallelism and entanglement of payoffs to globally optimal equilibria

out of reach within classical systems.

3.4.4. Quantum Superposition of Strategies

Quantum game theory allows the use of superposition to explore multiple strategies

simultaneously. Let |S⟩ represent the superposition of different strategies:

|S⟩ =
K

∑
k=1

αk|Sk⟩ (20)

where |Sk⟩ represents the k-th strategy combination of the CSPs and users, and αk are

complex coefficients such that:
K

∑
k=1

|αk|2 = 1 (21)

The expected payoff for a player using the superposition of strategies is:

⟨ui⟩ =
K

∑
k=1

|αk|2 ui(|Sk⟩) (22)

where ui(|Sk⟩) is the payoff associated with strategy |Sk⟩. Players aim to maximize their

expected payoff by adjusting the coefficients αk.

3.5. Resource Allocation Mechanism: The Algorithm Outline

Efficient request scheduling is critical in quantum networks to ensure optimal resource

utilization and minimize latency, as explored by [35]. The quantum game theory-based

resource allocation mechanism operates as follows:

1. Initialization: The cloud system initializes the quantum state |ψ⟩, representing the

initial allocation of resources among the users.

2. Strategy Selection: Each CSP and user selects their quantum strategies UP and UU .

3. Quantum Operations: The selected strategies are applied to |ψ⟩ to generate a new

state |ψ′⟩.
4. Payoff Calculation: The payoff functions ui and uj are calculated based on |ψ′⟩.
5. Equilibrium Search: Players adjust their strategies iteratively to reach a Nash equilibrium.

6. Final Allocation: The resource allocation corresponding to the equilibrium state

is implemented.

4. Proposed Architecture of the QGT-CRA Algorithm

In this section, we present a proposed QGT-CRA mechanism, formulated in a pseudo-

code algorithm. As demonstrated by [36], quantum strategies leverage unitary transforma-

tions and entangled states, which are instrumental in achieving error correction below the

surface code threshold [37]. The algorithm is designed to optimize the allocation of cloud

resources by leveraging the principles of quantum game theory. These strategies allow

simultaneous exploration of multiple allocation scenarios, reducing convergence time [38].

Following the algorithm, we discuss the time complexity and provide some theorems with
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corresponding proofs to establish the correctness and efficiency of the proposed mechanism

(Algorithm 1).

Algorithm 1 QGT-CRA

Require: Set of cloud service providers P = {P1, P2, . . . , Pm}
1: Set of users U = {U1, U2, . . . , Un}
2: Resource vectors Ri for each Pi

3: Demand vectors dj for each Uj

4: Initial quantum state |ψ⟩
Ensure: Optimal resource allocation R∗ for each user Uj

5: Initialize quantum state |ψ⟩ to represent initial resource allocation
6: for each CSP Pi ∈ P do
7: Initialize unitary strategy operator UP

i
8: end for
9: for each user Uj ∈ U do

10: Initialize unitary strategy operator UU
j

11: end for
12: repeat
13: for each CSP Pi ∈ P do
14: Apply quantum operation UP

i to |ψ⟩
15: end for
16: for each user Uj ∈ U do

17: Apply quantum operation UU
j to |ψ⟩

18: end for
19: Compute payoff ui and uj for each CSP Pi and user Uj

20: Update strategies UP
i and UU

j based on payoff

21: until Nash equilibrium is reached
22: Compute final resource allocation R∗ based on |ψ⟩
23: return R∗

4.1. Explanation of the Algorithm

The algorithm is designed to allocate cloud resources efficiently using quantum game

theory. It involves multiple CSPs and users, where each participant (CSP and user) uses

quantum strategies to maximize their utility. The steps of the algorithm are as follows:

4.1.1. Initialization (Lines 5–11)

The quantum state |ψ⟩ is initialized to represent the initial allocation of resources. This

state evolves as the game progresses. Each CSP Pi and user Uj initializes their quantum

strategies, represented by unitary operators UP
i and UU

j , respectively.

4.1.2. Quantum Strategy Application (Lines 12–18)

Quantum operations are applied sequentially by each CSP and user to the quantum

state |ψ⟩. This modifies the state according to the chosen strategies.

4.1.3. Payoff Calculation and Strategy Update (Lines 19–20)

The payoffs for each CSP and user are calculated based on the current quantum state.

These payoffs are used to update the strategies of both the CSPs and users.

4.1.4. Nash Equilibrium Check (Line 21)

The algorithm checks if a Nash equilibrium has been reached. At Nash equilibrium, no

player can unilaterally improve their payoff. If equilibrium is reached, the loop exits [39].
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4.1.5. Final Allocation (Line 22)

The final resource allocation is computed based on the equilibrium quantum state,

and the optimal resource allocation is returned.

5. Time Complexity Analysis

The time complexity of the proposed algorithm depends on several factors, including

the number of CSPs (m), the number of users (n), and the complexity of quantum operations.

Below is the breakdown of the time complexity for each step:

5.1. Initialization

Initializing the quantum state and strategy operators for each CSP and user takes

O(m + n) time.

5.2. Quantum Operations

Applying quantum operations (unitary transformations) to the quantum state takes

O(q) time, where q is the complexity of the quantum operation. Since this operation is per-

formed for each CSP and user in each iteration, the total time complexity is O((m + n) · q).

5.3. Payoff Calculation

Calculating the payoff for each CSP and user is an O(m + n) operation.

5.4. Strategy Update

Updating the strategies based on the payoffs also takes O(m + n) time.

5.5. Convergence to Nash Equilibrium

Let k be the number of iterations required to reach Nash equilibrium. The total time

complexity of the algorithm is O(k · (m + n) · q).

Thus, the overall time complexity of the proposed algorithm is O(k · (m + n) · q),

where k is the number of iterations required to reach equilibrium, m is the number of CSPs,

n is the number of users, and q is the complexity of the quantum operations.

6. Theorems and Proofs

6.1. Theorem 1: Convergence to Nash Equilibrium

Statement: The proposed quantum game theory-based resource allocation algorithm

converges to a Nash equilibrium in a finite number of iterations.

Proof.

• Existence of Nash Equilibrium: By Nash’s theorem, every finite game with mixed

strategies has at least one Nash equilibrium. The quantum game defined in our model

is a finite game, as there is a finite number of strategies available to each player (CSPs

and users). Therefore, a Nash equilibrium exists.

• Convergence: The algorithm iteratively updates the strategies of CSPs and users

based on the payoffs calculated from the quantum state |ψ′⟩. Since the strategy space

is finite and each update is based on maximizing the payoff, the algorithm makes

progress toward equilibrium in each iteration. Once a Nash equilibrium is reached, no

player can improve their payoff by unilaterally changing their strategy, thus leading

to the termination of the loop.

• Finiteness: The number of possible strategy combinations is finite, and the game

is played with discrete updates. Therefore, the algorithm must converge to a Nash

equilibrium in a finite number of steps.
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Thus, the proposed algorithm converges to a Nash equilibrium in a finite number of

iterations.

6.2. Theorem 2: Optimal Resource Allocation

Statement: The resource allocation R∗ achieved at the Nash equilibrium of the quan-

tum game is optimal in the sense that it maximizes the overall utility of the cloud system

while ensuring fairness among users.

Proof.

• Utility Maximization: At Nash equilibrium, the payoffs ui for CSPs and uj for users

are maximized given the strategies of the other players. Since the payoff functions

represent the utility of resource allocation for CSPs and users, the equilibrium state

|ψ∗⟩ corresponds to an allocation R∗ that maximizes the overall utility of the system.

• Fairness: The quantum strategies in the game allow for the exploration of multiple

allocation scenarios simultaneously, helping to achieve a balance between competing

objectives, such as maximizing CSP revenue and ensuring user satisfaction. This

balance is reflected in the Nash equilibrium, where no player can unilaterally improve

their payoff, indicating a fair allocation.

• Efficiency: The use of quantum operations and superposition enables efficient explo-

ration of the solution space, leading to a more optimal resource allocation compared

to classical methods.

Therefore, the resource allocation R∗ at Nash equilibrium is optimal, maximizing

overall utility and ensuring fairness.

6.3. Theorem 3: Time Complexity Bound

Statement: The time complexity of the proposed quantum game theory-based resource

allocation algorithm is bounded by O(k · (m + n) · q).

Proof.

• Initialization: As established earlier, the initialization step takes O(m + n) time.

• Quantum Operations: The complexity of applying quantum operations is O(q),

and this is repeated for each player (CSPs and users) in each iteration, leading to a

complexity of O((m + n) · q) per iteration.

• Total Complexity: The algorithm continues to iterate until it converges to Nash equilib-

rium, requiring k iterations. Therefore, the total time complexity is O(k · (m + n) · q).

• Bound: Since k, m, n, and q are finite, the time complexity is bounded by O(k · (m+ n) · q).

Thus, the time complexity of the algorithm is bounded as stated.

7. Qiskit-Based Implementation Strategy

The quantum implementation for resource allocation uses the Qiskit framework,

which is used to create and simulate quantum circuits. The implementation includes the

initialization of quantum states, application of dynamic strategies, and the measurement of

quantum states after applying various quantum operations. This section outlines the code

used for the simulation, from circuit creation to result visualization.

7.1. Code Overview

Community code sharing and reproducibility: We provide a set of processing scripts

QGT-CRA Code: accessed on 23 April 2025 https://github.com/KAUSHTAB/Quantum-

Game-Theory-Based-Cloud-Resource-Allocation, aiming to facilitate future research and

familiarize researchers and practitioners who can largely exploit and use our work on

quantum game theory-based cloud resource allocation.

https://github.com/KAUSHTAB/Quantum-Game-Theory-Based-Cloud-Resource-Allocation
https://github.com/KAUSHTAB/Quantum-Game-Theory-Based-Cloud-Resource-Allocation
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7.2. Quantum Circuit Initialization

The quantum circuit starts by initializing qubits to a uniform superposition using

Hadamard gates, ensuring all quantum states are equally probable and preparing the

system for further strategy application. The algorithmic depiction (Algorithm 2) of the

implemented code is given below:

Algorithm 2 Quantum State Initialization

Require: Number of qubits n
Ensure: Quantum circuit qc with qubits initialized in superposition state |ψ⟩

1: for i = 0 to n − 1 do
2: Apply Hadamard gate H to qubit qi ▷ Creates superposition
3: end for
4: Resulting state: |ψ⟩ = 1√

2n ∑
2n−1
x=0 |x⟩

This step ensures that the quantum system is in an unbiased state, ready for applying

different strategies.

Key Observations:

• Uniform Superposition: All qubits are initialized to equal probabilities using

Hadamard gates.

• Quantum Circuit Design: The initial circuit contains only Hadamard gates applied to

all qubits.

• Significance: The uniform state supports unbiased strategic decision-making in the

quantum game.

Visualization: Figure 1 shows the quantum circuit after applying Hadamard gates to

all qubits.

Figure 1. Quantum circuit initialized with Hadamard gates applied to each qubit, generating a

uniform superposition state.

After initialization, measurements of the quantum states were performed on the

simulator. The distribution of quantum states is shown in a histogram, highlighting the

counts for each measured state.

Key Observations:

• Measurement Counts: Each quantum state was observed multiple times across

1000 shots, demonstrating the superposition principle.

• Probabilities: Each state had approximately equal probabilities, as shown in Figure 2.
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Figure 2. Histogram showing the distribution of quantum state measurements after initialization.

7.3. Entanglement and Measurement

7.3.1. Role of Quantum Entanglement in Cloud Resource Optimization

Quantum entanglement is central to the QGT-CRA model. It is the distinguishing

factor in quantum mechanics suited for quantum-based resource allocation over classical

resource allocation paradigms. Entanglement allows for interdependent decision-making,

whereby the state of one agent (e.g., user or provider in the cloud) is instantaneously corre-

lated with others, resulting in global optimization strategies unavailable under classical,

isolated reason.

Conceptual Overview of Entangled Strategies: In traditional game theory, strategies

are independently chosen by each player. In QGT-CRA, strategy profiles are represented

on a quantum Hilbert space, with players’ states entangled to capture strategic interdepen-

dence. Consider a 2-player quantum game with strategies over qubit states |0⟩ and |1⟩. A

classical strategy is a tensor product:

|ψclassical⟩ = |s1⟩ ⊗ |s2⟩ (23)

A quantum entangled strategy is:

|ψentangled⟩ = α|00⟩+ β|11⟩, with |α|2 + |β|2 = 1 (24)

This entangled state guarantees correlated measurement results, i.e., if one player

chooses strategy |0⟩, the other will do so as well, depending on the phase of entanglement.

In resource allocation, this enables cloud providers and users to implicitly coordinate

without explicit communication, essentially reaching a distributed equilibrium.

Mathematical Model with Entanglement Operator: We add entanglement to the

QGT-CRA formalism through a global entangling operator J, given by:

J(γ) = exp(iγ σx ⊗ σx) (25)

where γ ∈ [0, π
2 ] determines the amount of entanglement, and σx is the Pauli-X gate. The

joint initial state is acted upon by J prior to players applying local strategy operators

Ui(θi, φi):

|ψ f ⟩ = J†(U1 ⊗ U2)J|ψ0⟩ (26)

Payoffs are subsequently calculated by observing |ψ f ⟩ in the computational basis and

using the formula for expected utility.

Impact on Optimization Dynamics: Entanglement facilitates the existence of quantum

Nash equilibria, wherein players make better decisions more quickly because of strategic

symmetry. In real life, we have the following:

• Wastage of resources is reduced through concerted action.

• Fairness improves, as entangled strategies allocate surplus and scarcity more evenly.

• Convergence is quicker, as players tend to “agree” through entanglement instead of

iterating over opposing classical responses.
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This results in the optimization of cloud measurements such as efficiency of allocation,

load balancing, and cost-cutting.

Simulation-Based Comparison: To measure the entanglement benefit quantitatively,

we simulated QGT-CRA with and without the entangling operator J(γ). The system

consisted of 10 users and 5 CSPs for 100 allocation cycles. The findings are as follows:

Interpretation: The simulation verifies that entanglement increases system-level coor-

dination, with a faster and more equitable equilibrium than in separable (non-entangled)

quantum methods. Although both versions utilize quantum benefits such as parallelism

and unitary updates of strategies, only the entangled version makes use of correlated utility

topologies, enabling the agents to adapt together cost-effectively.

These results confirm entanglement as an essential design element in quantum-

enhanced cloud scheduling systems. Future research can explore entanglement control

mechanisms, multi-player generalizations, and hybrid schemes with classical game strate-

gies incorporated in entangled qubit systems (Table 1).

Table 1. Performance comparison of QGT-CRA with and without quantum entanglement.

Metric QGT-CRA (Entangled) QGT-CRA (Unentangled)

Resource Utilization (%) 93.7 86.2
Fairness (Jain’s Index) 0.94 0.81
Convergence Time (Iterations) 12 21
Cost Reduction (%) 27.5 17.3

7.3.2. Illustrative Scenario

There are two cloud service providers (CSPs)—CSP1 and CSP2—and two users—

UserA and UserB. Both users make requests for compute resources, and CSPs have to

determine how to allocate them efficiently and equitably.

Classical Case (Without Entanglement):

• CSP1 and CSP2 make their allocations independently.

• UserA and UserB react to proposals and can compete for the identical resource.

• Both CSPs, without coordination, would favor high-paying UserA, and thus, UserB is

treated unfairly.

• Outcome: Overloaded CSP1, starved UserB, and underloaded CSP2.

Quantum Entangled Case (With Entanglement):

• Step 1: CSPs’ and users’ strategies are entangled, i.e., their decisions are correlated.

• Step 2: When CSP1 decides to give more to UserA, the entangled state naturally

corrects CSP2’s choice to offset this by leaning towards UserB.

• Step 3: The system converges through repeated updates until a balanced and optimal

distribution is achieved (quantum Nash equilibrium).

• Step 4: The resultant quantum state is measured, and a resource allocation plan is

derived wherein both users receive equitable access without conflict.

Interpretation:

• Entanglement enables implicit cooperation: the providers do not have to actually

communicate—the coordination occurs through quantum correlations.

• Reduces conflict of allocation and prevents redundant work.

• Enhances fairness: Proportionate access is provided to all users.

• Accelerates convergence: Optimum state is attained in fewer steps than in classical

feedback loops.
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7.3.3. Code-Based Implementation of Quantum Entanglement

The code also introduces controlled entanglement between the CSPs and users using

CNOT gates, ensuring collaboration between the two groups. After applying the strategies,

measurements are added to the quantum circuit Figure 3 to record the state of the system.

The algorithmic (Algorithm 3) depiction of the code is given below.

Algorithm 3 Dynamic Entanglement Between CSPs and Users

Require: Number of CSPs m, Number of Users n
Ensure: Entangled quantum state between CSPs and Users

1: for i = 0 to m − 1 do
2: for j = 0 to n − 1 do
3: Apply CNOT gate: control qi, target qm+j ▷ Entangles CSP Pi with User Uj

4: end for
5: end for

Figure 3. Quantum circuit showing the application of strategy rotations (Ry) and entanglement

(CNOT gates) for CSP and user qubits.

The measurements are then recorded, and the results are displayed using both his-

tograms and bar charts to visualize the distribution of quantum states.

7.4. Dynamic Strategy Application

The strategy unitary operations are defined for both the CSPs and the users, with

specific angles for the rotation gates. The algorithmic depiction (Algorithm 4) of the code

for applying the rotation gates to the CSP and user qubits is given below.

Algorithm 4 Strategy Initialization using Rotation Gates

Require: Number of CSPs m, Number of Users n
1: Strategy angles θCSP = [θP

1 , θP
2 , . . . ]

2: Strategy angles θUser = [θU
1 , θU

2 , . . . ]
Ensure: Quantum circuit qc with initialized strategies

3: for i = 0 to m − 1 do
4: Apply Ry(θP

i ) to qubit qi ▷ Strategy unitary for CSP Pi

5: end for
6: for j = 0 to n − 1 do
7: Apply Ry(θU

j ) to qubit qm+j ▷ Strategy unitary for User Uj

8: end for

Dynamic strategies were applied to the qubits using rotational gates (Ry) with specific

angles. Controlled entanglement was introduced between the CSP and user qubits.

Key Observations:

• Strategy Angles: CSPs and users adopted specific angles for their Ry rotations:

θCSP = π/4 and θUser = π/3.

• Entanglement: CNOT gates created quantum entanglement, enabling collaborative

decision-making.
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Measurement Results: The measurement results, after applying the strategies and

entanglement, are shown in Figure 4. The results demonstrate the influence of strategy

evolution on quantum state probabilities.

Figure 4. Histogram showing the final quantum state distribution after strategy application

and entanglement.

Statistics:

• Total Shots: 2048;

• Unique States: 24 = 16;

Probabilities: Table 2 summarizes the probabilities for each quantum state.

Table 2. Quantum state probabilities.

State Count Probability (%)

|0000〉 128 6.25%
|0001〉 132 6.44%

...
...

...
|1111〉 120 5.86%

Over 10 iterations, the strategy angles evolved dynamically, as illustrated in Figure 5. The

average angles for CSP and user qubits converged to optimal values for resource allocation.

Figure 5. Evolution of strategy angles for CSPs and users over 10 iterations.

8. Computational Cost and Scalable Quantum Design

The computational complexity of running QGT-CRA on quantum simulators or hard-

ware is a function of:

• Qubit Count Q = m + n, with m providers and n users.

• Gate Depth G = O(Q2) as a result of all-to-all entanglement.
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For instance, for Q = 15, the present IBM Q hardware accommodates shallow circuits

(G ≤ 100 gates) with reasonable fidelity. On simulators (e.g., Qiskit Aer), this setting

executes with higher latency but is still computationally viable.

To host millions of users, we suggest three approaches:

1. Federated Quantum Scheduling: Divide users into small clusters and execute QGT-

CRA in parallel.

2. Approximate Quantum Modeling: Employ reduced density matrices or tensor net-

works to approximate entanglement in larger systems.

3. Hybrid Quantum–Classical Cascades: Employ QGT-CRA for SLA-critical work while

offloading background workloads to classical schedulers.

These methods capture the theoretical benefit of QGT-CRA but are still flexible to

NISQ (Noisy Intermediate-Scale Quantum)-era hardware limitations.

9. Comparative Performance Evaluation with Classical Strategies

9.1. Classical Game Theory

To highlight the novelty and performance of the QGT-CRA framework, it is essential

to compare its conceptual and performance differences with established classical resource

allocation methods. This section provides a comprehensive comparison of three prominent

classical paradigms: cooperative game theory (CGT), non-cooperative pricing models

(NCPMs), and auction-based allocation (ABA), which assess each method on strategic mod-

eling, scalability, computational overhead, fairness, convergence efficiency, and security.

9.1.1. CGT

Cooperative game theory frameworks are based on coalition formation between CSPs

and users to achieve maximum joint utility [17,40]. The frameworks employ transferable

utility notions and bargaining solutions (e.g., Nash bargaining or Shapley value) to ob-

tain allocation decisions. Mathematically, cooperative games seek to maximize a group

utility function:

Utotal = ∑
i∈C

ui(xi) subject to ∑ xi ≤ R (27)

where C represents the coalition set, xi represents the resource allocated to user i, and R

represents the amount of available resource.

Whereas CGT is guaranteed to provide fair and Pareto-efficient allocations, it has the

drawback of excessive computational complexity in large-scale systems because it requires

considering all feasible coalition structures. In addition, CGT typically makes rational,

cooperative behavior assumptions that do not necessarily apply in real-world, competitive

multi-tenant cloud systems. In contrast, QGT-CRA enables the joint consideration of both

cooperative and competitive behavior through entanglement-aided strategy modeling

and superposition.

9.1.2. NCPM

NCPMs model CSPs and users as autonomous rational agents competing for resources

through pricing and utility maximization [41,42]. The utility function of each user is

given by:

uj = vj − pj.xj (28)

where vj is valuation, pj is price per unit resource, and xj is the quantity of the

resource purchased.

While NCPMs are easy to apply and computationally inexpensive, they inevitably

benefit users with greater willingness or capacity to pay at the expense of others, leading
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to low fairness and likely resource monopolization. They are also non-agile to changes

in system dynamics without regular price re-tuning. QGT-CRA integrates agility in the

quantum strategy evolution process and attains fair allocations via probabilistic outcome

modeling in superpositioned decision states.

9.1.3. ABA

Auction mechanisms (first-price, Vickrey, combinatorial) have been heavily employed

in cloud resource markets. They work by requesting users place bids, and the allocation is

made by the auction rules [43,44]. An ordinary sealed-bid auction can be represented as:

max
i∈N

bi subject to ∑
i

xi ≤ R (29)

where bi is the bid submitted by user i, and xi is the allocation.

While auctions guarantee incentive compatibility and decentralized control, they are

susceptible to strategic manipulation (e.g., collusion or false bidding) and tend to lead to

non-optimal resource allocation due to bid volatility. ABA does not have the mechanism to

guarantee fairness or cost minimization from a global system perspective. On the other

hand, QGT-CRA obtains globally optimal equilibria through dynamic entangled strategies

that balance utility, fairness, and cost.

9.2. Models Used to Advocate the Classical Game Theory-Based Comparison

9.2.1. CGT-SBCG

• Model Used: Shapley value-based coalition game (SVCG).

• Functioning: Users and CSPs create coalitions, and resources are allocated based on

the Shapley value, providing equitable contribution-based rewards.

Limitations:

• Requires listing of all coalition structures—computationally intensive for large systems.

• Not real-time scalable.

QGT-CRA Advantage:

• Obtains coalition-like behavior through quantum entanglement, eliminating the ne-

cessity of explicit coalitions or intricate bargaining computations.

• Converges at a faster rate while being fair.

9.2.2. NCPM-SGPC

• Model Used: Stackelberg game-based pricing model (SGPC).

• Functioning: CSPs are leaders, determining prices; users are followers, deciding

resource quantities to achieve maximum utility given those prices.

Limitations:

• Incentivizes monopolization of resources by high-budget users.

• Tends to have low fairness and wasteful outcomes.

QGT-CRA Advantage:

• Enables fair competition with balanced quantum strategies that bar dominance by

one user.

• Provides better fairness (0.94 Jain’s Index compared to 0.76 in Stackelberg model).

9.2.3. ABA-FPSB

• Model Used: First-price sealed-bid auction (FPSB).



Mathematics 2025, 13, 1392 21 of 31

• Functioning: Hidden bids for resources are submitted by users; highest bidder pays

their own bid and wins.

Limitations:

• Susceptible to strategic manipulation, e.g., underbidding or collusion.

• Does not necessarily guarantee efficient or fair resource allocation.

QGT-CRA Advantage:

• Enforces quantum auction mechanisms, e.g., quantum-sealed bids and superposi-

tioned strategies, which provide improved security, fairness, and speed.

• Enables faster convergence and greater cost savings.

9.3. Comparitive Analysis

9.3.1. Resource Utilization (%)

Resource utilization indicates the extent to which the system can allocate available

cloud resources (CPU, memory, storage) to users. The suggested QGT-CRA approach at-

tains a resource utilization rate of 93.7%, much higher than the rates attained by CGT-SBCG

(87.1%), ABA-FPSB (85.3%), and NCPM-SGPC (82.4%). This is because QGT-CRA can

analyze various allocation strategies at the same time through the power of quantum super-

position. The parallelism inherent in quantum computation enables the algorithm to skip

suboptimal local maxima that classical algorithms tend to be stuck in. Although CGT-SBCG

emphasizes group utility, even they are susceptible to negotiation overhead and delays in

reaching decisions. NCPM-SGPC and ABA-FPSB, however, under-utilize resources when

users bid inefficiently or hold back resources because of price dynamics. In contrast, QGT-

CRA constantly adapts to world system conditions via entangled strategic decisions, with

high degrees of resource saturation and little idle capacity. Table 3 and Figure 6 represent

the resource utilization percentages via tabular and graphical representations.

Figure 6. Comparison of resource utilization (%) in various strategies.

Table 3. Benchmarking Results: Comparison of QGT-CRA with classical resource allocation methods.

Method
Resource

Utilization (%)

Convergence
Time

(Iterations)

Fairness Index
(Jain’s)

Cost
Reduction (%)

QGT-CRA 93.7 12 0.94 27.5
CGT-SBCG 87.1 25 0.89 15.3
NCPM-SGPC 82.4 30 0.76 12.1
ABA-FPSB 85.3 22 0.81 18.7
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9.3.2. Convergence Time (Iterations)

Convergence time assesses how efficiently a resource allocation algorithm converges

to a final stable equilibrium with no additional improvement in strategy resulting in better

utility. In terms of this metric, QGT-CRA substantially outperforms its traditional predeces-

sors by converging within 12 iterations. CGT-SBCG converges in 25 iterations, ABA-FPSB in

22, and NCPM-SGPC in a whopping 30 iterations. This is made possible by the QGT-CRA

harnessing the power of quantum entanglement and strategy superposition to explore

the entire space of strategies simultaneously, as opposed to sequentially. All the classi-

cal approaches are based on iterative feedback loops—coalition formation in CGT-SBCG,

multiple rounds of auctions in ABA-FPSB, and pricing equilibrium adjustments in NCPM-

SGPC—and hence are slow. Conversely, quantum strategies achieve equilibrium more

quickly because of the constructive interference of optimal states, lowering computational

overhead along with allocation latency. Table 3 and Figure 7 represent the convergence

time iterations via tabular and graphical representations.

Figure 7. Comparison of convergence time (iterations) in various strategies.

9.3.3. Fairness Index (Jain’s Index)

Fairness is a vital measure in multi-tenant cloud environments where resource distri-

bution equally is paramount. Calculated based on Jain’s Fairness Index (where 1 represents

optimal fairness), QGT-CRA has a score of 0.94, which represents nearly even distribution

across all users. CGT-SBCG is second at 0.89 since coalition-based decision-making tends

to look at fairness but yet permits marginal imbalances. ABA-FPSB has a moderate rating

of 0.81, as bidding mechanisms inherently benefit more powerful buyers. NCPM-SGPC is

rated the lowest at 0.76, where great disparity occurs as aggressive buyers can dominate

resources. QGT-CRA maintains high fairness due to the application of entangled strategies,

which balance personal utility in accordance with system-wide optimization. This mecha-

nism naturally allocates resources in a more equal manner since quantum superpositions

take into account all possible allocations simultaneously, thereby minimizing bias toward

any one stakeholder. Table 3 and Figure 8 represent the fairness index via tabular and

graphical representations.

9.3.4. Cost Reduction (%)

Cost saving analyzes the effectiveness of the allocation strategy in optimizing the

total system cost while fulfilling user requirements. QGT-CRA achieves a maximum cost

saving of 27.5%, and then it is auction-based allocation at 18.7%, cooperative game theory

at 15.3%, and non-cooperative pricing models with a mere 12.1%. All such savings in

QGT-CRA are due to its adaptive updating of strategies and dynamic reallocation of idle

resources, resulting in minimal redundancy and wastage. In contrast to traditional models

wherein overprovisioning of resources or competitive inefficiencies add to the operational
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costs, QGT-CRA takes advantage of quantum computations in order to quickly determine

optimal, cost-effective configurations. This not only lightens infrastructure load but also

reduces power usage and virtual machine sprawl; therefore, the setup is especially suited

for green cloud computing projects. Additionally, since it achieves equilibrium faster,

QGT-CRA also minimizes the runtime and scheduling overhead generally associated with

iterative allocation systems. Table 3 and Figure 9 represent the convergence time iterations

via tabular and graphical representations.

Figure 8. Comparison of fairness index (Jain’s) in various strategies.

Figure 9. Comparison of cost reduction (%) in various strategies.

9.3.5. Fairness-Efficiency (Resource Allocation) Trade-Off in QGT-CRA

One of the greatest strengths of QGT-CRA is its potential to reconcile fairness and

efficiency, two goals that habitually confront each other in traditional models. In the

traditional context, fairness prioritization tends to lead to inefficient use (underexploitation

of resources), whereas efficiency maximization might translate to monopoly by high-paying

or hostile users.

The trade-off in QGT-CRA is avoided by employing the quantum entangled strategies

and superposition in order to make the system assess various resource allocation outcomes

concurrently. Fairness is attained as the quantum state converges towards a common point

that represents collective utility for all the users, while efficiency is maintained in order to

avoid the maximum idle capacity and optimal allocation trajectories.

For example, if a high-demand user and a low-demand user are coupled, the choice

made for one will automatically rescale the other’s allocation to ensure system-wide

equilibrium. This eliminates the explicit requirement of centralized arbitration or iterative

negotiation in CGT-SBCG and instead achieves an efficient and equitable equilibrium

more quickly.
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The results confirm this balance: QGT-CRA attains both the highest resource usage

(93.7%) and the best fairness score (0.94 Jain’s Index), showing that it is able to optimize for

both extremes of the spectrum without giving either up (Table 3).

10. Comparitive Analysis with Recent Optimization and
Quantum-Inspired Techniques

10.1. Recent Optimization and Quantum-Inspired Techniques

• DQN-Based Allocator: A reinforcement learning agent is trained to acquire optimal

resource allocation policies through experience. It learns to map states (e.g., current

load, resource supply) to actions through a deep neural network. DQN performs

well in adaptive environments but tends to need large datasets and precise reward

tuning [45,46].

• GA-Based Scheduler: An evolutionary method where allocation strategy populations

are evolved across generations through selection, crossover, and mutation. GA is

strong in dealing with multi-objective constraints but tends to converge slowly and

can result in inconsistent fairness results [47,48].

• PSO: A swarm intelligence method where particles (solutions) traverse the solution

space based on their own and neighbors’ experiences. PSO is light and flexible but

can be prone to local optima and does not enforce equilibrium [49,50].

• Quantum-Inspired Genetic Algorithm (QGA): A traditional simulation of quantum

behavior with probabilistic bit representations (Q-bits). It emulates superposition but

not genuine quantum entanglement. It strikes a balance between exploration and

exploitation but is computationally more expensive than traditional GA [51,52].

10.2. Comparative Analysis

In order to further establish the attestations of improvement of the new QGT-CRA

approach, we broadened the scope of our study to compare it with some of the most recently

developed optimization methods and quantum-inspired algorithms that are commonly

known to be highly responsive and perform well in dynamic conditions. Specifically, we

compared QGT-CRA with a DQN-based resource allocator, a GA-based scheduler, and a

PSO-based allocation model. These algorithms are recognized for their ability to resolve

non-convex, multi-objective problems common in cloud environments.

The DQN-based method uses reinforcement learning to incrementally refine a pol-

icy that transforms system states (e.g., workload, availability of resources) into optimal

allocation decisions. Although this algorithm scales well with varying demands, it needs

extensive training time and is reward-sensitive. In our experiments, it showed good fair-

ness and usage but fell behind in convergence time and suffered from sporadic instability

at inference because of policy overfitting. On the other hand, QGT-CRA accomplishes

stable, real-time convergence with entangled decision-making without episodic training or

reward engineering.

The GA-based model, based on evolutionary computation, worked reasonably well

in achieving near-optimal allocations in the long run but had the drawback of slow con-

vergence (frequently more than 50 iterations) and unstable fairness because of its use of

random mutation and crossover. PSO, though quicker than GA, still did not have the strate-

gic equilibrium coordination that existed in QGT-CRA. Both algorithms could not compare

with QGT-CRA in resource efficiency, SLA adherence, and energy-aware scheduling.

Quantum-inspired heuristics and quantum mechanics-inspired models (e.g., Q-bit-

based genetic models) analyze quantum behavior with classical resources. They provide

some probabilistic advantage over classical heuristics but do not have the real parallelism or

entangled utility modeling of QGT-CRA. Our comparative simulations showed QGT-CRA
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with quantum entanglement always outperforming these models in key metrics—greater

fairness (0.94 vs. 0.87), faster convergence (12 vs. 34+ iterations), and lower SLA violation

rates (3.2% vs. 5–8%).

In summary, QGT-CRA not only outperforms traditional algorithms but also outper-

forms or is equal to state-of-the-art optimization methods and quantum-inspired models.

Its capacity to utilize entangled strategies gives it a distinct and quantifiable edge in dy-

namic, multi-agent cloud resource allocation environments—attesting to the strength and

originality of our proposed framework (Table 4).

Table 4. Comparison of QGT-CRA with recent optimization and quantum-inspired models.

Method
Utilization

(%)
Fairness
(Jain’s)

Convergence
(Iter)

Service Level
Agreement (SLA)

Violations (%)

Cost
Reduction

(%)

User
Satisfaction

Energy
Efficiency

QGT-CRA (Entangled) 93.7 0.94 12 3.2 27.5 0.92 4.1
QGT-CRA (Unentangled) 86.2 0.81 21 8.4 17.3 0.81 3.1
DQN-Based Allocator 88.6 0.87 34 5.5 19.2 0.88 3.5
GA-Based Scheduler 84.1 0.79 52 7.3 15.6 0.76 3.2
PSO Allocator 83.7 0.77 44 6.9 14.9 0.74 2.9
Quantum-Inspired GA (QGA) 85.9 0.84 36 6.1 18.1 0.83 3.4

11. Deployment Strategy and Real-World Integration of QGT-CRA:
A Futuristic Approach

Although the theoretical basis and simulated behavior of the QGT-CRA framework

have been soundly established, its instantiation in real-world, production-level cloud

infrastructures requires a well-defined methodology. This section describes the end-to-end

deployment structure, elaborates on integration points with current cloud platforms, and

shows real-time usage scenarios that prove its viability.

11.1. Modular Hybrid Deployment Architecture

Considering the present constraints in quantum hardware, we suggest a hybrid cloud,

modular design that gradually adds QGT-CRA as a strategic optimization module in

conjunction with keeping classical components for operation control and orchestration.

Core Architectural Components:

• Classical Frontend Orchestrator (e.g., Kubernetes, OpenStack): Orchestrates resource pro-

visioning, monitoring, and autoscaling. Connects with QGT-CRA through middleware.

• Quantum Optimization Module (QOM): Holds QGT-CRA logic executed on sim-

ulators or NISQ hardware through cloud APIs. Consumes system state inputs and

generates optimal allocation vectors.

• Middleware Adapter: Maps classical inputs to quantum-ready encodings and handles

data transfer to the QOM.

• Result Translator and Actuator: Maps quantum outputs into actionable resource

decisions and returns them to the orchestrator.

This architecture causes minimal disruption to legacy cloud systems while increasingly

adding quantum optimization capabilities (Figure 10).

11.2. Applicability to Real-Time Scenarios

In spite of current latency during the execution of quantum circuits, QGT-CRA can be

employed for near real-time scenarios like the following:

• Scheduling Batch Jobs: Recalculating VM-job allocations on a periodic basis of every

15–30 min.
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• Multi-Tenant Fair Scheduling: Proportionate allotment across organization partitions

in federated clouds.

• Green Resource Utilization: Power-aware placement of tasks using optimized global

strategies.

• Marketplace-Based Pricing: Dynamic pricing powered by quantum computing for

edge-cloud and serverless environments.

Figure 10. Flowchart-based representation of the deployment roadmap for real-world integration

of QGT-CRA.

11.3. Step-by-Step Adoption Plan for Industry

Table 5 represents the Step-by-Step Adoption Plan for Industry.

Table 5. Recommended phased strategy for deploying QGT-CRA in operational cloud environments.

Phase Strategy Tools/Platforms

Proof of Concept Simulate batch allocation using QGT-CRA IBM Qiskit, Rigetti Forest
Hybrid Simulation Connect QGT to orchestration systems REST/gRPC APIs, Docker, Kubernetes
Semi-Realtime Ops Use QGT-CRA in idle system cycles OpenFaaS, Apache Airflow, Qiskit Cloud
Quantum Transition Shift QGT-CRA to real hardware gradually IBM Quantum, AWS Braket

11.4. Benefits of Incremental Deployment

• Scalability: Start with small workloads before large-scale deployment.

• Compatibility: QGT-CRA is a plugin to current schedulers.

• Explainability: Payoff results can be visualized and debugged.

• Future-Readiness: Built to scale from simulation to actual quantum systems.

By adopting a step-wise, modular hybrid deployment path, QGT-CRA can be seam-

lessly integrated into current cloud infrastructures. Although full real-time quantum

operation might not currently be an immediate possibility, half-real-time integration al-

ready provides definite benefits and places cloud platforms ahead of the next breakthroughs

in quantum computing.
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12. Implementation Feasibility and Deployment Considerations

Although the QGT-CRA framework has shown promise in simulation, its real-world

deployment within cloud environments has some practical implications. The section

presents those practical implications under five technical pillars: hardware constraints,

hybrid integration, scalability, cost of operation, and future readiness.

12.1. Quantum Hardware Constraints

The essential restriction of carrying out QGT-CRA stems from the potential of today’s

quantum processors, which are mostly in the NISQ regime. Those machines are identified

by a small number of qubits, limited coherence times, and high gate error rates. For

example, an m cloud service provider versus n users quantum game needs a quantum state

within a joint Hilbert space:

Htotal =
m+n
⊗

i=1

Hi (30)

where Hi denotes the state space of each participant. The dimensionality of this space

is 2m+n, which implies exponential growth in required resources with the number

of participants.

In addition, quantum circuits implementing QGT involve several layers of entangling

gates (e.g., CNOTs) to represent strategy correlation. These gates are the most noise-prone,

exacerbating the issue even further. On existing quantum hardware, this puts a practical

constraint on problems with greater than 5 players, making the full version of QGT-CRA

presently unscalable on hardware.

12.2. Integration with Classical Cloud Systems

A full deployment of QGT-CRA would require a hybrid quantum–classical architec-

ture, where classical cloud infrastructure manages orchestration, billing, and real-time

monitoring, and quantum processors address hard optimization sub-problems. This does

add latency due to quantum circuit execution and readout.

Let Tq be quantum runtime and Tc be classical processing overhead. The overall

decision-making time becomes:

Ttotal = Tc + Tq + Ttransfer (31)

where Ttransfer includes serialization, deserialization, and data transfer. Even with optimistic

assumptions, when Tq is minimal, frequent transitions between classical and quantum

systems add unacceptable latencies for real-time scheduling.

12.3. Scalability and Circuit Complexity

Quantum scalability is also limited not only by the total number of accessible qubits

but also by how qubits interact. In a QGT-CRA protocol with m providers and n users,

under the assumption of 2 strategy parameters per player (e.g., rotation parameters θi, φi),

the quantum circuit needs at least:

Qmin = m + n qubits (32)

and at most:

Gdepth = O((m + n)2) gates (33)

because of the requirement of pairwise entanglement and multi-layer unitary updates.

This increase in gate depth results in higher decoherence probability Pd, lowering fidelity.

Therefore, the model is still only suitable for small-scale problems.
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12.4. Cost, Accessibility, and Workforce Readiness

Quantum computer access is also available only on cloud platforms, and the price can

be exorbitant. Additionally, the execution of moderately sized QGT-CRA instances is very

computationally expensive. The monetary cost, along with unavailability and scheduling

latencies, poses a challenge to the deployment of quantum solutions in scale.

Moreover, the development and upkeep of quantum modules is specialized knowledge

that most cloud engineers lack, having not been educated in quantum programming

frameworks like Qiskit or Cirq. Closing this knowledge gap will need to be addressed

through specialized training or the recruitment of interdisciplinary professionals.

Despite these limitations, the future of QGT-CRA is bright. In the near term, it can be

embedded in hybrid workflows where quantum solvers serve as offline decision-making

engines for batch optimization problems. Quantum-inspired algorithms can simulate

quantum behavior and yield advantages without true quantum hardware. As quantum

systems advance, complete integration of QGT-CRA will be possible.

Although the QGT-CRA approach has superior simulation theoretical abilities and

performance benefits in simulation, its current limitations of hardware, latency, scalabil-

ity, and cost will hold it back from real-world deployment. Nonetheless, the approach

is forward-compatible and can possibly be incrementally embraced through quantum-

inspired methods and offline quantum modules, as well as hybrid workflows. With

continued hardware and compiler progress in quantum computers, QGT-CRA poten-

tially has the future to transform the optimization of cloud resources in the near term.

Table 6 represents a practical feasibility comparison of classical and quantum resource

allocation approaches.

Table 6. Practical feasibility comparison of classical and quantum resource allocation approaches.

Criterion
Cooperative

GT
Auction-

Based
NCPM QGT-CRA

Hardware Availability High High High Low
Real-Time Responsiveness Moderate High High Low
Scalability Medium High High Low–Medium
Circuit Complexity N/A N/A N/A High
Implementation Cost Low Low Medium High
Fairness Potential High Medium Low High
Long-Term Potential Medium Low Low Very High

13. Limitations of the Proposed QGT-CRA Algorithm

Despite its promising results, this study on quantum game theory-based cloud resource

allocation has certain limitations:

• Scalability Constraints: The proposed framework has primarily been tested on simu-

lated environments with limited scalability. Real-world cloud systems with large-scale

users and providers may present unforeseen challenges.

• Quantum Hardware Availability: The reliance on advanced quantum hardware poses

a significant limitation, as current quantum computers lack the capacity to execute

large-scale quantum simulations effectively.

• User-Centric Considerations: While the model optimizes for system-wide efficiency,

the specific preferences or satisfaction levels of individual users are not deeply ad-

dressed, potentially affecting adoption rates.

• Complexity of Implementation: The integration of quantum algorithms with classical

systems may involve high computational and developmental overheads.
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14. Future Work

Building on the insights from this study, future research can explore the

following avenues:

• Scalability Enhancements: Developing algorithms that can seamlessly scale with the

complexity of real-world cloud computing environments.

• Integration with Hybrid Systems: Exploring hybrid quantum–classical algorithms to

leverage the strengths of both paradigms for enhanced resource allocation.

• Dynamic Adaptation: Introducing mechanisms for real-time adjustments to strategies

based on continuously evolving workloads and user demands.

• User Satisfaction Models: Incorporating models that prioritize individual user satis-

faction and fairness to ensure wider adoption and equity.

• Hardware Optimization: Collaborating with advancements in quantum hardware to

test and refine the framework on practical, large-scale quantum systems.

• Energy Efficiency: Investigating the energy consumption of quantum strategies and

developing sustainable allocation models for green cloud computing.

These directions aim to address the current limitations and expand the applicability of

quantum game theory in cloud computing.

15. Conclusions

This paper proposed a new QGT-CRA model based on the principles of quantum

mechanics, particularly entanglement and superposition, to better optimize resource dis-

tribution in cloud computing. By quantizing the user–CSP interaction as a quantum

game, the new algorithm achieved far better resource utilization (93.7%), fairness (Jain’s

Index = 0.94), cost-saving (27.5%), and speed of convergence (12 iterations) compared to tra-

ditional approaches. Employing QiNE allowed adaptive, equitable, and efficient allocation

results that are impractical to compute in traditional domains. In addition, the deployment

through Qiskit illustrates the pragmatic viability of quantum strategy simulation with

existing tools.

Notwithstanding these developments, the real-world deployment of QGT-CRA is

presently limited by the limited scalability of quantum hardware, the complexity of inte-

gration with classical systems, and real-time scheduling latency. Nevertheless, the hybrid

simulation frameworks, modular deployment approaches, and cloud orchestration support

provide a solid basis for real-world applicability as quantum hardware matures.
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