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1 Introduction

Gravitational waves (GWs) are key to studying the largely unknown dynamics of the early Uni-
verse. Since the Standard Model (SM) of particle physics does not predict a significant abun-
dance of relic GWs, the detection of a stochastic gravitational wave background (SGWB) [1]
of cosmological origin would profoundly impact our understanding of the fundamental build-
ing blocks of nature. As a consequence of the high temperatures during the initial stages
of the cosmic expansion, future GW experiments such as the Laser Interferometer Space
Antenna (LISA) [2, 3] or the Einstein Telescope (ET) [4] provide a way to test beyond the
SM (BSM) theories at energies inaccessible to Earth-based colliders. To be able to deduce
the underlying particle theory from an observation, it is therefore important to identify
unique signals that emerge in given models.

In this work, we will be concerned with classically conformal (CC) SM extensions [5–23].
The common feature of these models is the absence of mass terms in the tree-level potential,
providing a mechanism to dynamically generate electroweak symmetry breaking (EWSB) via
a new scalar field charged under an additional gauge group. CC theories offer interesting
phenomenology, as they generally predict a substantial period of supercooling, which opens
up the window for intriguing baryogenesis [24–33] and dark matter (DM) [34–47] production
mechanisms. The supercooling phase is typically followed by a strong, first-order phase
transition (FOPT), generating relic GWs [48–59] in the reach of future observatories.

Employing the CC U(1)B-L model as an example, we show that a detectable FOPT is in
fact realized merely in a small part of the available parameter space. In the case of extreme
supercooling, the Universe keeps inflating as the temperature of the radiation bath approaches
the QCD scale, where chiral symmetry breaking (χSB) [60–63] is triggered. This breaks the
CC symmetry explicitly [28, 51, 58, 64–70], accelerating the end of supercooling. We show
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that this quickly leads to a regime where bubble percolation becomes inefficient. Then, the top
quark condensate sources a tachyonic instability in the BSM scalar field responsible for EWSB.
This induces an exponential amplification of long-wavelength scalar fluctuations, preheating
the supercooled Universe. We will refer to this scenario, where the symmetry breaking
is driven by classical rolling instead of thermal tunneling, as tachyonic phase transition.1
The growth of scalar fluctuations in a distinct momentum band generates anisotropies in
the stress-energy tensor, and hence, GWs [71–80]. Tachyonic preheating [71, 72, 81–99] is
typically studied in the context of cosmic inflation, where the associated SGWB peaks at
frequencies too large to be detectable. In our scenario, on the other hand, the instability
is triggered by QCD, and the peak frequency of the resulting GW spectrum is determined
by the CC scale, which we find can be as low as O(105) GeV. Therefore, we find a large
parameter space observable by future experiments.

In section 2, we introduce the dynamics occurring in CC models. In the subsequent
section 3, we identify the parameter space where the tachyonic instability realizes the exit
from supercooling, before studying the production of scalar fluctuations analytically and
numerically in section 4. Afterwards, we describe the reheating of the supercooled thermal
bath in section 5. Finally, in section 6, we estimate the peak of the associated GW spectrum.

2 Supercooled Universe

Let us first outline the impact of quasi-conformal dynamics on the thermal history of the
Universe. As a benchmark, we consider the CC U(1)B-L model [8, 9] where the global B − L
(baryon − lepton number) symmetry of the SM is promoted to a gauge symmetry. Besides a
Z ′ gauge boson, the model contains an additional, complex scalar field Φ = (φ + iG)/

√
2 with

B − L charge +2. Moreover, three right-handed sterile neutrinos are required for anomaly
cancellation. These have, however, negligible impact on the dynamics we study and are
therefore neglected in the remainder of this work.

The defining feature of the model is scale invariance at tree level, hence the scalar
potential reads

Vtree = λhH4 + λφΦ4 − λpH2Φ2 , (2.1)

where H denotes the SM Higgs doublet. The Higgs and B − L scalar self-couplings are λh

and λφ, respectively, while λp is the portal coupling between the electroweak and B − L
sectors. Due to the absence of dimensionful terms in the tree-level potential, EWSB is
established via the portal term once the U(1)B-L symmetry is spontaneously broken by
radiative corrections [100]. The vacuum expectation value (VEV) of φ can be expressed as

vφ = mZ’

2gB-L
, (2.2)

where gB-L is the B − L gauge coupling and mZ’ is the Z ′ boson mass after symmetry breaking.
We note that experimental Z ′ searches [101, 102] dictate vφ ≫ vh = 246 GeV. Then, the
first step of the symmetry breaking pattern is well approximated by merely considering

1Note that this scenario is distinct from a conventional second-order phase transition where the scalar field
evolves smoothly with the true minimum, hence never experiences a tachyonic instability.
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the B − L direction of the effective potential [54]. In the second step, the EW vacuum is
generated by demanding

µ2
h,SM ≃ λp

2 v2
φ , and mh = 125.10 GeV , (2.3)

where mh is the physical Higgs mass. This renders mZ’ and gB-L the only free parameters2,3

in the model (see appendix A for more details on the input parameters).
The scale of EWSB in the early Universe is therefore crucially dependent on the CC

dynamics, i.e., the temperature when φ acquires its VEV. At high temperatures, thermal
corrections restore the U(1)B-L symmetry. While the Universe cools, the true minimum forms,
separated from the origin by a thermal barrier. Intriguingly, this barrier remains down to
T → 0 as a consequence of classical scale invariance. Therefore, tunneling can be significantly
delayed, and CC models typically feature strongly supercooled, first-order phase transitions.
Such transitions are characterized by several temperature scales:

• Critical temperature Tc: The VEV becomes degenerate with the minimum at the origin,
i.e., tunneling to the true vacuum becomes energetically favorable.

• Onset of thermal inflation Ti: If φ remains trapped in the false vacuum for a sufficient
amount of time, the false vacuum energy starts to dominate the energy budget and the
Universe enters a stage of thermal inflation [103, 104].4

• Percolation temperature Tp: The formation and expansion of bubbles becomes efficient,
such that the Universe is converted to the true vacuum state while GW production
takes place.

• Reheating temperature Trh: The false vacuum energy is injected back into the thermal
bath, which reheats to a temperature Trh. If reheating is fast, we have Trh ≈ Ti.
Subsequently, the Universe follows the standard evolution.

Previous studies [51, 52, 55] have shown that for small gauge couplings gB-L ≤ O(0.1),
the percolation temperature Tp ≤ TQCD = O(100 MeV). Then, the cosmic QCD transition
with six massless flavors occurs first [60–63] at TQCD ≃ 85 MeV, breaking the chiral symmetry
of QCD via quark condensation, ⟨qq̄⟩ ̸= 0. At the same time, the finite expectation value
of the quark condensate induces a QCD-scale VEV [51, 65] for the SM Higgs through its
Yukawa coupling to the top quark,

vh,QCD =
[
− yt√

2λh

⟨tt̄⟩
] 1

3
. (2.4)

2In fact, the model contains a third free parameter, g̃, which parametrizes the kinetic mixing between the
U(1)Y and U(1)B-L gauge bosons. Its impact on our mechanism is small, hence we set it to g̃ = 0 at the
electroweak scale; see appendix A.

3Note that for gB-L(µ = mt) ≳ 0.35, the U(1)B-L gauge coupling runs into a Landau pole [14] below the
Planck scale. The parameter space relevant for our mechanism is well below this bound.

4Note that this inflationary stage is unrelated to the conjectured initial period of cosmic inflation.

– 3 –



J
C
A
P
0
2
(
2
0
2
5
)
0
7
5

A precise value of vh,QCD can only be inferred from lattice studies as chiral symmetry breaking
(χSB) is governed by strongly-coupled dynamics. In addition, yt runs non-perturbatively
large at the QCD scale. Following previous studies, we therefore set

vh,QCD = 100 MeV . (2.5)

The QCD-scale Higgs VEV induces a negative mass term in the tree-level potential (2.1),

∆m2
φ,QCD = −λp

2 v2
h,QCD , (2.6)

counteracting the thermal barrier. As a consequence, the B − L PT is either directly sourced
or rapidly accelerated such that Tp ≤ TQCD [51, 52, 55, 58].

In the following, we demonstrate that the QCD-induced exit from supercooling in CC
models is not necessarily realized by a FOPT. Due to the breaking of the CC symmetry by
quark condensation, a temperature Troll emerges where the mass term (2.6) equals the thermal
corrections, |∆m2

φ,QCD| ∼ g2
B-LT 2

roll, such that the thermal barrier vanishes. This feature gives
rise to a parameter region where the QCD-sourced acceleration of the B − L PT becomes more
and more rapid, such that bubble percolation becomes increasingly inefficient (see below).
Then, Tp approaches Troll, until these two temperature scales become indistinguishable. In the
absence of bubble dynamics, the scalar field φ becomes free to roll down the effective potential
at Troll, traversing a region in the effective potential where its effective mass is negative,
m2

φ < 0. Then, the field experiences a tachyonic instability, leading to an explosive production
of long-wavelength scalar fluctuations [105], which preheat the supercooled Universe. In other
words, the top quark condensate triggers a tachyonic B − L phase transition.

3 QCD-induced tachyonic instability

Effective potential. Let us now introduce the thermal effective potential Veff(φ, T ). The
tree-level potential (2.1) in the φ-direction reads

Vtree(φ) = λφ

4 φ4 − λp

4 v2
h,QCDφ2 , (3.1)

where the QCD term emerges after χSB at T ≃ 85 MeV. Radiative (vacuum) corrections
at one-loop order are incorporated as

Vcw(φ, T ) =
∑

i

ni

64π2 Mi(φ)4
[
log

(
Mi(φ)2

µ(φ, T )2

)
− ci

]
, (3.2)

where ni are the degrees of freedom of a species i, Mi(ϕ) are the field-dependent masses,
and ci = 5

6

(
3
2

)
for vector bosons (scalars and fermions). The renormalization group (RG)

scale is denoted by µ.
Interactions with the thermal medium generate temperature-dependent corrections to

the effective potential of the form

VT(φ, T ) = T 4

2π2

∑
i

niJB,F

(
Mi(φ)2

T 2

)
, (3.3)
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where
JB,F(x) =

∫ ∞

0
dyy2 ln

[
1 ∓ exp

(
−
√

x + y2
)]

(3.4)

are the bosonic/fermionic thermal integrals. Thermal resummation is accounted for by
implementing the Daisy term [106, 107],

Vdaisy(φ, T ) = − T

12π

∑
i

ni

[
(Mi(φ)2 + Πi(T ))

3
2 − Mi(φ)

3
2
]

, (3.5)

where Πi(T ) denotes the thermal mass of a species i, and the sum runs over scalar and
longitudinal bosonic degrees of freedom. The field-dependent and thermal masses can be
found in, e.g., refs. [52, 55]. Here, we only consider corrections from the Z ′ gauge boson.
Since λφ ∼ g4

B-L (cf. appendix A), scalar contributions to Veff scale as ∼ g8
B-L, hence, are

subleading and will be neglected. The full effective potential then reads

Veff(φ, T ) = Vtree(φ) + Vcw(φ, T ) + VT(φ, T ) + Vdaisy(φ, T ) . (3.6)

Note that although a state-of-the-art, dimensionally reduced effective field theory [108]
framework beyond leading order has been established for strongly supercooled phase transi-
tions [59], we restrict our computation to one-loop order. Since the effective potential suffers
from the uncertainty of the strongly coupled dynamics encoded in vh,QCD, high-precision
thermal resummation plays a subdominant role.

The RG scale µ is often chosen as the largest mass scale of the theory, which in our
case is mZ’(φ). This, however, becomes ambiguous in theories with a temperature-dependent
scale hierarchy. If the involved mass scales are small compared to the temperature, the
high-temperature approximation holds. Then, logarithms involving field-dependent masses
in (3.2) and (3.3) cancel out [109], leaving a logarithmic dependence on the ratio of T/µ.
From this, it becomes clear that the natural choice is a temperature-dependent RG scale
µ(T ).5 In models that feature strong supercooling, such a treatment only holds in the regime
where the field-dependent masses are small. For large field values, e.g., around the true
minimum, mZ’(φ)/T becomes large and the high-T approximation breaks down. Therefore,
we follow the approach of ref. [59] and impose6

µ(φ, T ) = max {mZ’(φ), πT} . (3.7)

Then, all couplings that enter the effective potential are evaluated at µ(φ, T ). The input
parameters are fixed such that the SM vacuum is successfully generated at the electroweak
scale µ = mZ, see appendix A. In all figures, we display the B − L gauge coupling gB-L

evaluated at its input scale µ = mZ’.

Inefficiency of bubble percolation. With the effective potential, we are now able to study
the parameter space where bubble nucleation and percolation is (in)efficient. We start from
a high temperature where the U(1)B-L symmetry is restored and φ is trapped in the false

5Typically, RG scales in the range π
2 T ≤ µ ≤ 4πe−γT are employed [110, 111].

6Note that for energy scales below the QCD scale, µ ≤ ΛQCD ≃ 0.1 GeV, the strong gauge coupling as well
as the top quark Yukawa become non-perturbatively large. Hence, we freeze their running below ΛQCD.
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vacuum. Then, at Ti < Tc, the Universe enters a period of thermal inflation [103, 104] when
the false vacuum energy becomes comparable to the energy density in the thermal bath,

ρr = π2

30g⋆,ϵT
4
i = ∆Veff(φ, Ti) , (3.8)

where ∆Veff(φ, T ) is the potential energy difference between the false and true vacuum, and
g⋆,ϵ = 110.75 denote the effective energetic degrees of freedom of the extended SM.

The Hubble parameter reads

H =
(

ρr(T ) + ∆Veff
3M2

Pl

) 1
2

≈
( 1

128π2

) 1
2 m2

Z’

MPl
, (3.9)

where in the last approximation we have taken the zero-temperature limit of the effective
potential. Hence, H becomes approximately constant for sufficiently small temperatures.
To evaluate the efficiency of bubble nucleation, we compute the decay rate of the false
vacuum [112]

Γ(T ) ≈ T 4
(S3

2π

) 3
2

exp (−S3) . (3.10)

Here, S3 = S3/T , with the bounce action given by

S3 [φ] = 4π

∫
drr2

[
1
2

(dφ

dr

)2
+ Veff(φ, T )

]
. (3.11)

This expression is evaluated for the bounce solution φ = φb, which is obtained by solving
the O(3) symmetric equation of motion in Euclidean time,7

d2φ

dr2 + 2
r

dφ

dr
= dVeff(φ, T )

dφ
. (3.12)

The nucleation temperature Tn, where bubble nucleation becomes efficient, is defined by [114]∫ Tc

Tn

dT

T

Γ(T )
H(T )4 = 1 , (3.13)

corresponding to one nucleated bubble per Hubble volume. In strongly supercooled phase
transitions, however, Tn is not an appropriate measure for the completion of the PT [115].
Instead, the temperature of bubble percolation Tp is computed by considering the probability
of a point to remain in the false vacuum, P = exp(−I(T )), where [116]

I(T ) = 4π

3

∫ Tc

T

dT ′

T ′4
Γ(T ′)
H(T ′)

(∫ T ′

T
dT̃

vw

H(T̃ )

)3
. (3.14)

The condition for successful percolation reads I(Tp) = 0.34. Note that we choose vw = 1
for the bubble wall velocity that enters eq. (3.14). This is justified for strongly supercooled
phase transitions.

7To solve the bounce equation, we use a modified version of CosmoTransitions [113].
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Figure 1. Evolution of the bounce action S3 = S3/T below the QCD scale for mZ’ = 106 GeV
and gB-L ∈ {0.23, 0.25, 0.27}. The significant decrease of S3 is induced by the QCD contribution
in Veff(φ, T ), which causes the barrier to vanish as S3 crosses zero at the temperature Troll. The
black dots indicate the percolation temperature Tp, which quickly approaches Troll as the gauge
coupling decreases.

Figure 1 shows the evolution of the bounce action S3 below the QCD temperature for
mZ’ = 106 GeV and three different values of the gauge coupling, gB-L ∈ {0.23, 0.25, 0.27}. We
observe that with decreasing gauge coupling, S3 initially takes larger values, indicating a
stronger suppression of the tunneling rate (3.10). As the temperature decreases, the QCD-
induced mass term starts to become comparable to the thermal corrections that generate the
potential barrier. While the barrier shrinks, the transition is accelerated, i.e., the bounce action
decreases. The zero-crossing of S3 marks the temperature Troll where the barrier vanishes.

The black dots in figure 1 indicate the percolation temperature Tp. For smaller values
of gB-L, Tp quickly approaches Troll. This is due to the stronger initial suppression of Γ(T ),
which requires smaller values of S3 for successful percolation. Therefore, we expect that
there exists a parameter space where thermal tunneling is not efficient enough to convert
the entire Universe to the true vacuum state before the zero-crossing of S3. If we cannot,
for given values of (gB-L, mZ’) find a temperature where I(Tp) = 0.34 before the barrier
vanishes at Troll, we conclude that the transition becomes second-order. As bubble formation
is strongly suppressed, the scalar field then remains homogeneous until the barrier disappears
at Troll, and subsequently rolls down to the U(1)B-L breaking minimum. Hence, the result is
a second-order, tachyonic phase transition, triggered by the change of the mass parameter
m2

φ = ∂2Veff/∂φ2 from positive to negative. In figure 3, we indicate by the white region
the parameter space where thermal tunneling drives the transition, while the blue shaded
region features a tachyonic transition.

The number of e-folds from the onset of thermal inflation until the barrier vanishes
at Troll is then given by

N = log
(

Ti

Troll

)
. (3.15)

In the parameter space we consider, we find a maximum of N ∼ 25 e-folds. In general, a larger
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value of mZ’ comes with a more extended supercooling period, as the onset of thermal inflation
is shifted to a larger temperature (cf. eq. (3.8)). Also note that Troll < TBBN ∼ O(MeV)
does not lead to any inconsistencies, as long as the reheating temperature Trh after thermal
inflation is sufficiently large.

Tachyonic instability. Let us now outline the dynamics of the tachyonic phase transition,
which is similar to that in models of tachyonic preheating [72, 81–85, 88, 91, 92, 94, 96–98].
In these models, the inflaton efficiently preheats the post-inflationary Universe while crossing
a tachyonic region of its potential. Such models are, however, inaccessible to current and
future experiments as a consequence of the large energy scale during cosmic inflation. This
is the crucial difference to our work, where the instability is dynamically triggered below
the QCD scale, and thus is, excitingly, accessible to experiments.

The equation of motion for the scalar field φ in an expanding Universe reads

φ̈ + 1
a2 ∇2φ + 3Hφ̇ + ∂Veff(φ, T )

∂φ
= 0 , (3.16)

where a denotes the scale factor, H is the Hubble parameter given by eq. (3.9), and dots
indicate derivatives with respect to cosmic time t. As bubble dynamics is absent, the field
remains largely homogeneous down to Troll. We can decompose the field into a homogeneous
background field φ(t) and small fluctuations δφ(x, t),

φ(x, t) = φ(t) + δφ(x, t) . (3.17)

In Fourier space, the fluctuations are expressed as [117–119]

δφ(x, t) =
∫ d3k

(2π)3 akuk(t) exp(ikt) + h.c. , (3.18)

where a†
k, ak are creation and annihilation operators with

[ak, a†
k′ ] = (2π)3δ(3)(k − k′) . (3.19)

The mode functions uk(t) capture the time evolution of a mode carrying momentum k.
Inserting eq. (3.17) into (3.16) and keeping only terms up to linear order in δφ ≪ φ, we
obtain equations of motion for the background field and the fluctuations,

φ̈ + 3Hφ̇ + ∂Veff(φ, T )
∂φ

= 0 , (3.20)

ük + 3Hu̇k +
(

k2

a2 + ∂2Veff(φ, T )
∂φ2

)
uk = 0 , (3.21)

where we have employed eq. (3.18) to express the equation of motion in terms of the mode
functions uk. Hence, a mode with momentum k is described by a harmonic oscillator, damped
by Hubble friction, with a time-dependent frequency

ω2 = k2

a2 + ∂2Veff(φ, T )
∂φ2 . (3.22)

– 8 –
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Figure 2. Upper panel: Effective potential at the temperature Troll, where the QCD contribution
cancels the thermal barrier, for mZ’ = 106 GeV, gB-L = 10−2. Lower panel: Associated effective mass
squared ∂2Veff/∂φ2 = m2

φ of the scalar field. Once φ starts to roll from small field values, it crosses a
region with negative m2

φ, corresponding to a tachyonic instability.

For small field values, the scalar mass takes negative values, ∂2Veff/∂φ2 = m2
φ < 0. Then,

long-wavelength modes in the range

0 ≤ k

a
≤ mφ , (3.23)

experience a negative effective frequency, ω2 < 0. This corresponds to a tachyonic instability,
where the solution of eq. (3.21) changes from an oscillating behavior to exponential growth,
uk ∝ exp(|ω|t). Hence, scalar fluctuations are enhanced while φ(t) rolls through the concave
part of the effective potential. This is exemplified in figure 2, where we display Veff(φ, Troll)
for mZ’ = 106 GeV, gB-L = 10−2, together with the effective mass m2

φ of the scalar field. The
unstable region is indicated by the orange shaded region.

The initial tachyonic band is determined by the effective mass parameter close to
the origin,

m2
φ,0 = ∂2Veff(φ, TQCD)

∂φ2

∣∣∣
φ→0

≃ ∆m2
φ,QCD + g2

B-LT 2 , (3.24)

where we have only kept leading-order terms. As the temperature decreases below Troll,
thermal effects quickly become negligible, such that the effective mass is dictated by the
negative, QCD-induced contribution (2.6).

We display the maximal initial growth rate ω ≃ |∆mφ,QCD|, divided by the Hubble
parameter (3.9), in figure 3. We observe that for large VEVs, i.e., large mZ’ and small gB-L,
the effective potential flattens, hence the effective mass and thus the growth rate decreases.
Vice versa, the effective mass term increases for smaller VEVs. Then, |mφ,QCD| > H, and
the tachyonic instability becomes effective right at Troll.
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Figure 3. The QCD-induced mass contribution, i.e., the maximal growth rate of scalar fluctuations
around the origin of the effective potential, normalized to the Hubble parameter, in the mZ’ − gB-L

plane. The white area indicates where the exit from supercooling is realized by a FOPT (cf. section 3),
while the gray region does not allow for successfully reheating the SM (cf. section 5).

4 Scalar field amplification

Initial conditions. To study the exponential growth of scalar fluctuations, we first need to
specify the initial conditions. Prior to Troll, the homogeneous component φ(t) is trapped in the
false vacuum around the origin, while the Universe is exponentially expanding. At the end of
thermal inflation, the expectation value of the scalar field is dictated by quantum fluctuations
that evolve during the inflationary period. These may be split into a thermal ⟨φ2⟩T ≈ T 2/12
and a vacuum ⟨φ2⟩v ≈ H2N/(4π2) part [120–122], such that ⟨φ2⟩ = ⟨φ2⟩T + ⟨φ2⟩v. Classical
rolling eventually takes over when [123]

V ′
eff(φcl) = −3H3

2π
. (4.1)

Therefore we need to ensure the classical limit is justified. First, this includes points where
φcl ≤

√
⟨φ2⟩ is fulfilled at Troll. In the regime where

√
⟨φ2⟩ < φcl, but |mφ,QCD| ≫ H, the

growth of quantum fluctuations typically drives the field towards the classical regime rather
quickly [122]. For the parameter space where |mφ,QCD| ≪ H, however, thermal inflation is
expected to continue for a sizable number of e-folds after Troll. This may lead to contradictions
with CMB observations [124], or even to eternal inflation [121]. Since an analysis of the
quantum fluctuations during thermal inflation is beyond the scope of this work, we focus
on the parameter space where |mφ,QCD| > H, and choose

φi = max
{

φcl,
√

⟨φ2⟩
}

(4.2)

as initial condition for the zero-mode.8
While the homogeneous mode is trapped in the false vacuum, the scalar field is effectively

massless before QCD confinement, and the subhorizon scalar modes are interpreted as
8Note that tachyonic growth is however not very sensitive on the initial condition, as the field spends most

time in the regime where the effective mass parameter ∆m2
φ ≈ ∆m2

φ,QCD = const., i.e., the growth rate is
largely independent of the zero-mode.
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relativistic particles which carry momentum k. In cosmic preheating scenarios, the initial
condition for the mode functions is then given by the Bunch-Davies vacuum [125]

uk,BD(η) = 1√
2k

exp(ikη) , (4.3)

where η denotes conformal time. In our case, we have to take into account the presence
of the thermal bath. Assuming the scalar fluctuations to be in equilibrium with the SM,9
their associated energy density reads

ρδφ(T ) =
∫

dk
k3

2π2

[
exp

(
k

T

)
− 1

]−1
(4.4)

= π2

30T 4 , (4.5)

where we integrate over physical momenta. On the other hand, we may express the scalar
fluctuation energy density as

ρδφ = 1
2δφ̇2 + 1

2a2 (∇δφ)2 . (4.6)

From this, we find appropriate initial conditions for the mode functions,

uk(η) =
√

2
(

exp
(

k

Troll

)
− 1

)− 1
2

uk,BD(η) . (4.7)

To conclude, let us comment on the evolution of the SM Higgs field, which initially sits
at vh,QCD = O(TQCD) ∼ 100 MeV. As φ rolls towards its true minimum, the curvature in
the Higgs direction becomes negative at some point, generating the electroweak vacuum.
However, we have checked that this occurs at times well beyond the initial phase of tachyonic
amplification. Therefore, we can safely neglect the Higgs dynamics in our study.

Numerical study. With the above initial conditions, we are now set to study the exponential
production of scalar fluctuations. Note, however, that the linearized equations of motion (3.20)
do not capture the backreaction from the excited modes onto the zero-mode. As the energy
density of the fluctuations becomes comparable to the one of the zero-mode, fragmentation sets
in. Then the field configuration becomes fully inhomogeneous, and the scale of inhomogeneity
is given by the peak momentum of the amplified modes. Such non-linear dynamics can
only be studied using dedicated lattice simulations [78]. Nevertheless, the linearized analysis
provides an intuition about the efficiency of tachyonic growth. In addition, we obtain a
reliable prediction of the peak momentum, which we will employ in section 6 to estimate
the peak of the associated GW spectrum.

In our linearized analysis, we solve eqs. (3.20) and (3.21) numerically for Nk = 1000
momentum modes. In the absence of non-linear effects, we then stop the simulation as the
energy density of the fluctuations, ρδφ, approaches the total initial energy density of the

9Since the scalar fluctuations are amplified by many orders of magnitude, this assumption has no significant
impact on the dynamics. We have explicitly checked this by comparing our results to the ones obtained with
Bunch-Davies initial conditions.
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scalar, ρtot = ∆V . To compute the energy density of the scalar excitations, we first note that
the occupation number of a harmonic oscillator with frequency ωk reads

nk = ωk

2

(
|u̇k|2

ω2
k

+ |uk|2
)

− 1
2 . (4.8)

The associated energy density is then

ρδφ =
∫ d3k

(2π)3 ωk

(
nk + 1

2

)
. (4.9)

Note that eq. (4.8) formally only holds in the adiabatic limit ω̇k/ω2
k ≪ 1. This condition

is violated once φ reaches larger field values, where the second derivative of Veff, i.e., the
growth rate ω2

k, rapidly increases. Also, the concept of a particle number density is ill-defined
while the mass is tachyonic, as ω2

k < 0 for the unstable modes. However, the main goal
of our numerical study is to verify that the peak momentum scale is indeed dictated by
the QCD-induced mass. We will see that this peak forms during the early stage of the
evolution where the adiabaticity condition holds. A more careful treatment of the particle
number will therefore not alter the location of the peak, but merely the time when tachyonic
growth ends. Once the scalar field rolls down to its minimum, m2

φ becomes positive and
the particle interpretation becomes valid. In the tachyonic regime, the energy density is
then typically computed [82] by defining either

ωk =
∣∣∣∣ka
∣∣∣∣ , or ωk =

√(
k

a

)2
+ |m2

φ| . (4.10)

The impact of the choice of ωk on our final results proves to be small, hence we employ
ωk = |k/a| in the remainder of this work.

Figure 4 shows the result of our numerical analysis. In the upper panel, we display
the negative effective mass parameter as a function of time for the benchmark parameters
mZ’ = 106 GeV and gB-L = 10−2. Initially, at Troll, the QCD-induced mass is balanced by
thermal corrections, hence m2

φ = 0 around the origin. As the temperature decreases and the
field starts to roll close to the origin, its effective mass approaches −∆m2

φ,QCD, indicated by
the dash-dotted line. Subsequently, φ quickly rolls towards larger field values, where the
potential becomes dominated by the radiative corrections. Then, the effective mass rapidly
becomes more negative, i.e., the growth rate increases by several orders of magnitude.

In the center panel, we plot the corresponding fluctuation energy spectrum. Different
colors denote different times, where the gray curve indicates the thermal spectrum at the
onset of rolling, troll = 0, which peaks at k/a ∼ Troll. Initially, the growth rate is dictated by
the QCD-induced mass term marked by the dash-dotted line. In this regime, only modes
with k/a < |∆mφ,QCD| grow efficiently. As the effective mass becomes more negative at
Ht ≈ 0.6 (cf. upper panel), modes with larger momentum enter the instability band. Since
then the growth rate ω ∼ |mφ| ≫ H, energy transfer becomes increasingly efficient. Hence,
the total initial energy density is transferred into fluctuations within less than one Hubble
time, before oscillations around the true minimum start. Let us stress that due to the
quasi-conformal nature of the effective potential, the zero mode spends a significant time
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Figure 4. Results from our numerical simulation of the tachyonic instability. Upper panel: negative
effective scalar mass parameter as a function of time. Center panel: energy spectrum of the amplified
fluctuations at different times, normalized to the total energy density. Lower panel: final scalar
fluctuation energy spectrum for different benchmark parameters. The dash-dotted lines indicate the
respective QCD-induced mass terms, controlling the width of the instability band.
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close to the origin. Therefore, the cutoff and peak of the final spectrum at the end of the
simulation, i.e., where ρδφ = ρφ, are still dictated by ∆m2

φ,QCD, as those low-momentum
modes are amplified during the entire evolution.

In the lower panel, we show the final spectra for different benchmark parameters, with
mZ’ ∈ {105, 4 × 105, 106} GeV and gB-L = 10−2. Here, we normalize the momenta to the
Hubble parameter. The dash-dotted lines again indicate the QCD-induced mass, which
determines the characteristic momentum scale for all benchmarks. Note, however, that the
peak of the spectrum is generally located below |∆mφ,QCD|, as modes with momenta close to
k/a ≲ |∆mφ,QCD| experience a smaller growth rate (cf. eq. (3.21)). For smaller mZ’, this effect
becomes more prominent, leading to an O(1 − 10) overestimation of the peak scale. For our
purposes, however, ∆mφ,QCD will be a sufficiently accurate estimate of the peak momentum.

5 Reheating

To ensure a consistent cosmological evolution, the energy of the excited scalar modes has to
be efficiently transferred back to the SM sector. After the tachyonic transition, the scalar
field is driven to the global minimum of the effective potential, corresponding to the B − L
and electroweak vacuum, (⟨φ⟩, ⟨h⟩) = (vφ, 246 GeV). Then all SM fields are rendered massive.
The scalar fluctuations which dominate the energy density of the Universe may now be
interpreted as particles with mass

mφ =
√

∂2Veff(φ, T )
∂φ2

∣∣∣∣∣
φ=vφ

≈
√

6
π2 g2

B-Lvφ . (5.1)

Here, we have taken the zero-temperature limit which is justified as vφ ≫ Troll. In addition,
we have neglected scalar mixing because of the small mixing angle λp ≪ 1. For simplicity,
we focus on reheating via the Higgs portal term in eq. (2.1), hence we require mφ > 2mh.10

The decay rate of φ → hh reads [55, 126]

Γφ ≈
λ2

pv2
φ

32πmφ
, (5.2)

where we evaluate the model parameters at the EW scale, µ = mZ. In most of the parameter
space, this expression is smaller than the expansion rate of the Universe, Γ < H, prohibiting
the scalar decay initially. Since the scalar modes carry physical momenta k ≪ mφ, hence
are non-relativistic, the Universe undergoes a matter-domination period until

Hrh = H⋆

(
a⋆

arh

) 3
2

= Γφ , (5.3)

where H⋆ and a⋆ denote the Hubble parameter and scale factor at the end of tachyonic
growth. Assuming a quick thermalization of the SM bath, the reheating temperature is
approximated by

π2

30g⋆,ϵT
4
rh = 3M2

Plmin
(
H2

⋆ , Γ2
φ

)
. (5.4)

10Note that scalar mixing may provide a successful reheating mechanism [126] if mφ < 2mh.

– 14 –



J
C
A
P
0
2
(
2
0
2
5
)
0
7
5

To provide some intuition, we can for now neglect the running of the parameters. Combining
eqs. (3.9), (5.1), and (5.2), we then obtain

Γφ

H⋆
≈ 2 × 10−3gB-L

(
106 GeV

mZ’

)5

, (5.5)

in agreement with ref. [55]. Hence, small gauge couplings and large Z ′ masses lead to a more
extended period of matter domination. This yields

Trh ≈ 1.4 × 104g
− 1

4
⋆,ϵ g

1
2
B-L

(
106 GeV

mZ’

) 3
2

GeV , (5.6)

where g⋆,ϵ denotes the energetic degrees of freedom in the thermal bath after reheating.
From this, we can derive an approximate bound such that the reheating temperature

is larger than the temperature of big bang nucleosynthesis, TBBN ∼ O(MeV),

mZ’ < 5.8 × 1010g
− 1

6
⋆,ϵ g

1
3
B-L GeV . (5.7)

This is well outside the parameter space we consider.

6 Gravitational waves

The spectral energy density of a stochastic GW background dρGW(f)/d log f , normalized
to the total energy density ρtot, reads

ΩGW(f) ≡ 1
ρtot

dρGW(f)
d log f

, ρGW = M2
Pl

4 ⟨ḣij ḣij⟩ . (6.1)

The evolution of the metric perturbations hij associated with the growth of scalar field
fluctuations is obtained by solving the linearized Einstein equations

h′′
ij + 2Hh′

ij − ∇2hij = 2
M2

Pl
ΠTT

ij . (6.2)

Here, primes denote derivatives with respect to conformal time η, H = a′/a is the comoving
Hubble parameter, and ΠTT

ij is the transverse-traceless part of the stress-energy tensor of the
system. In our model, GW production occurs during several stages of the evolution.

The first source is given by the exponential amplification of scalar fluctuations in a
distinct momentum band during the linear stage of tachyonic growth. To this end, one
solves eq. (6.2) by plugging in the scalar energy-momentum tensor to obtain an expression
that depends directly on the gradient energy of the scalar field fluctuations; see ref. [73]
for the full computation. Note that, however, although the initial total energy is efficiently
injected into scalar fluctuations, we find negligible GW emission from the linear stage, as the
potential energy is predominantly converted into kinetic fluctuations. This is in agreement
with previous studies of tachyonic preheating in hybrid inflation models: in refs. [71, 72], it
was shown using lattice simulations that the significant part of GW production takes place
when the system becomes non-linear. In this phase, bubble-like structures form, expand, and
eventually collide, which induces large field gradients that in turn generate GWs. Since a
lattice study is beyond the scope of this work, we restrict ourselves to order-of-magnitude
estimates and relegate a more precise computation to the future.
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According to [71, 72], the GW peak amplitude in tachyonic preheating models is well
approximated by

ΩGW ≈ ξeff(R⋆H⋆)2 . (6.3)

Here R⋆ ∼ a/k⋆ is the size of the induced inhomogeneities which sets the peak frequency. The
efficiency of GW production is determined by the model-dependent pre-factor ξeff . In the case
of chaotic inflation [71], e.g., ξeff ∼ 0.15. In our case, we will treat ξeff as a free parameter.

Eq. (6.3) is familiar from FOPTs, where the peak amplitude ΩGW ∝ (H⋆/β)2 is suppressed
by the inverse timescale of the transition β. For strongly supercooled transitions, ξeff ∼
O(10−2) [127]. Since the spectral shape is however expected to differ, our scenario would
be distinguishable from a FOPT in the case of a detection.

In section 4, we verified that the QCD-induced mass term indeed sets the cutoff scale
of the scalar spectral energy density, however, generally overestimates the peak momentum.
Nevertheless, we will employ |∆mφ,QCD| as characteristic scale, as we are merely interested in
an order-of-magnitude estimate of the GW peak. Also, an overestimation of k⋆ corresponds to
an underestimation of the peak amplitude, i.e., our following results are to be understood as
conservative estimates. Regarding the peak momentum at the time of production, we obtain

k2
⋆

a2 ≈ λp

2 v2
h,QCD ≈ 4µ2

h,SMv2
h,QCD

g2
B-L

m2
Z’

, (6.4)

where we have neglected the running of λp in the second step. In addition, we have not
incorporated the effect from the expansion of space from the onset of rolling to the time of
GW production. This is justified since tachyonic growth completes within much less than a
Hubble time in most of the parameter space. The Hubble parameter during thermal inflation
is given by eq. (3.9). Today’s amplitude and frequency are then obtained by redshifting.
Taking into account the matter domination period, we have [128]

f0 = 1.65 × 10−7Hz k⋆

aHrh

Trh
GeV

(
g⋆,rh
100

) 1
6 a⋆

arh
, (6.5)

h2Ω0,GW = 1.67 × 10−5
(

100
g⋆,rh

) 1
3 a⋆

arh
Ω⋆,GW , (6.6)

where we have set g⋆,s = g⋆,ϵ at the time of reheating. The ratio of scale factors a⋆/arh
is read off from eq. (5.3). This can now be expressed in terms of our model parameters.
We find, for |∆mφ,QCD| > H,

f0 ≈


0.57 g

− 1
12

⋆,rh

(
gB-L

10−2

) 7
6
(

vh,QCD

GeV

)(106 GeV
mZ’

) 17
6

Hz , if Γφ < H⋆ ,

23.2 g
− 1

12
⋆,rh

(
gB-L

10−2

) 1
2
(

vh,QCD

GeV

)(
mZ’

103 GeV

) 1
2

Hz , if Γφ ≥ H⋆ ,

(6.7)

h2Ω0,GW ≈


5.5 × 10−13 ξeff

(
100
g⋆,rh

) 1
3
(

10−2

gB-L

) 4
3
(

GeV
vh,QCD

)2 (
mZ’

106 GeV

) 8
3

, if Γφ < H⋆ ,

7.0 × 10−10 ξeff

(
100
g⋆,rh

) 1
3
(

10−2

gB-L

)2( GeV
vh,QCD

)2 (
mZ’

106 GeV

)6
, if Γφ ≥ H⋆ .

(6.8)
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Figure 5. Projected sensitivities of future GW experiments based on our estimate of the gravitational
wave peak (6.3), for three different values of the efficiency factor ξeff . For large ξeff , BBO and DECIGO
will be able to probe almost the entire parameter space. Particularly strong signals are in the reach of
LISA, while ET only covers a small part. In the upper left exclusion band the exit from supercooling
is triggered by a FOPT instead of a tachyonic transition. The gray shaded region indicates the regime
where φ cannot reheat the Universe by decays to the Higgs. In the right exclusion region, the scalar
mass around the origin is smaller than the Hubble parameter, i.e., the assumption of classical rolling
does not hold.

Therefore, a larger QCD-induced VEV vh,QCD of the Higgs field shifts the GW signal to a
higher frequency and smaller amplitude. The same applies to the gauge coupling gB-L. This
can be directly seen from eq. (2.6), as (k⋆/a)2 ≈ ∆m2

φ,QCD ∝ (gB-Lvh,QCD)2. The impact of
the gauge boson mass is a bit more subtle. If reheating is fast, larger mZ’ moves the peak
towards larger frequencies. This is expected as mZ’ sets the Hubble parameter during thermal
inflation. For slow decays of the scalar field and hence long reheating periods, this behavior
changes and large mZ’ decrease the peak frequency. This is due to the strong suppression
of the scalar decay rate, which leads to an extended redshift a⋆/arh ∝ m

−10/3
Z’ . Regarding

the peak amplitude, larger gauge boson masses generally lead to stronger signals, albeit the
scaling of h2ΩGW changes depending on the duration of the reheating process.

Let us stress again that for the above estimates, we neglected the running of the
model parameters. For our final results, we evaluate the decay rate at the global minimum
characterized by mZ, and use the thermal RG scale µ ∼ πTroll to compute the QCD-
induced mass relevant for tachyonic growth. In figure 5, we present our final results for
ξeff ∈ {10−1, 10−3, 10−5}. Here, the exclusion areas correspond to the parameter space where
either the exit from supercooling is realized by a FOPT, the B − L scalar is too light to
successfully reheat the Universe, or the scalar mass around the origin is smaller than the
Hubble parameter, potentially causing eternal inflation. The colored areas are in the reach of
the future observatories ET [4] (light blue), BBO [129] (blue), DECIGO [130–132] (red), and
LISA [2, 3] (orange). To this end, we compute the power-law integrated sensitivity curves
h2ΩPLI(f) for the respective experiments. We then only include points where our estimate
of the peak h2Ω0,GW(f0) ≥ h2ΩPLI(f0). While this is a simplified approach, we obtain an
informative overview of the expected sensitivities. In general, we find the strongest GW signals
near the excluded region where |∆mφ,QCD| ≤ H, as the scale of induced fluctuations moves
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closer to the size of the horizon, |∆mφ,QCD| ∼ H. This implies great observational prospects
at BBO and DECIGO, which will be able to probe almost the entire parameter space if
ξeff is sufficiently large. Moving towards smaller mZ’ and larger gB-L, the peak is shifted to
larger frequencies. At the same time, the amplitude is suppressed since |∆mφ,QCD| ≫ H (see
figure 3), which is why LISA only covers a smaller part of the overall area. For the same
reason, it is difficult to find GW signals accessible by ET, apart from the tiny blue shaded
region in the left panel.

7 Conclusions

We have presented a mechanism to end the supercooling period characteristic to classically
scale-invariant SM extensions that has not been addressed in the literature so far, leading
to a unique GW signal. While previous works have mostly analyzed the exit from thermal
inflation via a strong first-order phase transition, we identify, employing the U(1)B-L model,
a large parameter space where bubble percolation is inefficient. The breaking of classical
scale invariance by the top quark condensate instead induces a cancellation of the thermal
barrier, and the U(1)B-L scalar becomes free to roll down its effective potential towards the
true minimum. The field crosses a tachyonic instability, as its effective mass parameter is
negative close to the origin. This leads to a copious production of sub-horizon scalar field
fluctuations, which quickly dominate the energy density of the Universe. These fluctuations
emerge as scalar particles after the U(1)B-L symmetry is broken and efficiently reheat the
supercooled Universe by decaying to Higgs bosons. Intriguingly, the exponential amplification
of scalar fluctuations induces a sizable SGWB. We have estimated the peak frequency and
amplitude of the GW spectrum based on previous lattice results [71, 72]. The characteristic
frequency scale is given by the interplay between QCD dynamics and mass of the new gauge
boson, mZ’ ∼ O(105 − 107) GeV, which dictates the onset of thermal inflation. Therefore,
we find promising observational prospects at the future observatories LISA, DECIGO, ET,
and BBO. This is distinct from previous works where tachyonic preheating follows cosmic
inflation. The high scale of inflation typically shifts the signal to the high-frequency band,
which is not accessible in the near future.

Finally, let us comment on possible next directions. First, our analysis may be extended
by higher loop orders in the effective potential. This allows for a more reliable prediction
of the parameter space where thermal tunneling is inefficient, i.e., where the tachyonic
instability becomes relevant. To this end, a better understanding of the QCD-induced
vacuum expectation value of the Higgs field is required, as well. This can, however, only
be inferred from lattice studies of massless QCD augmented by the Higgs. Regarding the
tachyonic instability, we have restricted ourselves to the linear regime. This limits our
study of the associated GW generation to order-of-magnitude estimates. A classical lattice
simulation, taking into account all non-linear effects, is therefore needed to obtain a more
robust prediction of the GW signal, in particular of the spectral behavior. Then it would be
interesting to study the ability of future experiments to distinguish between the tachyonic
phase transition and the standard scenario of a supercooled FOPT. We will return to these
exciting questions in the future.
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A Input parameters

In this section, we briefly describe how to determine the input parameters, following ref. [57].
The model introduces five unknown quantities: the scalar self-coupling λφ, the portal coupling
λp, the gauge coupling gB-L, the scalar VEV vφ, and the kinetic mixing g̃ between the U(1)B-L

and U(1)Y gauge groups. The scalar self- and portal coupling, however, are fixed by the
requirement to generate the EW scale. In addition, we express our results in terms of mZ’

instead of vφ. The procedure then is:

(i) The scalar VEV at µ = mZ’ is obtained from the tree-level relation mZ’ = 2gB-Lvφ. We
then demand that loop corrections preserve the VEV,

dVcw
dφ

∣∣∣∣
φ=vφ,µ=mZ’

= 0 , (A.1)

which fixes
λφ(µ = mZ’) = g4

B-L

π2 . (A.2)

This is a typical relation in Coleman-Weinberg models.

(ii) Using the one-loop β-functions [14], we run λφ and gB-L down to the EW scale µ = mZ.
From the physical masses mh, mZ, mW, and mt, we obtain the SM gauge couplings and
the top quark Yukawa. Since vφ ≫ vh in all of the parameter space we consider, we
neglect mass mixing between the two scalars. Then also λh takes its SM value.

(iii) We minimize the B − L potential for µ = mZ to find vφ(µ = mZ). The portal coupling is
then determined by demanding that h acquires its SM tree-level VEV vh,SM ≃ 246 GeV.
This translates to

λp(µ = mZ) = 2λh

(
vh,SM

vφ

)2

. (A.3)

(iv) This fixes all input parameters at µ = mZ. For the computation of Veff(φ, T ), we then
use the β-functions to run the parameters to the respective scale

µ = max{mZ’(φ), πT} , (A.4)

as outlined in the main body.

The kinetic mixing parameter g̃ only enters our analysis via the RG evolution. In previous
studies [52, 55], it was shown that choosing g̃(µ = mZ’) = −0.5 renders the EW vacuum
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stable up to the Planck scale. However, we find that this leads to numerical instabilities
in the running of λp at low energy scales µ ∼ TQCD, where tachyonic growth takes place.
Therefore, we choose kinetic mixing to vanish at the EW scale, g̃(µ = mZ) = 0, to minimize
its impact on our results.
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