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Abstract 

In this thesis we study light hadron phenomenology using lattice QCD. In 

particular we measure hadron masses, meson decay constants, and nucleon 

structure functions. 

We perform the lattice simulation using overlap fermions. This formula-

tion preserves chiral symmetry at finite lattice spacing and so is well suited 

to simulations close to the chiral limit. It is however very computationally 

expensive and so we are forced to work in the quenched approximation. 

After a review of the relevant continuum phenomenology and lattice gauge 

theory, we detail the necessary lattice technology required to extract phys-

ical results from the simulations. We then present the results. We use an 

improved gauge action and investigate how this affects the locality and con-

dition number of the overlap Dirac operator. We present measurements of 

masses for some low lying hadron states, and in order to make contact with 

continuum physics, we calculate some lattice renormalization constants. 

After providing measurements of vector and pseudoscalar meson decay 

constants, we present results on nucleon structure functions. While these 

structure functions cannot be measured directly on the lattice, we can relate 

measurable QCD matrix elements to moments of structure functions through 

the operator product expansion. Here we provide results for several low 

moments of both polarized and unpolarized nucleon structure functions. We 

conclude with a discussion of the results. 
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Chapter 1 

Introduction 

The aim of particle physics is to describe the fundamental constituents of 

matter and how they interact with each other. The present level of under-

standing can be condensed into what is known as the "Standard model" of 

particle interactions. It combines the strong and electro-weak interactions 

into one consistent quantum field theory described by a Lagrangian possess-

ing an SU(3) x SU(2) L  x U(1)y gauge symmetry. It describes fundamental 

spin quarks and leptons whose interactions are mediated by spin 1 gauge 

bosons. It also includes a spin 0 Higgs particle, however this has not yet been 

detected experimentally. 

The strong interactions are described by the part of the standard model 

known as Quantum Chromodynamics or QCD. In QCD the fundamental par-

ticles are quarks which carry a "colour charge" and interact through gluon 

exchange, much like in QED where charged particles interact through pho-

ton exchange. However in contrast to QED where the photons carry no 

charge, gluons also carry a colour charge and interact with each other. This 
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self interaction means that the strong interactions must be described by a 

non-Abelian gauge theory and hence possess the property of asymptotic free-

dom [1, 2]. This ensures that at high enough energies the gauge coupling will 

be small and perturbation theory will be valid. In this high energy regime, 

QCD has successfully managed to predict particle phenomena. However in 

the low energy regime the gauge coupling becomes large and perturbation 

theory is no longer valid. Hence in order to study low energy phenomena 

such as the hadron mass spectrum and hadronic matrix elements we must 

resort to non-perturbative methods. 

The next section contains a brief survey of the QCD phenomenology rel-

evant to this thesis. It describes the form of the QCD Lagrangian and gives 

an indication of how approximate flavour symmetries can give a qualitative 

description of the hadron mass spectrum within the quark model. However 

the main topic of this thesis will be the structure of the nucleon. Experi-

mentally measured cross sections from deep inelastic scattering (DIS) and 

hard scattering nucleon processes can be parameterized in terms of unknown 

structure functions. The various structure functions and the processes which 

are measured in order to extract them experimentally are discussed. A phys-

ical interpretation of these functions can be derived using the parton model. 

Finally, it is shown how moments of these structure functions can be related 

to QCD matrix elements via the operator product expansion. 

Nucleon matrix elements must be determined non-perturbatively. Lat-

tice QCD provides a technique for measuring QCD matrix elements as well 

as other low energy phenomena. Chapter 3 provides a brief introduction to 

the main features of Lattice QCD. Previous calculations of nucleon structure 
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functions have been carried out using either Wilson fermions (or variants 

thereof) or staggered fermions. Both of these explicitly break the chiral sym-

metry of the fermion action in continuum QCD. Recent theoretical improve-

ments, combined with increased computing power, have now made it possible 

to run simulations which retain chiral symmetry. Using the Ginsparg-Wilson 

formalism [3] and the overlap solution of Neuberger [4], we can now simulate 

fermions which possess an on-shell chiral symmetry at fixed lattice spacing. 

These fermions should be more "continuum-like" and provide more accurate 

determinations of physical quantities in the chiral regime. However while 

simulations of chiral fermions are now possible, they are still hugely costly 

in terms of computer time (even compared to other lattice simulations) and 

so fully dynamical simulations have only very recently become possible. As 

such, all of the simulations in this thesis are carried out in the quenched 

approximation. This approximation is described as well as the action chosen 

to simulate the background gauge fields. 

Hadron masses and decay constants are measured from two point cor-

relation functions while matrix elements are measured from ratios of three 

point and two point correlation functions. Chapters 4 and 5 cover the lattice 

technology required to construct these correlation functions and how they 

can used to extract physical information. The various operator insertions 

and how they relate to desired structure functions are explained, as are the 

various lattice techniques for improving the overlap of these operators with 

physical states, and for minimizing lattice artifacts. 

The matrix elements calculated from the lattice simulations are bare 

quantities and must be renormalized in order to be compared with exper- 
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iment. Renormalization and the process of reriormalizing lattice matrix el-

ements is discussed in Chapter 6. While some of the renormalization con-

stants can be determined non-perturbatively from conserved currents and 

lattice identities, others have to be obtained by alternative methods such as 

tadpole-improved lattice perturbation theory. 

Chapter 7 is an investigation of the locality and condition number of the 

overlap-Dirac operator and its dependence on the auxiliary mass parameter 

and the underlying gauge fields. The effect of eigenvalue projection on the 

condition number is also considered. 

In Chapter 8 the results of the simulations are presented and discussed. 

Results are given for low lying hadron masses, meson decay constants, non-

perturbative renormalization constants, and nucleon matrix elements related 

to low moments of nucleon structure functions. 

Finally, Chapter 9 is a summary of the results and conclusions of the 

thesis. Outstanding issues are discussed along with suggestions for extensions 

and future work. 
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Chapter 2 

QCD Phenomenology 

Quantum Cliromodynamics or QCD is the theory which describes the strong 

interactions. It contains two fundamental types of particles : quarks and 

gluons. The quarks are spin 1  fermions which interact via a "colour" charge. 

These interactions are mediated by gluons which are spin 1 bosons. However 

the gluons also carry a colour charge and hence interact with each other. As 

such QCD is a non-Abelian gauge theory. The quarks come in three colours, 

while the gluons come in 8 different colours. The action is invariant under 

SU(3) gauge transformations. The QCD Lagrangian is given by 

QCD 	— FF + i 	 - mf , 	(2.1) 

where f is a quark flavour index (u, d, s, c, b, t), u and v are Lorentz indices, 

while a and i, j, k are colour indices. Di,, is a gauge covariant derivative 

(D) 	01L 8ZJ  + ig (2.2) 
2 a 	P. 

The ) are the eight Gell-maun matrices which provide a representation of 

the su(3) Lie algebra, and g is the gauge coupling. The field strength tensor 
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can be defined in the usual way as the commutator of the covariant 

derivative 

{D, DJ = 	 (2.3) 

but due to the commutation rules of the 	this includes a term which is 

bilinear in the gauge fields. Its components are then given by 

- a 	a - 3 A - 	 (2.4) 
tLV 	I ii 	' 	 ji L1 

The fa&c  are the structure constants of su(3) defined by 

[Aa,\b1 

[--, --] = 
ifaic. 	 (2.5) 

The Lagrangian (2.1) determines the dynamics of quarks and gluons, however 

neither of these two types of particles have been observed on their own. They 

are always hidden in bound states as hadrons. Asymptotic freedom and the 

subsequent increasing value of the effective gauge coupling with distance give 

some indication as to why quarks and gluons form bound states, however this 

is not sufficient to fully explain the absence of free quarks and gluons . Even 

in high energy processes where the coupling is small, 110 free quarks or gluons 

are observed. Their presence is inferred from hadron jets. In fact no state 

bound or otherwise has been observed which has colour. The only physically 

observed states are bound states which are colour singlets. 

This colour confinement places restrictions on the quark content of ob-

served hadrons. If the only hadrons that can be formed are those which 

are colour singlets, then their wavefunctions must transform trivially under 

SU(3). Singlet wavefunctions can be built out of tensor products of quark 

operators qj (where qj is contracted notation for 'J4), antiquark operators , 
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ijk  and the SU(3) isotropic tensors Cijk, 	and . The only simple' singlet 

operators are then 

6qiq3 	
fiJkqjqjq 
	Eijk (2.6) 

So we have that colour confinement leads directly to mesons, baryons, and 

anti-baryons. 

2.1 Mass spectrum 

The quark model of hadrons discussed above can be used to give a qualitative 

explanation of the hadron spectrum. While there are 6 flavours of quarks we 

can split them into the light quarks (u, d, s) which have masses in the MeV 

range and the much heavier quarks (c, b, t) with masses in the GeV range. 

As the light quark masses and mass splittings are much less than typical 

hadronic scales such as AQCD  and the nucleon mass, we can then make the 

approximation that the light quarks are roughly mass degenerate and so the 

hadron mass spectrum should be invariant under exchange of light quark 

flavours. This symmetry of the mass spectrum implies that the light hadrons 

should fit into degenerate multiplets corresponding to irreducible represen-

tations of the symmetry group SU(3)1. The light quarks q have 3 flavour 

degrees of freedom and so must transform in the fundamental representation 

of SU(3) which we denote by 3. The antiquarks q will then transform in 

the 8 representation. This then determines the transformation properties of 

the bound states of quarks and antiquarks as they will simply transform as 

'For reviews of searches for more exotic states see [5, 6]. 
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Figure 2.1: Weight diagrams for the O 	and 1 	meson octets. 

tensor products of their constituents. We can decompose these tensor prod-

ucts into direct sums of their irreducible representations which will tell us 

the dimension of the corresponding degenerate multiplets. Since all of the 

members of a particular multiplet only differ by their quark content, their 

spatial and spin quantum numbers are identical and so each multiplet can be 

labeled by the JPC  of its members. For qq states we have a decomposition 

3®3—+81, 	 (2.7) 

while for qqq (and qqq  2) we have 

30303—*10e881. 	 (2.8) 

Hence we expect mesons to form singlets and octets, while baryons form 

singlets, octets, and decuplets. The weight diagrams for the 0 pseudoscalar 

2for qqq simply exchange all representations for their "barred" counterparts. 



 

Y 

 

Y 

 

Er 

Figure 2.2: Weight diagrams for the baryon 	octet and 	decuplet. 

meson octet and the 1--  vector meson octet are shown in Figure 2.1. Each 

state is labeled by its hypercharge Y and third component of isospin J33• 

In the pseudoscalar octet, the quark model state 'q8  has similar quantum 

numbers to the singlet state m and hence the two can mix to form the 

physical states 77 and ii'. Similarly for the vector meson octet, the equivalent 

states w8  and w1  will mix to give the physical states w and ç. The groundstate 

(L = 0) baryon multiplets are given in Figure 2.2. Note there is no ground 

state baryon singlet since for L = 0, the wavefunction is symmetric under 

exchange of spatial indices. As it is both a colour and flavour singlet it must 

be totally antisymmetric under colour and flavour. Hence in order to satisfy 

the Pauli Exclusion principle the wavefunction must be totally antisymmetric 

'For definitions of these quantum numbers see for example [7]. 
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Figure 2.3: Observed hadron mass spectrum for the O,  1 	meson octets, 

and the 	baryon octet and decuplet. 

under spin exchange which is not possible for a three quark state. 

These multiplets explain the observed light hadron spectrum quite well, 
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although there are mass splittings due mainly to the fact that the mass 

degeneracy of the quarks is only approximate. The observed hadron masses 

and their quark model interpretations are shown in Figure 2.3. 

2.2 Decay constants 

In semi-leptonic meson decays, the scattering matrix can be factorized into 

a leptonic piece and a hadronic matrix element. For example, the primary 

decay channel for the 	is 	 via W+  exchange (see Figure 2.4) 

which has the scattering matrix4  

M - 	 - 	 (2.9) 

where gw  is the Electro-weak coupling constant, Vad is the CKM mixing 

element and J' is the weak current given by 

jA _ 	A(1 - _Y5)  U. 	 (2.10) 

We can split this current into its vector and axial parts and then use Lorentz 

invariance to parameterize the corresponding matrix elements. Since the pion 

is a pseudoscalar the matrix element of the vector part will transform like 

an axial vector and hence must vanish. The matrix element of the axial part 

will transform like a vector and hence be proportional to the pion momenta 

PA  (since it is the only 4-vector associated with this matrix element). Hence 

the QCD matrix element in the scattering matrix can be parameterized as 

(0 5d7(p)) = _ jfpA, 	 (2.11) 

4  W have assumed here that the momentum transfer is small and so the W propagator 

is simply 
M W  
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U 

VIA 

Figure 2.4: ur 	ji' via annihilation into W 

where f, is the pion decay constant. 

For vector mesons like the p+  we have an extra polarization vector &(91 1i(  )) 

associated with the state. Here only the vector part of the weak current 

survives and we can again parameterize 

MP  (O'ydp(p),A 	-iE())-----, 	 (2.12) 
fp 

where the decay constant f p  is historically taken to be dimensionless. 

2.3 Structure functions 

2.3.1 Elastic scattering 

In lepton-hadron scattering we can again factorize the leptonic and hadronic 

parts of the scattering matrix. In elastic scattering processes the hadronic 

matrix element can be parameterized in terms of generally unknown form 

factors which depend only on the momentum transfer. In purely electromag- 
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Figure 2.5: neutron-neutrino scattering via W exchange. 

netic scattering such as electron-proton scattering via photon exchange we 

have a scattering matrix 

M = 	 (2.13) 

where J,4  is the electromagnetic current5  

- 	dy'd +.... 	 (2.14) 

The hadronic part has then a general decomposition 

(p(J(qp(p) = 	(fl[fi(q2) + iaf2(q2)]up(p, 	(2.15) 
2Tn 

where rn is the proton mass, q = p' - p is the momentum transfer, and the 

f(q2 ) are the vector current form factors. 

5 There are obviously similar terms for the other quark flavours however we generally 

assume their overlap with the nucleon to be small. 
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In weak processes the situation is more complicated as the current has 

both vector and axial parts. In neutron-neutrino scattering (Figure 2.5) for 

instance the hadronic part of the scattering matrix is given by 

(2.16) 

where P is the weak current given by P = ü'y(1 - 75)d. We can param- 

e 

rel 
Ve  

U 

Figure 2.6: fi decay. 

eterize both the vector and axial parts as before  

(p()dn(p)) 

= u()[f i (q2) + iaALI 

qV 	
f2(q2)]u(PI (2.17) 

rn + m 

6 Note there is one less vector form factor than the axial case. This is due to the 

conservation of the vector current [8] which places an extra constraint on the form of the 

vector matrix element and reduces the number of degrees of freedom. This constraint is 

not present in the axial current which is not conserved for non-zero quark mass. 
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(p(9)41jn(p)) 	(p(9)y'y5dfti(p) 

+ 	

qL/ 	

5g2(q) + 	
q11 
	7593(q)Jun(p. 

MP  + m 	 rn + m 

(2.18) 

One situation of interest is when the momentum transfer q is very small. 

This would correspond to the case of 3 decay (Figure 2.6). Then the matrix 

elements take on the simple form 

(p(pVn() = u(p)'y,1 f1(0)u(p) 	 (2.19) 

(p(pA/3n(p) = 

(2.20) 

The quantities f(0) and g1 (0) are known as the vector and axial charges 

of the nucleon. In this form though they are defined in terms of matrix 

elements between two different nucleon states. However the difference in the 

two nucleon masses is small and so we can use isospin symmetry in order to 

express this matrix element in a "diagonal" form. We first define vector and 

axial isospin currents  by 

= 	 (2.21) 

Since the vector current is a conserved current we have an associated charge 

operator which we can define as 

Q 	= f d'xvi  (Y, t). 	 (2.22) 

'The cr2  for i = 1,2,3 are the generators of SU(2)1. 

15 



We can then form combinations V 	V L'  ± iV and 	= 	± iA and 

corresponding raising and lowering operators Q and  Q which satisfy 

Qn) = 

Qp) = 

Using the commutation relations 

111+V' 
Y T7pj -1 - L"  

Qp)=O 

Qn)=O. 

1r+ n31 - - 

we have 

(pVn) = 

= (pVp)—(nVn) 

= 2(pVp), 

(2.23) 

(2.24) 

(2.25) 

and similarly (pAn) = 2(pAp). 

As V3 = (u'y,u - d'y1 d) we have from conservation of charge that fi  (0) = 

1, while the axial charge gA = 91 (0) is given by 

1 	 - 
(pA,

+ 
 In) = pu'y15u - d75dp) = 9Aup 75u fl. 	(2.26) 

2.3.2 Inelastic scattering 

In deep inelastic scattering processes the momentum transfer is large enough 

to destroy the incoming nucleon. In electron-proton scattering through pho-

ton exchange the scattering matrix is given by 

M = 	 (qj (2.27) 
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Figure 2.7: Electron-Proton Deep inelastic scattering. 

where now the final hadronic state X is unknown (Figure 2.7). The relevant 

kinematic variables are given in Table 2.1. In order to calculate the cross 

section this matrix must be squared and summed over all possible final states. 

The cross section again factorizes into a leptonic piece and a hadronic piece. 

In the laboratory frame (rest frame of the nucleon) this is given by [9] 

d2a 	a2  El 

dQdE' - 
	 (2.28) 

The leptonic tensor Lp,  involves only point particles and can be evaluated 

directly. Using the identity 

u(k)i(k) / 	 (2.29) 
spin 

where the lepton mass is taken to be small and hence ignored. For unpolar-

ized leptons we have 

u(k')u(k)(k)yu(k') 
spin 
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E 	Energy of the incoming electron 

E' 	I Energy of the outgoing electron 

q = V - k momentum of the virtual photon 

Q2 =—q2  asq2 <0 

v =p.qI  The energy loss of the electron 
TN 	I 

x = Q2 	Bjorken scaling variable 2mpq V 

w = 1/x 

Table 2.1: DIS kinematic variables. 

= 

(2.30) 

When the incoming lepton beams are polarized there is an additional term 

and L, is given by 

c/3 L(k, s1  k') = 2(kk + k,k,L - g,k'.k + if,LV q si ), 	(2.31) 

where so is the incoming lepton polarization vector given by 

2s = u(k, s)y'y5u(k, s). 	 (2.32) 

W'" is defined in terms of the hadronic matrix element. First taking the 

Fourier transform of this matrix element 

(X() I J 	p(p) 
= f d4  xe  •x(X(p) I J(x) p(p), 	(2.33) 

we can then define  the hadronic tensor W 

W(p,q) = 
47r X 

'The first step is from a Fourier transform and then translation invariance. The second 

step uses the completeness relation E IX)(XI = 1. The final step is true since the second 
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= 
47F X 
it 

-47T 

 —Efd 

 
it 

- J d
4xe  •x(p(p[J(x) J(0)]p(). 	 (2.34) 

47r 

A Lorentz decomposition of W in terms of known momenta and unknown 

structure functions can be carried out. A general decomposition for DIS 

processes [9] is given by 

W(p, q) = (—g + 	)Fi (x, Q2) + 	
- 	- 
	qv) F2(x Q2) 

s.q --E 	qaSO91 - 	f 	q5 - p)g2(x,Q2). 
p.q 	 p.q 	 p.q 

(2.35) 

The F's and gj's are respectively the unpolarized and polarized structure 

functions associated with deep inelastic scattering, while the polarization 

vector so here is obviously referring to the polarization of the nucleon. It 

should be noted that in both the leptonic and hadronic tensors, terms in-

volving polarization vectors are antisymmetric under exchange of indices u, ii 

while the unpolarized terms are symmetric. This implies that when calcu-

lating the cross section, the terms in l,W/L/ either contain both polarization 

vectors or neither. Hence the unpolarized structure functions F are probed 

by unpolarized leptons and nucleons, while the polarized structure functions 

require both polarized leptons and nucleons. 

term in the commutator vanishes. Note that TX  is shorthand for not only the sum over 

final states but also integrating over final momenta. 
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2.3.3 Drell-Yan processes 

LVA 

e 

e 

Figure 2.8: Drell-Yan scattering of p/5. 

Another method for probing nucleon structure is by looking at Drell-Yan 

processes. Here two incoming hadron beams are collided together, e.g. p. 

A quark and antiquark then annihilate to form a virtual photon which will 

then decay into a e+,  e lepton pair, with the rest of the hadronic material 

scattering off in the form of unknown hadron jets (Figure 2.8). The hadronic 

tensor W is then calculated in exactly the same way as for DIS, with the 

only difference being that we now have two initial state hadrons instead of 

one. It is given by 

1 
W(pi ,p2;k) = f d4xe 	()) {J (x), J (0)] p(p(p)), 

47 

(2.36) 

where k = k 1  + k 2  is the photon 4-momentum. What distinguishes Drell-Yan 

processes from those in DIS is that we have two initial states. This means 

that the two incoming particles can have different helicities, and therefore in 

the massless limit, different chiralities. Hence there is a contribution to the 
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hadronic tensor which is chirally odd i.e. the incoming particles flip chirali-

ties. This contribution was obviously not present in DIS as we only have one 

spin vector associated with the DIS tensor. This leads to a further structure 

function h1  known as the transversity. This can be measured experimentally 

by looking at the asymmetry A of the polarized cross-section 

0_Il a11 

C711  +a1T' 	
(2.37) 

where a11  (0,11) is the cross-section for two transversely polarized (with 

respect to beam direction) proton beams where the spins are parallel (anti-

parallel) to each other. 

2.4 The parton model 

While we can decompose the matrix elements given in the previous sections 

into structure functions, the physical interpretation of these functions is still 

unclear. The parton model provides a simple picture of scattering process 

and so can help in this regard. In this model the hadrons are considered to be 

made up of a collection of free, on-shell partons (i.e. quarks and gluons). In 

high energy interactions this a reasonable approximation due to asymptotic 

freedom. The scattering cross-section is then simply the (incoherent) sum of 

the cross-sections for free quarks and gluons. 

These free quarks and gluons can be described by parton distribution 

functions. For a hadron carrying momentum p, then the parton will be car-

rying a momentum fraction p with 0 < < 1 (the parton is assumed to be 

moving co-linearly with respect to the hadron). A quark parton distribution 

function q() is then the probability of finding a quark carrying momentum 
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p. The subscript a is the spin polarization along the incoming beam direc-

tion, with a =T () indicating spin polarization parallel (anti-parallel) with 

respect to the hadron. There are similar definitions for antiquark (()) and 

gluon (G()) distribution functions. It should be noted that a parton with 

momentum p  has an invariant mass 	which obviously depends on 

However we again assume we are working in a high energy scattering regime 

and so can neglect target mass corrections. 

To lowest order, only the quarks will scatter with the virtual photon as 

gluons have no charge. While the hadrons are spatially extended, the par-

tons are point-like and so the contribution to W from a single quark takes 

roughly the same form as the lepton tensor l (2.30) with the replacement 

k -+ p. The only difference being we must as before sum over the final 

particle phase space. Hence for a single quark we have 

1d3p' 1 
LV = 	eq f 

 (2) 32E (2)
464(ep + q - p') 
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x2(p'p + p'p - gp'.p + ic v qs). (2.38) 

The eq  factor is the charge of the quark in question, and there is an extra fac-

tor 1 which is a reflection of the fact that as the proton states are normalized 

to 2p° the parton states are normalized to 2p°. 

If the electron-quark scattering is assumed to be elastic i.e. (p+q)2 	0, 

then the phase space integral can be done by noting that 

d P 
 f(2) 3  2E 

d P 	6 
	- 	= 

f (2)4(2(eP+_v)6((P+_P)) 

= f(2)4 (2)8
4(p + q - p')(2p.q + q 2) 

d4p' (2i-) 	 q 2  
= f(27)464 (p + q - p )6( + 
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(2.39) 

The integral (2.38) can then be performed by making the replacement p' = 

p + q, and since the leptonic current J is conserved we have the relation 

= 0, meaning we can drop the terms in W containing q11  and qL 

Finally as the partons are massless the spin vector 8,3  can be expressed as 

8f3 = hq P f3  where hq  = 1, —1 is the parton's helicity. Putting all this together 

we get the final result 

2p.q [22p,p - gp.q + ihfpf3]S( - x). 	(2.40) 

The result for antiquarks is identical. Comparing this result with equation 

(2.35) we see that for each quark we have a contribution to the structure 

functions given by 

F'(x) = 

F' (x) = 	e(— x) 

91 (X ) = 	hqhNS(X) 

g(x) = 	0. 	 (2.41) 

The full structure functions are then calculated by integrating over all possi-

ble momentum fractions , weighted by the corresponding distribution func-

tion q 0.(). This gives 

F, (x) = 	(q(x) + q(x) + t(x) + (x)) 

F2  (X) = 	ex(q(x) + q(x) + t(x) + (x)) 

91 
(X) 
	 (q(x) - q(x) + (x) - 

92(x) = 0. 	 (2.42) 
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Thus from the parton model we see that F1  is the sum of the probabilities of 

finding a quark or antiquark with momentum fraction x in the hadron, while 

g1  is the difference in the probabilities of finding quarks and antiquarks with 

momentum fraction x and spins parallel/anti-parallel to the hadron. We can 

also read off the Callan-Gross relation [10]. 

F2  (x) = 2xFi (x). 	 (2.43) 

As 92  is identically zero, it has no interpretation in the parton model. 

The parton model result for the transversity hi (x) is given by [11] 

hi (x) 	I  (TL (X) - qT(x) - TL  (x) + qT(X)), 	(2.44) 

where q1(x), q-i-(x) are the transversely polarized quark distribution func-

tions. 

Finally we note that the parton model structure functions are only func-

tions of x and are independent of Q2. One way of explaining this is that 

as the structure functions are dimensionless, they can be expressed as func-

tions of the dimensionless variables x and -. However if the partons are 

essentially free particles then the hadron scale, i.e the hadron mass MN, 

should be irrelevant and the structure functions should be independent of 

Q2, and depend only on x. This is known as Bjorken Scaling [12] and pro-

vides evidence that hadrons are not fundamental particles, but have internal 

structure. However this scaling is only approximate, as the quarks are only 

approximately free. The QCD coupling constant c, while small, is not zero 

in the DIS regime and so will give rise to QCD corrections which allow a 

small dependence on Q2. These corrections or"scaling violations" can be 

calculated in perturbation theory and so provide a test of QCD. 
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2.5 Operator product expansion 

The hadronic tensor W' (2.35) describes the hadronic part of the DIS cross-

section. We can relate this to the Compton forward scattering amplitude 

TV = i f d4  xe •X(p(p  T(J) J(0)) p(p) 	(2.45) 

using the optical theorem' [8]. This gives 

Im(T) = 2rW. 	 (2.46) 

T 1 ' involves the matrix element of a product of two currents. One method 

of dealing with products of currents is to use the operator product expan-

sion [13]. To illustrate the idea we consider a product of two local operators 

O(x)O(0). 	 (2.47) 

For small x the operators are practically at the same point, so for scales 

larger than x, the product will look like a local operator. Hence in the limit 

x —* 0 we can expand the operator product as a series of local operators 

O(x)O(0) xO 	Ck(x)Ok(0). 	 (2.48) 
k 

Note as we have made no assumptions yet about the external states, the 

coefficient functions C Jk(x) will depend on the operators O, Oj  and the 

separation x, but will otherwise be independent of the matrix element that 

is being calculated. In fact, all of the q dependence of the operator product 

is now contained in these coefficients. In momentum space this relation is 

written as 

f d4xeO(x)O(0) q 	Ck(q)Ok(0). 	 (2.49) 
k 

9T(J1 J2) is the time ordered product of the currents J j , J2. 
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States of definite dimension and spin can be used to form a basis for the 

expansion. An operator of spin n can be formed from the symmetric, traceless 

parts of a general operator of dimension d with n Lorentz indices 

O 1" d (2.50) 

A dimensional analysis is useful in order to group together terms in order of 

their relevance. We can look at the contribution each term has to L/IV W U . 

The matrix element of O 	transforms as10  

(pO'. p) o 	5[p1...pJ, 	 (2.51) 

where S is projecting out the symmetric, traceless part of the tensor prod-

uct, and MN is the nucleon mass. Each of the free Lorentz indices must be 

either contracted with the external lepton momenta, or a qa  coming from 

the coefficient function. All of these will give terms of the order p.q. Also as 

TA' is dimensionless, all the terms in the expansion must also be dimension-

less. Hence the coefficient function must have dimension Q2 '. Putting this 

together we have the contribution of Q11..JLn  given by 

(p.q)n Q2_dd_fl_2  

CAI d 	 Qn 

OC (p.q)nQ2_d+fld_fl_2 

Q2
fl 

Th Q cx w ()2—d+n 

MN 
Q 2—t 

	

cx w (k-) 	 (2.52) 

where t is the twist of the operator, defined as t = dimension - spin. The 

lowest possible gauge invariant operators are twist 2, with higher twist con-

10 p) has dimension M' 
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tributions suppressed by factors of (v-). 
A basis for twist 2 quark operators is formed from the symmetric traceless 

parts of 

2 ) 
)fl-1ILi JL2 	 q 

OPI An =  ( 1 )n_1 12  
5q 	 D1' 	D q, 	(2.53) 

while the basis for gluon operators is 

0P1..n 	(')fl_2TrFAa 	2 	D' Fr. 	(2.54) 

however to lowest order in a, the gluon operators can be ignored. The 

symmetric derivative D= 	- D) is chosen so that the operators have 

simple behaviour under charge conjugation. 

We now, through the operator product expansion, have a way of expand-

ing a product of currents into a series of local operators of lowest twist. There 

is a problem with this approach though, as the operator product expansion is 

valid in the region w cx - 0 while the physical region of DIS is 1 < I w I < 00 

However we can use analytic continuation to relate moments of structure 

functions in the physical region to calculable matrix elements. In order to 

see how this works, we first define the F, (x, Q2) to be the structure function 

of T/u  which is equivalent to F1  (x, Q2) of WI`. Due to (2.52) we can expand 

F, (W) 

(2.55) 
q n 

"As we are using only lowest twist, up to O(r) terms, F1  can be written purely in 

terms of w. 
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where Cq",'n  are coefficient functions, which as we are in the OPE region, can 

be calculated perturbatively. v is given by 

2v S[p'...p]. 	 (2.56) 

The analytical structure of F1  (w) is such that it will have branch cuts along 

IM 

Re 

Figure 2.9: The analytic continuation of F1  (w) showing the initial contour 

a;j <1, and this contour expanded to infinity. 

the real axis in the physical region (corresponding to a continuum of possible 

intermediate states), but no other singularities (see Figure 2.9). Hence we 

can pick out individual terms in the expansion by noting that 

2C1'nv— 	dw 	. 	 (2.57) 
1 	____ 

27iw<i q 

This contour can be expanded above and below the branch cuts, out to 

infinity. Assuming that the contribution from the contour at infinity vanishes, 



then the only contribution to the contour will come from the discontinuity 

across the branch cuts. This is given by 

F, (w + i€) - 	- if) = 2ilrnFi (w) = 47riFi (w), 	(2.58) 

so we have 

Fi (w) Fn 

 1 

	

2C"v = 2(1 - (-1)') J dw 	. 	(2.59) 
q 

Substituting in x = w' we get the result 

2f dxx'Fi(x, Q2) = 	C  F, Inv + O(), 	(2.60) 
1 

0 q 

where ri is even. Similar rules can be derived 12  for other structure functions 

to give 

/12 

2/ 

f

1 
dxxF(x, Q2) 	 + O() 

0 	 q 
1  
dxxg,(x,Q2) 	C 1 Thqg a+O() 

0 	 q 
 
dxxtm g2(x, Q2) = 
	

(C'd - C"tma) + O() q 	Q2 n+1 q q 

2Idxxtmh'(x,Q2) = 
	n 	Ch, tmh+O(). 	(2.61) 

o 	 fl+lq q 
q 	Q2 

The unpolarized moment rules are true for all even ri > 2, while the polar-

ized moments hold for even n > 0. For the polarized structure functions, 

with polarization vector s, we must measure matrix elements of the form 

a is then the matrix element of the totally symmeterized op- 

erator 	and d is the matrix element of the remaining piece. For 

12 seefor example [9]. 
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the transversity h, (x, Q2 ), h is the matrix element of the tensor operator 

defined by 
H 	H 

= jn{Ii175 D'12 	D 1  q, 	 (2.62) 

where 	= 
1[21/i 

yII] 

These moments also have parton model interpretations. The moments 

of the unpolarized structure functions v are powers of the fraction of the 

nucleon momentum carried by the parton, while the polarized moments are 

related to the fraction of the nucleon spin carried by the parton. 
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Chapter 3 

Lattice QCD 

The QCD Lagrangian while formally quite simple, is in actual fact very hard 

to solve due to its non-linear nature. While perturbation theory can be ap-

plied at high energy scales, the large value of the coupling o at low energies 

causes perturbation theory to fail. To study low energy QCD phenomena 

such as hadron masses and matrix elements we need a non-perturbative ap-

proach. 

Lattice gauge theory provides a non-perturbative formulation of QCD. In 

this formulation the path integral (or partition function) is first analytically 

continued to imaginary times by performing a Wick rotation, changing the 

Minkowski space-time to a Euclidean one. This transforms the partition 

function into the form of a statistical ensemble average. The continuum is 

then replaced by a 4-D hypercubic lattice of points with a finite lattice spacing 

a. This reduces the infinite degrees of freedom in the partition function to 

a finite (although still large) number. The addition of a lattice spacing also 

introduces a minimum length scale into the theory which is the equivalent of 
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a momentum cutoff and so regularizes the Feynman integrals. By removing 

the lattice structure (i.e. taking the limit as a -+ 0) while keeping physical 

results constant we can define a renormalization procedure. While the lattice 

allows us to precisely define our path integral, it is still an integral over a 

large number of degrees of freedom and so we must employ Monte-Carlo 

techniques in order to evaluate it. 

3.1 Lattice gauge theory 

In quantum field theory, all the physical information about a system is con-

tamed within vacuum expectation values of time-ordered products of field 

operators. These Green functions can be generated from the partition func-

tion, which for QCD takes the form 

j DUD~DO C' iSQC D ' 	 (3.1) 

where 

	

SQCD _Trfd4xT + f d4x(iV - m)', 	(3.2) 

and the integral is formally defined as the sum over all possible field config-

urations. The path integral representation of these Green functions is then 

given by 

Gai 	(x1, .., 1k, Yi) .., Yk) = 

f VUDD al (x1) 
. 	

(Xk) 1 (Y') "k (yk)e. 	(3.3) 

	

However the paths here are weighted with an oscillating function 	and 

so are not well suited to numerical calculations. We therefore perform a Wick 
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rotation to reformulate the theory in a Euclidean space-time. This is done 

by taking t —+ —if. The new Euclidean path integral is then 

Z 	f DUThTh/eCD 	 (34) 

SQCD1 = Tr f d4xTF + f d4x(D + m), 	(3.5) 

and now our Euclidean Green functions are 

K 	 (Xk)' i  (Y1)4k (Yk)) 

(3.6) 

SE = 	
f DUDD 1  (x1 ) .. 	(Xk)1 (Yi) .. 	(yk)e QCD 

From now on we will always work in Euclidean space, so the Euclidean su-

perscripts will be dropped. 

This new Euclidean path integral is completely equivalent to the original 

Minkowski path integral, however now the paths in the integral are weighted 

with a real factor and the path integral is in the form of a statistical ensemble 

average. However we cannot yet treat this like a statistical mechanics prob-

lem as firstly we still haven't precisely defined the path integral, and also the 

action contains Grassmann valued fields. While the Grassmann valued fields 

can be dealt with simply due to the fact that the fermion integration can be 

performed analytically, to deal with the first problem we have to introduce 

the lattice structure and discretize the action. 

'For Gamma matrix conventions, see Appendix 10.1 
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3.1.1 The Lattice Action 

As mentioned above, to define the path integral we must give it a finite 

number of degrees of freedom. We do this by discretizing our space-time 

into a hyper-cubic lattice of points, and introduce a finite length scale a 

which will define our lattice spacing. This forces us however to make a 

discretized version of the action (3.5). Our continuum space-time index x 

is thus replaced by a hyper-cubic index n, the integrals become finite sums, 

the derivatives become finite differences, and in order to make our action 

dimensionless we scale all the parameters according to their dimension. This 

procedure can be summarized as 

XJU-+ ari 

(x) - 	n) 

(x) - 	n) 

M —* —m 

f d4 x 

3(x) (3.7) 
a5/2()' 

where the derivative is now given by the finite difference 

- 	[(n + ) — V(n — a)]. 	 (3.8) 

As with the continuum case we must ensure that our discretized action is 

gauge invariant. In the prescription just described, the finite difference will 

now leave the fermionic part of the action with terms that are bilinear in the 
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fermionic fields, but at different points in spacetime i.e. terms of the form 

(3.9) 

Under a local gauge transformation S(n) these terms will transform as 

(n)(n + ) 	, (n) S' (n)S(n + 	(n + ). 	(3.10) 

This is clearly not gauge invariant. In order to preserve gauge invariance, we 

introduce a parallel transporter 

U(n, n + /i) 	U, (n) =iagA(n) 	 (3.11) 

where A,(n) is the gauge potential. Under a local gauge transformation U 

transforms as 

U(n) 	, S(m)U(n)St(n  + ). 	 (3.12) 

The product (U,(n)'(n + ) is thus gauge invariant. Note that this 

parallel transporter or link variable is directed, and so the parallel transporter 

along the same link in the opposite direction is 

U(n + /,n) = U(n) = _iagA(n) 	 (3.13) 

Hence just as in the continuum case we are forced to replace the ordinary 

partial derivative with a covariant derivative which is dependent on the gauge 

potential in order to maintain gauge invariance. The new derivative term is 

then 

D(n) = [U(n)(n+) - U(n—(n—)]. 	(3.14) 

Putting this all together we can arrive at a discretized version of the fermion 

action 

SF  =(n7[U(n)(n + ) - U(n -)(n - )J + 

(3.15) 
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U(n+) 

U(n) 
	

U(n + ) 

U1, (n) 

Figure 3.1: The plaquette U(n). 

If we now look at the gauge action, it must be made out of the link variables, 

and again be gauge invariant. The link variables themselves are not gauge 

invariant (see 3.12), however the trace of any closed loop of link variables is. 

The smallest such loop, or plaquette (see Figure 3.1) is given by: 

U,, (n) = U(n)U(n + )U(n + )U(n). 	(3.16) 

Substituting (3.11) into this expression we get 

U, 	(n) =eia94 (ri) e iagA, (m+fi) 	(n+1') e_04 (n) 	(3.17) 

For small lattice spacing we can expand this expression in powers of a 

A, (n + ) = A, (n) + a3A(n) + 0(a2). 	(3.18) 

Substituting this into (3.17) and repeated use of the Baker-Campbell-Hausdorff 

formula 

eAeB = 	 (3.19) 
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we find, ignoring terms above 0(a2), 

U, (n) = e 9A (n)+iagA (n)+ia2  g3A (n)-- -a2g2  [A (n) ,A (n)] 

X 	(n)—iagA (n)—ia2  g8 A (n)— -a2 g2  [A (n),A (n)J 

ia2 8 A (n)—ia2  g0 A, (n)—a2  92  [A, (n),A (ii)] 

(3.20) 

This is equivalent to 

U,, (n) = 	 (3.21) 

where 	is the discretized version of the field strength tensor which in the 

limit a -+ 0 is given by 

=91,A, -  aM A,. + ig[A, Au]. 	 (3.22) 

A simple expansion of (3.21) gives 

g2a4  
U,(n) = 1 + iga2F(n) - 	 + 0(0). 	(3.23) 

We can then use this to to define a gauge action Sc by 

ReTr(1 - 	 (3.24) 
plaq 

where 

= -. 	 (3.25) 

We have now formulated a discretized version of both the fermion and gauge 

parts of the action. We must now check that they give the correct continuum 

limit. By substituting (3.23) into (3.24) and taking the limit a -* 0, it's clear 

that we will get the correct continuum gauge action. However the naive 

prescription given for the fermion action (3.15) does not give the correct 

continuum limit. 
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3.1.2 Fermion Doubling 

To see why the naive discretization of the fermion action fails to give the 

correct continuum limit, we look at the free field propagator. The free field 

action (U,, (n) = 1) is given by 

SF = 	 —(n—)] +m(n)(n). 	(3.26) 

this can be rewritten as 

SF 	(n)K(n,1)(l), 	 (3.27) 
12,1 

where 

K(n, 1) = 	 - 61,n—Al + m61,12 . 	 (3.28) 

The propagator is given by the inverse of this matrix. We can obtain this 

easily by taking the Fourier transform of K(n, 1) 

K(n, 1) 
= f_ (2 

d4p  
)4 

(i711  sin (Pt' ) + m)e (1), 	 (3.29) 

where a sum over i is assumed. ]c-'(n 1) is then given by 

d4p (— isin(p) + m)(12_1) 	
(3.30) K'(n,l) f_ (2)

4  sin2(p) +m2  

or on replacing the parameters by their dimensional counterparts and taking 

the limit as a —+ 0, 

ir/a d 4  p 	ysin(pa) + 
K'(x,y) = urn 	 (3.31) 

a—O ! /a (2u)4 	sin 	+ m2  

Now this expression is the form of a single particle propagator, but the 

denominator has sixteen zeros corresponding to sixteen propagators. In 



the limit of vanishing quark mass, these correspond to particles with 3-

momentum components either 0 or ±. So when the continuum limit is 

taken we end up with sixteen species of fermions instead of one. This is the 

fermion doubling problem. It should be noted that this is not an aberration 

caused by a poor choice of discretization, nor is it cured by the introduction of 

gauge fields. In fact the Nielson-Ninomiya theorem [14] shows that problem 

occurs under very general conditions and is linked to the chiral properties of 

the action. 

3.2 Chiral symmetry 

In any simulation of a physical theory it is advisable that your simulation 

matches your theory as closely as possible. It is obviously then desirable to 

reproduce as many of the symmetries of your original theory as possible. In 

particular if we wish to probe the chiral regime of QCD, we would be well 

advised to run simulations with an action that has good chiral properties. 

The fermionic part of the QCD action has a continuous chiral symmetry. To 

be more specific it is invariant under chiral transformations of the fermion 

fields. Under such transformations the fields 0 and transform as 

(3.32) 

which means the action (where ' 	D,-y,,) transforms in the zero mass limit 

as 

Oro -+ 	 (3.33) 
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If we now look at infinitesimal transformations where c << 1, the above 

transformation law becomes 

-* Oro  + ( ic75I + ic'y5). 	 (3.34) 

It clear then if we want our action to be invariant under chiral transforma-

tions, then the second term in the above expression must be zero. This leads 

to the condition that 

{75,'}=O. 	 (3.35) 

It is at this point that we run into the Nielson- Ninomiya Theorem that 

was alluded to earlier. This theorem states that it is not possible to find 

a consistent lattice action which simultaneously possesses all the properties 

given below 

. A local 'l operator 

. The correct continuum limit 

No doublers. 

This would imply that in order to obtain the correct continuum limit, with 

no doublers, and have a local action, then we must sacrifice chiral symmetry. 

In general this is precisely what was done. 

3.2.1 Wilson Fermions 

The original solution to the fermion doubling problem was proposed by Wil-

son [15]. It involves adding an extra term to the action which when di-

mensions are reintroduced is proportional to the lattice spacing. This term 



will then vanish in the naive continuum limit, but will remove the doublers 

by giving all the non-zero momentum excitations a mass which is inversely 

proportional to the lattice spacing. Wilson's action is then 

	

S' = SF - 	 (3.36) 

where 5F  is the naive action (3.15), r is the Wilson parameter (and is usually 

chosen to be 1) and D is the four dimensional lattice Laplacian defined by 

= 	[U(n)b(n + /) + U(n - 	- 	- 8(n). 	(3.37) 
11 

Proceeding as with the naive case we look at the free field propagator. Again 

we can write the action in the form 

	

S' 	(ri)K(n,l)/'(l), 	 (3.38) 
n,1 

where K(n, 1) is given now by 

	

K(n, 1) = (m + 4r) 1, - 	+ (r + 	 (3.39) 

Inverting this as before to get the free particle propagator K' and reintro-

ducing the dimensional variables we get 

d4 p 	,sin(p,ja) + rn)
K'(x,y) =lim a-+O 

	

	
(3.40) 

f 7r/a 

/a (2n)4 sin2(pa)  + m(p)2  

where the parameter m(p) is now momentum dependent quantity given by 

	

M(P) = in + - 	sin 2 (p,a/2). 	 (3.41) 
a 

This momentum dependent mass parameter solves the doubling problem. 

For the p, = (0, 0, 0, 0) fermion, in(p) is simply in as before. However for 
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the other 15 species which have non-zero components of momenta, m(p) 

picks up a term proportional to 2r/a which diverges as a -+ 0. Hence these 

species decouple in the continuum limit, leaving only one species which can 

propagate. While this has solved the problem of the extra fermions, the 

Wilson action (3.38) clearly no longer preserves chiral symmetry as expected 

from Nielson-Ninomiya. 

An alternative to Wilson-like fermions is the staggered formulation. This 

preserves a U(1) ® U(1) remnant of the full U(4) ® U(4) chiral symmetry, 

however this is done at the expense of other symmetries, in particular flavour 

symmetry [16]. As such I will not discuss this formulation here. 

3.2.2 Ginsparg-Wilson relation 

A solution to the problem of simulating chiral fermions was first proposed 

by Ginsparg and Wilson [3], and more recently by Lüscher [17]. The method 

was to define a lattice version of chiral symmetry at finite lattice spacing 

which would reduce to the usual chiral symmetry in the continuum limit. 

Thus the lattice fermion fields would transform under a new on-shell chiral 

symmetry as follows 

-+ 

-* 	 (3.42) 

This as before leads to the transformation law for the action 

Oro -* /e' 	e1 	). 	 (3.43) 
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If we again look at infinitesimal transformations we have 

1+ ic((i - 	+ p75(1 - 	. 	(3.44) 

This means as before that if we wish the action to be invariant under these 

new transformations we must have 

	

{Y5} 	 (3.45) 

This is known as the Ginsparg-Wilson relation. 

This lattice version of chiral symmetry thus no longer requires that 'y, 

anti-commutes with V  replacing that condition with the weaker condition 

that they anti-commute up to some factor, which is proportional to the lattice 

spacing. This has several useful consequences. Firstly, since it only differs 

from continuum chiral symmetry by a term proportional to a, then in the 

continuum we regain full chiral symmetry. Secondly, for any that satisfies 

the Dirac equation this is an exact chiral symmetry at fixed, non-zero lattice 

spacing. Finally, since we have dropped the condition that 'Y5  anti-commute 

with V , we can avoid a conflict with the Nielson-Ninomiya theorem. 

3.2.3 Overlap formalism 

While the Ginsparg-Wilson relation gives a condition which the Dirac opera-

tor must satisfy in order to preserve chiral symmetry, it gives no information 

on the form of P. A possible solution, due to Neuberger [4] is the overlap 

formalism. The construction proceeds as follows 

We first write our 	in the form 

ab = 1 + 'y5V. 	 (3.46) 
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Note we are free to do this without loss of generality as (3.46) can be con-

sidered as the definition of V. If we now impose '5 hermiticity we have 

75'y5 - 	 (3.47) 

and so 

at - 1 + Vty5 - 1 + Vy5. 	 (3.48) 

Hence V = Vt and V is Hermitian. 

The GW relation also constrains the form of V. By multiplying (3.45) on 

the left by '5 and using (3.47) we have 

(3.49) 

so 

1 	 1 a 
(1+Vt _(1+ 5V)+_(1+Vt 5) 	 5)(1+75V) 

a 	 a 	 a 

2+75V+V 5  = 1+75V+V75 +V2. 	(3.50) 

Hence V 2  = 1 and so V is also unitary. So we need a V which is hermitian 

and unitary. Neuberger's solution was the operator 

V 	
5(aD - 1) 	

, 	 (3.51) 
- 1)t(aDw  - 1) 

where D is any valid lattice Dirac operator, but is usually taken to be the 

Wilson-Dirac operator. Since the D is also -y5  Hermitian (which is easily 

seen from the Wilson action (3.36)), then it is clear that this expression for 

V satisfies both the requirements of unitarity and hermiticity. Putting this 

form back into (3.46) we have 

ai 	= 1-f 
	(aD - 1) 

- 1)t(aD - 1) 
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- 1_ 
	 75(aD - 1) 

Jo 
- 1)]t75(aD - 1) 

1 + 5 7
5(aD - 1) 

(3.52)  
- 1)J2'  

where the last line comes from the fact that ['y5 (aD 0  - 1)] is Hermitian. 

Hence we can write this expression as 

a77-' = 1 + 75sgn['y5 (aD - 1)], 	 (3.53) 

where 

sgn(M) = 
M 	

(3.54) 

For a real number x, sgn(x) = —1 for x < 0 , and sgn(x) = 1 for x > 0 

sgn(x) 

X 

Figure 3.2: sgn(x). 

(see Figure 3.2). For a matrix M, we define the sgn function as equivalent 

to diagonalising the matrix M, and then taking the sign of the eigenvalues. 

This operator satisfies the Ginsparg-Wilson relation by construction, so all 

that is left to check now is that it gives the correct continuum limit. This 
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is easily seen by looking at (3.52). If 0 is the continuum derivative 'y,D we 

can write this as 

a1/ 
7 5(a +0(a2)-1) 

['y5  (a + 0(a2) - 1)]2  

(a —1) 
= 1+ 	 = +0(a2) 

- l)-Y5(0,0-1) 

(a —1) 
1+ 	 +0(a2) 

(1+a)(1—a) 

= a 	+ 0(a2). 	 (3.55) 

So 	gives the correct continuum limit so long as D does, again reinforcing 

that any valid action can be used for D. So far we have only dealt with the 

massless overlap Dirac operator. We can define a massive operator 

aD0 	
am 

= (1 + 	) + (1 - 	5sgn( 5(D - 1)), 	(3.56) 
2 

which by similar arguments to (3.55) can be shown to be the continuum 

Dirac operator with bare mass rnq. 

While we now have a mass term for the quarks we are simulating, we 

can still vary the mass parameter for the auxiliary action D. The spectrum 

of the Wilson Dirac operator is given schematically by Figure 3.3, where 

the offset on the real axis is the mass. For physical (small) quark masses 

this offset is very small, and fluctuations can cause D to have very near-

zero modes. This is problematic as the time taken to invert the operator is 

greatly dependent on the norm of the lowest lying eigenvalue. However as we 

are merely taking the sgn of D, we are free to choose any mass parameter p 

without affecting the continuum limit of the system. In fact, an appropriate 

choice can help reduce the computational cost of the inversion. If we choose 
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IM 

Re 

Figure 3.3: Wilson-Dirac eigenvalues with positive mass term. 

IflT 

Figure 3.4: Wilson-Dirac eigenvalues with negative mass term. 

a negative mass parameter as in Figure 3.4 then we are hopefully in a region 

which has very few low-lying eigenvalues. To put in a particular value of p 
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we exchange (aD - 1) with (aD - p) in (3.53). However this will require 

a rescaling of V since in the continuum limit 

limy5sgn['y5(aD - p)] 	ao  
 

-P 	 (3.57) 
a-O 	 p 

This implies a rescaling of (3.53) by p, so now 

a7b = p(1+'y5sgn[75(aD—p)]), 	 (3.58) 

and hence the massive overlap operator (3.56) is now given by 

q  
aD0 = p(l + am ) +p(l - ----)75sgn('y5 (aD —p)). 	(3.59) 

2p 	2p 

This is the massive overlap Dirac operator that will be used to run simula-

tions. All that is left to do is to work out how to apply the sgn function in 

the most efficient manner. 

3.3 Rational approximations 

While the application of the sgn function is mathematically well defined for 

a matrix, it is not something which is particularly practical for implemen-

tation on a computer. The operator D is a very large sparse matrix, and 

diagonalising this is prohibitively expensive. An alternative to applying the 

sgn operator itself, is to find a rational approximation to the sgn function 

- Pm() 
(3.60) sgn(x) sgn(x) 

Q(x) 

We wish to find a rational approximation to a constant odd function. This 

can be done by finding a rational approximation r(x) of the function 

and then forming the function xr(x2). The sgn function is discontinuous at 



the origin, while our approximation will be a continuous function. Hence 

we approximate sgn(x) over the interval [, 1] with > 0. Note we are free 

to scale the approximation interval to whatever value we like as sgn(x) 

sgn(kx). The approximation can be written in the form 

fJ1(x2 +pk) 
sgn212 (x) = XCO n 	2  + qj 	

(3.61) 

We can then expand this rational function as a partial fraction [18] 

Ck 	 fl1(qk+Pi) sgn212 (x) 	x(c0 	
(x2  + q' 	

Ck = 	
- qj)• 

(3.62) 

As every term in this approximation is now of the form 	where s is some 

shift, then the cost of applying this operator is roughly the same as one 

Conjugate gradient (CG) [19] inversion of x2  (or in our case (y5D)2) [20]. 

While we now have a functional form for our rational approximation, we 

still don't know the coefficients CO, Pk, qk. Chebyshev's theorem states that to 

any degree there is a unique optimal rational approximation to a continuous 

function on a unit interval (for a proof see [21]). This optimal function can 

be found by iterative methods such as the Remez algorithm [22]. However 

for the case of the sgn function, the optimal rational approximation is known 

analytically. The result is due to Zolotarev, who showed that the coefficients 

of the optimal approximation can be written in terms of the Jacobi elliptic 

functions [23]. For a detailed discussion on how to calculate these coefficients 

see [24]. 

The accuracy of our rational approximation, for a given order, will depend 

on the range of approximation region. As the spectrum of ('y5D)2  typically 

contains a few isolated low-lying eigenmodes and a dense continuum above, 

in practice we project out a number of the lowest lying eigenvalues and deal 
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with them explicitly before inverting ('y5D)2. This ensures the accuracy of 

our approximation over the whole remaining spectrum. Also, as the cost of 

the Krylov space inversion of ('y5D)2  is determined by the matrix's condition 

number, this makes a big difference to the time taken to apply sgn212 (x). 

3.4 Conjugate gradient and chiral sources 

When we come to form propagators, we must invert the overlap operator 

(3.59). This then leads to a nested CG procedure, with an inner CG needed 

to apply the sgn function, and an outer CG to invert the resulting operator. 

The propagator G is found by solving the equation 

D0 G s, 	 (3.63) 

where s is a fermionic source, which for point sources (we deal with smeared 

sources in Section 4.3.1) is a delta-function in spin, colour and space-time. 

Conjugate gradient solves linear systems of the form 

Ax=b, 	 (3.64) 

where A is a positive definite, hermitian matrix, and x and b are vectors. 

Hence we solve for one spin/colour component of G at a time, and must 

perform 12 inversions. For the inner CG solve ('y5D)2  is obviously hermitian, 

positive definite, however D0  is not and so CG cannot be used directly to 

invert it. We avoid this problem by solving the auxiliary system 

J—,' ov ov'-7  D ' =Ds, 	 (3.65) 
OV 

which will give the same result. While this allows us to use CG, it now seems 

that for every step in the inversion we must apply the sgn function twice. 
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This can be avoided however as we are using a chiral spin basis2. Our sources 

are diagonal in spin space, and so in this basis are eigenstates of chirality, i.e 

for a chiral source vector x 

'Y5X = ±. 	 (3.66) 

If for simplicity we just look at the massless case (the massive case follows 

an identical argument) and look at D0  in the form (3.46), the Krylov space 

for our inversion will be formed by successive applications of DVDOV  to the 

source vector. If we have a chiral source x then 

DD0 x = (i+V'y5)(i+'y5V) 

= 

	

= (2+ (-y5  ± 1)V). 	 (3.67) 

Hence we only need to apply the sgn function once for each application of 

D V DOV . Note this is a valid procedure for our auxiliary system (3.65) even 

though Ds  is not chiral. This is because of the property 

Dtv D,,v  - 7sD0Dy - D 	 (3.68) - 	5 - 	OVI 

so Dov  commutes with its hermitian conjugate and for each application of 

D V DOV we have 

	

Dt (DD0 )s, 	 (3.69) ov 

so the whole Krylov space commutes with DtV . We can therefore solve on 

the chiral source s then simply multiply the solution by Dt 

'See Appendix 10.1. 
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Although this chiral source trick saves a factor of two in our inversions, 

and multi-shift techniques can be used to form propagators for multiple 

masses using the same outer Krylov space [25], this nested Conjugate gradient 

procedure makes the the inversion procedure extraordinarily costly compared 

to previous methods. 

3.5 Monte Carlo methods 

The expectation value of any observable 0 we wish to measure is given by 

(0) 	fvumvoe_SQcD, 	 (3.70) 

where Z is given by (3.4). As SQCD  is bilinear in the fermion fields, the 

fermion integrations can always be carried out analytically [16],[26] so the 

expectation value can always be written in the form 

1 DU0[U]eSE1h] 	
(3.71) 

f VUe''['] 

where now the integration is only over gauge degrees of freedom. There are 

still however far too many degrees of freedom to carry out this integral ana-

lytically. Instead we seek to create a representative sample of configurations 

which has the same distribution as the complete phase space (namely e_8[Ln]). 

If we generate such a sample then we can approximate the expectation value 

by 

(0) 	 (3.72) 

where the U are configurations of a sample of size N. By increasing the 

sample size N, this approximation can be made arbitrarily good as the error 

is proportional to 
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We generate this sample by a Markov process (see for example [27]). Here 

we start with some initial configuration U, then through some stochastic pro-

cess update the configuration to form a new configuration U f  with probability 

P(U -* U f ), such that the probability of getting U f  depends on U, but is 

independent of all previous configurations. There are many different algo-

rithms for carrying out these stochastic updates. For pure gauge theories, 

configurations are generally generated through a mixture of overrelaxation 

and Metropolis algorithms [28, 29]. When simulating dynamical fermions, 

the standard algorithm is Hybrid Monte-Carlo [30]. 

3.6 Quenched approximation 

As mentioned in the previous section the fermionic contribution to the path 

integral can be computed analytically. In fact the contribution is given by 

Zferm = f 	
det K, 	 (3.73) 

where K is our Dirac operator. However due to the huge cost of evaluating the 

fermion determinant we cannot at present generate gauge configurations with 

overlap fermions in any reasonable amount of time. We are forced therefore 

to work in an approximation known as the quenched approximation. In this 

approximation we set the fermion determinant det K equal to a constant. 

This avoids the huge cost of evaluating it. Physically this is equivalent to 

removing virtual (internal) quark loops from the vacuum (Figure 3.5). This 

can be seen most easily from the Wilson formulation. Equation (3.38) can 
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Figure 3.5: Vacuum polarizations forbidden in the quenched approximation. 

be rewritten as 

QW 1 
(3.74) 

n,1 

where the hopping parameter ic is given by 

1 

	

' 	8r+2ni' 	
(3.75) 

and the reparameterized fermion matrix K is 

k(n, 1)  

S 	+ icII[U]i,. 	 (3.76) 

We have separated the fermion matrix into a constant local piece, and a 

non-local interacting term which depends on the gauge fields. It's clear now 

that setting det K equal to a constant is equivalent to setting K = 0. This 

corresponds to the sea quark mass becoming infinite, and so there can be no 

vacuum polarization effects, such as those shown in Figure (3.5). 

While this may seem pretty drastic, quenched QCD does exhibit many of 

the features of full QCD such as spontaneous chiral symmetry breaking [31], 

confinement and asymptotic freedom [32, 33]. However the gauge configu-

rations have been reweighted. As we don't know the true QCD weighting 

det K, this is an uncontrolled approximation. Also the deviation from QCD 
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will presumably get worse as mq  —+ 0, as vacuum polarization effects will 

become more important. We also have the problem that our signals be-

come polluted with unphysical zero-modes which would not occur in QCD 

(as det K = 0). In spite of these problems, quenched QCD is in general 

considered to be a reasonable approximation until sufficient computer power 

is available to simulate dynamical overlap fermions. 

3.7 Lüscher-Weisz gauge action 

By removing dynamical fermions from the vacuum, we are only propagating 

through pure gauge backgrounds. The standard gauge action is given as 

before by 

SF = 	Re Tr [1 - Uplaq]. 	 (3.77) 
plaq 

While this gives the correct continuum limit, we arrived at this expression by 

making an expansion of the continuum gauge action in powers of the lattice 

spacing a, and then discarded terms of 0(a2) and higher, hence the Wilson 

gauge action (3.77) will have 0(a2) errors. However we can add higher order 

terms to this action to make an improved action which will cancel these 0(a2 ) 

errors and be closer to the continuum theory when we are working at non-

zero lattice spacing. This will give smoother configurations which hopefully 

should increase the locality of the fermion operator, and greatly reduce the 

condition number of the fermion inversions. 

The Wilson gauge action (3.77) is composed of four link loops, which are 

the smallest loops we can make on the lattice. The next simplest terms we 

could add to the action to cancel the 0(a2) errors are six link loops. There 
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are 3 topologically distinct six link loops : rectangles, bent rectangles, and 

parallelograms (Figure 3.6) Liischer and Weisz [34] showed that in fact only 

Figure 3.6: Six link loops. 

two of these terms are needed to cancel 0(a2) errors. This of course leads to 

constraints on the relative weightings of the two remaining terms, but still 

leaves a one parameter family of solutions. The coefficients can be calculated 

in lattice perturbation theory. 

This improvement is however only a classical improvement of the action. 

Further improvement can be made by considering quantum effects. In partic-

ular, the gauge action was designed so that in the limit as a -+ 0 we recovered 

the continuum gauge action. This is based on the expansion 

U,, (x) 	= 1 + iagA(x) - --A 2(X)  +.... 	(3.78) 

While naively it seems that the 0(a2) term will be suppressed as we head 

towards the continuum limit, Lepage and Mackenzie [35] showed that the 

contraction of the A,'s leads to divergences coming from tadpole diagrams 

which are order . So this term is suppressed only by powers of g and 

not a. To factor out these tadpole diagrams they use the fact that in the 

continuum, the expectation value of the 1 + iagA(x) is 1, whereas in the 
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lattice theory the tadpole contributions cause it to he much smaller. Hence 

the average value of the link variables is a measure of the tadpole pollution, 

and we can remove this by simply resealing the link variables contained in 

lattice operators by 

U(x) U(x) 
	

(379) UO  

where the mean value of the links u0  can be approximated in a gauge invariant 

way by 
\ 

no 	Re Tr(Upioq)) 
1/4 
 . 	 (3.80) 

This tadpole improvement should help the lattice operators be more "contin-

uum like" and has the advantage that it is a relatively cheap non-perturbative 

improvement. 

The tadpole improved coefficients have been calculated to one loop in 

perturbation theory [36] and the results are given below. The action is thus 

given by 

S W i ReTr[1—Upiaq] + 2 ReTr[1—Ureet] 
P1 	 rt 

+ 03 E Re Tr [lUpari], 	 (3.81) 
pg 

where 

—i[i + 0.4805o] 

— 01 0O3325Q 
UO  

= 	ln('i4) 

3.06839 

3i remains as an overall scale factor. 
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This is the (tadpole improved) Lflscher-Weisz gauge action, and it is this 

action which has been used to generate the gauge configurations for the 

Monte-Carlo simulations. 

3.8 Continuum and chiral extrapolations 

Our Monte-Carlo simulations are carried out at fixed lattice spacing, and at 

quark masses above the physical quark masses. In order to make contact with 

experimentally measured quantities we must extrapolate our data. In order 

to do this we generate data at several lattice spacings and several masses and 

form continuum (a -* 0) and chiral (m - ma/md) extrapolations. 

We can extrapolate from heavy quark masses down to physical quark 

masses using chiral perturbation theory [37, 38] (or for quenched simulations, 

quenched chiral perturbation theory [39, 40]). As chiral perturbation theory 

is formulated in the continuum, strictly speaking we should first take the 

continuum limit and then the chiral limit. However for most data sets this 

is not really practical, and in practice one usually first takes the chiral limit, 

then the continuum limit. 

In general there is no guarantee this should work, and there is evidence 

that for theories that don't possess chiral symmetry that these two limits 

don't commute [41, 42]. However in the case of Ginsparg-Wilson fermions, 

we have chiral symmetry at fixed lattice spacing. Hence we would expect 

that chiral perturbation theory should still work away from the continuum 

limit, and that these two limits should commute. This appears to be the 

case [42]. 



Chapter 4 

Two point correlation functions 

Hadron masses and decay constants can be measured from two point corre-

lation functions. These correlation functions take the form 

C0102 (t; 	(Oi (t;pO(O;p)), 	 (4.1) 

where the operators Oi  are formed from products of quark and antiquark 

fields, and the angle brackets denote a path integral of the form of equation 

(3.3). The fermion fields can be integrated out by performing all possible 

Wick contractions. The correlation functions can then be written in terms 

of products of quark propagators which we can calculate on the lattice. The 

remaining integration over gauge degrees of freedom is done by then averaging 

over gauge configurations in the usual way. The various operators which 

are used, and the methods for extracting physical information from these 

correlations functions will be detailed in this section. 
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4.1 Meson correlation functions 

In order to study hadron spectroscopy, we must first find a set of operators 

which we can use to create and destroy these particles. The form of these 

operators will be guided not only by the quantum numbers of the state 

we are looking at, but also by the physical observables we are trying to 

obtain. Mesons are quark-antiquark states and so it is natural to make 

operators which are bilinear in the quark and antiquark fields. We must 

also make sure the operator has the same jPC  numbers as the meson we 

wish to study. For example, the 	state has JPC  values of O. Hence 

we are looking for an operator which transforms as a scalar under spatial 

rotations, negatively under parity, and positively under charge conjugation. 

Two such operators which would suffice would be the pseudoscalar ü-y5d and 

the axial vector ty475d. The JPC  numbers of some relevant flavour non-

singlet bilinears are given in Table 4.1. The positively charged versions can 

be found by simply exchanging u and d (flavour singlet operators will be 

discussed shortly). While we now have some idea as to the form of these 

operators, we still don't know how to extract a mass from these two point 

functions. To do this we must leave the path integral formulation for a 

moment, and look at the equivalent operator formalism. We can describe 

the propagation of a pion for example, from the point (6,0) to the point 

(, t) by the following matrix element 

(4.2) 

This describes a pion being created out of the vacuum at t = 0, and being 

annihilated at time t. We can then insert a complete set of energy eigenstates 

NO 



Table 4.1: Quark bilinears 

State Operators jPC  meson 

Scalar ud 0 

ft y4d 0 none 

Pseudoscalar ü'y5d 0 

ü7475d 0 7r- 

Vector 1 p 

1--  p 

Axial ñ'y75d 1 a 

Tensor 1 bj 

n) of of the QCD Hamiltonian. These propagate (in Euclidean time) by 

picking up a factor 	The matrix element can thus be written as 

(00, t)O, 0)0) 	
2E 	

(4.3) 

At large t only the ground state wave function will remain due to the ex-

ponential damping factor. If we isolate the zero momentum case the energy 

of this state will be equal to its mass. We can do this by making a Fourier 

projection of the operators over Y. i.e. we can form a state of definite 3-

momentum g by the Fourier transform 

O (t; p') =e 	0,(, t), 	 (4.4) 

where V is a normalization factor equal to the spatial volume. Hence setting 

0 in the above expression we find that summing our operator over ± will 
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project onto the zero momentum state where E = M, and so we find that 

for large t 

(0 	O, t)O, 0)0) = (00(00)e_Mt = Aooe_Mt ,  

(4.5) 

where r) is the ground state pion wave function. Thus we can find the 

mass of the ground state by looking at the large t exponential decay of the 

two point function (4.5). Note (4.5) is not quite correct as we have a finite 

volume which is anti-periodic in time, and so we will also have a backward 

propagating state and the two point function is properly given by 

(0 	O, Otr  0)0) = A00 [e_Mt + TlT2eMTt)}, 	(4.6) 
X 

where T is the time extent of the lattice and 'r1 , '12 are factors determined by 

how the operators act under time reversal t —+ T — t. For two pseudoscalar 

pion operators which transform negatively under time reversal, we have y = 

'12 = —1. 

If we return to the path integral formalism, we can now write down a 

general meson operator 

Mr (t; p 	(4.7) 

where we are summing over all spatial sites and quark flavours, with coef-

ficients Cj 1f2,  and F is an arbitrary spin matrix (e.g for a'y5d, F = 75  and 

Cud = 1 with all other coefficients zero). 

The source operator is then 

Mt (t; p = 	 G1f2 e1  

x, 	f2 	

2 
 ( t)74Ft74h1  ( t). 	(4.8) 



t 

tO 

Figure 4.1: Connected and disconnected diagrams contributing to meson two 

point functions. 

If we form the correlation function given in (4.1), we have an integral over four 

fermion fields. We can integrate out the fermions by forming all possible Wick 

contractions and our correlation function will then be given in terms of prod-

ucts of quark propagators. If we have states which are flavour non-singlets, 

then there will be only one possible combination of Wick contractions which 

will produce a connected diagram. If however we have degenerate flavours 

then there will be two possible Wick contractions, one connected, and one 

disconnected (see Figure 4.1). The result is then 

Cc1r2 (t;p) = (Mr1(t;pM 2 (O;p)) 	 (4.9) 

1 - 	 cf1f2e 
- V 

&,fi ,f2 

x 	{Trsc{GU2 , t; , 0)74F 4G&1)(7, 0; , 0F1]) 
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- 	6f 1 ,f 2 TrSC[G', t; , t)Fi ]Trsc[G( f2)  (, 0; , 0) 4F 4 ])U}, 

where the trace is over spin and colour, and the angle brackets here denote 

integration only over U. The terms C in the above expression are quark 

propagators defined by 

,(f)ab (x,y) 	((x)(y)), 	 (4.10) 

where a and / are spin indices, a and b are colour indices, and the integra-

tion is here over all fermion degrees of freedom. The propagator is as stated 

in Section 3.1.2, given by the inverse of the fermion matrix. This matrix is 

dependent on the gauge fields and so must be inverted configuration by con-

figuration. Note it is also dependent on the quark fields since the propagator 

will be mass dependent. The disconnected piece of (4.9) is very costly as it 

involves calculating a point to point propagator for every point on a partic-

ular time slice, each requiring an inversion the Dirac operator. Due to the 

immense cost of performing these inversions this is simply unfeasible, and so 

we will only consider flavour non-singlet quantities where the disconnected 

term does not occur. 

For the connected piece we need two point to all propagators : one for 

the quark, and one for the antiquark. However we can make the problem 

simpler. We can use translational invariance to move all our sources y to 

the origin. This is perfectly legitimate as we are averaging over background 

configurations and so one point is as good as any other. Also we have the 

property 

Ct = y5G'y5 , 	 (4.11) 

since if D0  obeys this property, so must its inverse. Hence we can rewrite 
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(4.9) for flavour non-singlet mesons as 

Cr, r2(t; 	- 	 (4.12) 
x,fi ,f2 

x 	{(Trsc[C( f 2)  (, t;  6, O) 4F7475G*1) (, t; 6, 0)y5F1])u. 

This is useful as now the correlation function is written in terms of a single 

propagator, and so we only need to perform one inversion (per fermion field) 

on each configuration. 

4.2 Baryon correlation functions 

For baryons we must again find operators with the same quantum numbers 

as the states we are interested in. Baryons are three quark states and so 

must contain three fermion fields, however the nucleon has jP _ 1+ and 

so the nucleon operator must have only one free Dirac index. This can be 

achieved by contracted two of the fermion fields with a product of gamma 

matrices to form a di-quark structure. As baryons must be colour singlets, the 

operator must also be totally antisymmetric under colour, which is achieved 

by contracting the colour indices with Eab,  as in (2.6). A suitable proton 

operator is then given by [43, 44] 

BQ (t;p 	e 'fabeU(X, t)[u, t)C'y5d, t)], 	(4.13) 

where C is the charge conjugation matrix'. The particular gamma matrix 

product C-y5  is chosen to ensure that the operator has the correct transforma-

tion properties under charge conjugation and parity. The neutron operator 

1see Appendix 10.1. 
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can be obtained by the exchange u d. The anti-baryon is given by 

B, (t; p1 eEb{c1c (x, t)C75 fLb  (, t)](, t). 	(4.14) 

Two point correlations are then formed as before 

Cp(t;p) = r'O. 	 (4.15) 

where we have introduced an arbitrary Dirac projection operator F. The 

reason for this matrix is that fermion fields contain both positive and negative 

parity components. This means that the operator (4.13) will have an overlap 

not only with the nucleon, but also its JP = 	parity partner. Since we 

are only interested in the nucleon state, we can project out the positive 

parity part of the correlation function by using a parity projection, which for 

unpolarized nucleons is given by F 01 = (1 + 'y). For polarized nucleons 

(at rest), a spin projector along an arbitrary axis ñ is given by (1+ia'y5 .ifl, 

where a = ±1 picks out the spin up or down states along the polarization 

axis. We have then our general polarized projector 

Cr

F 01  (a) = (1 + 4)(1 + ia75 .n). 	 (4.16) 

After performing the fermion integration we have 

i "t-' 	 e 	a 
ip.x , ) = 	bca'b'c' 

X { (Trs  [rG( ' (, t; , 0)] Trs  {G("' (, t; 
6,  0) (d) cc' (, t; , 0)] 

+Trs[FG'(, t; 0, 0)a( cc'  (, t; 6, O)G( '(, t; 6, 0)])}, 

(4.17) 

where Trs is a trace over Dirac indices. C is defined as 

G = (C y5GC y5)Ts , 	 (4.18) 
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with T8  meaning transposed in Dirac space. Note in contrast to the meson 

case, there are no disconnected terms in the baryon two point functions. 

However as before, the correlation function can be calculated on each gauge 

configuration from only one propagator inversion per fermion flavour. 

4.3 Overlap improvements 

The hadron operators we have written down have the same quantum numbers 

and transformation properties as the states we are interested in, but are 

localised point objects. As hadrons are spatially extended objects this may 

result in a very small overlap with the hadron wavefunction and thus a poor 

signal. Ideally we would like to simply measure the true hadron wavefunction, 

but since we don't know what that looks like, we must take the operators we 

have and find ways to improve our signal. 

We implement two operator improvements which we will detail in this 

section. Firstly we smear our hadron operators at both sink and source. This 

takes our point operator and spreads it out over a time slice and so makes 

the operator look more like a hadron. Secondly, we project the wavefunction 

onto a non-relativistic wavefunction. This non-relativistic projection has 

computational benefits as well as hopefully improving the overlap. 

4.3.1 Jacobi Smearing 

The basic idea behind smearing a state operator is to try make a point op-

erator have some non-zero spatial extent which will hopefully have a greater 

overlap with the state in question. There are a variety of different smearing 
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techniques available, all of which yield very similar results [45]. This is to 

be expected as the smearing should only alter the operator in a reasonable 

small area surrounding the source (otherwise our operator would no longer 

be local), and so should not effect the long distance physics. 

In this thesis we use Jacobi smearing [46]. Here a smeared source s is 

defined from the original point source s0  by 

X f 

K(x,t;x',t)s(x',t) = so (±,t), 	 (4.19) 

where the smearing matrix K is given by 

K = 1 - ic8 D8 . 	 (4.20) 

r,, is a smearing parameter and D8  is a covariant derivative on a timeslice 

Dsceo 	t; 91  t) = 6 	[U(x, 	+ U(x - t) ,g]. 	(4.21) 

Clearly to find our smeared source s we require the matrix K'. Instead 

of inverting this matrix explicitly, we perform N8  iterations of the Jacobi 

algorithm 2. The nth source in the iterative sequence is given by 

SW = so  + k8 D8 s 1 , 	 (4.22) 

with the obvious initial condition (0) = 80 . 

We thus increase the size of the operator by hitting it successively with 

D8. The operator should increase in size in the manner of a random walk 

where N8  is the number of steps, and t 8  is roughly analogous to the step size. 

'See for example [47]. 



An effective rms radius r for the operator centred at (, t0) can be defined 

as [46] 

r2 - 	s(, to)  2 
	 (4.23) 

We choose the values K, = 0.21 and N8  = 50. This gives our source a radius 

in lattice units of approximately r = 3.5 [48], which for the ensembles used 

here will make our operator roughly half the size of the physical nucleon. 

Smeared propagators are then found by smearing the point source and 

then inverting DO?, on the smeared source. This will give a smeared to local 

propagator. To get a totally smeared propagator we must smear the resulting 

propagator on each time slice. 

Finally it should be noted that the operator D8  is diagonal in spin space, 

and so the chiral source trick of Section 3.4 is unaffected by this smearing. 

4.3.2 Non-relativistic projection 

When we formed the baryon two point function (4.15) we used the matrix 

F to project out the positive parity part of the two point function. As each 

term in the correlation function is made up from combinations of the six 

quark and antiquark fields, this will still contain positive and negative parity 

quark field components, so long as they add up to give total positive parity. 

We can go one step further than this and project out the positive parity 

components of each quark field. To do this we project each of the quark 

fields 

q 	(1 + 74)q, 	 (1 + ). 	(4.24) 

ZW 



This projection is equivalent to using the proton wavefunction 

	

B(t; p 	e 	€abcU(X, t) [ub(x,  t)C 5  (1 + 4 )dc(x,  t)], (4.25) 
VV Y 

where we have made the substitution C75  -* C75 (1 + y) in (4.13). A 

similar substitution is made in the anti-proton to give 

	

B(t; p 	 ez p.xVEabc[dc(x, t) (1 + 74)C 5ü, t)](, t). 	(4.26) 

These new proton wavefunctions have exactly the same quantum numbers 

and transformation properties as the previous baryon operators and so are 

valid proton operators. This wavefunction is the same proton wavefunc-

tion [49] as predicted by the SU(6) flavour/spin symmetry model (see for 

example [50]). In this model light quark (u, d, s) flavour symmetry SU(3) f  

and SU(2) spin symmetry are embedded into SU(6) flavour/spin supermul-

tiplets. This model predicts the ground state octet and decuplet and has 

made many successful predictions. For example the ratio of the proton and 

nucleon magnetic moments which in this model is —1.5, compared to the 

experimental value of —1.46 [50]. It is therefore reasonable to believe this 

wavefunction is close to the true proton wavefunction. It should be noted 

though that as spin is a space-time symmetry and flavour is not, this unified 

symmetry cannot be relativistically invariant. However for slow moving va-

lence quarks it should be a good approximation, hence the designation as a 

non-relativistic projection. 

A consequence of this projection is that now the baryon wavefunction has 

two pieces: a Cy5  piece and a C7574  piece. In the forward region 0 < t < 
2 1  

these two pieces add, however they have opposite behaviour under time re-

versal, and so will subtract in the region T < t < T. This leads to a 
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Figure 4.2: Two point proton correlation functions for both relativistic and 

non relativistic operators. 

suppression of the backward signal and increases the length of the eMt  arm 

giving a slightly longer fit range (see Figure 4.2). This projection also has 

computational benefits when we come to form matrix elements which will be 

discussed in the next chapter. 

Lastly we note that while this procedure can also be used for positive par-

ity mesons such as the a0  state, it must be modified in the case of negative 

parity meson states. The ground state vector and pseudoscalar mesons are 

negative parity and made of an even number of quark and antiquark fields, 

hence they must couple both positive and negative parts together. We there-

fore cannot project out one parity state from all the fields of these meson 

operators without killing the state. The projection must therefore be modi-

fied in this case to project out one parity state from the quark fields and the 

opposite parity state from the antiquark fields. 

71 



4.4 Meson decay constants 

The decay constants introduced in Section 2.2 can be determined from combi-

nations of two point functions containing local(L) and smeared(S) operators. 

The source operator represents a spatially extended hadronic state and so is 

smeared to increase its overlap with the hadron. However the sink operator 

is part of a weak current. It represents a point-like gauge boson, so must 

remain local. Define for example the correlation function C O2  (t). This has 

the smeared operator O at source (time 0), and local operator O at sink 

(time t). 

By transforming (2.11), (2.12) to Euclidean space and taking the case 

of zero-momentum we can define the pseudoscalar and vector meson decay 

constants by 

(0A4 7) - V 2  rn,,fr 
m2  

(0Vj p,) = e(\)—, 	 (4.27) 
Jp 

where e(A)i  is the polarization vector. V and A are the vector and axial 

currents 

= 	y,y. 	 (4.28) 

The matrix element for f, can be computed from the correlation functions 

CALS 	and C%(t), where P is the pseudoscalar. By comparison with (4.5) 4P  

we have 
LS 

(0A4 7) = . 	 ( 4.29) 
A Sp Sp 

72 



Similarly, for f p  we have 

/2k Avk 	 (4.30) e(A) 

V >k AVVI- 

where we have averaged the amplitudes to increase our statistics. 
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Chapter 5 

Three point correlation 

functions 

While two point functions are sufficient for studying hadron masses and decay 

constants, in order to study nucleon matrix elements of the form (NON) 

we will need to study three point correlation functions. These are defined 

analogously to (4.15) by 

Cr  (t, r; j5 	0) = F(B(t;))0(; qB j (O;p). 	(5.1) 

Here we have a baryon of momentum p created at time 0. There is then 

an operator insertion 0 at time -r which carries momentum q. The final 

nucleon then carries momentum p' = p + q and is annihilated at time t. 

We again include an arbitrary projection matrix F. The baryon operators 

are defined as before. We form an operator of definite momentum q by the 

Fourier transform 

0('r, q) = 	 (5.2) 
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Some care is needed here as 0 need not be a local operator. For all the 

matrix elements examined in this thesis, 0 will be bilinear in the fermion 

fields, so we can define 

= 	 (v)0 (v, w; , 	(w). 	(5.3) 
x-.,v,w 

For local operators, v = w = x, however for non-local operators this is not 

the case, and x 	(, 'r) is the operator's "centre of gravity", which we take 

as the point of the momentum insertion. 

5.1 	Ratios of correlation functions 

To relate matrix elements to correlation functions we must again appeal to 

the operator formalism. We proceed as in the two-point case and replace our 

field variables with the vacuum expectation value of the time ordered product 

of the corresponding operators. Our corresponding correlation function is 

then 

Cr,  (t, 	0) = F a (OBc (t;)1)0(; q)B j (O;pO). 	(5.4) 

We now insert two complete sets of states. For well separated operators 

t >> 'r >> 0, only the ground states will remain and we have 

Cr(t,;)3O) 

1 

2E2E 
F(0B(t;  )5') N(j51)) (N(jS') O(; q) N(p KN(p) I(0; p 0) 

- 2E2E 

x e_Ep (t-,r) 

(5.5) 
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where we have already integrated over the momenta of the complete sets of 

states. We are interested in matrix elements with 7 = 0. In this case p' = p 

and this expression reduces to 

Cr(t,;;O) 

(2E)2 	
N(p) (N(p O() N(p)(N(p I  f3o(p 0)et 

(5.6) 

By comparison with (4.3) we see that the matrix element we are interested 

in can be obtained by taking the ratio of the three point function with the 

corresponding two-point function. So we have 

Cr  (t, 	O; 0) 

Cr (t;p) 

= 	(N(pO(N(p). 	(5.7) 

Note the time dependence has cancelled out here and we thus expect this 

ratio to be constant. However the above argument was based on the fact 

we have well separated operators and only the groundstate contributes, so in 

practice we look for a plateau region between the source and sink. 

5.2 Connected diagrams 

While the baryon two point function is completely connected, the three point 

functions have both connected and disconnected pieces (see Figure 5.1). If 

we look at the proton three point function with 	0, and for the moment 

consider just the connected terms, after integrating out the fermion fields we 

can arrange the terms [51] as 
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Figure 5.1: Connected and disconnected diagrams contributing to the baryon 

3pt function. 

Cr,  (t,r;5; 0) 

= - 	(Trsc[>P (i, 0; t; v)0(v, w; , y)GW(w; , 0)])u, 

(5.8) 

where the generalised propagator P (, 0;t; v) can be written as 

(O 0; jib, t; v) = > s! (, t; d, 0; p)G (, t; v). 	(5.9) 

The generalised sources S1Y (, t; O, 0; f1) differ depending on whether or not 

the current is inserted into a u or d quark line. For a u quark line we have 

(u)  (x -. S 	, t; O 0; pi) = e 	€aba'b'c' >< 

{(d)bb'( 	t; 0, 0)G''(, t; O•, 0)F 

+Trs[C' ( t; 0, 0)G(c' (, t; 0J, 0)]F 

+FGb' (Y, t. 6,D)(d)CC' (, t; ö 0) 

+Trs[FG'(, t; 0, 0)]G(, t; 6,  0)}, 

(5.10) 
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while for the d quark line 

(d) S 	- (x, t; O, 0; p) = e ZP.XfabcfabC >< 

{(u)bb' (±, t; 0, 0)fO cc' (, t; O, 0) 

+Trs[FGbb'(,t;  

(5.11) 

where terms of the form X are defined in (4.18). 

The generalised sources Sr are composed of propagators of the form 

G(x, 0) which we have already calculated for the two point functions, how-

ever the second term on the right hand side of (5.9) is a propagator from all 

points, to all points, and so would seem to require a separate inversion for 

every space-time point which is obviously prohibitively expensive. However 

since G(, t; v) is a Green's function of D0  we have from (5.9) 

0; g, t; v)D0 (v; v') = S!7, t; , 0; P)SV t, 	(5.12) 
V 

which on taking the transpose conjugate and using 	y5 D0 75  becomes 

Do, (V; v5V )t(, 0; , t; v) = 75St(7, t; 0,0; p)S. 	(5.13) 

This is now in the same form as (3.63), and so we can use Conjugate gradients 

to solve for Er  by inverting Dov  on the generalised source given on the right-

hand side of (5.13). 

Thus to find the connected three point function we first invert on our 

original fermion source to form a quark propagator. We then tie two of these 

propagators together to form the generalised sources Sr, and then invert of 

this source to form the generalised propagator Er. We then correlate a quark 



propagator, and generalised propagator and the operator insertion as shown 

in (5.8). 

The advantage of this procedure is that once both types of propagators 

have been calculated, they are independent of the operator insertion, and 

so any number of operators can be inserted at no extra cost. However as 

we must form the generalised source at a particular time slice we must per-

form separate inversions for each sink time t. We must also form separate 

inversions for each nucleon momentum g and for each F (i.e polarized or 

un-polarized). 

5.3 Disconnected diagrams 

As well as the connected terms, we also have disconnected diagrams con-

tributing to the baryon three-point function (Figure (5.1)). These take the 

form 

Cr (t, ; A 0) = - 	efabcea'b'e' 

x ({Trs[FC 	' 
(, t; 6, O)]Trs[C 	b' 

(, t; 5 O)(d)CC' ( t; 6,  0)] 

+Trs[FG(a' (, t; , o)(d)CC' (, t; , O)G(u)bb' (, t; , 0)]} 

xTrs[FG(d' (w, v)Od'd  (v, w; 

(5.14) 

where f can be u or d. This is simply the baryon propagator correlated with 

a quark loop. The quark loop, like the meson disconnected diagram, requires 

a propagator from all point to all points. This again practically cannot be 

calculated. If we assume isospin symmetry, these terms arising from the u 
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and the d disconnected quark loops should be equal in magnitude as they 

only interact with the baryon through gluon exchange. We can then cancel 

out these terms if we restrict ourselves to looking at only the non-singlet 

parts of the three-point functions, i.e. 

(N(t)QNS(T)N(0)) = (N(t)Ou(y)N(0)) - (N(t)Od(y)N(0)). 	(5.15) 

Note this cancels out any contributions from the gluonic operators (2.54) for 

precisely the same reason. 

5.4 Non-relativistic projection 

Before we perform the second stage inversion to produce the generalised 

propagator Er , we can improve the source on the right-hand side of (5.9) 

in the same way as we did the original fermion source namely by Jacobi 

smearing and using the non-relativistic projection. The second of these also 

has a computational benefit for the second stage inversion. If we consider 

the non-relativistic projection defined in (4.24), then this has the effect of 

transforming each quark propagator C as 

C 	(1 + 74)C(1 + ). 	 (5.16) 

If we consider an arbitrary propagator in 2 x 2 Dirac block diagonal form, 

then explicitly in the chiral basis' the above transformation becomes 

(A B
I 

1(1 1\(A B
I  

1 
I II 

(11 
CD 4 	11 CD 11 

'See Appendix 10.1 



i(A+B+C+D A+B+C+D 
I. 	(5.17) 

4 A+B+C+D A+B+C+D) 

This transformation therefore has the effect of block averaging the propagator 

in Dirac space. If we now look at the form of the sources on the right-hand 

side of (5.13), these will all be of the form 

(x x\ 
) 

I 	 I . 	 (5.18) 
\ X —X 

So we find that if we invert on the first two spin components (i.e. the first 

column) this will give exactly the same result as the second two components. 

We therefore only have to calculate six spin/colour components for the second 

stage inversion, which obviously cuts our inversion time in half. 

5.5 Lattice operators 

In this section so far we have dealt with how to generate a nucleon three 

point function for an arbitrary operator insertion. We now want to specify 

exactly what operators we wish to measure. 

In Section 2 we saw how moments of structure functions can be related 

to matrix elements of twist 2 operators. A basis for these operators is given 

in (2.53). However these are continuum, Minkowski space-time operators. 

In order to find equivalent Lattice, Euclidean space operators we must Wick 

rotate the operator and discretize the derivative (see Section 3.1). A further 

concern is that the operators given in (2.53) were chosen for their transfor-

mation properties under the Lorentz group. In particular they cannot mix 

with operators of the same or lower dimension. This ensures that they have 
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simple multiplicative renormalization coefficients [52]. When we change to 

Euclidean space our symmetry group changes from the Lorentz group to 

the orthogonal group 0(4). On discretization this becomes the hypercubic 

group H(4) c 0(4). While our continuum operators transformed under an 

irreducible representation of the Lorentz group, as we now have a smaller 

symmetry group, these operators will in general transform under a reducible 

representation of H(4) and so mixing can occur. In order to avoid this prob-

lem we choose operators which transform under irreducible representations 

of H(4). Bases for irreducible representations of H(4) are given in [53]. 

Another consideration is the nucleon momentum 151 Larger momenta will 

cause noisier signals, so we wish to keep 15 as small as possible, and so here 

we choose g = 0. This however does put some constraints on the operators 

that can be measured, as some of the matrix elements might depend on 

and hence vanish for j5= 0. 

Using zero momentum also makes the polarizations simpler. For unpo-

larized moments we use the projection matrix Funpol defined in Section 4.2, 

while for polarized structure functions we choose operators polarized in the 

y direction. As the polarized structure functions are related to the difference 

of the spin up and spin down parton distribution functions (see Section 2.4), 

we use the spin projector 

Fpoi = F 01 	+1) - F 0i (a = —1) = (1 + 4)i 52, 	(5.19) 

where FP01(a) is defined in (4.16). 

The lattice operators measured here, the particular moment and matrix 

element which they are related to, and the value of the 3pt to 2pt ratio 

are shown in Table 5.1. All of these operators transform under irreducible 



Operators Moment Ratio 

0V2,b  O 44}  - 	>I 	O jj  M1  (F1 ) 	V2 
E+ 2  

- 	Ep 	
V2,b 

°ao 
0q  M0 (g1) 	a0  ia0 

o alb 
05q 

f 24 All, 	a —irnNa1,b 

°h 1,b {24} M1(h1 ) 	hi  hl,b 

Table 5.1: Measured lattice operators relating to moments of structure func-

tions 

representations of H(4) and so relevant operator mixing is avoided. Some 

operators have a b suffix. This is because these matrix elements have more 

than one traceless, symmetric irreducible representation [53]. For the matrix 

elements shown here these representations correspond to "off-diagonal" op-

erators whose matrix elements are directly proportional to 15, and "diagonal" 

elements whose matrix elements are proportional to E. The off-diagonal el-

ements conventionally have the suffix a, and since we only have zero momen-

turn, we cannot consider them, and restrict ourselves to 'diagonal' elements 

with the suffix b. M(f(x)) is the nth moment of f(x) defined by 

1 
M(f(x)) = f X',f (x) dx. 	 (5.20) 

5.6 Operator improvement 

Any Lattice action that satisfies the Ginsparg-Wilson relation (3.45) is au-

tomatically 0(a) improved [54, 55]. This is due to the fact that any 0(a) 

terms in the action must be of the form of a clover term 	since the 

0(a) terms of any action can be removed by the addition of a term of this 



form [56, 57]. However a term of this kind would explicitly break the on-shell 

chiral symmetry of (3.45), and so no term of this kind can be present, hence 

the action must have lattice artifacts that are at most 0(a2). 

This guarantees that measurements of the mass spectrum will be 0(a) 

improved, but for matrix elements we must also improve the operators. For 

matrix elements of an operator 0, we must consider any 0(a) operators O 

which have the same transformation properties under H(4), charge conjuga-

tion and parity, as these operators can mix with 0 under renormalization, 

leading to 0(a) lattice artifacts. By taking suitable linear combinations of 

0 with these additional irrelevant operators we can form an operator whose 

lattice artifacts will be at most 0(a2). A general improved operator 0P 

can be written as 

0imp 0 + arnqcoO + a > 	 (5.21) 

with mixing coefficients ci  which will in general depend on the gauge coupling. 

However for GW fermions the situation is greatly simplified as all of the 

irrelevant operators Oi  sit in a different chiral multiplet to 0 and hence 

are forbidden to mix with 0 [58]. Hence all the coefficients c1  = 0, and 

all that remains is to determine the coefficient c0 . A suitably chosen value 

should ensure our improved operators have a smaller quark mass dependence, 

although as all the quantities here will be extrapolated to the chiral limit, 

the final results will be independent of c0. For on-shell matrix elements this 

coefficient is given by [59] 
1 

Co 
= 1 -'-' 
	 (5.22) 
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which on substitution into (5.21) gives 

0irnp = (1 -am 
	

(5.23) 

Thus for on-shell quantities, 0(a) improvement is achieved by a simple mul-

tiplicative factor which is independent of the operator measured. 



Chapter 6 

Renormalizat ion 

So far all the quantities we have discussed have been written in terms of bare 

quantities. While this is sufficient for calculations of the mass spectrum, ma-

trix elements must be renormalized in order to compare our lattice results 

with experimentally measured, physical quantities. In this section we discuss 

why this procedure is needed, and how in general it is carried out. We explain 

how some renormalization constants can be determined non-perturbatively 

on the lattice through the use of Ward identities. The remaining matrix 

elements considered in this thesis will be renormalized using lattice pertur-

bation theory, and we give brief outline of how these calculations are carried 

out, and how different renormalization scales and schemes can be related to 

each other. 



6.1 	Renormalizat ion 

The path integral (3.1) can be expressed as a perturbative series' in the 

gauge coupling, with higher order terms relating to Feynman diagrams with 

progressively more interactions. Many of these diagrams have divergent am-

plitudes and so give infinite contributions to any calculated process. This is 

clearly a problem as any physically measurable process should give us a finite 

answer. The problem is rooted in the fact that we are forming a perturbative 

series with the wrong parameters. The bare input parameters of the theory 

are shifted by the interactions, and so we must calculate these shifts and 

absorb them into the bare parameters to give us renormalized parameters. 

These renormalized parameters will then lead to finite physical results. 

In general this is a two stage process. We must first find a way to render 

the divergent integrals finite. This process, known as "Regularization", can 

be achieved either by introducing a momentum cut-off, or by other means 

such as dimensional regularization. In this case we calculate in an arbitrary 

dimension d (which we will eventually analytically continue back to 4). Both 

of these methods introduce a new scale, t, into the theory in order to keep 

the results dimensionally correct. 

While we now have finite integrals, any physical result should not depend 

on how we regularized the integrals, (in our case what value of lattice spacing 

a we choose). Therefore we must redefine our bare parameters in such a way 

that our integrals remain finite as we remove a. We define our renormalized 

parameters though a set of renormalization conditions. These can for exam-

ple define the physical masses and charges, or a scattering amplitude at fixed 

'See for example [8]. 



momenta. A particular choice of renormalization conditions is referred to as 

a renormalization scheme. Whichever scheme is chosen however, the renor-

malization conditions are always written in terms of (in principal) physically 

measurable quantities, as their purpose is to fix the bare parameters to their 

physical counterparts. Once we have these conditions we then rescale our 

parameters such that the renormalization conditions hold. The renormaliza-

tion conditions thus provide a set of constraints which completely determine 

how the bare parameters should be rescaled. 

In the specific case of matrix elements calculated on the lattice, operator 

matrix elements (or more loosely speaking the operators) will depend on the 

lattice spacing a. When we come to renormalize an operator 0, the rescaling 

of all the parameters in the Lagrangian leads to an overall rescaling of the 

operator by a factor Z0 , so that our renormalized operator OR  is given by 

O(u) = Z(a,u)O(a), 	 (6.1) 

such that our renormalized matrix element remains finite in the limit a -* 0. 

The superscript on Z denotes a particular renormalization scheme S. Thus 

we absorb the a dependence of the operator into the renormalization constant 

Z0 , although we must still state our answer in terms of the renormalization 

scheme S and scale j. 

6.2 	Non- pert urbative renormalization 

While the perturbative procedure described in the previous section can in 

principle be used to determine the renormalization constants (up to a spec-

ified order) of any operator, it is in general a very complex procedure as 
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the discretization of the QCD Lagrangian leads to more complicated expres-

sions than in the continuum. It can also lead to extra diagrams which are 

not present in the continuum theory. However for certain operators we can 

exploit symmetry arguments to give us non-perturbative determinations of 

their renormalization constants through the use of lattice Ward identities. 

In the following subsections we show how these identities can be used to 

measure these factors on the lattice. 

6.2.1 Z 

In continuum QCD, for flf flavours of degenerate quarks there is an exact 

symmetry of the Lagrangian (2.1) under the transformations 

(x) -* eT(x) 

(x) 	—* 0 (x)e_iT, 	 (6.2) 

where Ta is a generator of the the flavour symmetry group SU(n1). An 

equivalent flavour singlet transformation is also a symmetry. This is achieved 

by setting T = I. The invariance of the Lagrangian under the corresponding 

infinitesimal transformations (neglecting contact terms) leads to the following 

Ward identities for the non-singlet transformations 

(0 A  4V 	= 0, 	 (6.3) 

where Q is an arbitrary functional of the fermion and gauge fields, and 	is 

the local vector current 

= 	 (6.4) 



An identical expression is derived for the singlet case. In the continuum, as 

this a conserved current it does not need to be renormalized. This is not the 

case for the overlap Lagrangian at finite lattice spacing due to discretization 

errors. As the overlap operator is non-local, so is the conserved current [60]. 

The local vector current is not conserved, and so if we require these identities 

to hold at fixed lattice spacing, the vector currents must be renormalized with 

a finite renormalization constant Zv. We can measure Zv by considering the 

following nucleon matrix element 

Zv(N(p)V NS  N(p)), 	 (6.5) 

where V'S  is the non-singlet current 

VNS 	- d'yd. 	 (6.6) 

The renormalized vector current simply counts the number of quarks of a 

given flavour and so we must have 

Z(N(pI NS  )V4 N(p) 	(N(p) ( 2 - 1) N(p)) = 2Ev, 	(6.7) 

and so by rearrangement we have 

LJ '7%/ --1 - R(V4NS), 	 (6.8) 

where R(V4NS)  is the ratio of three point to two point functions described in 

(5.7). 

6.2.2 ZA 

We proceed in a similar manner to determine the renormalization constant for 

the local axial current. In the continuum we have the chiral transformations 

eiTi/(x) 



—~ 	x)eiTa5, 	 (6.9) 

where we again have flavour non-singlet (Ta e su(n1)), and flavour singlet 

(Ta = I) transformations, however the singlet transformation is anomalous 

[8]. 

If we consider just the non-singlet transformation, the corresponding 

Ward identity is 

2ZZp(mPl). 	 (6.10) 

Here A and pa are respectively the local axial and pseudoscalar currents 

A - 	 'y5T, 	P = /'y5Tb, 	 (6.11) 

m is the bare quark mass, and ZA, Zp, Zm are their corresponding renormal-

ization constants. Again Q is an arbitrary functional. 

While it seems we now have three renormalization constants, in the con-

tinuum we can remove two of these. Firstly if we consider the mass terms in 

the action, for two flavours (the argument is virtually identical for arbitrary 

N f ) we have terms 

MOM + rnddd. 	 (6.12) 

These can be separated into singlet and non-singlet parts as 

1 	
-

I 	 - 

+ md)(uu + dd) + (Mu - md)(uu - dd) 	(6.13) 

As each of these terms must be renormalization group invariant we have 

Z 1 = Zs, where Zm is the non-singlet (rria - md) mass renormalization and 

S is the non-singlet scalar current 

S = 	 (6.14) 

91 



Further, if we apply a infinitesimal chiral transformation 

	

biTbc b75 , 	 (6.15) 

to the scalar and pseudoscalar currents we have 

sa 	 5P 	_jf ac0 tj St 	(6.16) 

Hence S and P transform as a doublet, and therefore we must have Zp = Zs. 

We can now substitute these results into (6.10). If we choose Q to be a pion 

operator we can determine ZA from 

2m0Pir) 
ZA - 

	

	. 	 (6.17) 
(0(91 A1 r) 

Note this is only useful in our lattice simulation if we can show that these 

renormalization constants also cancel away from the continuum. 

6.2.3 Local currents at finite lattice spacing 

At non-zero lattice spacing we do not have the symmetry (6.2), but the 

weaker on-shell chiral symmetry 

eiT 5 ( 1_(x) 

(x) 	(x)eiT(1_5 (6.18) 

The corresponding Ward identity is 

ZA'  (3Al) = 2ZmZ,(mPIaQ), 	 (6.19) It 

where 	and pa  are now new lattice axial and pseudoscalar currents 

- 	 pa = ?5(1 - 	 (6.20) 
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We can similarly define lattice vector and scalar currents 

- 	 s!a = (1 - 	 (6.21) 

These currents are related to their local counterparts by the fact that they 

transform under the lattice chiral symmetry (6.18) in the same way as the 

local operators transform in the continuum [61]. Namely under the non-

singlet transformations 

= 	 - 	 j = iTb(1 - a)75, 	(6.22) 

the scalar and pseudoscalar currents transform as 

6S a = jf abc0 bPFC , 	 = _ jf abc0bS, 	(6.23) 

while similarly the vector and axial currents transform as 

=jfabc0bA', 	 = ifabcbV 	 (6.24) 

Thus as these operators transform as a closed pairs we have 

= 	 = ZA'. 	 (6.25) 

Further, as the difference between the local and lattice operators is of the 

form F -a''', when we insert this operator into a three-point function, the 

two fermion fields will form two propagators with fields from the external 

states, one of which will cancel with V . This will leave one propagator 

which by virtue of chiral symmetry cannot be proportional to 1/a. Thus we 

have for all local operators 0 and corresponding lattice operators 0', that 

(up to lattice artifacts) Z0  = Z0 . Hence even at finite lattice spacing we 

expect 

Zs = Zp, 	 ZV=ZA. 	 (6.26) 
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Finally as the massive Dirac operator D0  (3.59) can he written as 

D0 , = (1 - am) + m, 	 (6.27) 

the mass dependent terms are of the form 

m(1 - 	 (6.28) 

and so proceeding as in the continuum case, we have that Z 1  = Zs. 

Thus as we have chiral symmetry away from the continuum, the relation-

ships we derived between the renormalization constants in the continuum 

are still valid at finite lattice spacing. We are therefore free to use (6.17) to 

calculate ZA. 

6.3 Perturbative renormalization 

The remaining operators in this thesis will be calculated from one-loop lattice 

perturbation theory. However as these numbers are not calculated here, I 

will only give a brief overview of the methods employed to calculate these 

numbers. For a full account see [62, 63]. 

In order to determine the renormalization constant Z0  of the operator 0 

we must specify a renormalization scheme. A common choice on the lattice is 

a MOM scheme. Here the renormalization conditions specify that the gauge 

fixed quark propagator C must be proportional to the tree level propagator 

at some scale p. A similar condition holds for the amputated Green function 

A0, which is formed from an operator insertion into a quark line. Thus we 

have 

ZOM(aj )G p22  = Gtree 



Figure 6.1: One loop diagrams contributing to Z. 

Figure 6.2: One loop diagram contributing to Z0 . 

ZOM(ai) 
- 	1i 	-1-  ..., 

Atree 	 (6.29) 

where the ... indicate other Dirac structures, which since they are simply a 

result of the lattice breaking Lorentz invariance are ignored. Contributions 

to the wavefunction renormalization (Figure 6.1) and the operator renormal-

ization (Figure 6.2) are then calculated. 

The result for a general operator can be written as 

g2CF 
ZOM = 1 - 1672log(ap) + BQOM], 	 (6.30) 

where CF is the quadratic Casimir of SU(3), -yo  is the anomalous dimension, 

and B0  is a finite piece which will in general depend on the scheme. These 

perturbative results can then be tadpole improved as described in Section 

3.7. 

As the Wilson coefficients for the operator product expansion are often 
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calculated in the MS scheme, we can convert the MOM scheme numbers to 

the MS scheme by 

MS,MOM 	M 

	

Z' (aj) 	 Z(a4, 	 (6.31) 

MS MOM 	
i where 	is calculable n continuum perturbation theory [64]. 

	

Finally, the numbers calculated in [62, 63] are calculated at ,u 	in 

order to avoid the logarithms in (6.31) becoming large. As the lattice spacing 

changes with the coupling, in order to perform a continuum extrapolation we 

must transform our renormalization constants to the same scale. The scale 

dependence of a renormalized operator 0S  in scheme S is determined using 

the renormalization group equation 

[alogp
+ (g())38 

+ 	
+ 	O) =0, 

(6.32) 

where 

S(gS()) 

- 8log 

7S(gS()) = 0 log 	() 

- 0log 

70' 
(gS(LJ,)) = 3logZ(i) 

(6.33) 
- 3log 

Thus 3, '-y, and 'ye,  respectively determine the scale dependence of the cou- 

pling, the mass, and the operator. 

As this is a differential equation in It, if we integrate this equation we 

should get a result which is independent of the scale. This is the renormal- 

ization group invariant (RGI) form of the operator 

0RGI = Zos  (1)O8(t), 	 (6.34) 
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where AZ' (p) is the factor picked up from integration. It can be written 

[49] as 

AL 	
gS() 	

1'y(e) 	d0 1 [2bo(g8()2] 2bo  exp 
fo 	

d 
 [/3s() + 	

(6.35) 

where b0  and d0  are the lowest order terms in the expansion of /3 and 'ye. 

We can therefore use the RGI form of operator to change from one scale u 

to another scale ' since 

- 	 (6.36) 

and so 
QS(I) 

- 
- Z) 0s I)• 
	 (6.37) 

ZOS ')  
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Chapter 7 

Locality and condition number 

While the overlap operator preserves chiral symmetry, it does so at a cost. 

The interactions are no longer nearest neighbour and so it is no longer obvious 

that the the operator is local. However if we can show that the non-locality 

of the operator decays exponentially with distance, then for an application of 

D0  to the field '(x), the product D0 (x) will be dominated by contributions 

from points close to x. Further if the localization length scales with the lattice 

spacing then strict locality will be returned in the continuum limit. As long 

as our operator satisfies these conditions, while it is not ultra-local in the 

sense of having only nearest neighbour interactions, it can be considered 

local enough. 

In this section we attempt to prove our operator is local in the sense of 

the definition of locality given above. Furthermore, in Section 3.7 we com-

mented on our hope that using the Liischer-Weisz gauge action, as opposed 

to the Wilson gauge action, would increase the locality of our Dirac oper-

ator and also improve the condition number of the matrix inversion. Here 



we investigate to what extent these statements are true. We compare lo-

cality and condition number on two 16 3  x 32 Lüscher-Weisz ensembles with 

= 8.00, 8.45, and also a 16 3  x 32 ensemble of Wilson gauge configurations 

with 0 = 6.00. The Wilson gauge ensemble was chosen to have the same 

lattice spacing as the /3 = 8.45 set, and so allow a direct comparison of the 

two actions. All ensembles contain 50 configurations. 

We also look at the dependence of these quantities on the negative mass 

parameter p. As any physical quantities we measure should not depend on 

our choice of p (see Section 3.2.3), we can use our results to determine an 

optimal choice. 

7.1 Locality 

In order to prove locality we follow the method of [65]. 

We first define a source field 

X0 (X) = XyS( l. , 	 (7.1) 

where y is one particular point on the lattice and ce runs over both colour 

and spin indices. The only non local part of the overlap operator is the sgn 

function so we apply this to our delta function source and see how far the 

signal spreads. We define a new field 

L'(x) = sgn[y5(D - p)]x(x), 	 (7.2) 

and then look at the decay of this field with distance r 	X - Hi where r 

is defined in terms of the "taxi driver" norm 

X - Y111 	IX/,  - y, 	 (7.3) 
Ii 



which we calculate modulo the size of the lattice dimension in question. 

The function1  

f(r)max{(x)H, lx— yHi=r} 	 (7.4) 

is plotted for all three ensembles, with p = 1.0, 1.2, 1.4, 1.6, 1.8. We also 

include the free-field measurement. The results are shown in Figures 7.1, 

7.2, 7.3, and 7.4. 

In all cases f(r) decays rapidly with distance. From around r> 13, f(r) 

can be fitted reasonably well with a single exponential. 

f(r) = Ae. 	 (7.5) 

Around r > 20 we run into rounding errors as we are at the limit of machine 

precision, so this determines our fit region. The results for the fits f(r) to 

(7.5) are shown in Table 7.1. 

From symmetry arguments we would expect the free field results to show 

an optimal value of p around 1.0. The free field result is not as smooth as 

the other results, as can be seen by the kinks in Figure 7.1. This is most 

likely due to the fact that for a given r there are many different ways of 

forming that path, some of which are purely spatial, some purely timelike, 

and some mixtures of the two. Thus we might expect shifts in the amplitudes, 

especially at distances which are multiples of the lattice size, which would 

lead to a non-uniform exponential decay. This effect does not appear in the 

other cases so is presumably a product of the high levels of degeneracy in 

the free field case. This does however mean that the fitting with a single 

exponential is less trust-worthy than in the other cases. Nevertheless, the 

'where 110(x)U is the usual vector norm \/Jf. 
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Figure 7.1: f(r) against for free field. 
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Figure 7.2: f(r) against 11  for = 8.00. 
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Figure 7.3: f(r) against for = 8.45. 
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Figure 7.4: f(r) against for Wilson 3 = 6.00. 
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Gauge action p A v 

Lüscher-Weisz, 1.0 0.00191ii 0.270i1?1  

/3 = 8.00 1.2 0.0iiit 0.489t 

1.4 0.0334ii 0.577t 

1.6 0.0280ii 0.531ii 

1.8 0.0232+14 0.464i 

Lflscher-Weisz, 1.0 0.00671ii 0.432it 

/3 = 8.45 1.2 0.0315t 0.608t 

1.4 0.0326t 0.588ii 

1.6 0.0171t 0.495t 0  

1.8 0.0209ii 0.451ii 

Wilson, 1.0 0.00187t 0.302t 

/3 = 6.00 1.2 0.0215t 0.552t 

1.4 0.0325t 0.575t 

1.6 0.0374t 0.547t 

1.8 0.02252  0.46 0+3  

Free field 0.6 0.01259 0.628 

0.8 0.0770 0.701 

1.0 0.170 0.733 

1.2 0.00543 0.457 

1.4 0.00384 0.372 

Table 7.1: Fit parameters for f(r) against r/a. 
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value of the decay parameter ii does appear to have a maximum around 

P  = 1.0. 

While p = 1.0 is the expected optimal value for free-field, once we turn 

on the interactions the spectrum of the Dirac operator will shift, and so we 

would expect that the optimal value would shift as well. All 3 ensembles 

do show a maximum turning point for v as p is varied. For Lflscher-Weisz 

/3 = 8.00, the optimum value of p seems to sit at 1.4, while for Lüscher-Weisz 

/3 8.45, and Wilson /3 6.00, the optimum value sits somewhere between 

1.2 and 1.4. 

At the optimal values, there is only a small difference in the decay pa-

rameter. For the two Lüscher-Weisz ensembles, the /3 = 8.45 set shows at 

most a 5% increase over the /3 = 8.00 set. From this we can conclude that ii 

is fairly independent of the lattice spacing, and hence our localization radius 

f(r) will collapse to a delta function in the continuum limit. Similarly when 

the /3 = 8.45 set is compared to the Wilson numbers the effect is at most 5%. 

Thus with an appropriate choice of p, the localization properties of the Dirac 

operator have very little dependence on the underlying gauge field. This is 

perhaps not surprising. The source of the non-locality is the fermion opera-

tor: it couples sites together at arbitrary distances. The gauge field merely 

determines the strength of these interactions. Further, the difference between 

the two gauge actions is only at the 0(a2 ) level and so should (hopefully) be 

small. 
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7.2 Condition number 

The time taken to invert the Dirac operator is related to the ratio of the 

largest and smallest eigenvalues of the operator. This is known as the con-

dition number K of the Dirac matrix. While the exact number of iterations 

required for an inversion will depend on the whole spectrum of the operator, 

the condition number is still a good measure of relative inversion time since 

we would expect in general that the number of iterations required to increase 

the accuracy of a matrix solve would grow proportional to the square root of 

the condition number [66]. 

For the overlap operator, most of the time during the inversion is spent 

in the inner kernel of the nested conjugate gradient applying the sgn oper-

ator. This is equivalent to an inversion of (y5D L) ) 2  (see Section 3.3), so it 

is the condition number of this matrix that will to a great extent determine 

the computational cost of our propagator inversions. However as mentioned 

earlier, the spectrum of 75D,, has a few discrete low lying eigenvalues, fol-

lowed by a dense continuum. As such we project out some quantity of these 

near-zero modes and deal with them explicitly. While this is done primarily 

to ensure the accuracy of the rational approximation, it also has the com-

putational benefit of lowering the resulting matrix's condition number and 

thus speeding up the inversion. 

The mean of the condition number k and the standard deviation s(ic) 

for ('-y5D) 2  on each of the three ensembles considered in this section are 

shown in Table 7.2. We again look at the p dependence. We show the values 

without eigenvalue projections, and also after projection of the 16 lowest 

lying eigenvalues. 
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Without projection With Projection 

Gauge action p R s(ic)  s(i) 

Lüscher-Weisz, 1.0 2.356 x 1010  1.664 x 1011  37615 13542 

8.00 1.2 1.319 x 108  7.148 x 108  10914 5907 

1.4 4.000 x 107  1.893 x 108  6845 3888 

1.6 9.400 x 107  5.711 x 108  5529 3303 

1.8 5.209 x 108  2.331 x 109  5379 3309 

Lüscher-Weisz, 1.0 1.643 x 106  1.079 X 10 1415 88 

8.45 1.2 1.728 x 106  1.095 x 107  650 39 

1.4 2.507 x 104  1.064 x 10 463 27 

1.6 4.417 x 104  1.317 x 105  416 28 

1.8 1.799 x 104  6.078 x 104  444 28 

Wilson, 1.0 5.200 x 106  2.617 x 10 3865 677 

6.00 1.2 5.851 x 108  4.118 x 109  1496 300 

1.4 1.665 x 107  8.933 x 107  1115 218 

1.6 1.120 x 107  7.077 x 107  1105 278 

1.8 1.114 x 106  3.801 x 106  1250 261 

Table 7.2: Mean and standard deviations for n of ('y5D)2, with and without 

projection. 
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In all cases we see that the eigenvalue projection has a drastic effect on 

the condition number. In some cases it drops both (it) and s(k) by four 

to five orders of magnitude (see Figure 7.5). The mean obviously drops 

because we are removing the lowest eigenvalues. We also expect s(k) to drop 

even more rapidly than ic as we approach the eigenvalue continuum since 

in addition to the overall lowering of the condition number, the remaining 

eigenvalues become bunched closer and closer together and so the variation 

per configuration will become smaller and smaller. 

If we now compare the 0 = 8.00, p = 1.4 projected result with the corre-

sponding 0 = 8.45 result (Figure 7.6), we see that for the /3 = 8.45 set we 

have clearly projected out all of the discrete near-zero modes as we have a 

low condition number, and more importantly very little variation from con-

figuration to configuration. For the /3 = 8.00 set, we have a matrix which 

has a condition number an order of magnitude higher, and which still has 

some variation. This is a result of the stronger value of the coupling, which 

leads to a coarser lattice. It is known from analysis of the full spectrum of 

(75D) that the number of near zero modes increases as the lattice spacing 

increases. The continuum also becomes less dense with increasing lattice 

spacing [65]. Thus for larger physical volumes, we end up with an increas-

ingly poorly conditioned matrix. To help ameliorate this, when we come to 

perform the full propagator inversions we project more eigenvalues for the 

coarser lattice. In practice, projecting out the lowest 64 eigenvalues ensures 

we reach the continuum region and lowers the solver iteration counts to a 

tolerable level. However as this region is also wider we still end up a system 

which is poorly conditioned in comparison to the finer lattice. 
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Figure 7.5: Condition number of ('y5D)2  on Lüscher-Weisz with /3 = 8.00, 

p = 1.4. 
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Figure 7.6: Condition number of ('y5D)2  with eigenvalue projection, on 

Lflscher-Weisz with /3 = 8.45 and /3 = 8.00, p = 1.4. 
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Figure 7.7: Condition number of (75D)2  with eigenvalue projection, on 

Lüscher-Weisz with /3 = 8.45 and Wilson with /3 = 8.00, p = 1.4. 

If we now make a similar comparison between the /3 = 8.45 ensemble, and 

the Wilson ensemble we see a similar (if less pronounced) effect. In Figure 

7.7 we show the condition number of the projected operators. We see that on 

the Wilson ensemble we have a greater number of low lying eigenvalues (as 

evidenced by the greater variation from configuration to configuration), and 

a condition number which is 2 to 3 times higher. As the volumes in these 

two cases are the same, the extra low lying modes must be a result of the 

larger lattice artifacts present in the Wilson gauge action. Thus while the 

Lüscher-Weisz action has little advantage over the Wilson action in terms of 

the localization of the overlap operator, it can offer significant gains in terms 

of inversion times due to a better conditioned fermion matrix. 

Lastly, we are now in a position to use the p dependence of the locality 

and the condition number in order to determine an optimal value of p for 
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the two Lüscher-Weisz ensembles used in this thesis. In Figures 7.8 and 

7.9 we plot condition number against locality for both ensembles. Clearly 

we are looking for the best combination of large locality and small condition 

number. Hence the optimal value should lie in the top left of the plots. On 

both sets it's clear that p = 1.4 is the best compromise and hence we use 

this value in our overlap operator. 
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Chapter 8 

Results 

In this section we present the main results of the lattice simulation. After 

measurements of the masses of some low lying states, we compute lattice 

renormalization constants. We then look at matrix elements to determine 

decay constants and low moments of nucleon structure functions. 

The simulations are run at five quark masses and extrapolated to the 

chiral limit. A modest attempt is made to test the scaling of these results by 

performing the calculations at two lattice spacings. We use two ensembles 

of 16 x 32 Lflscher-Weisz gauge configurations. Measurements are made on 

0(50) configurations for /1 = 8.45. For = 8.00 we have 0(40) configurations 

for 2-pt functions and 0(30) configurations for 3-pt functions . The scale is 

set by using the Sommer parameter r0  [67], which gives a lattice spacing of 

a = 0.136 fm for the 3 = 8.00 set, and a = 0.095 fm for /3 = 8.45 [68]. The 

five quark masses correspond to ai 	= 0.01, 0.015, 0.02, 0.035, 0.05 for 

/3 = 8.45. We use ap = 0.015, 0.02, 0.03, 0.05, 0.07 for /3 = 8.00. In both 

cases p = 1.4. 
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8.1 Mass spectrum 

One of the main tasks of lattice QCD is to measure the hadron mass spec-

trum. Agreement with experimentally measured values would provide further 

evidence that QCD correctly describes the strong interactions. Recent results 

in this regard can be found in [69, 70]. While it would be preferable to have 

exact agreement with the experimental values, deviations from experiment 

give some indication of the errors introduced into the simulation from the 

various approximations that are made (i.e. quenching, finite volume, discrete 

lattice, and heavier than physical quark masses). The effect of all but the 

first of these approximations can be accounted for by making extrapolations 

to respectively the infinite volume, continuum, and chiral limits. However 

the problem of quenching remains as it will shift the spectrum of the theory. 

As we are suppressing virtual quark loops, the error will obviously increase 

as we go to lighter quark mass. Thus the error from quenching will show up 

in the chiral extrapolations. 

The mass scaling of QCD Green's functions close to the chiral limit is 

described well by Chiral perturbation theory (Xpt)  [37, 38]. It describes the 

form of the mass scaling of the hadron spectrum with respect to the quark 

masses by making expansions in light meson loops around the chiral limit. 

These expansions contain both analytic and non-analytic terms, with the 

lowest order non-analytic terms proportional to M and Mlog(M-). The 

equivalent Quenched chiral perturbation expansions [39, 40] contain addi-

tional, lower order non-analytic terms proportional to M and V,  log(M). 

These terms then describe the divergence of the quenched spectrum from 

QCD as we approach the chiral limit. As we have an action with good chiral 
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properties, and are able to go to relatively light quark masses, we may begin 

to see the effects of these quenched chiral artifacts show up. 

In what follows we show measurements of the mass of the pion, rho, 

and the nucleon. We also look for evidence of non-analytic terms in the 

chiral extrapolations by attempting to fit to functional forms predicted by 

Quenched Xpt. 

8.1.1 m 

The pion mass is calculated from the (P(t)P(0)) pseudoscalar correlator. To 

improve the overlap with the pion we Jacobi smear (see Section 4.3.1) at 

source using N = 50 and K, = 0.21. We do not smear at sink as we find 

Ensemble amq  am,- m1jMe17 ] 

/3 = 8.45 0.028 0.213t 442t 

0.042 0.254 +4  528it 

0.056 0.291t 604t 

0.098 0.3881 8061 

0.140 0.4711 9781 

/3 = 8.00 0.042 0.2741 3981 

0.056 0.315t 457t 

0.084 0.384t 557t 

0.140 0.4981 7231 

0.196 0.5951 863t 

Table 8.1: Fitted pion masses. 
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better signals for point sinks. The effective mass is then found by fitting to 

an effective cosh as described in Section 4.1. The effective mass plots used 

to help determine the fit ranges are shown in Figures 8.1, 8.2. The measured 

masses are shown in Table 8.1, where in the final column we convert the 

masses to physical units using the lattice spacings given in the introduction 

to this section. The errors are estimated using the bootstrap method. 

If we now form chiral extrapolations, from the axial Ward identity (6.10) 

we expect the pion mass to vanish in the chiral limit and at first order 

M 2  cx mq. If we make a linear extrapolation in the quark mass this seems to 

fit the data very well (Figures 8.3, 84). Both fits pass through zero within 

errors at arnq  = 0, with (a'm)2  = —0.0017t, —0.0012t 16 	for the 8.45 and 

8.00 sets respectively. 

Quenched chiral perturbation theory (Qxpt) predicts [71] the following 

expansion for rn, 

= Km(1 - [1og(Kmq /A) + 1]) + O(M), 	(8.1) 

where the chiral scale factor AX  = 47f = 1169MeV. If we fit our data using 

the fit function 

rn 2 = Amq  + Bmq  log(mq ) + Crriq2, 	 (8.2) 

then we can extract a value for the chiral log parameter S. The results of the 

Ensemble A B C S 

8.45 

= 8.00 

0.67ii 

1.25i 13 	i-0.151 

—0.23ii 3.28ii 

1.60t 

0.19it 

o.iot 

Table 8.2: Pion mass fits using extrapolation from Qpt. 

115 



121 

0 056 

I ____ __ ______ __ 
I _______________ 

I 

0 
5 	 10 	 15 

Figure 8.1: Pion effective mass plot for 3 = 8.45. 
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Figure 8.2: Pion effective mass plot for 0 = 8.00. 
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Figure 8.3: Linear chiral extrapolation of (am,)' for = 8.45. 
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Figure 8.4: Linear chiral extrapolation of (am,)' for = 8.00. 
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Figure 8.5: Ratio of (am)2/amq  for 	8.45. 
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Figure 8.6: Ratio of (am-)2/amq  for /3 8.00. 
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fits are shown in Table 8.2. While the error bars are quite large, especially 

in the 8.45 set, the central values seem reasonably consistent with previous 

Clover [72], Fixed-point [73], and Domain wall [74] measurements at similar 

masses and lattice volumes. 

By dividing out the linear behaviour and plotting 	we can look 
aMq 

for the onset of chiral logs. From Figures 8.5, 8.6, we see that the deviation 

from linear behaviour begins to happen around a pion mass of around 400-500 

MeV. While it would be tempting to declare this the radius of applicability 

for quenched chiral perturbation theory, recent measurements have shown 

that while logs may appear at this scale, 5 and hence Qpt do not become 

stable until m7, < 300MeV [75]. 

It should also be noted that in forming the chiral extrapolation to search 

for chiral logs, we are fitting 5 points with a 3 parameter fit function. As 

the dominant behaviour is linear, any slight variation from linearity would 

be picked up by virtually any small order polynomial fit function. In fact 

examining Figure 8.5, a constant fit (corresponding to no chiral logs) would 

fit through all the points, within error bars. The same is almost true for 

Figure 8.6. So while these plots are at least consistent with Quenched Xpt, a 

more thorough analysis with more masses is need to properly constrain the 

fit and prove that these apparent deviations from linearity are due to chiral 

logs. 

8.1.2 m 

We measure the mass of the p from the vector meson correlator Wi  (t) V' (0)). 

In order to increase our statistics we sum the correlators over i = 1, 2, 3. We 
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Figure 8.7: Linear chiral extrapolation of m,, for / = 8.00. 
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Figure 8.8: Linear chiral extrapolation of rn for = 8.45. 
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Figure 8.9: Chiral extrapolations of m for 3 = 8.00 using both linear and 

pt fits. 
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Figure 8.10: Chiral extrapolations of m1  for 3 8.45 using both linear and 
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Figure 8.11: Continuum extrapolation of m. 

Ensemble amq  am m[MeV] 

= 8.45 0.028 0.458ii 40 951ii 

0.042 0.465ii1 
31 

-22  

0.056 0.481ii 3  27 
-18  

0.098 0.539it ii0iii 

0.140 0.5 98+7  1242ii 14  

= 8.00 0.042 0.647ii  48 939t 

0.056 0.661 32  ii 959ii 

0.084 0.693i15 	i 22 1006ii 

0.140 0.756t 1097it3 13  

0.196 0.819ii 1188ii °  

Table 8.3: Fitted rho masses. 
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Ensemble Fit A B C am m[MeV] 

/9 	8.45 Linear 0.405jj - 1.371k  0.405jt 841+31 
  —31 

XPU 
 A1

±

+GS 
59 — 0.14 +34  

_38 1.60+54  Ac1+54 0.42 —8 874+ 113 _ 101 

/9 = 8.00 Linear 0.598ji - 1.1312  O.598 39 868t 26 

XP
4- 0 ifl+ll 

'--8 -44 — 0.04 +36 1.18 +59 n 	n+li Q'71 +160 
01 -'--102 

Table 8.4: Rho mass chiral extrapolation fit parameters. 

again find that the best signal is obtained from smeared sources and point 

sinks. Results of the fits to the correlators are shown in Table 8.3. 

To form the chiral extrapolation we first attempt a linear fit' of the form 

IM
P  =A+Crnq. 	 (8.3) 

The results are plotted in Figures 8.7, 8.8. Again in both cases a linear 

extrapolation seems to fit the data very well. 

The suggested fit function to for the vector meson from Qpt is given by 

[76] 

mp =A+B/7h+Cmq +... 	 (8.4) 

The fits using this function are shown against the linear fits in Figures 

8.9, 8.10. The results of both fits are shown in Table 8.4. In both plots, the 

fits agree at all points within the mass range considered. The Xpt fit gives 

much larger errors and the coefficient of the non-analytic term is zero within 

errors in all cases. This coefficient is expected to be around —46 [76]. We 

therefore conclude that for the p in the mass range considered there are no 

effects of chiral logs present. 

'As we see no deviation from linearity, extrapolations in mq  and m' are equivalent. 
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The scaling of m1, with respect to the lattice spacing is shown in Figure 

8.11. With only two lattice spacings, a linear fit is not very useful. The plot 

does however show that as expected there is not a large amount of scaling. 

The values seems a little high although we do have rather large error bars. 

8.1.3 mN 

We compute the nucleon mass using the non-relativistic nucleon (4.25). Smeared 

sources and point sinks again give the best signals, although even in this case 

large fluctuations begin to set in for both data sets at low quark mass. This 

increases the difficulty in making stable fits. The extracted masses are given 

in Table 8.5. 

Ensemble arriq  arnN rnN[MeV] 

/3 	8.45 0.028 0.605+ 11  1257t 

0.042 0.639ii12  1327ii 

0.056 0.684t 1421t 

0.098 0.795 17  ii 0  1651t 

0.140 0.901t 1871ii 

/3 	8.00 0.042 0.870t 1262ii 

0.056 0.899ii 304 +33  1 	-26 

0.084 0.962i 1396t 

0.140 1.080it 1567ii 

0.196 1.199ii 0  1740 +15 

Table 8.5: Fitted Nucleon masses. 
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Figure 8.12: Linear chiral extrapolation of MN  for /3 = 8.00. 
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Figure 8.13: Linear chiral extrapolation of TflN for /3 = 8.45. 
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Figure 8.14: Chiral extrapolations of MN  for /3 8.00 using both linear and 

pt fits. 
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Figure 8.15: Chiral extrapolations of TI1N for /3 = 8.45 using both linear and 

Xpt fits. 
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Figure 8.16: Continuum extrapolation of MN- 

Ensemble Fit A B C aMN inN [MeV] 

8.45 Linear 0.533j 15 	i -  2.64ji0 0.533 107 +31 1 	-27 

XPt 0.490 -1-72  0.32 2.08 0.490 017 6  1 	-87 

8.00 Linear 0.781 - 2.13ji 0.781t +41 133 1 	-33 

Xpt 0.770 +81  
-81 

nfl7+45 
-40 

'.flO+54 
62 0.770 +85 

_69 1117+ 123  
-100 

Table 8.6: Nucleon mass chiral extrapolation fit parameters. 

We again attempt chiral extrapolations with both linear and quenched 

Xpt fits of the same form as that for the rho. The linear fits are shown in 

Figures 8.12, 8.13. We superimpose these with the chiral fits in Figures 8.14, 

8.14. The results for the fit parameters are shown in Table 8.6. 

We see similar behaviour to that of the p. The data is very linear, and so 

the Xpt fits follow the linear fits in the mass range studied with larger errors 

(as they have an extra degree of freedom to constrain). The coefficients of 
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the non-analytic term are again zero within errors, and in fact both are of 

the wrong sign. Thus we do not see any effects of quenched singularities. 

The scaling with respect to the lattice spacing is shown in Figure 8.16. As 

was the case with the p we observe no significant scaling violations. Again 

the value seems to be too high, this time by around 0(10%). Note these 

discrepancies are primarily due to the quenched approximation which is not 

self consistent. While the full QCD spectrum should be independent of how 

the scale is set, the quenched mass spectrum shifts depending on which pa-

rameter is used to fix the scale'. These systematic errors are usually of the 

order seen here. If for example we used m to set the scale then we would get 

much closer agreement with experiment for MN,  but other quantities would 

shift. 

8.2 Renormalization constants 

In order to compare our results with continuum physics, any matrix elements 

we measure must be renormalized. The renormalization constants can be cal-

culated either perturbatively or non-perturbatively. Here we give results of 

non-perturbative determinations of the axial and vector current renormaliza-

tion constants, using the methods described in Section 6.2. The remaining 

matrix elements considered will be renormalized using perturbative values. 

These are not calculated here, but for completeness we show the results ob-

tained. As these values are calculated at different scales, in order to make 

comparisons of matrix elements measured on different lattice ensembles we 

2See for example [77] 
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must scale these numbers using the renormalization group equations. This 

is carried out and we give the final numbers used in this thesis. 

8.2.1 ZA 

The renormalization constant ZA of the local axial current A11  can be deter-

mined non-perturbatively from the axial ward identity as described in Section 

6.2.2. 

ZA can be extracted on the lattice from a ratio of two point correlation 

functions 

ZA (t) 
= 2mq(P(t)P(0)'i 	

(8.5) 
(34 A4 (t)P(0)) 

where P is the pseudoscalar. We again use Jacobi smeared sources and point 

sinks. 

After very short times, ZA(t) becomes constant and provides a very clean 

signal. An example is shown in Figure 8.17. The fitted values for both 

ensembles are given in Table 8.8. Linear extrapolations to the chiral limit 

are shown in Figures 8.18,8.19. The values of ZA in the chiral limit are given 

in Table 8.7. 

Ensemble ZA 

= 8.45 1.412t 

= 8.00 1.5851 

Table 8.7: ZA extrapolated to the chiral limit. 
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Figure 8.17: ZA(t) for a,ei = 0.035 and / = 8.45. 

Ensemble arnq  ZA(rnq ) 

= 8.45 0.028 1.404 +3 
 

0.042 1.39 9+2  

0.056 1.3971 

0.098 1.383 

0.140 1.3711 

= 8.00 0.042 1.5671 

0.056 1.5621 

0.084 1.5521 

0.140 1.5301 

0.196 1.506t 

Table 8.8: Fitted values of ZA. 
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Figure 8.18: Chiral extrapolation of ZA for 	8.45. 
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Figure 8.19: Chiral extrapolation of ZA for /3 = 8.00. 
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8.2.2 Z 

The renormalization constant ZV  of the local vector current V. is calculated 

from the ratio of 3-pt to 2-pt nucleon correlation functions. Following Section 

6.2.1 we determine Zv by 

N(t)V4  ()N(0)) 
Z 1() = 

	

	 (8.6) 
(AT(t)1V(0)) 

where V4NS  is the flavour non-singlet vector current (6.6). We Jacobi smear 

at both source and sink. For 0 < T < t we can measure the plateau. An 

example is shown in Figure 8.22. In both sets, fluctuations begin to set in for 

low quark masses. This does not present much of a problem for the = 8.45 

set, however due to the reduced statistics, the measurement of plateaus on 

the 	= 8.00 becomes increasingly difficult for lower quark masses. 

The fitted values are shown in Table 8.9. We perform linear extrapolations 

and compare the values with those of Z (see Figures 8.20, 8.21). The results 

of the chiral extrapolations for both Zn and Zv are shown in Table 8.10. 

While ZA depends linearly on the quark mass, we expect that Zv  should be 

independent of the quark mass, and in both cases the chiral extrapolation of 

ZV  is reasonably flat. Chiral symmetry predicts that ZA  = Zv  in the chiral 

limit. There is very good agreement in the 3 = 8.45 case. While the errors 

on the 3 = 8.00 set do overlap, there seems to some discrepancy between the 

two values, however this is almost certainly due to the difficulty in extracting 

stable fits for Zv on this set. 
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Ensemble a'rnq  Z (mq ) 

= 8.45 0.028 27 
-26  

0.042 1.401it27 

0.056 1.412t 

0.098 1.412ii 

0.140 1.412t 

= 8.00 0.042 1.553 +78  

0.056 1.548i 41  

0.084 1.548iiJ 

0.140 1.536t14 

0.196 1.538t 

Table 8.9: Fitted values of Zv. 

Ensemble Z 

8.45 1.412ii 1.422i 

8.00 1.549ii 1.585ii 

Table 8.10: Z, ZA extrapolated to the chiral limit. 
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Figure 8.20: Chiral extrapolation of ZA and Zv for = 8.45. 
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Figure 8.21: Chiral extrapolation of ZA and Zv for /3 8.00. 
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Figure 8.22: Z() for ap = 0.035 and 	8.45. 

8.2.3 Perturbative constants 

While the axial and vector renormalization constants allow us to measure 

both the meson decay constants as well as the moment a0, we still need 

renormalization constants for moments 02,b,  a1, and h1. The local tensor 

renormalization constant ZT  needed for h1  is given in [62]. At present there 

is no calculation for Zai , however this is equivalent to the renormalization 

constant of Z 2a  by exactly the same reasoning that leads to ZA  Zv. Hence 

we use Z2a  to renormalize a1. This factor along with Zv2b  can be found in 

[63]. In all cases, the renormalization constants are calculated at the scale 

1/a. In order to compare measurements made at two different scales 

we must transform these coefficients using (6.37). As Wilson coefficients and 

many experimental measurements are made at i = 2 GeV, we choose this as 

our scale. Note this resealing is not required for ZA and Zv as they are derived 
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Ensemble 0 Z0(1/a) /Z51(1/a) /Z31 (2CeV) Zo(2GeV) 

8.45 T 1.439 0.918ii 0.9201 1.4421 

V2,a 1.411 0.7291 0.7321 1.417t 18 

V2,b 1.401 0.7291 0.7321 1.407-18 

- 8.00 T 1.611 0.9431 0.9201 1.6151 

V2,a 1.412 0.7721 0.7321 18 1.344 —18 

V2,b 1.402 0.7721 0.7321 1.329-18 

Table 8.11: Perturbative renormalization constants along with scaling pa-

rameters. 

from conserved quantities which are independent of the renormalization scale. 

The factors AZ6 1  needed to scale the operators can be found in [49, 78]. As 

these factors are calculated in the continuum, the scaling for V2,a  and V2,b is 

the same. The values of all relevant perturbative renormalization constants 

are summarized in Table 8.11. 

8.3 Decay constants 

8.3.1 

The expression for calculating f7, is given in Section 4.4. As this quantity is 

derived from a matrix element of the local axial current it must be renor-

malized using ZA. While we could fit the bare f, and then multiply this by 

the ZA  found in the previous section, these expressions have common factors 

which cancel. We therefore can combine our expressions for ZA (8.5) and 
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Figure 8.23: Chiral extrapolation of f, for 0 = 8.00. 
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Figure 8.24: Chiral extrapolation of f1. for /3 = 8.45. 
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Figure 8.25: Continuum extrapolation of f. 

Ensemble arriq  af,  f71-[MeV] 

8.45 0.028 0.0515ii 107t 

0.042 0.0548t 114t 

0.056 0-0580+17 120t 

0.098 0.0662it 137i 

0.140 0.0730ii18  152it 

= 8.00 0.042 0.0788 +43  114ii 

0.056 0.0799ii 116ii 

0.084 0.0831ii 121ii 

0.140 0.0906ii 131ii 

0.196 0.0974ii 141ii 

Table 8.12: Fitted values of renormalized f7-. 
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the bare f7, (4.29) and fit the renormalized decay constant in one fit. The 

renormalized f is then given by 

- 2rnq APP  (8.7) 
M7r V'-PP 

The fitted values are given in Table 8.12. In quenched QCD, to one loop 

we do not expect to see any chiral logs in f7, [79], so we form linear chiral 

extrapolations. These are shown in Figures 8.23, 8.24. The values of f in 

the chiral limit are given in Table 8.12. The continuum scaling is shown in 

Figure 8.25. The scaling with the lattice spacing is again relatively small as 

the numbers differ by only a few MeV. The 	8.00 number seems a little 

high, however the fi = 8.45 number agrees with experiment within errors and 

the scaling seems to be heading towards the experimental value. 

Ensemble af,  f7.[MeV] 

8.45 0.0469ii 97it 

= 8.00 0.0746t16  108i 

Table 8.13: f extrapolated to the chiral limit. 

8.3.2 f 

While the p meson decays strongly to 2 pions, it also can decay leptonically. 

As the quenched p meson is stable and the strong decay does not occur, we 

can measure this leptonic decay on the lattice. The leptonic decay constant 

f p  is measured from vector correlators using 

LS / r 	s Il 

I - ( \ /_.k'VkVk 	 (88) fbare - N T SS 
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Figure 8.26: Chiral extrapolation of the bare value of i/f for 0 = 8.00. 
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Figure 8.27: Chiral extrapolation of the bare value of i/fr  for /3 = 8.45. 
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Figure 8.28: Continuum extrapolation of 1/fr. 

Ensemble amq  af 

13 = 8.45 0.028 18 0.208+-19  

0.042 0.200t 

0.056 0.196 +6  

0.098 0.179 +4  

0.140 0.166 +4  

/3 	8.00 0.042 0.190i 12 
 

0.056 0.1871k  

0.084 0.178tg 

0.140 0.171i 

0.196 0.160ii 

Table 8.14: Fitted values of bare 18r . 
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jare must be renormalized using the Zv  calculated earlier. The fitted val- 

ues of l/f, 	are shown in Table 8.14, while the chiral extrapolations are 

shown in Figures 8.26, 8.27. The chiral extrapolated values along with the 

renormalized results are shown in Table 8.15. The renormalized results are 

compared with the experimental value [80, 81] in Figure 8.28. There seems 

to be good agreement with the experimental result and very little scaling, 

although there is a large error from Zv in the /3 = 8.00 measurement. If 

the value of ZA  was used instead, this would raise this number up to around 

0.310, which while larger would still indicate small scaling which is towards 

the experimental value. 

Ensemble 1/f z V 

/3 	8.45 

/3 	8.00 

0.215i1!1  

0.195t 31  

1.412t 

1.549ii 

0.304it 

0.302ii 

Table 8.15: i/f extrapolated to the chiral limit. 

8.4 Low moments of nucleon structure func-

tions 

In this section we give results for moments of nucleon structure functions. 

We first look at V2,b which is related to the first moment of the unpolarized 

structure function F1 . We measure the polarized matrix elements a0  and a1  

which correspond to the zeroth and first moments of the polarized structure 

function g1 . We also give results for the tensor structure function h1. The 
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physical interpretation of these quantities was discussed in Section 2.3. 

8.4.1 	V2,b 

We calculate the matrix element V2,b given in Table 5.1. This describes the 

momentum distribution of the constituent partons and is related to the first 

moment of F1. As we cannot measure the disconnected contributions, we 

restrict ourselves to the non-singlet operator. We extract the value of V2,b 

by fitting to a plateau between the nucleon source and sink of the ratio of 

three point to two point correlation functions. As we go to progressively 

lighter quark masses, fluctuations begin to set in which disrupt the plateaus 

and make fitting difficult. This is especially problematic for the 	= 8.45 

set. We would expect coarser lattices to give noisier results, but the effect is 

compounded here due to the lower level of statistics on this set. As a result 

of these fluctuations we see large errors on the fits for the two lightest masses 

in each case. The fitted values of the bare matrix elements are give given in 

Table 8.16. The expected form of the chiral extrapolation from Qxpt [82] is 

given by 	

V2,b = Am + B(1 - Cm log 	), 7r 	
A2 
	 (8.9) 

however as we have seen no real evidence of deviations due to chiral logs 

up to this point, and since we are unable to accurately extract the values 

at the lightest quark masses, we restrict ourselves to linear extrapolations 

in the quark mass. The fits are shown in Figures 8.29, 8.30. The data 

seems to be reasonably well described by a linear fit, and in both cases there 

seems to be very little dependence on the quark mass. As mentioned the 

two lightest masses have very large errors and so contribute very little to the 
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Figure 8.29: Chiral extrapolation of bare V2,b for = 8.00. 
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Figure 8.30: Chiral extrapolation of bare V2,b for = 8.45. 
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Figure 8.31: Continuum extrapolation of v 	at 2 GeV. 

Ensemble amq  bare 

/3 	8.45 0.028 0.166 +76 

0.042 0.164ii28  

0.056 21 
-15  

0.098 0.147 +7 
 

0.140 0.145 +4 
 

/3 	8.00 0.042 1 17 0.167it107  

0.056 0.158+1 16 
63 

0.084 0.128i 35 
 

0.140 0.117ii' 

0.196 0.1191tg 

Table 8.16: Fitted values of bare V2,b. 
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fit. The values extrapolated to the chiral limit along with the renormalized 

matrix elements in the MS scheme at 2 GeV are shown in Table 8.17. The 

renormalized results are shown against the experimental value [83] in Figure 

8.31. 

The results from lattice simulations for v2  have always been too large by 

over 50%. This discrepancy is found whether the data is quenched or dy-

namical [84]. Recent results using quenched domain wall fermions [85], and 

dynamical Wilson ferinions [49] both exhibit this problem. The results here 

do not show nearly as large a discrepancy, however the improvement when 

compared to experiment may be attributable to the fact that we are using 

perturbative renormalization constants. If we compare the perturbative ZA 

and ZV  values to the non-perturbative values calculated here, the perturba-

tive values are lower. For ZA, the 3 = 8.45 perturbative number is 1.303 

compared to the non-perturbative 1.411, which is an increase of around 10%. 

For the coarser /3 = 8.00 set, the value is lower by around 15 - 20%. If we 

had similar scalings for v2, then both values would sit well above the experi-

mental value. The median values would still be lower than the values quoted 

in [85, 49], although admittedly with larger errors. Thus while these results 

are encouraging, until non-perturbative Zs are calculated then we cannot be 

certain that we have greater agreement with experiment. 

Ensemble V 2,b Z'' 8 (2 GeV) 
V2,b 

v 8  (2 GeV) 

/3 = 8.45 

= 8.00 

0.i55ii 

0.126ii 

1.407ii 

1.329ii 

0.218ii 28 

0.167i 47
-38 

Table 8.17: V2,b extrapolated to the chiral limit. 
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8.4.2 g 

The matrix element a0  corresponding to the lowest moment of the polarized 

structure function g1  can be used to determine the axial charge of the nucleon 

g, which describes the /3 decay of the nucleon as discussed in Section 2.3.1. 

The measured operator is given in Table 5.1. 

For the /3 = 8.45 set we get quite a nice signal. As expected, the /3 = 8.00 

set is much noisier, and the signal here is particularly poor. The plateaus are 

much less stable and so the fits come with greater errors. The bare results 

are shown in Table 8.18. The chiral extrapolations of the bare numbers are 

shown in Figures 8.32, 8.33. As with V2,b  we see very little mass dependence 

and linear behaviour. That said, in both cases there is a small amount of 

upward curvature. The origin of this is seen in the form of the plateaus, 

which seem to round out and bulge as we go lighter (see Figure 8.34). This 

leads to a slightly larger plateau fit. 

As 9A  is renormalized using ZA, we can use the non-perturbative value 

and avoid the ambiguity we had with V2,b. We give the renormalized values 

in Table 8.19. These results are plotted along with the experimental result 

[86] 9A = 1.26. in Figure 8.35. In both cases we find very good agreement 

with experiment. Historically lattice simulations have underestimated this 

value by 10 - 20%, regardless of whether the measurements are made on 

quenched or dynamical data [87]. It should be noted that most of these 

simulations were carried out with actions which explicitly break chiral sym-

metry. Measurements using domain wall fermions which have approximate 

chiral symmetry find much closer agreement [88]. Thus as we are using a 

formulation which preserves chiral symmetry, and hence have an exact rela- 
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Figure 8.32: Chiral extrapolation of bare 9A  at / = 8.00. 
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Figure 8.33: Chiral extrapolation of bare 9A  for 13 = 8.45. 
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Figure 8.34: Bare 9A  at 	8.45 and arnq  = 0.042. 
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Ensemble amq 2re 
9 

= 8.45 0.028 29 
-31  

0.042 0.93ii 

0.056 0.90t 

0.098 0.88t 

0.140 0.90ii 

8.00 0.042 0.96i 52 
 

0.056 0.93i 18 
 

0.084 0.83i 33 
 

0.140 0.77ii 3  

0.196 0.8 0+7  

Table 8.18: Fitted values of bare g. 

Ensemble bare z A 
ran 

= 8.45 

/9 = 8.00 

0.89+12 1.412t 

0.84ii 

-3 

1.585 

-10 
 12 

44 1.33ii32  

Table 8.19: Renormalized 9A  extrapolated to the chiral limit. 
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tion to extract ZA, it is perhaps not surprising that this quantity should give 

good agreement. 

8.4.3 a1  

The first moment of the polarized structure function g1  describes the helicity 

distribution of the nucleon. We measure the zero momentum operator al,b 

given in Table 5.1. 

The signal here is the worst of the three point functions measured. The 

8.45 plateaus were still relatively good, but the 0 = 8.00 set was very 

hard to fit due to a nasty kink in the plateau which grew as the quark mass got 

lighter. This reduced the possible fit range and so made the errors even larger 

than they would have been through normal fluctuations. The fitted values of 

the bare matrix element are given in Table 8.21. The chiral extrapolations 

are shown in Figures 8.36, 8.37. In both cases we see as previously that there 

is very little mass dependence. 

Due to chiral symmetry we can renormalize the bare matrix element using 

Zv2a  The renormalized results are given in Table 8.20. The results are 

plotted against the experimental value of 0.196 14  [84]. The results are very 

similar to those of V2,b, with the = 8.45 number sitting slightly above the 

physical value, while the fi = 8.00 result sits much lower. Again the Z's must 

be treated with caution, especially in the coarser set, however a naive ratio 

Of V2,b and al,b (which should be independent of the Zs) seems to give good 

agreement with the experimental value (Figure 8.39). 
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Figure 8.36: Chiral extrapolation of bare al,b at 0 = 8.00. 
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Figure 8.37: Chiral extrapolation of bare al,b  for /3 = 8.45. 
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Figure 8.39: Naive ratio of v2 /a1  in the chiral limit. 
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Ensemble bare a1 z'5'(2 GeV) 
V2,a 

a(2 GeV) 

8.45 

= 8.00 

0.181ii 

ii 5  0.133 11  

1.417ii 

1.344t 

0.26ii 

0.18t 

Table 8.20: Renormalized a1  extrapolated to the chiral limit. 

Ensemble a'rnq  aIaT 

8.45 0.028 0.214ii 121 

0.042 0.193ii33  

0.056 0.184 +31  

0.098 0.179t 0  

0.140 0.182t 

= 8.00 0.042 0.143itg 

0.056 154 0.145+-124  

0.084 79 
-54  

0.140 25 
-21  

0.196 0.150i 14  

Table 8.21: Fitted values of bare al,b. 
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8.4.4 h1  

Here we determine the lowest moment of the transverse structure function 

h1  measurable in Drell-Yan processes. This moment defines a tensor charge 

of the nucleon analogous to the axial charge gA  The signal is reasonably 

good for the 0 = 8.45 set, but the i = 8.00 results again show kinks in the 

plateau. We give the fitted values in Table 8.23. The chiral extrapolations 

are shown in Figures 8.40, 8.41. As with other structure functions we see 

very little mass dependence and nothing to suggest deviation from linear 

behaviour. The matrix element is renormalized using the perturbative ZT. 

In order to non-perturbatively improve the values we follow the method of 

[89] and scale the value by the ratio of non-perturbative and perturbative 

axial renormalization constants Zf%P/ZT.  This should help correct for the 

underestimation in the perturbative expansion. Note that this method is 

not applicable to the previous measured quantities. To non-perturbatively 

improve v2  and a1  in a similar fashion we would need a non-perturbative value 

of an operator with a derivative term. The improved ZT is shown in Table 

8.11. The renormalized values are given in Table 8.22 and shown in Figure 

8.42. An experimental value for this quantity is not yet known, however the 

values calculated here are consistent with other determinations [90, 85]. 

Ensemble h1 1 Z(2 GeV) h(2 GeV) 

/3 = 8.45 

/3 	8.00 

0.96t 

0.79 +41  

1.442t 

1.6+2  15 

1.38ii 13 

1.28ii 

Table 8.22: Renormalized h1  extrapolated to the chiral limit. 
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Figure 8.40: Chiral extrapolation of bare hl,b at /3 = 8.00. 
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Figure 8.42: Continuum extrapolation of h1. 

Ensemble amq bare 

8.45 0.028 31. 
 1.02i-44 

0.042 31 
-15  

0.056 0.97+ 15 

0.098 0.90t 

0.140 0.89t 

/3 = 8.00 0.042 47 
-64  

0.056 62 
-39  

0.084 0.79 +32  

0.140 0.77ii' 

0.196 0.77 +4  

Table 8.23: Fitted values of bare hl,b. 
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Chapter 9 

Summary 

In this thesis we presented the results of a lattice calculation using overlap 

fermions. This fermion formulation preserves an on-shell chiral symmetry 

and so is well suited for simulating quark masses close to the chiral limit. 

The simulation was carried out in the quenched approximation using the 

Lüscher-Weisz gauge action. 

After some introductory theory and lattice methodology we first inves-

tigated the locality of the overlap Dirac operator on improved gauge fields. 

We found that the non-locality of the operator fell off exponentially, and 

was fairly insensitive to the underlying gauge action. We did however find 

that the operator has a much larger condition number on unimproved Wil-

son gauge fields than on Lüscher-Weisz, and hence the use of improved gauge 

actions can provide significant savings in inversion time. Also we found that 

while any physical quantities we measure should not depend on the auxiliary 

mass parameter p, both the locality and condition number of the Dirac op-

erator are dependent on this parameter. Thus we can vary p in order to find 
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an optimal value. 

The main results section included a selection of measurements of light 

hadron phenomenology including some low lying hadron masses, non-perturb-

ative renormalization constants, meson decay constants, and low moments 

of nucleon structure functions. The measurements were made on 5 masses 

in order to extrapolate to the chiral limit. In order to investigate the scaling 

of the results with the lattice size, we repeated the calculation on a second, 

coarser lattice, although on a smaller number of configurations. 

We first measured the masses of the nucleon and the pseudoscalar and 

vector mesons. One of the advantages of the overlap formalism is it allows 

the simulation of light quark masses, and here our lightest quarks correspond 

to pions of around 400MeV. At this level one might have hoped to have seen 

some indications that we were entering the chiral regime by seeing the effects 

of chiral logs in the extrapolations. In the pion extrapolation, a small amount 

of non-linearity could be detected, and a value for the chiral log parameter 6 

was extracted. The signal was not very strong however, and the non-linearity 

was very close to zero. A linear extrapolation was found to go through zero 

as predicted by the axial Ward identity. Thus extrapolations in a'rn.,r 2  and 

amq  were equivalent. 

The nucleon and rho mass were extracted and both were found to lie about 

10% above their physical values, but within the range of uncertainty caused 

by the quenched approximation. The mass extrapolations were found to be 

linear and fit functions from Qxpt were unstable, with no apparent curvature 

in the mass range considered. There was also very little scaling violation 

between the two data sets with both values for each quantity agreeing within 
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errors. 

The axial and vector current renormalization constants were calculated 

and found to agree as expected from chiral symmetry. These values were 

used to provide results for the pseudoscalar and vector decay constants. For 

the 0 = 8.45 set we find good agreement with measured values although the 

= 8.00 number seems a little high. 

The nucleon matrix element v2, which is related to the momentum dis-

tribution of constituent partons was extracted. It was found to lie above the 

physical value, but the discrepancy was not as large as in previous measure-

ments. However the Z used was perturbative and hence may be underes-

timated. As we would expect perturbation theory to be worse at stronger 

coupling, this effect would be increased for the coarser lattice and is the most 

likely explanation for the lower value of the 0 = 8.00 measurement. 

The axial charge of the nucleon was measured and gave very good agree-

ment with experiment. This is a measurement that is generally lower than 

physical values, however as it is extracted from an axial current, chiral sym-

metry breaking would seem the most likely reason for previous underesti-

mates. The tensor charge was also measured and found to agree with previ-

ous determinations. 

The matrix element a1  which determines the helicity distribution of the 

nucleon's constituent partons was measured. The results showed qualita-

tively the same behaviour as for the vector operator matrix element v2, to 

which a1  is related to through a chiral transformation. Its value sits slightly 

above the physical value, with similar differences in the measurements at the 

two lattice spacing, most likely due to the renormalization constants. The 
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ratio of both measurements which should be independent of the renormal-

ization showed reasonably good agreement with experiment. 

In all cases, the improved operators used to measure matrix elements gave 

as expected very little mass dependence. None of the chiral extrapolations 

gave any indications of chiral logs, and all were well described by linear 

fits. The coarser lattice results were much noisier than expected. Although 

there was a smaller number of configurations, this would only contribute an 

approximately 20 - 30% increase in error bars. However due to increased 

fluctuations and rougher plateaus, the errors became much larger. Due to 

the more poorly conditioned system, the inversions also took much longer 

than on the finer lattice ensemble at equivalent quark masses. Despite the 

larger than expected errors on the coarser lattice results, we did not see any 

significant scaling violations due to the lattice spacing. 

With regards to further progress, no tests of any volume dependence have 

been shown here. While it is unlikely that these effects would be large, it 

should still be checked by running on a larger volume. Also a third lattice 

spacing would allow a continuum limit to be taken. An increase in statistics 

would also help reduce the error bars. Work is progressing on all of these 

issues and results should be published soon [91, 92]. 

A further concern is the reliability of perturbative renormalization for 

overlap fermions. The renormalization constants in the overlap formulation 

are very large compared to other formulations. The reason for this is not 

really understood. However as the values are far away from 1, it is unclear 

how well perturbation theory will work. Non-perturbative renormalization 

would clearly be preferable, and progress is being made in this direction, but 
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it seems that reliable values are harder to extract than in other formulations. 

Finally, dynamical simulations are clearly preferred, and with the new 

QCDOC 10-Terafiop machine [93] now operational, dynamical configurations 

using chirally symmetric actions are now being generated. 
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Chapter 10 

Appendix 

10.1 Gamma matrix conventions 

In Minkowski (M) space we have the metric g,  which has the signature 

(1, —1, —1, —1). The Minkowski space 'y matrices satisfy 

{7(M)7(M)} = 	 (10.1) 

In Euclidean (E) space, we have the flat metric 	with signature (1, 1, 1, 1). 

Thus the Euclidean 'y matrices satisfy 

r (E 	(E)1 
l'Y fL

) 
 ,'y 	 (10.2) 

The two sets of matrices can then be related by 

(E) 	(M) 	(E) - (M) 
= 	 7 	= 7o 	 (10.3) 

Here we use a chiral basis 

(\i(E) 

cr 	

1 	,
7

i+1j 	 ) 	7(E)
4 	

01 - I 	I 	(10.4) 
— 	0 	 I 0) 

(10.5) 
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I 0 (E) - 	(E) (E) (E) (E) 
75 7i 72 73 74 	= 

0 —I 

The discrete charge conjugation matrix C is given by 

C- 74 
(E)  72(E) = 

with the ui  given by 

(0 1 
ai=I L 

k\ 1 0) 

(E)  is defined as 

( 
 0  21 I, 

i 0) 

(  i 
93 = 

0 —1 
(10.6) 

(10.7) 

(10.8) 
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