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Docteur ès sciences, mention physique

par

Jean-François Hideki Perrier

de

Sainte-Croix (VD) et Orges (VD)
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Abstract

We study the large-scale structure of the Universe using the analytical technique of the

consistency relations which enable to compute the squeezed bispectrum of correlation

functions using symmetries of the system at hand. We apply it to the matter overden-

sity correlations of matter and galaxies and study their consequences for bias models,

non-perturbative models of structure formation and modified gravity. As a step towards

more practical theoretical predictions, we compute the squeezed limit of the bispectrum

of galaxy number counts, the quantity that galaxy surveys measure. We also compute the

contamination to the non-Gaussian parameter fNL that relativistic effects produce. These

are crucial if the goal of reaching a constraint on f loc
NL of order unity is to be attained. This

goal is of particular importance as any detection of local primordial non-Gaussianity would

eliminate all single-field models of inflation. Finally, we compute the squeezed bispectrum

of the cross-correlation between cosmic microwave background temperature and two po-

larization modes. The measurement of such correlation might be useful for distinguishing

between a primordial gravitational waves background and polarization from galactic dust.
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Résumé en français

La cosmologie cherche à décrire les lois physique qui gouvernent l’évolution de l’Univers. Le modèle

dominant, appelé ΛCDM, est basé sur les solutions symétriques des équations d’Einstein [1]. Celles-ci

relient la géométrie de l’Univers à son contenu. En particulier, l’expansion de l’Univers dépend de la

matière qui s’y trouve. Grâce aux observations, on conclut qu’il faut de la matière ordinaire comme

les étoiles mais aussi de la matière noire (CDM), non lumineuse, mais qui possède une masse, et de

l’énergie sombre, appelée aussi constante cosmologique (Λ). Un dernier ingrédient est probablement

nécessaire pour des raisons théoriques telles que le problème de l’horizon ou pour expliquer la très faible

courbure de l’Univers [2, 3, 4, 5]: une période d’expansion exponentielle extrêmement rapide et brève

juste après le Big Bang (le début de l’Univers) appelée inflation. Dans les modèles les plus simples

d’inflation, l’énergie qui la provoque est celle d’un champ scalaire, l’inflaton. Des perturbations dans

la densité de d’énergie du champ sont transmises à la métrique qui décrit la géométrie de l’Univers.

Ces perturbations vont ensuite être transmises à la matière présente dans l’Univers primordial qui

est constitué principalement d’un plasma d’hydrogène et de photons. Avec l’expansion de l’Univers,

la matière refroidit et l’attraction gravitationnelle va agréger la matière autour des sur-densités. La

pression va ensuite former des étoiles, puis des galaxies et constituer ce que l’on appelle la grande

structure de l’Univers (LSS). C’est la distribution des galaxies que les télescopes mesurent et l’on

pense que ce sera la principale source d’information cosmologiques dans la décennie à venir.

La plupart des informations que l’ont est capable d’obtenir de l’Univers proviennent d’objets

lumineux telles que les galaxies et le fond diffus cosmologique (CMB), une lumière émise environ

400’000 ans après le Big Bang. Ces deux observables constituent les principales sources d’informations

disponibles pour les cosmologistes. Le processus de création de l’Univers ne s’étant produit qu’une

seule fois, on ne peut espérer décrire la distribution exacte des galaxies ou des perturbations dans

l’énergie des photons du CMB, mais uniquement leur propriétés statistiques. Celles-ci sont décrites

par leurs fonctions de corrélations telles que le spectre et le bispectre (transformées de Fourier de

la fonction de corrélation à deux et trois points respectivement). Ce dernier est particulièrement

important pour distinguer et décrire les possibles mécanismes d’inflation. En effet, une propriété

appelée non-gaussianité, le fait que les perturbations ne suivent pas une distribution gaussienne,

permet de séparer les nombreux modèles d’inflation. Toute détection de non-gaussianité éliminerait la

possibilité que l’inflation soit provoquée par un seul champ scalaire standard [6, 7]. Si les perturbations

sont gaussiennes, alors le bispectre est nul. Dans cette thèse qui est basée sur cinq articles, dont quatre

ont déjà été publiés [8, 9, 10, 11], je m’intéresse à une limite particulière du bispectre, appelée limite

serrée, où l’un des trois vecteurs d’onde est très court (k1 � k2, k3). Cette limite a l’avantage qu’elle

peut être calculée relativement simplement grâce à un changement de coordonnées appliqué au spectre

de l’observable en question. On obtient alors une relation entre la limite serrée du bispectre et le

spectre appelée relation de cohérence. Celle-ci a le grand avantage que les modes courts k2, k3 peuvent

être non-linéaires, c’est-à-dire dans le régime où les conditions initiales ne sont plus simplement reliées

à l’observable par une relation linéaire. Du point de vue théorique, faire des prédictions dans ce régime

est très difficile et l’on a rarement d’autre choix de s’en remettre à des simulations numériques qui

sont très lentes. L’autre possibilité est d’utiliser la théorie des perturbations au deuxième ordre,

mais cela n’étant que peut le domaine de validité et peut dans certains cas amener à des expression

extrêmement compliquées. Les relations de cohérence on déjà été appliquées avec succès aux fonctions
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de corrélation des perturbation de l’inflation [7, 12] et du CMB [6, 12, 13, 14, 15, 16, 17]. Dans cette

thèse, je présente de nouvelles relations ainsi qu’une étude de leur conséquences sur certains modèles

perturbatifs et non-perturbatifs décrivant la structure à grande échelle.

Dans le chapitre 2, je présente une généralisation des relations de cohérence existantes pour la

surdensité de matière noire où j’inclus l’effet d’un champ gravitationnel jusqu’à une deuxième dérivée

sur les modes courts. Le bispectre est alors non-nul à temps égaux. Comme exemple, j’ai vérifié que

le modèle du halo décrivant la distribution de matière dans le régime non-linéaire reproduisait bien la

relation jusqu’à des échelles d’environ k ' O(1) h/Mpc.

Dans le chapitre 3, j’explore les conséquences de la dérivation par les équations du fluide des

relations de cohérence. Je montre que l’expansion eulérienne locale du biais (la relation entre la

distribution des galaxies et de la matière noire) satisfait les relations de cohérence mais que les

symétries des équations impliquent que la relation doit être non-locale. Comme première étape vers

une prédiction théorique qui puisse être comparée directement aux observations, je dérive aussi une

relation de cohérence en incluant les distorsions du décalage vers le rouge. Finalement, je montre

comment les relations de cohérence peuvent être violées dans le cas d’un exemple de gravité modifiée

où la cinquième force est présente ou non selon l’environnement de la galaxie.

Ensuite, je calcule la limitée serrée du bispectre des quantités directement mesurées par les études

de galaxies: les comptes du nombre de galaxies, c’est-à-dire la densité de galaxies par angle solide

et décalage vers le rouge. Prédire des relations pour les quantités mesurées est très important pour

exploiter au mieux les données à venir car l’on entre dans une ère de précision pour la cosmologie. La

relation entre les quantités pratiques du point de vue théoriques définies dans l’espace de Fourier et

les quantités observées devient importante. En particulier, je montre que si l’on analyse näıvement les

données, on pourrait faussement conclure à la mesure d’une non-gaussianité locale f loc
NL d’ordre unité.

Le chapitre 5 est dédié à l’étude plus profonde des non-gaussianités dans les mesures des comptes

de nombre de galaxies. Je calcule différent types de non-gaussianités en terme du bispectre des

nombres de galaxies et projette différents termes issu de la relation de cohérence ainsi que de calculs

au deuxième ordre [18, 19] afin d’obtenir une estimation de la non-gaussianité effective. Je trouve

que pour atteindre une précision d’ordre unité sur les non-gaussianités primordiales, il est nécessaire

de prendre ces effets en compte et de les soustraire. Ultimement, il apparâıt qu’il faudra évaluer tous

les termes de l’expression au deuxième ordre et de la soustraire aux mesures du bispectre car des

annulations peuvent se produire.

Finalement, dans le chapitre 6, je dérive une relation de cohérence pour le bispectre entre un mode

de la température du CMB et deux modes de polarization. Bien qu’il est probablement difficile de

mesurer une telle corrélation, elle permet en principe de distinguer la polarisation primordiale de la

polarisation émise par la poussière interstellaire.

Pour conclure, j’ai développé des méthodes analytiques permettant de mieux comprendre et ex-

ploiter les futures mesures de polarisation du CMB ainsi que de la structure à grande échelle de

l’Univers. La pertinence de ces résultats dépendra cependant très probablement de la compréhension

des processus astrophysiques qui viendront contaminer les mesures. Du côté théorique, encore beau-

coup de problèmes sont présent comme par exemple comment intégrer la théorie du biais dans la de-

scription des comptes de nombre de galaxies. Il faudra probablement s’en remettre à des simulations

si l’on désire exploiter les données dans le régime totalement non-linéaire. Bien que certaines simula-
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tions relativistes existent, il reste encore du chemin à parcourir. D’autre types d’observables comme

les ondes gravitationnelles ou le fond diffus infrarouge (CIB) fourniront également plus d’information

sur l’Univers. La question sera ensuite : L’Univers nous donnera-t-il assez d’information pour que

l’on puisse le comprendre?
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Units, Symbols and Conventions

Unless state otherwise, we work in “natural” in units such that c = ~ = kB = 1. We use the following

notation:

• t cosmic time

• a scale factor

• ~x comoving coordinates

• τ =
∫

1/a(τ) conformal time

• ′ = d/dτ

• ˙ = d/dt

• H = ȧ/a Hubble parameter

• H = a′/a = aH comoving Hubble parameter

• ~k conformal wavenumber

• z redshift

• n̂ unit vector, direction in the sky

• r comoving distance

• rT tensor-to-scalar ratio

• G Newton’s constant

• φ inflaton field

• ζ primordial curvature perturbation

• Pζ primordial curvature power spectrum

• Φ gravitational potential

• Ωm = 8πGρ̄
3H2 matter density parameter

• ρ matter density

• ρ̄ mean matter density

• ~v peculiar velocity

• v velocity potential

• D linear growth factor
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• δk, δ(k) matter overdensity contrast in Fourier space

• δg,k, δg(k) galaxy overdensity contrast in Fourier space

• ~s = ~x+ 1
H(~v · x̂)x̂ redshift space coordinate

• δs matter overdensity contrast in redshift space

• b1, b2 Eulerian bias coefficients

• ∆g(n̂, z) galaxy number counts per solid angle per redshift

• δL, δ(1) linear matter overdensity constrast

• PL(k) linear matter power spectrum

• P dimensionless power spectrum

• B bispectrum in Fourier space

• ∆`(k, τ) CLASSgal transfer function

• a`m the angular modes

• CX` Y the angular cross power spectrum of the quantities X and Y .

• Bm1m2m3
`1`2`3

angular bispectrum

• b`1`2`3 reduced angular bispectrum

• Θ the temperature anisotropy

We use the perturbed FLRW metric in the Poisson gauge which takes the form

ds2 = a2(τ)
[
− (1 + 2Φ)dτ2 + (1− 2Ψ)d~x2

]
, (0.0.1)

for scalar perturbations. Note that Ψ and Φ are switched with respect the convention of [20, 21] and

the CLASSgal code [22]. We choose our Fourier transform as

f(~x) =
1

(2π)3

∫
d3kf(~k)e−i

~k·~x. (0.0.2)

The inverse is therefore

f(~k) = f~k =

∫
d3rf(~r)ei

~k·~x. (0.0.3)

We define the velocity potential v by

~v = ∇v, (0.0.4)
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such that

~v(τ,~k) = −i~kv(τ,~k). (0.0.5)

In our Fourier convention, the power spectrum of a quantity X is

〈X(τ1,~k1)X(τ2,~k2)〉 = (2π)3δ
(3)
D (~k1 + ~k2)PX(k1, τ1, τ2), (0.0.6)

where we assumed the field to be statistically isotropic and homogeneous. The dimensionless (possibly

unequal times) power spectrum is

PX(k, τ1, τ2) ≡ (2π)3

4π
k3PX(k, τ1, τ2). (0.0.7)

The initial conditions are described by the power spectrum of curvature perturbation after inflation

which is parametrized as

Pζ(k) =
A

k3

(
k

kp

)ns−1

, (0.0.8)

where kp is a pivot scale. This is the choice of [20] and what is used in the NG shape templates (see

appendix B). The dimensionless curvature power spectrum is parametrized as

Pζ(k) = As

(
k

kp

)ns−1

, (0.0.9)

where As and ns are the usual values quoted e.g. in the Planck papers and we have A = 2π2As '
4×10−8. This is the ” primordial Pk.dat” output from the CLASSgal code. The bispectrum is defined

in terms of Fourier modes by

〈X(τ1,~k1)X(τ2,~k2)X(τ3,~k3)〉 ≡ (2π)3δ
(3)
D (~k1 + ~k2 + ~k3)BX(k1, k2, k3, τ1, τ2, τ3) (0.0.10)

for a statistically isotropic and homogeneous field.
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Chapter 1

Introduction

Cosmology is the science of the Universe as a whole. It studies the origins and the evolution of the

Universe. In this introduction, we review the ΛCDM which is the main cosmological model which is

compatible with observations. In this model, the Universe is believed to start in an extremely dense

and hot state followed by a period of exponential expansion called inflation. During this period,

perturbations are generated in the fabric of space-time which are then imprinted in the matter content

of the Universe. These are seen as temperature anisotropy in the cosmic microwave background (CMB)

and as variations in the distribution of galaxies throughout the Universe which is called the large-scale

strucuture (LSS). We review how these perturbations are generated in the prevailing model of single-

field slow-roll inflation and introduce the notion of non-Gaussianity. We explain why it is a crucial

notion which can help understand the physics of inflation. A huge amount of data about the LSS is

expected from upcoming surveys. This drives the need for a better understanding of the large-scale

structure in the non-linear regime. It is in this optic that we introduce the notion of consistency

relations (CR), a technique which relates correlation functions of cosmological observables. The

subject of this thesis is the application of this technique to the LSS and the study of its consequences.

1.1 The ΛCDM model

One can trace the origins of modern cosmology to Einstein’s Theory of General Relavity (GR). General

Relativity describes gravity through the geometry of the Universe (represented by the metric gµν) and

the influence of the distribution of matter and energy in it. This is described at the fundamental level

by the Einstein’s equations [1]

Gµν = 8πGTµν − Λgµν (1.1.1)

where Gµν is the Einstein tensor made of second derivatives of the metric and Λ is the so-called

cosmological constant present as it is allowed by the symmetries. The content of the Universe is

described by the energy momentum tensor Tµν . In general, these equations are very difficult to solve.

However, Friedman [23], Lemâıtre [24], Robertson [25] and Walker [26] studied simple solutions of

these. In particular, one was interested in isotropic and homogenous solutions which could describe

the Universe on large scales. Indeed, one believes that the Universe should be self-similar under

1
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translations (homogeneity) and rotations around each point (isotropy) as there is no reason that

there should be any preferred location or direction. The ansatz of such a solution is the basis of

modern cosmology, known as the FLRW metric, and takes the simple form

gµνdx
µdxν = −dt2 + a(t)2γijdx

idxj . (1.1.2)

The coordinate t is called cosmic time and ~x is the comoving position. The spatial metric is γij and

accounts for possible curvature K. The energy-momentum tensor has to take the form

Tµν =

(
−ρg00 ~0
~0 Pgij

)
(1.1.3)

where ρ describes the density and P to the pressure of matter. This leads to the Friedman equations

[23]

ä

a
=− 4πG

3
(ρ+ 3P ) +

Λ

3
(1.1.4)

(
ȧ

a

)2

+
K

a2
=

8πG

3
ρ+

Λ

3
. (1.1.5)

where the curvature of the Universe is given by K. These equations govern the evolution of the scale

factor a which describes the expansion of the Universe as a function of its content. Since Hubble’s

discovery of the expansion of the Universe in 1929 [27] multiple observations, in particular of the

cosmic microwave background have allowed to determine the left-hand side of these equations. Four

main constituents are found to be necessary: baryonic matter, cold dark matter (CDM), radiation,

a cosmological constant Λ while the curvature K is found to be negligible. This model is called the

”ΛCDM” or ”concordance” model of cosmology.

While being extremely successful, this standard model of cosmology comes with three main puzzles

which are the focus of modern cosmology:

• dark matter

• dark energy

• inflation

Observations of supernovae of type Ia made in 1998 [28] led to the conclusion that the Universe is

undergoing an accelerated expansion which is compatible with a cosmological constant Λ also called

dark energy. Measurement of galaxy rotation curves [29] did not match the ones expected from

the visible mass. The most widely accepted explanation is that there exist a halo of matter which

interacts only gravitationally, called dark matter. A topic which we shall briefly consider in this thesis

is called Modified Gravity (MG). It consists in explaining the behaviour of matter in the Universe

by a modification of gravity at large distances instead of the presence of dark matter and / or dark
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energy. While gravity is very well tested on solar system scales, there is a possibility that it behaves

differently on galactic scales. The modification of gravity can generally be recast as a ”fifth force”

which modifies the trajectories of objects. We shall apply the consistency relations to a toy model of

MG where the fifth force is either present or not.

The third puzzle with the ΛCDM model stems basically from two conceptual problems. The hori-

zon problem: regions which were causally disconnected in the past have extremely similar properties;

and the flatness problem: it can be shown that a curved universe is unstable under evolution. The

observed level of curvature today would require an extreme fine tuning of the initial conditions. The

most elegant solution to these problems emerged in the 1980s and consists in a period of exponential

expansion of the Universe right after the Big Bang called inflation. It provides a unified way of solving

the issues mentioned above [2, 3, 4, 5] along with others, like monopoles [30] or domain walls [31, 32].

However, the exact mechanism through which this happens is yet unknown and dozens of models of

inflation have been proposed (for a review, see e.g. [33]).

Such a period of accelerated expansion ä > 0 of the Universe can be achieved if the constituents of

the Universe satisfies P > ρ/3 as seen from the Friedman equation (1.1.4) (we exclude the cosmological

constant for now). This can be achieved by a scalar field φ, called the inflaton, evolving in a potential

V (φ). The equations of motion are then

φ̈+ 3Hφ̇− ∇
2φ

a2
+ V ′(φ) = 0, (1.1.6)

where V ′(φ) = dV/dφ and a dot represents a derivative with respect to cosmic time t and gradients

are with respect to comoving coordinates. The energy momentum tensor has components

T00 = ρφ =
φ̇2

2
+ V (φ) +

(∇φ)2

2a2
(1.1.7)

Tii = Pφ =
φ̇2

2
− V (φ)− (∇φ)2

6a2
(1.1.8)

(1.1.9)

If the gradients are dominant, then Pφ = −ρφ/3 which cannot drive inflation. One then splits the

field in a homogenous part and a perturbation,

φ(t) = φ0(t) + δφ(~x, t), (1.1.10)

where φ0(t) is the classical part, the value of the field on the background and δφ(~x, t) the (Gaussian)

quantum fluctuations around it. As we neglect the space-dependent part, we see that if time derivatives

are small, V (φ0) � φ̇0
2
, we obtain an accelerated expansion Pφ ' −ρφ. This means that the field is

slowly rolling down the potential, hence the name single-field slow-roll inflation. During the slow roll,
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the Hubble parameter is almost constant H2 ' 8πG
3 V (φ0) and the scale factor grows exponentially

a(t) = aIe
H(t−tI), (1.1.11)

where the subscript I denotes the beginning of inflation. The level of constancy of the Hubble

parameter, or equivalently the smallness of the kinetic terms of the scalar field are characterised by

the slow-roll parameters:

ε = −Ḣ
H

=
1

16πG

(
V ′

V

)2

, η =
1

8πG

V ′′

V
=

1

3

V ′′

H2
, (1.1.12)

which need to be much smaller than unity. Different types of potentials which satisfy these conditions

give rise to different types of single-field slow-roll inflation.

1.2 Non-Gaussianities

Of course, the Universe is not homogenous and isotropic on small scales. Structures that we see

today are believed to be formed from perturbations in the early universe, ultimately generated during

inflation. In this section, we briefly review how these perturbations are generated and characterized.

In particular, we introduce the concept of non-Gaussianity (NG), which will be the focus of this work.

It is a crucial property of perturbations which allows to distinguish between different inflation models

in cosmological observables.

In addition to solving the problems mentionned in the previous section, the principal role of

inflation is to provide the ”seeds” for the perturbations in the initial plasma constituting the Universe

at early times. By Einstein’s equations, perturbations in the inflaton field generated during inflation

also induce metric perturbations. At the end of inflation, the inflaton has rolled down its potential and

oscillates where it decays into radiation. The metric perturbations are then transmitted to this early

universe plasma. Once the Universe has cooled down, and photons travel freely, these perturbations

are seen as anisotropies in the CMB temperature. The over- and under-densities in the plasma

eventually collapse to form stars and galaxies seen in the large-scale structure.

The perturbations have to be defined with respect to a homogeneous and isotropic reference

universe. However, general relativity has an internal redundancy in the form of coordinates trans-

formations from one frame to another. The mapping between the real, perturbed universe and the

reference one is therefore not unique. Quantities whose value is independent from choice of gauge are

called gauge-invariant variables. The variable of choice to describe initial perturbations is curvature

perturbation on slices of uniform energy density which takes the following form in a generic gauge

ζ ≡ Ψ +Hδρ
ρ′
, (1.2.1)

whereH is the comoving Hubble parameter and a prime denotes a derivative with respect to conformal

time. Throughout this work, where we shall deal only with scalar perturbations and use the perturbed
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FLRW metric in the Poisson gauge which takes the form

ds2 = a2(τ)
[
− (1 + 2Φ)dτ2 + (1− 2Ψ)d~x2

]
, (1.2.2)

where Φ and Ψ have the advantage to be equal to the gauge invariant Bardeen’s potentials.

Using the perturbed Einstein and Klein-Gordon equations describing the dynamics of the inflaton

and its interactions with the metric, one can compute the resulting curvature perturbation. One

finds that on sub-Hubble scales, perturbations oscillates whereas they become time-independent on

super-Hubble scales. At the end of inflation, all perturbations, which have a physical wavelength

a/k, are super-Hubble (a/k � 1/H) because H is roughly constant while the scale factor increases

exponentially.

As we only have one realisation of the physical processes which have created the Universe, we can

only hope to describe the statistical properties of fluctuations. This is done through their correlation

functions in Fourier space. In the case of single-field slow-roll inflation, non-linearities are small and

the resulting curvature perturbation is Gaussian distributed. All higher order correlation functions

are then determined by the two-point function, the power spectrum Pζ(k) :

〈ζ~kζ~k′〉 = (2π)3δ
(3)
D (~k + ~k′)Pζ(k) = (2π)3δ

(3)
D (~k + ~k′)

k3

2π2
Pζ(k), (1.2.3)

where we have also defined the dimensionless power spectrum1 Pζ(k).

Solving the equations of motion on super-Hubble scales, one finds that the power spectrum of the

curvature perturbation is given by

Pζ(k) =
1

2M2
Pε

(
H

2π

)2( k

aH

)ns−1

≡ A

2π2

(
k

kp

)ns−1

. (1.2.4)

where we have introduced the spectral index

ns − 1 =
d lnPζ
d ln k

= 2η − 6ε, (1.2.5)

the amplitude of the power spectrum A and kp is a pivot scale. Because the k-dependence is weak,

proportional to the slow-roll parameters, this is referred to as a scale invariant power spectrum.

Observations [34] have confirmed this predictions found ns ' 0.96.

The scale-invariance of the perturbations can be understood in terms of the symmetries present

during the inflationary phase [14]. Inflation corresponds to quasi de Sitter phase. A de Sitter universe

has symmetries among which dilation symmetry ~x → λ~x which impose the two-point correlation

function to be scale invariant Pζ(k) = A
k3 , see also section 1.4. Inflation is however only a quasi de

Sitter phase as e.g. H has a time dependence proportional to the slow-roll parameters. Because

this symmetry is only approximate, the two-point function can have a slight scale-dependence also

1Conventions are summarized in appendix A.
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proportional to the slow-roll parameters as it is the case in (1.2.4).

Along with scalar perturbations, inflation is also notably believed to produce tensor perturbations

or (primordial) gravitational waves (GW). While these have yet to be detected, direct observation

of GW generated by astrophysical sources has been made in September 2015 [35] which leaves hope

for future detection. One expects to observe them in the form of a stochastic background in the

CMB polarization through patterns called B-modes. The amount of GW is usually defined by the

tensor-to-scalar ratio

rT ≡
1

100AT
4
25As

, (1.2.6)

where the tensor power spectrum is parametrized as PT (k) = AT

(
k
kp

)nT
. Current bounds from the

CMB are rT . 0.12 at 95% CL from the Planck collaboration [34]. In this work, we shall derive

a consistency relation for the squeezed bispectrum of the cross-correlation of a long mode of the

temperature perturbation and two polarization modes.

In single field inflation, the perturbations are referred to as adiabatic as any perturbation is equally

shared among all quantities Hδt = HδX/Ẋ for all quantities X. This is the case for the pressure and

density δρ
ρ̇ = δP

Ṗ
which implies that P = P (ρ), hence the name adiabatic. Instead, if more than one

field is involved, perturbations are called isocurvature perturbations. This is the case in the curvaton

scenario [36, 37, 38]. One assumes the existence of a second field σ (the curvaton) which has negligible

contribution to the energy density during inflation. In addition, one assumes that its interactions with

the inflaton are small and that it evolves in a potential V (σ). Well after the end of inflation, the field

oscillates in the potential and decays into radiation. The pressure of the mix of the curvaton and the

radiation is not adiabatic. At that moment, the curvature perturbation on large scales is generated

as it obeys the equation of motion

ζ ′ = − H
ρ+ P

δPnad (1.2.7)

where Pnad is the non-adiabatic pressure. This will have consequences in terms of the properties of

the non-Gaussianities of the perturbations as it will be made clear in section 1.4.

Detecting a possible primordial source of NG in the cosmological perturbations is one of the main

targets of current and future experiments measuring the properties of the CMB anisotropies and of

the large-scale structure. Indeed, measuring a certain level of NG in the three-point (bispectrum) and

four-point (trispectrum) correlator of the perturbations opens up a unique window into the physics

of inflation. This is because the different mechanisms giving rise to the inflationary perturbations

correspond to specific shapes of bispectra. These include models with higher-derivative interactions,

multi-field models such as the curvaton mechanism explained above (see section 1.4), and models

with non-standard vacuum produce large NG. Any detection of NG would eliminate a whole class of

inflation models, namely all standard slow-roll single-field models [6, 7].

The bispectra they produce have a specific dependence F on the momenta k1, k2, k3, called the
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shape, which depends on the model.

〈ζ~k1
ζ~k2
ζ~k3
〉 = (2π)3δD(~k1 + ~k2 + ~k3)fNLF (k1, k2, k3). (1.2.8)

One usually considers three basic shapes which cover most models, possibly through combinations,

called local, equilateral and orthogonal defined in appendix B.

The simplest model of NG is called local. In this model, one expresses the curvature perturbation

ζ in terms of a Gaussian field ζg with a quadratic term2

ζ(~x) = ζg(~x) +
3

5
f locNL

(
ζg(~x)2 − 〈ζg(~x)〉

)
. (1.2.9)

The resulting field is non-Gaussian and leads in particular to a non-vanishing bispectrum, the Fourier

transform of the three-point function

〈ζ~k1
ζ~k2
ζ~k3
〉 = (2π)3δD(~k1 + ~k2 + ~k3)

5

6
f localNL

×
(
Pζg(k1)Pζg(k2) + Pζg(k2)Pζg(k3) + Pζg(k1)Pζg(k3)

)
. (1.2.10)

The final set of data gathered by the Planck satellite collaboration, released in 2015 [39], provides,

so far, the most stringent constraint on the level of non-Gaussianities. They are

f locNL = 0.8± 5.0, (1.2.11)

feqNL = −4± 43, (1.2.12)

forthNL = −26± 21, (1.2.13)

when combining both temperature anisotropy and polarization data. These constraints are believed

to be the best ones physically obtainable from CMB.

Improvement is instead expected to come from large-scale structure data through the statistical

properties of the clustering of galaxies. This has been identified to be a powerful probe of NG in the

local case thanks to the fact that NG introduces a scale-dependent bias between the power spectra of

halos and dark matter [40, 41]. Indeed, in the local model, the gravitational potential is sourced by a

quadratic term Φ ∝ f loc
NLΦ2

G. Expressing the matter power spectrum in perturbation theory valid on

large scales, this gives rise to the following scaling P ∝ (Φδ(1))(δ(1)δ(1)) ∝ (1/k2)(δ(1)δ(1))(δ(1)δ(1)).

This is an extra factor of 1/k2 compared to the Gaussian contribution to the power spectrum. It is

2the 3
5

factor comes from historical reasons as this model was first written in terms of the gravitational potential

during matter domination related to ζ by Φp = 3
5
ζ which corresponds to the gravitational potential super-horizon scales

in matter domination.
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also believed that measurement of the bispectrum of galaxies will improve constraints on all types of

NG.

Other observables like the 21 cm emission of hydrogen will potentially allow to probe higher

redshifts than LSS [42, 43] and possibly put better contraints on NG, but foreground emission from

galactic and extragalactic sources are still very challenging. Let me also mention that CMB spectral

distortions, which will be probed by the PIXIE experiment [44] for example, can also constraint

primordial NG [45, 46].

We shall however concentrate on the LSS in this work, for which the hope is to reach sensitivity

of order fNL ∼ O(1). The modelling of LSS poses however many challenges before the excepted

constraints on primordial NG can be reached. These are presented in the next section.

1.3 The large-scale structure of the Universe

Since the discovery of the cosmic microwave background in 1964 [47], most of cosmology was dedicated

to its study. The energy and the polarization of these photons provide us with information about

the physics of the early universe. Because perturbations in the temperature of the photons are

extremely small, of the order of 10−5, they are very suitable for a description by perturbation theory.

In particular, the perturbations in the CMB can be related linearly to the initial power spectrum

generated by inflation. As the CMB is defined on a sphere of constant redshift, one describes its

anisotropies through their angular power spectrum

C` =
2

π

∫
k2dkPζ(k)T (k)2jl(kr)

2 (1.3.1)

where the transfer function T depends on the physics taking place in the photon-baryon plasma,

r is the comoving distance to the CMB. The relative simplicity of the theoretical treatment of the

CMB together with the fact that it is a very ”clean” probe (in the sense that photons travel almost

unperturbed since their emission) explains why much of the early work has been focused on exploiting

the CMB to test predictions of the ΛCDM model.

However, observation of the large-scale structure is thought to be the next big source of cosmo-

logical data. Indeed, the CMB gives us information mostly3 about a fixed time in the past: the time

of emission of the last scattering surface, a two dimensional observable. In contrast, the large-scale

structure consists in the galaxies all around us and at different redshifts, up to z ' 3 depending

on the performance of the instruments. The LSS potentially contains more information as the num-

ber of modes at our disposal increases like the cube of the maximum k that we are able to exploit.

Many LSS surveys are on-going or planned in the coming decade such as BOSS [48], DES [49], LSST

[50, 51], Dark Energy Spectroscopic Instrument (DESI) [52], the Wide-Field InfraRed Survey Tele-

scope (WFIRST) [53], and Euclid [54, 55]. The trend to cover progressively a larger fraction of the

sky and deeper redshift range will continue in the future, providing an unprecedented amount of data.

This explains the need for a better understanding and description of the LSS. We believe that tools

3One also obtains some information about the matter density distribution between the last scattering through the

ISW-lensing effect and lensing.
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such as the consistency relations and studies presented in this thesis contributes to this objective.

Contrarily to the CMB, the LSS poses several challenges when one wants to connect the observ-

ables to the underlying fundamental physics. This complicates, limits or even prevents an analytical

description of the LSS. The main obstacles are the following:

• The gravitational interactions governing the matter distribution are non-linear and the matter

distribution is non-linear at late time and /or on small scales.

• One does not observe the matter distribution directly but only light-emitting objects such as

galaxies.

• The observed quantities are the redshift and the angular position of each galaxy, while the

models describing the matter distribution or inflation are best solved in Fourier-space.

A good approximation to structure formation is to treat matter one large-scales as a self-gravitating

fluid characterized by its overdensity contrast δ = (ρ(~x, τ)/ρ − 1) over the mean matter density ρ

and its velocity perturbations ~v evolving under gravity [56]. On scales small compared to the horizon

k � H, this can be accomplished by a Newtonian treatment. The fluid equations are the continuity,

Euler and Poisson equations, which read in conformal time τ :

∂δ(~x, τ)

∂τ
+ ~∇ · [(1 + δ(~x, τ))~v(~x, τ)] = 0, (1.3.2)

∂~v(~x, τ)

∂τ
+H(τ)~v(~x, τ) + [~v(~x, τ) · ~∇]~v(~x, τ) = −~∇Φ(~x, τ), (1.3.3)

∇2Φ(~x, τ) =
3

2
ΩmH2(τ)δ(~x, τ), (1.3.4)

where H the comoving Hubble radius, and Φ the Newtonian gravitational potential. Finally Ωm =

8πGρ̄a2/3H2 is the density parameter. Note that these equations assume the stress tensor of the dark

matter fluid to be negligible. This approximation corresponds to single coherent flow of the particles.

It breaks down on very small scales because of the presence of multiple streams, called shell-crossing,

which generate velocity dispersion.

These equations contain non-linear interactions which make them difficult to solve. There are

two general methods in making predictions from these equations: numerical and analytical methods.

Among the analytical approaches which we shall use in this thesis is the standard perturbation theory

(SPT) [56]. It consists on an expansion of the non linear solution δNL in powers of the linear one δ(1).

By increasing the number of terms in the expansion one hopes to increase the reach of the theory

to midly non-linear scales k ∼ 0.1 h/Mpc. This approach poses however some problems for different

types of universes as divergences can arise. Other perturbative approaches such as RPT [57], EFT [58]

or iPT [59] try to answer these problems with relative success. In any case, however, one cannot hope

to describe the fully non-linear regime with a perturbative treatment. Non-perturbative approaches

such as the halo model [60] may provide a good description of matter clustering on small scales but

have the disadvantage of not being derived from first principles.



10 1 – Introduction

For accurate predictions, one usually resorts to numerical simulations. They are however ex-

tremely computationally demanding, in particular when one desires to make parameter estimations

for upcoming surveys. This indeed requires to have hundreds of power spectra with various values

of the cosmological parameter, in which we include the non-Gaussian parameters which will mainly

interest us.

The bias problem stems from the fact that one does not observe the dark matter distribution

directly but only light-emitting objects like galaxies. The relation between the galaxy distribution

δg and the dark matter distribution δ is called the bias. On very large scales k/H ∼ 1, linear bias

δg = b1δm provides a good description. A simple bias model is the local Eulerian bias. It reads up to

second order

δg(τ, ~x) = b1δ(τ, ~x) + b2δ
2(τ, ~x). (1.3.5)

The particularity is that the galaxy distribution depends only on the matter density at the same

location. Because of the non-linear gravitational evolution, one expects that all the terms allowed by

the symmetries of the system are generated. One generally considers the non-local bias expansion

[61, 62], written symbolically as

δg(τ, ~x) = f (δ(τ, ~x), ∂ivj(τ, ~x), ∂i∂jΦ, ...) . (1.3.6)

where any rotational invariant term which is at least two derivatives in the gravitational potential is

allowed. We shall show how theses terms can be understood in terms of the symmetries of equations

(1.3.2)-(1.3.4). The idea is very simple: the terms appearing in the bias expansion need to transform

in the same way as δg under the symmetries.

Although some bias models provide a good description of the galaxy distribution, none can achieve

the level of agreement on all relevant scales as what has been achieved with the CMB.

There is a final complication when one wants to compare the predictions of theories with obser-

vations. One does not observe a time slice of the whole Universe but instead our (perturbed) past

light-cone. More precisely, galaxy surveys measure the directions n̂ of galaxies and their redshifts z.

This is in contrast with Fourier space where inflation models, structure formation, and bias models

are developed. Both the redshift and the angle are affected by the presence of matter perturbations

at the location of the galaxy and between the observer and the galaxy.

The first correction to include is the redshift space distortions (RSD). This implements the fact

that the peculiar velocity of the galaxy affects the perceived redshift. This was first derived by Kaiser

[63] in the linear regime and one obtains at linear order

δs(~k) =
[
1 + f(n̂ · k̂)2

]
δ(~k), (1.3.7)

where f = a
D

dD
da is the derivative of the linear growth factor D and n̂ is the radial unit vector pointing

to the center of the galaxy of interest.

A more complete treatment consists in using directly the quantity that galaxy surveys measure:
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the number of galaxies in a direction n̂ at redshift z within solid angle dΩ and redshift interval dz:

N(n̂, z)dΩ. The perturbations are then the galaxy number counts overdensity

∆g(n̂, z) ≡
N(n̂, z)− 〈N〉(z)

〈N〉(z)
(1.3.8)

where 〈〉 is the average over the angle at fixed redshift. Decomposing the angle n̂ in spherical harmonics

leads to a gauge invariant prediction for the linear (angular) power spectrum of galaxies which has been

computed in [20, 64, 65, 66]. This decomposition is also referred to as z`m-space. These corrections

are particularly important on the largest scales, where k starts to become of the same order as H.

This is of particular relevance as the increasing size of the LSS surveys gives us access to scales ever

closer to the horizon scale where k ∼ H.

Computing the bispectrum of galaxy number counts in perturbation theory is a much harder

task as it requires the handling of second-order expressions for the number counts which are very

cumbersome. Three groups [67, 68, 19] have been working on the subject in recent years and comparing

the expressions obtained from the different formalisms is already a colossal task.

This explains the need for better analytical descriptions of the large-scale structure. The next

section is dedicated to the introduction of the concept of consistency relations. They can be of great

use as they are analytical relations involving the non-linear power spectra thereby greatly extending

the amount of exploitable data. We shall present how this idea can be applied to the galaxy number

counts. This enables the computation of the so-called squeezed limit of the bispectrum using linear

expressions without having to involve the full second-order computation.

1.4 Consistency relations

The idea of consistency relation, that we shall apply to CMB polarization and the LSS, has three

main advantages:

• It potentially allows to exploit data in the non-linear regime, thereby extending the range of

usual perturbative approaches

• It can be used as a consistency check for perturbative computations or bias or structure models

such as the halo model, non-local bias and perturbative approaches

• If tested against observations, a violation could be a sign of modified gravity

Let me explain the idea in the case of the bispectrum of curvature perturbation. The bispectrum

consists in the expectation value for the correlation of three modes ζk1 , ζk2 , ζk3 . This can be written

symbolically as

〈ζk1ζk2ζk3〉 =

∫
P [ζk1 , ζk2 , ζk3 ]ζk1ζk2ζk3

=

∫
P [ζk1 ]P [ζk1 , ζk2 | ζk1 ]ζk1ζk2ζk3
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= 〈ζk1〈ζk2ζk3〉ζk1
〉 (1.4.1)

where the expectation value is written as the integral of all the values that the ζ’s can take times their

probability P . The second line expresses it as a conditional probability. The three-point function is

therefore a modulation of the two point function in presence of the third mode4 〈ζk2ζk3〉ζk1
. In general,

one it is very complicated to compute the effect of the mode ζk1 on the two-point function. However,

in the squeezed limit where k1 � k2 ' k3, it is simple. During inflation, the long mode ζL ≡ ζk1 exits

the horizon first and becomes constant in time. The fluctuations with short wavelength kS ≡ k2 = k3

therefore see a metric

ds2 = −dt2 + a(t)2e−2ζLd~x2. (1.4.2)

Because k1 → 0, ζL can be approximated to be constant in space and its presence is therefore

equivalent to a rescaling of the coordinates

~x→ e−ζL~x. (1.4.3)

Writing the real space transformation ζ(~x) → ζ(e−ζL~x) in terms of the Fourier transform tells how

the Fourier modes transform :

ζkS → e3ζLζeζLkS . (1.4.4)

Applying this transformation on the two-point function (1.2.3), (1.2.4) at linear order in ζL leads to

〈ζ~k′2ζ~k′3〉 = e6ζL(2π)3δ
(3)
D (eζL~k2 + eζL~k3)

A

(eζLk)3

(
eζLk

k∗

)ns−1

' 〈ζ~k2
ζ~k3
〉 (1 + (ns − 1)ζL) (1.4.5)

Finally, correlating this two point function with another ζL and taking the expectation value leads to

the squeezed bispectrum

lim
k1→0
〈ζk1ζk2ζk3〉 = 〈ζk1〈ζ~k′2ζ~k′3〉ζk1

〉

' (2π)3δ(3)(~k1 + ~k2 + ~k3)(ns − 1)Pζ(k1)Pζ(k2). (1.4.6)

This relation was first introduced in [7] and shown to be more general in [12]. It implies that all

single-field slow-roll models of inflation generate a negligible amount of local NG.

4I thank Jorge Noreña for helping me understand this point in this way.
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One now understands why in the curvaton mechanism, large NG can be produced: the pertur-

bations are generated long after Hubble crossing and the curvature perturbation is not constant on

large-scales in presence of non-adiabatic pressure. A long mode perturbation no longer acts as a

rescaling on the short modes as it is not frozen while the short modes of perturbations are being

generated.

The smallness of the 3-pt function can be understood as a consequence of the (approximate)

symmetries of the inflationary phase. A perfect de Sitter universe is invariant under spatial dilations

~x→ λ~x. The derivation above corresponds to λ = e−ζL . This imposes the 2-point function to be scale

invariant [69], ns − 1 = 0 and therefore the 3-pt function to be zero. In the real universe, inflation

ends and it is not a perfect de Sitter phase. The 2-pt function is slightly scale dependent parametrised

by ns − 1 which leads to the almost zero squeezed 3-pt function (1.4.6).

This method can also be applied to any higher order correlation functions, linking the squeezed

limit of an (N + 1)-point function to an N -point one. Consistency relations for primordial perturba-

tions have been extensively studied and generalized to include the long mode up to constant gradient

[7, 6, 12, 13, 14, 15, 16, 17] . This method can be applied for any observables for which we have

a way of computing the effect of a long mode on the two-point function. It has been succefully

applied to correlation functions involving actual observables like the CMB temperature anisotropy

[70, 71, 72, 73, 74]. Computing the actual observed level of NG from standard inflation is important

in order not to confuse it with other sources of NG. Indeed, other effects such as the ISW-lensing effect

is a major contamination and produce a large level of local NG in the observed bispectrum [75, 76].

This has to be subtracted from the measured level in order to reveal the amount of primordial NG. It

this work, we shall present a similar calculation for the CMB polarization and for the observed galaxy

numbers count bispectrum. As with the CMB, these contributions must be subtracted from any

observation to estimate the level of primordial NG. We shall also generalize the consistency relation

for the matter perturbations to include the long mode up to a second derivative in a special case.

Consistency relations in the context of the LSS have been pioneered by [77, 78] using the symme-

tries of the Newtonian equaions of motion and generalised to the relativistic limit in [79]. Extensive

work has since been made [80, 9, 81, 82, 83, 84, 85, 86]. We present the idea of the approach presented

in [77] which is particularly simple. It’s based on the fact that the fluid equations (1.3.2)-(1.3.4) pos-

sess some symmetries under which the velocity perturbation transforms non-linearly. For a ΛCDM

cosmology, one shows that the change of coordinates

τ ′ = τ, ~x′ = ~x+ ~n(τ), (1.4.7)

for a generic vector ~n(τ) is a symmetry of the equations (1.3.2)-(1.3.4) provided that the fields trans-

form as

δ′(~x, τ) = δ(~x′, τ ′), (1.4.8)

~v′(~x, τ) = ~v(~x′, τ ′)− ~̇n(τ), (1.4.9)
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Φ′(~x, τ) = Φ(~x′, τ ′)−
(
H~̇n(τ) + ~̈n(τ)

)
· ~x. (1.4.10)

Using the relations

∂

∂τ
=

∂

∂τ ′
+ ~̇n · ∇′, ∇ = ∇′, (1.4.11)

which implies that the operator

Dτ ≡
∂

∂τ
+ ~v(~x, τ) · ∇ (1.4.12)

is invariant, it is easy to see that equations (1.3.2)-(1.3.4) are indeed invariant under this transforma-

tion. Because this symmetry is exact at the level of the fluid equations it is valid for its true, fully

non-linear solution5. This means that it is possible to generate a constant gradient of the gravitational

potential Φ ⊃ ~x · (∇Φ)(~0), or equivalently a long mode of the velocity perturbation ~vL(τ,~0), through

a change of coordinates by choosing properly the vector ~n(τ) :

~n(τ) = −
∫ τ

dη ~vL(η,~0) +O(qRv2
L), (1.4.13)

where q is the momentum of the long wavelength mode and R is the size of the patch where the

long mode is approximated by a gradient. Note that although we have shown that this symmetry is

true at the level of the fluid equations, it can be shown that it is in fact also valid at the level of the

Boltzmann equation, this is for the phase-space distribution function of the particles [87].

The correlator of the short wavelength density modes in the background of the long wavelength

mode perturbation is therefore given by a change of coordinates [77] :

〈
δ(τ1, ~x1)δ(τ2, ~x2) · · · δ(τn, ~xn)

〉
vL

=
〈
δ(τ ′1, ~x

′
1)δ(τ ′2, ~x

′
2) · · · δ(τ ′n, ~x′n)

〉
. (1.4.14)

Note that here the points are supposed to be contained in a sphere of radius R much smaller than

the long wavelength mode of size ∼ 1/q and centred at the origin of the coordinates.

The variation of the n-point correlator under the infinitesimal transformation is given in momen-

tum space by

δn

〈
δ(τ1, ~x1) · · · δ(τn, ~xn)

〉
=

∫
d3~k1

(2π)3
· · · d3~kn

(2π)3

〈
δ(~k1, τ1) · · · δ(~kn, τn)

〉

×
n∑
a=1

δxia(ik
i
a)e

i(~k1·~x1+···~kn·~xn)

5By non-linear, we mean down to scales where the fluid description is valid, that is as long as there is no shell-crossing.



1.4 – Consistency relations 15

=

∫
d3~k1

(2π)3
· · · d3~kn

(2π)3

〈
δ(~k1, τ1) · · · δ(~kn, τn)

〉

×
n∑
a=1

ni(τa)(ik
i
a)e

i(~k1·~x1+···~kn·~xn). (1.4.15)

The squeezed n-pt function is then deduced by correlating with another long mode δ(~q, τ)

〈
δ(~q, τ)δ(~k1, τ1) · · · δ(~kn, τn)

〉
q→0

=
〈
δ(~q, τ)

〈
δ(~k1, τ1) · · · δ(~kn, τn)

〉
vL

〉

= i

n∑
a=1

〈
δ(~q, τ)ni(τa)

〉
kia

〈
δ(~k1, τ1) · · · δ(~kn, τn)

〉
. (1.4.16)

Finally we use the linear relation between the velocity and density
∫ τ

dη ~vL(~q, η) = i ~q
q2 δL(~q, τ) to

obtain [77, 78, 79]

〈
δ(~q, τ)δ(~k1, τ1) · · · δ(~kn, τn)

〉′
q→0

= −PL(q, τ)

×
n∑
a=1

D(τa)

D(τ)

~q · ~ka
q2

〈
δ(~k1, τ1) · · · δ(~kn, tn)

〉′
, (1.4.17)

where the primes indicate that one should remove the Dirac delta coming from the momentum con-

servation, PL is the linear matter power spectrum and D is the linear growth factor. In particular,

the squeezed bispectrum is found to be

lim
k1→0
〈δ(~k1, τ1)δ(~k2, τ2)δ(~k3, τ3)〉′ =

P (k1, τ1)

(
D1(τ2)

D1(τ1)
− D1(τ3)

D1(τ1)

) ~k1 · ~k2

k2
1

〈δ(~k2, τ2)δ(~k3, τ3)〉′ +O
(
k1

k2

)2

, (1.4.18)

where the modes δ(k2), δ(k3) can be non-linear. The important feature of this relation is that,

in Fourier space, the squeezed bispectrum of matter is zero at equal times up to terms of order

(kshort/klong)
2. This is an expected consequence as a constant gradient of the gravitational potential

should not have any physical consequence on the short modes. Moreover, galaxies can also be modelled

by analogous fluid equations and therefore also possess a consistency relation, which we derive in
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section 3.2. Using both consistency relations, we shall show that, at the perturbative level, the

Eulerian local bias model satisfies the galaxy consistency relation for the bispectrum if the dark

matter does.

We shall also show that a violation of this relation could be a sign of modified gravity. We consider

the situation where the fifth force depends on the location : it can be either present or not depending

on the density of the environment which is called screening mechanism. Correlating galaxies situated

in the two types of environment, it is then no longer possible to make a unique change of coordinate

that removes the fifth force everywhere, violating the consistency relation.

One does not expect the generation of a gravitational potential which contains two gradients

Φ ⊃ ~x2(∇2Φ)(~0) to be equivalent to a simple coordinate transformation. It was however shown that

a constant isotropic mode quadratic in the potential is equivalent to adding curvature which can be

used to compute the effect of such a mode on the two-point function. We shall use this to derive a

consistency relation which does not vanish at equal times. This will be used to show that the halo

model does satisfy this relation to which re-enforces the legitimacy of this model. These relations

were also derived by [83].

Finally, we shall derive a fully relativistic version of the consistency condition making use of

the linear relations for the galaxy number counts. For this derivation, we shall use the relativistic

derivation of the consistency relation of [79] which makes use of the fact that a long wavelength

mode solution of the equation of motions for the Bardeen potentials is equivalent to a residual gauge

transformation. The presence of the long mode induces several effects on the galaxy number counts

overdensity ∆g(n̂, z) : It changes the redshfit and the angle under which one sees the galaxy as well

as the observed volume dΩdz, the luminosity distance considering that surveys are flux limited and

redefines the mean number counts density. We then decompose the result in spherical harmonics

to obtain the bispectrum of galaxy number counts in zlm-space. The derivation above includes the

effect of the long mode on the short ones up to a constant gradient. This produces terms which have

the same ` dependence as the local template in the squeezed limit and could therefore be mistaken

for a sign of local primordial NG. We first provide a naive estimate of the resulting f loc
NL. We then

proceed to a finer analysis where we estimate the contamination to the local and equilateral shape

from different terms derived in from second order number counts [18, 19]. We also confirm the level

of contamination to the local shape resulting from the terms derived using the consistency condition.

We find that these give a contamination of f loc
NL ∼ −2 at z = 0.55 while terms with different scalings

are sub-dominant with contamination of f loc
NL ∼ 0.5.

1.5 Structure of the dissertation

This dissertation is organized as follows:

The first two chapters are dedicated to the consistency relation for the matter and galaxy over-

density and their consequences. In chapter 2, we extend previous studies by considering the effect

of a long mode up to a second gradient. Using an approximate symmetry we are able to derive an

expression for the angular averaged squeezed bispectrum at equal times. Because a second derivative

of the gravitational potential corresponds to a physical mode, this bispectrum does not vanish. As

an example we check that the halo model satisfies this relation-
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In chapter 3, we present how the symmetries of the fluid equations, which describe the matter

distribution, can help understand the terms appearing in the non-local bias expansion. Secondly, we

show that the local Eulerian bias model satisfies the consistency condition for galaxies in perturbation

theory. Thirdly, we study a toy model of modified gravity and show how a violation of the consistency

relations can be seen either as a violation of the equivalence principle or as a signature of modified

gravity. As a step towards observed quantities, we derive the consistency relations in redshift space.

The following two chapters are dedicated to the application of consistency conditions to the ob-

served galaxy number counts and their consequences for the non-Gaussianity induced from relativistic

effects. In chapter 4, we apply the formalism of the consistency relations directly to the galaxy number

counts per solid angle per redshift bin. We find that contrarily to Fourier space, the bispectrum in

squeezed configurations does not vanish due to so-called ’projection effects’.

In chapter 5, we present an application of the observed consistency relations together with a

study of non-Gaussianities in zlm-space. We show that relativistic corrections to the matter power

spectrum have to be taken into account if one hopes to access to primordial non-Gaussianities in the

large-scale structure. We find that a contamination of order fNL ∼ −3 is given to the bispectrum in the

squeezed limit through a simple estimate. Secondly, we have developed a way to compute the different

non-Gaussian shapes, defined in Fourier space, in zlm space. This is particularly computationally

demanding as techniques used for the CMB are not applicable. We show that these shapes are not

well separated in zlm space and that higher order terms in the bispectrum can give a contribution

to the value of fNL relevant for the analysis of data from future surveys. In particular, in the local

shape, the terms derived from the consistency relation are the dominant ones. For the equilateral

shape, second-order terms of the type “Newtonian × lensing” and “three derivatives” give a large

contribution.

Finally, in chapter 6, we present a derivation of the consistency relation for the polarization modes

of the CMB. We consider the effect on a long temperature mode on two short polarization modes.

This consistency relation is a tool which will help understand possible primordial gravitational waves

signatures in the CMB. This can possibly help distinguishing them from galactic dust in the upcoming

polarization data. We also estimate the detectability of such effect for three proposed experiments.





Chapter 2

Equal-time consistency relations for

the dark matter

2.1 Dark matter consistency relations from a constant gradient

The consistency relations (1.4.17) have been derived considering the effect of a mode of the gravita-

tional potential up to a constant gradient Φ ∝ ~x · (~∇Φ)(~0). This corresponds to a change of frame for

the matter (δ) or galaxy perturbations (δg) where one adds or remove a homogeneous gravitational

force. It has therefore locally no physical effect on the short modes correlations functions. As a

consequence, the squeezed bispectrum of dark matter or galaxies vanishes at equal time.

In this chapter, which builds up on previous works [88, 89], we discuss what happens if we include

two spatial gradients in the game, that is a non-uniform gravitational force. Based on the previous

arguments, we expect that the equal-time correlators will not vanish in the soft limit, as short-scale

perturbations will now feel the non-homogeneity of the gravitational force. Indeed, we shall find a

consistency relation for the soft limit of the dark matter correlators which is valid even for non-linear

scales and that can be checked against analytical models modelling the clustering of dark matter on

short scales.

The chapter is organized as follows. In section 2.2 we discuss the derivation of the equal-time

consistency relation, while in section 2.3 we check it against the halo model. Finally, in section 2.4

we provide our conclusions.

2.2 The equal-time consistency relation for the dark matter bispec-

trum

It is well-known that the effect of a long wavelength mode of the gravitational potential of momentum

q and including two spatial gradients on the short-scale dynamics is encodable in a local spatial

curvature K = (3/5)(δL/a) (valid in a matter-dominated universe and after performing an angular

average), where δL is the linear overdensity [88]. In other words, the physics in a sphere of radius

R� 1/q should not be distinguishable from the physics with the same curvature as the one induced

by the linear mode. To account for the effects of the long wavelength mode there are three effects one

19
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should take into account. First of all, the change in scales with respect to the case in which the local

system is spatially flat. As the overdensity in the sphere is simply given by

1 + δL =
a3

a3
K

, (2.2.1)

where we have indicated by a the scale factor in the region outside the sphere of radius R and by aK
the one in the inner region, one simply gets a/aK ' (1 + δL/3). This means that comoving momenta

are shifted from ~k in the spatially flat outer region to ~k(1− δL/3) in the inner region.

The second effect is that we have to define the short-mode overdensities with respect to the global

average ρ and not with respect to the local overdensity ρ(1 + δL). This brings an extra factor (1 + δL)

for each density contrast on short scales. Finally, we have to account for the fact that one may trade

the time variable of the correlators with the linear growth factor D(a) if no other time dependencies

are present in the problem. This is true if d lnD(a)/d ln a = Ω
1/2
m (being Ωm the abundance of dark

matter with respect to the critical one) which is the condition leading to separability between the

density contrast and the peculiar velocity at any order in standard perturbation theory [56]. While

not exactly true, the mapping between time and the linear growth factor is good at the O(10%) level

for most redshifts [90]. It turns out that in a spatially local closed universe the linear growth factor

is enhanced by a factor (1 + 13/21δL) with respect to the spatially flat case [88]. This is because in a

spatially closed universe linear perturbations growth faster than their flat region counterparts if the

curvature is positve.

All in all, the dark matter correlation functions on small scales depend on the long wavelength

mode as

ξδL(r, a) ' ξ0(r, a)

+ 2δLξ0(r, a)

+
1

3
δL r

∂

∂r
ξ0(r, a)

+
13

21
δL

∂

∂ lnD(a)
ξ0(r, a) +O(δ2

L). (2.2.2)

These arguments allow to calculate the soft limit of the three-point correlators of dark matter when

the wavenumber q is much smaller than the other two: k1 ' k2 ' 1/r � q. Indeed, multiplying

the result (2.2.2) by the long wavelength mode δL, averaging over many realizations and going to

momentum space, we obtain
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〈
δ~q(τ)δ~k1

(τ)δ~k2
(τ)
〉′ av

q→0
= PL(q, τ)

×
[
1− 1

3

∂

∂ ln k1
+

13

21

∂

∂ lnD(a)

]
P (k1, τ)

(2.2.3)

where we have used the fact that∫
d3x ei

~k·~x r
∂

∂r
ξ0(r, a) =

(
−3− ∂

∂ ln k

)
P (k, τ). (2.2.4)

The label
′ av in the bispectrum indicates we have removed the momentum conservation and that the

angular average over the angle between the long and the short wavelength modes needs to be taken:

in all our considerations we have assumed a spherical average to be able to define a constant spatial

curvature to begin with. As expected, the bispectrum does not vanish in the equal-time correlator.

The relation (2.2.3) extends that one found in Ref. [89] which is valid only in the mildly non-linear

regime where P (k1, τ) ∼ D2(a). Of course, the relation (2.2.3) does not hold in the presence of a

primordial non-Gaussianity as the latter introduces an extra correlation among the long and the short

wavelength modes.

The generalization of Eq. (2.2.3) to higher-order correlators is straightforward. Taking into

account that there is a factor of (1 + δL/3) for each position vector and a (1 + 13/21δL) enhancement

of the growth factor with respect to the spatially flat case, we obtain for the equal-time correlator in

the long wavelength mode

〈
δ(~x1, τ) · · · δ(~xn, τ)

〉
δL

=
〈
δ(~x1, τ) · · · δ(~xn, τ)

〉
0

+ nδL

〈
δ(~x1, τ) · · · δ(~xn, τ)

〉
0

+
1

3
δL

n∑
i=1

~xi · ∇~xi
〈
δ(~x1, τ) · · · δ(~xn, τ)

〉
0

+
13

21
δL

∂

∂ lnD(a)

〈
δ(~x1, τ) · · · δ(~xn, τ)

〉
0
. (2.2.5)

Multiplying the above relation by the long wavelength mode and averaging over angles, we obtain the

relation
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〈
δ~q(τ)δ(~k1, τ) · · · δ(~kn, τ)

〉av

q→0
= PL(q, τ)

×

[
n−

n∑
i=1

(
1

3

∂

∂ ln ki
+ 1

)
+

13

21

∂

∂ lnD(a)

]〈
δ(~k1, τ) · · · δ(~kn, τ)

〉
. (2.2.6)

Using the fact that

n∑
i=1

∂

∂ ln ki
δ(~kt) = ~kt∇~ktδ(

~kt), (2.2.7)

where ~kt = (~k1 + · · ·~kn) as well as the general property f(x)δ′(x) = −δ(x)f ′(x), we obtain

〈
δ~q(τ)δ(~k1, τ) · · · δ(~kn, τ)

〉′ av

q→0
= PL(q, τ)

×

[
1−

n∑
i=1

1

3

∂

∂ ln ki
+

13

21

∂

∂ lnD(a)

]〈
δ(~k1, τ) · · · δ(~kn, τ)

〉′
. (2.2.8)

Notice that all the considerations made so far are valid for the dark matter overdensities, but not

for the galaxies as the trade of the time with the linear growth factor is expected not to hold when

including further time dependencies as galaxies form at a range of redshifts and merge. Nevertheless,

the result (2.2.2) should be useful to test analytical models describing the correlation functions of

dark matter, as the halo model [91, 92, 60]. This is what we proceed to do in the following section.

2.3 The equal-time dark matter consistency relation and the halo

model

In its simplest formulation, the halo model assumes that all matter in the Universe belongs to dark

matter halos, identified by their mass. Therefore, two distinct particles will either belong to the

same halo or to two different ones. The power spectrum of density perturbations is the sum of two

contributions: the 2-halo term, mainly accounting for the spatial correlations of the distribution of

different halos, and the 1-halo term which depends instead on the spatial distribution of matter inside

a single halo. Clearly, while the 2-halo term is expected to describe large-scale correlations, the 1-halo

term provides predictions in the nonlinear regime. More concretely, the expression for the matter

power spectrum is given by

P (k) = P2h(k) + P1h(k), (2.3.1)



2.3 – The equal-time consistency relation and the halo model 23

with the 2- and 1-halo contributions given by

P2h(k, z) =
1

ρ2

[
2∏
i=1

∫
dmi n(mi, z) ρ̂(k,mi, z)

]
Ph(k,m1,m2), (2.3.2)

P1h(k, z) =
1

ρ2

∫
dmn(m, z) ρ̂2(k,m, z), (2.3.3)

where n(m) is the halo mass function with n(m)dm the number density of halos of mass between

m and (m+ dm), and ρ̂(k,m, z) is the Fourier transform of the spatial density profile ρ(z, r,m) of a

halo of mass m normalized so that ρ̂(0,m) = m. The 2-halo term depends as well on the halo power

spectrum, Ph(k,m1,m2), describing the correlation between the centers of halos of mass m1 and m2.

As we expect halos to be tracers of the underlying matter distribution, we can assume a linear bias

relation between the halo and the matter density contrasts, so that δh ≈ b1δ. Thus, at large scales,

the halo power spectrum can be approximated as

Ph(k,m1,m2) = b1(m1) b1(m2)PL(k), (2.3.4)

where b1(m) represents the linear bias function for halos of mass m. Note that for Gaussian initial

conditions, b1 only depends on the mass m, as implictly assumed in Eq. (2.3.4). The 2-halo term can

be rewritten as

P2h(k, z) =
1

ρ2

[
2∏
i=1

∫
dmi n(mi, z) ρ̂(k,mi, z) b1(mi, z)

]
PL(k, z). (2.3.5)

This description can be easily extended to the matter bispectrum. In the case of a three-point function,

we should account for the possibility that the three points belong to just one, two or three dark matter

halos. This means that there are now three distinct contributions to the halo model expression for

the matter bispectrum, that is

〈
δ~k1

(τ)δ~k2
(τ)δ~k3

(τ)
〉
≡ B(k1, k2, k3)

= B3h(k1, k2, k3) +B2h(k1, k2, k3) +B1h(k1, k2, k3), (2.3.6)

where

B3h(k1, k2, k3, z) =
1

ρ3

[
3∏
i=1

∫
dmi n(mi, z) ρ̂(mi, z, ki)

]

×Bh(k1,m1; k2,m2; k3,m3; z), (2.3.7)
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B2h(k1, k2, k3, z) =
1

ρ3

∫
dmn(m, z) ρ̂(m, z, k1)

∫
dm′ n(m′, z)

× ρ̂(m′, z, k2) ρ̂(m′, z, k3)Ph(k1,m,m
′, z) + cyc., (2.3.8)

B1h(k1, k2, k3, z) =
1

ρ3

∫
dmn(m, z) ρ̂(k1,m, z) ρ̂(k2,m, z) ρ̂(k3,m, z). (2.3.9)

In this case, while the 2-halo term depends on the halo power spectrum as in the previous case,

the 3-halo term involves the halo bispectrum, Bh(k1,m1; k2,m2; k3,m3; z). Assuming again a local

bias relation between halos and matter, δh(m) = f(δ), expanded perturbatively as δh(m) = b1(m)δ+

[b2(m)/2]δ2 +O(δ3), it is possible to derive the tree-level expression for the halo bispectrum, valid only

in the large-scale limit, in terms of the matter power spectrum P (k) and the bispectrum B(k1, k2, k3).

This reads

Bh(k1,m1; k2,m2; k3,m3; z) = b1(m1) b1(m2) b1(m3)B(k1, k2, k3)

+ [b1(m1) b1(m2) b2(m3)P (k1)P (k2) + cyc.] , (2.3.10)

where b2(m) is the quadratic bias function. For Gaussian initial conditions b1 and b2 are scale in-

dependent. Moreover, since this equation is valid on large scales, we can replace the matter power

spectrum P by its linear prediction PL and the matter bispectrum B by its gravitational contribution

BG

BG(k1, k2, k3) = 2F2(~k1,~k2)PL(k1)PL(k2) + 2 perm., (2.3.11)

F2 being the kernel representing the second-order solution in standard perturbation theory and given

by

F2(~ki,~kj) =
5

7
+

1

2

(
ki
kj

+
kj
ki

)
(k̂i · k̂j) +

2

7
(k̂i · k̂j)2. (2.3.12)

The spatial distribution of matter in a halo of mass m is specified by the halo density profile ρ(r,m),

interpreted as an average over all halos of the same mass. We consider the Navarro, Frenk and White

form for the halo density profile [93] ρ(r) = ρs/
[
(r/rs)(1 + r/rs)

2
]
, which assumes a universal profile

as a function of r. The parameters rs and ρs can be expressed in terms of the virial mass of the halo

m and the concentration parameter c. In particular, the virial mass is given by m ≡ (4π/3)R3
v ∆v ρ,

with Rv the virial radius, defined as the radius of a sphere within which the mean density of the

halo is ∆v times that of the Universe. We take ∆v = 200. The concentration parameter c is defined

as c = Rv/rs and is typically a function of m. The halo mass function n(m) [94] characterizes the

number density of halos per unit mass. The fraction of the total mass of the Universe contained in
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all the halos with mass in the range m and (m,m+ dm) can be written as

1

ρ
n(m)mdm = f(ν) dν. (2.3.13)

The function f(ν) has an approximately universal form and depends on the variable

ν ≡ δc

σ(m, z)
, (2.3.14)

with δc representing the critical density for spherical collapses (we assume the Einstein-de Sitter value

δc = 1.68 at zero redshift) while σ(m, z) = D(z)σ(m, z = 0) is the square root of the variance of

matter fluctuations in spheres of radius R = (3m/4πρ)1/3 (associated to the Fourier transform WR(k)

of the top-hat function in real space), σ2(m) ≡ 4π
∫

dk k2 PL(k)WR(k). We shall adopt the Sheth and

Tormen form of the halo mass function [95] expression

f(ν) = A

√
a ν2

2π

[
1 +

1

(a ν2)p

]
e−aν

2/2, (2.3.15)

where a = 0.707 and p = 0.3 while A = 0.322 ensures a proper normalization. Finally, the bias

functions can be derived from the unconditional halo mass function and, in the case of the Sheth-

Tormen form, one obtains for the first two the expressions [95]

b1(ν) = 1 +
a ν2 − 1

δc
+

2p

δc(1 + (a ν2)p)
, (2.3.16)

b2(ν) =
8

21
[b1(ν)− 1] +

a ν2

δc

a ν2 − 3

δc

+

(
1 + 2p

δc
+ 2

a ν2 − 1

δc

)
2p/δc

1 + (a ν2)p
. (2.3.17)

The requirement for the total matter density to be given by

ρ(~x) ≡ ρ [1 + δ(~x)] =

∫
dmmn(m)

[
1 +

∑
i

bi(m)

i!
δi(~x)

]
, (2.3.18)

imposes the condition ∫
dmmn(m) = ρ, (2.3.19)
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along with the constraints on the bias functions,

1

ρ

∫
dmmn(m) bi(m) =

∫
dν f(ν) bi(ν) = δi1. (2.3.20)

Such relations assure that, on large scales (k → 0, ρ̂ → m), the 2-halo term of the power spectrum

reduces to the linear power spectrum and the 3-halo term of the bispectrum reduces to the large-scale

matter bispectrum.

We are now ready to study the squeezed limit of the bispectrum. It allows for a significant

simplification of the halo model expressions. As physical intuition dictates, in this limit the largest

contribution to the bispectrum comes from the position-space configuration where two points are close

and belong to the same halo while the third one is at larger distance from the first two, and hence is

likely to belong to another halo. In this case we expect the halo model prediction to be dominated

by the 2-halo contribution, with the 1-halo and 3-halo terms being subdominant. This expectation is

confirmed numerically [96]: taking the smallest wavenumber to be q = 0.014hMpc−1, B2h becomes

dominant over the other two terms for k1 ∼ k2 ∼ 0.3hMpc−1 and at k1 ∼ k2 ∼ 1hMpc−1 the sum of

B1h and B3h contribute less than 10%.

If q is still in the linear regime, then we can safely set the Fourier transform of the halo profile to

be

ρ̂(m, z, q) ' m, (2.3.21)

in all bispectrum terms involving q in Eqs. (2.3.7), (2.3.8) and (2.3.9). By making this substitution,

the expressions for the 1-, 2- and 3-halo terms greatly simplify. Moreover, by using the conditions

in Eqs. (2.3.19) and (2.3.20), together with Eq. (2.3.21), the halo model bispectrum contributions

become, at leading order in q [96]

B1h(q, k1, k2) =
1

ρ
ε
[m]
2 (k1), (2.3.22)

B2h(q, k1, k2) = ε
[b1]
2 (k1)PL(q), (2.3.23)

B3h(q, k1, k2) = 2

[
13

14
+

(
4

7
− 1

2

∂ lnPL
∂ ln k1

)
(q̂ · k̂1)2 +

ε
[b2]
1 (k1)

ε
[b1]
1 (k1)

]

× PL(q)P2h(k1). (2.3.24)

The functions ε
[F ]
i in these expressions are defined as

ε
[F ]
i (k) ≡ 1

ρ i

∫
dmn(m, z) ρ̂ i(m, z, k)F (m, z), (2.3.25)
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Figure 2.1: The function 〈b1(m, k1)〉 as a function of k1.

where F (m, z) represents a generic function of mass and redshift. Thus, these functions are like an

“average” of the function F , weighted by the mass function and the i-th power of the Fourier transform

of the density profile. The first two terms inside the bracket of Eq. (2.3.24) have been derived by

taking the squeezed limit q � k1 ' k2 of BG(k1, k2, k3) in Eq. (2.3.11)

BG(q, k1, k2) ' 2
[
F2(~q,~k1)PL(q)PL(k1) + F2(~q,~k2)PL(q)PL(k2)

]

= 2

[
13

14
+

(
4

7
− 1

2

∂ lnPL
∂ ln k1

)
(q̂ · k̂1)2 +O

(
q

k1

)2
]

× PL(q)PL(k1). (2.3.26)

Let us first consider the angular averaged of the squeezed limit of the bispectrum in the limited range

of momenta where it is dominated by the 3-halo piece, that is in the limit in which all momenta are

in the linear regime, and one can safely take P (k1) ' P2h(k1) ' PL(k1). In such a case

〈
δ~q(τ)δ~k1

(τ)δ~k2
(τ)
〉′ av

q→0
' 2

[
13

14
+

1

3
· 4

7
− 1

6

∂ lnPL
∂ ln k1

+
ε
[b2]
1 (k1)

ε
[b1]
1 (k1)

]
PL(q)P2h(k1)

'

[
47

21
− 1

3

∂

∂ ln k1
+ 2

ε
[b2]
1 (k1)

ε
[b1]
1 (k1)

]
PL(q)P (k1). (2.3.27)

This has to be compared with the prediction of the consistency relation (2.2.3) which gives, taking
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into account that in the present case P (k1) = PL(k1) ∝ D2(a),

〈
δ~q(τ)δ~k1

(τ)δ~k2
(τ)
〉′ av

q→0
'
[

47

21
− 1

3

∂

∂ ln k1

]
PL(q)P (k1). (2.3.28)

Since in the limit we are taking

ε
[b2]
1 (k1) =

1

ρ

∫
dmmn(m) b2(m, k1) = 0,

ε
[b1]
1 (k1) =

1

ρ

∫
dmmn(m) b1(m, k1) = 1, (2.3.29)

we conclude that the halo model prediction (2.3.27) reproduces the consistency relation.

Let us now consider the most realistic case in which the momenta k1 and k2 are in the non-linear

regime. In such a case, the bispectrum is dominated by the 2-halo piece and one gets

〈
δ~q(τ)δ~k1

(τ)δ~k2
(τ)
〉′ av

q→0
' PL(q)P1h(k1)

∫
dmn(m, z) ρ̂2(m, z, k1) b1(m, k1)∫

dmn(m, z) ρ̂2(m, z, k1)

= 〈b1(k1)〉PL(q)P1h(k1), (2.3.30)

where the ratio of the two integrals provides an average of the first bias parameter. We see from Fig.

2.1 that 〈b1(k1)〉 is constant up to k1 = O(1)hMpc−1 and its value is approximately 3.5. At much

larger values of k1 the average 〈b1(k1)〉 acquires a strong momentum dependence. To check if the

analytical prediction of the halo models satisfies the consistency relation we need to compute the 1-

halo power spectrum. At large values of k1 the power spectrum is dominated by contributions near the

mass scale for which k1rs ' 1 [92]. The mass function behaves as dn/dm ∼ m−2ν1−2pexp(−aν2/2).

Since the scale radius rs depends on the mass as rs = Rv/c ∼ m1/3/m−(3+n)/6 = m(5+n)/6, where n

is the spectral index of the linear power spectrum, we find that the power spectrum at high momenta

goes as [92]

P1h(k1) ∼
∫

dmν1−2pρ̂2(k1rs). (2.3.31)

We change variables to x = k1rs ∼ k1[m/m∗(z)]
(5+n)/6, where we have defined m∗(z) the mass scale

for which σ [(m∗(z)] = 1. Accounting for the fact that σ(m) ∼ (m/m∗)
−(3+n)/6, we obtain

P1h(k1) ∼ [D(a)]
6

n+3
+1−2p kγ−3

1 , γ =
9 + 3n

5 + n
− (1− 2p)

(
3 + n

5 + n

)
. (2.3.32)
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The consistency relation (2.2.3) therefore would give

〈
δ~q(τ)δ~k1

(τ)δ~k2
(τ)
〉′ av

q→0
'
[
1− 1

3
(γ − 3) +

13

21

(
6

n+ 3
+ 1− 2p

)]

× PL(q)P1h(k1), (2.3.33)

which seems reproduce the result (2.3.30) quite remarkably. For instance, for n ' −1, which fits well

the non-linear power spectrum on mildly non linear scales, one gets a coefficient of order of 3.6 in

Eq. (2.3.33) in front of PL(q)P1h(k1). On general grounds, as the spectral index of the short-mode

power spectrum is negative and the dependence on the growth factor is such that the non-linear

power spectrum is suppressed at high redshifts, implying a positive power of D(a), this leads to the

conclusion that the overall coefficient in front of PL(q)P1h(k1) in the bispectrum is predicted to be

larger than unity by the consistency relation. This is in good agreement with the prediction of the halo

model: the halo model reproduces the remarkable property predicted by the consistency relation that

the bispectrum in the squeezed limit factorizes in terms of the product of the linear power spectrum

times the non-linear one. This conclusion seems to be valid up to scales O(1)hMpc−1.

2.4 Summary

In this chapter we have derived a consistency relation which applies for dark matter over-densities

and involves the soft limit of the (n+ 1)-point correlation functions. While this result can be hardly

extended to the more interesting case of galaxy overdensities, we have used it to investigate the ability

of the halo model to satisfy the consistent relations. We have concluded that the halo model satisfies

rather well the features predicted by the consistency relation up to scales O(1)hMpc−1.





Chapter 3

Consequences of symmetries and

consistency relations in the large-scale

structure of the Universe for non-local

bias and modified gravity

3.1 Matter and galaxy consistency relations

The large-scale consistency relations have the virtue of being true also for the galaxy overdensities,

independently of the bias between galaxy and dark matter. As such, they may serve as a guidance

in building up a bias theory. Indeed, we shall argue that the non-local Eulerian bias model can be

seen as being built of quantities which are invariant under the symmetries enjoyed by the Newtonian

fluid equations. Furthermore, they might be useful in testing theories of modified gravity where extra

degrees of freedom appear mediating extra long-range forces (other than the gravitational one) and

possibly leading to a violation of the Equivalence Principle (EP) in the late universe and therefore

to a violation of the consistency relation. In fact, assuming adiabatic Gaussian initial conditions,

an observed violation of the consistency relations would either indicate a breakdown of the non-local

Eulerian bias model (and also the presence of terms in the effective fluid equations for galaxies that

break the aforementioned symmetries), or a violation of the EP in the underlying theory of gravity.

It is in the spirit of exploring these topics that in this chapter we aim to investigate what the large-

scale consistency relations may tell us about the galaxy bias and how they can be used to scrutinize

modified gravity theories. In particular, we shall show that the symmetries leading to the consistency

relations allow the presence of what is commonly dubbed non-local bias, that is a relation between

the galaxy and the dark matter overdensities which is not a simple function of the local dark matter

abundance. We shall identify a series of invariants (with respect to the symmetries) which should

appear in the galaxy bias expansion, precisely because they are allowed by the symmetries of the

problem. Furthermore, we shall investigate under which conditions the consistency relations are valid

in the case in which a modification of gravity is attained far in the infrared on cosmological scales.

This chapter is organized as follows. In section 3.2 we discuss the symmetries of the non-relativistic

31
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fluid equations for galaxies and we derive galaxy consistency relations for the n-point correlators of

short wavelength modes in the background of a long wavelength mode perturbation. In section 3.3

we provide the invariants under the symmetries of the galaxy and dark matter fluids and we discuss

their implications for the non-local bias. We also check that the galaxy consistency relation holds

at tree- and one-loop level in the bias model. In section 3.4 we show how to extend the galaxy

consistency relations to redshift space where actual experiments are made. In section 3.5 we discuss

the consequences of the symmetries for the theories of modified gravity and how such modifications

are imprinted in the (n+ 1)-point correlators in the squeezed limit. Finally, section 3.6 presents our

conclusions.

3.2 Symmetries and consistency relation of galaxy correlation func-

tions in Fourier space

Galaxies (or more precisely, some population thereof), once formed, obey analogous equations to the

dark matter (1.3.2)- (1.3.4) on sub-Hubble scales :

∂δg(~x, τ)

∂τ
+ ~∇ · [(1 + δg(~x, τ))~vg(~x, τ)] = 0, (3.2.1)

∂~vg(~x, τ)

∂τ
+H(τ)~vg(~x, τ) + [~vg(~x, τ) · ~∇]~vg(~x, τ) = −~∇Φ(~x, τ), (3.2.2)

∇2Φ(~x, τ) =
3

2
ΩmH2(τ)δ(~x, τ), (3.2.3)

where again, we have denoted by ~x the comoving spatial coordinates, τ =
∫

dt/a the conformal time.

In addition, δg(~x, τ) and ~vg(~x, τ) are the galaxy overdensity and peculiar velocity while δ(~x, τ) is the

overdensity of dark matter. Eq. (3.2.1) assumes number conservation [97]. Eventually, one would

like to go beyond the treatment presented here in order to account for phenomena like formation and

merging, which could be done for example by adding a source term to the right hand side of Eq.

(3.2.1).

Following Ref. [77], in ΛCDM cosmology, the set of equations (3.2.1-3.2.3) is invariant under the

transformations (for a generic vector ~n(T ))

τ ′ = τ, ~x′ = ~x+ ~n(T ), (3.2.4)

where

T (τ) =
1

a(τ)

∫ τ

dη a(η), (3.2.5)
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provided that one transforms the fields describing the galaxies as

δ′g(~x, τ) = δg(~x′, τ ′), (3.2.6)

~v′g(~x, τ) = ~vg(~x′, τ ′)− ~̇n(T ), (3.2.7)

in addition to the transformations (1.4.8) and (1.4.10) for the dark matter and the gravitational

potential. This is true even if we do not set ~vg(~x, τ) = ~v(~x, τ), that is if we do not assume that the

galaxy peculiar velocity is unbiased. Note that if one adds a source term to the right hand side of

Eq. (3.2.1) to account for the change of the number density of galaxies in time, and such a source

term depends only on quantities which transform as scalars, the equations of motion are still invariant

under these transformations.

We now derive consistency conditions for the galaxy correlation analogously to the dark matter

ones. We can generate a long wavelength mode for the dark matter velocity perturbation ~vL(τ,~0) just

by choosing properly the vector ~n(τ)

~n(τ) = −
∫ τ

dη ~vL(η,~0) +O(qRv2
L). (3.2.8)

The effect of a physical long wavelength velocity perturbation onto the short modes should be

indistinguishable from the long wavelength mode velocity generated by the transformation with δxi =

ni(τ). The correlator of the short wavelength modes therefore satisfies the relation [77]

〈
δg(τ1, ~x1)δg(τ2, ~x2) · · · δg(τn, ~xn)

〉
vL

=
〈
δg(τ ′1, ~x

′
1)δg(τ ′2, ~x

′
2) · · · δg(τ ′n, ~x

′
n)
〉
. (3.2.9)

Proceeding as for the dark matter, we find that the squeezed bispectrum of galaxies is given by

〈
δg(~q, τ)δg(~k1, τ1) · · · δg(~kn, τn)

〉
q→0

=
〈
δg(~q, τ)

〈
δg(~k1, τ1) · · · δg(~kn, τn)

〉
vL

〉

= i
n∑
a=1

〈
δg(~q, τ)ni(τa)

〉
kia

〈
δg(~k1, τ1) · · · δg(~kn, τn)

〉
. (3.2.10)

Using ∫ τ

dη ~vL(~q, η) = i
~q

q2
δL(~q, τ), (3.2.11)
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where D(τ) is the linear growth factor, we obtain the consistency relation

〈
δg(~q, τ)δg(~k1, τ1) · · · δg(~kn, τn)

〉′
q→0

=

−
〈
δLg (~q, τ)δL(~q, τ)

〉′ n∑
a=1

D(τa)

D(τ)

~q · ~ka
q2

〈
δg(~k1, τ1) · · · δg(~kn, τn)

〉′
,

(3.2.12)

where the primes indicate that one should remove the Dirac delta’s coming from the momentum

conservation. Notice that, if the correlators are computed all at equal times, the right-hand side of

Eq. (3.2.12) vanishes by momentum conservation and the 1/q2 infrared divergence will not appear

when calculating invariant quantities.

As a special case, the three-point correlator of galaxies reads explicitely

〈
δg(~q, τ)δg(~k1, τ1)δg(~k2, τ2)

〉′
q→0

= −
〈
δLg (~q, τ)δL(~q, τ)

〉′

×
(
D(τ1)

D(τ)
− D(τ2)

D(τ)

)
~q · ~k1

q2

〈
δg(~k1, τ1)δg(~k2, τ2)

〉′
. (3.2.13)

3.3 Consequences of the symmetries for the galaxy bias theory

3.3.1 The non-local bias expansion

As the galaxy and dark matter overdensities equations of motion (3.2.1-3.2.3) and (1.3.2-1.3.4) are

invariant under the set of transformations (1.4.7-1.4.10), an immediate consequence is that one can

construct scalar quantities, i.e. quantities S(~x, τ) which upon the transformation (1.4.7) are such that

S′(~x, τ)− S(~x, τ) = ~n · ~∇S(~x, τ). (3.3.1)
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As the spatial gradients remain invariant, ~∇ = ~∇′, one can easily realize that there are the following

scalar quantities in the dark matter sector at our disposal

δ(~x, τ),

sij(~x, τ) = ∂i∂jΦ(~x, τ)− δij
2

ΩmH2δ(~x, τ),

tij(~x, τ) = ∂ivj(~x, τ)− δij
3
θ(~x, τ)− 2f

3ΩmH
sij(~x, τ),

(3.3.2)

where θ(~x, τ) = ~∇·~v(~x, τ), f = d lnD/d ln a, we have removed the trace part from ∂i∂jΦ(~x, τ), which

is nothing else than the dark matter overdensity δ(~x, τ), and tij(~x, τ) is vanishing at first-order in

perturbation theory. Notice that these quantities are scalars beyond the linear perturbation theory as

the symmetries identified in the previous section are valid at any order in perturbation theory. These

symmetries are larger than the Galilean group identified in Ref. [98] for the large-scale dynamics.

Furthermore, upon constructing the invariant operators

Dv
τ =

∂

∂τ
+ ~v(~x, τ) · ~∇ (3.3.3)

and

D
vg
τ =

∂

∂τ
+ ~vg(~x, τ) · ~∇, (3.3.4)

one can construct two more invariant quantities

~∇Φ(~x, τ) +Dv
τ~v(~x, τ) +H~v(~x, τ) (3.3.5)

and

~∇Φ(~x, τ) +D
vg
τ ~vg(~x, τ) +H~vg(~x, τ), (3.3.6)

but they are nothing else than the momentum conservation quantities for the dark matter and the

galaxy, respectively. They identically vanish on-shell and therefore are trivial.

The set of invariants (3.3.2) are useful in constructing a galaxy bias theory which goes beyond the

local bias model [99]. In the latter the galaxy overdensity δg(~x, τ) is written as a completely general

function f [δ(~x, τ)] of the mass density perturbation δ(~x, τ), and then the function is Taylor expanded,
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with the unknown coefficients in the series becoming the bias parameters

δg(~x, τ) = f [δ(~x, τ)]

= b1δ(~x, τ) +
b2
2
δ2(~x, τ) + · · · . (3.3.7)

This local expansion, even though it is consistent with the first invariant of the list (3.3.2), is expected

to be valid only on very large scales and small times: as the symmetry dynamics allows the presence

of more scalar quantities, there is no reason why they should not be generated along the subsequent

evolution. This logic is the same which applies in quantum field theory for operators: even though

some of them are not present in the tree-level Lagrangian, they will appear at a certain order in

perturbation theory unless they are forbidden by symmetry arguments. Therefore, assuming homo-

geneity and isotropy, one would expect a more general bias model of the form (where the coefficients

should be intended to be the renormalized ones [61])

δg(~x, τ) = b1(τ)δ(~x, τ) +
b2(τ)

2
δ2(~x, τ) + c∇2(τ)∇2δ(~x, τ)

+ cs2(τ)sij(~x, τ)sij(~x, τ) + cs2∇∂ksij(~x, τ)∂ksij(~x, τ)

+ cs2∇2∇2(sij(~x, τ)sij(~x, τ)) + cs2∇4(τ)∇2sij(~x, τ)∇2sij(~x, τ)

+ · · · , (3.3.8)

and the dots stand for the various other terms one can construct out of sij(~x, τ) and gradients. We see

that an unavoidable consequence of the symmetries of the problem is that the bias model is a non-local

bias model [100, 61, 101, 102]; in fact the non-local expansion (3.3.8) has been first proposed in Ref.

[61] where the same invariants have been employed based on general arguments on the homogeneous

gravitational field and dark matter velocity. Some comments are in order:

• The series does not contain a piece proportional to the gravitational potential Φ(~x, τ): it is

simply forbidden by the symmetries of the problem as Φ(~x, τ) alone is not a scalar quantity.

• The non-local bias expansion (3.3.8) is not dictated solely by rotational invariance. Instead it is

the more generic symmetry (1.4.7) together with isotropy which fixes the form of the expansion.

• The fluid equations during the matter-dominated period are also invariant under Lifshitz scalings

of the form [103, 56, 77]

τ ′ = λzτ, ~x′ = λ~x, (3.3.9)

δ′(~x, τ) = δ(~x′, τ ′), (3.3.10)
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δ′g(~x, τ) = δg(~x′, τ ′), (3.3.11)

~v′g(~x, τ) = λz−1~v(~x′, τ ′), (3.3.12)

~v′(~x, τ) = λz−1~vg(~x′, τ ′), (3.3.13)

Φ′(~x, τ) = λ2(z−1)Φ(~x′, τ ′), (3.3.14)

for a generic Lifshitz weight z and

∂

∂τ
= λz

∂

∂τ ′
, ~∇ = λ~∇′. (3.3.15)

Therefore, the Lifshitz weights of the bias coefficients should be

[b1] = [b2] = 0,

[c∇2 ] = −2,

[cs2 ] = −4z,

[cs2∇2 ] = [cs2∇] = −2− 4z,

[cs2∇4 ] = −4− 4z. (3.3.16)

These Lifshitz weights fix the time-behaviour of the corresponding coefficients for the growing

mode. The fact that the Lifshitz weights of b1 and b2 are vanishing tell us that their growing

mode is constant in time. Indeed, it is well-known that at large times the system experiences

the so-called debiasing: b1 converges to unity and b2 goes to zero. Furthermore, the Lifshitz

weights fix the corresponding time-behaviour of the remaining bias coefficients in their growing

modes: c∇2 , cs2 , cs2∇2 and cs2∇4 should scale as τ2/z, τ4, τ (4z+2)/z and τ (4z+4)/z, respectively. In

particular, if one matches with the linear power spectrum of dark matter with spectral index n,

one finds z = 4/(3 + n) ' 1 [98]. This explains why the non-local bias coefficients increase with

time during the matter-dominated period. Furthermore, if one expresses the non-local invariant

sij(~x, τ)sij(~x, τ) at second-order in terms of the product of the linear overdensities, one finds

that the Lifshitz symmetry imposes that the overall time scaling is τ−2 in a matter-dominated

universe (once one goes to momentum space). This is precisely the scaling found in Ref. [62]

and leads to the so-called debiasing, that is at late times the bias converges to unity and matter

and galaxy density fields agree.

• As we already mentioned, galaxies form at a range of redshifts and merge. So it would be

interesting to extend our results to the more realistic case when the number density of galaxies

changes with redshift due to some arbitrary source including the effects of galaxy formation and
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merging. However, if the effective source is a function of the scalar functions described above

then our symmetry considerations will apply to this more complete galaxy description too. For

instance, in Ref. [102] it was assumed that the effective source was of the form A(τ)j(ρ), where

A(τ) parametrizes the epoch of galaxy formation and j(ρ) the effects of dark matter on galaxy

formation and merging. In such a case the symmetry (1.4.7-1.4.10) holds.

• If the fluid equations are not invariant under the set of transformations (1.4.7-1.4.10), as it

happens for example in some modified theories of gravity to be discussed below, one expects

other terms to appear in the bias expansion as the bias is scale-dependent. The possibility of

testing the Poisson equation with a scale-dependent bias was discussed in [104].

3.3.2 Independence from the smoothing scale

The galaxy consistency relation also holds for smoothed quantities as the smoothing operation com-

mutes with the coordinate transformation (1.4.7). Indeed, suppose we perform a smoothing operation

with a window function around a sphere of radius RL

δRL(~x) =

∫
d3yW (|~y − ~x| , RL) δ(~y), (3.3.17)

where W is the appropriate window function. Then we have

δRL(~x′) =

∫
d3yW

(∣∣~y − ~x′∣∣ , RL) δ(~y)

=

∫
d3y′W

(∣∣~y′ − ~x′∣∣ , RL) δ(~y′)
=

∫
d3yW (|~y − ~x| , RL) δ′(~y)

= δ′RL(~x), (3.3.18)

where in the last passage we have made use of the properties d3y′ = d3y and (~y′ − ~x′) = (~y − ~x).

This has an important consequence. The local abundance of tracers (galaxies), at fixed proper time,

is typically a function of the matter density field (and their spatial derivatives) within a finite region

of size R∗ ∼ few Mpc for most tracers. In most models of bias, the overdensities of the tracers and

dark matter are understood as smoothed on some large-scale RL so that they can be interpreted as a

counts-in-cells relation. However, no additional smoothing scale RL should enter in the final value of

observables, e.g. the correlation functions on some scale r. This is because the smoothing scale RL is

not physical, it is just a tool for an effective description and an arbitrary ultra-violet cut-off [105].

The symmetries at our disposal provide a simple and straightforward way to show that the galaxy

correlation functions do not depend on the smoothing scale RL. Indeed, suppose we work in Fourier

space and that we change the smoothing scale RL by an infinitesimal amount δRL. Correspondingly,
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the Fourier transformed window function will be

W [q(RL + δRL)] 'W (qRL) + qW ′(qRL)δRL

'W (qRL) eqW
′(qRL)/W (qRL)δRL , (3.3.19)

where the prime stands for the differentiation with respect to the variable qRL. We can perform now

an infinitesimal coordinate transformation ~x′ = ~x + ~n(τ). According to the relation (3.3.18), both

tracers and dark matter overdensities will transform in momentum space as

δ′~q,RL = δ~q,RL e
i~q·~n(τ) = δ~qW (qRL) ei~q·~n(τ). (3.3.20)

Therefore

δ′~q,RL+δRL
= δ~qW [q(RL + δRL)] ei~q·~n(τ)

= δ~q,RL e
qW ′(qRL)/W (qRL)δRL ei~q·~n(τ). (3.3.21)

We see that if we choose the infinitesimal vector ~n(τ) to be

~n(τ) = i
~q

q

W ′(qRL)

W (qRL)
δRL, (3.3.22)

we can compensate the infinitesimal change of the smoothing radius RL and obtain that

δ′~q,RL+δRL
= δ~q,RL . (3.3.23)

Since the correlators in the old and the new coordinate system have to be the same, we conclude that

the dependence on the smoothing radius RL drops off. Physically, this is due to the fact that changing

the large-scale smoothing radius by some amount amounts to include (or exclude) more momentum

modes into the smoothed overdensity. This addition (or subtraction) of momentum modes can be

compensated by going to a coordinate system where these long wavelength modes have been removed

(or added). This argument holds in all epochs, included the Λ-dominated epoch. During the matter-

dominated epoch we have another tool to reach the same conclusion: the Lifshitz symmetry. Indeed,

The change in the smoothing scale RL can be compensated by a scaling transformation ~x′ = λ~x, or

~q′ = ~q/λ. In such a case we have

δ′~q,RL+δRL
= δ~q/λW [q/λ(RL + δRL)] . (3.3.24)
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If we choose λ = λRL = (1 + δRL/RL), we obtain

δ′~q,RL+δRL
= δ~q/λRL ,RL

, (3.3.25)

and again we conclude that the smoothing scale dependence drops off when correlators are considered.

3.3.3 Galaxy bispectrum consistency relation at tree-level

Since the bias model (3.3.8) respects the symmetries (1.4.7-1.4.10), the three-point function of galaxies

computed in this model should satisfy the consistency relation. In the next two subsections we

explicitly verify that this is the case in perturbation theory at the tree and one-loop levels. Let

us start with the tree-level case. The equal time DM-galaxy cross-correlation at second order in

perturbation theory is

〈δL(~k, τ)δLg (−~k, τ)〉′ = b1(τ)PL(k, τ), (3.3.26)

while the unequal time power spectrum is

〈δLg (~k, τ1)δLg (−~k, τ2)〉′ = b1(τ1)b1(τ2)〈δL(~k, τ1)δL(−~k, τ2)〉′. (3.3.27)

The bispectrum of the galaxies at fourth order for unequal times is

〈δg(~q, τ)δg(~k1, τ1)δg(~k2, τ2)〉′
∣∣∣
δ(4)

= b1(τ1)b1(τ2)

〈δL(~k1, τ1)δL(−~k1, τ)〉′〈δL(~k2, τ2)δL(−~k2, τ)〉′

×
[
2b1(τ)F

(2)
S (~k1,~k2) + b2(τ) + cs2(τ)S(~k1,~k2)

]
+ cyclic permutations of (τ, ~q), (τ1,~k1) and (τ2,~k2), (3.3.28)

where

F
(2)
S (~k1,~k2) =

[
5

7
+

1

2
(~k1 · ~k2)

k2
1 + k2

2

k2
1k

2
2

+
2

7

(~k1 · ~k2)2

k2
1k

2
2

]
,

S(~k1,~k2) = −1

3
+

(~k1 · ~k2)2

k2
1k

2
2

. (3.3.29)
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In the squeezed limit q → 0, ~k1 ' −~k2 we find

〈δg(~q, τ)δg(~k1, τ1)δg(~k2, τ2)〉′q→0

∣∣∣
δ(4)

= b1(τ)b1(τ1)b1(τ2)
~q · ~k1

q2
〈δL(~k1, τ1)δL(−~k1, τ2)〉′

×
(
〈δL(~q, τ)δL(−~q, τ2)〉′ − 〈δL(~q, τ)δL(−~q, τ1)〉′

)
= b1(τ)b1(τ1)b1(τ2)

~q · ~k1

q2
〈δL(~k1, τ1)δL(−~k1, τ2)〉′

× PL(q, τ)

(
D(τ2)

D(τ)
− D(τ1)

D(τ)

)

= −
〈
δ(1)

g (~q, τ)δ(1)(~q, τ)
〉′(D(τ1)

D(τ)
− D(τ2)

D(τ)

)

× ~q · ~k1

q2

〈
δ(1)

g (~k1, τ1)δ(1)
g (~k2, τ2)

〉′
. (3.3.30)

We observe that the consistency relation is trivially satisfied at linear order. One should note that

non-local terms are sub-leading. We shall therefore ignore them in the one-loop computation and

consider only the local-bias model in the following.

3.3.4 Galaxy bispectrum consistency relation at one-loop

To check the consistency relation at one-loop, or more precisely at order 6 in perturbation theory, we

have to evaluate the following expression

〈δg(~q, τ)δg(~k1, τ1)δg(~k2, τ2)〉′
∣∣∣
δ(6)

=
~q · ~k1

q2

(
D(τ2)

D(τ)
− D(τ1)

D(τ)

)

×
[
〈δ(1)(~q, τ)δg(−~q, τ)〉′〈δg(~k1, τ1)δg(~k2, τ2)〉′

]
δ(6)

. (3.3.31)

We first consider the right-hand side where one should be careful when expanding the square

parenthesis. Indeed, even when δ is in the linear regime, δg might be non-linear and higher order

corrections to δg have to be taken into account. The square parenthesis at order 4 in perturbation

theory is therefore

[
〈δ(1)(~q, τ)δg(−~q, τ)〉′〈δg(~k1, τ1)δg(~k2, τ2)〉′

]
δ(6)

=
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〈δL(~q, τ)δLg (−~q, τ)〉′ 〈δg(~k1, τ1)δg(~k2, τ2)〉′
∣∣∣
δ(4)

+ 〈δ(1)(~q, τ)δ(3)
g (−~q, τ)〉′〈δLg (~k1, τ1)δLg (~k2, τ2)〉′, (3.3.32)

where δ
(3)
g (~q, τ) is the third order contribution to δg(~q, τ). The first term on the right-hand side can

be written using the bias model as

〈δL(~q, τ)δLg (−~q, τ)〉′ 〈δg(~k1, τ1)δg(~k2, τ2)〉′
∣∣∣
δ(4)

=

b1(τ)〈δL(~q, τ)δL(−~q, τ)〉′
(
P 11

g + P 12
g + P 22

g + P 13
g

)
, (3.3.33)

where

P 11
g = b1(τ1)b1(τ2) 〈δ(~k1, τ1)δ(~k2, τ2)〉′

∣∣∣
δ(4)

, (3.3.34)

P 12
g =

1

2
b1(τ1)b2(τ2)

∫
d3p 〈δ(~k1, τ1)δ(~p, τ2)δ(~k2 − ~p, τ2)〉′

∣∣∣
δ(4)

+ (~k1, τ1)↔ (~k2, τ2), (3.3.35)

P 22
g =

b2(τ1)b2(τ2)

2

×
∫

d3p 〈δL(~p, τ1)δL(−~p, τ2)〉′〈δL(~k1 − ~p, τ1)δL(−~k1 + ~p, τ2)〉′, (3.3.36)

P 13
g =

b1(τ1)b3(τ2)

2
〈δL(~k1, τ1)δL(~k2, τ2)〉′σ2

L(τ2)

+ (~k1, τ1)↔ (~k2, τ2), (3.3.37)

while the second term is

〈δ(1)(~q, τ)δ(3)
g (−~q, τ)〉′〈δLg (~k1, τ1)δLg (~k2, τ2)〉′ =

1

2
b3(τ)b1(τ1)b1(τ2)σ2

L(τ)〈δL(~q, τ)δL(−~q, τ)〉′〈δL(~k1, τ1)δL(~k2, τ2)〉′, (3.3.38)
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where we defined the linear variance

σ2
L(τ) ≡

∫
d3p PL(p, τ). (3.3.39)

Let us now compute the left-hand side of Eq. (3.3.31) with the help the expressions one can find in Ref.

[106] and check that the equality is satisfied. The unequal-time bispectrum 〈δg(~q, τ)δg(~k1, τ1)δg(~k2, τ2)〉′

is composed by several terms which, for compactness, we shall denote analogously to what done in

Ref. [106] by the notation

δD(~q + ~k1 + ~k2)Bijk
g,q→0 ≡ lim

q→0

[
bi(τ)bj(τ1)bk(τ2)

i!j!k!
〈δi(~q, τ)δj(~k1, τ1)δk(~k2, τ2)〉

+ permutations (τ, ~q), (τ1,~k1), (τ2,~k2)
]
. (3.3.40)

In the following, we compute each term identifying the ones which behave at least O(q−1PL(q)) as

q → 0.

• The first term is

B111
g,q→0 = b1(τ)b1(τ1)b1(τ2) 〈δ(~q, τ)δ(~k1, τ1)δ(~k2, τ2)〉′q→0

∣∣∣
δ(6)

= b1(τ)b1(τ1)b1(τ2)

×

[
PL(q, τ)

~q · ~k1

q2

(
D(τ2)

D(τ)
− D(τ1)

D(τ)

)
〈δ(~k1, τ1)δ(~k2, τ2)〉′

∣∣∣
δ(4)

]
, (3.3.41)

where we used the consistency relation for matter. This is exactly the term proportional to P 11
g in

Eq. (3.3.34) in the right-hand side of the consistency relation.

• We express the trispectrum in the integral of the following term using the consistency relation

B112,II
g,q→0 =

1

2
b1(τ)b1(τ1)b2(τ2)

∫
d3p 〈δ(~q, τ)δ(~k1, τ1)δ(~p, τ2)δ(~k2 − ~p, τ2)〉′q→0

∣∣∣
δ(6)

+ 2 perm.

=
1

2
b1(τ)b1(τ1)b2(τ2)

∫
d3p 〈δ(~q, τ)δ(~k1, τ1)δ(~p, τ2)δ(~k2 − ~p, τ2)〉′q→0

∣∣∣
δ(6)

+ (τ1,~k1)↔ (τ2,~k2)

= −PL(q, τ)

∫
d3p

[
~q · ~k1

q2

D(τ1)

D(τ)
+
~q · ~p
q2

D(τ2)

D(τ)
+
~q · (~k2 − ~p)

q2

D(τ2)

D(τ)

]
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× 〈δ(~k1, τ1)δ(~p, τ)δ(~k2 − ~p, τ2)〉′
∣∣∣
δ(4)

+ (τ1,~k1)↔ (τ2,~k2)

= −PL(q, τ)
~q · ~k1

q2

[
D(τ1)

D(τ)
− D(τ2)

D(τ)

] ∫
d3p 〈δ(~k1, τ1)δ(~p, τ)δ(~k2 − ~p, τ2)〉′

∣∣∣
δ(4)

+ (τ1,~k1)↔ (τ2,~k2). (3.3.42)

This is equal to the term proportional to P 12
g in Eq. (3.3.35). In the second line we ignored the

permutation containing a bispectrum not in the squeezed limit.

• The following contribution reproduces the term proportional to P 22
g in Eq. (3.3.36).

B122,II
g,q→0 = b1(τ)b2(τ1)b2(τ2)

∫
d3p 〈δ(~q, τ)δ(~p, τ1)δ(−~q − ~p, τ2)〉′q→0

∣∣
δ(4)

× 〈δL(~k1 − ~p, τ1)δL(−~k1 + ~p, τ2)〉′ + 2 perm.

= b1(τ)b2(τ1)b2(τ2)

∫
d3p 〈δ(~q, τ)δ(~p, τ1)δ(~q + ~p, τ2)〉′q→0

∣∣
δ(4)

× 〈δL(~k1 − ~p, τ1)δL(~k1 − ~p, τ2)〉′

= −b1(τ)b2(τ1)b2(τ2)PL(q, τ)

[
D(τ1)

D(τ)
− D(τ2)

D(τ)

]

×
∫

d3p
~q · (~k1 − ~p)

q2
〈δL(~k1 − ~p, τ1)δL(−~k1 + ~p, τ2)〉′

× 〈δL(~p, τ1)δL(−~p, τ2)〉′

= −1

2
b1(τ)b2(τ1)b2(τ2)PL(q, τ)

[
D(τ1)

D(τ)
− D(τ2)

D(τ)

]
~q · ~k1

q2

×
∫

d3p 〈δL(~k1 − ~p, τ1)δL(−~k1 + ~p, τ2)〉′

× 〈δL(~p, τ1)δL(−~p, τ2)〉′. (3.3.43)

In the second equality we kept the only permutation enhanced in the squeezed limit and in the third

we used the consistency relation for matter. Finally, we used the fact that

∫
d3p

~q · ~p
q2
〈δL(~k1 − ~p, τ1)δL(−~k1 + ~p, τ2)〉′〈δL(~p, τ1)δL(−~p, τ2)〉′ =
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1

2

∫
d3p

~q · ~k1

q2
〈δL(~k1 − ~p, τ1)δL(−~k1 + ~p, τ2)〉′〈δL(~p, τ1)δL(−~p, τ2)〉′, (3.3.44)

which can be deduced simply by doing the shift ~p→ ~k1 − ~p.

• The term below is enhanced in the squeezed limit as it contains a bispectrum at unequal times.

It reproduces the term proportional to P 13
g in Eq. (3.3.37) together with the term in Eq. (3.3.38)

B113,II
g,q→0 =

[
1

2
b1(τ)b1(τ1)b3(τ2)σ2

L(τ2) + 2 perm.

]
〈δ(~q, τ)δ(~k1, τ1)δ(~k2, τ2)〉′q→0

∣∣∣
δ(4)

=

[
1

2
b1(τ)b1(τ1)b3(τ2)σ2

L(τ2) + 2 perm.

]

× ~q · ~k1

q2
PL(q, τ)

(
D(τ2)

D(τ)
− D(τ1)

D(τ)

)
〈δL(~k1, τ1)δL(~k2, τ2)〉′. (3.3.45)

• The term

B112,I
g,q→0 = b21b2 [P (q)P (k1)]δ(6) + 2 perm. (3.3.46)

= O(PL(q)) (3.3.47)

is not dominant because the O(δ(4)) corrections to P (q) are at most O(PL(q)) when q → 0.

• The following terms are not relevant because they involve either terms that are proportional to

the non-squeezed bispectrum, which makes them at most O(PL(q)), or terms containing the bispec-

trum in the squeezed limit at equal times, which vanish due to the consistency relation. B denotes

the bispectrum of matter

B122,I
g,q→0 =

b1b
2
2

2
PL(k1)

∫
d3p B|δ(4) (k2, p, |~k2 − ~p|) + 5 perm.

= O(PL(q)), (3.3.48)

B113,I
g,q→0 =

b21b3
2
PL(k1)

∫
d3p B|δ(4) (k1, p, |~k1 − ~p|) + 5 perm.

= O(PL(q)). (3.3.49)

• The following terms are not enhanced in the squeezed limit as they are just products of linear
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power spectra at this order

B222
g,q→0 =

b32
2

∫
d3pPL(p)PL(|~q + ~p|)PL(|~k1 − ~p|)

= O(1), (3.3.50)

B123,I
g,q→0 =

b1b2b3
2

PL(q)

∫
d3pPL(|~k1 − ~p|)PL(p) + 5 perm.

= O(PL(q)), (3.3.51)

B123,II
g,q→0 = b1b2b3PL(q)PL(k1)σ2

L + 2 perm. = O(PL(q)), (3.3.52)

B114,I
g,q→0 =

b21b4
2
PL(q)PL(k1)σ2

L + 2 perm. = O(PL(q)). (3.3.53)

• Finally, the two- and three-loops corrections ignored in Ref. [106] are at most constant in the

squeezed limit such that our result is fully correct at sixth order. Overall, we conclude that the galaxy

consistency relation is satisfied at tree- and one-loop level.

3.4 Consistency relation of galaxy correlation functions in redshift

space

Let us now discuss how the galaxy consistency relations are modified when going from real space to

redshift space where experiments are performed. The mapping from real-space position ~x to redshift

space ~s is given by [107]

~s = ~x+
1

H
(~vg · x̂)x̂, (3.4.1)

and the density field in redshift space is obtained by imposing mass conservation

[1 + δg(~s)]d3s = [1 + δg(~x)]d3x. (3.4.2)

In Fourier space the condition (3.4.2) reads

δD(~k) + δg,s(~k) =

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H[1 + δg(~x)]. (3.4.3)

By performing a spatial coordinate transformation ~x → ~x′ = ~x + ~n(τ) we know that, if δg(~x, τ) and

~v(~x, τ) satisfy the fluid equations, then δ′g(~x, τ) = δg(~x′, τ) and ~v′(~x, τ) = ~v(~x′, τ)− ~̇n do as well. This
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implies that for the new solution we have

δD(~k) + δ′g,s(
~k) =

∫
d3x

(2π)3
e−i

~k·~xe−i~v
′
g(~x)·x̂ (~k·x̂)/H[1 + δ′g(~x)]

=

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x′)·x̂ (~k·x̂)/H ei~̇n·x̂ (~k·x̂)/H[1 + δg(~x′)]

'
∫

d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H e−i[(~n·
~∇)~vg]·x̂ (~k·x̂)/Hei~̇n·x̂ (~k·x̂)/H

× [1 + δg(~x) + (~n · ~∇)δg(~x)]. (3.4.4)

This expression is exact. Expanding for small ~n(τ), we obtain

δD(~k) + δ′g,s(
~k) '

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H[1 + δg(~x)]

+
1

H

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H(~k · x̂)

×
{
−i
[
(~n · ~∇)~vg(~x)

]
· x̂+ i(~̇n · x̂)

}
[1 + δg(~x)]

+

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H (~n · ~∇)δg(~x)

= δD(~k) + δg,s(~k)

+
1

H

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H(~k · x̂)

×
{
−i
[
(~n · ~∇)~vg(~x)

]
· x̂+ i(~̇n · x̂)

}
[1 + δg(~x)]

+

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H (~n · ~∇) [1 + δg(~x)] . (3.4.5)

If we start from this expression, upon integrating by parts we find

δD(~k) + δ′g,s(
~k) = δD(~k) + δg,s(~k)

+
i

H

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H(~k · x̂)
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×
{
−
[
(~n · ~∇)~vg(~x)

]
· x̂+ (~̇n · x̂)

}
[1 + δg(~x)]

+
i

H

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H(~n · ~∇)

×
{
~vg(~x) · x̂ (~k · x̂)

}
[1 + δg(~x)]

+ i(~k · ~n) δg,s(~k). (3.4.6)

This gives

δD(~k) + δ′g,s(
~k) = δD(~k) + δg,s(~k) + i(~k · ~n) δg,s(~k)

+
i

H

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H(~k · x̂)

×
{[

(~n · ~∇)x̂
]
· ~vg(~x) + (~̇n · x̂)

}
[1 + δg(~x)]

+
i

H

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H[~vg(~x) · x̂][1 + δg(~x)]

× (~n · ~∇)(~k · x̂). (3.4.7)

At this point we can use the distant observer approximation, that is take the direction of the vector

~x fixed, since it varies little from galaxy to galaxy: galaxies are relatively close to each other on the

plane orthogonal to the line-of-sight. This amounts to taking ~∇x̂ ' ~0 and we finally obtain

δD(~k) + δ′g,s(
~k) = δD(~k) + δg,s(~k) + i(~k · ~n) δg,s(~k)

+
i

H

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/H(~k · x̂)(~̇n · x̂) [1 + δg(~x)]. (3.4.8)

Note that here the first line corresponds to the field transformation that gives rise to the consistency

relation, which in redshift space will contain new terms induced by the second line of this expression.

Using the explicit expression for ~̇n

~̇n(τ) = −~vL(τ) = −i ~q
q2
Hf(τ)δL(~q, τ), (3.4.9)
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we obtain,

δD(~k) + δ′g,s(
~k) = δD(~k) + δg,s(~k) +

~k · ~q
q2

δ(~q)δg,s(~k)

+ f
k

q
δ(~q)

∫
d3x

(2π)3
e−i

~k·~x e−i~vg(~x)·x̂ (~k·x̂)/Hµ~kµ~q[1 + δg(~x)]

= δD(~k) + δg,s(~k) +
~k · ~q
q2

δ(~q)δg,s(~k) + f
k

q
µ~kµ~qδ(~q)δg,s(~k) , (3.4.10)

where µ~k is the cosine between the vector k̂ and x̂, and we used the distant observer approximation to

take the cosines out of the integral in the second equality. We therefore obtain that in redshift space

the consistency relations reads

〈
δg,s(~q, τ)δg,s(~k1, τ1) · · · δg,s(~kn, τn)

〉′
q→0〈

δg,s(~q, τ1) · · · δg,s(~kn, τn)
〉′ =

− Pg,s(q, τ)

b1(τ) + f(τ)µ2
~q

n∑
a=1

D(τa)

D(τ)

(
~q · ~ka
q2

+ f(τa)
ka
q
µ~qµ~ka

) (3.4.11)

where we have used the linear relation [56]

δg,s(~q, τ) =
[
b1(τ) + f(τ)µ2

~q

]
δ(~q, τ). (3.4.12)

In particular, the consistency relation for the bispectrum in redshift space explicitly reads

〈
δg,s(~q, τ)δg,s(~k1, τ1) · · · δg,s(~k2, τ2)

〉′
q→0〈

δg,s(~k1, τ1)δg,s(~k2, τ2)
〉′ = − Pg,s(q, τ)

b1(τ) + f(τ)µ2
~q

×
[
~q · ~k1

q2

(
D(τ1)

D(τ)
− D(τ2)

D(τ)

)
+

(
D(τ1)

D(τ)
f(τ1)− D(τ2)

D(τ)
f(τ2)

)
k1

q
µ~k1

µ~q

]
. (3.4.13)
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3.5 Consequences of the symmetries for the modified theories of

gravity

Theories that (attempt to) explain the observed cosmic acceleration by modifying general relativity

often introduce a new scalar degree of freedom that is active on large scales, but is screened on small

scales to match experiments. All these theories introduce an extra light scalar field to modified gravity

in the infrared. Typical examples are represented by the f(R) theories [108], which are equivalent to

classic scalar-tensor theories [109] and the screening effect takes place through the so-called chameleon

mechanism [110], and by Galileon theories [111] where the extra degree of freedom is appropriately

dressed through higher-derivative interactions which decouple it form short-scale physics in accordance

with solar system tests.

The chameleon for example, has a potential such that it has long range forces outside of objects

while it is massive in their interior. Therefore, the existence of such a field is consistent with solar

system and fifth force tests but still can modify gravity at large distances. In the following we shall be

interested in two kinds of objects (typically galaxies): those sitting in some high density environment

which is itself screened and those residing in an environment where the density is at the cosmic mean

or even lower (voids), where the objects can be unscreened. In the first region the chameleon-like

field is stuck at the minimum of its potential, while in the second region it is excited. As a result,

matter in the first region will follow geodesics, whereas matter in the second region will experience a

non-gravitational force, due to scalar gradient, departing from the geodesic motion. The galaxy and

dark matter consistency relations are based on a coordinate transformation1 (in a matter-dominated

period) [77, 79]

τ ′ = τ, ~x′ = ~x+

∫ τ

dη ~vL(η) = ~x+
1

6
τ2~∇ΦL; (3.5.1)

we are basically removing the time-dependent, but homogeneous gravitational force via a change of

coordinates. This corresponds to an homogeneous acceleration transformation which allows to go to

a free-falling observer. Therefore, one expects a violation (or a spatial dependence) of the galaxy

consistency relation in modified gravity models where the screening mechanism is in action. Note

that the consistency relations do not rely on the Equivalence Principle in a strict sense as pointed out

in [81] but only require that large scale overdensities satisfy the same equations of motion. We shall

refer to a deviation from this as a violation of the “large-scale EP”.

Let us implement the presence of the chameleon-like field in the energy-momentum conservation

of the non-relativistic dark matter fluid

∇µTµν = fν . (3.5.2)

1Note that here the gradient of the long-wavelength mode ~∇ΦL is taken to be a constant vector in space, i.e. recall

that we are doing an expansion on the space variation of ΦL and keep only terms linear in its gradients.
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One finds

∂ρ(~x, τ)

∂τ
+ ~∇ · [ρ(~x, τ)~v(~x, τ)] = 0, (3.5.3)

∂~v(~x, τ)

∂τ
+H(τ)~v(~x, τ) + [~v(~x, τ) · ~∇]~v(~x, τ) = −~∇Φ(~x, τ)− q

ρ
~∇ϕ(~x, τ), (3.5.4)

where we assumed that

f i = −q∂iϕ(~x, τ), (3.5.5)

with ϕ(~x, τ) the scalar field that has environmental couplings that causes a violation of the “large-

scale EP” and q is the scalar charge density of the fluid. We follow the parametrization used in Ref.

[112] and we assume q = εαρ, where α is a constant and ε is a parameter that describes the degree

of screening (ε =0 for screened objects and ε = 1 for unscreened ones). We should supplement the

above equations with the Poisson equation for the gravitational potential Φ(~x, τ) and a corresponding

equation for ϕ(~x, τ) which we write as

∇2Φ(~x, τ) = 4πGa2ρ(~x, τ), (3.5.6)

∇2ϕ(~x, τ) =

(
∂V

∂ϕ
+ 8πGαρ(~x, τ)

)
a2, (3.5.7)

where V (ϕ) is the scalar potential of the chameleon-like field. We may now consider perturbations

ρ(~x, τ) = ρ(1 + δ(~x, τ)) and ϕ(~x, τ) = (ϕ + δϕ(~x, τ)) around the corresponding background values ρ

and ϕ and we find that these perturbations satisfy the equations

∂δ(~x, τ)

∂τ
+ ~∇ · [(1 + δ(~x, τ))~v(~x, τ)] = 0, (3.5.8)

∂~v(~x, τ)

∂τ
+H(τ)~v(~x, τ) + [~v(~x, τ) · ~∇]~v(~x, τ) = −~∇Φ(~x, τ)− εα~∇δϕ(~x, τ), (3.5.9)

∇2Φ(~x, τ) = 4πGa2ρδ(~x, τ), (3.5.10)

∇2δϕ(~x, τ) =
(
m2δϕ(~x, τ) + 8πGαρδ(~x, τ)

)
a2, (3.5.11)

where

m2(~x, τ) =
∂2V

∂ϕ2

∣∣∣∣
ϕ

(3.5.12)

is the mass of the scalar field. Restricting ourselves to the matter-dominated case, it can be checked
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that Eqs. (3.5.8-3.5.11) are invariant under the transformations

τ ′ = τ, ~x′ = ~x+ ~n(τ), (3.5.13)

δ′(~x, τ) = δ(~x′, τ ′), (3.5.14)

~v′(~x, τ) = ~v(~x′, τ ′)− ~̇n(τ), (3.5.15)

δϕ′(~x, τ) = δϕ(~x′, τ ′), (3.5.16)

Φ′(~x, τ) = Φ(~x′, τ ′)−
(
~̈n(τ) +H(τ)~̇n(τ)

)
· ~x. (3.5.17)

As a result, it is still possible to remove a long wavelength mode for the velocity perturbation ~vL(τ,~0)

by properly choosing the vector ~n(τ) in order.

Indeed, in the linear regime in momentum space the dynamical equations are given by

∂δL(~q, τ)

∂τ
+ i~q · ~vL(~q, τ) = 0, (3.5.18)

∂~vL(~q, τ)

∂τ
+H(τ)~vL(~q, τ) = −i~q

(
ΦL(~q, τ) + αεδϕ(~q, τ)

)
, (3.5.19)

q2ΦL(~q, τ) = −3

2
H2ΩmδL(~q, τ), (3.5.20)

q2δϕ(~q, τ) = −(m2δϕ)(~q, τ)a2 − 3αH2ΩmδL(~q, τ), (3.5.21)

where (m2δϕ)(~q, τ) is the Fourier mode of m2(~x, τ)δϕ(~x, τ). In particular consider the configurations

shown in figure 3.1, in a region outside the spherical over-density of radius R0 where the chameleon-like

field is not screened and its mass may be neglected, one has

δϕ(~q, τ) ' − 3

q2
H2ΩmδL(~q, τ), (3.5.22)

where the equation for the linear matter overdensity satisfies the equation2

δ̈L +H(τ)δ̇L − 4πGa2(1 + 2α2ε)ρδL = 0, r >∼ R0, (3.5.23)

with solution δ>L (τ) = D>(τ)/D>(τin)δ(τin) where D>(τ) is the growth function for (3.5.23).

On the contrary, in a screened region, where the field δϕ is massive enough so that ϕ is not excited,

but fixed to some constant background value within a sphere of radius R0. In such a case the equation

2We use dots to denote derivatives with respect to conformal time.
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Ro

(a) (b) (c)

Figure 3.1: Schematic representation of a large-scale spherical over-density of radius R0 where the chameleon

field is screened, and in the presence of a long-wavelength perturbation of the gravitational field (here represented

by the dark blue dashed line). The consistency relation will be given by the correlation of the modulation of the

power spectrum with the long-wavelength gravitational field. The case (a) corresponds to the case in which the

galaxies are all in the screened region, Eq. (3.5.29), case (c) corresponds to the case in which all the galaxies

are in the unscreened region, Eq. (3.5.30), and case (b) corresponds to the case in which there are both screened

and unscreened galaxies, Eq. (3.5.31).

for the overdensity is given by

δ̈L +H(τ)δ̇L − 4πGa2ρδL = 0, r <∼ R0 (3.5.24)

and it is solved by δ<L (τ) = D<(τ)/D<(τin)δL(τin).

Therefore ~vL will be different in the two regions r <∼ R0 and r >∼ R0. As a result, two different

vectors ~n’s will be needed to generate (or remove) the long wave velocity perturbation, one for r <∼ R0

and the other r >∼ R0: in the presence of modified gravity exploiting the screening effect, it is not

possible to find a spatially independent vector ~n(τ) and the consistency relations must be violated for

objects which are unscreened. This violation of the consistency relation should be attributed to the

fact that the effect of the long mode of the velocity cannot be reabsorbed completely by a change of

coordinates. As indicated in figure 1, galaxies residing in the same region (a) or (b) for example, fall

differently even if they are of the same mass, due to the difference in their scalar charge.

The vector ~n(τ) is chosen such as to have a free-falling frame, defined by

~̈n+H~̇n+ ~∇Φ = 0. (3.5.25)

The solution to this equation is

~̇n(τ) = −i ~q

a(τ)

∫ τ

dη a(η)Φ(~q, η) = i
~q

q2

1

a(τ)

∫ τ

dη a3(η)4πGρ̄δL(~q, η). (3.5.26)
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Then, by using Eqs. (3.5.23) and (3.5.24), we find that the free-falling frame is specified by

~n(τ) = i
~q

q2
δ<L (~q, τ) , r <∼ R0, (3.5.27)

~n(τ) = i
~q

q2

δ>L (~q, τ)

1 + 2α2ε
, r >∼ R0, (3.5.28)

where < and > denote quantities respectively in the two regions r <∼ R0 and r >∼ R0. This notation

may look odd at first sight but we use it to indicate that linear modes grow differently in screened and

unscreened regions as they may or may not feel the presence of the chameleon field. Thus, although

the wavelenth q−1 is larger than the two regions, the linear overdensity amplitude is different in

these regions and for local observers, this linear mode is like a background average density field with

different amplitudes in the two regions. This is also connected to the fact that there is no universal

free falling frame according to (3.5.27,3.5.28). Consider for example n-galaxies within a sphere of

radius R >∼ R0 much smaller than the long wavelength mode of size ∼ 1/q and centered at the origin

of the coordinates. Then, if all points are at distances r <∼ R0, then the consistency relation for the

n-point correlator is the one we already described

〈
δ<g (~q, τ)δ<g (~k1, τ1) · · · δ<g (~kn, τn)

〉′
q→0

=

−
n∑
a=1

~q · ~ka
q2

〈
δ<g,L(~q, τ)δ<L (~q, τa)

〉〈
δ<g (~k1, τ1) · · · δ<g (~kn, τn)

〉′
. (3.5.29)

If instead all points are at r >∼ R0, we shall have in this case

〈
δ>g (~q, τ)δ>g (~k1, τ1) · · · δ>g (~kn, τn)

〉′
q→0

=

−
n∑
a=1

~q · ~ka
q2

〈
δ>g,L(~q, τ)δ>L (~q, τa)

〉
1 + 2α2ε

〈
δ>g (~k1, τ1) · · · δ>g (~kn, τn)

〉′
. (3.5.30)

The case in which galaxies are both screened and unscreened is more complex3, however we expect a

violation of the consistency relation due to the difference in the growth factor. Indeed, consider those

configurations in which m galaxies are at r >∼ R0 and (n−m) are at r <∼ R0, the consistency relation

3At the boundary between the over-dense region and the exterior waves of the scalar field will be generated and

might propagate both to the interior and exterior. We shall ignore these effects since we expect the scalar field to have

small oscillations around the static solution deep inside the screened region, and in the unscreened region we expect the

scalar field to go to a constant far from the boundary. Close to the boundary our results might not apply, but one can

expect even larger violations to the consistency relation due to the gradient of the scalar field being large.
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will be written as

〈
δg(~q, τ)δ>g (~k1, τ1) · · · δ>g (~km, τm)δ<g (~km+1, τm+1) · · · δ<g (~kn, τn)

〉′
q→0〈

δ>g (~k1, τ1) · · · δ>g (~km, τm)δ<g (~km+1, τm+1) · · · δ<g (~kn, τn)
〉′ =

−

 m∑
a=1

~q · ~ka
q2

〈
δg,L(~q, τ)δ>L (~q, τa)

〉
1 + 2α2ε

+
n∑

a=m+1

~q · ~ka
q2

〈
δg,L(~q, τ)δ<L (~q, τa)

〉 .

Notice that the right-hand side for the configuration (3.5.31) is not vanishing even for correlators at

equal time for the n-points. This is due to the fact that the long wavelength chameleon-like field

correlates only with the overdensity located in the unscreened region, the one in the screened region

being completely independent of the chameleon-like perturbation. For instance, for n = 2 and m = 1,

the corresponding bispectrum reads

〈
δg(~q, τ)δ>g (~k1, τ)δ<g (~k2, τ)

〉′
q→0〈

δ>g (~k1, τ)δ<g (~k2, τ)
〉′ =

[
2α2ε

1 + 2α2ε

〈
δg,L(~q, τ)δL(~q, τ)

〉
−
〈
δg,L(~q, τ)∆δL(~q, τ)

〉] ~q · ~k1

q2
,

(3.5.31)

where δL, ∆δL are the formal quantities δL = (δ<L + δ>L )/2 and ∆δL = (δ<L − δ
>
L ). The latter is also

suppressed by α2ε which therefore gives an estimate of the violation of EP.

Consider now, for instance, a cluster of galaxies of mass M ∼ 1014.5÷15M� and radius R0 ∼ (2÷10)

Mpc. Inside it Φcl = −GM/R0 ∼ −10−5 and one has [112]

ϕ

2α
� 10−6 <∼

GM

R0
, (3.5.32)

where ϕ is the asymptotic background value of the scalar ϕ and the upper bound comes from the

solar system [113]. In such a dense object the scalar field is screened, ε ' −ϕ/(2αΦcl) <∼ 10−1, and

we may take (n−m) galaxies residing there. Away from the cluster there might be small m galaxies

with Φg ∼ −10−8 which are unscreened (therefore preferably residing in voids) and ε ' 1. For this

configuration, one expects to see a violation of the consistency relation as predicted by Eq. (3.5).

Notice also that our considerations hold as long as the Compton wavelength m−1 associated to
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the chameleon-like field is larger than the scale where perturbations may be considered in the linear

regime. At redshift z = 0, there is a strong upper bound of about 1 Mpc on such Compton wavelength

m−1(a0) coming from the solar system tests [114, 115], implying that the desired effects on the large-

scale structure are restricted to non-linear scales. However, at higher redshifts a Compton wavelength

of the form m−1(a) = m−1(a0)(a/a0)p with p < −3 satisfies the experimental constraints and can

lead to a modified gravity regime on large linear scales [114]. This scaling of m is faster than the

one deduced from the Lifshitz scaling of the scale kNL(a) ∼ a−2/(n+4) (during matter domination)

at which cosmological perturbations become non-linear [103, 77] and the condition m(a) < kNL(a) is

easily attained going back in time.

An interesting question is how well one can constrain these theories through the galaxy consistency

relation. Though an accurate estimate is beyond the scope of this chapter, let us try to make a simple

back-of-the-envelope computation by noting that the form of the bispectrum (3.5) is almost the same

one as obtained in the galaxy local bias model in the presence of a primordial local non-Gaussianity

[116] (see also Ref. [78]). Supposing that the combination α2ε is smaller than unity, one needs

basically to identify (barring coefficient of order unity and assuming redshift z = 0) α2ε(~q · ~k1) with

fNLH
2
0 , where fNL is the non-linear coefficient parametrizing the level of non-Gaussianity and H0

is the present Hubble rate. The Fisher matrix analysis applied to the galaxy (reduced) bispectrum

performed in Ref. [116] has shown that one can measure fNL up to O(10) for k1 ∼ kmax ∼ 0.1h

Mpc−1, being kmax the smallest scale included in the analysis. Therefore, again very roughly, we

expect to be able to measure the modification of gravity of the type we consider at redshifts z >∼ 1 of

the order of O(10)(H0/ kmax) ∼ 10−3(0.1hMpc−1/kmax), where we have taken q ∼ 102H0.

Similar considerations apply also to more conventional modifications of gravity induced by scalars,

like Brans-Dicke theory, or dilaton gravity. In these theories, in spite of the fact that there is a

universal coupling of the scalar to matter, there is a violation of the strong EP because a gravitational

experiment can yield different results in different points in spacetime. However, this violation is

subleading in the post-Newtonian approximation for non-relativistic matter and it can only give order

one effects in strongly bound systems as binary systems and black holes [117]. To be more precise

here, let us consider an action of the general form

S =

∫
d4x
√
−g
(
f(R,φ,X) + Lm

)
, (3.5.33)

where f(R,φ,X) is a function of the Ricci scale R, a scalar φ and its kinetic term and X = −1
2∂µφ∂

µφ.

This form of the action describes many models of modified gravity like Brans-Dicke theory, dilaton

gravity, f(R) and many others. In this general class of models, the non-relativistic matter still satisfies

Eqs.(1.3.2-1.3.4), where now Ωm = 8πGeff ρ̄a
2/3H2 and Geff is an effective Newton constant which

encodes the modification of gravity given by [118]

Geff(τ) =
1

8πF

f,X + 4

(
f,X

k2

a2

F,R
F +

F 2
,φ

F

)
f,X + 3

(
f,X

k2

a2

F,R
F +

F 2
,φ

F

) , (3.5.34)
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where F = ∂f
∂R . Therefore, when

f,X
k2

a2

F,R
F
� 1, (3.5.35)

the effective Newton constant is only time dependent and it just modifies the temporal dependence

of the local growth function of the overdensity evolution. In this case, still, one may generate a long

wavelength velocity mode by a vector ~n(τ) as in Eq. (1.4.13). In the opposite case, Eq. (3.5.35) is

not satisfied and Geff turns out to be space-dependent. The overdensity δ turns out to be also space-

dependent as well and there may be no ~n(τ) to generate a long wavelength velocity mode within the

sphere of radius R0. To see when this is possible, let us mention that there is a crossover scale when

the k-dependence of Geff starts become strong and which is defined by

R0 =
a

k
≈
(
F,R
F
f,X

)1/2

. (3.5.36)

If R <∼ R0, one may still define ~n(τ) and so long wavelength modes may be generated. On the other

side if R >∼ R0, i.e. modification of gravity appears within the sphere, then there is no globally defined

~n(τ) inside the sphere of radius R, which will cause a modification of the consistency relation. So the

lesson here is that violation of the consistency relations is a signal of the spatial dependence of the

effective Newton constant Geff and of a modification of gravity at large scales.

We should also note that we have not considered here intrinsic violation of the EP, i.e. at the

microscopic level [119, 120, 121, 122]. One for example may consider the case of extra scalar, vector

or tensor couplings to only one component, say baryonic matter or dark matter. Such a model has

been studied in Ref [84]. It has been recently realized that in the modified gravity models where

there is an efficient screening phenomenon to make the set-up experimentally consistent there might

also be order unity violation of the EP [112]. Such possibilities has been considered recently in Ref.

[123] where it has been pointed out the interesting feature that if a large scale velocity bias exists

between the different components new terms appear in the consistency relations with respect to the

single species case.

3.6 Summary

In this chapter, we have discussed the implications of the symmetry enjoyed by the Newtonian equa-

tions of motion describing the dark matter and galaxy fluids coupled through gravity. The fact that

such symmetry applies to both galaxies and dark matter is particularly welcome because one can

reach conclusions which are independent from the galaxy bias. On the contrary, one can use the

power of the symmetry to deduce relevant informations on the theory of galaxy bias. In particular,

we have shown that an unavoidable consequence of the symmetries at our disposal is that the bias

is expected to be non-local. Furthermore, we have studied the modification (or violation) of the

consistency relation in the case in which gravity is modified because of the presence of extra degrees

of freedom propagating unscreened at large cosmological distances. Let us reiterate that our results



58 3 – Symmetries and CR : non-local bias and modified gravity

are based on the assumption that the galaxy number is conserved. Eventually, one would like to

extend our considerations by accounting for phenomena like halo formation and merging, nevertheless

if the modification in the proper equations are such that the symmetries studied in this chapter are

preserved, e.g. if the new terms are a local function of the dark matter density, then our considera-

tions remain valid. Also, apart from applying to non-linear scales and directly to galaxies, our results

have the virtue of not being sensitive to the single stream approximation and to be valid also in the

presence of velocity bias and/or vorticity (which is generated at higher-order in perturbation theory).

Assuming that primordial perturbations satisfy the consistency relations of [14], the observation of

a deviation from the consistency relation for the bispectrum of galaxies, Eq. (3.2.12), could signal

either the inapplicability of the Eulerian bias model even including “non-local” terms as in Eq. (3.3.8)

or of a modification of theory of gravity.



Chapter 4

Consistency relation for the observed

galaxy bispectrum

4.1 Observed quantities and LSS surveys

The enhanced precision of upcoming LSS surveys requires high accuracy theoretical predictions for the

observed quantities rather than theoretically convenient quantities. Moreover, on the very large-scales

probed by these surveys, the Newtonian description of galaxy clustering is not valid.

The relativistic description of the observed galaxy number density, in terms of the observed redshift

and angle of galaxies, have been developed up to first order in perturbation theory [65, 20, 64, 66, 124],

which has allowed them to compute the impact of relativistic effects on the galaxy power spectrum.

The galaxy bispectrum contains much additional information not present in the power spectrum

as there are many more modes and it suffers from different systematics. The computation of this

bispectrum in principle needs the use of second order perturbation theory which is very involved and

non-trivial. Unlike the CMB, where the non-linearities are small and therefore (for Gaussian initial

conditions) the fluctuations are nearly Gaussian, the large-scale structure statistics is intrinsically

non-Gaussian due to the gravitational collapse. One needs therefore to go beyond the two-point

statistics and hence beyond the linear level in perturbation theory. Recently, several groups have

performed the second-order calculation [68, 67, 125, 19].

The expression for the observed galaxy three-point correlator (bispectrum) obtained from the

second-order calculation is rather complicated and has contributions from various terms. Moreover

the region of validity of this calculation is only in the weakly non-linear regime.

In this chapter we derive a consistency relation for the observed galaxy bispectrum that can be

obtained in a non-perturbative manner in the squeezed limit. This consistency relation allows to

express the observed bispectrum in terms of the observed galaxy power spectrum. This is exactly

computable since the effect of a long mode on the short-scale dynamics is simply a change of frame

(or a residual gauge transformation).

The advantage of using the consistency relations in the large-scale structure is that they are directly

valid for the observed (and therefore gauge-invariant) quantities, in the same way they are for the

CMB bispectrum [71, 70, 11, 74], and this is what we are going to exploit in this chapter. Our results

are useful as a consistency check for the analytical second-order computations of the bispectrum of

59
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the observed galaxy overdensity and provide a simple and easy way to produce the squeezed limit.

Furthermore, since some of these relativistic effects in galaxy number counts give rise to the three

point function that mimics that of a local primordial non-Gaussianity (for a review, see Ref. [126]),

removing their contribution is important for obtaining constraint on primordial non-Gaussianity from

galaxy surveys. We shall estimate the effective local non-Gaussianity parameter from the non-linear

General Relativity (GR) corrections that we derive. The exact value depends on the redshift, the

magnification bias, see figure 4.2. At redshift of z = 1.5 and in the absence of the magnification bias

we obtain fGR
NL ' −0.7.

We should however point out that for practical purposes, on sub-horizon scales, other terms

dominate the squeezed limit. It is only when the long mode is super-Hubble that this relation gives

the exact amount of local NG from relativistic effects. We shall see in chapter 5 that these terms can

also give a large contamination to the estimated local NG. However, our expression is still valid in the

sense that we capture the scaling of the galaxy bispectrum as one takes the squeezed limit 1/λL → 0

up to terms H2λ2
L and H/λL with respect to the tree level PT bispectrum.

This chapter is organized as follows. In section 4.2, we review the coordinate transformation

that induces the long wavelength mode and continue in section 4.3 to describe the effect of the long

wavelength perturbation mode on the observed galaxy overdensity. We use this result to calculate the

bispectrum in the squeezed limit by correlating two short-mode overdensities with a long wavelength

mode. We then decompose the bispectrum in terms of spherical harmonics in section 4.4 and in

section 4.4.1 we discuss our findings in the distant observer approximation. In section 4.5 we estimate

the value of the effective fGR
NL induced by these relativistic corrections. Finally, we conclude in section

4.6.

4.2 Adiabatic modes and residual gauge symmetry

In this section, we compute the squeezed limit of the galaxy number counts overdensity ∆g. As seen

before, the squeezed limit of an (n+ 1)-point correlation function in which one of the scales is much

larger than the other n can be written as the correlation of a long-wavelength mode with the n-point

function in the presence of that long mode, e.g.

〈
Φ(λL)∆g(λ1) . . .∆g(λn)

〉
λL�λi

=
〈

Φ(λL)
〈

∆g(λ1) . . .∆g(λn)
〉
L

〉
, (4.2.1)

where Φ is Bardeen’s potential, λ is the characteristic scale of each variable, and 〈· · · 〉L is to be inter-

preted in the conditional probability sense: it is an average given the condition that when smoothed

at large-scales Bardeen’s potential takes the value Φ(λL).

It thus suffices to compute the effect of the long-wavelength potential on the short scale dynamics.

This task is greatly simplified by the fact that on large enough scales, one can approximate Bardeen’s

potential as a Taylor expansion

ΦL(τ, ~x) = ΦL(τ, ~xE) + (~x− ~xE) · ~∇ΦL(τ, ~xE) , (4.2.2)
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where we have centered the Taylor expansion around an arbitrary point close to where we evaluate the

short-scale n-point function. We shall now show that in a ΛCDM universe this large-scale potential is

a gauge mode: an appropriate coordinate transformation can set these first two terms of the Taylor

expansion to zero. We shall summarize the derivation given in Refs. [14, 79].

We shall work to first order in the gradient of the long mode, which means we shall ignore its

curvature ∇2ΦL and tidal forces ∂i∂jΦL. Though these effects are in general large at sub-horizon

scales, their effect would not be confused in observations with a violation of the consistency relation

connecting the squeezed limit of the 3-point function with the power spectrum. For simplicity, we also

choose to be perturbative in the short-mode potential ΦE and velocities ∼ ∂iΦE which are expected

to be small even at very small scales. Note that we never assume the short-mode density ∼ ∇2ΦE to

be small and in this sense we are non-perturbative.

Let us use the perturbed metric in the Poisson gauge (1.2.2) (with scalar perturbations only for

simplicity) and consider the following coordinate transformation

τ 7→ τ̃ = τ + ε(τ) + ~x · ~ξ′(τ) + α(τ, ~x) , (4.2.3)

xi 7→ x̃i = xi(1 + λ+ 2~x ·~b)− bi~x2 + ξi(τ) (4.2.4)

where α satisfies ~∇2α = −2∂i(Φ + Ψ)ξ′i, λ and ~b are constants, and ε and ~ξ are functions of time.

The key point is that, after performing this transformation, the metric is still of the form given

by Eq. (1.2.2). The potentials are now

Φ̃ = Φ +
[
ε′ + ~x · ~ξ′′ +H(ε+ ~x · ~ξ′)

]
, (4.2.5)

Ψ̃ = Ψ−
[
λ+ 2~x ·~b+H(ε+ ~x · ~ξ′)

]
. (4.2.6)

Note that the transformation leaves the dynamics unchanged, while it changes perturbation quantities.

Therefore, since these perturbations are still described by the same gauge condition, the symmetry at

issue is a non-linearly realized symmetry. The transformation we have performed is a residual gauge

symmetry of the Poisson gauge1. This means that even when one completely fixes the gauge to be

the Poisson gauge in which the quantities appearing in the metric are Bardeen’s potentials, there is

a residual gauge freedom under some coordinate transformations that do not leave the background

invariant, such as Eqs. (4.2.3, 4.2.4). From now on we shall ignore α in Eq. (4.2.3) since its effect is

of higher order under our approximations.

An arbitrary coordinate transformation that does not leave the background FLRW metric invariant

can be interpreted as inducing perturbations of the metric which would have no physical meaning

whatsoever. However, in a context where the curvature perturbation ζ is conserved, such as for

ΛCDM even deep inside the horizon, the transformations (4.2.3, 4.2.4) can be chosen to solve the

large wavelength limit of Einstein’s equations. In order to satisfy this, the transformation parameters

1A residual gauge symmetry is of course there for any other gauge different from the Poisson one, which we have

chosen because it is usually adopted as a starting point in the computation for the large-scale structure.
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obey the following conditions [14, 79],

vL = −(ε+ ~x · ~ξ′) , (4.2.7)

where v is the velocity potential vi = ∂iv. We see that ~ξ′ corresponds to a long-wavelength velocity

mode. Additionally we require,

ε′ + 2Hε = −λ , ~ξ′′ + 2H~ξ′ = −2~b . (4.2.8)

In order to see when these conditions are consistent, we note that from the definition of the comoving

curvature perturbation ζ ≡ −Ψ +Hv and from equation (4.2.6) we have

ζL = λ+ 2~x ·~b . (4.2.9)

Thus, a long-wavelength solution is a gauge mode if on those large-scales the comoving curvature

perturbation is constant in time. This means that the long-wavelength limit of a physical solution

of Bardeen’s potentials is equivalent to a coordinate transformation and it is what Weinberg calls

adiabatic modes [127]. Indeed, since ζ is conserved outside the sound horizon which is nearly zero in

a ΛCDM universe, this would hold up to scales where baryonic physics start being important. Note

that this constancy of ζ must be satisfied only by the long-wavelength mode for our arguments to be

valid; the short-wavelength modes can be at any scale.

4.3 Observed galaxy overdensity in the presence of long mode

In this section we compute the effect of a large-scale mode approximated by a constant plus a gradient

as in Eq. (4.2.2). We start by defining the galaxy number density, we then include the effect of the

long mode and we show that if the long mode has a characteristic scale that is much larger than all

other scales in the problem (including the distance between the observer and the galaxies), its effect

is zero as expected.

4.3.1 Galaxy number density

In galaxy surveys, the observed galaxy number density at a given redshift and angle on the sky nobs
g ,

is obtained by counting the number of galaxies, dNg within the observed volume, dV = dΩdz

nobs
g (z, n̂) =

dNg(z, n̂)

dV
. (4.3.1)

From here, one defines the galaxy number overdensity ∆g as

nobs
g (z, n̂) ≡ n̄g(z)(1 + ∆g(z, n̂)) . (4.3.2)
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where n̄g(z) ≡ 〈nobs
g (z)〉 is the observed number density of galaxies averaged over the angle at a fixed

redshift.

In order to study the effect of a long-wavelength mode on the galaxy number density, we must

first relate it to the physical density. In the inhomogenous universe, the observed redshift and the

propagation direction of the photons differ from the true redshift and angle. Therefore the observed

volume defined in terms of the observed redshift and solid angle differs from the physical volume

occupied by the source

dVphys = dVobs(1 + δV ) (4.3.3)

Thus the observed number density of galaxies which is obtained by counting the number of galaxies

within the observed volume differs from the physical number density by a factor due to the volume

distortions

nobs
g (z, n̂) = nphys

g (z, n̂)(1 + δV ) . (4.3.4)

Moreover, galaxy surveys are flux limited, i.e., only galaxies above some threshold luminosity are

observed. This threshold luminosity is inferred from the observed flux

L̂ = 4πD̄2
l (z)fobs, (4.3.5)

where the luminosity distance D̄l(z) is that in a homogenous universe and L̂ is the inferred luminosity.

However the physical luminosity of the galaxy is different than the inferred luminosity since the

luminosity distance to the galaxy is not that of the homogenous universe and the photon propagation

is affected by the fluctuations along the path

Lphys = 4πDl(z)2fobs = 4πD̄l(z)2fobs(1 + δDl)2 = L̂(1 + δDl)2 (4.3.6)

Therefore the observed number of galaxies at observed redshift z, angle n̂ and above a threshold L is

related to the physical number count as

nobs
g (z, n̂, L̂) = nphys

g (z, n̂, L̂(1 + δDl)2)(1 + δV )

= nphys
g (z, n̂)(1 + δV )(1 + tδDl) (4.3.7)

where t = 2
d ln n̄phys

g (z)
d lnL . In writing the second line in Eq. (4.3.7), as explained in the beginning of

this section, we made two assumptions: first we only kept the linear contributions to the luminosity

distance and volume perturbations. This is because if we neglect the strong lensing, the perturba-

tions in the luminosity distance and volume are proportional to the gravitational potential and its

gradient and thus their higher order contributions are subdominant with respect to the higher order

contribution of the matter density. Thus we neglect these terms. Second in writing the contribution
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from the magnification bias, we assumed that the perturbations and the background have the same

dependence on the luminosity.

4.3.2 Long-short couplings

We now wish to compute the galaxy over-density measured in a small patch of the sky and in a small

range of redshifts, in the presence of a mode of Bardeen’s potential which is much larger than the size of

this patch. Following the arguments of section 4.2, this mode should have no effect on the local physics

of that small region since it is equivalent to a coordinate transformation. However, we take here this

large-scale mode to have a characteristic size which is smaller than the distance between the observer

and the small patch, which means that it will indeed have an effect on the correlations measured by

the observer. This effect is purely due to the fact that we measure the galaxy correlation functions in

terms of the redshift and angular position of the galaxies rather than the physical separation between

galaxies and their proper time. For this reason this non-zero correlation is a “projection effect”.

In the presence of the long mode, the observed redshift and angle of the galaxies are modified with

respect to those in the absence of long mode. First let us compute the effect of the large-scale mode

on the observed angular position of the galaxy

n̂iO ≡
−T iµPµ(τO)√
δjkT

j
νP νT kη P

η
, (4.3.8)

where T iµP
µ = (δiµ + uO iuOµ)Pµ is the projection of the photon 4-momentum Pµ, orthogonal to the

observer’s 4-velocity uO. At linear order the solution to the photon geodesic gives

n̂O = n̂E + ~v⊥O −
∫ τE

τO

dτ ′ ~∇⊥
(
Φ(τ ′) + Ψ(τ ′)

)
, (4.3.9)

where the direction of emission is defined as n̂E ≡ −P i(τE)/
√
δjkP j(τE)P k(τE) and the superscript ⊥

denotes a projection orthogonal to n̂E , e.g. vi⊥ = (δij + n̂iE n̂
j
E)v

j . The second term on the right hand

side corresponds to an aberration due to the motion of the observer and the last term is the lensing

of the photon trajectory.

The presence of the large-scale mode will contribute to the lensing integral in Eq. (4.3.9), and it

will also cause the photon to be emitted in a different direction (in the coordinate system with the

long mode). This change in the direction of emission can be computed simply by remembering that

at the point of emission the large-scale mode is equivalent to a coordinate transformation which will

transform the vector P i(τE) giving

n̂E 7→ ˆ̃nE = n̂E − ~ξ′⊥(τE) + 2~b⊥(τE − τO) , (4.3.10)

where we used the fact that at zeroth order ~xE = −n̂E(τE − τO). Writing ~ξ and ~b in terms of the

potentials as in Eqs. (4.2.7) and (4.2.9) and isolating the contribution of the long mode to the lensing
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integral in Eq. (4.3.9) we obtain

ˆ̃nO = n̂O − ~v⊥O + (1 +H(τE − τO))~v⊥L (xE)

− (τE − τO)∇⊥ΨL(xE) +

∫ τE

τO

dτ ′∇⊥
(
ΦL(τ ′) + ΨL(τ ′)

)
. (4.3.11)

The redshift is defined as the ratio of the energies of a photon at emission and observation

(1 + z) ≡
Pµ(τE)uE µ
P ν(τO)uO ν

,

and a calculation analogous to the one performed for the direction gives

z̃ = z + (1 + z)

[
HvL(xE)−HOvO + ΦL(xE)− ΦO − n̂ · (~vL(xE)− ~vO)

−
∫ τE

τO

dτ ′ (Φ′L + Ψ′L)(τ ′)

]
. (4.3.12)

The observed number density of galaxies in the presence of the long mode is therefore given by

nobs
g (z, n̂, L̂)

∣∣∣
L

= nphys
g (z + ∆z, n̂+ ∆n̂)(1 + δV (L))(1 + δV (S))

× (1 + tδD(S)
l )(1 + tδD(L)

l )

= n̄g(z) [1 + ∆g(z + ∆z, n̂+ ∆n̂)]

×
(

1 + e∆z + δV (L) + tδD(L)
l

)
, (4.3.13)

where2 e ≡ d ln n̄phys
g

dz , and ∆g has contributions from the luminosity distance and volume perturbations

due to the short modes as well as the density perturbations due to the short modes. Note that

∆z = z̃ − z and ∆n̂ = ˆ̃n − n̂ are the corrections to the observed angle and redshift due to the long

2In the literature the evolution bias is often defined as fevo ≡
d ln(a3n̄phys

g )

HdτE
, therefore fevo = 3− e/a.
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mode. Expanding Eq. (4.3.13) linearly the galaxy number overdensity is finally given by

∆g(z, n̂)|L = ∆g(z, n̂) + (1 + ∆g(z, n̂))
(
e∆z + tδD(L)

l + δV (L)
)

+ ∆z
∂

∂z
∆g(z, n̂) + ∆n̂ · ∂

∂n̂
∆g(z, n̂) +O

(
ΦL

λ2
LH2

∆g

) (4.3.14)

For our purposes it suffices to use the perturbative expressions for the quantities δV (L) and δD(L)
l

at first order [128, 20, 65]

δV (L) =− 2(ΦL + ΨL) +
1

H
Ψ′L +

(
H′

H2
+

2

rH

)
ΦL

+

(
−3 +

H′

H2
+

2

rH

)(
−~vL · n̂+

∫ τO

τ
dτ ′(Φ′L + Ψ′L)(τ ′)

)

+

∫ τO

τ
dτ ′
(

2

r
− r − r(τ ′)

rr(τ ′)
∆Ω

)
(ΦL + ΨL)(τ ′) , (4.3.15)

and

δD(L)
l =

(
1

rH
− 1

)(
−~vL · n̂+ ΦL +

∫ τO

τ
dτ ′ (Ψ′L + Φ′L)(τ ′)

)

+
1

2

∫ τO

τ
dτ ′
[

2

r
− r − r(τ ′)

rr(τ ′)
∆Ω

]
(ΨL + ΦL) (τ ′)−ΨL , (4.3.16)

where all the quantities without an argument are evaluated at the point of emission. Note that we

have kept the term containing the angular Laplacian ∆Ω as it actually is non zero when applied to a

constant gradient of the gravitational potential.

The last step we need to take is to correlate the expression (4.3.14) with another short-scale ∆g and

a long-scale one, and go to harmonic space to obtain the consistency relation of the galaxy three-point

function in the squeezed limit

〈
∆L

g (z1, n̂1)∆g(z2, n̂2)∆g(z3, n̂3)
〉

=

[〈
∆L

g (z1, n̂1)d(z2, n̂2)
〉
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+
〈

∆L
g (z1, n̂1)∆z(z2, n̂2)

〉 ∂

∂z2
+
〈

∆L
g (z1, n̂1)∆n̂(z2, n̂2)

〉
· ∂

∂n̂2

]

×
〈

∆g(z2, n̂2)∆g(z3, n̂3)
〉

+ (2↔ 3) , (4.3.17)

where we have introduced

d ≡ (e∆z + tδD(L)
l + δV (L)). (4.3.18)

Let us close this section by commenting on the corrections to Eq. (4.3.14). In general, we also ex-

pect corrections going like the curvature induced by the long-wavelength mode, that is (ΦL∆g/λ
2
LH2).

Parametrically, these are subdominant with respect to the lensing and redshift space distortions which

behave as (ΦL∆g/λLλSH2), but they are larger than the other relativistic corrections like the one we

are computing. However as we shall discuss in section 4.4.2, there are additional suppressions for the

lensing and the redshift space distortions.

In spite of this, our result is a consistency relation in the following sense : If the evolution of

the Universe is adiabatic (single-field inflation and a subsequent evolution that conserves ζ on the

scales of interest) our relation captures the terms that scale as H2λ2
L and HλL as one takes the

squeezed limit of the galaxy bispectrum. The terms we computed could be mistaken for a non-zero

local non-Gaussianity, which corresponds to a physical coupling between ΦL and ∆g, or for a signal

of violation of the Equivalence Principle if they are not taken into account. Furthermore, there are

several approaches to compute these curvature terms in the literature, which correspond to computing

the evolution of the short modes in a curved universe [88, 129, 130] (see also [10, 83]) but they can

only be approximate since it is in general impossible to analytically compute the effect of curvature

on the evolution of these non-perturbative short modes.

Note that in real observations, one counts the number of galaxies within a finite redshift bin which

has two effects. First, the characteristic scale of the short mode is determined both by its angular

scale and the assumed width of the redshift slices. Therefore it makes sense to study the scaling of

the bispectrum as function of the long mode only if λL � δz/H. Second as we shall explain in more

details in section 4.4, in order to relate the theoretically calculated bispectrum to the one measured in

a survey, one needs to integrate over the window functions describing the redshift bins. Note that the

consistency relation does not break down when performing this integration as long as the characteristic

spatial scale of the redshift bin is smaller than the characteristic scale of the long-wavelength mode.

This is easily achieved especially for large redshifts z & 1.

4.3.3 Validity checks

Let us now perform various validity checks on our results.

• We expect a large mode to have no observable effect when its scale is larger than all the scales

in the problem, i.e. the distance between the source galaxies and the distance between them

and the observer. This is similar to what happens for CMB [70, 74]. One way to check that our

calculation is consistent with this fact is to perform a coordinate transformation that induces
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such a large-scale mode and check that the galaxy number over-density remains invariant. Let

us begin by checking that this is indeed the case for n̂O, setting the observer’s position to zero

~xO = ~0, we obtain

ˆ̃nO = n̂O + ~ξ′⊥(τO)− ~ξ′⊥(τE) + 2(τE − τO)~b⊥ +

∫ τE

τO

dτ ′
(
~ξ′′(τ ′)− 2~b

)⊥
, (4.3.19)

where all the terms of the transformation cancel. An analogous argument holds for the redshift

z, and we obtain

z̃ = z + (1 + z)

[
ε′(τE) + ~xE · ~ξ′′(τE) + n̂ · ~ξ′(τE)− ε′(τO)− n̂ · ~ξ′(τO)

−
∫ τE

τO

dτ ′
(
ε′(τ ′) + ~x · ~ξ′′(τ ′)

)′ ]
, (4.3.20)

where all the terms in the parenthesis cancel after writing the partial time derivative in terms

of a total derivative in the integral ∂τ = d/dτ + n̂ · ~∇. For these cancellations to happen

it is important to replace the Bardeen’s potentials Φ and Ψ inside the integral by an exact

constant plus a gradient, Eq. (4.2.2), which does not hold if the long mode oscillates between

the observer and the source, i.e. if the characteristic scale of the long mode is smaller than the

distance between the observer and the source. We thus obtain

nobs
g (z, n̂)|L = n̄g(z) (1 + ∆g(z, n̂))

(
1 + δV (L) + 2tδD(L)

l

)
. (4.3.21)

Finally, the average in this equation n̄g assumes that the observer has access to the large-

scale mode, such that the terms in the second parenthesis give zero when averaged over angles.

However, when the mode is much larger than all the scales in the problem, the angular averages

of these terms do not vanish,

〈nobs
g (z, n̂)〉|L = 〈n̄g(z)〉

(
1 + 〈δV (L)〉+ 〈2tδD(L)

l 〉
)
, (4.3.22)

but they are zero-modes on the observed patch and they can be reabsorbed in the average of

the galaxy number density

nobs
g (z, n̂)|L = 〈nobs

g (z, n̂)〉|L (1 + ∆g(z, n̂)) . (4.3.23)

We thus conclude that a mode with a characteristic scale much larger than all the scales in

the problem has no effect on the ∆g. We remark once more that when the large-scale mode

is smaller than the distance between the source and the observer, these contributions will all be
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non-zero.

• As a further check of the validity of our calculation we take the super-horizon limit in equation

(4.3.14) and work to first order in the long modes and zeroth order in the short modes. We

expect to obtain the same results as the linear calculation of Ref. [65, 20, 64, 66], which in a

pressureless medium is given by

∆(1)
g = bδm,sync + (−eδzsync + tδDL + δV ) ,

where δm,sync and δzsync are the matter over density and redshift perturbations in the syn-

chronous gauge. Indeed, ∆z = −δzsync and at super-horizon scales δm,sync is suppressed by

1/λ2
LH2, and we recover our result.

4.4 Spherical harmonic decomposition

In both N-body simulations and data from galaxy surveys, the three-point function is often measured

and analysed in Fourier-space. This is a convenient decomposition if the galaxies have similar redshifts.

However here we are interested in large-scales for the long mode where the relativistic effects can be

important. Hence a single Fourier mode of large wavelength may include galaxies with significantly

different redshifts. Due to the evolution of the Universe, there is no translation invariance in the radial

direction of the redshift space, i.e. z. Therefore the Fourier space bispectrum is not proportional

to the Dirac delta: triangles do not close. We thus choose to decompose the three-point function in

spherical harmonics3, which could prove advantageous or even necessary for this type of analysis,

〈
a`1m1(z1)a`2m2(z2)a`3m3(z3)

〉
`1�`2,`3

=

∫
dΩ1dΩ2dΩ3

× Y ∗`1m1
(n̂1)Y ∗`2m2

(n̂2)Y ∗`3m3
(n̂3)

〈
∆L

g (z1, n̂1)∆g(z2, n̂2)∆g(z3, n̂3)
〉
. (4.4.1)

This basis naturally fits the sphere and does not have the problem of triangles not closing. We now

compute each of the terms contributing to the above equation in turn4. The contribution of the terms

in the first line of Eq. (4.3.17) are easy to compute and give

〈
a`1m1(z1)a`2m2(z2)a`3m3(z3)

〉
`1�`2,`3

⊃ Gm1m2m3
`1`2`3

×
[
C

∆gd
`1

(z1, z2) + C
∆g∆z
`1

(z1, z2)
∂

∂z2

]
C

∆g∆g

`3
(z2, z3) + (2↔ 3) , (4.4.2)

3Useful relations involving the spherical harmonics are summarized in appendix A.
4From now on, we do not make any approximation. The subscript `1�`2,`3 is present only to remind the reader that

the bispectrum computed is valid only in the squeezed limit.
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where the Gaunt integral is defined as

Gm1m2m3
`1`2`3

=

∫
dΩ Y`1m1(n̂) Y`2m2(n̂) Y`3m3(n̂)

=

(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `3
0 0 0

)√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π
. (4.4.3)

The third term of Eq. (4.3.17) is slightly more complex

〈
a`1m1(z1)a`2m2(z2)a`3m3(z3)

〉
`1�`2,`3

⊃
∫

dΩ1dΩ2dΩ3 Y
∗
`1m1

(n̂1)Y ∗`2m2
(n̂2)Y ∗`3m3

(n̂3)

× ∂

∂n̂2

〈
∆g(z1, n̂1)I(z2, n̂2)

〉
· ∂

∂n̂2

〈
∆g(z2, n̂2)∆g(z3, n̂3)

〉
+ (2↔ 3) (4.4.4)

where

I(z2, n̂2) ≡ ΨL +

(
1

r(τ2)
−H(τ2)

)
vL +

∫ τ2

τO

dτ ′

r(τ ′)
(ΦL + ΨL)(τ ′, n̂2r(τ

′)). (4.4.5)

This can be further simplified by decomposing the two-point functions in spherical harmonics, giving

〈
a`1m1(z1)a`2m2(z2)a`3m3(z3)

〉
`1�`2,`3

⊃
∫

dΩ

(
∂

∂n̂i
Y ∗`1m1

(n̂)

)
Y ∗`2m2

(n̂)

×
(
∂

∂n̂i
Y ∗`3m3

(n̂)

)
C

∆gI
`1

(z1, z2)C
∆g∆g

`3
(z2, z3) + (2↔ 3) . (4.4.6)

The integral in the first line can be rewritten as

1

2

∫
dΩ
[
∆Ω

(
Y ∗`1m1

(n̂)Y ∗`3m3
(n̂)
)
−
(
∆ΩY

∗
`1m1

(n̂)
)
Y ∗`3m3

(n̂)

− Y ∗`1m1
(n̂)
(
∆ΩY

∗
`3m3

(n̂)
)]
Y ∗`2m2

(n̂) . (4.4.7)

The second and third terms in the parenthesis give simply

1

2
Gm1m2m3
`1`2`3

(`1(`1 + 1) + `3(`3 + 1)). (4.4.8)
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We write the product of spherical harmonics of the first term as a Clebsch-Gordan decomposition

1

2

∫
dΩ

[
∆Ω

∑
LM

√
(2`1 + 1)(2`3 + 1)(2L+ 1)

4π

×

(
`1 `3 L

m1 m3 M

)(
`1 `3 L

0 0 0

)
YLM (n̂)

]
Y ∗`2m2

(n̂)

= −1

2
`2(`2 + 1)Gm1m2m3

`1`2`3
. (4.4.9)

Putting everything together for b`1,`2,`3(z1, z2, z3), the observed reduced bispectrum of galaxies defined

as 〈
a`1m1(z1)a`2m2(z2)a`3m3(z3)

〉
= Gm1m2m3

`1`2`3
b`1,`2,`3(z1, z2, z3), (4.4.10)

we obtain the main result of this chapter, namely the consistency relation in the squeezed limit in

multipole space

lim
`1�`2,`3

b`1,`2,`3(z1, z2, z3) =

[
C

∆gd
`1

(z1, z2) + C
∆g∆z
`1

(z1, z2)
∂

∂z2

+
1

2
(`1(`1 + 1)− `2(`2 + 1) + `3(`3 + 1))C

∆gI
`1

(z1, z2)

]

×C∆g∆g

`3
(z2, z3) + (2↔ 3).

(4.4.11)

As pointed out before, since in real observation, one counts the number of galaxies within a

finite redshift bin, in order to compare with observed galaxy bispectrum, one needs to integrate our

theoretically calculated bispectrum in (4.4.11) over the three window functions describing the redshift

bins

bW`1,`2,`3(z1, z2, z3) =

∫
dz′1 dz′2 dz′3 W (z1, z

′
1)W (z2, z

′
2)W (z3, z

′
3)

× b`1,`2,`3(z′1, z
′
2, z
′
3) . (4.4.12)
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Given our expression in (4.4.11), it is straightforward to compute bW`1,`2,`3(z1, z2, z3).

4.4.1 The distant observer approximation

In order to build some intuition, let us rewrite our expression (4.4.11) in the distant observer approx-

imation where we choose to decompose in Fourier modes only the direction perpendicular to the line

of sight,

〈
∆g(z1, ~̀1)∆g(z2, ~̀2)∆g(z3, ~̀3)

〉
`1�`2,`3

= (2π)2δD(~̀1 + ~̀
2 + ~̀

3)

×
[
C

∆gd
`1

(z1, z2) + C
∆g∆z
`1

(z1, z2)
∂

∂z2
+ ~̀

1 · ~̀3C
∆gI
`1

(z1, z2)

]

× C∆g∆g

`3
(z2, z3) + (2↔ 3). (4.4.13)

Note that the third term in the square brackets, when added to the corresponding one coming from

(2↔ 3), is O(`21) in the equal time limit as expected due to momentum conservation, while the other

terms are different from zero in that limit. Note also that the Newtonian consistency relations take

into account only the redshift space distortions induced by the long-wavelength velocity, which are

included here in ∆z. This Newtonian contribution is not zero in the equal-time limit. The same

would hold if one also decomposes the direction parallel to the line of sight in Fourier modes. This is

due to the fact that one performs measurements on the light-cone, and since there is no translation

invariance in the radial direction in redshift space, the two momenta connected to this radial direction

would not cancel. However, this non-cancellation will be governed by how much the power spectrum

changes with redshift; when it is a good approximation to ignore the evolution of the power spectrum

this Newtonian consistency relation is expected to be zero as was previously found. Indeed, in the

above expression it is proportional to a derivative of the power spectrum with respect to redshift. Let

us mention, however, that the contribution from this term is very small due to the fact that velocity

and density are not correlated in harmonic space.

In the rest of this chapter, we use the general expression given in Eq. (4.4.11) without resorting

to the flat sky approximation.

4.4.2 Second-order limit

As an illustration, we plot in figure 4.1 different terms contributing to the reduced bispectrum appear-

ing in the relation (4.4.11) in the case where the short modes are linear. The second-order computation

of the three-point correlator of the observed galaxies should reproduce this result in the squeezed limit.

We do this using a modified version of the code CLASSgal5 [22]. The result is presented in the simple

case of no galaxy bias b = 1, no magnification bias t = 0 and no galaxy evolution fevo = 0 for equal

redshifts of z = 0.55 and up to scales of ` = 200 which are still linear.

5We present explicit expressions implemented in the code in appendix D.1.



4.5 – Local NG from observed consistency relation 73

�����

∝ �ℓ
Δ� �

∝ �ℓ
Δ� Δ�

∝ �ℓ
Δ� �

�� ��� ��� ���
-���

���

���

���

���

ℓ

�
ℓ/
��
�ℓ
�ℓ
(
�
�

)
⨯
�
�
��

Figure 4.1: Reduced observed bispectrum in the squeezed limit at equal-time (z=0.55) on linear scales. Note

that the consistency relation is also valid when the short modes `2, `3 are in the non-linear regime. The vertical

line indicates the linear scale up to which the numerical code is valid.

One could be surprised by the small size of the cross correlation between ∆g and ∆z. In the

Newtonian approximation and working at a fixed time slice, the terms proportional to ∆z are indeed

believed to be the dominant effect. However, the term is suppressed in harmonic space due to the fact

that the Bessel functions corresponding to the ∆g term and the n̂·~vL term are j` and j′` which oscillate

at a similar frequency but out of phase and therefore cancel. In Fourier space, this can be intuitively

understood from the fact that the regions where the velocities are at the maximum correspond to the

minima (in absolute value) of the density and vice versa. Moreover the lensing contribution is smaller

than one would expect parametrically. This is due to the fact that the integration along the line of

sight tends to average out the perturbations.

4.5 Effective local non-Gaussianities from non-linear Relativistic

Corrections from the consistency relation

As mentioned in previous sections, the terms proportional to Φ∆g would induce a signal in the

observations that might be misinterpreted as primordial non-Gaussianity with a local shape. In order

to see this, let us estimate the squeezed limit of the galaxy bispectrum induced by the primordial
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Figure 4.2: Effective fGR
NL induced by the relativistic effects computed in this chapter. The three different lines

correspond to different magnification bias parameters. We have assumed e = 3/a for all cases and evaluated

equation (4.5.5) at `1 = 50. This estimate is valid for z & 1. At lower redshifts, integration over the redshift

bins can change this result.

local non-Gaussianity. From a Newtonian calculation and assuming linear biasing we have6

〈
a`1m1(z1)a`2m2(z2)a`3m3(z3)

〉
`1�`2,`3

= Gm1m2m3
`1`2`3

× 4fNLC
∆gΦ
`1

(z1, z2)C
∆g∆g

`3
(z2, z3) , (4.5.1)

where fNL ∼ 1 is the non-linear non-Gaussianity parameter parametrizing the strength of the primor-

dial non-Gaussianity with a local shape.

To see the impact of the non-linear relativistic contributions, we compute the ratio of Eq. (4.4.11)

to C
∆gΦ
`1

C
∆g∆g

`2
where we have isolated the terms with the same `-dependence as Eq. (4.5.1). Rewriting

the partial derivatives with respect to τ as total ones as gradients have a different scale dependence,

6A similar expression is obtained in Ref. [78] for the dark matter over-density bispectrum and it is expected to hold

at the non-perturbative level. However, it is not clear whether this is also true for galaxies. In Appendix D.2, we present

an explicit derivation of this template for the matter overdensity.
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we obtain

fGRNL =

[
C

∆gd̃
`1

(z) + C
∆g∆̃z
`1

(z) ∂∂z

]
C

∆g∆g

`2
(z)

C
∆g(Φ+Ψ)
`1

(z)C
∆g∆g

`2
(z)

, (4.5.2)

where

∆̃z = (1 + z)

[
Ψ + aHv +

∫ τ0

τ
dτ̃(Φ′ + Ψ′)

]
(4.5.3)

d̃ = (3− fevo)aHv + (5s− 2)Φ +
1

aH
Ψ′ +

∫ τ0

τ
dτ̃

(
2− 5s

τ0 − τ̃

)
(Φ + Ψ)

+

(
2− fevo +

H ′

aH2
+

2− 5s

(τ0 − τ)aH
+ 5s

)
Ψ.

+

(
1− fevo +

H ′

aH2
+

2− 5s

(τ0 − τ)aH
+ 5s

)∫ τ0

τ
dτ̃(Φ′ + Ψ′). (4.5.4)

In the above expression, we have accounted for the terms (2)↔ (3), set the two potentials to be equal

and defined s = −t/5.

We notice that we can neglect the term proportional to C
∆g∆z
`1

∂zC
∆g∆g

`2
. As one can easily check

at second-order, this term has a different `-dependence than Eq. (4.5.1). This is because the derivative

with respect to redshift acting on the short mode power spectrum, acts on the Bessel function and

will induce a different `-dependence. A similar `-dependence will also arise at higher orders.

We therefore obtain a fully non-perturbative estimate for fNL as the short non-linear modes cancel

fGRNL '
C

∆gd̃
`1

(z)

C
∆g(Φ+Ψ)
`1

(z)
. (4.5.5)

We illustrate this estimate in figure 4.2 for different magnification bias and as a function of redshift.

In order to compare with the observed bispectrum in a galaxy survey, one needs to integrate over

the window functions defining the redshift bins before taking this ratio. Unless the window functions

are delta functions, which for a realistic survey they are not, this integration will change both the

amplitude and the `-dependence of the bispectrum. However, due to the nearly constant behaviour of

the transfer functions at z & 1, the non-linear power spectrum of the short modes still cancels in the

ratio. Therefore this integration does not modify our estimate of fGR
NL for those redshifts. For lower

redshifts, one can explicitly carry out the integration, though the results would be only perturbative

in the short modes. It should be noted that since the signal for the primordial non-Gaussianity is

strongest at higher redshifts, removing the GR effects that mimic this signal is of crucial importance

at those redshifts.

The exact value of fGR
NL will depend on redshift and the magnification bias. We plot its value as a
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function of redshift in figure 4.2 for three different values of the magnification bias. From these results

we deduce that at redshift z = 1.5 and for a vanishing magnification bias, the value of the effective

fGR
NL is about −0.7. A qualitatively similar result was obtained in [65] for the power spectrum. They

found a very similar dependence on redshift and magnification bias as well as a value for fGR
NL of the

same order of magnitude. Since they considered a different observable, the exact values are different

though their behaviour is qualitatively the same.

Also, these relativistic effects could also induce terms that would be mistaken for a violation of

the Equivalence Principle in a naive analysis [84, 9].

4.6 Summary

In this chapter we have exploited the fact that a long-wavelength mode of Bardeen’s potential is an

adiabatic mode to write a non-perturbative relativistic relation for the squeezed limit of the galaxy

number overdensity three-point function. Adiabatic modes are physical large-scale solutions to the

dynamics that can be cancelled by a residual gauge transformation. The latter is realized non-linearly

by Bardeen’s potential. Thus, computing their effect on short-scale physics reduces trivially to a

change of frame.

The effect of these transformations on the observed galaxy number density nobs
g corresponds to

a change in the redshift and the direction of the photons at observation which in turn changes the

relation between the observed volume and the physical volume, and a magnification bias. When

computing the galaxy number overdensity ∆g, one should also include the change of the average n̄g

as a result of distortions to the redshift, the so-called evolution bias.

Curvature and tidal contributions, proportional to second derivatives of the gravitational poten-

tial, are not captured by our argument and are expected to be larger inside the horizon than some of

the relativistic corrections which we keep, even though they would naively be expected to be para-

metrically subdominant with respect to the redshift space distortions and lensing induced by the long

mode. However, redshift space distortions, which were also obtained in a Newtonian computation,

are small due to the requirement that the small-scale modes be on similar redshifts (though they will

be non-zero even at equal redshift), and the lensing is suppressed since it averages in the trajectory

of the photon from emission to observation. We argue that the relativistic corrections we compute

can however be distinguished by their dependence on the large scale as one takes the squeezed limit,

and they serve as a consistency check for our cosmological model. Indeed, the violation of the Equiv-

alence Principle at large scales or the presence of primordial local non-Gaussianity would induce a

squeezed limit with the shape of these contributions. They need to be kept in order not to confuse

them with these deviations from the vanilla cosmological scenario. The exact value of the effective

local non-Gaussianity parameter from these non-linear GR corrections depends on the redshift and

the magnification bias. At redshift of z = 1.5 and in the absence of magnification bias we estimate

fGR
NL = −0.7.

Finally, since the Universe evolves and there is no translation invariance in the radial direction of

redshift space, Fourier-space triangles do not close and we thus present our expressions after decom-

posing them in spherical harmonics. Notably, we find that the Newtonian redshift space distortions

induce a term that does not go to zero at equal redshifts, but is however very small.



Chapter 5

Non-Gaussianities from relativistic

corrections

5.1 The bispectrum of galaxy number counts

Given the large scales that will be probed by upcoming LSS surveys, the Newtonian description of

galaxy clustering is insufficient and a full general relativistic (GR) treatment is necessary. In the

previous chapter, we have been able to compute the squeezed limit of the galaxy number count bis-

pectrum using the idea of the consistency condition. While this approach, compared to a perturbative

expansion, allows to include non-linear modes, the trade-off is that it is valid only for squeezed config-

urations, which make up a small percentage of all observable configurations. In order to fully exploit

upcoming bispectrum data, it is therefore necessary to compute the bispectrum at tree-level (at least)

for generic configurations, which makes it necessary compute the number counts overdensity contrast

at second order in the perturbations ∆
(2)
g (n̂, z). This has been achieved recently by several groups

[67, 68, 125, 19]. In this case, the down side is of course that this perturbative expansion is valid only

on weakly non-linear scales.

Analogously to what is been done for the CMB, one needs to subtract any contribution to the

bispectrum which can look like primordial non-Gaussianity (PNG) if one desires to measure the actual

level of primordial NG. In the case of the CMB, the main contamination to f loc
NL is found to be the ISW-

lensing effect [72, 75]. In the following1, we shall evaluate the level of NG induced by the bispectrum

associated from several terms present in the second order number counts computation of [19]. Let us

emphasize that the aim of this work is not to make an exhaustive analysis of all (hundreds) of terms

appearing in the second order expression, but only to give examples of the level of NG that some of

them can generate. Because cancellations between terms can happen, a full analysis will very likely

be required in the end and we leave it for future work. To this end, we compute numerically the local

and equilateral templates in z`m-space. The level of NG is then given by projecting the different

bispectra on the templates. We shall also evaluate the local NG induced from the terms appearing in

the consistency relation (4.4.11) using the exact templates. This will allow us to confirm the “naive”

estimate done in section 4.5.

1This chapter is based on the draft of an upcoming paper [131]

77
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Note that the contributions that we are computing should not be confused with the NG coming

from the dynamics beyond the Newtonian approximation as in [132]. The effects that we are computing

here come from the fact that compute observed number counts. These are therefore usually called

projection effects. The dynamics are still assumed to be given by SPT, that is, Newtonian dynamics.

Let us define what mean by “relativistic corrections” and how we classify them. The main con-

tribution to the number counts at second order are the density terms ∆
(2)
g ⊃ (δ(1))2 giving rise to

a bispectrum which we represent symbolically as b ∼ 〈(δδ)δδ〉. This Newtonian contribution corre-

sponds to the one from standard perturbation theory and is also what is measured in simulations (on

applicable scales). Here δ has to be understood as the matter overdensity contrast in the synchronous

gauge. Indeed, it is the overdensity satisfying the Poisson equation which is used in SPT and solved

in simulations. With respect to the gravitational potential in the Poisson gauge Φ, we therefore have

δ ∼ ∂2Φ. These Newtonian terms have already been computed and are known to give a very large

contribution to local NG of order 103 − 104 [133].

In this work we shall consider subleading corrections due to relativistic effects. We shall classify the

various “corrections” coming from the difference between number counts and density by the number

of derivatives and integrals they contain. The contributions appearing in the terms “three derivatives”

and “Newtonian × Lensing” are of the type b ∼ 〈(Φ∂3Φ)δδ〉 and b ∼ 〈(
∫

Φδ)δδ〉 respectively while

the ones from the consistency relation considered in section 4.5 have various contributions of order

b ∼ 〈(Φδ)δδ〉, b ∼ 〈(∂Φδ)δδ〉 and b ∼ 〈(∂2Φδ)δδ〉.
This chapter is organized as follows: In section 5.2, we begin by defining non-Gaussian templates

in Fourier space. Next we calculate their counter part in z`m-space and point out to some subtleties in

numerical evaluations of the integrals. We close this section by defining the shape correlation in z`m-

space between local and equilateral templates and define the effective fNL as the normalized amplitude

of the projected bispectrum of the relatistic contributions onto a particular PNG template. In section

5.3, we summarize the relativistic contributions to the tree-level bispectrum that we consider. In

section 5.4 we present the estimates for fNL from various terms that we have considered for local and

equilateral shapes and discuss their significance. Finally we draw our conclusions in section 5.5.

5.2 Non-Gaussianities from the observed bispecturm

To quantify the contamination from the relativistic effects to the measured primordial fNL of a given

shape, we need to project the bispectrum from relativistic corrections onto the corresponding pri-

mordial bispectrum template for that shape. For the rest of our discussion, we focus on local and

equilateral shapes. Below we first set the basic notation and define the two bispectrum templates in

Fourier space. Next we derive the corresponding templates in z`m-space and discuss in details some

subtleties in evaluating the numerical integrals.

5.2.1 NG shapes in Fourier space

While the statistics of Gaussian fluctuations is fully determined by the lowest order correlation func-

tion, one needs to consider higher order correlation functions to describe a non-Gaussian field. We

focus on the lowest order non-Gaussian statistics of primordial fluctuations, the 3-point function and
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its counterpart in Fourier space, the bispectrum defined by equation (1.2.8). For the rest of our discus-

sion, we consider two of the commonly used separable shapes, the local and equilateral. For a scale-

invariant primordial power spectrum Pζ(k) = Ak−3, the local template is given by [134, 135, 133, 136]

Flocal(k1, k2, k3) =
6

5
f loc

NL (Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1))

=
6

5
f loc

NLA
2

(
1

k3
2k

3
3

+
1

k3
3k

3
1

+
1

k3
1k

3
2

)
, (5.2.1)

while the equilateral template is defined as [137]

Fequil(k1, k2, k3) =
18

5
f eq

NLA
2

×
(
− 1

k3
1k

3
2

− 1

k3
1k

3
3

− 1

k3
2k

3
3

− 2

k2
1k

2
2k

2
3

+

(
1

k1k2
2k

3
3

+ 5 perm.

))
. (5.2.2)

The amplitude of the shape is f shape
NL while Fshape(k1, k2, k3) encodes the functional dependence of

the primordial bispectrum on the momenta. Constraints on PNG are reported as constraints on the

amplitude parameter for a particular shape.

5.2.2 Computing the NG shapes in z`m-space

We now compute the angular bispectrum for the number counts resulting from the two primordial

shapes above. The number counts of galaxies are expanded in spherical harmonics (see appendix

D.1.1 for more details). The harmonic coefficients are given by [20]

a
∆g

`m = (−i)l 4π

(2π)3

∫
d3kY ∗`m(k̂)∆`(k)ζ(~k), (5.2.3)

where we have defined

∆`(k) =
∑
i

∆i
`(k), (5.2.4)

with i running on the different angular transfer functions defined in Appendix A.4 of [22]. We have

omitted the redshift dependence for sake of simplicity. The bispectrum is then given by correlating

three coefficients and taking the expectation value

Bm1m2m3
`1`2`3

(z1, z2, z3) =
〈
a

∆g

`1,m1
(z1)a

∆g

`2m2
(z2)a

∆g

`3m3
(z3)

〉
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= (−i)`1+`2+`3

∫ 3∏
p=1

{
d3kp

4π

(2π)3
Y ∗`pmp(k̂p)∆`p(kp)

}
〈ζ(~k1)ζ(~k2)ζ(~k3)〉

= (−i)`1+`2+`3

∫ 3∏
p=1

{
d3kp

4π

(2π)3
Y ∗`pmp(k̂p)∆`p(kp)

}

× (2π)3δ(3)(~k1 + ~k2 + ~k3)F (k1, k2, k3) (5.2.5)

One then expands the delta-Dirac function

δ(3)(~k1 + ~k2 + ~k3) =

∫
d3x

1

(2π)3
ei(
~k1+~k2+~k3)·~x

=
1

(2π)3

∫
drr2dΩn̂ e

i(~k1+~k2+~k3)·rn̂

=
1

(2π)3

∫
drr2dΩn̂

×
3∏
q=1

4π
∞∑
l′q=0

l′q∑
m′q=−l′q

il
′
qjl′q(rkq)Yl′qm′q(k̂q)Y

∗
l′qm
′
q
(n̂)

 , (5.2.6)

where n̂ is the unit vector representing the direction of the galaxy. By performing the angular integral

over dΩn̂ we obtain

Bm1m2m3
`1`2`3

= Gm1m2m3
`1`2`3

×
(

2

π

)3 ∫
dk1dk2dk3

∫
drr2

3∏
p=1

{
k2
p∆`p(kp)j`p(rkp)

}
F (k1, k2, k3) . (5.2.7)

We can define the reduced bispectrum

b`1`2`3 = (−i)`1+`2+`3

(
2

π

)3 ∫
dk1dk2dk3

∫
drr2

3∏
p=1

{
k2
p∆`p(kp)j`p(rkp)

}
F (k1, k2, k3) . (5.2.8)

where F (k1, k2, k3) is the primordial NG shape. Even if the shape is separable, as it is the case for

the templates (5.2.1), (5.2.2), the individual ki integrals do not generally converge, contrarily to what

happens for the CMB [138]. It is however possible to simplify this result by performing the r integral

analytically, reducing the dimension of the integral from four to three and getting rid of three spherical
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Bessel functions. We use the results of [139] :

∫
dr r2 j`1(rk1)j`2(rk2)j`3(rk3) =

π∆

4k1k2k3

i−(`1+`2+`3)(
`1 `2 `3
0 0 0

)

×
∑
m

(−1)m
[

(`1 −m)!(`2 +m)!

(`1 +m)!(`2 −m)!

]1/2
(
`1 `2 `3
m −m 0

)
Pm`1 (cos θ13)P−m`2 (cos θ23),

where |m| ≤ `1, `2. Therefore, taking `3 to be the largest one, the sum contains 2 mini(`i) + 1 terms,

∆ = 1 if ~ki form a non degenerate triangles and 1/2 for degenerate ones, zero if they do not form a

triangle. The θij are the angles between the sides i and j of the triangle.

We implement these expressions in Mathematica and compute the integrals using the Suave2 Monte

Carlo integrator for Mathematica. The different transfer functions are computed with the CLASSgal

code [22]. However, we have omitted integrated terms such as lensing, ISW and time-delay in ∆`(k)

for numerical reasons as they would require to output functions of both k and `. We limit ourselves

to “local” terms that can be expressed as a product of Bessel function times a k-dependent transfer

function. At equal-times, integrated terms terms are also expected be sub-dominant. Moreover, as

these integrals are computationally very demanding, we compute only some configurations with `

values spaced by ∆` = 4 and interpolate to obtain the values of the template for any configuration.

In addition to the exact numerical templates computed numerically, we shall also consider the

simple template for local NG used in the previous chapter (4.5.1) which corresponds to the reduced

bispectrum

b`1�`2,`3 = 4fNLC
∆gΦ
`1

(z1, z2)C
∆g∆g

`3
(z2, z3) , (5.2.9)

which is valid only in the squeezed limit `1 � `2 = `3.

5.2.3 NG shapes in z`m space

It is useful to define the scalar product between two bispectra bS1 and bS2 in z`m-space :

(S1, S2) =
∑

`1≤`2≤`3

I`1`2`3
bS1
`1`2`3

bS2
`1`2`3

f`1`2`3C`1C`2C`3
(5.2.10)

with

I`1`2`3 =
(2`1 + 1) (2`2 + 1) (2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)2

(5.2.11)

2http://www.feynarts.de/cuba/
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and

f`1`2`3 =


6 `1 = `2 = `3
2 `1 = `2 6= `3 or perm.

1 else

(5.2.12)

The angular power spectra include the full number counts C` = C
∆g∆g

` and the sum is taken between

` = 2 and `max. We can determine how orthogonal are two bispectra bS1 and bS2 by computing the

cosine

cos(S1, S2) =

∑
`1≤`2≤`3 I`1`2`3

b
S1
`1`2`3

b
S2
`1`2`3

f`1`2`3C`1C`2C`3√∑
`1≤`2≤`3 I`1`2`3

(
b
S1
`1`2`3

)2

f`1`2`3C`1C`2C`3

√∑
`1≤`2≤`3 I`1`2`3

(
b
S2
`1`2`3

)2

f`1`2`3C`1C`2C`3

. (5.2.13)

As we see in figure 5.1 the two templates are not orthogonal with a cosine of about 0.94 at `max = 100.

This means for example that terms which have a large local component will ‘leak’ in the equilateral

shape and give a substantial contribution to f eq
NL. We also observe that the cosine between the two

shapes diminishes considering smaller scales as adding more information helps discriminate the two

shapes better.
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Figure 5.1: Cosine defined through Eq. (5.2.13) between local and equilateral shapes for galaxy

bispectra at z = 0.55 in z`m space as a function the maximum `max included in the sum.
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Figure 5.2: Absolute value of the reduced bispectrum for the non-Gaussianity template: local (top)

and equilateral (bottom). We have considered three galaxies at the same redshift z = 0.55
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In figure 5.2 we present the reduced bispectra corresponding to the local and equilateral templates

for three galaxies at the same redshift z = 0.55. We see that the local non-Gaussianity template

peaks in the squeezed limit (`1 � `2 ∼ `3) while the equilateral template is largest when `1, `2 and

`3 are roughly equal. The peaking is however less pronounced than in Fourier space because of the

harmonic decomposition.

Let us finish this section by comparing the full template (5.2.8) with the simple template (5.2.9)

used for the estimation of section 4.5. To this aim, we compute the ratio of the simple template to the

full template. As the simple template should be valid only in squeezed configurations, we evaluate the

ratio for configurations with `1 = 2 and `2 = `3 as function of `2. The result is presented in figure 5.3.

We find that the templates coincide at a factor 0.5 for `2/`1 ∼ 10 and up to 0.7 in the most squeezed

configurations `2/`1 ∼ 50. The naive estimation of f loc
NL from the terms of the consistency relation

presented in section 4.5 is therefore expected to hold at order of magnitude level. We shall confirm

this in section 5.4.1 where we perform the full projection of the bispectrum from the consistency

relation on the local template.
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Figure 5.3: Ratio of the simple local template (5.2.9) to the full local template (5.2.8) as function of

` = `2 = `3 at `1 = 2.

5.2.4 Effective non-Gaussianity

Having the non-Gaussianity templates in z`m-space at our disposal, we can now estimate the amount

of non-Gaussianity imprinted from the different contributions to the galaxy bispectrum by projecting
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them on the relevant shape. The effective fNL is given by

f shape
NL =

∑
`1≤`2≤`3 I`1`2`3

b`1`2`3 bshape
`1`2`3

f`1`2`3C`1C`2C`3∑
`1≤`2≤`3 I`1`2`3

(
bshape
`1`2`3

)2

f`1`2`3C`1C`2C`3

, (5.2.14)

where b`1`2`3 is the reduced bispectrum associated to the contribution of interest. When summing

over all configurations, we sum over configurations involving `’s from 2 to `max. When considering

only squeezed configurations, we sum over the subset of configurations for which `1 ≤ min(`2, `3)/10.

5.3 Contributions to the bispectrum from relativistic corrections

In this section, we present the different relativistic contributions to the bispectrum that we shall study.

5.3.1 Consistency condition bispectrum

The terms derived from the consistency relation (4.4.11) are the following

lim
`1�`2,`3

b`1,`2,`3(z1, z2, z3) =

[
C

∆gd
`1

(z1, z2) + C
∆g∆z
`1

(z1, z2)
∂

∂z2

+
1

2
(`1(`1 + 1)− `2(`2 + 1) + `3(`3 + 1))C

∆gI
`1

(z1, z2)

]

×C∆g∆g

`3
(z2, z3) + (2↔ 3) (5.3.1)

which we shall denote it by “CR” in the figures. We shall also consider the terms from this relation

that have the same scale dependence (b ∼ 〈(Φδ)δδ〉) as the local template in the squeezed limit

(5.2.9). These terms are the same that we have kept in the numerator of (4.5.2). For a general

squeezed configuration (`2 6= `3) they read

lim
`1�`2,`3

b`1,`2,`3(z1, z2, z3) =

[
C

∆gd̃
`1

(z1, z2) + C
∆g∆̃z
`1

(z1, z2)
∂

∂z2

]

× C∆g∆g

`3
(z2, z3) + (2↔ 3). (5.3.2)

where

∆̃z = (1 + z)

[
Ψ + aHv +

∫ τ0

τ
dτ̃(Φ′ + Ψ′)

]
(5.3.3)
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d̃ = (3− fevo)aHv + (5s− 2)Φ +
1

aH
Ψ′ +

∫ τ0

τ
dτ̃

(
2− 5s

τ0 − τ̃

)
(Φ + Ψ)

+

(
2− fevo +

H ′

aH2
+

2− 5s

(τ0 − τ)aH
+ 5s

)
Ψ.

+

(
1− fevo +

H ′

aH2
+

2− 5s

(τ0 − τ)aH
+ 5s

)∫ τ0

τ
dτ̃(Φ′ + Ψ′). (5.3.4)

This contribution will be denoted by “CR simple” as it is the dominant term in the perfect squeezed

limit when `1 is almost constant and therefore all gradients are negligible. We stress again that these

contributions are only valid in the squeezed limit `1 � `2 ' `3.

5.3.2 “Newtonian × Lensing” terms

Next, we consider the contribution “Newtonian × Lensing” to the second order number counts,

computed in [18]. They correspond to the reduced bispectrum denoted by

b`1`2`3 = bκδ`1`2`3 + b∇δ∇ψ`1`2`3
+ bv

′κ
`1`2`3 + b∇v

′∇ψ
`1`2`3

. (5.3.5)

We now generalize it to include first order redshift-space distortions. This leads to the reduced

bispectrum

〈∆Newt × Lens (n̂1, z1)
(
δ −H−1∂2

rv
)

(n̂2, z2)
(
δ −H−1∂2

rv
)

(n̂3, z3)〉+ perms. (5.3.6)

It is schematically given by

bN×L
`1`2`3

∼
[
CAδ`2 (z1, z2)CBδ`3 (z1, z3) + CBδ`2 (z1, z2)CAδ`3 (z1, z3)

+ CAδ`3 (z2, z3)CBδ`1 (z2, z1) + CBδ`3 (z2, z3)CAδ`1 (z2, z1)

+ CAδ`1 (z3, z1)CBδ`2 (z3, z2) + CBδ`1 (z3, z1)CAδ`2 (z3, z2)

]

+

[
CAv

′
`2 (z1, z2)CBv

′
`3 (z1, z3) + CBv

′
`2 (z1, z2)CAv

′
`3 (z1, z3)

+ CAv
′

`3 (z2, z3)CBv
′

`1 (z2, z1) + CBv
′

`3 (z2, z3)CAv
′

`1 (z2, z1)

+ CAv
′

`1 (z3, z1)CBv
′

`2 (z3, z2) + CBv
′

`1 (z3, z1)CAv
′

`2 (z3, z2)

]
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+

[
CAδ`2 (z1, z2)CBv

′
`3 (z1, z3) + CBδ`2 (z1, z2)CAv

′
`3 (z1, z3)

+ CAδ`3 (z2, z3)CBv
′

`1 (z2, z1) + CBδ`3 (z2, z3)CAv
′

`1 (z2, z1)

+ CAδ`1 (z3, z1)CBv
′

`2 (z3, z2) + CBδ`1 (z3, z1)CAv
′

`2 (z3, z2)

]

+

[
CAδ`3 (z1, z3)CBv

′
`2 (z1, z2) + CBδ`3 (z1, z3)CAv

′
`2 (z1, z2)

+ CAδ`1 (z2, z1)CBv
′

`3 (z2, z3) + CBδ`1 (z2, z1)CAv
′

`3 (z2, z3)

+ CAδ`2 (z3, z2)CBv
′

`1 (z3, z1) + CBδ`2 (z3, z2)CAv
′

`1 (z3, z1)

]
(5.3.7)

where A and B denote the first order perturbations leading to ∆N×L (or ∆Newt). This term will be

denoted by “N×L” in the figures and scales as b ∼ 〈(
∫

Φδ)δδ〉.

5.3.3 Three derivatives terms

Finally, we shall consider the bispectrum for some terms computed in the full second order number

counts [19] which contain three derivatives of the metric perturbations: b ∼ 〈(∂3ΦΦ)δδ〉. These are

namely

∆3d (n̂, z) =
1

H2
s

(
∂2
rΦW∂rv − ΦW∂

3
rv
)

+
1

Hs
Ψ + Φ

2
∂rδ. (5.3.8)

5.4 Results

5.4.1 Local NG

Let us start by computing the contamination of the “Newtonian× Lensing” and the “three derivatives”

terms to local non-Gaussianity. As the expressions (5.3.8) and (5.3.5) are valid for any configurations,

we include all configurations in the sums of (5.2.14). Figure 5.4 shows the resulting f loc
NL and the cosine

between the terms and the local shape as a function of the maximum value of ` included. We find that

both the “Newtonian × Lensing” terms and the “three derivatives” induce a small contamination of

order

f loc,N×L
NL ' 0.2, (5.4.1)

f loc, 3 d
NL ' −0.4 . (5.4.2)
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The cosine with the local shape is very close to one for both terms although we would naively not

expect this as they have a different scale dependence than the local terms.

The terms computed from the consistency relation are correct only in the squeezed limit. We

therefore present on figure 5.5 the effective local NG computed from (5.2.14) summing only over

squeezed configurations with a squeezing factor of `2/`1 ≥ 10. We detail different contributions :

the full consistency relation (5.3.1) and the terms scaling like b ∼ 〈(Φδ)δδ〉 (5.3.2). For comparison,

we also present the effective NG from the second-order terms “Newtonian × Lensing” and “three

derivatives”.

We find that the estimate of the NG induced by the terms ”Newtonian × Lensing” and “three

derivative” are very similar to what we have found by taking into account all configurations: f loc,N×L
NL '

0.13 and f loc, 3 d
NL ' −0.5. This is reassure us in the belief that a large proportion of the information in

the local shape is contained in the squeezed limit. We therefore expect that the local NG associated

to the terms related to the consistency condition, which we know only in the squeezed limit, should

be reliable.

The terms derived from the consistency relation are found to give a relevant contribution to f loc
NL:

f loc,CR
NL ' −3.0, (5.4.3)

f loc,CR simple
NL ' 0.4 . (5.4.4)

Comparing the effective NG from the term “CR” to the “CR simple” one, we see that the difference

is non negligible. This is due to the fact that terms which do not scale like b ∼ (Φ)δδδ also give large

contributions to the local shape because the cosines are relatively high. This was also seen in figure

5.1 when computing the cosine between the local and equilateral shapes.

We conclude that to attain a precision of σf loc
NL

= 1, it is necessary to take at least the terms from

the consistency condition into account. Although the contamination associated to the “Newtonian ×
Lensing” and ‘three derivatives” are smaller than one, they are not totally negligible. Indeed, there

are many more terms appearing in the second order number counts expression. If they all give a

similar contribution, the total contamination might easily be above f loc
NL ∼ 1.

5.4.2 Equilateral NG

The results for equilateral NG are presented on figures 5.6. We find that for `max = 100 the “Newto-

nian × Lensing” and the “three derivatives” terms lead to a similar contamination of

f eq,N×L
NL ' 1.1, (5.4.5)

f eq, 3 d
NL ' −1.8 . (5.4.6)

For lower `max the contamination is bigger, up to f eq
NL ∼ O(5) as the overlap with the equilateral

shape is greater. We interpret this as the fact that by including less configurations the peculiarity of

the shape is weaker and the overlap with the terms above is therefore greater.
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Figure 5.4: Effective local non-Gaussianity (top) and cosine with local shape (bottom) from “New-

tonian × Lensing” and the “three derivatives” terms summing over all configurations up to `max at

equal time z = 0.55. Dashed lines indicate negative values.
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Figure 5.5: Effective local non-Gaussianity (top) and cosine with local shape (bottom) from various

contributions summing over squeezed configurations only up to `max at equal time z = 0.55. Dashed

lines indicate negative values.
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Considering the cosine between these two contributions and the equilateral shape, it can be sur-

prising that the cosine is larger for the “Newtonian × Lensing” terms which are the ones which

produce the smallest contamination to f eq
NL. We explain this by the fact that the amplitude of the

“three derivatives” terms is probably greater than the one of the “Newtonian × Lensing” terms.
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Figure 5.6: Effective equilateral NG f eq
NL (top) and cosine with equilateral shape (bottom) as a function

of the maximum ` included in the configurations at equal time z = 0.55. Dashed lines indicate negative

values.
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5.5 Summary

We have computed the effective non-Gaussianity imprinted from some relativistic corrections to the

bispectrum of galaxy number counts.

Because the transformation from Fourier space to z`m-space mixes scales, even terms which have

a different k-dependence than a given non-Gaussian shape in Fourier space, can give rise to a large

contamination in observables. This is particularly true for the pure Newtonian terms contributions

b ∼ 〈(δδ)δδ〉. In this work, we have assumed that these contaminations have been taken care of and

we have estimated other relativistic contributions.

Among the terms studied, we have found that the terms derived from the consistency condition

(4.4.11) give the largest contamination for local NG with f loc
NL ' −3.

The terms from second-order perturbation theory that we have called “Newtonian × Lensing”

produce a contamination f loc
NL ∼ 0.2 for the local shape, while it is f eq

NL ' 1 for equilateral shape. The

terms “three derivatives” produce a similar value of f loc
NL ∼ −0.4 and f eq

NL ∼ −1.8. These are relevant

contaminations as they are only a small subset of all the second-order terms. If each term gives rise

to a comparable contamination, one will easily reach fNL ∼ 1 which is the goal to be attained with

LSS data.

In an estimation of NG from real data, one would of course need to include all terms from

second order galaxy number counts as there could be combinations leading to higher or lower level of

contamination. We leave this for future work.





Chapter 6

Consistency relation for the CMB

B-mode polarization in the squeezed

limit

6.1 The CMB B-modes

The recent detection of B-mode polarization pattern in the Cosmic Microwave Background (CMB) on

degree-angular scales by the BICEP2 collaboration [140], has generated a great deal of excitement in

the field, although it has since been shown that this observation is coming from the polarized radiation

emitted by interstellar dust [141, 142, 143].

Nevertheless, these results open the possibility that a detailed observational study of B-mode

polarization is not too far from our technological reach. One may wonder whether measuring the

three-point function in future experiments can help extract information contained in the B-mode

signal. In particular, a large-scale temperature perturbation has a non-zero correlation with the

power spectrum of B-modes of cosmological origin on short scales while the corresponding correlation

is expected to be zero for B-modes sourced by galactic foregrounds.

In this chapter, we compute the squeezed limit of a three-point function in which one correlates

the temperature fluctuations at large scales with two (E-mode or B-mode) polarization fluctuations

at small scales using a method similar to the one used for deriving the consistency relations (in

particular, we extend the approach of [70] to include polarization). To simplify the calculation, we do

the computation in the flat-sky approximation and ignore late-time effects such as those induced by

the late integrated Sachs-Wolfe (ISW) effect. The main contribution to the squeezed limit of such a

correlation function comes from the lensing induced by the long-wavelength mode, and we estimate

this signal to be observable for a futuristic experiment. This is similar to what happens for the CMB

temperature bispectrum [144, 72]. An interesting feature of this result is that for the case of B-mode

polarization we obtain a relation that connects the squeezed limit of the TBB three-point function

with the primordial tensor power spectrum, which could in principle be used as a consistency relation

for the tensor perturbations. Since the B-mode pattern sourced by inter-stellar dust is not expected to

correlate with the temperature signal sourced at the CMB, this could help in distinguishing between

95
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dust and a primordial signal. It turns out, however, that the observation of this relation is difficult

even for a very futuristic experiment.

It is noteworthy that the full calculation of the temperature bispectrum in the absence of primordial

non-Gaussianity can now be carried out numerically (see e.g. [145]). While this work was being

prepared, an analytical and numerical study of the correlation function involving E-mode polarization

appeared [146]. Considering that the main contribution to the intrinsic bispectrum, as pointed out in

this reference, comes from the E-polarisation and from squeezed configurations, and given that one

would expect EEE and TEE to give similar contributions to the signal to noise, our signal to noise

estimate for TEE bispectrum in squeezed limit for various experiments should be roughly compatible

with their results given the differences in our calculations. Table [6.1] confirms this expectation.

We begin in Section 6.2 by computing the effect of a long-wavelength metric perturbation on

the polarization power spectrum; we do this by closely following the approach of [70]. This two-

point function can then be correlated with a long-wavelength temperature fluctuation to compute

the squeezed limit of the temperature-polarization-polarization (TBB or TEE) bispectrum, which we

perform in Section 6.3. Finally, in Section 6.4 we analyze whether such a bispectrum can be observable

in an experiment similar to COrE, PRISM or an ideal noiseless experiment that probes very small

scales. We draw conclusions in Section 6.5.

6.2 The effect of the long scalar mode on the polarization power

spectrum

In this section, we start by reviewing the effect of a long-wavelength background mode on the CMB

temperature anisotropies as described in [70] (see also [71]) and then extend this treatment to the

polarization field.

The long-wavelength mode acts as a background for the short modes. We take the long mode to

be constant at the scale of the short modes at recombination such that its effect is equivalent to a

coordinate transformation (i.e. it is what Weinberg [127] calls an adiabatic mode)

τ̃ = τ + ε(τ) ,

x̃i = xi(1− λ) , (6.2.1)

where ε is an arbitrary function of time and λ is an arbitrary constant. In the limit of instanta-

neous recombination and considering matter dominance, the observed CMB temperature anisotropies

ignoring the ISW effect1 are given to first order by

Θobs(n̂) ≡ [Θ + Φ + n̂ · ~v] (τrec, ~xrec) , (6.2.2)

1The early ISW effect due to the evolution of Bardeen’s potentials during the transition from radiation to matter

domination has been taken into account since the standard calculation of the Sachs-Wolfe effect does not depend on this

transition (see the discussion in Ref. [70]). So this approximation only ignores the late ISW effect due to the evolutions

of the potentials in the presence of dark energy.
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In this expression, Θ is the intrinsic temperature anisotropy defined as

T (τ, xi) = T̄ (τ)(1 + Θ(τ, xi)) , (6.2.3)

Φ is the gravitational potential and ~v is the velocity of the photon-baryon fluid. One can compute

the effect of a long mode on the short scale temperature anisotropy by applying the coordinate

transformation given in Eq. (6.2.1) to each term in Eq. (6.2.2). During matter-domination (a ∝ τ2),

we have ε = τ ΦL/3 and λ = 5ΦL/3. Doing the coordinate transformation explicitly therefore gives

Θobs(n̂) = Θobs,S(n̂) + Θobs,L(n̂)

+ Θobs,L(n̂)

(
∂

∂ ln τrec
+ 1− 5 n̂ · ∇n̂

)
Θobs,S(n̂) . (6.2.4)

Note that this expression is valid when the long mode is taken to be larger than the sound horizon

at recombination but the short modes can be taken to be at arbitrarily small scales, as it relies only

on the fact that a constant gravitational potential has no physical effect and is therefore equivalent

to a coordinate transformation. Also note that this expression is indeed compatible with the explicit

second order calculation performed e.g. in references [147, 148]. The time derivative in equation

(6.2.4) will be suppressed by τrec/τobs and will thus be subdominant with respect to the rescaling.

The presence of the long-wavelength mode will also change the relation between the direction of the

observation n̂ and the physical position at recombination ~xrec. In the absence of the long-wavelength

mode they are related through the zeroth order geodesic equation, ~xrec = n̂(τobs − τrec). In writing

Eq. (6.2.4) this relation is used to rewrite ~xrec ·∇~xrec = n̂ ·∇n̂. In the presence of the long-wavelength

mode the relation between ~x and n̂ is modified as

~x = n̂

[(
1− 1

3
ΦL(xobs)

)
τobs −

(
1− 1

3
ΦL(xrec)

)
τrec

]

+ 2n̂

∫ τobs

τrec

ΦL(~x)dτ − 2

∫ τobs

τrec

dτ(τ − τrec)~∇⊥ΦL(~x) . (6.2.5)

This relation is obtained by solving the photon geodesic equation at first order. As described in [70],

only the last term of the above expression, which is the lensing term, will contribute to the bispectrum.

The first term in the square brackets does not contribute since it only depends on the gravitational

potential at observation. The second term in the square bracket changes the distance to the last

scattering surface and is suppressed by a factor of τrec/τobs. The second term is also suppressed since

the integral of Φ along the line of sight, the so called Shapiro effect, tends to average out along the

line of sight for high enough multipoles.

Therefore the effect of the long-wavelength mode on the short modes reduces to the lensing induced

by the long mode (the last term in Eq. (6.2.5)) and a stretching perpendicular to the line of sight
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(the last term in Eq. (6.2.4)). From now on for simplicity, we drop the subscript observed in the

temperature anisotropy. The short-wavelength mode, ΘS , in the presence of long-wavelength mode,

ΘL, is modified as

Θ(n̂) = ΘS (n̂+ ~α(n̂)) + ΘL(n̂) (1− 5 n̂ · ∇n̂) ΘS(n̂), (6.2.6)

where ~α is the deviation due to the lensing term and we dropped the subscript S for the short modes.

We can similarly find the effect of a long-wavelength temperature mode on the short-scale po-

larization mode. In the presence of the long mode, the short-wavelength polarization field ΘP will

be

ΘP (n̂) = ΘP,S(n̂+ ~α(n̂))− 5ΘLn̂ · ∇n̂ΘP,S(n̂), (6.2.7)

Notice that the constant term in Eq. (6.2.6), which corresponds to change in the average temperature

of CMB, does not affect the polarization field. This is because it corresponds to the monopole of the

temperature field and the polarization is only sensitive to the quadruple moment. Using the flat-sky

approximation n̂ ∼ (1, ~m) we obtain the power spectrum of the two short polarization modes in the

presence of a long-wavelength temperature mode

〈ΘP (~m1)ΘP (~m2)〉L =〈ΘP (~m1)ΘP (~m2)〉

+ (αi(~m1)− αi(~m2))∇i〈ΘP (~m1)ΘP (~m2)〉

− 5ΘL ~m · ∇~m〈ΘP (~m1)ΘP (~m2)〉. (6.2.8)

where we have used the fact that the power spectrum depends only on the distance ~m = ~m1 − ~m2,

which is small due to the fact that we are in the flat-sky or distant observer approximation. From

now on we shall ignore the first term which does not contribute to the bispectrum.

Next, by decomposing the polarization field into E and B modes we calculate how the presence

of the long-wavelength temperature mode modifies the polarization power spectrum. This will then

lead us to the calculation of the TBB and TEE bispectra in the next section. The polarization matrix

for linearly polarized radiation is a real spin-2 object parametrized in terms of Stokes parameters Q

and U

P =

(
Q U

U −Q

)
. (6.2.9)

Under a counterclockwise rotation through an angle φ, the stokes parameters transform as

Q′ = Q cos 2φ+ U sin 2φ,

U ′ = U cos 2φ−Q sin 2φ, (6.2.10)
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or in a more compact form

(Q± iU)′ = e∓2iφ(Q± iU), (6.2.11)

which indicates that the polarization field ΘP = Q ± iU is a spin-2 quantity. Note that Q is parity

even while U is parity odd. Putting together quantities of the same parity, we can construct spin-0

quantities E and B by applying the spin raising and lowering operators on Q and U . In the flat-sky

approximation, where one neglects the curvature of the sphere and considers it as a plane normal to

ez the spin raising and lowering operators reduce to

L± = Lx ± iLy = ∂x ± i∂y. (6.2.12)

Therefore the spin-0 quantities Ẽ and B̃ can be defined as [149]

Ẽ = −1

2

(
L2

+(Q− iU) + L2
−(Q+ iU)

)
, (6.2.13)

B̃ =
1

2i

(
L2

+(Q− iU)− L2
−(Q+ iU)

)
, (6.2.14)

and under a Fourier transform

aẼ(~̀) =

∫
d~m `2(Q cos 2φ` + U sin 2φ`)e

−i~̀·~m, (6.2.15)

aB̃(~̀) =

∫
d~m `2(−Q sin 2φ` + U cos 2φ`)e

−i~̀·~m . (6.2.16)

We shall write our final results in terms of a rescaled coefficients a(E,B) = a(Ẽ,B̃)/`
2.

Next we use Eqs. (6.2.12) and (6.2.14) to compute the effect of a rescaling on the B modes. First

we consider the last term in Eq. (6.2.8), putting aside the lensing term for now. Note that

L2
± ~m · ∇~m = (2 + ~m · ∇~m)L2

± , (6.2.17)

where we used the fact that L2
± is given simply by a combination of second derivatives. Therefore the

contribution from the last term to the polarization is given by

B̃(~m) 7→B̃(~m)− 5ΘL

[
− iL2

+ ~m · ∇~m(Q− iU) + iL2
− ~m · ∇~m(Q+ iU)

]
=B̃(~m)− 5ΘL(2 + ~m · ∇~m)B̃(~m) (6.2.18)
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and analogously for the E modes

Ẽ(~m) 7→ Ẽ(~m)− 5ΘL(2 + ~m · ∇~m)Ẽ(~m) . (6.2.19)

Hence its contribution to the polarization power spectrum is given by

〈aX̃(~̀1)aX̃(~̀2)〉L ⊃−
∫

d~m1d~m2 e
−i(~̀1·~m1+~̀2·~m2)

× 5ΘL( ~M)

(
4 +

∑
i

~mi · ∇~mi

)
〈X̃(~m1)X̃(~m2)〉, (6.2.20)

where ~M ≡ (~m1 + ~m2)/2 and X stands for either E or B.

Next, we consider the contribution from the lensing piece, which is given by

ΘP (~m+ ~α(~m)) = (Q± iU)(~m+ ~α(~m))

' (Q± iU)(~m) + αi( ~M)∇im(Q± iU)(~m)

+ (mj −M j)∇jMα
i( ~M)∇im(Q± iU)(~m) , (6.2.21)

where in the last line we have assumed that α varies slowly since it is given by the long-wavelength

mode and we have Taylor expanded it around ~M . Since the polarization modes are combinations of

L2
± acting on these objects, let us act on the above equations with the raising and lowering operators.

Also let us focus only on the piece in the last line proportional to ~m, since it is the only non-trivial

one

L2
±m

j∇jMα
i( ~M)∇im(Q± iU)(~m) = mj∇jMα

i( ~M)∇imL2
±(Q± iU)(~m)

+ (L2
±∇2

M + L
(M) 2
± ∇2

m)ψ(M)(Q± iU)(~m) , (6.2.22)

where we write the derivatives with respect to M in terms of raising and lowering operators written

in terms of the capital coordinates L
(M)
± = ±(∂M1 ± i∂M2) with ~M = (M1,M2). We also write the

deflection angle ~α = ~∇ψ By putting together Eqs. (6.2.14, 6.2.21, 6.2.22) we obtain

B̃(~m) 7→
(

1 +∇iMψ( ~M)∇im −M j∇jM∇
i
Mψ( ~M)∇im

+mj∇jM∇
i
Mψ( ~M)∇im +∇2

Mψ( ~M)

)
B̃(~m)
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− i

2
L

(M) 2
+ ψ( ~M)∇2

m(Q− iU)(~m)

+
i

2
L

(M) 2
− ψ( ~M)∇2

m(Q+ iU)(~m), (6.2.23)

where only the second and third line will contribute to the final answer. Using the definitions of Eqs.

(6.2.13) and (6.2.14), it’s easy to rewrite the third line as

i

2
L

(M) 2
+ ψ( ~M)

L2
−
∇2
m

(Ẽ − iB̃)(~m)− i

2
L

(M) 2
− ψ( ~M)

L2
+

∇2
m

(Ẽ + iB̃)(~m) . (6.2.24)

Analogously for the E-modes,

Ẽ(~m) 7→
(

1 +∇iMψ( ~M)∇im −M j∇jM∇
i
Mψ( ~M)∇im

+mj∇jM∇
i
Mψ( ~M)∇im +∇2

Mψ( ~M)

)
Ẽ(~m)

+
1

2
L

(M) 2
+ ψ( ~M)∇2

m(Ẽ − iB̃)(~m)

+
1

2
L

(M) 2
− ψ( ~M)∇2

m(Ẽ + iB̃)(~m). (6.2.25)

Therefore the contribution of the lensing term to the polarization power spectrum in the presence of

long-wavelength temperature mode is given by

〈aX̃(~̀1)aX̃(~̀2)〉L ⊃
∫

d~m1d~m2 e
−i(~̀1·~m1+~̀2·~m2)

×
[
2∇2

M +∇iM∇
j
Mm

i∇jm + L
(M) 2
+ L2

−∇−2
m + L

(M) 2
− L2

+∇−2
m

]

× ψ( ~M)〈X̃(~m1)X̃(~m2)〉. (6.2.26)

6.3 The bispectrum in the squeezed limit

Having calculated the polarization power spectrum in the presence of long-wavelength temperature

mode given by Eqs. (6.2.20, 6.2.26), we can finally calculate the TBB and TEE bispectra in the

squeezed limit by correlating this power spectrum with the long-wavelength temperature mode. Again

let’s first consider only the contribution from the rescaling part. Using the fact that the two-point
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function depends only on ~m ≡ ~m1 − ~m2 we obtain

〈aX̃(~̀1)aX̃(~̀2)a(~̀3)〉
~̀
3→0
⊃ −

∫
d~md ~Md ~ML e

−i((~̀1+~̀2)· ~M+~̀3· ~ML+(~̀1−~̀2)·~m/2)

× 5〈Θ( ~ML)ΘL( ~M)〉(4 + ~m · ∇~m)〈X̃(~m1)X̃(~m2)〉

= (2π)2δ(~̀1 + ~̀
2 + ~̀

3)5
(
− 2 + ~̀

1 · ∇`1
)

× CX̃X̃`1 C`3 . (6.3.1)

Now we want to write the corresponding relation for aX (without the tilda), remembering that aX =

aX̃/`
2, that is

〈aX(~̀1)aX(~̀2)a(~̀3)〉
~̀
3→0
⊃ (2π)2δ(~̀1 + ~̀

2 + ~̀
3)

5

`41

(
− 2 + ~̀

1 · ∇`1
)
(`41C

XX
`1 )C`3

= (2π)2δ(~̀1 + ~̀
2 + ~̀

3)

× 5CXX`1 C`3
d ln

(
`21C

XX
`1

)
d ln `1

. (6.3.2)

Next we consider the contribution of lensing term to the bispectrum by correlating Eq.(6.2.26)

with the long temperature mode. Let’s consider each term in the square parenthesis separately: the

first term in the square parenthesis of Eq. (6.2.26) is just trivially computed to be

〈aX̃(~̀1)aX̃(~̀2)a(~̀3)〉
~̀
3→0
⊃ −(2π)2δ(~̀1 + ~̀

2 + ~̀
3)2`23C

X̃X̃
`1 CTψ`3 . (6.3.3)

The second term, which has a similar structure to the lensing of the temperature power spectrum, is

〈aX̃(~̀1)aX̃(~̀2)a(~̀3)〉
~̀
3→0
⊃
∫

d~md~sd~S e−i((
~̀
1+~̀2+~̀3)·~S−(~̀1+~̀2−~̀3)·~s/2+(~̀1−~̀2)·~m/2)

×mi∇i~s∇
j
~s〈Θ( ~ML)ψ( ~M)〉∇j~m〈X̃(~m1)X̃(~m2)〉

= −(2π)2δ(~̀1 + ~̀
2 + ~̀

3)`23C
X̃X̃
`1 CTψ`3

×

[
cos(2ϕ)− cos2 ϕ

d ln
(
`21C

X̃X̃
`1

)
d ln `1

]
, (6.3.4)
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where ϕ is the angle between the vectors ~̀1 and ~̀3. Finally, the third and fourth terms in the square

parenthesis of Eq. (6.2.26) have a more complicated structure but their computation is straightforward

〈aX̃(~̀1)aX̃(~̀2)a(~̀3)〉
~̀
3→0
⊃ − (2π)2δ(~̀1 + ~̀

2 + ~̀
3)CX̃X̃`1 CTψ`3

× 2

`21

[(
(`x3)2 − (`y3)2

)(
(`x1)2 − (`y1)2

)
+ 4`x1`

y
1`
x
3`
y
3

]
= −(2π)2δ(~̀1 + ~̀

2 + ~̀
3)

× 2`23 cos(2ϕ)CX̃X̃`1 CTψ`3 . (6.3.5)

Putting everything together we obtain the lensing contribution to the bispectrum

〈aX̃(~̀1)aX̃(~̀2)a(~̀3)〉 ⊃ − (2π)2δ(~̀1 + ~̀
2 + ~̀

3)`23C
X̃X̃
`1 CTψ`3

×

2 + 3 cos(2ϕ)− cos2 ϕ
d ln

(
`21C

X̃X̃
`1

)
d ln `1

 . (6.3.6)

Finally, after changing from X̃ to X, we obtain

〈aX(~̀1)aX(~̀2)a(~̀3)〉
`3→0
⊃ − (2π)2δ(~̀1 + ~̀

2 + ~̀
3)`23C

XX
`1 CTψ`3

×

[
cos(2ϕ)− cos2 ϕ

d ln
(
`21C

XX
`1

)
d ln `1

]
. (6.3.7)

Adding the rescaling and lensing contributions to the bispectrum given in Eqs. (6.2.20, 6.2.26), we

obtain the TBB and TEE bispectrum in the squeezed limit where the temperature mode has a much
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longer wavelength than the two polarization modes.

〈aX(~̀1)aX(~̀2)a(~̀3)〉 `3→0
= (2π)2δ(~̀1 + ~̀

2 + ~̀
3)CXX`1

[
`23C

Tψ
`3

×

(
− cos(2ϕ) + cos2 ϕ

d ln
(
`21C

XX
`1

)
d ln `1

)

+ 5CTT`3
d ln

(
`21C

XX
`1

)
d ln `1

]
,

(6.3.8)

where X denotes either E or B. In [6.1] we plot this result where we have fixed the small mode

`3 = 20 and set `1 = `2 = `. In order to normalise the result, we divided by 100 CTT`3 CXX` .
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Figure 6.1: TBB and TEE bispectra as computed in equation (6.3.8). We have fixed the small mode `3 = 20

and set `1 = `2 = ` and normalised the two bispectra by a factor of 100 CTT
`3
CXX

` . The fiducial model used to

calculate the bispectra is the same as that in section [6.4] in which r = 0.1, ns = 0.962 and nT is set by the

consistency relation.

Note that in Eq. (6.3.8), the logarithmic derivative will be sensitive to the tilt of the primordial

power spectra. In particular, when computing the TBB bispectrum, it will receive a contribution

proportional to the tilt of the tensor power spectrum nT . However, as we shall see in the next section

it is difficult, to say the least, to observe this contribution.
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6.4 Signal-to-noise estimation

Similar to the temperature bispectrum [150], for the TBB and TEE bispectra given in Eq. (6.3.8),

the signal-to-noise is given by

(
S

N

)2

=
fsky

π

1

(2π)2

∫∫
d2`1 d2`3

(
BTXX
`1l2l3

)2
Var

, (6.4.1)

where again X can be either E or B. Assuming `3 < `2 < `1, the variance is given by

Var = 〈ã∗T (`3)ã∗X(`1)ã∗X(`2)ãT (`3)ãX(`1)ãX(`2)〉 ≈ C̃TT`3 C̃XX`1 C̃XX`2 . (6.4.2)

The spectra with a tilde are the theoretical power spectra plus the instrumental noise

C̃Y Y` = CY Y` +NY Y
` , (6.4.3)

where Y can be T, E or B mode. The noise power spectrum for a multi-frequency experiment like

Planck is given by [151]

NY Y
` =

(∑
c

1

NY Y
`,c

)−1

. (6.4.4)

The noise in each channel is given by

NY Y
`,c = θ2

fwhmσ
2
Y exp

[
`(`+ 1)

θ2
fwhm

8ln2

]
, (6.4.5)

where θfwhm is the full width at half maximum of the Gaussian beam and σY is the root mean square of

the instrumental noise. Non-diagonal noise terms are supposed to vanish since the noise contribution

from different maps are uncorrelated. In our signal-to-noise estimation we use the values of θfwhm and

σY for three frequency channels of the Planck 14-month mission [152], seven frequency channels of

the COrE 4-year mission [153], five frequency channels of the PRISM 4-year mission [154] as given in

Tables [2-4] of the Appendix and an ideal noiseless experiment with `max = 3000. For all four cases we

take the sky fraction to be fsky = 0.65. For the fiducial model, we consider a 6 parameter cosmology

with {As = 2.215 × 10−9, Ωm = 0.1199, Ωb = 0.02205, τ = 0.0925, ns = 0.962, r = 0.1} and

nT = −(r/8)(2−r/8−ns) satisfying the single-field inflationary consistency relation. We evaluate the

integrals in the squeezed limit, we choose the long-wavelength mode to be in the range 20 ≤ `3 ≤ 300

and the two short-wavelength modes to be equal and in the range 10 `3 ≤ `1 ≤ `max. The power

spectra are computed by the numerical code CLASS [155].

The signal-to-noise of the TBB and TEE bispectra in the squeezed limit for these three experiments

and a zero noise experiment are given in table [6.1]. We quote two cases: considering only the rescaling
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Modes long-mode lensing Planck COrE PRISM Ideal

TBB no 6.7× 10−5 2.4× 10−2 5.0× 10−2 1.1

TBB yes 9.8× 10−4 0.40 0.72 8.7

TEE no 0.16 1.7 2.3 3.1

TEE yes 1.8 14 18 23

Table 6.1: Bispectrum signal-to-noise.

part of Eq. (6.3.8), and using the full formula. We also present the signal to noise ratios for the full

TBB and TEE bispectra as a function of the maximum ` in figure [6.2]. The signal is dominated by

the lensing induced by the long mode. In principle this can be subtracted from observations; for the

TEE correlation the resulting signal would still be observable in the admittedly far-fetched noiseless

experiment, while for the TBB correlation the signal-to-noise would barely be greater than one even

for such a futuristic experiment. In particular, the contribution to TBB coming from the tilt of the

primordial tensor power spectrum is inaccessible to a direct measurement. The E-modes signal-to-

noise is larger as it is also sourced by temperature anisotropies. Comparing with [146], we obtain

compatible values taking into account that we have differences in our computations: on the one hand

we only include triangles in the squeezed limit whereas they include all triangles which tends to lower

our signal-to-noise although most of their signal comes form squeezed configurations.
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Figure 6.2: Signal to noise ratios for the full TBB and TEE bispectra including both the lensing and rescaling

contributions for various experiments. The calculation is done using the fiducial model described in the main

text. In the case of the TBB bispectrum the signal to noise ratio for Planck is too small to be shown and the

dashed line corresponds to a signal to noise ratio of one.
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6.5 Summary

We have computed the squeezed limit of the correlation function involving one temperature and two

polarization fluctuations. This has been done by appealing to the fact that a constant gravitational

potential (or metric fluctuation in the Poisson gauge) can have no physical effect on the local ob-

servables. It is worth noting that we do not expect interstellar dust to give any contribution to Eq.

(6.3.8), since, being within our galaxy, it should not correlate with a long-wavelength fluctuation at

the CMB.

Our results indicate that a direct observation of this squeezed limit for the B-mode polarization

is possible only for very futuristic experiments, while its observation for E-mode polarization is more

plausible. As pointed out in [146], this effect has to be correctly taken into account if one is to use

the E-mode bispectrum in order to constrain primordial non-Gaussianity.

One could have hoped to use the B-mode bispectrum to learn something about the nature of

the primordial universe. An example of this is the dependence of the bispectrum on the tilt of the

primordial tensor power spectrum, which would then be expected to be compatible with the tilt

measured in the B-mode two-point function. However, most of the signal comes from the lensing

induced by the long-wavelength mode, an effect that contains little information about the shape of

the primordial bispectrum. Even if one were to subtract this lensing effect, the contribution of the

lensing to the variance would still hamper observations. An adventurous alternative would be to

measure the variation of the B-mode power spectrum among different small patches in the sky and

correlate this with the average temperature of each patch, similar to what was proposed for the large-

scale structure in ref. [156]. One could then attempt to subtract the lensing in each patch using

lensing potential maps in order to reduce the lensing variance. We leave a detailed analysis of such a

technique as future work if it proves interesting.





Chapter 7

Conclusions and outlook

In this thesis, we have developed theoretical tools called consistency conditions enabling a better

understanding of cosmological observables, in particular, of the large-scale structure. All the projects

were ultimately geared towards enabling to improve constraints on primordial non-Gaussianity from

the large-scale structure which is believed to the be the next big source of data for cosmology. Better

constraints on NG are key to discriminate between different models of inflation and any detection

would eliminate a large class of models.

We have further developed the consistency relations in the context of cosmological observables

like the dark matter overdensity, the CMB polarization and the observed galaxy number counts. We

have also shown how these can be used to constrain and check various models of both perturbative

and non-perturbative approaches describing the LSS, among which the halo model and bias models.

Considering the effect of a long wavelength mode of the gravitational potential up to second

derivatives on the short density modes, we derived a consistency relation involving the soft limit

of the (n + 1)-correlator functions of dark matter at equal times, extending the existing relations

which considered the effect of a gravitational potential up to a gradient. This produces a non-

vanishing relation for the squeezed bispectrum. This enabled a test of the halo model, a successful

phenomenological model which describes the matter distribution on short scales. We have shown that

this model satisfies the consistency condition to good accuracy up to scales of O(1) h/Mpc which is

remarkable.

We have also explored the consequences of the fluid derivation of the consistency conditions. We

have shown that the local Eulerian bias expansion satisfies the consistency conditions but that the

symmetries of the fluid equations imply that the bias expansion should be non-local. As a first step

towards predictions for quantities, we have derived a consistency condition including redshift space

distortions. Finally, we have studied how the consistency conditions could be violated and provided

an example in the form of a toy model of Modified Gravity.

Finally, we have computed the squeezed bispectrum of the observed quantity which future LSS sur-

vey will measure: the galaxy numbers counts. This is of great importance in the precision cosmology

era which we are entering. Indeed, the size and precision of forthcoming surveys will enable cosmol-

ogists to measure correlations and estimate parameters of models down to the percent accuracy. At

this level, it is important to go beyond the quantities which are convenient from a model perspective

and make predictions for actual observables. In this derivation, we found that so-called projection
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effects produce a non-zero correlation between the two-point function and a constant gradient of the

gravitational potential. This simple approach, which is based on symmetries of the underlying physics,

is able to estimate the contamination to local NG which would in theory only be accessible from a

complicated second-order computation. The terms we have derived can indeed be misinterpreted as

a local NG in a naive analysis. This demonstrates once again, how using the symmetries in physics

can dramatically simplify the description of a system.

In a more in-depth analysis, we have computed different shapes of primordial NG in terms of

galaxy number counts, a numerically challenging computation. This enabled to confirm that the

terms obtained form the consistency condition have to be taken into account if one hopes to reach a

precision of f loc
NL ∼ 1 from LSS data. Comparing with the effective NG generated by selected terms

derived from the full second-order number counts, we have shown that this might even be the dominant

contribution. Concerning equilateral NG, the second-order terms which we have considered, so-called

“Newtonian × Lensing” and “three derivatives”, are found to produce an f eq
NL ∼ 1 which again has to

be taken into account.

Finally, a long mode of the temperature anisotropy affect the two point function of polarization.

After the direct observation of gravitational waves which have been made by the LIGO interferometers,

the hopes for the existence of a primordial gravitational wave background have never been higher.

Any detection would be a big step in the confirmation of the existence inflation. However, as the failed

discovery of the primordial B-modes by the BICEP2 experiment have shown, many other astrophysical

sources and systematic effects need to be put under control before it is possible to confirm a primordial

sign of GW. We have shown that the consistency relation which has been derived can be used to

distinguish the galactic dust polarization from polarization generated by primordial gravitational

waves. This is because it is not expected that dust emission correlates with a long temperature mode.

Ultimately, if one were to analyse real data, one will have to include all second-order terms (at

least), as cancellation between different terms might occur. Moreover, this treatment has ignored

issues such as bias or astrophysical effects. From our arguments based on the symmetries of the fluid

equations, we expect the various terms in the non-local bias to be present. The way to include these

in the general relativistic treatment is still to be determined.

We have also seen that the effective value of fNL is affected by the magnification bias, among

other factors. A realistic modelling of this effect will be essential in the future. The galaxy bias will

also have to be included in the relativistic treatment. There is also a risk that the uncertainty on

astrophysical phenomena will dominate over the relativistic effect, in particular due to the fact that a

lot of them are poorly understood. The failed discovery of primordial B-modes is an example of this

problematic. The usefulness of our results will probably depend on the understanding of astrophysical

processes.

It would also be interesting to see how well one could measure or constrain the consistency con-

ditions from real surveys. The prospect is promising since one can use arbitrarily small scales for

the short modes given that the consistency relations are non-perturbative. However, if one hopes to

fully exploit all the non-linear data which will be provided by future surveys, one will probably need

to resort to numerical simulations. While some simulations including redshift space distortions and

ray-tracing will probably be available in the coming years, there is still a long way to go until we have

fully relativistic cosmological simulations over a large range of scales. It would be interesting to use
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consistency conditions as a check on such simulations as they are valid also for non-linear scales.

Of course cosmological observables are not limited to the CMB and the galaxy distribution. Future

knowledge about the Universe will also come from other sources such as the cosmic infrared background,

gravitational waves and 21 cm emission, and a lot remain to be understood. Even with better

constraints on the characteristics of inflation, dark matter and dark energy, many models are still

possible. The question is then: Will the Universe make enough information available to enable its

understanding?
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Appendix A

Useful mathematical relations

A.1 Spherical harmonics

Useful identities are the Rayleigh expansion

ei
~k·~r = 4π

∑
`m

i`j`(kx)Y ∗`m(k̂)Y`m(x̂) (A.1.1)

and the orthogonality relations

∫
drr2kk′

2

π
j`(kr)j`(k

′r) = δ(k − k′), (A.1.2)

∫
dx̂Y`m(x̂)Y ∗`′m′(x̂) = δ``′δmm′ , (A.1.3)

as well as the parity

Y`m(−k̂) = (−1)`Y`m(k̂), (A.1.4)

j`(−x) = (−1)`j`(x) (A.1.5)

and the conjugation

Y ∗`m(x) = (−1)mY`−m(x). (A.1.6)

The Gaunt integral is

∫
dn̂Y ∗`1m1

(n̂)Y ∗`2m2
(n̂)Y ∗`3m3

(n̂) = (−1)m1+m2+m3G−m1−m2−m3
`1`2`3

(A.1.7)
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= (−1)m1+m2+m3(−1)`1+`2+`3Gm1m2m3
`1`2`3

(A.1.8)

The Gaunt integral is

Gm1m2m3
`1`2`3

=

∫
dn̂Y`1m1(n̂)Y`2m2(n̂)Y`3m3(n̂) (A.1.9)

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

 `1 `2 `3

0 0 0

 `1 `2 `3

m1 m2 m3


and b`1`2`3 is called the reduced bispectrum and contains all information of the bispectrum for a

statistically isotropic and homogeneous field.



Appendix B

Primordial NG shapes

We consider several primordial NG shapes following [157, 158] that we write in terms of the curvature

perturbation ζ by first defining the ”shape function” F as

〈ζ~k1
ζ~k2
ζ~k3
〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)F (k1, k2, k3). (B.0.1)

We parametrize the curvature power spectrum as Pζ(k) = A
k3

(
k
kp

)ns−1
and define A∗ to be its

amplitude as some fiducial momentum k∗. The equilateral shape is defined to be

Fequil.(k1, k2, k3) =
18

5
fequil.NL A2

∗

(
− 1

k4−ns
1 k4−ns

2

− 1

k4−ns
1 k4−ns

3

− 1

k4−ns
2 k4−ns

3

− 2

k
2(4−ns)/3
1 k

2(4−ns)/3
2 k

2(4−ns)/3
3

+

(
1

k
(4−ns)/3
1 k

2(4−ns)/3
2 k4−ns

3

+ 5 perm.

))
. (B.0.2)

The orthogonal shape is

Forthog.(k1, k2, k3) =
18

5
forth.NL A2

∗

(
− 3

k4−ns
1 k4−ns

2

− 3

k4−ns
1 k4−ns

3

− 3

k4−ns
2 k4−ns

3

− 8

k
2(4−ns)/3
1 k

2(4−ns)/3
2 k

2(4−ns)/3
3

+

(
3

k
(4−ns)/3
1 k

2(4−ns)/3
2 k4−ns

3

+ 5 perm.

))
. (B.0.3)
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The local shape is

Floc.(k1, k2, k3) =
6

5
f loc.NL (Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1))

=
6

5
f loc.NLA

2
∗

(
1

k4−ns
2 k4−ns

3

+
1

k4−ns
3 k4−ns

1

+
1

k4−ns
1 k4−ns

2

)
. (B.0.4)

The orthogonal and equilateral are normalized such that they have the same amplitude as the local

shape for equilateral triangles for a scale invariant power spectrum.

The matter bispectrum at time z is given by

BL(k1, k2, k3) = Tδ(k1, z)Tδ(k2, z)Tδ(k3, z)F (k1, k2, k3), (B.0.5)

where Tδ is the transfer function between the curvature perturbation ζ and the matter perturbation

δ(k, z).



Appendix C

B-modes

C.1 Applying the coordinate transformations directly to BB power

spectrum

In this appendix we derive the rescaling contribution to the B-mode power spectrum given in Eq.

(6.2.20), by applying the rescaling directly to the B-mode power spectrum in Fourier space. We shall

confirm that that it is given by

C` 7−→ C`

(
1 + 5 a(`3)

d ln `2C`
d ln `

)
, (C.1.1)

where a(l3) is the multipole moment of the long mode temperature perturbation, which is related to

the gravitational potential by Θ = (T − T̄ )/T̄ = Φ/3. During matter-domination, the effect of the

long-wavelength mode corresponds to a rescaling of the wave vector ~k and the time coordinate τ given

by

~k 7−→ ~k e5ΦL/3, τ 7−→ τ eΦL/3. (C.1.2)

The BB power spectrum is given by [159]

CBB` =
4π

25
∆τ2

rec

∫ ∞
0

d ln k PT (k)h
′2(k, τrec)

×
[
`+ 2

2`+ 1
j`−1(kτobs)−

`− 1

2`+ 1
j`+1(kτobs)

]2

(C.1.3)

with primordial tensor power spectrum given by

PT (k) = AT

(
k

k∗

)nT
, (C.1.4)
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and transfer function is

h′(k, τrec) = −3
j2(kτrec)

τrec
. (C.1.5)

The term in the square brackets can be rewritten in terms of the Bessel function and its derivative.

At `� 1 the asymptotic behaviour of spherical Bessel function is given by a cosine function. There-

fore since the phase of the Bessel function and its derivative differs by π/2 the cross term that is

proportional to j` · j′` can be neglected. Averaging the oscillating function of j` and j′` one obtains

CBB` ' 36π

25
∆τ2

rec

∫ ∞
(`+1/2)/τobs

d ln k PT (k)

× j2
2(kτrec)

τ2
rec

[√
(kτobs)2 − (`+ 1/2)2

2(kτobs)3

]
. (C.1.6)

There are some subtleties in applying the above rescaling to the B-mode power spectrum as the

rescaling should be applied on the power spectrum at recombination (primordial power spectrum

times the transfer function) but not on the geometrical projection effect, in this case given the square

brackets in Eq. (C.1.3). One can also ignore any rescaling of the time at the observer because it is not

observable. Finally, and most importantly, the addition of a long mode to the gravitational potential

locally changes the average temperature as

T̄ → T̄ e2ΦL/3. (C.1.7)

Recombination happens however at a fixed physical temperature. In the patch at recombination where

the long mode is present, recombination is therefore delayed to time

τrec → τrec e
ΦL/3, (C.1.8)

which exactly compensates the effect of the time transformation. This amounts to the fact that we

effectively only need to rescale ~k to account for a long-wavelength mode.

We restrict ourselves to the case nT = 0 for now and derive the results in two limits:

• 10 . ` . 50: for ` < τobs/τrec one can extend the lower integral bound to zero and obtain

CBB` ' 18π

25

(
∆τrec

τobs

)2

AT

∫ ∞
0

dy

y3
j2
2(y), (C.1.9)

where we have made the change of variable y = kτrec. The integral above equals 1/72. From
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Eq. (C.1.1) we deduce that the effect on CBB` is

CBB` → CBB` (1 + (5× 2)a(`3)). (C.1.10)

On the other hand, by rescaling the power spectrum we obtain

CBB` ' 18π

25
∆τ2

rec

∫ ∞
(`+1/2)/τobs

d ln k AT
j2
2(e5ΦL/3kτrec)

τ2
rec

[
1

(kτobs)2

]

=
18π

25

(
∆τrec

τobs

)2

AT

∫ ∞
0

dy

y3
j2
2(y)e10ΦL/3 (C.1.11)

where we defined y = k e5ΦL/3/τrec. This produces the same effect at first order as expected.
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Figure C.1: Comparison of the slope of the power spectrum with the analytical approximation for the derivative

as function of nT .

• 50 . ` . 103: in this regime, one cannot extend the lower integral bound to zero. The main

contribution to the integral comes from modes k ∼ `/τobs so kτrec � 1 and we can use the large

argument limit of the transfer function

j2
2(kτrec)

τ2
rec

' sin2((kτrec)
2)

τ2
rec(kτrec)2

(C.1.12)
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leading to

CBB` ' 36π

25

(
∆τrec

τrec

)2

AT

∫ ∞
(`+1/2)/τobs

d ln k

× sin2((kτrec)
2)

(kτrec)2

[√
(kτobs)2 − (`+ 1/2)2

2(kτobs)3

]
. (C.1.13)

The sine can be averaged and upon defining u = kτobs/(`+ 1/2) one obtains

CBB` ' 9π

25
AT

(
∆τrec

τrec

)2(τobs

τrec

)2 1

(`+ 1/2)4

∫ ∞
1

du

u6

√
u2 − 1. (C.1.14)

The integral equals 2/15. From Eq. (C.1.1), we deduce that the effect on CBB` is

CBB` → CBB` (1 + (5× (−2))a(`3)), (C.1.15)

while the rescaling acts only on the transfer function j2 ∝ k−2 which produces

CBB` → CBB` e−10ΦL/3 ' CBB` (1− 10a(`3)). (C.1.16)

Finally, one can compute the effect for nT 6= 0 from the rescaling easily. Following the same procedure

we obtain

CBB` →CBB` (1 + 10a(`3)) 10 . ` . 50, (C.1.17)

CBB` →CBB` (1 + 5(nT − 2)a(`3)) 50 . ` . 103, (C.1.18)

which also coincides with the result computed using Eq. (C.1.1). The above expressions can be

confirmed by numerical evaluations of the logarithmic derivative d ln(`2C`)/d ln `. Figure [C.1] shows

a qualitative agreement between the numerical and analytical behavior in the two regimes, namely

d ln(`2C`)/d ln ` = 2 and d ln(`2C`)/d ln ` = (nT − 2) for low and high ` respectively.

C.2 Planck, COrE and PRISM instrumental characteristics



C.2 – Planck, COrE and PRISM instrumental characteristics 121

Frequency θfwhm σT σP

(Hz) (arcmin) (µK/K) (µK/K)

100 10 2.5 4.0

143 7.1 2.2 4.2

217 5.0 4.8 9.8

Table C.1: Planck (14-month mission)

Frequency θfwhm σT σP

(Hz) (arcmin) (µK) (µK)

105 10 0.268 0.463

135 7.8 0.338 0.583

165 6.4 0.417 0.72

195 5.4 0.487 0.841

225 4.7 0.562 0.972

255 4.1 1.48 2.56

285 3.7 2.73 4.7

Table C.2: COrE (4-year mission)

Frequency θfwhm σT σP

(Hz) (arcmin) (µK) (µK)

105 4.8 0.601 0.849

135 3.8 0.682 0.963

160 3.2 0.760 1.074

185 2.8 0.899 1.27

200 2.5 1.03 1.47

Table C.3: PRISM (4-year mission)



Appendix D

Observed consistency relation

D.1 Implementation in CLASSgal

In this appendix, we present a detailed computation of the different spectra appearing in the consis-

tency relation for observed galaxy number counts of chapter 4 that we have implemented by modifying

the CLASSgal code. In the code, one can output the transfer function ” tk.dat” at any desired time.

They are normalized w.r.t ζ(k) such that e.g., for the quantity Q(k, z) the transfer function is

TQ(k, z) ≡ Q(~k, z)

ζ(τin,~k)
. (D.1.1)

The power spectrum output ” pk.dat” from CLASSgal is dimensionfull power spectrum Pδ(k)

D.1.1 Spectra with CLASSgal

We first compute the transfer function (in the CLASSgal sense) for a contribution ∆(z, n̂) ⊃ Ψ(τ(z), n̂r(τ(z))).

Here n̂ it the direction of galaxy and we decompose n̂ in spherical harmonics. Note that this is the

opposite convention from the CLASSgal code [22] and Bonvin & Durrer’s paper [20] where n̂ is the

direction of the photon. This has consequences only for the Doppler terms. In addition, in our con-

vention for the metric, Ψ and Φ are swapped with respect to [20, 21] but in this appendix, we adopt

the CLASS convention for the potentials. The harmonic coefficients are given by

aΨ
`m(z) =

∫
dΩn̂Y

∗
`m(n̂)Ψ(z, n̂r(z)), (D.1.2)

where n̂r(z) is the position of the source which has redshift z and r(z) = τo − τ(z) is the comoving

distance to it with τo the conformal time at the observer. We then write Ψ in terms of its Fourier

transform

Ψ(τ, ~x) =

∫
d3k

(2π)3
Ψ(τ,~k)e−i

~k·~x. (D.1.3)
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and obtain

aΨ
`m(z) =

∫
dΩn̂(−1)`Y ∗`m(n̂)

∫
d3k

(2π)3
Ψ(τ,~k)ei

~k·n̂r(z), (D.1.4)

where we flipped the integration over n̂. We expand the exponential in spherical Bessel and Legendre

polynomials, then expand the Legendre polynomials in spherical harmonics

aΨ
`m(z) =

∫
dΩn̂(−1)`Y ∗`m(n̂)

∫
d3k

(2π)3
Ψ(τ(z),~k)

∞∑
`′=0

(2`′ + 1)i`
′
j`′(kr(z))P`′(k̂ · n̂)

=

∫
dΩn̂(−1)`Y ∗`m(n̂)

∫
d3k

(2π)3
Ψ(τ(z),~k)

×
∞∑
`′=0

`′∑
m′=−`′

4πi`
′
j`′(kr(z))Y

∗
`′m′(k̂)Y`′m′(n̂)

=
(−i)`

2π2

∫
d3kΨ(τ(z),~k)j`(kr(z))Y

∗
`m(k̂). (D.1.5)

All terms computed this way will have the (−i)` factors and the spherical harmonic. Correlating with

itself (or analogously with other terms) gives

〈
aΨ
`m(z1)aΨ∗

`′m′(z2)
〉

=
(−i)`i`′

(2π2)2

∫
d3k

∫
d3k′

〈
Ψ(τ(z1),~k)Ψ(τ(z2),~k)

〉
× j`(kr(z1))j`′(k

′r(z2))Y ∗`m(k̂)Y`′m′(k̂
′)

=
(−i)`i`′

(2π2)2

∫
d3k

∫
d3k′SΨ(τ(z1), k)SΨ(τ(z2), k′)

〈
ζ(~k)ζ(~k′)

〉
× j`(kr(z1))j`′(k

′r(z2))Y ∗`m(k̂)Y`′m′(k̂
′), (D.1.6)

where SΨ is the normalized transfer function for the field Ψ. This is referred as a source function in

CLASSgal and is computed in the source module. It is related to the primordial curvature perturbation

by 〈
Ψ(τ(z1),~k)Ψ(τ(z2),~k)

〉
= SΨ(τ(z1), k)SΨ(τ(z2), k′)

〈
ζ(~k)ζ(~k′)

〉
. (D.1.7)

and 〈
ζ(~k)ζ(~k′)

〉
= (2π)3δ(3)(~k − ~k′)Pζ(k) = (2π)3δ(3)(~k − ~k′) A

k3

(
k

kp

)ns−1

. (D.1.8)
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We obtain

〈
aΨ
`m(z1)aΨ

`′m′(z2)
〉

=
4π

2π2

∫
d3kSΨ(τ(z1), k)SΨ(τ(z2), k′)Pζ(k)

× j`(kr(z1))j`(kr(z2))Y ∗`m(k̂)Y`′m′(k̂)

= C`(z1, z2)δ`,`′δm,m′ , (D.1.9)

with

C`(z1, z2) =
4π

2π2

∫
dk k2SΨ(τ(z1), k)SΨ(τ(z2), k′)

× Pζ(k)j`(kr(z1))j`(kr(z2)). (D.1.10)

We finally obtain

C`(z1, z2) = 4π

∫
dk

k
∆Ψ
` (τ(z1), k)∆Ψ

` (τ(z2), k)Pζ(k). (D.1.11)

where ∆Ψ
` (τ(z1), k) = j`(τ(z1), k)SΨ(τ(z1), k) To be more realistic, we should add a window function

Wi in redshift, defining the redshift bin i with mean redshift zi. This window function serves two

roles: for a spectroscopic survey, it can be taken to be a Dirac function as the precision is very high (or

tophat for a fixed uncertainty), about σz = 0.001(1 + z). However, a photometric survey has a larger

error of about σz = 0.05(1 + z) which is Gaussian. Taking it into account is necessary. Secondly,

one can use the window function to reduce the shot noise by optimal binning of the survey. The

condition on the choice of windows functions is that they cannot be sharper than the intrinsic error

measurements [160]. With the window function the transfer functions are simply modified to

∆i,Ψ
` (k) =

∫ τ0

0
Wi(τ)∆Ψ

` (τ, k)dτ. (D.1.12)

where the window function in τ is related to the one in z by Wi(τ) ≡ − dz
dτWz(z) = H(τ)Wz(τ) (note

a typo in the CLASSgal paper). One obtains

∆i,Ψ
` (k) =

∫ ∞
0

Wz(z)∆
Ψ
` (z, k)dz. (D.1.13)
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D.1.2 The spectrum C
∆g∆z
`

In this section and rest of this appendix, all expressions are written in terms of the CLASSgal con-

vention for the fields Φ and Ψ. We consider the term

∆z(τ, n̂) = (1 + z(τ, n̂) [Hv(τ, n̂r(τ))−HOvO + Ψ(τ, n̂r(τ))

−ΨO − n̂ · (~v(τ, n̂r(τ))− ~vO)

−
∫ τE

τO

dτ ′ (Φ′(τ ′) + Ψ′(τ))

]
. (D.1.14)

Ignoring perturbations at the observer we obtain

∆z(τ, n̂) = (1 + z(τ, n̂) [Ψ(τ, n̂r(τ)) + aHv(τ, n̂r(τ))

− n̂ · ~v(τ, n̂r(τ)) +

∫ τo

τ
dτ ′ (Φ′(τ ′) + Ψ′(τ ′))

]
. (D.1.15)

We define separate transfer functions corresponding to the terms above

∆∆z
` = ∆

(1+z)Ψ
` + ∆Hv

` + ∆
−(1+z)~v·n̂
` + ∆

(1+z)
∫

Φ′+Ψ′

` . (D.1.16)

Transfer function for (1 + z)Ψ The factor simply goes through

∆
(1+z)Ψ
` (τ, k) =

1

a(τ)
SΨ(τ, k)j`(kr(τ)), (D.1.17)

and

∆
i,(1+z)Ψ
` (k) =

∫ τo

0
Wi(τ)

1

a(τ)
SΨ(τ, k)j`(kr(τ))dτ. (D.1.18)

Transfer function for Hv We consider the the term

Hv(τ,−n̂(τ0 − τ)), (D.1.19)

where v is the velocity potential. The transfer function is then

∆Hv
` (τ, k) = −HSΘ(τ, k)

k2
j`(kr(τ)). (D.1.20)
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Adding a window function Wi in τ leads to

∆i,Hv
` (k) = −

∫ τo

0
dτ Wi(τ)

H(τ)

k2
SΘ(τ, k)j`(kr(τ)). (D.1.21)

Transfer function for −(1 + z)(n̂ · ~v) We consider the contribution

− (1 + z(τ))n̂ · ~v(τ, n̂(τo − τ)). (D.1.22)

One has

an̂·~v`m (z) =

∫
dΩn̂(−1)`Y ∗`m(n̂)

∫
d3k

(2π)3
(−k)v(τ,~k)∂kr

(
ei
~k·n̂r(z)

)
(D.1.23)

=
(−i)`

2π2

∫
d3k(−k)v(τ(z),~k)j′`(kr(z))Y

∗
`m(k), (D.1.24)

which gives the transfer function

∆
−(1+z)n̂·~v
` (τ, k) = −SΘ(τ, k)

a(τ)k
j′`(k(τo − τ)), (D.1.25)

and the smoothed one is

∆
i,−(1+z)n̂·~v
` (k) = −

∫ τo

0
Wi(τ)

SΘ(τ, k)

a(τ)k
j′`(k(τ0 − τ))dτ. (D.1.26)

Transfer function for (1 + z)
∫

Φ′ + Ψ′ We compute the transfer function for the term

1

a(τ)

∫ τo

τ
dτ̃ (Φ′ + Ψ′)(τ̃ , n̂(τo − τ̃)). (D.1.27)

The integral simply goes through and we obtain

∆
(1+z)

∫
Φ′+Ψ′

` (τ, k) =
1

a(τ)

∫ τ0

τ
dτ̃ S(Φ+Ψ)′(τ̃ , k)j`(kr(τ̃)). (D.1.28)

Adding a window function Wi in τ gives

∆
i,(1+z)

∫
Φ+Ψ′

` (k) =

∫ τo

0
dτ

Wi(τ)

a(τ)

∫ τo

τ
dτ̃ SΦ′+Ψ′(τ̃ , k)j`(kr(τ̃)). (D.1.29)
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To write it in the same way as in CLASSgal, one flips the order of the integrals (
∫ b
a dx

∫ x
a dy =∫ b

a dy
∫ b
y dx) and rename the variables to obtain

∆
i,(1+z)

∫
Φ′+Ψ′

` (k) =

∫ τ0

0
dτ SΦ′+Ψ′(τ, k)j`(kr(τ))

∫ τ

0
dτ̃

Wi(τ̃)

a(τ̃)
. (D.1.30)

As a check, changing variables to r gives the expressions of [20].

D.1.3 The spectrum C
∆gI
`

We look at the lensing term (ignoring terms at the observer’s location).

I(τ, n̂) = Φ(τ, n̂r(τ)) +

(
1

r(τ)
− aH

)
v(τ, n̂r(τ))

−
∫ τo

τ

dτ̃

r(τ̃)
(Φ + Ψ)(τ̃ , n̂(r(τ̃)). (D.1.31)

We write it as

∆I = ∆Φ + ∆(1/r−aH)v + ∆−
∫

(Φ+Ψ)/r. (D.1.32)

Transfer function for Φ The first term is just the transfer function for the source SΦ

∆Φ(τ, k) = SΦ(τ, k))j`(k(τo − τ)). (D.1.33)

Adding a window functions gives

∆Φ,i
` (k) =

∫ τo

0
Wi(τ)SΦ(τ, k))j`(k(τo − τ))dτ. (D.1.34)

Transfer function for (1/r − aH)v The second term gives

∆
(1/r−aH)v
` (τ, k) = −

(
1

τo − τ
− a(τ)H(τ)

)
SΘ(τ, k)

k2
j`(k(τo − τ)). (D.1.35)

Adding a window function gives

∆
(1/r−aH)v,i
` (k) = −

∫ τo

0
Wi(τ)

(
1

τo − τ
− a(τ)H(τ)

)
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× SΘ(τ, k)

k2
j`(k(τo − τ))dτ. (D.1.36)

Transfer function for −
∫

(Φ+Ψ)/r Finally the third term proceeds as
∫

Φ′+Ψ′ and we obtain

∆
−
∫

(Φ+Ψ)/r
` (τ, k) = −

∫ τ0

τ

dτ̃

τ0 − τ̃
SΦ+Ψ(τ̃ , k)j`(kr(τ̃)). (D.1.37)

Adding a window function gives

∆
i,−
∫

(Φ+Ψ)/r
` (k) = −

∫ τo

0
dτSΦ+Ψ(τ, k)j`(kr(τ))

∫ τ

0

dτ̃

τo − τ̃
Wi(τ̃). (D.1.38)

D.1.4 The spectrum C
∆gd
`

We compute the transfer function for the term

d(τ, n̂) = e(τ)∆z(τ, n̂) + t(τ)δDL(τ, n̂) + δv(τ, n̂). (D.1.39)

Transfer function for e∆z In our work, we define the ”evolution bias” by

e ≡ d ln n̄g
dz

, (D.1.40)

where n̄g is the number density of sources per physical volume. In CLASSgal, one works with the

quantity

fevo(z) ≡
d ln(a3n̄g)

Hdτ
=
(

3− e

a

)
. (D.1.41)

Conservation of the number of galaxies corresponds to a3n̄g = constant or fevo = 0 which gives the

default value of e = 3a. We consider the term

e∆z = (3− fevo)
(

Ψ + aHv − n̂ · ~v +

∫ τ0

τ
dτ̃ (Φ′ + Ψ′)

)
. (D.1.42)

We obtain the transfer function

∆i,e∆z
` (k) = ∆

i,(3−f)Ψ
` (k) + ∆

i,(3−f)aHv
` (k)

+ ∆
i,−(3−f)~v·n̂
` (k) + ∆

i,(3−f)
∫

Φ′+Ψ′

` (k), (D.1.43)
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with

∆
i,(3−f)Ψ
` (k) =

∫ τo

0
Wi(τ)(3− f)(τ)SΨ(τ, k)j`(kr(τ))dτ, (D.1.44)

∆
i,(3−f)aHv
` (k) =−

∫ τo

0
dτ Wi(τ)a(τ)(3− f)(τ)

H(τ)

k2
SΘ(τ, k)j`(kr(τ)), (D.1.45)

∆
i,−(3−f)~v·n̂
` (k) =−

∫ τo

0
Wi(τ)(3− f)(τ)

SΘ(τ, k)

k
j′`(k(τ0 − τ))dτ, (D.1.46)

∆
i,(3−f)

∫
Φ′+Ψ′

` (k) =

∫ τo

0
dτ SΦ′+Ψ′(τ, k)j`(kr(τ))

∫ τ

0
dτ̃ Wi(τ̃)(3− f)(τ̃). (D.1.47)

Luminosity perturbation tδD We now turn to the term tδD. The quantity δD corresponds

to the fractional fluctuation in the luminosity at fixed flux induced by the long mode. Its explicit

expression at linear order can be found in the CLASSgal paper [22] which, using our convention for

n̂ and the CLASSgal convention for the potentials, reads

δD =−
(

1

raH
− 1

)
~v · n̂

+

(
1

raH
− 1

)
Ψ

+

(
1

raH
− 1

)∫ τo

τ
(Ψ′ + Φ′)dr

+
1

2

∫ τo

τ

[
2

τo − τ
− (τo − τ)− (τo − τ̃)

(τo − τ̃)(τo − τ)
∆Ω

]
(Ψ + Φ) dτ̃

− Φ (D.1.48)

and

t = 2
d ln n̂g(s, lnLS)

d lnLS

∣∣∣∣
L̄∗

= −5s(z,m∗) (D.1.49)

where s is the magnification bias.

Transfer function for δV + tδD The volume perturbation is given by

δV =− 2(Φ + Ψ)
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+
1

aH
Φ′

+

(
1 +

H ′

aH2
+

2

(τ0 − τ)aH

)
Ψ

+

(
−2 +

H ′

aH2
+

2

(τ0 − τ)aH

)
(−n̂ · ~v)

+

(
−2 +

H ′

aH2
+

2

(τ0 − τ)aH

)∫ τ0

τ
dτ̃(Ψ′ + Φ′)

+

∫ τ0

τ
dτ̃

(
2

τ0 − τ
− (τ0 − τ)− (τ0 − τ̃)

(τ0 − τ)(τ0 − τ̃)
∆Ω

)
(Φ + Ψ) (D.1.50)

where we have used H′/H2 = 1 +H ′/(aH2). We now combine δV + tδD and write it in terms of new

and existing transfer functions

δV + tδD = −2(Φ + Ψ) ↔ −2∆i,Φ+Ψ
`

+ 1
aHΦ′ ↔ ∆i,G3

`

+
(

1 + H′

aH2 + 2−5s
(τ0−τ)aH + 5s

)
Ψ ↔ ∆i,G1

` + ∆i,−Ψ
`

+
(
−2 + H′

aH2 + 2−5s
(τ0−τ)aH + 5s

)
(−n̂ · ~v) ↔ ∆i,D1

` + ∆i,3~v·n̂
`

+
(
−2 + H′

aH2 + 2−5s
(τ0−τ)aH + 5s

) ∫ τ0
τ dτ̃(Ψ′ + Φ′) ↔ ∆i,G5

` + ∆
i,−3

∫
Φ′+Ψ′

`

+
(
1− 5s

2

) ∫ τ0
τ dτ̃

(
2

τ0−τ̃ −
(τ0−τ)−(τ0−τ̃)
(τ0−τ)(τ0−τ̃) ∆Ω

)
(Φ + Ψ) ↔ ∆i,G4

` + ∆i,Len
`

+5sΦ, ↔ ∆i,5sΦ
`

where the functions G1 to G5, D1 and D2 are defined as in the CLASSgal code and we have defined

new transfer functions

∆i,−Ψ
` (k) = −

∫ τ0

0
Wi(τ)SΨ(τ, k)dτ,

∆i,−3~v·n̂
` (k) = 3

∫ τ0

0

Wi(τ)

k
j′`(kr(τ))SΘ(k, τ)dτ,

∆
i,−3

∫
Φ′+Ψ′

` (k) = −3

∫ τ0

0
dτ SΦ′+Ψ′(τ, k)j`(kr(τ))

∫ τ

0
dτ̃ Wi(τ̃),
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∆i,5sΦ
` (k) = 5s

∫ τ0

0
Wi(τ)j`(kr(τ))SΦ(k, τ)dτ. (D.1.51)

This is valid when neglecting evolution fevo = 0. Note that we removed the terms proportional to

∂r(~v · n̂) from the linear expression as it is zero for a constant gradient of the gravitational potential.

D.2 Harmonic decomposition of the squeezed matter bispectrum

As seen in chapter 5, it seems not possible to compute analytically the local template in general.

However, considering only the squeezed limit in Fourier space, it is possible if one includes only terms

for which the transfer function can be expressed as a product of a spherical Bessel function and

k dependent function ∆`(k) = j`(kr)S(τ, k). In this appendix, we compute the squeezed limit in

harmonic space the matter overdensity only.

The squeezed limit (k1 � k2 ' k3) of the local-shape-type contribution to the galaxy bispectrum

is given by

〈δ(z1, k1)δ(z2, k2)δ(z3, k3)〉′ ⊃ (6/5)fNL (Pζ(k1)Pζ(k2) + 2 perm.)Tδ(z1, k1)

× Tδ(z2, k2)Tδ(z3, k3)

' (12/5)fNLPζ(k1)Pζ(k2)Tδ(z1, k1)Tδ(z2, k2)Tδ(z3, k2)

= (12/5)fNLPζδ(z1, k1)Pδ(z2, z3, k2). (D.2.1)

where Tδ(z3, k3) is the transfer function between ζ and δ. The key to the following computations is

that we in the squeezed limit k2 = k3 , such that the bispectrum is only a function of two of the

momenta k1 and k2.

Bm1,m2,m3

`1,`2,`3
= 〈a`1,m1a`2,m2a`3,m3〉

=

∫
dΩn̂1dΩn̂2dΩn̂3Y

∗
`1,m1

(n̂1)Y ∗`2,m2
(n̂2)Y ∗`3,m3

(n̂3)

× (−1)`1+`2+`3

∫
d3k1d

3k2d
3k3

(2π)9
ei(
~k1·n̂1r1+~k2·n̂2r2+~k3·n̂3r3)

× 〈δ(z1, k1)δ(z2, k2)δ(z3, k3)〉

= (−1)`1+`2+`3

∫
dΩn̂1dΩn̂2dΩn̂3Y

∗
`1,m1

(n̂1)Y ∗`2,m2
(n̂2)Y ∗`3,m3

(n̂3)

×
∫
d3k1d

3k2

(2π)6
ei(
~k1·n̂1r1+~k2·n̂2r2)e−i

~k1·n̂3r3−i~k2·n̂3r3
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× ((12/5)fNLPζδ(z1, k1)Pδ(z2, z3, k2))

= (−1)`1+`2+`3(4π)2i`1+`2

∫
dΩn̂3Y

∗
`3,m3

(n̂3)

∫
d3k1d

3k2

(2π)6
e−i

~k1·n̂3r3−i~k2·n̂3r3

× j`1(k1r1)j`2(k2r2)Y ∗`1,m1
(k̂1)Y ∗`2,m2

(k̂2)

× ((12/5)fNLPζδ(z1, k1)Pδ(z2, z3, k2)) . (D.2.2)

Using the completeness relation

δ(n̂− n̂′) =
∑
l,m

Y ∗l,m(n̂)Yl,m(n̂′), (D.2.3)

we obtain

Bm1,m2,m3

`1,`2,`3
= (−1)`1+`2+`3(4π)2i`1+`2

∫
dΩn̂3Y

∗
`3,m3

(n̂3)

×
∫
dΩn̂′1

∑
`′1,m

′
1

Y`′1,m′1(n̂′1)Y ∗`′1,m′1
(n̂3)

×
∫
dΩn̂′2

∑
`′2,m

′
2

Y`′2,m′2(n̂′2)Y ∗`′2,m′2
(n̂3)

∫
d3k1d

3k2

(2π)6
e−i

~k1·n̂′1r3−i~k2·n̂′2r3

× j`1(k1r1)j`2(k2r2)Y ∗`1,m1
(k̂1)Y ∗`2,m2

(k̂2)

× ((12/5)fNLPζδ(z1, k1)Pδ(z2, z3, k2)) . (D.2.4)

Expanding the exponentials

Bm1,m2,m3

`1,`2,`3
= (−1)`1+`2+`3(4π)4i`1+`2

∫
dΩn̂3Y

∗
`3,m3

(n̂3)

×
∫
dΩn̂′1

∑
`′1,m

′
1

Y`′1,m′1(n̂′1)Y ∗`′1,m′1
(n̂3)

×
∫
dΩn̂′2

∑
`′2,m

′
2

Y`′2,m′2(n̂′2)Y ∗`′2,m′2
(n̂3)

×
∫
d3k1d

3k2

(2π)6

∑
l′′1 ,m

′′
1

∑
l′′2 ,m

′′
2

(−i)l′′1 +l′′2 jl′′1 (k1r3)jl′′2 (k2r3)
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× Y ∗l′′1 ,m′′1 (n̂′1)Y ∗l′′2 ,m′′2
(n̂′2)Yl′′1 ,m′′1 (k̂1)Yl′′2 ,m′′2 (k̂2)

× j`1(k1r1)j`2(k2r2)Y ∗`1,m1
(k̂1)Y ∗`2,m2

(k̂2)

× ((12/5)fNLPζδ(z1, k1)Pδ(z2, z3, k2)) . (D.2.5)

Performing the angular integrals over n̂′1 and n̂′2

Bm1,m2,m3

`1,`2,`3
= (−1)`1+`2+`3(4π)4i`1+`2

∫
dΩn̂3Y

∗
`3,m3

(n̂3)
∑
`′1,m

′
1
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×
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2
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d3k1d

3k2

(2π)6
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1
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× (−i)l′′1 +l′′2 jl′′1 (k1r3)jl′′2 (k2r3)Yl′′1 ,m′′1 (k̂1)Yl′′2 ,m′′2 (k̂2)

× j`1(k1r1)j`2(k2r2)Y ∗`1,m1
(k̂1)Y ∗`2,m2

(k̂2)

× ((12/5)fNLPζδ(z1, k1)Pδ(z2, z3, k2))

= (−1)`1+`2+`3(4π)4i`1+`2
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×
∫
dk1k

2
1dk2k

2
2

(2π)6
j`1(k1r3)j`2(k2r3)j`1(k1r1)j`2(k2r2)

× ((12/5)fNLPζδ(z1, k1)Pδ(z2, z3, k2))

= (−1)`1+`2+`3(−1)m1+m2+m3G−m1,−m2,−m3

`1,`2,`3
(4π)4

×
∫
dk1k

2
1dk2k

2
2

(2π)6
j`1(k1r3)j`2(k2r3)j`1(k1r1)j`2(k2r2)

× ((12/5)fNLPζδ(z1, k1)Pδ(z2, z3, k2))

= Gm1,m2,m3

`1,`2,`3

12

5
fNLC̃

ζδ
`1

(z1, z3)Cδδ`2 (z2, z3), (D.2.6)

where Cδδ` (z, z′) is the usual one and

C̃ζδl (z, z′) ≡ (4π)2

(2π)3

∫
dk k2Pζ(k)Tδ(z, k)jl(kr(z))jl(kr(z

′)). (D.2.7)

Note that there is only one transfer function here and we have used that m1 +m2 +m3 = 0 is needed

for the Gaunt to be non zero.

Now, assuming that z3 is during matter domination and that the transfer function for Φ is roughly

3/5 (although it exact only on super-horizon scales), we can express the bispectrum (D.2.6) in terms

of regular C`’s as

Bm1,m2,m3

`1,`2,`3
(z1, z2, z3) = Gm1,m2,m3

`1,`2,`3
4fNLC

Φδ
`1 (z1, z3)Cδδ`2 (z2, z3). (D.2.8)
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