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A unidirectional on-chip photonic interface

for superconducting circuits

P-O. Guimond'?®, B. Vermersch'?3, M. L. Juan®**, A. Sharafiev®*, G. Kirchmair** and P. Zoller '~

We propose and analyze a passive architecture for realizing on-chip, scalable cascaded quantum devices. In contrast to standard
approaches, our scheme does not rely on breaking Lorentz reciprocity. Rather, we engineer the interplay between pairs of

superconducting transmon qubits and a microwave transmission line, in such a way that two delocalized orthogonal excitations
emit (and absorb) photons propagating in opposite directions. We show how such cascaded quantum devices can be exploited to
passively probe and measure complex many-body operators on quantum registers of stationary qubits, thus enabling the heralded
transfer of quantum states between distant qubits, as well as the generation and manipulation of stabilizer codes for quantum error

correction.
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INTRODUCTION

Over the last two decades, superconducting circuit technologies
have emerged among the most promising platforms for realizing
quantum processors'*. One avenue consists in designing
quantum networks in a modular approach, where distant
stationary qubits interact by exchanging photons as “flying
qubits” propagating in waveguides®. As the size of experiments
and number of qubits in quantum networks scale in complexity,
controllable routing of quantum information between distinct
components becomes a requirement®. In most current experi-
ments, this task is taken care of using ferrite junction circulators,
which break Lorentz reciprocity via the Faraday effect’®. However,
as these devices are bulky, lossy, and use large magnetic fields,
they are not suitable for on-chip integration, and new, scalable
alternatives must be developed. To address this challenge, several
approaches were proposed in recent years. Most strategies require
active devices® '8, where reciprocity is broken by the interplay of
several pump fields with precise phase relations, at the cost of
adding energy to the system. On the other hand, passive devices
have also been proposed based on superconducting junction
rings, where circulation is obtained using a constant flux bias;
these are however highly sensitive to charge noise'®%°. In
addition, quantum devices building on superconducting qubits
strongly coupled to 1D microwave waveguides are being
developed, where the reflection and transmission of itinerant
photons is externally controlled, including for instance single-
photon routers® and transistors®>?3, unidirectional phonon
transducers®*, or quantum diodes®>?°.

In this work, we tackle the problem of quantum information
routing from a different angle; rather than circulators or reflectors
for itinerant photons, we design effective integrated qubits as
composite objects coupled to a meandering 1D transmission line
(see Fig. 1a—c), with the requirement that photons propagating in
one direction are absorbed and reemitted along the same
direction, without breaking reciprocity. Coherently driving several
such unidirectional quantum emitters through the transmission
line gives rise to an effective cascaded driven-dissipative

dynamics, as represented in Fig. 1d, where photons radiated by
each emitter coherently drives other emitters downstream; in the
literature, this paradigm is sometimes referred to as "chiral
quantum optics”?’, and features interesting steady-state proper-
ties, as will be discussed below.

In analogy to "giant” artificial atoms , which couple to a
photonic or phononic waveguide at several points separated by
distances comparable to the wavelength, our approach consists in
designing a giant unidirectional emitter (GUE), here realized using
two artificial atoms as anharmonic oscillators, as represented in
Fig. 1a. These atoms are coupled to a waveguide, at two points
separated by a distance d ~ A/4, with A, the photon wavelength.
By designing the interaction between artificial atoms, our
composite object effectively admits a V-level structure with two
delocalized excited states |L) ~ (i|170;) 4 [0:1,))/v/2 and |R) ~
(|1102) +i]0712))/+/2 (with |n,) denoting Fock staten =0, 1, ... of
atom k=1, 2), with the remarkable property that their transitions
to the ground state |0,0,) couple respectively only to left- and
right-propagating modes of the waveguide [see Fig. 1b], which is
due to a destructive interference in the photon emission (and
absorption). Below we will analyze an implementation of this
model with superconducting transmon qubits coupled via a
superconducting quantum interference device (SQUID) [see Fig. 1c].

As we will show later on, these composite emitters can be used
as unidirectional photonic interfaces for additional long-lived
stationary qubits (represented below in Fig. 3), which has
immediate applications for quantum information processing and
quantum computing. In our approach, quantum information is
manipulated and directed passively, using an itinerant probe field
as "flying qubit” propagating in the waveguide. This forms a
naturally scalable architecture for quantum networking, which we
will illustrate in particular with the realization of quantum state
transfer between distant stationary qubits, and with the genera-
tion and manipulation of stabilizer codes for quantum error
correction®®. Our architecture is passive and tunable in situ, and, as
we will show, the required experimental parameters and
imperfections are achievable with current technology.
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Unidirectional coupling of quantum emitters to a transmission line. a Model for realizing a giant unidirectional emitter (GUE) using

non-linear coupling between two artificial atoms coupled to a waveguide. b Corresponding level structure obtained with specific parameters
(see text). An effective two-level system with states |0,0,) and |R) is obtained, which couples to right-propagating modes of the transmission
line. ¢ Superconducting circuit implementation, where two transmons (k= 1, 2) are coupled at two points to a meandering transmission line,
and interact via a SQUID. d Driven-dissipative cascaded quantum network realized with several GUEs as effective two-level emitters
unidirectionally coupled to a transmission line. The system dissipates towards a pure steady-state with emitters pairing up in an entangled

state |D). e Directionality Bq;, of emitted photons, with A, =0 and r,= 0.2, y, = y. f Averaged directionality B; for J = Jopt, o= qﬁopt and A, =

obtained with uniformly distributed ry, r, y1, and y,, with means ry = 0.2, y, =y and standard deviations \/rk —F2=6r,

RESULTS

Our results presented below are organized as follows. First we
describe and analyse the design of giant unidirectional emitters
(GUEs) as composite artificial atoms with an effective V-level
structure, with each transition absorbing and emitting photons
along a single direction in a waveguide, and present a possible
implementation with superconducting transmon qubits. Next, we
study the cascaded driven-dissipative dynamics arising when
several such unidirectional emitters are driven via the waveguide.
Finally, in the last part we describe how these emitters can act as
unidirectional photonic interfaces for additional long-lived sta-
tionary qubits, which enables applications for quantum network-
ing such as quantum state transfer between distant stationary
qubits, and the generation and manipulation of stabilizer codes
for quantum error correction.

Model of unidirectional quantum emitters
Our model for designing unidirectional quantum emitters is
represented in Fig. 1a, and consists of two interacting artificial
atoms as anharmonic oscillators coupled at two distant points to a
waveguide. The dynamics of these two atoms, within the rotating
wave approximation, is described by the Hamiltonian (with 72 =1)
Ha = Zwkakak — (Uk/Z) a a ( )
1

+J< Gz + 0201) f)(&1&1?1£?12.

Here wy is the transition frequency of each atom k, U, denotes
their anharmonicity, and ay is their annihilation operator, which
satisfies [ak,aj] = 8k,. The second line in Eq. (1) describes the
interaction between atoms, with linear exchange interaction rate J,
and non-linear cross-Kerr frequency x, which can be implemented
with two superconducting transmon qubits coupled via a SQUID
(see Fig. 1c and discussion below).

The waveguide has a continuous spectrum of modes described
over the reIFvant bandv¥ldth by the bare Hamiltonian

Hpn = [ dwwlbg(w)br(w) + b, (w)by (w)], where by(w) is the
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Vi’ = Oy.

annihilation operator for photons with frequency w propagating
to the rlght (with d=R) or to the left (with d=1L), and satisfies
[ba(w), by (w')] = 8(w — w')84.4. Finally, the coupling between the
atoms and the waveguide yields, within the rotating wave
approximation, the Hamiltonian

I:Iint = \/%/ dw [BL((J)) (eiwa/vg£1 + [2)
AL )

+ b, (w) <L1 + e"“’d/"eL2> + h.c.].
Here Ly = \yi(a +ra) and L, = /y5(a; +nra;) are the

coupling operators associated to each coupling point, with
coupling rates y, (which we assume constant over the relevant
bandwidth) and small cross-coupling coefficients r, which are not
needed per se for the design of unidirectional emitters, but arise
in our proposed implementation as discussed below. We also
defined is the distance of separation d between the two coupling
points along the waveguide, and the group velocity v, of photons
in the waveguide.

Within a markovian approximation (i.e., assuming yka/vg < 1),
the dynamics of the field can be integrated and treated as a
reservoir for the atoms, and we obtain for the Heisenberg
equation of motion for an arbitrary atomic operator O(t) the
quantum Langevin equation (see details in Supplementary
Methods 1)

expressed in an interaction picture with respect to the waveguide
Hamiltonian Hph, and in a rotating frame with respect to the
photon frequency wq = 2mv,/Ao. Here the effective Hamiltonian
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Hett = —ZAkazak - (Uk/2)a,ta,takak —)(a;(magaz
k=1 (4)
+J(@ala; +alan ) + sin(p) (L + L2 ).

with Ay = wg — wy, where the last term emerges from a coherent
exchange of photons propagating in the waveguide between the
two coupling points, with ¢ = wed/v4 the phase acquired by a
photon in the propagation. On the other hand, the collective
coupling operators in Eq. (3) represent the collective couplings of
the atoms to right- and left-propagating photons due to
interference of photon emission and absorption in the reservoir,
and are defined respectively as La(t) = €Ly (t) + Ly(t) and
L (t) = L4 (t) + €?L,(t). Finally, bd (t) represents the input fields
of the waveguide propagating along direction d, and is related to
the output fields via®®

by" (1) = by (1) +Lalt), (5)

/out n/out i
with [bd (t), (bd, (t') ] =06(t —t)844. The emergence of
unidirectional coupling between propagating photons and the
composite two-atom system, from Egs. (3) and (5), occurs under
the following two conditions.

() First, the two coIIectlve _coupling operators Ig and L, must
be orthogonal, i.e., [L,,Lg] = 0, such that each aperator Ly
couples only to the corresponding input fields bd (t) in Eq.
(3). Here, this condition requires the system parameters to
be symmetric, i.e, ry=r,=r and y;=y,=y, while the
propagation phase must be set to ¢ = ¢opr, With the optimal
propagation phase ¢, = m/2 +2arctan(r). With these
parameters, the collective coupling operators reduce to
Lgj. = +/Y,Gg/L, up to an irrelevant phase factor, with the
definition of two orthogonal delocalized atomic modes az =
(ia1 +a,)/v2 and a, = (a; +ia;)/v2, and where the
effective coupling strength of the system to the waveguide
is given by y, = 2y(1 + 2r cos[¢hoy] + 1*). We note that the
cross-coupling coefficients ry are not necessary ingredients
in our model of unidirectional emitters, and in the simpler
case where r=0 we obtain ¢qp =71/2, yielding y, = 2y.

() Second, the excitations associated to these two modes dg
and a, must be eigenstates of the effective Hamiltonian Heff
For states with a single atomic excitation, i.e., |R) = aR\G>
and |L) = a;|G) with |G) = |0,0;) the ground state of both
atoms, this is achieved by taking symmetric detunings A, =
Dy = A+ 2rysin(¢hopy) and J = Jop, with the optimal hop-
ping rate given by Jopr = —y(1 + r?) sin(¢o)- In the regime
r=0, this condition can be understood as the requirement
for the direct hopping (with rate J) to exactly cancel the
contribution from waveguide-mediated photon exchanges
(with rate ysin(¢)) in Eq. (4), as these terms couple the two
excited states |R) and [L). If this condition is satisfied, these
two states then become eigenstates of He¢ with eigenener-
gies —A. The non-linear cross-Kerr interaction with fre-
quency x, on the other hand, is introduced in the model in
order to prevent the excitation of the doubly-excited state
|1112) when driving the system via the input fields, as we
will consider below.

When these two conditions are fulfilled, the composite emitter
will absorb and reemit propagating photons along the same
direction. In order to assess this directionality in a more general
case, we assume the emitter is prepared in state |R) at time t =0
with the waveguide in the vacuum state, and solve the dynamics
of the system, which yields the emission of a photon in the
waveguide, with the emitter returning to its ground state |G). The
temporal shapes of the wavepacket amplitudes of the emitted
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photon propagating to the right/left are then obtained using a
Wigner-Weisskopf f ansatz (see details in Squlementary Methods )
as fru(t) = (Glbgy, (D)IR) = (GlLau L' [F ' (5)|R)], where L[](s)
denotes the Laplace transform, and the evolution of the atomic
excitation amplltudes is governed by the operator

F(s) = s+ iFleft + = (LRLR + LLLL> 6)

We then deﬁne the directionality of photon emission as
Bair = [o Ifa(t )|?dt. This directionality of emitted photons is
represented in Fig. Te, f. Figure 1e shows that very good
directionalities can be achieved even with relatively large
imprecisions on J and ¢ around their optimal values, e.g. due to
fabrication imperfections. Here we obtain Bgir > 99% for |J — Jop
<y/10 and |¢p — ¢opel S7/10. This robustness to imperfections is
also observable in Fig. 1f, where we show the average
directionality B, obtained with random static deviations of r
and yx. We obtain B4,>99% as long as the fluctuation in the
coupling parameters are below &y <0.1y and ér 5 0.05.

Implementation with superconducting circuits
Our model can be implemented with the circuit represented in
Fig. 1¢, which consists of two superconducting transmon qubits
(k=1, 2) with flux-tunable Josephson energies Ef and charging
energles Ek = e2/(2C£™)?7, where e is the elementary charge and
C:™ are the effective transmon capacitances (see details in
Methods). The interaction between transmons is mediated by a
SQUID, acting as a non-linear element with flux-tunable Josephson
energy E, and with capacitance C. We note that such tunable non-
linear couplings mediated by Josephson junctions were demon-
strated in recent experiments®*™°, and find applications for
quantum simulation*'™** and quantum information processing®
Following standard quantization procedures, the Hamiltonian
for the circuit can be expressed as in Eq. (1) (see details in
Methods). In particular, analytical insight on the resulting system
parameters can be gained in the regime of weakly coupled
transmons, with EX < EX, E, < EX and C < Cy. In this limit, an
estimation of the various parameters of the model can be made in
terms of the circuit parameters, with tomic transition
frequencies taking the expression wy =~ y/8E E'é, while the atomic
anharmonicities read Uy ~Ek The interaction between atoms
contains a linear hopping term J=Jc—J, with a capacitive (J¢)
and an inductive (J)) contribution reading

C E,
~ Wy ————,J
2y/Csffs

~ Wo ) (7)
2\/EJE3

while the cross-Kerr interaction term reads

_ |ELEZ
X = 2, | ==, (8)
E)E]

We note that the three Josephson energies in Fig. 1c can be
independently controlled via flux biases, allowing for an
independent in situ fine-tuning of the detunings Ay = wo — wy
and the hopping rate J. The couplings to the waveguide on the

other hand are given by y, = (c}/Cs")’ woe?Zo 1/ EX /(8EX), with ¢/
the coupling capacitances and Z, the transmission line impe-
dance®®. The capacitance C introduces as well small cross-
coupling coefficients ry = C/C™, resulting in photon emission
from each artificial atom via both coupling points.

Driven-dissipative dynamics of cascaded quantum networks

Although the properties of unidirectional emission of our GUE
studied above preserve Lorentz reciprocity, i.e., they are invariant
under the exchange of left- and right-propagating modes, driving
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the system through the waveguide allows one to effectively
achieve non-reciprocal interactions between artificial atoms. A
paradigmatic example of such a situation is represented in Fig. 1d,
where several GUEs are coherently driven via right-propagating
modes, thus driving the dg transition as represented in Fig. 1b.
Photons emitted by each emitter will then also propagate to the
right, leading to an effective cascaded quantum dynamics, where
each GUE drives the other ones downstream, without any back-
action?68

This scenario has been studied in recent years in a different
context, in a field known in the literature as “chiral quantum
optics”?’, which originated from experiments with quantum
emitters in the optical domain, such as atoms**™2 or quantum
dots>>™°, coupled to photonic 1D nanostructures. The strong
confinement of light in these structures gives rise to a so-called
“spin-momentum locking” effect’’, allowing for unidirectional
couplings between photons and emitters which, in an analogous
way to our GUE, does not by itself break Lorentz reciprocity.
Besides, building on non-local couplings of quantum emitters to
1D reservoirs, chiral quantum optical systems could also be
realized in AMO platforms with broken reciprocity®®%°. While
photon losses inherent to optical platforms form experimental
challenges, the near-ideal mode matching of artificial atoms
coupled to 1D transmission lines presents new opportunities to
realize this paradigm, in the microwave domain®'°". Interestingly,
it has been predicted that, for several quantum emitters, the
ensuing cascaded dynamics in the presence of a coherent drive
results in the dissipative preparation of quantum dimers, with
quantum emitters pairing up in a dark, entangled state®* %% as we
will show below.

In order to study the dynamics of an ensemble of N GUEs
(labeled n=1, ..., N) interacting via a common waveguide, we
employ the SLH input-output formalism® ", The SLH framework
provides a methodical approach for modeling such composite
quantum systems interacting via the exchange of propagating
photons, where we assume that non-Markovian effects, due e.g. to
the finite propagation time of photons exchanged by the
emitters®®, can be neglected. As detailed in the Supplementary
Methods IV, the dynamics of the network of N GUEs can then be
obtained from the input-output properties of each individual GUE,
by recursively applying composition rules of the SLH formalism in
a "bottom-up” fashion. The evolution of an arbitrary atomic
operator O(t) in the rotating frame then obeys a quantum
Langevin equation as expressed in Eq. (3), with a redefinition of
the effective Hamiltonian and of the coupling operators. Denoting
the various parameters and operators associated with each GUE
with a corresponding superscript n, we obtain for the effective
Hamiltonian

Atot Z [([g)Tize,‘,},(n,m) . h.C.]

eff - ZHeff
nm<n
4> [Tt — e ],

n.m>n

©)

with the photon propagation phase ¢ = wol/vg where [ is the
distance between two neighbouring composite emitters along the
waveguide. We note that the two new terms in Eq. (9) correspond
to excitation exchange interactions between different GUEs,
mediated respectively by right- and left-propagating photons.

. . atot
For the coupling operators on the other hand, we obtain L,;O =

S, @PN-n% and 1" =Y, @#-[, which represent interfer-
ence in the atom-field coupling between the emitters.

The presence of a coherent drive via the right-propagating
waveguide modes, with amplitude a(t) [and corresponding
Rabi frequency Q(t) = \/y,a(t)]l, can be accounted for by
assumlng the initial state of the waveguide |ag) satisfies

by (t)]ag) = alt)éaslar). Writing (O(1)) = Tr[Op(t)], with p the
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atomic density matrix, the temporal evolution from Eq. (3) then
yields the master equation

. oot o\t ot
10 = i G —ia(t) (1) + i 01" 5

+D[[: :|p+D|:Lt0t}p,

(10)

where Dlalp = apa’ — %{&T&,[)}. Equation (10) allows to access
the evolution and steady-state values of observables with a finite
drive amplitude a. In order to account for additional imperfec-
tions, we also add in Eq. (10) dephasing terms zyq,znvkp[(a;)*a;]
and non-radiative decay terms y,, > D[d

In Fig. 2a, b we represent the ratio of left- and right-propagating
emitted photons obtained in the steady-state of the dynamics for
N =1, with J and ¢ set to their optimal values, and a constant real
Rabi frequency Q (i.e,, the drive frequency is w,). Figure 2a shows
that, since directionality arises in our setup as interference of
emission of the two atoms, the dephasing rate y, spoils the
interference and induces some emission to the left with an
intensity scaling linearly for low Rabi frequency Q. As Q increases
with respect to the effective anharmonicities x and U, the
intensity of left-propagating photons increases, as states with
more than a single excitation get populated. For instance, the
state |171,) in Fig. 1b can be excited by absorbing two (right-
propagating) photons from the drive, and can afterwards decay
towards state |L) by emitting a photon propagating to the left.
This increase in the population of multiple-excitation states is also
observed as the dashed red curves in Fig. 2b, and we thus require
Q < x in order to retain a two-level dynamics. We also note that
when x = U; = U, in Fig. 2b, the emission to the left vanishes even
when states with several excitations are po?ulated as for these
parameters states with several excitations ) |G) become
eigenstates of H for all ng, >0, thus preservmg the property of
unidirectional emission. Note that in the regime of weakly coupled
transmons (C < Cx and E; < Ek) considered above, the value of U
is limited by the fact that, from Eq. (8) and Uy = EC, we have
X < 2y/U;U,. Achieving larger values thus requires going beyond
the weak coupling regime. This is discussed in the Supplementary
Methods I, where we also study the validity of the analytical
expressions for the effective model in Egs. (7) and (8). Typical
achievable values for x range from 0 to ~2 x 50 MHz with U, =
27 x 300 MHz.

In the ideal case where the parameters satisfy the properties of
unidirectional coupling and the anharmonicities x and Uy are large
enough with respect to the Rabi frequency Q of the drive, the
state of the emitters will thus remain within the two-level
manifold ®,{|G),,|R),}. Denoting here &’ =e€”"|R), (G|, the
dynamics of Eq. (10) then reduces to a cascaded master
equation”®*

d. ~tot
JiPer = ’thPeff+’Pefanh +ig peff(LR ) ; amn
where Pk denotes the density matrix of the system expressed in
the reduced 2"-dimensional manifold, and where the effective
non-Hermitian Hamiltonian reads, assuming Q real,

Fnn = —AZaia", — 067 —3")
—I—EG iy,Z?ﬂé’f.

n>m
Equation (11) represents the ideal scenario where the coupling
between propagating photons and the array of N GUEs is purely
unidirectional, which assumes that the directionality parameter
satisfies N(1T — Bgi) < 1. The dynamics generated by Eq. (11) then
induces an effective non-reciprocal interaction between the
qubits: as seen from the expression of Eqg. (12), an excitation in
each qubit m can be coherently transferred only to qubits n>m

(12)
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Fig. 2 Driven-dissipative dynamics. a, b Ratio of left- and right-propagating photon intensities, in the steady-state, emitted by the artificial

atoms when coherently driven through the waveguide, with y, =
red: y,/yr. b y, =0.01y. Dashed red: probability of 1072 and 10~

gl

Ay=0, r,=0.2, U= 100y, ynr = 0.01y, J = Jopt, = (opt. @ x = 50y. Dashed
(resp. top and bottom) of having two or more excitations in the atoms.

Dashed gray: x = U; = U-. ¢, d Cascaded dynamics with N =2 GUEs, with r,=0.2, A=0, Uy =500y, ¢ =0, and yn, =Y, € Q =y, x=150y, y, =
0.01y. d Steady-state overlap (D|p|D), with Q €[1, 10y (light to dark blue), and y, = 0.01y. Inset: x — oo, red dashed curve szq,/yf.

located to its right. While the reduced density matrix of any single
GUE is in general mixed, for even N and A =0 the state of the
whole system dissipates towards a pure steady-state

V) = ®ﬁﬁ ID),,_1 2ns Where, as represented in Fig. 1d, neighbour-
ing qubits pair up as dimers in a two-qubit entangled state®%%*

(0]
|D>2n—112n X |G>2n—1 ‘G>2n - 2\/§Y_|S>2n—1.2n7 (13)
r

with ()51 20 = (IR)20-11G)2n — 1G)2n_ |R>2n)/\/§' Remarkably,
once the system has reached this dark state |D), all photons
emitted by qubit 2n — 1 are coherently absorbed by qubit 2n, such
that each dimer effectively decouples from the waveguide
radiation field.

The dynamics obtained for a pair of N =2 GUEs, obtained from
Eqg. (10), is represented in Fig. 2¢, d. In Fig. 2c we observe the
purification process described above where, in the steady-state,
the system dissipates towards the pure state |D), as represented in
the red curves. Strikingly, although the atoms are excited (see
green curve), the amount of scattered photons, represented in
blue, vanishes in the steady-state, i.e., the system becomes dark
and decouples from the waveguide. We note that in the transient
dynamics, i.e., before reaching the steady-state, photons are
scattered unidirectionally by the emitters, which leads to a
decrease of the purity Tr(f)z). Moreover, the purity of the reduced
density matrix p,,) for each GUE n remains low in the steady-state
(see black curves), as they become entangled. The steady-state
overlap (D|p|D) is represented in Fig. 2d, which shows a
requirement for a large y with respect to the drive intensity
|Q|*/y,. The effect of imperfections due to dephasing and finite
excitation lifetimes is represented in the inset, which shows that
the steady-state overlap with the dark state becomes unity in the
limit x — oo and yn, =y, =0.

Published in partnership with The University of New South Wales

Quantum information routing for quantum networking and
computing

Our approach enables the realization of large scale quantum
processing units, where quantum information is processed in local
nodes, and routed using unidirectional emitters. The setup we
have in mind is represented in Fig. 3a, where we represent a
possible such architecture, with a set of stationary atomic qubits
acting as quantum register, and GUEs acting as an interface
between a waveguide and the stationary qubits. The idea is to
mediate effective long-range multi-qubit interactions by using (i)
sequences of scattering events induced by unidirectional cou-
plings between a single photon as "flying qubit” and each
stationary qubit, (ii) local single-qubit operations, and (iii) linear
optics represented by unitary operations U, acting on two
waveguides, including in particular 50/50 beam-splitter opera-
tions. The applicability of this architecture is illustrated below for
quantum state transfer between distant stationary qubits, as well
as the generation and manipulation of stabilizer codes.

The scattering events are designed as follows (see Fig. 3b).
Denoting the parameters and operators associated with node n =
1, ...N with an index n, each GUE is initially prepared in its ground
state |G),,, and returns to this state after the photon scattering. The
coupling between each stationary qubit (with states
{10)4:11)4.0}) and its GUE consists of a purely non-linear cross-
Kerr interaction, which can be described by the Hamiltonian (see
details in Supplementary Methods |lI)

Hy = =11, (11[Vi(@)'d} + vi(@))'as . (14

ideally with identical frequencies V| = V3 = V. The effect of this
interaction is then to shift the frequency of the excited states of
the GUEs by V, conditional on qubit atom n being in state |1)q‘n,
without breaking the properties of unidirectional coupling

discussed above. A possible implementation of this interaction
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Fig. 3 Architecture for quantum information routing. a An array of qubits (n=1, ...,

N) is coupled to one of two transmission lines, labeled

“up” and “down’ via GUEs. A propagating photon scatters sequentially on the qubits, while linear optical elements performing unitary
transformations U, couple the transmission lines. A projective measurement of the qubits is performed upon detecting the photon at the
output. b Model for the qubit-GUE interaction in each node n with cross-Kerr frequencies V] and V3, and ¢ corresponding superconducting
implementation adapted from Fig. 1c. d Quantum circuit realized using the setup in (a), where the double circles represent controlled-Z gates

between the qubits and the photon as virtual "flying qubit" with states |up), and |down)

transmission line "up" and "down", respectively.
term with superconducting circuits, adapted from Fig. 1c, is
represented in Fig. 3c, where the qubit atom is coupled via two
SQUIDs to the GUE atoms. We note that (i) the anharmonicity of
the GUEs is inconsequential for the applications considered in this
section as we consider the scattering of single photons, hence for
simplicity the coupling between the artificial atoms of the GUEs
are taken purely capacitive, and (ii) the presence of capacitances
in the coupling SQUIDs between the stationary qubit and the GUE
induces a small direct coupling between the qubit and the
waveguide modes, which could deteriorate the qubit lifetime;
however, this coupling can be cancelled by subradiance due to
interference in the photon emission from both coupling points, by
taking the qubit transition frequency wg such that wqd/v, is an
odd multiple of 7 (see details in Supplementary Methods IlI).
The scattering of a photon on a single node n, represented in
Fig. 3b, is described within the input-output formalism by a single-
photon scattering operator
84.4(15:85) = (vac Golb5" (1) b5 (8,)] |vac o) (15)
where | vac, G,) denotes the vacuum state of the waveguide, with
the GUE in its ground state |G),, and the input and output field
operators in the frequency domain are defined via

E(I,n/om (6p) = (—i/V2m) [ dt[);n/out (t)e’®'. The single-photon scat-
tering operator represents the action of the temporal evolution
operator on qubit n, conditional on having an input photon with
detuning &, (with respect to wo), propagating in direction d [either
right (R) or left (L)] be scattered in direction d’ with detuning v,,.
We consider a right-propagating input photon with frequency
distribution given by some function f(§,) with qubit atom n in

some state |l/)>qv,,, and write the state of the system before the
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ph Corresponding to the photon propagating in

scattering as |in) = [d6,f(§, [b (6 )] [vac,Gn)[Y), - The state
after the scattering can then be expressed from Eq (15) as

~n ~out T
lout) = 3"y [ dbpdvpf(8,)Sq g(Vp, 6p)[bg (vp)] | Vac,Gn)lw),,

The single-photon scattering operator in Eq. (15) can be
obtained by using the quantum Langevin equation (3) and the
input-output relation (5) (see details in Supplementary Methods
IV). In particular, under the conditions for unidirectional coupling
of the GUEs to the wgvegulde as discussed above, we find
SL‘R(up,é )=0 and Sgp(vp,8,) = 8(vp —6,)0"(8,), with the
Dirac &-function representing the conservation of the photon
frequency in the scattering, and where

6n(5p) = t(An + 6P)|O>qﬂ <0| + t(An + 6P + V)|1>q,n <1 |7 (16)

with the phase shift t(6,) = (2i6, +y,)/(2i6, — y,). The operator
0" (8p) realizes a generic phase gate on qubit n. Assuming the
photon has a sharp frequency distribution f(6,) around 6,=0
relative to y,, by taking V =y, this phase gate can be parametrized
by the value of the tunable detuning A” from GUE n. When A" =
—v,/2, the two terms in Eqg. (16) acquire an opposite 71/2 phase,
and the phase gate becomes the Pauli operator
0; = 10)4, (0] = [1)4, (1], up to an irrelevant global phase which
can be absorbed in a redefinition of the phase of the output field

operator B:ut (6p). When A">> y, on the other hand, these two
terms become identical, and the phase gate reduces to the
identity operator 1.

This effective unidirectional photon - qubit interaction finds
immediate applications for the detection of individual itinerant
microwave photons, which is a current technological chal-
lenge®®®~"°. This can be realized here with a Ramsey sequence,
by preparing the atomic qubit in state |+>q‘,,, with
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Fig. 4 Protocol for quantum state transfer. a Setup and b
corresponding quantum circuit realizing quantum state transfer
from qubit atoms 1 to N. Hadamard photonic gates H are realized as
50/50 beam-splitters. The dashed red frame represents the action of
the scattered photon, with the corresponding quantum circuit
realizing a controlled-Z gate between the two qubits. Upon
detection of the photon at the output and reading out the final
state of qubit 1, the initial superposition state |¢), , is transferred to

‘w>q,N'

|£) = (£0) + |1))/+/2. With A" = —y,/2, a resonant photon will
be scattered unidirectionally by the GUE, while qubit atom n will
be left in state |—),,. The photon can then be detected by
measuring the qubit state after applying a Ramsey 71/2-pulse,
which realizes a quantum non-demolition measurement of the
itinerant photon, in analogy to the cavity-QED experiments in
refs. °>73. The resonance frequency w, of this detector can be
tuned, while the detection bandwidth is given by y, (see details in
Supplementary Methods V).

In order to describe the more generic setup in Fig. 3a, which
now includes two waveguides as well as N nodes, we make use of
the SLH input-output formalism as discussed above (see details in
Supplementary Methods V). We write the input and output field

operators in the frequency domain as B;r;./our (6), which now
contains an additional index j € {up, down} labeling the two
waveguides. The single-photon scattering operator for the whole
system

J A~ ou ~in i
a5 85) = (vac, Gl (1p)[bg;(6,)] |vac. ), (17)

where |vac,G) = |vac)®'n\’:1\G>n, then contains two additional
indices representing the input line i and the output line j of the
scattered photon. The derivation and general expression of this
operator are provided in the Supplementary Methods IV.

In the ideal case where each GUE scatters photons unidir-
ectionally, the scattering operator factorizes as SJL"R(V,,,ép) =0
and we obtain

S/."(;I,R(Vmép) = 8(vp — 8p)e™" {UNH::1 (Sn(‘sp)unfﬁ]ﬂv (18)
with the convention H’nV:1An = Ay... Ay, where the propagation
phase &):wol/vg (with | the distance along the waveguide
between two neighbouring nodes [see Fig. 3a]) enters only as a
trivial global phase. Here U, denote the linear optical elements
acting on the photonic channels, as shown in Fig. 3a. They can be
represented as 2-dimensional unitary matrices acting on a
vectorial space which we denote as {|up),, [down).}, where
the basis vectors |up/down>ph, correspond to the transmission
line (either "up” or "down”) in which the photon propagates. On
this vectorial space the objects :S,,(é) are diagonal matrices of
qubit operators, which represent the photon scattering on each
node. They are defined as §n(6p)\down>ph = |down), and

ﬁn(ép)\up)ph = |up>ph6"(6p) as expressed in Eq. (16).
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The operator 3,7(6,,) thus realizes a frequency-dependent
controlled-phase gate between the propagating photon as a
"flying” control qubit with states [down),, and |up),,, and qubit
atom n. For the applications discussed in the following the
parameter A" will always be chosen such that the effective
interaction in S,(6, = 0), between a resonant photon and qubit
atom n, is either trivial (with A" >y,), or realizes a controlled-Z
gate |down) (down|+ |up),, (up|o; (with A"=—y/2) as
represented in Fig. 3d.

The entanglement structure of the scattering operator

SJ,?‘{R(VP, 8,) in Eq. (18) is that of a matrix product operator® with
bond dimension 2, which is a consequence of quantum
information being carried in the network by a propagating
photonic qubit. The photon scattering will thus generate
entanglement in the qubit array, which can be used e.g. to
prepare it in a matrix product state®® such as a GHZ state or 1D
cluster state®' (see details in Supplementary Methods VI). We note
that this bond dimension, i.e., the amount of entanglement
generatable by scattering a photon in the system, can in principle
be increased by expanding the dimensionality of the photonic
Hilbert space, e.g. by adding more waveguides.

As a first illustration of the working principles of this passive
architecture, we consider one of the most basic protocols
requiring quantum information routing, namely quantum state
transfer between two stationary qubits. Here, the goal is to
transfer a superposition state from one qubit atom, e.g. withn =1,
to another (possibly distant) one, e.g. with n = N, as represented in
Fig. 4a. This is achieved by engineering the effective photon—qubit
interaction in such a way that the scattering operator in Eq. (18)
realizes an effective controlled-Z gate between the distant qubits,
thereby enabling universal quantum computation in our archi-
tecture. The corresponding protocol circuit is represented in Fig.
4b, which shows how the initial state of qubit 1 |),; = co[0),; +
cill)g (with Icol®> + |ci|>=1) is transferred as [$)qn upoN
detection of the photon at the output, while quantum information
is erased from qubit 1. Here 0, gates are applied conditional on
the measurement of the photonic qubit in state |up>ph, and of
qubit 1 in state [1),,. The Hadamard gates are defined for the
atomic qubits as H = [+F)gn O +[=)gn (1], and are similarly
defined for the photonic qubit by replacing [0/1),, with
|down/up),.

Assuming perfect control over the other parameters of the

system, the average fidelity for the quantum state transfer
protocol, as defined in Methods, will depend on the photon
frequency distribution f(5,) as Fost = [d6,|f(8,)|>Fast(8p).
where Fost(8,) = 1—2(8,/y,)* + O(8,/y,)*. This sets a bound
to the bandwidth Aw of f(,) as Aw <y, and thus to the duration T
of the protocol as T> 1/Aw (see below). Standard strategies for
heralded quantum communication®” can be translated to our
protocol in Fig. 4a, by adding ancillary stationary qubits to each
node as quantum state "backups”, thus enabling quantum
communication with high fidelity, even with photon losses due
for instance to amplitude attenuation in the waveguides or
imperfect photon detection (see Methods). We note that, as
discussed above, the photon detection can also be realized using
additional nodes as detectors.

As a second application of our architecture for quantum
networking, we now show that the setup of Fig. 3a allows to
perform entangling operations on many stationary qubits, and can
be used to passively probe and measure many-body operators,
such as stabilizers of stabilizer codes for quantum error correc-
tion*. A standard approach for measuring such stabilizer
operators consists in entangling the qubits with an ancilla using
two-body interactions; the stabilizers can then be accessed by
measuring the ancilla®*®. Building on a previous protocol for
measuring the parity of a pair of quantum dots as unidirectional

n
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emitters®®, the measurement of stabilizers is achieved here using
an interferometric setup with photonic qubits as ancillas, where
the only non-trivial operations on the photons are Uy = Uy = H,
and one obtains for the scattering operator of Eq. (18)

N - _ 6 down A1
" (15.65) = 60 — gy - TS g

We recall that, with the parameters discussed above, for each
stationary qubit n we chose the parameters of the system such
that the operator 6" (6p) is either the identity operator 1 or the
Pauli operator &) when 8, = 0. Defining an arbitrary subset Z of
the qubit array, the operator in Eq. (19) can thus be applied to
entangle the state of the output photonic qubit (given by the
index j) with the parity Pr = 1,707 of the interacting qubits,
which can then be measured by detecting the photon. More
generally, allowing local unitary operations to be performed on
the stationary qubits before and after the scattering enables the
measurement of any operator of the form [],_,6", where 6" is an
arbitrary rotation of &) on the Bloch sphere. Examples of such
operators are the stabilizers of cluster states, which are universal
resources for quantum computation®’, and of stabilizer codes,
where logical qubits are redundantly encoded in many physical
qubits and protected by topology®”.

Despite tremendous recent experimental progress towards
measuring stabilizer operators in superconducting platforms®9¢,
realizing stabilizer codes with code distances (i.e., the number of
physical qubits) beyond a few qubits remains a great challenge. As
we show in the following, our architecture offers a naturally
scalable approach to passively probe stabilizers, and thus generate
and manipulate stabilizer codes. As an example of stabilizer code,
we consider the toric code®, where qubits are located on edges of
a lattice with periodic boundary conditions. A minimal instance
with N = 8 qubits is represented in Fig. 5a. The toric code has two
types of stabilizers: for each plaquette p and each vertex v of the

~n An

lattice we associate the stabilizers A, = [],.,0; and B, = [[,,0,,

with 6, = [0),, , (1] 4 [1),., (0]. The logical subspace for encoding
quantum information then consists of the four states which are
eigenstates of all these stabilizers, with eigenvalue + 1. A protocol
for preparing the system in one of these four states consists in

initializing all qubits in state ®n|+>q_n. The plaquette operators /2\,,
are then sequentially measured, and the system can be brought to

(b)

qubit 8
qubit 7
qubit 6
qubit 5
qubit 4
qubit 3
qubit 2
qubit 1
-2 ] |down)pn 7:[ ’}:[ A
© @ @ ¢ @ @ ©® @
(ZE 7N A\ AN AN AN AN
00 OO0 O=0 O=0 C=0 0«0 C=0 =0
A, A A A
Y4 V2
W W/aN

Ay

Fig. 5 Toric code generation and manipulation. a Abstract
representation of a toric code, where qubits are located on the
edges of a 2D lattice with periodic boundary conditions, with here
N = 8 qubits. The two types of stabilizers Ap and B, are represented.
b Quantum circuit realizing a measurement of the stabilizer Ap
represented in (a), and ¢ corresponding interferometric setup, with
the detunings A" of the GUEs chosen such that only nodes 1, 5, 7
and 8 are resonant with the photon.
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the desired state by applying single-qubit o, gates afterwards,
conditioned on the measurement outcomes (see Methods).

In Fig. 5b, ¢ we represent the quantum circuit and the setup
realizing the measurement of the operator A, shown in Fig. 5a.
Similar protocols, realized by scattering single photons, can be
devised for (i) transferring a superposition state from a single
additional stationary qubit to a logical quantum superposition
state of the stabilizer code, as well as the reverse process, and (ii)
realizing arbitrary logical qubit gates on the code subspace, as
well as exponentiated string operators for quantum simulation of
anyonic® and fermionic models®® (see details in Supplementary
Methods VII).

In order to quantify the efficiency of our scheme, we consider
the task of performing a measurement of the parity operator Pr
on ng = |Z| qubits, with the qubits initially prepared in state
W) = ®n|+)q1n. Ideally, detecting the photon at the output of

U " : : ideal
waveguide "up” or "down” projects this state to state ‘w'u;a )=

ﬁ(l +Pr)|W,) or |Wie ) = \/%(1 — P7)|W.), respectively. The

average fidelity of this process, defined in Methods, takes here the
expression Fz = [d6,|f(8,)>Fz(8,), with

Fz(6,) = Z ‘<'~P}dea'
j

which we represent in Fig. 6. In Fig. 6a, b we show this fidelity
in situations where the photon scattering is not perfectly
unidirectional, with the explicit expression of the scattering

2
~j,down
/de RR (Vp, 6p)[W4)] (20)

operator S‘lg’,,iswn (vp,6p) from Eq. (17) provided in the Supple-
mentary Methods IV. In these cases where the dynamics is not
purely cascaded, the fidelity also depends on the propagation
phase ¢, in contrast to Eq. (19). We observe robust fidelities of
Fz(8,)299% for small fluctuations of V7, below ~2% and J
below ~5% around their optimal values. Figure 6c, d represents
situations where the photon scatters unidirectionally on each
node, and shows that the infidelity 1 — F2(6,) scales quad-
ratically with the deviation of V around y,, with the number of
interacting qubits ng, and with the detuning of the photon §,,.

As an estimation of experimentally achievable performances,
we consider V =y, = 2mx 50 MHz. From Fig. 6d, the gate infidelity
intrinsic to our protocol remains below 1% as long as the photon
detuning is below |6,] < 0.1y,/ng. This sets a bound to the duration
T of a stabilizer measurement, as the bandwidth Aw of the photon
frequency distribution f(6,) must satisfy TAw > 1. For instance,
assuming the photon wavepacket has a truncated gaussian
temporal distribution, we obtain an average fidelity ¥ above
99% with T=400 ns for ng =4 (see Methods). All 6 independent
stabilizers of the toric code with N=8 qubits can then be
measured sequentially in a total time >2.4ps. We note that
measurements of several stabilizers involving non-overlapping
subsets of qubits can be performed in parallel using frequency-
multiplexing techniques, as the frequency of their respective GUEs
can be tuned to be resonant with probe fields with different
frequencies. Measuring simultaneously multiple independent
stabilizer operators, by using a different probing frequency for
each stabilizer, allows to scale up stabilizer codes without
increasing the total measurement time.

DISCUSSION

To conclude, we presented the design of a unidirectional artificial
atom, and demonstrated its application as an on-chip interface
between itinerant photons and stationary qubits. This design can
be integrated in a modular architecture of photonic quantum
networks, where controllable multi-qubit operations are realized
by passively scattering itinerant photons, which we illustrated with
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Fig. 6 Stabilizer measurements. Fidelity 7 >(5,) for the measurement of the parity operator Pz on ng qubits prepared in state |W_ ), with ¢ =

¢optl Yi=VYa k= Oand A" =
the realization of quantum state transfer protocols with high
fidelity, as well as the measurement of many-body stabilizer
operators, pertinent for topological quantum error correction.

In contrast to standard strategies for routing quantum
information between nodes of a quantum network, our approach
does not make use of circulators. In fact, rather than breaking
Lorentz reciprocity for the electromagnetic field (ie, the
invariance under the exchange of source and detector) to control
and route an itinerant quantum signal, here the propagation of
the quantum signal is set by the itinerant photons injected in the
network. This allows to achieve an effective non-reciprocal
interaction between stationary qubits with a rather simple design,
and an architecture resilient to noise and perturbations.

METHODS

Superconducting circuit implementation of unidirectional emitters
The circuit implementing the GUE is represented in Fig. 1¢, and consists of
two transmons interacting via a SQUID and coupled at two points to an
open transmission line. Following standard quantization procedures***>7,
we decompose the transmission line, with inductance and capacitance per
unit length /, and ¢,, into segments of finite lengths Ax, and write the
Lagrangian of the system as L= %cpT&p -V, where ¢=
(@1, 02, 115 P1L2s P13 --- )" contains the generalized flux variables
associated to the transmons (¢; and ¢,), and to each segment of the
transmission line (¢r,), indexed from left to right. Denoting the indices for
the segments coupled to each transmon as i; and i, the capacitance

- G, -C
matrix reads C = ( :F :a'TL>, with
G Gn
= G +C+d —C
a = 1 _ ra ;] 1
—C G+CH+4

(CTL)j,k = (Sjﬁk (C()AX + (Sj_,‘1 C’1 + 61",'2 C/z), and (fa-'“—)j,k = C’1 (5/'_1(5/(_,‘1 + Clzéj‘z(sk_,'z.
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The potential energy, on the other hand, reads

V= ﬁZ(@TL_i+1 — ;)" — Escos|(9; — 1)/ 9] )

—E} cos(¢; /o) — E5 os(9,/9p),

with o = h/2e (e is the elementary charge). _
Defining the conjugate variables Q = a% = Cp, we obtain the Hamilto-
nian of the full system
- T 5 /=
HfuII:Q‘P_LZEQ (C) -Q+V, (23)
which can be decomposed into Hg = Hq + Hph + Hint, With an atomic term

Ha, a term for the transmission line Hyy, and an interaction term Hi,.. For
the artificial atoms we obtain

—\ —1
Ho=152G5(C),, ) cos(or/90) — £} cos(/90)
’ (24)

+Q1Q; (f)1 , E; cos[(@; — 01)/®ol-

>

We then promote the flux and charge variables to operators satisfying
[k, Q1] = i6k,, and express the Hamiltonian in terms of bosonic annihila-
tion operators a; and a,, with

. AL
Px = Po (%) (al +ay),
. 1/4 (25)
Qi = 2ei<i) (@ — ay)
3268 k= k)

—\ -1 _ _
Here EX = e2/2C£", with C& = 1/ gc) ~ G+ ¢, + C for (¢4, C) < C.

The atomic Hamiltonian H, then tdkes the expression of Eq. (1) by
expanding the cosine functions in Eq. (24) up to fourth order, in the limit
(|@]) < @o, which is achieved in the transmon regime EX < £, and
discarding counter-rotating terms in a rotating wave approximation valid
for C < Cx and E; < EX. To estimate the value of the parameters in Eq. (1),
we keep only the leading order terms, and find for the transition

frequencies wy ~ 8E5E’é, while the anharmonicities read Uy ~ E’é. The

linear interaction terms have a capacitive component J- and an inductive
component J; as expressed in Eq. (7). We note that the conditions of

C< Cand E; < Ej‘ are required here in order to be able to neglect
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counter-rotating terms such as (Jc + J,)( a2 + a1a,). Similar considera-
tions apply for the non-linear cross-Kerr interaction y as expressed in Eq. (8).

For the transmission line Hamiltonian on the other hand, in
the limt Ax — 0 the only non-vanishing terms are
Hoh = fdx[ax(p(x)]z/zlo+q(x)2/2c0, where ¢(x) is the flux variable at

position x in the waveguide, and g(x) the charge density. We then express
these ﬁelds in second quantization in terms of the bosonic operators bg(w)

and bL(
/ / lw)r/vg7 +[)L(w)e—iwx/vg> + h.C.,
N o Zocow A iwx /vy A —iwx /vy
X) = I/dw\/74n (bg(w)e + b (w)e )

+h.c.,

(26)

where vy = 1//Ioco is the group velocity of photons in the transmission
line and Zy = +/lo/co the transmission Ilne characteristic impedance, and

we obtain Hop, = fdww[bR w)bg(w )+bL( Vb (w))].
Finally, for the interaction term we obtain

. =1/cq(x)
o ()

o 2)C 6q(x2)
where x; and x, denote the position of the two coupling points along the

waveguide. We then obtain the expression in Eq. (2) by setting x; =0 and
X, = d, redefining the phase of the right-propagating modes as 5R(w) —

(27)

ER(w)e”“a/Vg and approximating the couplings to be constant over the
relevant bandwidth. Assuming for simplicity £] /E} ~ E3/EZ, the coupling

rates express as yy = (c,/CS") woe?Zo1/EX/(8E) and the cross-coupling
coefficients as r, = C/CE.

Quantum state transfer protocol

The average fidelity Fqst for the quantum state transfer protocol is
evaluated by applying the protocol on an initially maximally entangled
state between qubit 1 and a virtual ancilla qubit (denoted a)*® as
[W;) = (10)4110)g + [1)g111)a)|+)qn/ V2. After performing the protocol as
represented in Fig. 4, we obtain the state of the system of qubit N and
ancilla as a density matrix py. Ideally, the state of qubit N and the ancilla
should be pure and entangled as [Wigeal) = (|0)4410), + \1)qu\1>a)/\/§.

The average fidelity is then defined as Fast = Tr [(Wideal |B¢|Videal)]-
Here, the state of the system before the scattering of the photon,
injected in the system from line "down”, reads
~in

i
[in) = [d8yf(8p)[bggown(8p)] |Vac,G)|W);, with frequency distribution f
(6p). Assummg unidirectional photon - GUE interactions, from the
expression in  Eq. (18) the state after the scattering reads

lout) = 37, [ d6,(8,) b (6,)] | vac, O)¥(6,)),
[HSn(8,)HS: (8,)H]

| down |¥); represents the state of the qubits when

the photon is scattered to line j. The (unnormalized) qubit density matrix
p;, conditioned on the detection of the photon at the output of line j, is
then obtained as p; = [ d&,|f(8,)[*|¥;(8,)) (W;(8,)]-

Denoting all the other operatlons performed in the circuit of Fig. 4 after
the photon scattering and subsequent detection at the output of line j,
including the projective measurements of qubit atom 1, as superoperators
P, we then obtain the reduced density matrix as
pr = Trg1 (PuplPup) + Pdown[Pdown)), Where Trg; denotes the trace over

where  |¥(68,)) =

qubit 1. The average fidelity finally expresses as
Fast = [ d8yf(8p)|° Fast(8p), with
Fast(6,) = Ve —2/°8] — 2368} + 3yi 6, + 2y}, + 45)

(v +455)’
=1-2(8/y,)" + O, /v,)’-

Including in the description the finite probability P, of losing the photon
in the process, due for instance to amplitude attenuation in the
waveguides or to a faulty photon detection, the overall transfer fidelity
is (1 —Py4)Fqst. Standard strategies for quantum error correction can
however be applied to correct for such photon losses. For example,
following ref. 8, we can add an ancillary backup stationary qubit b to node
1 and, before performing the state transfer protocol, entangle it with qubit

(28)
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In case the photon is not detected after the scattering, the initial
superposition can then be retrieved by measuring qubit 1, as the photon
scattering operator in Eq. (16) is diagonal in the computational basis of the
qubits. From Eq. (29), for the measurement outcome |0)q‘1, the state of the

backup qubit is projected to <|1>b>, while the outcome |1)q‘1 yields

0}
< 0)y )
1y
(29), and repeat the procedure until the photon is successfully detected at
the output, which requires on average 1/(1 — P,) trials. At this stage, the

state transfer protocol can resume normally, which transfers the
entanglement with the backup qubit b from qubit 1 to qubit N, yielding

|1>b‘o>q.N + |O>b“>q.N
Mol Mg +100104n )
The qubit superposition is then finally transferred to qubit N by measuring

the backup qubit b and, depending on the outcome, performing a local (7’;’
gate on qubit N.

. This allows to prepare the system back to the entangled state

(30)

Protocol for toric code generation and manipulation

The toric code is a stabilizer code where physical qubits are located on the
edges of a 2D lattice with periodic boundary conditions®®. The code has
two types of stabilizers: as represented in Fig. 5a, for each plaquette p of
the lattice we define an operator Ap = Hnep : and, similarly, for each

vertex v we define B, = [],.,0%. With an N;x N lattice [e g. N;= 2 in Fig.
5al, the number of physical qubits is N:ZN,, while the number of
independent stabilizers is 2(N? — 1). Thus, the manifold of states |®)
satisfying the constraints A,|®) = |®) and B,|®) = |®) for all p and v is
four-dimensional. One such state can be expressed as

o) = STL0+ A o

which projects ®"_, [+)4, on the eigenmanifold of each A, with
eigenvalue +1. In the protocol of Fig. 5 we prepare state |®;) by
performing sequential measurements of the Ap operators. From the list of
the measurement outcomes, one can always perform single-qubit 6; gates
such that the state becomes an eigenstate of all A, with eigenvalue + 1.
Since B,®Y, [+)gn = N, [+)4, for all v, and as all the stabilizers
commute, the state remains an eigenstate of all B, with eigenvalue + 1
throughout the protocol, and we prepared the system in state |®;).

The other three code states can be obtained from |®;) by applying
products of 67 gates on all qubits along horizontal or vertical cyclic paths
passing through lattice sites. We denote such horizontal and vertical cyclic
paths as y; and y, respectively. For the minimal instance represented in
Fig. 5a, one can take for instance y, = {5, 6} and y, = {4, 8}. Conversely, we
define vertical and horizontal cyclic paths passing through plaquette
centers, which we denote respectively as y; and y;. In the example of Fig.
5a one can use for instance y; = {1,5} and y; = {3,4}. We then define
Ioglcal operators on the code manifold as the string operators

= [y, 02 X1 = Tney: 6% 22 = [1ney,07 and Xz = [, 6. This allows
to deﬁne the other three code states as |(D2> =Z;|01), |©3) = Z,|®;) and
|©4) = 2,2,|®1), which satisfy Xo|Dg) = (—1)°#|Dg) with 571 =s13=5,,
=55,=1and s 2=514=523=524= —1. We note that in our setup, the
logical operators Z1 > and X1 , are measurable in the very same way as the
stabilizers, without having to measure individual physical qubits which
would project the state out of the code subspace.

(31)

Fidelity of stabilizer measurements with finite photon pulse
We consider here the scattering of a photon wavepacket with a temporal
distribution given by

(1) o(T/2— [t)),

where T is the temporal extent of the wavepacket, o; its temporal width, © the
Heaviside step function, and A a normalization constant such that

= Ae /(400 (32)
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.z/z f(t)2dt = 1. With the qubits initialized in state |W.) as expressed

/2

above, this scattering  with  the input state
in

. - T

lin) = [ d&pf(8p) (B down (Bp)] [vac)|¥s), v f(6p) =
(1/v/2m) [ dif(t)e" is the Fourier transform of f(t). Without necessarily
assuming purely unidirectional photon - GUE interactions, the

system is  then left  after  the  scattering in state
~out

[out) = Zd’.jfdépf(ép)[bd’_j(ép)f‘Vacvg>|q}d’J(6p)>l where |Wq,(8p)) =
j'du,,Ad'fzwn (vp,8p)|¥-), and we made use of the fact that the single-
photon scattering operator is proportional to 6(v, — &,) (with its general
expression provided in the Supplementary Methods IV).

Detecting the photon at the right output of waveguide j yields for the qubits
the (unnormalized) density matrix p; = | dép\f(ép)\z{WRJ((SP))(WRJ(ép)‘. The
measurement fidelity is then defined as 7z = Faown + Fup With

q}jideal> :/dép‘f(ép”zfz(ép)’ (33)

with Fz(6p) as expressed in Eq. (20).

realizes a

where

Tj _ <L|)jideal :E)j

Note added in proof

We recently became aware of related unpublished work by N. Gheeraert, S.
Kono and Y. Nakamura (personal communication).
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