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A unidirectional on-chip photonic interface
for superconducting circuits
P.-O. Guimond1,2✉, B. Vermersch1,2,3, M. L. Juan2,4, A. Sharafiev2,4, G. Kirchmair2,4 and P. Zoller 1,2

We propose and analyze a passive architecture for realizing on-chip, scalable cascaded quantum devices. In contrast to standard
approaches, our scheme does not rely on breaking Lorentz reciprocity. Rather, we engineer the interplay between pairs of
superconducting transmon qubits and a microwave transmission line, in such a way that two delocalized orthogonal excitations
emit (and absorb) photons propagating in opposite directions. We show how such cascaded quantum devices can be exploited to
passively probe and measure complex many-body operators on quantum registers of stationary qubits, thus enabling the heralded
transfer of quantum states between distant qubits, as well as the generation and manipulation of stabilizer codes for quantum error
correction.
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INTRODUCTION
Over the last two decades, superconducting circuit technologies
have emerged among the most promising platforms for realizing
quantum processors1–4. One avenue consists in designing
quantum networks in a modular approach, where distant
stationary qubits interact by exchanging photons as “flying
qubits” propagating in waveguides5. As the size of experiments
and number of qubits in quantum networks scale in complexity,
controllable routing of quantum information between distinct
components becomes a requirement6. In most current experi-
ments, this task is taken care of using ferrite junction circulators,
which break Lorentz reciprocity via the Faraday effect7,8. However,
as these devices are bulky, lossy, and use large magnetic fields,
they are not suitable for on-chip integration, and new, scalable
alternatives must be developed. To address this challenge, several
approaches were proposed in recent years. Most strategies require
active devices9–18, where reciprocity is broken by the interplay of
several pump fields with precise phase relations, at the cost of
adding energy to the system. On the other hand, passive devices
have also been proposed based on superconducting junction
rings, where circulation is obtained using a constant flux bias;
these are however highly sensitive to charge noise19,20. In
addition, quantum devices building on superconducting qubits
strongly coupled to 1D microwave waveguides are being
developed, where the reflection and transmission of itinerant
photons is externally controlled, including for instance single-
photon routers21 and transistors22,23, unidirectional phonon
transducers24, or quantum diodes25,26.
In this work, we tackle the problem of quantum information

routing from a different angle; rather than circulators or reflectors
for itinerant photons, we design effective integrated qubits as
composite objects coupled to a meandering 1D transmission line
(see Fig. 1a–c), with the requirement that photons propagating in
one direction are absorbed and reemitted along the same
direction, without breaking reciprocity. Coherently driving several
such unidirectional quantum emitters through the transmission
line gives rise to an effective cascaded driven-dissipative

dynamics, as represented in Fig. 1d, where photons radiated by
each emitter coherently drives other emitters downstream; in the
literature, this paradigm is sometimes referred to as "chiral
quantum optics”27, and features interesting steady-state proper-
ties, as will be discussed below.
In analogy to "giant” artificial atoms28–34, which couple to a

photonic or phononic waveguide at several points separated by
distances comparable to the wavelength, our approach consists in
designing a giant unidirectional emitter (GUE), here realized using
two artificial atoms as anharmonic oscillators, as represented in
Fig. 1a. These atoms are coupled to a waveguide, at two points
separated by a distance d � λ0=4, with λ0 the photon wavelength.
By designing the interaction between artificial atoms, our
composite object effectively admits a V-level structure with two
delocalized excited states Lj i � ði 1102j i þ 0112j iÞ= ffiffiffi

2
p

and Rj i �
ð 1102j i þ i 0112j iÞ= ffiffiffi

2
p

(with nkj i denoting Fock state n= 0, 1,… of
atom k= 1, 2), with the remarkable property that their transitions
to the ground state 0102j i couple respectively only to left- and
right-propagating modes of the waveguide [see Fig. 1b], which is
due to a destructive interference in the photon emission (and
absorption). Below we will analyze an implementation of this
model with superconducting transmon qubits coupled via a
superconducting quantum interference device (SQUID) [see Fig. 1c].
As we will show later on, these composite emitters can be used

as unidirectional photonic interfaces for additional long-lived
stationary qubits (represented below in Fig. 3), which has
immediate applications for quantum information processing and
quantum computing. In our approach, quantum information is
manipulated and directed passively, using an itinerant probe field
as "flying qubit” propagating in the waveguide. This forms a
naturally scalable architecture for quantum networking, which we
will illustrate in particular with the realization of quantum state
transfer between distant stationary qubits, and with the genera-
tion and manipulation of stabilizer codes for quantum error
correction35. Our architecture is passive and tunable in situ, and, as
we will show, the required experimental parameters and
imperfections are achievable with current technology.
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RESULTS
Our results presented below are organized as follows. First we
describe and analyse the design of giant unidirectional emitters
(GUEs) as composite artificial atoms with an effective V-level
structure, with each transition absorbing and emitting photons
along a single direction in a waveguide, and present a possible
implementation with superconducting transmon qubits. Next, we
study the cascaded driven-dissipative dynamics arising when
several such unidirectional emitters are driven via the waveguide.
Finally, in the last part we describe how these emitters can act as
unidirectional photonic interfaces for additional long-lived sta-
tionary qubits, which enables applications for quantum network-
ing such as quantum state transfer between distant stationary
qubits, and the generation and manipulation of stabilizer codes
for quantum error correction.

Model of unidirectional quantum emitters
Our model for designing unidirectional quantum emitters is
represented in Fig. 1a, and consists of two interacting artificial
atoms as anharmonic oscillators coupled at two distant points to a
waveguide. The dynamics of these two atoms, within the rotating
wave approximation, is described by the Hamiltonian (with ℏ= 1)

Ĥa ¼
P2
k¼1

ωkâ
y
kâk � Uk=2ð Þâykâykâk âk

þ J ây1â2 þ ây2â1
� �

� χây1â1â
y
2â2:

(1)

Here ωk is the transition frequency of each atom k, Uk denotes
their anharmonicity, and âk is their annihilation operator, which
satisfies ½âk ; âyl � ¼ δk;l . The second line in Eq. (1) describes the
interaction between atoms, with linear exchange interaction rate J,
and non-linear cross-Kerr frequency χ, which can be implemented
with two superconducting transmon qubits coupled via a SQUID
(see Fig. 1c and discussion below).
The waveguide has a continuous spectrum of modes described

over the relevant bandwidth by the bare Hamiltonian
Ĥph ¼ R dωω½b̂yRðωÞb̂RðωÞ þ b̂

y
LðωÞb̂LðωÞ�, where b̂dðωÞ is the

annihilation operator for photons with frequency ω propagating
to the right (with d= R) or to the left (with d= L), and satisfies
½b̂dðωÞ; b̂yd0 ðω0Þ� ¼ δðω� ω0Þδd;d0 . Finally, the coupling between the
atoms and the waveguide yields, within the rotating wave
approximation, the Hamiltonian

Ĥint ¼ 1ffiffiffiffi
2π

p
Z

dω b̂
y
RðωÞ eiωd=vg L̂1 þ L̂2

� �h
þ b̂

y
LðωÞ L̂1 þ eiωd=vg L̂2

� �
þ h:c:

i
:

(2)

Here L̂1 ¼ ffiffiffiffiffi
γ1

p ðâ1 þ r2â2Þ and L̂2 ¼ ffiffiffiffiffi
γ2

p ðâ2 þ r1â1Þ are the
coupling operators associated to each coupling point, with
coupling rates γk (which we assume constant over the relevant
bandwidth) and small cross-coupling coefficients rk which are not
needed per se for the design of unidirectional emitters, but arise
in our proposed implementation as discussed below. We also
defined is the distance of separation d between the two coupling
points along the waveguide, and the group velocity vg of photons
in the waveguide.
Within a markovian approximation (i.e., assuming γkd=vg � 1),

the dynamics of the field can be integrated and treated as a
reservoir for the atoms, and we obtain for the Heisenberg
equation of motion for an arbitrary atomic operator ÔðtÞ the
quantum Langevin equation (see details in Supplementary
Methods I)

d
dt ÔðtÞ ¼ �i Ô; Ĥeff

� �þ P
d¼R;L

L̂
y
dÔL̂d � 1

2 L̂
y
dL̂d; Ô

n o

þ P
d¼R;L

b̂
in
d ðtÞ

h iy
Ô; L̂d
� �þ L̂

y
d; Ô

h i
b̂
in
d ðtÞ;

(3)

expressed in an interaction picture with respect to the waveguide
Hamiltonian Ĥph, and in a rotating frame with respect to the
photon frequency ω0= 2πvg∕λ0. Here the effective Hamiltonian

Fig. 1 Unidirectional coupling of quantum emitters to a transmission line. a Model for realizing a giant unidirectional emitter (GUE) using
non-linear coupling between two artificial atoms coupled to a waveguide. b Corresponding level structure obtained with specific parameters
(see text). An effective two-level system with states 0102j i and Rj i is obtained, which couples to right-propagating modes of the transmission
line. c Superconducting circuit implementation, where two transmons (k= 1, 2) are coupled at two points to a meandering transmission line,
and interact via a SQUID. d Driven-dissipative cascaded quantum network realized with several GUEs as effective two-level emitters
unidirectionally coupled to a transmission line. The system dissipates towards a pure steady-state with emitters pairing up in an entangled
state Dj i. e Directionality βdir of emitted photons, with Δk= 0 and rk= 0.2, γk= γ. f Averaged directionality βdir for J= Jopt, ϕ= ϕopt and Δk= 0,

obtained with uniformly distributed r1, r2, γ1, and γ2, with means rk ¼ 0:2, γk ¼ γ and standard deviations
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2k � rk

2
q

¼ δr,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2k � γk

2
q

¼ δγ.
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reads

Ĥeff ¼ �P2
k¼1

Δkâ
y
kâk � Uk=2ð Þâykâykâk âk � χây1â1â

y
2â2

þJ ây1â2 þ ây2â1
� �

þ sinðϕÞ L̂
y
2L̂1 þ L̂

y
1L̂2

� �
;

(4)

with Δk=ω0− ωk, where the last term emerges from a coherent
exchange of photons propagating in the waveguide between the
two coupling points, with ϕ ¼ ω0d=vg the phase acquired by a
photon in the propagation. On the other hand, the collective
coupling operators in Eq. (3) represent the collective couplings of
the atoms to right- and left-propagating photons due to
interference of photon emission and absorption in the reservoir,
and are defined respectively as L̂RðtÞ ¼ eiϕL̂1ðtÞ þ L̂2ðtÞ and
L̂LðtÞ ¼ L̂1ðtÞ þ eiϕL̂2ðtÞ. Finally, b̂ in

d ðtÞ represents the input fields
of the waveguide propagating along direction d, and is related to
the output fields via36

b̂
out
d ðtÞ ¼ b̂

in
d ðtÞ þ L̂dðtÞ; (5)

with ½b̂ in=out
d ðtÞ; ðb̂in=outd0 ðt0ÞÞ

y
� ¼ δðt � t0Þδd;d0 . The emergence of

unidirectional coupling between propagating photons and the
composite two-atom system, from Eqs. (3) and (5), occurs under
the following two conditions.

(I) First, the two collective coupling operators L̂R and L̂L must
be orthogonal, i.e., ½L̂yL; L̂R� ¼ 0, such that each operator L̂d
couples only to the corresponding input fields b̂

in
d ðtÞ in Eq.

(3). Here, this condition requires the system parameters to
be symmetric, i.e., r1= r2= r and γ1= γ2= γ, while the
propagation phase must be set to ϕ= ϕopt, with the optimal
propagation phase ϕopt ¼ π=2þ 2 arctanðrÞ. With these
parameters, the collective coupling operators reduce to
L̂R=L ¼ ffiffiffiffi

γr
p

âR=L, up to an irrelevant phase factor, with the
definition of two orthogonal delocalized atomic modes âR ¼
ðiâ1 þ â2Þ=

ffiffiffi
2

p
and âL ¼ ðâ1 þ iâ2Þ=

ffiffiffi
2

p
, and where the

effective coupling strength of the system to the waveguide
is given by γr ¼ 2γ 1þ 2r cos½ϕopt� þ r2

� �
. We note that the

cross-coupling coefficients rk are not necessary ingredients
in our model of unidirectional emitters, and in the simpler
case where r ≈ 0 we obtain ϕopt ≈ π∕2, yielding γr ≈ 2γ.

(II) Second, the excitations associated to these two modes âR
and âL must be eigenstates of the effective Hamiltonian Ĥeff .
For states with a single atomic excitation, i.e., Rj i ¼ âyR Gj i
and Lj i ¼ âL Gj i with Gj i ¼ 0102j i the ground state of both
atoms, this is achieved by taking symmetric detunings Δ1 ¼
Δ2 � Δþ 2rγ sinðϕoptÞ and J= Jopt, with the optimal hop-
ping rate given by Jopt ¼ �γð1þ r2Þ sinðϕoptÞ. In the regime
r ≈ 0, this condition can be understood as the requirement
for the direct hopping (with rate J) to exactly cancel the
contribution from waveguide-mediated photon exchanges
(with rate γ sinðϕÞ) in Eq. (4), as these terms couple the two
excited states Rj i and Lj i. If this condition is satisfied, these
two states then become eigenstates of Ĥeff with eigenener-
gies −Δ. The non-linear cross-Kerr interaction with fre-
quency χ, on the other hand, is introduced in the model in
order to prevent the excitation of the doubly-excited state
1112j i when driving the system via the input fields, as we
will consider below.

When these two conditions are fulfilled, the composite emitter
will absorb and reemit propagating photons along the same
direction. In order to assess this directionality in a more general
case, we assume the emitter is prepared in state Rj i at time t= 0
with the waveguide in the vacuum state, and solve the dynamics
of the system, which yields the emission of a photon in the
waveguide, with the emitter returning to its ground state Gj i. The
temporal shapes of the wavepacket amplitudes of the emitted

photon propagating to the right/left are then obtained using a
Wigner-Weisskopf ansatz (see details in Supplementary Methods I)
as f R=LðtÞ � Gh jb̂ out

R=L ðtÞ Rj i ¼ Gh jL̂R=LL�1½F̂�1ðsÞ Rj i�, where L½��ðsÞ
denotes the Laplace transform, and the evolution of the atomic
excitation amplitudes is governed by the operator

F̂ðsÞ ¼ sþ iĤeff þ 1
2

L̂
y
RL̂R þ L̂

y
LL̂L

� �
: (6)

We then define the directionality of photon emission as
βdir ¼

R1
0 jf RðtÞj2dt. This directionality of emitted photons is

represented in Fig. 1e, f. Figure 1e shows that very good
directionalities can be achieved even with relatively large
imprecisions on J and ϕ around their optimal values, e.g. due to
fabrication imperfections. Here we obtain βdir > 99% for ∣J − Jopt∣
≲ γ∕10 and ∣ϕ− ϕopt∣ ≲ π∕10. This robustness to imperfections is
also observable in Fig. 1f, where we show the average
directionality βdir obtained with random static deviations of rk
and γk. We obtain βdir>99% as long as the fluctuation in the
coupling parameters are below δγ≲ 0.1γ and δr≲ 0.05.

Implementation with superconducting circuits
Our model can be implemented with the circuit represented in
Fig. 1c, which consists of two superconducting transmon qubits
(k= 1, 2) with flux-tunable Josephson energies EkJ and charging
energies EkC ¼ e2=ð2C eff

k Þ37, where e is the elementary charge and
C eff
k are the effective transmon capacitances (see details in

Methods). The interaction between transmons is mediated by a
SQUID, acting as a non-linear element with flux-tunable Josephson
energy EJ and with capacitance C. We note that such tunable non-
linear couplings mediated by Josephson junctions were demon-
strated in recent experiments38–40, and find applications for
quantum simulation41–43 and quantum information processing22.
Following standard quantization procedures, the Hamiltonian

for the circuit can be expressed as in Eq. (1) (see details in
Methods). In particular, analytical insight on the resulting system
parameters can be gained in the regime of weakly coupled
transmons, with EkC � EkJ , EJ � EkJ and C � Ck . In this limit, an
estimation of the various parameters of the model can be made in
terms of the circuit parameters, with the atomic transition
frequencies taking the expression ωk �

ffiffiffiffiffiffiffiffiffiffiffiffi
8EkJ E

k
C

q
, while the atomic

anharmonicities read Uk � EkC . The interaction between atoms
contains a linear hopping term J= JC− JI, with a capacitive (JC)
and an inductive (JI) contribution reading

JC � ω0
C

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C eff
1 Ceff

2

q ; JI � ω0
EJ

2
ffiffiffiffiffiffiffiffiffi
E1J E

2
J

q ; (7)

while the cross-Kerr interaction term reads

χ ¼ 2EJ

ffiffiffiffiffiffiffiffiffiffi
E1CE

2
C

E1J E
2
J

s
: (8)

We note that the three Josephson energies in Fig. 1c can be
independently controlled via flux biases, allowing for an
independent in situ fine-tuning of the detunings Δk=ω0− ωk

and the hopping rate J. The couplings to the waveguide on the

other hand are given by γk ¼ ðc0k=Ceff
k Þ2ω0e2Z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EkJ =ð8EkCÞ

q
, with c0k

the coupling capacitances and Z0 the transmission line impe-
dance44,45. The capacitance C introduces as well small cross-
coupling coefficients rk ¼ C=C eff

k , resulting in photon emission
from each artificial atom via both coupling points.

Driven-dissipative dynamics of cascaded quantum networks
Although the properties of unidirectional emission of our GUE
studied above preserve Lorentz reciprocity, i.e., they are invariant
under the exchange of left- and right-propagating modes, driving
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the system through the waveguide allows one to effectively
achieve non-reciprocal interactions between artificial atoms. A
paradigmatic example of such a situation is represented in Fig. 1d,
where several GUEs are coherently driven via right-propagating
modes, thus driving the âR transition as represented in Fig. 1b.
Photons emitted by each emitter will then also propagate to the
right, leading to an effective cascaded quantum dynamics, where
each GUE drives the other ones downstream, without any back-
action46–48.
This scenario has been studied in recent years in a different

context, in a field known in the literature as “chiral quantum
optics”27, which originated from experiments with quantum
emitters in the optical domain, such as atoms49–52 or quantum
dots53–56, coupled to photonic 1D nanostructures. The strong
confinement of light in these structures gives rise to a so-called
“spin-momentum locking” effect57, allowing for unidirectional
couplings between photons and emitters which, in an analogous
way to our GUE, does not by itself break Lorentz reciprocity.
Besides, building on non-local couplings of quantum emitters to
1D reservoirs, chiral quantum optical systems could also be
realized in AMO platforms with broken reciprocity58–60. While
photon losses inherent to optical platforms form experimental
challenges, the near-ideal mode matching of artificial atoms
coupled to 1D transmission lines presents new opportunities to
realize this paradigm, in the microwave domain21,61. Interestingly,
it has been predicted that, for several quantum emitters, the
ensuing cascaded dynamics in the presence of a coherent drive
results in the dissipative preparation of quantum dimers, with
quantum emitters pairing up in a dark, entangled state62–64, as we
will show below.
In order to study the dynamics of an ensemble of N GUEs

(labeled n= 1, …, N) interacting via a common waveguide, we
employ the SLH input-output formalism65–67. The SLH framework
provides a methodical approach for modeling such composite
quantum systems interacting via the exchange of propagating
photons, where we assume that non-Markovian effects, due e.g. to
the finite propagation time of photons exchanged by the
emitters68, can be neglected. As detailed in the Supplementary
Methods IV, the dynamics of the network of N GUEs can then be
obtained from the input-output properties of each individual GUE,
by recursively applying composition rules of the SLH formalism in
a "bottom-up” fashion. The evolution of an arbitrary atomic
operator ÔðtÞ in the rotating frame then obeys a quantum
Langevin equation as expressed in Eq. (3), with a redefinition of
the effective Hamiltonian and of the coupling operators. Denoting
the various parameters and operators associated with each GUE
with a corresponding superscript n, we obtain for the effective
Hamiltonian

Ĥ
tot
eff ¼

X
n

Ĥ
n
eff �

i
2

X
n;m<n

ðL̂nRÞ
y
L̂
m
R e

i~ϕðn�mÞ � h:c:
h i

� i
2

X
n;m>n

ðL̂nL Þ
y
L̂
m
L e

i~ϕðm�nÞ � h:c:
h i

;
(9)

with the photon propagation phase ~ϕ ¼ ω0l=vg where l is the
distance between two neighbouring composite emitters along the
waveguide. We note that the two new terms in Eq. (9) correspond
to excitation exchange interactions between different GUEs,
mediated respectively by right- and left-propagating photons.

For the coupling operators on the other hand, we obtain L̂
tot
R ¼P

n e
i~ϕðN�nÞL̂

n
R and L̂

tot
L ¼Pn e

i~ϕðn�1ÞL̂
n
L , which represent interfer-

ence in the atom-field coupling between the emitters.
The presence of a coherent drive via the right-propagating

waveguide modes, with amplitude α(t) [and corresponding
Rabi frequency ΩðtÞ ¼ ffiffiffiffi

γr
p

αðtÞ], can be accounted for by
assuming the initial state of the waveguide αRj i satisfies
b̂
in
d ðtÞ αRj i ¼ αðtÞδd;R αRj i. Writing hÔðtÞi ¼ Tr ½Ôρ̂ðtÞ�, with ρ̂ the

atomic density matrix, the temporal evolution from Eq. (3) then
yields the master equation

d
dt ρ̂ ¼ �i Ĥ

tot
eff � iαðtÞ L̂

tot
R

� �y
þ iα	ðtÞL̂ totR ; ρ̂

	 


þD L̂
tot
R

h i
ρ̂þD L̂

tot
L

h i
ρ̂;

(10)

where D½â�ρ̂ ¼ âρ̂ây � 1
2 fâyâ; ρ̂g. Equation (10) allows to access

the evolution and steady-state values of observables with a finite
drive amplitude α. In order to account for additional imperfec-
tions, we also add in Eq. (10) dephasing terms 2γφ

P
n;kD½ðânkÞyânk �

and non-radiative decay terms γnr
P

n;kD½ânk �.
In Fig. 2a, b we represent the ratio of left- and right-propagating

emitted photons obtained in the steady-state of the dynamics for
N= 1, with J and ϕ set to their optimal values, and a constant real
Rabi frequency Ω (i.e., the drive frequency is ω0). Figure 2a shows
that, since directionality arises in our setup as interference of
emission of the two atoms, the dephasing rate γφ spoils the
interference and induces some emission to the left with an
intensity scaling linearly for low Rabi frequency Ω. As Ω increases
with respect to the effective anharmonicities χ and Uk, the
intensity of left-propagating photons increases, as states with
more than a single excitation get populated. For instance, the
state 1112j i in Fig. 1b can be excited by absorbing two (right-
propagating) photons from the drive, and can afterwards decay
towards state Lj i by emitting a photon propagating to the left.
This increase in the population of multiple-excitation states is also
observed as the dashed red curves in Fig. 2b, and we thus require
Ω ≪ χ in order to retain a two-level dynamics. We also note that
when χ= U1= U2 in Fig. 2b, the emission to the left vanishes even
when states with several excitations are populated, as for these
parameters states with several excitations ðâyRÞ

nRðâyLÞ
nL
Gj i become

eigenstates of Ĥ
tot
eff for all nR∕L≥0, thus preserving the property of

unidirectional emission. Note that in the regime of weakly coupled
transmons (C � Ck and EJ � EkJ ) considered above, the value of U
is limited by the fact that, from Eq. (8) and Uk � EkC , we have
χ � 2

ffiffiffiffiffiffiffiffiffiffiffi
U1U2

p
. Achieving larger values thus requires going beyond

the weak coupling regime. This is discussed in the Supplementary
Methods II, where we also study the validity of the analytical
expressions for the effective model in Eqs. (7) and (8). Typical
achievable values for χ range from 0 to ~2π × 50 MHz with Uk=
2π × 300 MHz.
In the ideal case where the parameters satisfy the properties of

unidirectional coupling and the anharmonicities χ and Uk are large
enough with respect to the Rabi frequency Ω of the drive, the
state of the emitters will thus remain within the two-level
manifold

N
nf Gj in; Rj ing. Denoting here σ̂n

þ ¼ ei~ϕn Rj in Gh j, the
dynamics of Eq. (10) then reduces to a cascaded master
equation46,47

d
dt

ρ̂eff ¼ �iĤnhρ̂eff þ iρ̂effĤnh
y þ L̂

tot
R ρ̂eff L̂

tot
R

� �y
; (11)

where ρ̂eff denotes the density matrix of the system expressed in
the reduced 2N-dimensional manifold, and where the effective
non-Hermitian Hamiltonian reads, assuming Ω real,

Ĥnh ¼ �Δ
X
n

σ̂nþσ̂
n
� � iΩðσ̂n

þ � σ̂n
�Þ

�i
γr
2

X
n

σ̂n
þσ

n
� � iγr

X
n>m

σ̂n
þσ̂

m
�:

(12)

Equation (11) represents the ideal scenario where the coupling
between propagating photons and the array of N GUEs is purely
unidirectional, which assumes that the directionality parameter
satisfies N(1 − βdir) ≪ 1. The dynamics generated by Eq. (11) then
induces an effective non-reciprocal interaction between the
qubits: as seen from the expression of Eq. (12), an excitation in
each qubit m can be coherently transferred only to qubits n >m
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located to its right. While the reduced density matrix of any single
GUE is in general mixed, for even N and Δ= 0 the state of the
whole system dissipates towards a pure steady-state

Ψj i ¼NN=2
n¼1 Dj i2n�1;2n, where, as represented in Fig. 1d, neighbour-

ing qubits pair up as dimers in a two-qubit entangled state62–64

Dj i2n�1;2n / Gj i2n�1 Gj i2n � 2
ffiffiffi
2

p Ω

γr
Sj i2n�1;2n; (13)

with Sj i2n�1;2n ¼ ð Rj i2n�1 Gj i2n � Gj i2n�1 Rj i2nÞ=
ffiffiffi
2

p
. Remarkably,

once the system has reached this dark state Dj i, all photons
emitted by qubit 2n − 1 are coherently absorbed by qubit 2n, such
that each dimer effectively decouples from the waveguide
radiation field.
The dynamics obtained for a pair of N= 2 GUEs, obtained from

Eq. (10), is represented in Fig. 2c, d. In Fig. 2c we observe the
purification process described above where, in the steady-state,
the system dissipates towards the pure state Dj i, as represented in
the red curves. Strikingly, although the atoms are excited (see
green curve), the amount of scattered photons, represented in
blue, vanishes in the steady-state, i.e., the system becomes dark
and decouples from the waveguide. We note that in the transient
dynamics, i.e., before reaching the steady-state, photons are
scattered unidirectionally by the emitters, which leads to a
decrease of the purity Trðρ̂2Þ. Moreover, the purity of the reduced
density matrix ρ̂ðnÞ for each GUE n remains low in the steady-state
(see black curves), as they become entangled. The steady-state
overlap Dh jρ̂ Dj i is represented in Fig. 2d, which shows a
requirement for a large χ with respect to the drive intensity
∣Ω∣2∕γr. The effect of imperfections due to dephasing and finite
excitation lifetimes is represented in the inset, which shows that
the steady-state overlap with the dark state becomes unity in the
limit χ→∞ and γnr= γϕ= 0.

Quantum information routing for quantum networking and
computing
Our approach enables the realization of large scale quantum
processing units, where quantum information is processed in local
nodes, and routed using unidirectional emitters. The setup we
have in mind is represented in Fig. 3a, where we represent a
possible such architecture, with a set of stationary atomic qubits
acting as quantum register, and GUEs acting as an interface
between a waveguide and the stationary qubits. The idea is to
mediate effective long-range multi-qubit interactions by using (i)
sequences of scattering events induced by unidirectional cou-
plings between a single photon as "flying qubit” and each
stationary qubit, (ii) local single-qubit operations, and (iii) linear
optics represented by unitary operations Un acting on two
waveguides, including in particular 50/50 beam-splitter opera-
tions. The applicability of this architecture is illustrated below for
quantum state transfer between distant stationary qubits, as well
as the generation and manipulation of stabilizer codes.
The scattering events are designed as follows (see Fig. 3b).

Denoting the parameters and operators associated with node n=
1, …N with an index n, each GUE is initially prepared in its ground
state Gj in, and returns to this state after the photon scattering. The
coupling between each stationary qubit (with states
f 0j iq;n; 1j iq;ng) and its GUE consists of a purely non-linear cross-
Kerr interaction, which can be described by the Hamiltonian (see
details in Supplementary Methods III)

Ĥ
n
V ¼ � 1j iq;n 1h j Vn

1ðân1Þyân1 þ Vn
2ðân2Þyân2

h i
; (14)

ideally with identical frequencies Vn
1 ¼ Vn

2 � V . The effect of this
interaction is then to shift the frequency of the excited states of
the GUEs by V, conditional on qubit atom n being in state 1j iq;n,
without breaking the properties of unidirectional coupling
discussed above. A possible implementation of this interaction

Fig. 2 Driven-dissipative dynamics. a, b Ratio of left- and right-propagating photon intensities, in the steady-state, emitted by the artificial
atoms when coherently driven through the waveguide, with γk= γ, Δk= 0, rk= 0.2, Uk= 100γ, γnr= 0.01γ, J= Jopt, ϕ= ϕopt. a χ= 50γ. Dashed
red: γφ∕γr. b γφ= 0.01γ. Dashed red: probability of 10−2 and 10−3 (resp. top and bottom) of having two or more excitations in the atoms.
Dashed gray: χ= U1= U2. c, d Cascaded dynamics with N= 2 GUEs, with rk= 0.2, Δ= 0, Uk= 500γ, ~ϕ ¼ 0, and γnr= γφ. c Ω= γ, χ= 50γ, γφ=
0.01γ. d Steady-state overlap Dh jρ̂ Dj i, with Ω∈ [1, 10]γ (light to dark blue), and γφ = 0.01γ. Inset: χ→∞, red dashed curve / Ω2γφ=γ

3
r .
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term with superconducting circuits, adapted from Fig. 1c, is
represented in Fig. 3c, where the qubit atom is coupled via two
SQUIDs to the GUE atoms. We note that (i) the anharmonicity of
the GUEs is inconsequential for the applications considered in this
section as we consider the scattering of single photons, hence for
simplicity the coupling between the artificial atoms of the GUEs
are taken purely capacitive, and (ii) the presence of capacitances
in the coupling SQUIDs between the stationary qubit and the GUE
induces a small direct coupling between the qubit and the
waveguide modes, which could deteriorate the qubit lifetime;
however, this coupling can be cancelled by subradiance due to
interference in the photon emission from both coupling points, by
taking the qubit transition frequency ωq such that ωqd=vg is an
odd multiple of π (see details in Supplementary Methods III).
The scattering of a photon on a single node n, represented in

Fig. 3b, is described within the input-output formalism by a single-
photon scattering operator

Ŝn
d0;dðνp; δpÞ ¼ vac ;Gnh jb̂ out

d0 ðνpÞ½b̂ind ðδpÞ�
y
vac ;Gnj i; (15)

where vac ;Gnj i denotes the vacuum state of the waveguide, with
the GUE in its ground state Gj in, and the input and output field
operators in the frequency domain are defined via

b̂
in=out
d ðδpÞ ¼ ð�i=

ffiffiffiffiffiffi
2π

p Þ R dtb̂ in=out
d ðtÞeiδpt . The single-photon scat-

tering operator represents the action of the temporal evolution
operator on qubit n, conditional on having an input photon with
detuning δp (with respect to ω0), propagating in direction d [either
right (R) or left (L)] be scattered in direction d0 with detuning νp.
We consider a right-propagating input photon with frequency
distribution given by some function f(δp) with qubit atom n in
some state ψj iq;n, and write the state of the system before the

scattering as inj i ¼ R dδpf ðδpÞ½b̂inR ðδpÞ�y vac ;Gnj i ψj iq;n. The state
after the scattering can then be expressed from Eq. (15) as

outj i ¼Pd0
R
dδpdνpf ðδpÞŜn

d0 ;Rðνp; δpÞ½b̂
out
d0 ðνpÞ�

y
vac ;Gnj i ψj iq;n.

The single-photon scattering operator in Eq. (15) can be
obtained by using the quantum Langevin equation (3) and the
input-output relation (5) (see details in Supplementary Methods
IV). In particular, under the conditions for unidirectional coupling
of the GUEs to the waveguide as discussed above, we find
Ŝn
L;Rðνp; δpÞ ¼ 0 and Ŝn

R;Rðνp; δpÞ ¼ δðνp � δpÞσ̂nðδpÞ, with the
Dirac δ-function representing the conservation of the photon
frequency in the scattering, and where

σ̂nðδpÞ ¼ t Δn þ δp
� �

0j iq;n 0h j þ t Δn þ δp þ V
� �

1j iq;n 1h j; (16)

with the phase shift t(δp)= (2iδp+ γr)∕(2iδp− γr). The operator
σ̂nðδpÞ realizes a generic phase gate on qubit n. Assuming the
photon has a sharp frequency distribution f(δp) around δp= 0
relative to γr, by taking V= γr this phase gate can be parametrized
by the value of the tunable detuning Δn from GUE n. When Δn=
−γr∕2, the two terms in Eq. (16) acquire an opposite π∕2 phase,
and the phase gate becomes the Pauli operator
σ̂nz ¼ 0j iq;n 0h j � 1j iq;n 1h j, up to an irrelevant global phase which
can be absorbed in a redefinition of the phase of the output field

operator b̂
out
R ðδpÞ. When Δn≫ γr on the other hand, these two

terms become identical, and the phase gate reduces to the
identity operator 1.
This effective unidirectional photon – qubit interaction finds

immediate applications for the detection of individual itinerant
microwave photons, which is a current technological chal-
lenge6,69–79. This can be realized here with a Ramsey sequence,
by preparing the atomic qubit in state þj iq;n, with

Fig. 3 Architecture for quantum information routing. a An array of qubits (n= 1, …, N) is coupled to one of two transmission lines, labeled
“up” and “down”, via GUEs. A propagating photon scatters sequentially on the qubits, while linear optical elements performing unitary
transformations Un couple the transmission lines. A projective measurement of the qubits is performed upon detecting the photon at the
output. b Model for the qubit-GUE interaction in each node n with cross-Kerr frequencies Vn

1 and Vn
2 , and c corresponding superconducting

implementation adapted from Fig. 1c. d Quantum circuit realized using the setup in (a), where the double circles represent controlled-Z gates
between the qubits and the photon as virtual "flying qubit'' with states upj iph and downj iph, corresponding to the photon propagating in
transmission line "up'' and "down'', respectively.
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±j i � ð± 0j i þ 1j iÞ= ffiffiffi
2

p
. With Δn=−γr∕2, a resonant photon will

be scattered unidirectionally by the GUE, while qubit atom n will
be left in state �j iq;n. The photon can then be detected by
measuring the qubit state after applying a Ramsey π∕2-pulse,
which realizes a quantum non-demolition measurement of the
itinerant photon, in analogy to the cavity-QED experiments in
refs. 69–73. The resonance frequency ω0 of this detector can be
tuned, while the detection bandwidth is given by γr (see details in
Supplementary Methods V).
In order to describe the more generic setup in Fig. 3a, which

now includes two waveguides as well as N nodes, we make use of
the SLH input-output formalism as discussed above (see details in
Supplementary Methods IV). We write the input and output field

operators in the frequency domain as b̂
in=out
d;j ðδÞ, which now

contains an additional index j ∈ {up, down} labeling the two
waveguides. The single-photon scattering operator for the whole
system

Ŝj;i
d0;dðνp; δpÞ ¼ vac ;Gh jb̂ out

d0;j ðνpÞ½b̂
in
d;iðδpÞ�

y
vac ;Gj i; (17)

where vac ;Gj i ¼ vacj iNN
n¼1 Gj in, then contains two additional

indices representing the input line i and the output line j of the
scattered photon. The derivation and general expression of this
operator are provided in the Supplementary Methods IV.
In the ideal case where each GUE scatters photons unidir-

ectionally, the scattering operator factorizes as Ŝj;i
L;Rðνp; δpÞ ¼ 0

and we obtain

Ŝj;i
R;Rðνp; δpÞ ¼ δðνp � δpÞei~ϕN UN

YN

n¼1
ŜnðδpÞUn�1
� �h i

j;i
; (18)

with the convention
QN

n¼1An ¼ AN ¼ A1, where the propagation
phase ~ϕ ¼ ω0l=vg (with l the distance along the waveguide
between two neighbouring nodes [see Fig. 3a]) enters only as a
trivial global phase. Here Un denote the linear optical elements
acting on the photonic channels, as shown in Fig. 3a. They can be
represented as 2-dimensional unitary matrices acting on a
vectorial space which we denote as f upj iph; downj iphg, where
the basis vectors up=downj iph, correspond to the transmission
line (either "up” or "down”) in which the photon propagates. On
this vectorial space the objects ŜnðδÞ are diagonal matrices of
qubit operators, which represent the photon scattering on each
node. They are defined as ŜnðδpÞ downj iph ¼ downj iph and

ŜnðδpÞ upj iph ¼ upj iphσ̂nðδpÞ as expressed in Eq. (16).

The operator ŜnðδpÞ thus realizes a frequency-dependent
controlled-phase gate between the propagating photon as a
"flying” control qubit with states downj iph and upj iph, and qubit
atom n. For the applications discussed in the following the
parameter Δn will always be chosen such that the effective
interaction in Ŝnðδp ¼ 0Þ, between a resonant photon and qubit
atom n, is either trivial (with Δn≫ γr), or realizes a controlled-Z
gate downj iph downh j þ upj iph uph jσ̂n

z (with Δn=−γr∕2) as
represented in Fig. 3d.
The entanglement structure of the scattering operator

Ŝj;i
R;Rðνp; δpÞ in Eq. (18) is that of a matrix product operator80 with

bond dimension 2, which is a consequence of quantum
information being carried in the network by a propagating
photonic qubit. The photon scattering will thus generate
entanglement in the qubit array, which can be used e.g. to
prepare it in a matrix product state80 such as a GHZ state or 1D
cluster state81 (see details in Supplementary Methods VI). We note
that this bond dimension, i.e., the amount of entanglement
generatable by scattering a photon in the system, can in principle
be increased by expanding the dimensionality of the photonic
Hilbert space, e.g. by adding more waveguides.
As a first illustration of the working principles of this passive

architecture, we consider one of the most basic protocols
requiring quantum information routing, namely quantum state
transfer between two stationary qubits. Here, the goal is to
transfer a superposition state from one qubit atom, e.g. with n= 1,
to another (possibly distant) one, e.g. with n= N, as represented in
Fig. 4a. This is achieved by engineering the effective photon–qubit
interaction in such a way that the scattering operator in Eq. (18)
realizes an effective controlled-Z gate between the distant qubits,
thereby enabling universal quantum computation in our archi-
tecture. The corresponding protocol circuit is represented in Fig.
4b, which shows how the initial state of qubit 1 ψj iq;1 ¼ c0 0j iq;1 þ
c1 1j iq;1 (with ∣c0∣2+ ∣c1∣2= 1) is transferred as ψj iq;N upon
detection of the photon at the output, while quantum information
is erased from qubit 1. Here σ̂z gates are applied conditional on
the measurement of the photonic qubit in state upj iph, and of
qubit 1 in state 1j iq;1. The Hadamard gates are defined for the

atomic qubits as Ĥ ¼ þj iq;n 0h j þ �j iq;n 1h j, and are similarly
defined for the photonic qubit by replacing 0=1j iq;n with
down=upj iph.
Assuming perfect control over the other parameters of the

system, the average fidelity for the quantum state transfer
protocol, as defined in Methods, will depend on the photon
frequency distribution f(δp) as FQST ¼

R
dδpjf ðδpÞj2FQSTðδpÞ,

where FQSTðδpÞ ¼ 1� 2ðδp=γrÞ2 þOðδp=γrÞ3. This sets a bound
to the bandwidth Δω of f(δp) as Δω≪ γr, and thus to the duration T
of the protocol as T ≥ 1∕Δω (see below). Standard strategies for
heralded quantum communication82 can be translated to our
protocol in Fig. 4a, by adding ancillary stationary qubits to each
node as quantum state "backups”, thus enabling quantum
communication with high fidelity, even with photon losses due
for instance to amplitude attenuation in the waveguides or
imperfect photon detection (see Methods). We note that, as
discussed above, the photon detection can also be realized using
additional nodes as detectors.
As a second application of our architecture for quantum

networking, we now show that the setup of Fig. 3a allows to
perform entangling operations on many stationary qubits, and can
be used to passively probe and measure many-body operators,
such as stabilizers of stabilizer codes for quantum error correc-
tion35. A standard approach for measuring such stabilizer
operators consists in entangling the qubits with an ancilla using
two-body interactions; the stabilizers can then be accessed by
measuring the ancilla83–85. Building on a previous protocol for
measuring the parity of a pair of quantum dots as unidirectional

Fig. 4 Protocol for quantum state transfer. a Setup and b
corresponding quantum circuit realizing quantum state transfer
from qubit atoms 1 to N. Hadamard photonic gates Ĥ are realized as
50/50 beam-splitters. The dashed red frame represents the action of
the scattered photon, with the corresponding quantum circuit
realizing a controlled-Z gate between the two qubits. Upon
detection of the photon at the output and reading out the final
state of qubit 1, the initial superposition state ψj iq;1 is transferred to
ψj iq;N .
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emitters86, the measurement of stabilizers is achieved here using
an interferometric setup with photonic qubits as ancillas, where
the only non-trivial operations on the photons are U0 ¼ UN ¼ Ĥ,
and one obtains for the scattering operator of Eq. (18)

Ŝj;down
R;R ðνp; δpÞ ¼ δðνp � δpÞei~ϕN 1þ ð�1Þδj;downQnσ̂

nðδpÞ
2

: (19)

We recall that, with the parameters discussed above, for each
stationary qubit n we chose the parameters of the system such
that the operator σ̂nðδpÞ is either the identity operator 1 or the
Pauli operator σ̂n

z when δp= 0. Defining an arbitrary subset I of
the qubit array, the operator in Eq. (19) can thus be applied to
entangle the state of the output photonic qubit (given by the
index j) with the parity P̂I ¼Qn2I σ̂

n
z of the interacting qubits,

which can then be measured by detecting the photon. More
generally, allowing local unitary operations to be performed on
the stationary qubits before and after the scattering enables the
measurement of any operator of the form

Q
n2I σ̂

n, where σ̂n is an
arbitrary rotation of σ̂n

z on the Bloch sphere. Examples of such
operators are the stabilizers of cluster states, which are universal
resources for quantum computation87, and of stabilizer codes,
where logical qubits are redundantly encoded in many physical
qubits and protected by topology35.
Despite tremendous recent experimental progress towards

measuring stabilizer operators in superconducting platforms88–94,
realizing stabilizer codes with code distances (i.e., the number of
physical qubits) beyond a few qubits remains a great challenge. As
we show in the following, our architecture offers a naturally
scalable approach to passively probe stabilizers, and thus generate
and manipulate stabilizer codes. As an example of stabilizer code,
we consider the toric code95, where qubits are located on edges of
a lattice with periodic boundary conditions. A minimal instance
with N = 8 qubits is represented in Fig. 5a. The toric code has two
types of stabilizers: for each plaquette p and each vertex v of the
lattice we associate the stabilizers Âp ¼

Q
n2pσ̂

n
z and B̂v ¼

Q
n2v σ̂

n
x ,

with σ̂n
x ¼ 0j iq;n 1h j þ 1j iq;n 0h j. The logical subspace for encoding

quantum information then consists of the four states which are
eigenstates of all these stabilizers, with eigenvalue + 1. A protocol
for preparing the system in one of these four states consists in
initializing all qubits in state

N
n þj iq;n. The plaquette operators Âp

are then sequentially measured, and the system can be brought to

the desired state by applying single-qubit σ̂n
x gates afterwards,

conditioned on the measurement outcomes (see Methods).
In Fig. 5b, c we represent the quantum circuit and the setup

realizing the measurement of the operator Âp shown in Fig. 5a.
Similar protocols, realized by scattering single photons, can be
devised for (i) transferring a superposition state from a single
additional stationary qubit to a logical quantum superposition
state of the stabilizer code, as well as the reverse process, and (ii)
realizing arbitrary logical qubit gates on the code subspace, as
well as exponentiated string operators for quantum simulation of
anyonic84 and fermionic models96 (see details in Supplementary
Methods VII).
In order to quantify the efficiency of our scheme, we consider

the task of performing a measurement of the parity operator P̂I
on nG ¼ jIj qubits, with the qubits initially prepared in state
Ψþj i ¼Nn þj iq;n. Ideally, detecting the photon at the output of

waveguide "up” or "down” projects this state to state Ψideal
up

��� i ¼
1ffiffi
2

p ð1þ P̂IÞ Ψþj i or Ψideal
down

�� i ¼ 1ffiffi
2

p ð1� P̂I Þ Ψþj i, respectively. The
average fidelity of this process, defined in Methods, takes here the
expression FZ ¼ R dδpjf ðδpÞj2FZðδpÞ, with

FZðδpÞ ¼
X
j

Ψideal
j

D ��� Z dνpŜj;down
R;R ðνp; δpÞ Ψþj i

����
����
2

; (20)

which we represent in Fig. 6. In Fig. 6a, b we show this fidelity
in situations where the photon scattering is not perfectly
unidirectional, with the explicit expression of the scattering

operator Ŝj; down
d0;R ðνp; δpÞ from Eq. (17) provided in the Supple-

mentary Methods IV. In these cases where the dynamics is not
purely cascaded, the fidelity also depends on the propagation
phase ~ϕ, in contrast to Eq. (19). We observe robust fidelities of
FZðδpÞ\99% for small fluctuations of Vn

1;2 below ~2% and J
below ~5% around their optimal values. Figure 6c, d represents
situations where the photon scatters unidirectionally on each
node, and shows that the infidelity 1� FZðδpÞ scales quad-
ratically with the deviation of V around γr, with the number of
interacting qubits nG, and with the detuning of the photon δp.
As an estimation of experimentally achievable performances,

we consider V= γr= 2π × 50 MHz. From Fig. 6d, the gate infidelity
intrinsic to our protocol remains below 1% as long as the photon
detuning is below ∣δp∣ ≲ 0.1γr∕nG. This sets a bound to the duration
T of a stabilizer measurement, as the bandwidth Δω of the photon
frequency distribution f(δp) must satisfy TΔω ≥ 1. For instance,
assuming the photon wavepacket has a truncated gaussian
temporal distribution, we obtain an average fidelity FZ above
99% with T= 400 ns for nG= 4 (see Methods). All 6 independent
stabilizers of the toric code with N= 8 qubits can then be
measured sequentially in a total time ≳2.4 μs. We note that
measurements of several stabilizers involving non-overlapping
subsets of qubits can be performed in parallel using frequency-
multiplexing techniques, as the frequency of their respective GUEs
can be tuned to be resonant with probe fields with different
frequencies. Measuring simultaneously multiple independent
stabilizer operators, by using a different probing frequency for
each stabilizer, allows to scale up stabilizer codes without
increasing the total measurement time.

DISCUSSION
To conclude, we presented the design of a unidirectional artificial
atom, and demonstrated its application as an on-chip interface
between itinerant photons and stationary qubits. This design can
be integrated in a modular architecture of photonic quantum
networks, where controllable multi-qubit operations are realized
by passively scattering itinerant photons, which we illustrated with

Fig. 5 Toric code generation and manipulation. a Abstract
representation of a toric code, where qubits are located on the
edges of a 2D lattice with periodic boundary conditions, with here
N= 8 qubits. The two types of stabilizers Âp and B̂v are represented.
b Quantum circuit realizing a measurement of the stabilizer Âp
represented in (a), and c corresponding interferometric setup, with
the detunings Δn of the GUEs chosen such that only nodes 1, 5, 7
and 8 are resonant with the photon.

P.-O. Guimond et al.

8

npj Quantum Information (2020)    32 Published in partnership with The University of New South Wales



the realization of quantum state transfer protocols with high
fidelity, as well as the measurement of many-body stabilizer
operators, pertinent for topological quantum error correction.
In contrast to standard strategies for routing quantum

information between nodes of a quantum network, our approach
does not make use of circulators. In fact, rather than breaking
Lorentz reciprocity for the electromagnetic field (i.e., the
invariance under the exchange of source and detector) to control
and route an itinerant quantum signal, here the propagation of
the quantum signal is set by the itinerant photons injected in the
network. This allows to achieve an effective non-reciprocal
interaction between stationary qubits with a rather simple design,
and an architecture resilient to noise and perturbations.

METHODS
Superconducting circuit implementation of unidirectional emitters
The circuit implementing the GUE is represented in Fig. 1c, and consists of
two transmons interacting via a SQUID and coupled at two points to an
open transmission line. Following standard quantization procedures44,45,97,
we decompose the transmission line, with inductance and capacitance per
unit length l0 and c0, into segments of finite lengths Δx, and write the
Lagrangian of the system as L ¼ 1

2
_φTC _φ� V , where φ ¼

ðφ1;φ2;φTL;1;φTL;2;φTL;3; ¼ ÞT contains the generalized flux variables
associated to the transmons (φ1 and φ2), and to each segment of the
transmission line (φTL,i), indexed from left to right. Denoting the indices for
the segments coupled to each transmon as i1 and i2, the capacitance

matrix reads C ¼ Ca �Ca;TL

�C
T

a; TL CTL

 !
; with

Ca ¼ C1 þ C þ c01 �C

�C C2 þ C þ c02

 !
; (21)

ðCTLÞj;k ¼ δj;kðc0Δx þ δj;i1 c
0
1 þ δj;i2c

0
2Þ, and ðCa;TLÞj;k ¼ c01δj;1δk;i1 þ c02δj;2δk;i2 .

The potential energy, on the other hand, reads

V ¼ 1
2l0Δx

X
i

ðφTL;iþ1 � φTL;iÞ2 � EJ cos½ðφ2 � φ1Þ=φ0�

�E1J cosðφ1=φ0Þ � E2J cosðφ2=φ0Þ;
(22)

with φ0 = ℏ∕2e (e is the elementary charge).
Defining the conjugate variables Q ¼ ∂L

∂ _φ ¼ C _φ, we obtain the Hamilto-
nian of the full system

Hfull ¼ QT _φ� L ¼ 1
2
QT � C

� ��1
� Qþ V; (23)

which can be decomposed into Hfull= Ha+ Hph+ Hint, with an atomic term
Ha, a term for the transmission line Hph, and an interaction term Hint. For
the artificial atoms we obtain

Ha ¼ 1
2

P
k
Q2
k C
� ��1

k;k
� E1J cosðφ1=φ0Þ � E2J cosðφ2=φ0Þ

þQ1Q2 C
� ��1

1;2
� EJ cos½ðφ2 � φ1Þ=φ0�:

(24)

We then promote the flux and charge variables to operators satisfying
½φ̂k ; Q̂l � ¼ iδk;l , and express the Hamiltonian in terms of bosonic annihila-
tion operators â1 and â2, with

φ̂k ¼ φ0
2EkC
EkJ

� �1=4
ðâyk þ âkÞ;

Q̂k ¼ 2ei EkJ
32EkC

� �1=4
ðâyk � âkÞ:

(25)

Here EkC ¼ e2=2C eff
k , with C eff

k ¼ 1= C
� ��1

k;k
� Ck þ c0k þ C for ðc0k ;CÞ � Ck .

The atomic Hamiltonian Ĥa then takes the expression of Eq. (1) by
expanding the cosine functions in Eq. (24) up to fourth order, in the limit
jφ̂k jh i � φ0, which is achieved in the transmon regime EkC � EkJ , and
discarding counter-rotating terms in a rotating wave approximation valid
for C � Ck and EJ � EkJ . To estimate the value of the parameters in Eq. (1),
we keep only the leading order terms, and find for the transition

frequencies ωk �
ffiffiffiffiffiffiffiffiffiffiffiffi
8EkJ E

k
C

q
, while the anharmonicities read Uk � EkC . The

linear interaction terms have a capacitive component JC and an inductive
component JI as expressed in Eq. (7). We note that the conditions of
C � Ck and EJ � EkJ are required here in order to be able to neglect

Fig. 6 Stabilizer measurements. Fidelity FZðδpÞ for the measurement of the parity operator P̂I on nG qubits prepared in state Ψþj i, with ϕ=
ϕopt, γ1= γ2, rk= 0 and Δn=− γr∕2. a Vn

1 ¼ Vn
2 ¼ γr , δp= 0, nG= 4. b–d J= Jopt, ~ϕ ¼ 0. b δp= 0, nG= 4. c δp= 0, Vn

1 ¼ Vn
2 ¼ V . d Vn

1 ¼ Vn
2 ¼ γr .
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counter-rotating terms such as ðJC þ JIÞðây1ây2 þ â1â2Þ. Similar considera-
tions apply for the non-linear cross-Kerr interaction χ as expressed in Eq. (8).
For the transmission line Hamiltonian on the other hand, in

the limit Δx → 0 the only non-vanishing terms are
Hph ¼ R dx ∂xφðxÞ½ �2=2l0 þ qðxÞ2=2c0, where φ(x) is the flux variable at
position x in the waveguide, and q(x) the charge density. We then express
these fields in second quantization in terms of the bosonic operators b̂RðωÞ
and b̂LðωÞ as

φ̂ðxÞ ¼
Z

dω

ffiffiffiffiffiffiffiffiffi
Z0

4πω

r
b̂RðωÞeiωx=vg þ b̂LðωÞe�iωx=vg
� �

þ h:c: ;

q̂ðxÞ ¼ �i
Z

dω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0c20ω
4π

r
b̂RðωÞeiωx=vg þ b̂LðωÞe�iωx=vg
� �

þh:c: ;

(26)

where vg ¼ 1=
ffiffiffiffiffiffiffiffi
l0c0

p
is the group velocity of photons in the transmission

line and Z0 ¼
ffiffiffiffiffiffiffiffiffiffi
l0=c0

p
the transmission line characteristic impedance, and

we obtain Ĥph ¼ R dωω½b̂yRðωÞb̂RðωÞ þ b̂
y
LðωÞb̂LðωÞ�.

Finally, for the interaction term we obtain

Ĥint ¼ 1
c0

Q̂1 Q̂2
� �

C
�1

a

c01q̂ðx1Þ
c02q̂ðx2Þ

� 

; (27)

where x1 and x2 denote the position of the two coupling points along the
waveguide. We then obtain the expression in Eq. (2) by setting x1= 0 and

x2 ¼ d, redefining the phase of the right-propagating modes as b̂RðωÞ !
b̂RðωÞe�iωd=vg and approximating the couplings to be constant over the
relevant bandwidth. Assuming for simplicity E1J =E

1
C � E2J =E

2
C , the coupling

rates express as γk ¼ ðc0k=Ceff
k Þ2ω0e2Z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EkJ =ð8EkCÞ

q
and the cross-coupling

coefficients as rk ¼ C=C eff
k .

Quantum state transfer protocol
The average fidelity FQST for the quantum state transfer protocol is
evaluated by applying the protocol on an initially maximally entangled
state between qubit 1 and a virtual ancilla qubit (denoted a)98 as
Ψij i ¼ ð 0j iq;1 0j ia þ 1j iq;1 1j iaÞ þj iq;N=

ffiffiffi
2

p
. After performing the protocol as

represented in Fig. 4, we obtain the state of the system of qubit N and
ancilla as a density matrix ρ̂f . Ideally, the state of qubit N and the ancilla
should be pure and entangled as Ψidealj i ¼ ð 0j iq;N 0j ia þ 1j iq;N 1j iaÞ=

ffiffiffi
2

p
.

The average fidelity is then defined as FQST ¼ Tr Ψidealh jρ̂f Ψidealj i½ �.
Here, the state of the system before the scattering of the photon,

injected in the system from line "down”, reads

inj i ¼ R dδpf ðδpÞ½b̂inR;downðδpÞ�y vac ;Gj i Ψj ii , with frequency distribution f
(δp). Assuming unidirectional photon – GUE interactions, from the
expression in Eq. (18) the state after the scattering reads

outj i ¼Pj

R
dδpf ðδpÞ½b̂outR;j ðδpÞ�

y
vac ;Gj i ΨjðδpÞ

�� i, where ΨjðδpÞ
�� i ¼

HŜNðδpÞHŜ1ðδpÞH
� �

j;down Ψj ii represents the state of the qubits when

the photon is scattered to line j. The (unnormalized) qubit density matrix
ρ̂j , conditioned on the detection of the photon at the output of line j, is

then obtained as ρ̂j ¼
R
dδpjf ðδpÞj2 ΨjðδpÞ

�� i ΨjðδpÞ
� ��.

Denoting all the other operations performed in the circuit of Fig. 4 after
the photon scattering and subsequent detection at the output of line j,
including the projective measurements of qubit atom 1, as superoperators
P̂j , we then obtain the reduced density matrix as
ρ̂f ¼ Trq;1 P̂up½ρ̂up� þ P̂down½ρ̂down�

� �
, where Trq,1 denotes the trace over

qubit 1. The average fidelity finally expresses as
FQST ¼

R
dδpjf ðδpÞj2FQSTðδpÞ, with

FQSTðδpÞ ¼ γ8r � 2γ6r δ
2
p � 2γ5r δ

3
p þ 3γ4r δ

4
p þ 2γ3r δ

5
p þ 4δ8p

γ4r þ 4δ4pð Þ2
¼ 1� 2ðδp=γrÞ2 þ Oðδp=γrÞ3:

(28)

Including in the description the finite probability Pd of losing the photon
in the process, due for instance to amplitude attenuation in the
waveguides or to a faulty photon detection, the overall transfer fidelity
is ð1� PdÞFQST. Standard strategies for quantum error correction can
however be applied to correct for such photon losses. For example,
following ref. 82, we can add an ancillary backup stationary qubit b to node
1 and, before performing the state transfer protocol, entangle it with qubit

1 as

0j iq;1
1j iq;1

 !
0j ib þj iq;N ! 0j iq;1 1j ib þ 1j iq;1 0j ib

1j iq;1 1j ib þ 0j iq;1 0j ib

 !
þj iq;N: (29)

In case the photon is not detected after the scattering, the initial
superposition can then be retrieved by measuring qubit 1, as the photon
scattering operator in Eq. (16) is diagonal in the computational basis of the
qubits. From Eq. (29), for the measurement outcome 0j iq;1, the state of the

backup qubit is projected to
1j ib
0j ib

� 

, while the outcome 1j iq;1 yields

0j ib
1j ib

� 

. This allows to prepare the system back to the entangled state

(29), and repeat the procedure until the photon is successfully detected at
the output, which requires on average 1∕(1− Pd) trials. At this stage, the
state transfer protocol can resume normally, which transfers the
entanglement with the backup qubit b from qubit 1 to qubit N, yielding

1j ib 0j iq;N þ 0j ib 1j iq;N
1j ib 1j iq;N þ 0j ib 0j iq;N

 !
: (30)

The qubit superposition is then finally transferred to qubit N by measuring
the backup qubit b and, depending on the outcome, performing a local σ̂Nx
gate on qubit N.

Protocol for toric code generation and manipulation
The toric code is a stabilizer code where physical qubits are located on the
edges of a 2D lattice with periodic boundary conditions95. The code has
two types of stabilizers: as represented in Fig. 5a, for each plaquette p of
the lattice we define an operator Âp ¼

Q
n2pσ̂

n
z , and, similarly, for each

vertex v we define B̂v ¼
Q

n2v σ̂
n
x . With an Nl × Nl lattice [e g. Nl= 2 in Fig.

5a], the number of physical qubits is N ¼ 2N2
l , while the number of

independent stabilizers is 2ðN2
l � 1Þ. Thus, the manifold of states Φj i

satisfying the constraints Âp Φj i ¼ Φj i and B̂v Φj i ¼ Φj i for all p and v is
four-dimensional. One such state can be expressed as

Φ1j i ¼ 1ffiffiffi
2

p
Y

p
1þ Âp
� �ON

n¼1
þj iq;n; (31)

which projects
NN

n¼1 þj iq;n on the eigenmanifold of each Âp with
eigenvalue +1. In the protocol of Fig. 5, we prepare state Φ1j i by
performing sequential measurements of the Âp operators. From the list of
the measurement outcomes, one can always perform single-qubit σ̂nx gates
such that the state becomes an eigenstate of all Âp with eigenvalue + 1.
Since B̂v

NN
n¼1 þj iq;n ¼

NN
n¼1 þj iq;n for all v, and as all the stabilizers

commute, the state remains an eigenstate of all B̂v with eigenvalue + 1
throughout the protocol, and we prepared the system in state Φ1j i.
The other three code states can be obtained from Φ1j i by applying

products of σ̂nz gates on all qubits along horizontal or vertical cyclic paths
passing through lattice sites. We denote such horizontal and vertical cyclic
paths as γ1 and γ2 respectively. For the minimal instance represented in
Fig. 5a, one can take for instance γ1= {5, 6} and γ2= {4, 8}. Conversely, we
define vertical and horizontal cyclic paths passing through plaquette
centers, which we denote respectively as γ	1 and γ	2. In the example of Fig.
5a one can use for instance γ	1 ¼ f1; 5g and γ	2 ¼ f3; 4g. We then define
logical operators on the code manifold as the string operators
Ẑ1 ¼

Q
n2γ1 σ̂

n
z ,X̂1 ¼

Q
n2γ	1 σ̂

n
x , Ẑ2 ¼

Q
n2γ2 σ̂

n
z and X̂2 ¼

Q
n2γ	2 σ̂

n
x . This allows

to define the other three code states as Φ2j i ¼ Ẑ1 Φ1j i, Φ3j i ¼ Ẑ2 Φ1j i and
Φ4j i ¼ Ẑ2Ẑ1 Φ1j i, which satisfy X̂α Φβ

�� i ¼ ð�1Þsα;β Φβ

�� i with s1,1 = s1,3= s2,1
= s2,2= 1 and s1,2= s1,4= s2,3= s2,4=−1. We note that in our setup, the
logical operators Ẑ1;2 and X̂1;2 are measurable in the very same way as the
stabilizers, without having to measure individual physical qubits which
would project the state out of the code subspace.

Fidelity of stabilizer measurements with finite photon pulse
We consider here the scattering of a photon wavepacket with a temporal
distribution given by

~fðtÞ ¼ Ae�t2=ð4σ2t ÞΘðT=2� jtjÞ; (32)

where T is the temporal extent of the wavepacket, σt its temporal width, Θ the
Heaviside step function, and A a normalization constant such that
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R T=2
�T=2j ~fðtÞj2dt ¼ 1. With the qubits initialized in state Ψþj i as expressed

above, this realizes a scattering with the input state

inj i ¼ R dδpf ðδpÞ½b̂inR;downðδpÞ�y vacj i Ψþj i, where f ðδpÞ ¼
ð1= ffiffiffiffiffiffi

2π
p Þ R dt ~fðtÞeiδpt is the Fourier transform of ~fðtÞ. Without necessarily

assuming purely unidirectional photon – GUE interactions, the
system is then left after the scattering in state

outj i ¼Pd0 ;j

R
dδpf ðδpÞ½b̂outd0 ;jðδpÞ�

y
vac ;Gj i Ψd0 ;jðδpÞ

�� i, where Ψd0 ;jðδpÞ
�� i ¼R

dνpŜj;down
d0 ;R ðνp; δpÞ Ψþj i, and we made use of the fact that the single-

photon scattering operator is proportional to δ(νp − δp) (with its general
expression provided in the Supplementary Methods IV).
Detecting the photon at the right output of waveguide j yields for the qubits

the (unnormalized) density matrix ρ̂j ¼
R
dδpjf ðδpÞj2 ΨR;jðδpÞ

�� i ΨR;jðδpÞ
� ��. The

measurement fidelity is then defined as FZ ¼ Fdown þ F up with

F j ¼ Ψ ideal
j

D ���ρ̂j Ψ ideal
j

��� i ¼
Z

dδpjf ðδpÞj2FZðδpÞ; (33)

with FZðδpÞ as expressed in Eq. (20).

Note added in proof
We recently became aware of related unpublished work by N. Gheeraert, S.
Kono and Y. Nakamura (personal communication).
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