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Abstract

In these proceedings we present three possible interpretations of the ordering variable implemented in
the Herwig7 angular-ordered parton shower. Each interpretation determines a different recoil-scheme
prescription and we show how it can impact the logarithmic accuracy of the algorithm. We also present
comparisons with LEP data.

1 Introduction

General Purpose Monte Carlo (GPMC) generators are fundamental tools for collider phenomenology, as

they are able to simulate fully realistic collider events, describing both inclusive and exclusive distributions

with high accuracy. GPMC involve several components. The event generation starts with the computation

of the scattering process at some hard scale, Q, at a fixed order in perturbation theory (usually at least

NLO QCD). The event is then fed to a Parton Shower (PS) algorithm, which handles the emissions of

soft and collinear partons. The PS thus evolves the system from the hard scale, Q, down to a soft scale,

Λ. At this point we enter the non-perturbative regime: QCD interactions are so strong that the coloured

partons are forced to form colour singlets, i.e. they hadronize. To properly simulate hadron colliders,

we also need to provide a model of the underlying event, i.e. secondary interactions between initial-state

partons that do not participate in the hard interaction.

In these proceedings we will focus on the PS component, which provides a bridge between the

perturbative and non-perturbative regimes of QCD and allows the multiplicity of particles in the event

to increase, which is a key requirement for performing realistic simulations of collider data. To achieve

this task, the PS exploits the factorisation properties of QCD in the soft and collinear limits. When a
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soft-collinear gluon is emitted from a parton i, the cross section is enhanced and behaves like

dσn+1 = dσn
αs

π
2Ci

dε

ε

dpT
pT

, (1)

where dσn is the differential cross-section for the production of n particles, Ci is the colour factor associ-

ated with the emission from parton i (CA if i is a gluon, CF if it is a quark), ε is the energy fraction carried

by the gluon and pT is its transverse momentum with respect to the emitter. From eq. (1) we clearly

see that we can have two sources of logarithmic divergence: one associated with ε → 0 and one with

pT → 0. Thus, when we generate m emissions we can have at most 2m logarithms: these are the leading

logarithms (LL). It is a common belief that all of the available PS are able to resum such logarithms since

the splitting kernels that are employed to mimic the emission of a gluon always approach eq. (1) in the

soft-collinear limit. Many efforts have been made towards reaching next-to-leading log (NLL) accuracy,

i.e. 2m− 1 logarithms for m powers of αs. For example, the use of quasi-collinear splitting functions 1)

gives the first subleading collinear logarithms. If one also adopts the two-loop expression for the running

of αs and the CMW scheme 2), then all the LL and NLL are included, except for those arising from soft

wide-angle gluon emissions.

Due to the increasing precision of experimental measurements, the determination of the formal

accuracy of a PS is becoming a serious issue which must be addressed. A recent work 3) introduced an

approach to evaluate the logarithmic accuracy based on the ability of the PS to reproduce the singularity

structure of multi-parton matrix elements, and the logarithmic resummation results. The authors focus

on the process of double gluon emission in e+e− → qq̄ events, where the quark, q, is massless and the

two gluons are well separated in rapidity so that the emission probability reduces to

dP2 =
1

2

2∏
i=1

(
αs

π
2CF

dpT,i

pT,i

dεi
εi

)
=

1

2

2∏
i=1

(
αs

π
2CF

dpT,i

pT,i
dyi

)
, (2)

where yi is the rapidity of the gluon. The analysis is restricted to dipole showers, specifically the Pythia 4)

one, which is the default option of the Pythia8 5) generator, and the Dire 6) one, available in both

Pythia8 and Sherpa 7). The authors identified regions of phase space where the second gluon emission

probability is generated with the wrong colour factor, namely CA/2 instead of CF .1 This happens when

the second gluon, g2, is closest in angle to the first gluon, g1, in the rest frame of the qg1 (or q̄g1) dipole

but closest to q (or q̄) in the original qq̄ frame. Another consequence is that the first gluon must absorb

the transverse-momentum recoil

~pT,1 → ~pT,1 − ~pT,2. (3)

This also breaks the factorisation of the two emissions, as pT,1 can vary quite significantly after the

generation of another branching.

Although it is clear that the coherent formalism 8) implemented in the Herwig7 9) angular-ordered

parton shower prevents the aforementioned subleading colour issue, the impact of the recoil scheme on

the accuracy of the algorithm must be investigated. In these proceedings we summarise the findings of

Ref. 10), restricting ourselves to the case of a massless final-state parton shower in e+e− → qq̄ events.

2 Interpretation of the Ordering Variable

In this section we present the main features of the Herwig7 angular-ordered (final-state) parton shower,

focusing on several possible interpretations of the ordering variable.

1This is a subleading colour issue, as CF → CA/2 in the large-number-of-colours limit.
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Figure 1: Single (left pane) and double (right pane) gluon emission from a quark line.

2.1 One Emission

We want to generate an emission collinear to the quark, as shown in the left pane of Fig. 1. We denote

with p the quark momentum and with n a light-like vector parallel to the momentum of the anti-quark,

which is colour connected to the quark in the original two-body configuration. The ordering variable

can be equivalently expressed in terms of the transverse momentum (pT,1), the virtuality of the emitting

quark or the dot-product of the momenta of the emitted partons,

q̃2 =
p2
T,1

z2
1(1− z1)2

=
q2
0

z1(1− z1)
=

2q1 · q2

z1(1− z1)
, (4)

where z1 is the light-cone momentum fraction carried by the emitted quark. If we define ε1 = 1− z1 we

see that in the soft limit, i.e. ε1 → 0

|pT,1| ≈ ε1q̃1, y1 ≈ − log
q̃1

Q
, (5)

where Q is the centre-of-mass energy, and the Herwig7 emission probability approaches the correct limit

dPHw7 =
αs

2π

dq̃2

q̃
CF

1 + z2
1

1− z1
dz1 → 2CF

αs

π

d|pT,1|
|pT,1|

dy1. (6)

2.2 Double Emission

We now want to generate the second gluon emission. If the second gluon is parallel to the anti-quark,

the Herwig7 algorithm identifies the q̄ as the emitter, the auxiliary vector n is then chosen to be parallel

to the original quark momentum and the generation of the emission is completely independent to the

cascade originating from the quark.

If both gluons are collinear to the quark, then the requirement that they have a large rapidity

separation suppresses the contribution arising from the g → gg splitting and both gluons will be generated

from the quark line with colour factor CF . The angular-ordering condition q̃2 < z1q̃1 dictates that the

gluon with the smallest rapidity is emitted first, as shown in the right pane of Fig. 1. The first emitted

quark now becomes off-shell gaining a virtuality q2
2 = z2(1 − z2)q̃2

2 and the relations in eq. (4) are no

longer valid, as it is impossible to preserve simultaneously pT,1, q2
0 and q1 · q2. The quantity that we

preserve determines the recoil-scheme prescription.

2.2.1 Transverse-Momentum-Preserving Scheme

The original choice 11) was to preserve the transverse momentum so that we can always write

pT,i = zi(1− zi)q̃i. (7)
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In the soft-collinear limit, the transverse momentum and the rapidity of each gluon always reproduce

eq. (5). Thus, two gluons that are well separated in rapidity are effectively emitted independently as

required.

To preserve the transverse momentum, the virtuality of the previous emitter must increase

q2
0 = z1(1− z1)q̃2

1 → z1(1− z1)q̃2
1 +

z2(1− z2)q̃2
2

z1
. (8)

This tends to produce too much hard radiation in the non-logarithmically-enhanced region of phase space,

overpopulating the tail of certain distributions.

2.2.2 Virtuality-Preserving Scheme

It was then suggested that the virtuality should be preserved 12): the transverse momentum of the first

emission is then reduced

p2
T,1 = (1− z1)

[
z2

1(1− z1)q̃2
1 − z2(1− z2)q̃2

2

]
. (9)

This choice does not guarantee the existence of a positive solution. It is easy to see that, even if both

emissions are soft, if the first one is much softer than the second one then there will be a negative solution,

thus breaking the factorisation of multiple gluon emissions that are well separated in rapidity.

However, it was found that by setting the transverse momentum to 0 whenever a negative solution

was encountered, the agreement with the experimental data is much better than in the pT -preserving

scheme.

2.2.3 Dot-Product-Preserving Scheme

Motivated by the desire to implement a scheme that is able to produce independent soft gluon emis-

sions but does not overpopulate the non-logarithmically-enhanced regions, the last recoil scheme im-

plemented 10) preserves the dot-product of the emitted partons and features intermediate properties

between the pT - and q2-preserving schemes. After n emissions, the transverse momentum of the first

gluon is modified to

p2
T,1 = (1− z1)2

[
z2

1 q̃
2
1 −

n∑
i=2

(1− zi)q̃2
i

]
. (10)

Using the angular-ordering condition ziq̃i > q̃i+1 it can be proven that pT,1 cannot became negative.

Furthermore, if all the emissions are soft

p2
T,1 → ε21(q̃2

1 −
n∑

i=2

εiq̃
2
i ) ≈ ε21q̃2

1 , (11)

i.e. subsequent soft emissions do not affect the transverse momentum of the previous ones.

The virtuality of the first emitter still increases, however,

q2
0 = z1(1− z1)q̃2

1 +
n∑

i=2

zi(1− zi)q̃2
i , (12)

thus leading, again, to a poor description of the tails of certain distributions, although better than that

provided by the pT -preserving scheme.
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To prevent the virtuality of the original quark and anti-quark from becoming too large, we can

accept the event with a probability given by

r =

√
1− 2

(
q2
q + q2

q̄

s

)
+

(
q2
q − q2

q̄

s

)2

, (13)

where
√
s is the centre-of-mass energy, q2

q is the virtuality developed by the quark and q2
q̄ by the anti-

quark. The factor r comes from the fact that the original underlying two-body phase space is reduced

when the particles increase their mass. With the inclusion of this factor, the phase-space factorisation

becomes exact. We can easily see that for soft-collinear emissions r → 1, thus this veto does not affect

the logarithmically-enhanced contributions but it can introduce, at most, power corrections.

3 LEP results

In this section we present the results of our simulations obtained with the Herwig7 generator and compare

them with data from LEP.

We begin by showing the thrust distribution (Fig. 2), which can be considered as a proxy for all

shape distributions. The pT - and dot-product preserving schemes overpopulate the tail of the distribution,

which corresponds to the non-logarithmically-enhanced region of the phase space. Conversely, the q2-

preserving scheme leads to a worse description of the data for 1 − T ≤ 1/3. When we apply the phase

space veto (i.e. we accept the event with probability given by eq. (13)), the behaviour of the dot-product

scheme improves in the tail, leading the best overall agreement with the data.

The jet-resolution-parameter distribution is shown in the left panel of Fig. 3. As in the previous

case, the q2 scheme is the most accurate in the non-logarithmically-enhanced region (that corresponds to

small values of − log(y23)), while the pT scheme provides the best description in the opposite limit, but

gives the worst overall agreement. The dot-product scheme with the veto is similar to the q2 scheme,

while without the veto it leads to the best overall agreement with data.

From the right panel of Fig. 3 it can bee seen that none of the schemes are able to reproduce the

bottom quark fragmentation function for large values of xB . Issues related to multiple emissions from

heavy quarks, as well as gluons splitting into heavy quarks, are currently subjects of further investigation.

4 Summary and Outlook

Motivated by Ref. 3) we have investigated the impact that the choice of recoil scheme has on the

accuracy of the Herwig7 angular-ordered PS. We found that although the pT -preserving recoil scheme

ensures the independence of successive soft-collinear emissions well separated in rapidity, it produces too

much radiation in the non-logarithmically-enhanced region of phase space. The q2-preserving scheme,

on the other hand, avoids overpopulating this region of phase space but breaks the independence of

successive emissions and therefore loses logarithmic accuracy. We introduced the dot-product-preserving

scheme as an attempt to retain the best features of both schemes, but it still somewhat overpopulates

non-logarithmically-enhanced region of phase space. To ameliorate this we went on to introduce a phase-

space veto that suppresses events with large-virtuality partons. In these proceedings we did not mention

the effect of quark masses, although this is considered to some extent in Ref. 10) and is an ongoing area

of research we hope to address further in future publications.
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Figure 2: The thrust distribution at the Z-pole compared with data from the DELPHI 13) experiment.
The right panel gives an expanded view of the same for small values 1− T .
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Figure 3: In the left panel the 3-to-2 jet resolution parameter for the Durham algorithm at the Z-pole

compared with data from the ALEPH 14) experiment. In the right panel the fragmentation function of

weakly-decaying B-hadrons compared with data from DELPHI 15).
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