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Abstract

There is no fundamental requirement for all particles to be charged under the Standard Model gauge
symmetries. Consequently, there could naturally be a hidden sector of particles that have gone undetected
and dark matter could reside in it. A hidden sector of particles could naturally have a different temperature
than the plasma formed by the Standard Model particles in the early universe. Such a hidden sector can alter
early universe cosmology from the assumed behavior in a variety of ways, which we explore in this thesis.
First, we discuss how both hidden sector and Standard Model sector can be populated via inflaton decays
after inflation. Next, we explore how thermally decoupled hidden sector with a massive lightest particle
(m > MeV) can enhance the abundance of sub-Earth mass dark matter microhalos today. We then explore
how hidden sectors with a massless lightest particle can cause an inhomogeneous distribution of helium to
hydrogen ratios if the hidden sector never had any interaction with the Standard Model sector. If instead the
hidden sector had some interaction, then we show how the constraints on dark radiation energy density can

be employed to constrain the interaction strength between the two sectors.
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Chapter 1

Introduction

The Standard Model of particle physics has had resounding success in explaining the nature of fundamental
particles that form the building blocks of all known matter [1]. However, a host of observational data from
galactic rotation curves to the cosmic microwave background (CMB) signals the existence of an unknown
form of matter comprising more than 85% of the matter in our Universe [2, 3]. While this dark matter could
be a single particle or a family of particles missing from the Standard Model of particle physics, to date no
signs of non-gravitational interaction of dark matter with the Standard Model have been detected. Further,
the traditional weakly interacting massive particle (WIMP) paradigm for dark matter is under ever-increasing
pressure from the dearth of observational signatures in collider, direct, and indirect detection experiments [4,
5].

An alternative — and arguably more generic — scenario is that there exists a whole sector of particles,
one of them comprising the DM today, that do not interact with Standard Model gauge forces: the strong
and the electroweak force, but might have their own dark gauge forces. Such hidden sectors are also predicted
in several classes of string compactification theories that attempt to unify the Standard Model of physics
with gravity [6]. Moreover, exotic dynamics in a hidden sector can lead to substantial changes in dark matter
properties relative to a traditional WIMP, which might explain the null results in the terrestrial experiments
while also motivating new strategies for detection (e.g., [7-15]).

In standard cosmology, all the Standard Model particles equilibrate with each other to form a thermal
plasma in the early universe (within ~1 second of the birth of the universe), and this thermal state washes
out any information of the prior history. Consequently, we have little to no information about the state
of the universe prior to Big Bang nucleosynthesis (BBN), which occurs when the Standard Model plasma
is at a temperature of around Tsy; ~ MeV. However, if a hidden sector of particles exists, then they may
not equilibrate with the Standard Model particles in the early universe. This opens the window for the
information of the early universe to remain preserved until today and thus be observable. In this thesis, we
explore different potentially observable ways an out-of-equilibrium hidden sector can cause deviation from
the assumed cosmology prior to BBN. As the particles in the early universe are at much higher temperatures
than today, the cosmological imprints we study allow us to probe the properties of hidden sector at very high
energies, £ > MeV.

A key parameter on which any observable in hidden sector cosmology depends on is the relative temperature

between the hidden sector particles and the Standard Model particles.! This temperature ratio between the

1Although we consider the hidden sector to not thermalize with the Standard Model plasma, we will be primarily interested



two sectors is determined by the processes that populate the two sectors at the very beginning of the universe.
In traditional cosmology, the Standard Model particles are considered to be populated by the decay of the
inflaton field. Here the inflaton field is a spin-0 field that causes an epoch of accelerated expansion right
after the birth of the universe, for which we have compelling evidence from the observations of the CMB
spectrum [16]. A natural mechanism to populate the hidden sector would be to have the inflaton field to also
decay into hidden sector particles. In Chapter 3, which is based on the work in Ref. [17], we study how the
temperature ratio between the hidden sector and the Standard Model sector depend on the inflaton couplings
with the two sectors.

After the temperature of the hidden sector, the mass and couplings of the lightest hidden sector particle
are the next most cosmologically relevant parameters. This is because at any given hidden sector temperature,
all hidden sector particles with masses larger than the temperature would typically have annihilated or
decayed into lighter hidden sector particles. As the late time behavior of hidden sector has maximum impact
on cosmological observables, the behavior of lightest hidden sector particle has the most phenomenological
relevance.

For instance, if the lightest sector particle has a large mass, m > MeV, then it can generically cause an
early matter dominated era (EMDE) prior to BBN. Such an EMDE enhances the abundance of dark matter
micro-halos with masses smaller than 1076 M, [18, 19]. A large abundance of micro-halos would boost the
DM annihilation signals and thus can noticeably change predictions for indirect detection experiments like
Fermi-LAT [18-20]. These halos might also be detected by pulsar timing arrays [21, 22] or by their impact on
stellar microlensing within galaxy clusters [23-25].

In chapter 4, based on the work in Refs. [26, 27], we study a scenario where the lightest hidden sector
particle has a large mass (m > MeV) as well as strong number changing self interactions. In this case, once
the temperature of the hidden sector falls below the mass of the lightest particle, its strong number-changing
self-interactions can cause the particles to annihilate among themselves. This self-annihilation converts the
particles’ rest mass energy into thermal energy, leading to a logarithmic evolution of the temperature of
its plasma, T o 1/log(a) [7]. This self-annihilating phase of evolution is commonly known as cannibalism
and the particle that undergoes such an evolution is known as a cannibal. We show that when the lightest
hidden sector particle is a cannibal, then there can be an early cannibal-dominated era (ECDE) prior to
BBN. Similar to EMDE, we show that an ECDE also enhances the population of dark matter microhalos
today and we study how the cannibal particle properties are imprinted in the microhalo spectrum.

If instead the lightest hidden sector particle is massless, then the lightest particle contributes to dark
radiation today. The fluctuations in the CMB spectrum are sensitive to the energy density in dark radiation,
and as no dark radiation has been observed, the energy density in dark radiation is severely constrained [3].
In chapter 4, which represents the content in Ref. [28], we show how one can convert the constraint on dark
radiation density to a constraint on interactions between Standard Model sector and hidden sector that might
be active prior to BBN.

While there has been no evidence of dark radiation in current measurements of CMB, it is possible that
we might detect dark radiation in future with improved CMB measurements. If we do observe dark radiation,
then a natural question one might ask is whether the particle behind dark radiation was always out of contact
with Standard Model particles or if it had some contact in the early universe. We can distinguish between the
non-interacting and weak-interacting scenario by checking if the density fluctuations of dark radiation is in or

out of sync with the density fluctuations of photons. In chapter 5, which represents the work in Ref. [29],

in the regime where the internal hidden sector interactions are strong enough to have internally thermalized the hidden sector.



we show that an out-of-sync fluctuation, also known as isocurvature, produces different amounts of helium
to hydrogen ratio (He/H) in different parts of the universe during BBN. Consequently, we explain how an
absence of excess variance in the measurements of He/H from different galaxies can be used to constrain
isocurvature between dark radiation and photons.

Before proceeding with the detailed discussion of above topics, we provide a brief review of the thermal
history of the Standard Model particles during and prior to BBN in chapter 2. We highlight the primary
physics that determine the evolution of the thermal plasma in an expanding universe and thus lay the ground
work for rest of the thesis.

We work in natural units which set h = ¢ = 1, while retaining factors of the reduced Planck mass,
Mpl = 1/\/871’GN ~ 2.435 x 1018 GeV.



Chapter 2

Early Universe thermal cosmology

In this chapter we review the standard cosmology of the universe within the few seconds after its birth,
when all the Standard Model (SM) particles were in a hot thermal plasma. We begin in section 2.1 by
first reviewing the cosmological equations that determine the evolution of this early universe. Using these
equations, we show why the early universe is primarily dominated by relativistic particles of the SM and that
the contribution of dark matter is negligible. In section 2.2, we review the Boltzmann equations that describe
how particles maintain thermal equilibrium in an expanding universe. Using these equations, we explain why
the SM particles form a relativistic plasma in the early universe. Subsequently, we focus on the dynamics of
the SM plasma in section 2.3. In particular, we review 1) the evolution of the number of particles in the SM
plasma as the plasma cools, 2) how the matter-antimatter asymmetry determines the proton abundance,
3) the decoupling of neutrinos, and finally 4) the formation of helium and deuterium nuclei at Big Bang
nucleosynthesis. In section 2.4, we discuss a possible minimal origin of dark matter from the SM plasma.
Finally, in section 2.5 we discuss how an out-of-equilibrium hidden sector might be produced from the SM
plasma in the early universe via renormalizeable interactions and highlight the attractor nature of the system

of equations governing the hidden sector.

2.1 Equations of motion in a homogeneous and isotropic universe

Einstein’s theory of general relativity describes how the metric of spacetime depends on the matter content
at a given location. When the theory is applied to the whole universe along with the cosmological principle
that the universe on large scales is isotropic and homogeneous, we find that our universe must dynamically
expand with time.

To capture this expansion we work in the comoving coordinates, x?, which remain fixed with time, while
the physical coordinates are given by az®, where a is the scale factor of the expanding universe. The metric

for an expanding flat universe is then given by
ds* = dt* — a*(dz® + dy* + d=?), (2.1)

where t denotes time. More generally, the universe can also have an overall curvature. However, as the
current observations place stringent limit on the existence of such curvature [3], we only focus on the spatially

flat universe.



The energy momentum tensor for an isotropic and homogeneous universe is given by

—» 0 0 0
0O P 0 0

L'=1o o p o (22)
0 0 0 P

where p and P are the total energy density and pressure of the matter in the universe, respectively.
Using the metric in eq. (2.1) and the energy momentum tensor in eq. (2.2) in the Einstein equations gives

us the Friedmann equation:

1da 1
-——=—\/p=H, 2.3
d TV (2.3)
where H is called the Hubble rate, and Mp) is the reduced Planck mass. This equation highlights how the
expansion rate of the universe depends on the energy content of the universe.
The energy density of the total matter in the universe also evolves due to the expansion of the universe.
The evolution can be determined through the energy momentum conservation equation, V,T*" = 0, which

yields,

dp

4 T3H(p+P)=0. (2.4)

As H, p and P are all positive, the above equation implies that the energy density of the universe dilutes as
the universe expands. Conversely, in the early universe when the scale factor was much smaller, the matter
content was compressed to much higher densities.

To complete the coupled set of equations given by eq. (2.4) and eq. (2.3), we need to specify the relationship

between P and p. This relationship is commonly parameterized through the equation-of-state,
w=—. (2.5)

The equation of state so defined is better analyzed for individual particles comprising the total matter content
in the universe.

For any particle 7 in a homogeneous and isotropic universe, their phase space distribution function f; is
only a function of the particle’s energy. Both the particle’s energy density and pressure can be evaluated

using the distribution function via

3 3 2
pizgi/(;i;;gEfi(E), Pizgi/(;iﬂz)’g?% (B), (2.6)

where g; is the number of degrees of freedom of particle . One can see that for relativistic particles, i.e. for

particles’ whose distribution function is heavily weighted at p > m, the equation of state is simply w; = 1/3.
Conversely, for non-relativistic particles we have w; < 1. Thus, from eq. (2.4) we can see that for relativistic
particles p oc 1/a*, while for non-relativistic particles, p oc 1/a®. Hence, at sufficiently early times, we expect
the energy density of relativistic particles to dominate the universe.

Note that even if a particle is non-relativistic today, we expect them to become relativistic at sufficiently

early times. To see why, we need to look at the geodesic equation of motion of individual particles in



expanding spacetime. For a particle with four momenta p* = (F, p), the geodesic equation yields,

7l o 1/a. 2.7)

Consequently, for a < 1 in the early universe, we can expect all particles to become relativistic, |p] > m.

The redshifting of momenta also explains the difference in the evolution of p between relativistic and
non-relativistic particles. In particular, the energy of a relativistic particle also redshifts as E = p < 1/a,
but that of a non-relativistic particle stays constant, £ = m. As the energy density of particles can be
approximately expressed as p ~ (E)n, where (E) is the average energy and n is the number density, we can
see that for non-relativistic matter p < 1/a® because the number density dilutes as 1/a®. Meanwhile, for
relativistic matter p oc 1/a* because the average energy of the particle is also redshifting in an expanding
universe.

From observations of our universe, we find that the matter in our universe is comprised of SM particles as
well as an unknown dark matter. While the present day dark matter abundance is about five times larger
than the abundance of SM particles, in the early universe the energy density of SM particles dominates over
that of dark matter. In particular, experiments indicate that the energy density of neutrinos and photons
overcome the dark matter density at aeq/ao = 1/3411 [3], where a is the present day scale factor and aeq
is the scale factor at matter-radiation equality. As we go further back in time, the photons and neutrinos
reach sufficiently high energies to pair-produce the rest of the SM particles at relativistic energies and form a
plasma. In this thesis we are primarily concerned in the early history of the universe, when the plasma of SM
particles was at temperatures larger than 7' 2 0.1 MeV.

At such early times, the Hubble rate is predominantly determined by the energy density of SM particles,

and the Friedmann equation yields,

1
H=—\/psy x1 a’. 2.8
V3Mp) / (28)

On cosmological timescales, only those particle interactions can have a significant impact whose rates are
larger than the Hubble rate. Consequently, the evolution of H is critical in determining when various

non-gravitational interactions become important cosmologically.

2.2 Equilibrium in an expanding universe

In this section we discuss how particles maintain thermal equilibrium in an expanding universe and highlight
the conditions necessary to maintain thermal equilibrium. Using these conditions, we then argue why the
SM particles come into thermal equilibrium in the early universe. Towards the end, we discuss how the
distribution function of individual particles evolve once they fall out-of-equilibrium due to the expansion of

the universe.

2.2.1 The Boltzmann equation

We begin by first considering the evolution of the single particle phase space distribution function, f(Z,p,t),

in an expanding universe. The distribution function, f, quantifies the number of particles in a volume element



of phase space, (271')3 U3, such that the number density is determined by

3 =
mm>/ﬁ%&m. (2.9)

2m)3

Note that f is a Lorentz scalar because both the phase space element, d>Zd>p, and the total number of

particles N = f (gﬂ’)’S d3Zf are Lorentz scalars.
In an isotropic and homogeneous universe, the distribution function is only a function of particle energy,
f(E,t). The evolution equation for such a distribution function in an expanding spacetime is given by the

following Boltzmann equation,

of _ 7" of

o 5 op =) (210

where C is the collision operator that quantifies the change in particle number occupying momenta p’ due to

collisions with other particles. The collision operator is given by

Clf]=— 2E/dH dITy,...dIL;dI ;... | M, |*S(2m)* (p—‘erZ Zpa>
X [f(p)fa(pa)fb(pb)m[lifi(pi)][lifj(pj)]-~-—fi(pi)fj(pj)u-[lif(p)][lifa(pi)]m , (2.11)

where the summation goes over all processes of form 1 + ¢ 4 j + .. — a + b such that the final state does not
have the original 1) particle occupying momenta |p]. Above
d*p; d'p;

dIl; = @nV2E, (27T)35(p?—m2) (2.12)

is the Lorentz-invariant phase space element of the involved particles, |My|? is the spin-summed matrix
element for the given processes, S is the symmetry factor to account for identical particles in the initial
and final states, and the 6% term is a Dirac delta enforcing energy-momentum conservation. In the square
brackets in eq. (2.11) we are subtracting the number of times the reverse processes occurs from the number
of times forward process occurs. Here for simplicity we have assumed that |M,|? is the same for reverse and
forward process, which is only true for processes that are CP invariant. The factors of f,(p,) denote the
probability of finding particle a with momentum p, while the factors of [1+ f;(p;)] indicate Bose-enhancement
or Pauli-suppression by final state particle ¢ depending on whether it is a boson or fermion.

If the interaction rate of a given process is much larger than the Hubble rate, then on time scales much
shorter than the expansion rate of the universe, the Boltzmann equation for all the involved particles would
be driven to an equilibrium state where the square brackets in eq. (2.11) for the given process becomes zero.

The detailed balance of the square brackets is satisfied only if

o 1
J= e = exp (F —p)/T+1’

(2.13)

and if g+ p; + pj + ... = po + .. + pp. Above, the plus (minus) sign is if the particle is a fermion (boson), T'
is the temperature of the system, and p is the chemical potential of the particle.

In the limit f = fcq, the collision terms on the RHS of the Boltzmann equation (eq. (2.10)) are set to



zero. Assuming f., also satisfies the LHS of the Boltzmann equation, requires

8feq ]32 6feq
—H— =0. 2.14
ot E OF 0 ( )
Substituting the equilibrium distribution yields
din(aT) m? d(u/T)
FH| ——— — — T———==0. 2.1
( dlna E2 * dt 0 (2.15)

For relativistic particles, we can see that f = fe,(p, T, 1) with T o< 1/a and pu/T = constant satisfies both
LHS and RHS of the Boltzmann equations independently. For non-relativistic particles the LHS and the
RHS cannot be be independently satisfied. Any non-zero values from the LHS of the Boltzmann equation for
non-relativistic particles is canceled by the collision term on the RHS by having small distortions around the
equilibrium distribution.

Thus one cannot find the temperature evolution of a plasma that also have non-relativistic particles
just by looking at the Boltzmann equation of a single particle. The temperature evolution can be found by
applying energy-momentum conservation for the total plasma, eq. (2.4), and expressing the energy density
and pressure in terms of the temperature of the plasma. In the next subsection we provide the expressions
for these densities and then using these expressions we find the evolution of temperature of the Standard

Model plasma in section 2.3.1.

2.2.2 List of equilibrium parameters

In this subsection, we tabulate the expression for energy, pressure and number density in terms of temperature
and chemical potential.

For relativistic bosons with negligible chemical potential, we have

2
9T 4 96(3) s p
==—T = T ==. 2.1
50 1 n="—3T, P=3 (2.16)
For relativistic fermions with negligible chemical potential, we have
79 4 39¢(3), 3 p
830 T P=3 (2.17)

If we approximate the equilibrium distribution of particles as Maxwell-Boltzmann distribution, f., =

e(m=E)/T then we obtain

4 3
Pzeu/Tgm ($K1($)+3K2($))7 n=et/TI Ks(z) P =nT, (2.18)

272 x2 272
where = m/T and K, is the modified Bessel function of the second kind. In the limit, 7> m or z < 1, p

and n simplify to

T T3
p:e“/T?)gT, n:e"/Tg—2. (2.19)
7r T



Whereas in the limit 7" < m we obtain

mT 3/2
p=mn, n=ermITy (> . (2.20)
27
Note that the distribution of both bosons and fermions approximate to Maxwell-Boltzmann distribution in
the limit, T << m.
For Standard Model particles, the chemical potential is always negligible, p < T', when the particles are
relativistic. Since particles and antiparticles must have opposite chemical potential in equilibrium, the excess
of particles over antiparticles for y < T and T > m is

9T p g

ny — Np = 3T ng—ng==——— (2.21)

where the first relation is for bosons and the second one is for fermions.
While we do not see large chemical potentials in the Standard Model, it is possible for fermions to have
a significant chemical potential even when they are relativistic because of Pauli-exclusion. In the limit

> {T,m}, when fermions are degenerate, we find
1 4 1 3 p

- n=— P == 2.22
p=g a9k G2k 3 (2.22)
For bosons, the chemical potential has an upper bound, g < m. In the limit 4 — m, any new particles
added to the system fill the zero momentum state and lead to the formation of a Bose-condensate. Thus, the

condition p > T can never be achieved for a relativistic boson.

2.2.3 Condition for thermalization

So far we have been interested in the regimes where the rates at which the thermalizing interactions occur
are much larger than the expansion rate of the universe. To see why that condition is generically satisfied in
the early universe, let us consider the process: et 4 e~ — 27, which maintains electrons and positrons in

thermal equilibrium. Integrating the Boltzmann equation for electrons (eq. (2.10)) with [ d3p/(27)3 yields,!

dn,-
dt

+3Hn, = - / dl - dlTe+ dILy, dIL, |M[?S(27) 0% (pe- + Pet — Pry — Pro)
X |:fe (pe*)feJr (peJr)[l + fv(pv1>][1 + f“/(pw)] - f’Y(p’Yl)f’Y(p'Y2) . (2'23)

For simplicity, we have ignored the Pauli-suppression from electrons above. Ignoring final state quantum
statistical effects of particles amounts to setting their equilibrium distribution to be Maxwell-Boltzmann,
feq = e(t=E)/T a5 can be seen using detailed balance. When et 4+ e~ — 2+ process is in equilibrium, the
chemical potentials of electron and positron satisfy, p.- + pe+ = 0 because the photons do not have a chemical

potential.? As the process goes out of equilibrium, we consider the distribution function of electron and

!Integrating the the Boltzmann equation eq. (2.10) with [ d3p E/(27)3 returns the Boltzmann equation for energy density, p,
given in eq. (2.4), except on the RHS we have collision terms that describe energy transfer from the concerned particle to other
particles.

2Since the number of photons is not conserved in Standard Model processes, the photon chemical potential is driven to zero
when photon number changing processes are in equilibrium.



positron to become of the form,

fei (pei) = eﬂi/Tfeq,ei (pei) = feq,eiv (224)

where n., .+ is the number density of electrons/positrons if they are in thermal equilibrium, f = f.,. Doing

so simplifies the collision term on the RHS to

dn,-

i +3Hn.— = (00)(T)[Neq,e-Neg e+ — Me—Tet], (2.25)
where
1
(ov)(T) = ﬁ/dﬂe* dll o+ dILy, dH72|M|25’(27r)4(54(p€7 + Pet = Pyy = Do) feqry Py ) feqn (Pra)-
eq,e~ leq,e
(2.26)

From eq. (2.25) it is clear that that electron positron annihilation rate can maintain electrons in thermal

equilibrium if

<UU> (T)neq,e+

1. 2.2
i > (2.:27)

Now let us see how this ratio evolves with the scale factor, a, as we go back in time. Sufficiently early when
the universe is radiation dominated, we know that the Hubble rate evolves as H oc 1/a?. In contrast, the
equilibrium number density of electrons and positrons grows exponentially for T' < m, because n.4 .+

—me/T and T increases with decreasing scale factor. Because of the electromagnetic gauge interactions, the

e
cross-section (ov) for electrons is large enough for the ratio in eq. (2.27) to exceed one at some T' < me..
Consequently, as we go back in time and T approaches m., the photons obtain significant energy to pair
produce electrons and positrons and form a thermal bath where electrons and positrons are in equilibrium.
While here we concentrated on electrons, similar analysis also holds for most of the other particles in the SM

and thus we expect all of them to come into thermal equilibrium at some point in the early universe.?

2.2.4 Thermal decoupling

Apart from neutrinos and photons, all other particles in the SM fall out of thermal equilibrium once the
temperature falls below the mass of the particle. After the particles become non-relativistic, their equilibrium
number density is Boltzmann suppressed, n¢q o< e~"/T because while the particles undergo annihilations
into lighter particles in the SM plasma, the lighter particles do not have sufficient energy to produce the
massive particles in the reverse process. As n., falls exponentially with temperature, (ov)(T)n., soon falls
below the Hubble rate. Once that happens, the annihilations stop and particle number density is conserved
from that point onwards. The deviation from the equilibrium number density is encaptured by particle
developing a chemical potential, n = e/ T1eq, that no longer satisfies chemical balance equation imposed by

by the particle number changing interactions. Thus, a particle falls out of chemical equilibrium whenever

SInterestingly, even much earlier in the history of the universe, T > 10'% GeV, the SM particles are expected to fall out of
thermal equilibrium. This is because when all the involved particles are relativistic, the only dimensionful quantity that can set
interaction rate is the temperature of the plasma, I' « T'. Consequently, if we extrapolate sufficiently back in time, the Hubble
rate, H o T2, exceeds all inter particle interaction rate. Here we do not focus on such early history because one generically
expects new physics to come into play and alter this naive extrapolation.
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its number changing interaction rate falls below the Hubble rate. We revisit this departure from chemical
equilibrium in more detail in the context of WIMP dark matter in section 2.4.

Note that even if the particles have fallen out of chemical equilibrium they can still maintain the same
temperature with rest of the plasma via elastic scattering processes. For electrons and positrons this occurs
via Compton scattering, e + v — e + . One can check that detailed balance for such elastic scattering
processes enforce particles to have the same temperature, but allow the particles to have an arbitrary value
of chemical potential. When these scattering processes are larger than the Hubble rate, the particles are said
to be in kinetic equilibrium. Almost always one finds that the particles fall out of kinetic equilibrium much
after chemical equilibrium.

For particles that fall out of chemical and kinetic equilibrium after they become non-relativistic, their
distribution remains that of a thermal particle. This is because, in the absence of any interaction, the
momentum of particles redshifts as p o< 1/a. Consequently, the particles maintain their Maxwell-Boltzmann
distribution, o e’pQ/(zmT), by having its effective temperature redshift as 7' o 1/a?. Note that since the
comoving number density of particles if fixed, their chemical potential must asymptote to the particle mass
such that e*~")/T remains constant in eq. (2.20).

For particles that fall out of chemical and kinetic equilibrium while they are relativistic, for e.g. neutrinos
and photons, their effective temperature redshifts as T' o< 1/a even if they become non-relativistic at some
later point. This is because, they inherit the distribution of relativistic particles at decoupling, which is only
a function of particle momenta, p. As the momentum of particles redshifts as p o 1/a, their distribution
too redshifts such that we can define a temperature that evolves as T o« 1/a and a chemical potential that

remains constant relative to temperature, p/T = constant.

2.3 Cosmological evolution of the Standard Model plasma

Having discussed the evolution of distribution function for individual particles, we now turn our attention
to the combined evolution of a thermal plasma formed by Standard Model (SM) particles. We first discuss
the temperature evolution of this plasma as the particles in the SM become non-relativistic. Next, we
explain how the matter-antimatter asymmetry causes the particles to have a small chemical potential in the
early universe and how it determines the relic abundance of nucleons. We then discuss the physics behind
neutrino decouupling, which marks the start of thermal decoupling of the SM plasma. Finally, we describe
the formation helium and deuterium nuclei in the early universe, whose abundances today provide the only

direct evidence of the thermal state of SM particles in the early universe.

2.3.1 Degrees of freedom

Earlier we discussed how the temperature evolution of plasma consisting of non-relativistic particles cannot
be described by looking at Boltzmann equations of individual particles. In the context of SM, apart from
photons and neutrinos, all other particles become non-relativistic when they are still part of the SM plasma.
Consequently, to describe the temperature evolution of the plasma we need to evolve the combined energy
density of the plasma in an expanding universe using eq. (2.4).

We begin by first expressing energy density of the SM plasma, pgsps, in terms of the relativistic degrees of
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freedom in the plasma and its temperature, Tsay,

1 _ g«7* 4
PSM = Zgl/ 27'(' eE/TSM +£7, = 30 TSM7 (228)

where g, is the effective degrees of freedom in the SM plasma,

30 d3p 1
Z gl / 27T EeE/TSM +& ) (229)

In the above definition of g. we have neglected the contribution from the chemical potential, p; < T. As

discussed in the previous section, the chemical potential can become significantly large once particles become
non-relativistic and fall out of chemical equilibrium. However, as the abundance of particles is exponentially
suppressed in the process, their contribution to total SM energy is negligible compared to other particles that
are relativistic. Note that relativistic particles in thermal equilibrium are allowed to have significant chemical
potential, g > T', but in the context of SM we find that p < T" when particles are relativistic. We elaborate
more on the chemical potentials in the SM in the next subsection.

At any given temperature, we can approximately calculate g, by considering contribution from particles

with masses m; < Tsps. Doing so yields,

S il Y a 20

i=bosons i=fermions

Note that the contribution of fermions and bosons to g, is slightly different because they follow different
thermal distributions. Thus at Tsps > 200 GeV, when all the SM particles are relativistic, we find

7
:(2+2><8+2><3+4)+§><3[4+2+4><2><3]:106.75, (2.31)

where we have counted photons, eight gluons, three SU(2) gauge bosons, and the complex Higgs boson
doublet in the first bracket. In the second bracket we have three generations of fermions, with four degrees of
freedom for each of the charged leptons and the quark doublets but only 2 degrees of freedom for left handed
neutrinos. Additionally, the quark doublet has been multiplied by three to take into account the three colour
degrees of freedom. As the SM plasma cools and particles become non-relativistic, g, decreases.

In the left panel of figure 2.1 we show the evolution of g, with photon temperature, T',. The largest
change occurs at T, ~ 200 MeV where QCD phase transition occurs and all quarks become bounded into
hadrons and mesons. At Tgw = 160 GeV the electroweak phase transition occurs [30].

Similar to g., we can also define an effective degrees of freedom for pressure, g.,, via

&Pp p* 1
Zgl / 27T 33F eE/Tsm _|_£ (2.32)

Then we can rewrite Pgar = gupm>Tay,/90. In the left panel of figure 2.1 we also show the evolution of g.,
with temperature. Note that away from mas thresholds, g., = g. as expected.
By replacing psas and Pgys in terms of gy, g«p and T, we can find the evolution of T'sps with scale factor

using the Boltzmann equation, eq. (2.4). Alternatively, we can also find the evolution without integrating the
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Figure 2.1: Left Panel: Effective degrees of freedom in SM plasma as a function of temperature of photon.
The black, blue and orange lines correspond to degrees of freedom in energy, pressure and entropy density,
respectively. Right Panel: Evolution of comoving photon temperature as a function of scale factor of the
universe. The comoving temperature has been normalized with 7', ; = 10 TeV and the scale factor has been
normalized with the scale factor today, ap. The vertical green dashed lines corresponds to 1%, = m,. = 0.511
MeV. The vertical red and purple dashed lines mark when QCD and electroweak phase transition occur.

Boltzmann equation by noting that in the limit pu; = 0,

OP; pi + P
= . 2.
aT, T, (2.33)
Then using the above equation along with the Boltzmann equation, one can show that
a® (pSM—'_PSM> = const. = a’sgy, (2.34)
Tsm

where s is the entropy density. Defining g.s as the effective degrees of freedom in the entropy such that,

272

3
SSM = Eg*sTgMa Gxs = Z(g* + g*p/3)7 (2'35)

we can obtain the evolution of Tsy; simply via,

o (g(TSM)) v (2.36)

Tsn = Tonri—
SM SM,i a g*s(TSM)

In the left panel of figure 2.1 we also show the evolution of g.s with T, and in the right panel we show the
evolution of aT’, with scale factor.

Note that the while Ty, is always decreasing as the universe expands, Tsps cools more slowly than 1/a
when a SM particle becomes non-relativistic. This reduction in cooling occurs because as a SM particle
becomes non-relativistic, it annihilates or decays into lighter SM particles. Consequently, the rest mas energy
of the particle is converted into heat which slightly counters the cooling due to expanding universe. The heat
from particle annihilations/decay is large enough such that psara* o< g.(aTsar)* also increases whenever a

particle becomes non-relativistic.
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After neutrinos decouple around Tsy; ~ 1 MeV, there is no common temperature for the SM plasma. Below
this temperature, we define the effective degrees of freedom in the SM relative to the photon temperature, 7T, .
Note that as T, = Tsas before neutrino decoupling, one can use the entropy conservation equation to find
the evolution of I, with a even through neutrino decoupling.

With the evolution of Tsps given by eq. (2.36), we can find the evolution of the Hubble rate via

1/2 2
H =43 x 10722 MeV (g*(TSM)) <TSM> . (2.37)

10 MeV

2.3.2 Chemical potentials and baryon asymmetry

In the previous subsection, we assumed that the chemical potential of SM particles is negligible. For particles
in the SM whose number is not conserved, for e.g. the photon, this assumption is automatically true because
their chemical potential is driven to zero by number changing interactions. However, there are various particle
numbers that are conserved in the SM and thus thermal equilibrium alone is not sufficient to drive all the
chemical potentials to zero.

For instance, in quantum electrodynamics, the total electron number is conserved, (n.- — n.+)a® =
@@ =constant. So when electrons and positrons are in thermal equilibrium, their chemical potentials are
related by p.- = —p.+ and can have a non-zero value set by Q. The value of @ itself has to be specified
either from an initial condition or from observations. The individual chemical potential of electron and
positron vanish only if @ = 0.

The SM has several such conserved quantities: hypercharge, colour, SU(2) charge, baryon number, and
lepton number. Additionally, Lepton number for each generation is also approximately conserved in the early
universe because the neutrino masses are negligible. Consequently, when all the SM processes are active,
there are only seven independent chemical potentials and chemical potentials of all involved particles can
be written in terms of these seven chemical potentials. For hypercharge, colour, and SU(2), we observe no
net charge in the universe today and consequently we can set the chemical potential corresponding to those
charges to zero. Thus the number of independent non-zero chemical potentials are further reduced to four.
However, we do observe an abundance of nucleons over anti nucleons today, i.e. a non-zero value of baryon
number. There is also an equivalent abundance of electrons over positrons to make the total charge of the
universe zero. Since the abundance of neutrinos over anti-neutrinos is very poorly constrained, we cannot
comment if there is a net non-zero value of Lepton number as well.

The total baryon number is defined as

ny — Np

B (2.38)

S

where ny and ny are the number density of particles carrying +1 and —1 baryon number, respectively. Their
difference is divided by the entropy density of the SM because both the numerator and denominator evolve

as 1/a®, keeping B constant. From present day observations we find

~ nplag) +nnlao)  polao) 1 [(uh?
B = sy =T 0 (G ) (2.39)

where the subscript 0 denotes the value of the parameters today. In the above approximation we have

neglected the contribution of electrons to the observed energy density of visible matter, p,, because m. < m,,.*

4Here I am using the astrophysical convention of classifying baryon energy density, pp, as the total energy density of visibile
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Prior to QCD phase transition, T' > Tocp ~ 200 MeV, when all the quarks were free, the number of

quarks must exceed the number of antiquarks by

Yy Tl _3p, (2.40)

S
q

As the quarks as relativistic prior to QCD phase transition, n, and 4 is of the same order as the entropy
density, ng ~ s ~ Tg u- Which means the difference between their number densities is exceedingly small
compared to their total number density. Consequently, their chemical potential also has to be very small,

tq/T < 1. One can then use eq. (2.21) to quantify the relationship between i, and n, — 7i,. Doing so yields,
Hq -8
~ 10 2.41
T ) ( )

thereby validating the assumption that chemical potentials are very small in the early universe.

After QCD phase transition, all the quarks and anti quarks are almost instantaneously bound into
hadrons, of which only protons and neutrons survive until today. As my,, m, ~ GeV > Tocp, the abundance
of protons and neutrons is already Boltzmann suppressed by ~ e~™/T ~ 1072 just after the QCD phase
transition. As the universe cools further, nucleons and anti-nucleons undergo more annihilations and the

Boltzmann suppression of their number densities continues such that

Np.eqg — Mp,eq + Mn,eq — Mineq ~ 2sinh(py /T) 4e—m»/T [mpT/(27r)]3/z B

= 2.42
s 272 g, (T)T3 /45 ’ (242)

where we have approximated m, = m,, and puy is the chemical potential of the nucleons in equilibrium.
Once ppn /T becomes order one, nucleon annihilations freeze-out because the anti-nucleons are not in sufficient
concentration to significantly disrupt nucleon number density. Plugging puxn /T = 1 in the above equation
gives us an approximate estimate of the freezeout temperature, T ~ 40 MeV. Note that anti-nucleons continue
to undergo further annihilations below T ~ 40 MeV because nucleon density has stopped falling exponentially.
Consequently, the freeze-out of anti-nucleon annihilation occurs later with a relic anti-nucleon density orders

of magnitude smaller than the relic nucleon density.

2.3.3 Neutrino decoupling

So far we have focussed on periods when the interactions between SM particles are large enough to maintain
thermal equilibrium between all the particles. However, as the SM particles cool in an expanding universe,
the interaction rate eventually falls below the Hubble rate. Among all the stable SM particles, neutrinos have
the weakest interaction with rest of the particles. Consequently, neutrinos are the first to thermally decouple
at temperatures around Tsy; ~ 1.5 MeV.

The neutrinos maintain equilibrium with other SM particles via scattering with electrons,
et +u. = et +u, et + v, = et 40 (2.43)

Both the above interactions are mediated by W and Z bosons. At temperatures much smaller than W and Z

matter, which includes both nucleons and electrons.
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boson mass, the interaction rate for the above processes is well approximated as
Loy = ne0er ~ G213, (2.44)

where Gp = 1.16 x 10711 MeV~2 is the Fermi constant and the above rate assumes that electrons are

relativistic, n. o< Ts,,;. Comparing this interaction rate with the Hubble rate in eq. (2.37), we find

Fel/ TSM ’
7 (1.5 MeV) ' (2.45)

Consequently, the neutrinos thermally decouple once Ty, falls below ~ MeV. Beyond this point the neutrinos

freestream without further scattering.

Note that even though the neutrinos are no longer in thermal equilibrium, they have a well-defined
temperature because the neutrino thermal distribution remains unaffected after thermal decoupling. As the
momentum of each neutrino redshifts as p o 1/a, the effective neutrino temperature also scales as T}, < 1/a
after neutrino decoupling. Consequently, right after neutrino decoupling, we have T, = T’,, where v stands
for photons, even if neutrinos are not in thermal contact with photons.

However, once T, falls below the mass of the electron, m. = 0.511 MeV, the electrons and positrons
annihilate and heat the photons compared to neutrinos. The corresponding temperature asymmetry between
neutrinos and photons after electron-positron annihilation can be readily calculated using entropy conservation.
Enforcing entropy conservation above and below the electron-positron annihilation in electron-photon fluid

yields,
(244 % 7/8)(aT)} = 2(aT, 1)*, (2.46)

where subscript ¢ and f refer to some time just above and below electron positron annihilation. In contrast,

the neutrinos just cool as 1/a and initially have the same temperature as photons,
(aTy); = (aT,). (2.47)

Comparing the above two equations, we obtain

@),

The presence of cosmic neutrinos can be indirectly detected in the fluctuations of the cosmic microwave
background (CMB) spectrum because of the gravitational influence of free-streaming neutrino radiation
density. In particular, the CMB is sensitive to the ratio p,/p, which is parameterized in terms of effective

number of neutrino species, N,

o (2.49)

Py T/8 X Nog x 2 x T4 7(4)4/3N
- = = eff
Py 2x Ty 8

The SM prediction of N5M is 3.044 [31-35], which is slightly above three because the neutrinos have
not completely decoupled from the photons when the electron-positron annihilations occur. The current

measurement of Neg from Planck mission is Neg = 2.96 & 0.33 [3], which agrees with the SM prediction.
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2.3.4 Big Bang Nucleosynthesis

After the QCD phase transition, all the quarks are bounded into hadrons and mesons, of which the longest
lived particles are protons and neutrons. Unbounded free neutrons are unstable because they decay into
protons along with electrons and neutrinos via weak process. However, prior to all the neutrons can decay,
the neutrons combine with protons to form nuclei such as helium, deuterium, lithium, etc. In this section
we briefly review the formation of these nuclei in the early universe. In particular we highlight how their
abundances are sensitive probes of Neg and the baryon-to-photon ratio, n, = pp/(mpny).

There are three primary processes that together determine the final relic abundance of nuclei:

1. At T, < 1 MeV, the reactions n + 7. — p+e~ and n+ et — p + v, start depleting neutrons. However,
before any significant depletion occurs, the rate of the reaction falls below the Hubble rate and the

depletion is halted.

2. At T, < 0.1 MeV, the age of the universe is around the half-life of the neutron decay process

n — p+ v, + e~ and thus neutron depletion again starts to occur.

3. Fortunately, before the decays become significant, the neutrons get absorbed to form deuterium,
n+p— D+, at Ty ~ 0.07 MeV. Once there is a significant abundance of deuterium, the deuterium
quickly reacts with protons to form Helium and Lithium. Note that the neutron number is conserved

as soon as neutrons are first bounded into deuterium.

We next look at equations governing each of the above steps in more detail.

The neutrons are slightly heavier than protons by A = m,, —m, = 1.293 MeV. Consequently, at
temperatures 1%, > A, the same amount of forward and backward reaction of neutron-to-proton conversion
occurs and the number densities of both neutrons and protons are equal, n,, = n,. However, once T, falls
below A, backward reactions becomes less kinetically feasible as electrons and neutrinos do not have enough
kinetic energy to compensate for the mass difference. Hence, the abundance of neutrons start falling compared
to that of protons.

The evolution of neutron and proton number abundances around 7., ~ A, is well described by the

Boltzmann equations

dny,

S 4 3Hny = ~Coosp (2.50)
d

=2+ 3Hny = +Cnsy, (2.51)

where C,,_,;, is the collision term describing depletion of neutrons to protons via n + 7. — p + e~ and
n+et — p+ve.. In the limit C,_,, = 0, the above Boltzmann equations simply yield n,, o 1/a® and

n, o 1/a3, as expected. The collision term, C,,_,,, is given by

d3py, py & d’pe- D 4 B D, + D
C= / : e o P (2m) 6% (Fu + By, — By + Do )8(En + Ey, — Ep — B )M

n(27m)3 2E5, (2m)3 2B, (27)3 2B, - (2m)3

[fr(pn) fo. (P ) (1 £ [p(pp)) (L £ fem (Pe-)) = fp(Dp) fe- (Pe= ) (1 £ fr(pn)) (1 £ fo. (P2.))]-
(2.52)

As the temperature is close to MeV where neutrons and protons are non-relativistic, their distribution

functions are well approximated as f ~ e(=m+u=p"/2m)/T The electrons and neutrinos are relativistic, but we
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neglect the effect of quantum statistics (Pauli blocking) and assume f ~ e~ 1P/T  Furthermore, the amplitude
for the above processes is given by |[M|* = 39.26737, 'm2p,p./m?, where 7, = 886.7 sec is the neutron
lifetime. With the above replacements, the phase space integral of the collision term can be performed

analytically to obtain
C =Tp—p(x)[nn, — npe™7], (2.53)

where © = A/T, and I';,_,;, is the rate at which the neutron to proton conversion reaction proceeds,

2551 , 5
Since we are primarily concerned with the neutron abundance relative to proton, it is convenient to
express n, in terms of neutron fraction, X,, = n,/(n, + n,), and total baryon abundance, ng = n,, + n,.
Correspondingly, the equations given in eq. (2.50) simplify to yield np oc 1/a® and
ax, Fn—>p(x)

v =y e (1= Xa)e (2.55)

Note that as H oc T2, o 1/22, the ratio I',_,,/H grows as 1/x for z — 0. Consequently, at T, > A, the
above equation enforces the factors inside the bracket in the RHS to go to zero, which yields X,, = 1/2 as
expected. Conversely, in the limit z — oo, the coefficient of RHS itself goes to zero and we obtain X,, =
constant. The constant asymptote is a consequence of the fact that neutrons cannot efficiently interact with
electrons and neutrinos because the expanding universe is diluting their abundance faster than the rate at
which the conversion occurs.

While one has to solve the above equation numerically to find the exact relic value of X,,, one can
obtain an O(1) estimate using the instantaneous freeze-out approximation. The instantaneous freeze-out
approximation assumes that the concerned process is in perfect equilibrium until I' = H, after which
the process is instantaneously shut off. Using the Hubble rate given in eq. (2.37) and using that g, =
2+ (2N +4) = 10.75(1 + 0y ) near Tspy ~ 1 MeV, we find 'y, (zy) = H(zy) at

1\ 1 1
-1 _ - - =
vyt = (4 1+6N+18> 15 " 5 (2.56)

For Neg = 3 or 5 = 0, we find freeze-out of reaction occurs at x¢ ~ 1.89 or Ty ~ 0.7 MeV. The final value
of X,, is then approximated as X, oo = Xy eq(xs), where X, ¢4 is the X,, for which the RHS of eq. (2.55) is
zero. This yields

1

S (2.57)

n,00

The above analytical result gives X,, oo = 0.13 when éy = 0, in comparison to the exact numerical result
X,00 = 0.15.
The remaining abundance of neutrons can convert into protons once neutron decays begin, n — p+v.+e~,

which occurs when age of the universe is around the neutron lifetime, 7,,. The corresponding Boltzmann
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equation for this process is
i, (2.58)

Again we can rewrite the above process by replacing n, = X,n; and then integrate the differential equation

3 Mp (10\?/1 1
Xn(Ty) =X;exp [_QWTn (g) Tz T2
* ¥ 7

where T; is some initial temperature and we assumed g. is constant between T; and T.,. The decays
4/3 _

to obtain

; (2.59)

primarily take place after electron-positron annihilation. So we have g, = 3.36 + 7/8 X 2 X Nog x (4/11)
3.36(1 + 0.820y). Then taking X,, ; = X, o and neglecting 1/72; yields,

Xo(To) et exp |~ 03 <0.07MeV ?
n) S e P T A 0820, T,

(2.60)

We can see that as T, continues to drop, the abundance of neutrons exponentially decreases.

The neutron decay stops once deuterium production starts and neutrons and protons are bounded into
stable nuclei. To find the temperature when the deuterium production becomes feasible, we need to consider
detailed balance for n + p — D + , where D stands for deuterium. In thermal equilibrium, the chemical
potential on both side of the reaction should match. Photons in thermal equilibrium do not have a chemical

potential, so we obtain

e(ltn"l‘ltp)/T'y — eILD/T’Y (261)
Ny Np  Np
B Mp MDD 2.62
na! ng!  niy (262)
np ’I’Lqu (471’)3/2 1 Bp /T (2 63)
= = e Y .
NpNyp, ngqnzq 2 (mpT,y)3/2
4 3/2 T~ 3/2 T.\3/2
"D (1 - X)) U gy (L) emormy g (L) Borm, (2.64)
g ™ mp My

where Bp = m,, + my, — mp is the binding energy for deuterium, and we used n,, = X,np, np, = (1 — X,,)np,
and n, = ny,/n., to obtain the last line. The neutron decays almost stop instantaneously as soon as np/mny,

becomes of order one. Solving for T, = Ty, at which deuterium abundance reaches ~ O(1) yields,

3
ln(nb) + 5 hl(Tnuc/mp) ~ _BD/Tnuc- (265)

We can see that the determination of Ty, is primarily set by the logarithm of 7, and is independent of the
Hubble rate. For n, ~ 10719, we find Thue ~ 0.07 MeV. Note that naively, deuterium production would have
happened much before at T' ~ Bp = 2.22 MeV. However, due to very tiny amount of baryons in the plasma,
this process is kinematically postponed until 7'~ 0.1 MeV.

The final abundance of neutrons in the universe is obtained by setting 7%, = Thyc in eq. (2.60). Note that
even though the decay can potentially cause an exponential reduction in X,,, the fact that T}, occurs very
close to the half life of neutrons halts the neutron decay rather quickly.

After Tyuc, the number of neutrons remain conserved. While neutrons are first assembled in deuterium
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nuclei, they are quickly transferred into He* nuclei because the binding energy of Helium nuclei is much
larger than that of deuterium and other nuclei with small atomic numbers. Formation of much heavier nuclei
with even larger binding energies does not occur because their formation typically require three particle
interactions. Nuclear processes involving more than two particles occur very rarely in the early universe
because baryon concentrations are very low.

Thus, virtually all the neutrons are swept up inside the helium nuclei after 7},,.. Consequently, one can

estimate the mass fraction of helium to hydrogen nuclei, Y = myenpge/(mpyng), simply as

1 0.3
Y = 2X, (Thue) & 2 Xp |~ ——e— | . 2.66
(Towe) & 297 { T+ 0.82(5N:| (2:06)

For §y = 0, the above yields Y = 0.2 which is slightly smaller than the numerical estimate of Y = 0.22. The
present day abundance of helium to hydrogen mass fraction agrees with the primordial abundance calculated
above. Consequently, the successful prediction of BBN provides stringent constraint on any deviation from
Standard Cosmology at T, <1 MeV.

Note that not all of the deuterium gets converted into Helium. This is because the rate of nuclear reactions
converting deuterium into Helium eventually fall below the Hubble rate once the concentration of deuterium
falls below a threshold. Compared to Ty, the freeze-out of the nuclear reactions is much more sensitive to
7p. Consequently, the leftover trace of deuterium is a much more sensitive probe of 7, than the abundance of

Helium.

2.4 Thermal origin for dark matter: WIMP

In this section we describe the mechanism by which dark matter can obtain the observed relic abundance by
being part of the SM plasma in the early universe. Additionally, we emphasize a simple way to calculate the
model parameters that yield the correct relic abundance.

Let us imagine that the particle comprising the dark matter today, x was part of the SM plasma in
the early universe. One can naively imagine a process of type: x + x — [ + [ kept dark matter in thermal
equilibrium, where [ is some particle in the SM that is much lighter than dark matter. Let us further consider
X to have no particle anti-particle asymmetry. Correspondingly, the relic abundance of x is primarily set by
when the annihilation reactions of x drop out-of-equilibrium and the number density of x is frozen in. In
particular, we focus in the region of parameter space where the Boltzmann suppression of equlibrium dark
matter abundance after 7' < m, causes the annihilation reaction to fall out-of-equilibrium.

One can find the relevant Boltzmann equations for dark matter number density in the limit of non-
relativistic dark matter similar to how we derived eq. (2.25) earlier. Except, the equation is further simplified

here because we consider n, = ny,
3
_sd(a’nppr)

a T = <UU>(n2DM,eq - n2DM>7 (267)

where npaseq is the equilibrium number density of DM. Additionally, considering dark matter annihilation is
a s-wave process, in the non-relativistic limit the annihilation cross-section has no temperature dependence,
(ov) = constant.

With the Hubble rate calculated considering a SM radiation-dominated universe, the above equation can be

solved with the initial condition that npa = npas,eq. Because both entropy density and dark matter number
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Figure 2.2: Evolution of Y = npys/s as a function of x = mpps/T. The black dashed line shows equilibrium
evolution, the solid lines show evolution of Y for a given value of A, the dashed lines follows xpas /A, and the
dotted lines shows the value of Y, for a given mpys. The green lines have been plotted for A = 4.5 x 101°
while the blue lines have been plotted for A = 6.4 x 10'2. We have set g, = g., = 100 for the above plot for
simplicity.

density evolve as o< 1/a® after dark matter annihilations have stopped, we rewrite the above Boltzmann
equation in terms of
Npm mpm A= s(T:mDM)<av>

Y: = —
s DM = T H(T = mpar)

(2.68)

Doing so yields,

dy :_(1 dIn g.s )(g*(g*(mDM) ))0'5 (g*s(mDM/xDM)> A (Y2 -v2). (2.69)

dxppr B 3dInxpns mpm/Tpm gs(MpDM) x%M

Above the derivative of g.s was obtained by calculating dzpas/da using entropy conservation. For simplicity,
in the following analysis we assume that the freeze-out of dark matter annihilation occurs away from mass
thresholds, such that g, and g.s are constant.

For a given A, one can see that the above equation causes Y = Y, in the early universe when xpy < 1.
As z becomes larger than one, Y, starts to fall exponentially as e”*P™. The value of Y follows the drop in
Y, until,

Yeolwp) = - (2.70)

Beyond this point, xpar > 2y, Yeq becomes too small and can be neglected. Note that as xpas is increasing,
the overall coefficient on the RHS is also decreasing. Thus soon after the contribution from the whole RHS
becomes negligible and Y asymptotes to a constant. This asymptote sets the relic abundance of dark matter.
In figure 2.2, the solid lines show the evolution of Y as a function of = for two different values of A. The
black dashed line shows the evolution of Y., and we can see that initially ¥ follows Y.,. Once the value of

Y., and Y drops near zpa /A, Y departs from its equilibrium value and starts to asymptote to a constant.
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Considering the asymptote value of Y to be Y, we require that Y., appropriately yields the present day

dark matter density. Thus we have

pD]W,O —10 QDMh2 GeV
Yo = ——"7T—=4. 1 . 2.71
mpars(Tp) 310 < 0.12 mpum (2.71)

where we have used the fact that pparo = peritQpar = 0.81 x 10740Q 5 h2GeV*. Figure 2.2 also shows
different values of Y., that obtain the correct relic abundance for different dark matter masses.

From the figure it is apparent that a given value of mpj; fixes the value of A that yields the correct relic
abundance of dark matter. Thus we obtain a one-to-one mapping between the required values of annihilation
cross-section, (ov), and the value of mpys that gives the correct relic abundance. In practice we find that
(ow) is only weakly sensitive to mpas. To understand why let us analytically solve the freeze-out abundance
of dark matter.

One can analytically solve the freeze-out equation using instantaneous freeze-out approximation, where

the following three equalities hold at ¢,

Yog(zf) = Xf =Y. (2.72)

From figure 2.2, we can see why the above is approximately valid.

The simplest way to solve for x ¢ is by equating the first and last term. In this way we avoid any superfluous
dependence of x; on A, which we would have obtained if matched the second and third term or first and
second term. As Y, is inversely proportional to mpys and Y, is exponentially dependent on x¢, zf only
depends logarithmically on mpjy.

With z5 on hand we can directly evaluate A by matching the second and third term above. As A is

proportional to mpjs, the factors on mpjs on both sides cancel and we obtain,

(ov) = 4.1 x 10710 GeV 2 (”2%) (Qg;m) (g*%gm)w <g(1ng?w)) (2.73)

The above cross-section has a weak dependence on mpys through x.

A typical form of cross-section is given by

)\2

2.74
167rm%M7 ( )

(ov) ~
where A is the coupling strength of dark matter with the light SM particles. Interestingly, one sees that for
A? being around weak coupling strength a%, ~ 1073 and for mpys being around weak scale mass my, ~ 100
GeV, we obtain the correct expected value of dark matter abundance. This coincidence is known as the
WIMP miracle.

2.5 Out of equilibrium sectors and cosmological attractors

So far we have focussed on particles that were in equilibrium with the SM plasma in the early universe. The
rest of thesis explores the dynamics of a hidden sector of particles that were always out-of-equilibrium with
the SM plasma. In this section, we provide a general insight on how out-of-equilibrium sectors evolve if we

consider there might be energy transfer from one sector to the other. Our primary interest here is in the
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energy density contained in a thermal radiation bath, where notable examples of such attractor solutions

include the T oc a=3/8

—3/4

evolution of a radiation bath during (classical, perturbative) reheating [36] and the
T xa behavior of a radiation bath fed by out-of-equilibrium renormalizeable scattering processes [37, 38].
Another important class of examples is realized by various models of freeze-in dark matter [15, 39], where the
relevant quantity is the number density of DM. We show that the energy density of the dilute sector follow a
quasi-static attractor solution in a sense that we make precise here.

Since we are considering two sectors that might have much more stronger internal interactions than

interactions between them, we need to solve for energy momentum conservation in each of the sectors

independently,
dpqg
Tﬁt +3Hp,(1+w,) = —Cr (2.75)
d
d—f 4 3Hp(1 + w) = Cp. (2.76)

where the collision term encodes the amount of energy transfer from one sector to the other and the Hubble

rate is determined by

1
H=—pa+p. 2.77
V3Mp potP 2.77)
Generically, one can consider one sector is much more dilute compared to the other, p < p,. Consequently,
the Hubble rate is primarily determined by p,. Furthermore, one can neglect the effect of C on p, as any
energy transfer from b is insignificant for a. Under these conditions, p, evolves independent of the other
sector, while the evolution of the other sector is driven by p,

With the above approximation, we can rewrite the equation for p in the form

dp Ce
—_— 1 =—==F . 2.
a +3(1+w)p= 4 (p,a) (2.78)
By defining new variables as
pla OlnF OlnF
\a) = = = 2.79
(a) F(p(a),a)’ p( ) 81np ? q(a) 81110/ Y ( )
and assuming w to be constant, we can further modify eq. (2.78) to yield
dln A 1
=(1-p)=—3(1 1—p)—q. 2.
g = 1Py —30+w)(l-p)—q (2.80)

This equation dictates how the ratio of Hp/Cg evolves depending on the functional behavior of F'(p,a) = Cg/H
encoded in p,q. Now note that for p < 1 and ¢ > —3(1 4+ w)(1 — p),

1
A= (2.81)
3(1 + w) + ﬁ
is a stable attractor solution for this equation, provided that p and ¢ slowly vary with a (% < 1). This

solution is an attractor: radiation baths initially below this steady-state solution rise up very rapidly to meet
it, while radiation baths initially above it redshift as p oc a=3(1*%) until the attractor solution is attained.

The attractor nature of the system of equations is a consequence of the fact that the process of thermalization
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tends to remove the information about initial conditions.

The quasi-static behavior of p can be found by simply solving the equation

1 Cg

—_— 2.82
31+w)+ 4 H (282)

pla) =
The above result just highlights the fact that in a given e-fold, the energy density in the dilute sector is
dominated by the amount of energy density transferred from the dominant sector in a Hubble time, Cg/H.
In cases of cosmological interest F' very frequently has power law dependence on p and a, thus making A a
fixed and readily computable constant (usually of O(1)). In such cases, the relevant power law describing the
temperature evolution can then be quickly obtained by solving p o« C/H.

When ¢ < —3(1 + w)(1 — p), there is no attractor solution (as X is always positive) and \ increases
uncontrollably. This corresponds to the cases when Cg is falling faster than the redshifting of the energy
density, and the evolution of p is approximately adiabatic. On the other hand, when p > 1, the attractor
solution (when it exists) is not stable. If Cg ever came to dominate in this scenario then it would lead to an
indefinite explosive rise in p due to the positive feedback from Cg. The subsequent solution can be obtained
by simply solving p = Cg.

We can perform an analogous exercise for number density. The Boltzmann equation we start with here is

dn
— Hn = 2.
I +3Hn =C, (2.83)
and, defining
n(a) OlnF OlnF
= = = 2.84
K(0) = Fonay pla) = S, alw) = S (2.84)
we may rewrite this equation as
dlnk 1
=(1-p)——-31-p) —gq. 2.85
g~ 1P =30-p—q (2.85)
Then the attractor solution is given by
1 1 C
K=_——,0r n(a) = ———. (2.86)
3 + 131) 3 + 131) H
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Chapter 3

Reheating in two-sector cosmology

3.1 Introduction

There is now strong evidence from observations of the fluctuations in the CMB that the thermal era was
preceded by an epoch of early accelerated expansion—inflation. Inflation exponentially dilutes any pre-existing
matter and radiation leaving the Universe cold and empty. The population of otherwise decoupled sectors
cannot therefore be put in ‘by hand’ as an initial condition. Instead it must be generated dynamically in the
post-inflationary evolution of the Universe. In the simplest scenarios, the accelerated expansion is driven
by a single fundamental scalar degree of freedom, whose weak couplings to matter reheat the Universe via
perturbative decays. One of the simplest mechanisms for populating hidden sectors is to couple them to the
inflaton so that they are populated at reheating along with the visible sector. By arranging the couplings so
that the hidden sector couples differently to the inflaton than the SM, reheating can be asymmetric, whereby
the SM and the hidden sector are heated to different temperatures [40-43]. However, coupling both the SM
and a hidden sector to the inflaton in the UV necessarily results in inflaton-mediated interactions between the
two sectors. As demonstrated in reference [42], this irreducible inflaton-mediated scattering can thermalize
the two sectors under fairly generic conditions.

This chapter is based on the work in Ref. [17], where we extend the analysis of reference [42] to explore
the effects of out-of-equilibrium inflaton-mediated interactions on asymmetric reheating. Along the way,
we develop and implement methods to numerically solve the Boltzmann equations describing the reheating
of two otherwise-decoupled sectors from the perturbative decay of the inflaton. In particular, we develop
accurate approximations (including the effects of quantum statistics) for the collision terms that describe
the inflaton-mediated scattering between thermalized gases of fermionic and bosonic particles. We take
an effective field theory approach and consider combinations of trilinear scalar, Yukawa, and pseudo-scalar
couplings between fermions, bosons, and the inflaton. When inflaton couplings to matter become sufficiently
large, both non-perturbative effects such as preheating and collective effects in the radiation baths such
as Landau damping and thermal masses can provide important corrections to the inflaton decay rate and
hence the evolution of the temperature asymmetry, particularly at very high radiation temperatures [44—
46]. However, as we show here, both inflaton decays and inflaton-mediated scattering furnish cosmological
attractor solutions during the perturbative phase of reheating, making the final temperature asymmetry
largely sensitive to the dynamics of the system at and below the perturbative reheat temperature Ty,. Thus

the perturbative reheating process that we analyze in the present chapter will often serve as a good guide to
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the final temperature asymmetry despite the presence of richer dynamics at early times.

This chapter is organized as follows. In section 3.2, we review standard perturbative reheating and extend
the well-known single-sector results to include the effects of quantum statistics on the decay width of the
inflaton. In section 3.3, we begin our study of reheating into two sectors and introduce the inflaton-mediated
interactions between the two sectors (required by self-consistency). We show how inter-sector scattering
dominates over any features from quantum statistics in most of the parameter space. We conclude in section
3.4.

We work in units where b = ¢ = kg = 1, and denote by Mp; = 2.435 x 10'® GeV the reduced Planck mass.

3.2 Quantum statistics in single-sector reheating

In this section we revisit the perturbative reheating of a radiation bath. After reviewing the classic treatment,
we demonstrate that at temperatures T' > My /4, where M, is the inflaton mass, quantum effects such as
Bose enhancement and Pauli blocking can significantly affect the evolution of the temperature of the radiation
bath during reheating. We show that the effects of quantum statistics disappear once T' drops below M, /4,
and thus alter the outcome of reheating only when Ty, 2 My/4. While we refer to the decaying particle as
)

an inflaton and have post-inflationary reheating primarily in mind, our results apply also to other “reheatons’

such as curvatons or moduli (see also [47]).

3.2.1 Perturbative reheating

A generic scenario of inflation [48-50] consists of one or more scalar fields ¢; slowly rolling on a sufficiently flat
potential, V(¢;) (see, for example, [51] and references within). Inflation ends when the slow-roll conditions are
violated, and the fields ¢; roll quickly to the potential minima and start oscillating. For this work, we assume
that only one field ¢ is relevant during the reheating process, and that its potential is analytic and can be
expanded in a Taylor series about its minimum. We further assume that only the leading quadratic term in
this Taylor series is needed.! The time-averaged equation of state of a field oscillating in a quadratic potential
is that of a stationary massive particle, and thus the Universe undergoes a period of matter domination while
the inflaton energy density dominates [54]. During this oscillating phase, the inflaton condensate starts to
decay through its couplings to matter, initiating reheating. If these couplings are large enough, the first
stage of reheating can proceed through a period of parametric resonance known as preheating [55, 56]. In
the preheating regime, particle production is non-perturbative and typically requires numerical treatment
(however, see [57]). As the amplitude of inflaton oscillations decreases, due to both Hubble friction and
inflaton decay, preheating ceases and particle production can be treated perturbatively. Unless preheating
is violent enough to drain an O(1) fraction of energy out of the inflaton condensate, this final epoch of
perturbative reheating typically dominates the properties of the radiation bath produced by inflaton decays.

For this work, we thus consider perturbative reheating in a quadratic potential [58, 59]. We consider the
generic case where all particle masses besides the inflaton mass are negligible at the energies we consider, and
therefore treat all matter species as radiation. We further neglect inverse decays from radiation into inflaton

quanta; this is a good approximation provided the number of species in the radiation bath is large, g. > 1.

We are explicitly ignoring anharmonic corrections to the inflaton potential that may be relevant during reheating. These
anharmonic terms can be important for non-perturbative effects during reheating, such as the formation of oscillons, as recently
reviewed in [52]. Conversely, the absence of a quadratic minima generically leads to a radiation equation-of-state very quickly
following inflation [53].
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With these approximations, the Boltzmann equations describing reheating read (see, for example, [36])

dp

d—:’+3Hp¢ = —Tp, (3.1)
d
d—i+4Hp = Tps, (3.2)

where the Hubble rate H is given by the Friedmann equation

1
H=———\/p+ps . (3.3)
V3 Mp, ¢

The inflaton width is denoted by I', and pg and p are the inflaton and radiation energy densities, respectively.
These equations are (approximately) valid from the end of inflation at some scale factor a = ay, which we
take as our initial point. The radiation sector is initially empty,? p ; = 0, whereas the initial energy density
of the inflaton is given in terms of the mean-square value of the inflaton field just after the end of inflation,
(62), a5 po.r = M2(63)/2.

In figure 3.1, we plot the inflaton and radiation energy densities obtained by numerically solving eqns.
(3.1) and (3.2) with a constant inflaton decay width, I' = I'y. Initially, I' <« H and therefore inflaton decays
are inefficient. Thus the inflaton energy density during this phase can be well approximated as diluting only
through redshifting, ps ~ ps r(a/a;)™3. The evolution of the radiation sector, however, is dominated by the
energy injection from inflaton decays. Initially, the radiation energy density grows rapidly until the rate at
which energy is injected into the radiation bath by inflaton decays, governed by I'py, matches the rate at
which the radiation bath loses energy due to the expansion of the universe, governed by 4H p. After this point,
the evolution of the radiation sector follows an attractor solution, which realizes a quasi-static equilibrium
between energy injection and dilution (see section 2.5),

4Hp = Tps, (3.4)

itz
where

_ 0ln(Tpy/H)

o(a) Cpa _ 8ln(Fp¢/H)-

and p(a) lnp

(3.5)
We call the above evolution imposed on the radiation sector by inflaton decays the reheating attractor curve.
For a temperature-independent decay width, I' = T'y, the factors ¢ and p are readily determined to be
constants, ¢ = —3/2 and p = 0, yielding the relation 4Hp = (8/5)T'gps. On this attractor solution the

radiation bath evolves as [36]

2 a —3/2
p = (EToMery/pos ) (C”) : (3.6)

when a > aj. The attractor nature of this solution means that the evolution of the energy density of the

radiation bath during reheating is relatively insensitive to its initial conditions. Radiation baths with energy

2This is generally a good approximation for models with tri-linear scalar couplings and Yukawa interactions with fermions, as
in these cases the daughter fields get a large mass during inflation, shutting off inflaton decays. However, for a pseudo-scalar
inflaton coupling to either fermions or gauge bosons, there can be significant energy density already in the radiation sector as
inflation ends (see, for example, [60, 61]). However, as we demonstrate below, the specific initial conditions are largely irrelevant
for the detailed outcome of reheating.
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density initially below the attractor solution rise rapidly to meet the attractor. Meanwhile radiation densities
initially above the attractor curve redshift as p oc a=# until they meet the attractor, as can occur in (e.g.)
scenarios where a modulus comes to dominate the post-reheating universe [47, 62, 63].

The attractor solution can also be obtained by solving the Boltzmann equations during reheating. Well
before reheating, the inflaton condensate dominates the energy budget of the Universe; its comoving energy
density is approximately constant and the Boltzmann equation describing the radiation bath can be simplified
to yield [36]

d
a(pa‘l) = \/gMp1a3\/;T¢I‘0. (3.7)

Solving eq. (3.7) with the initial condition p(ay) = 0 also allows us to determine the maximum energy density

attained by the radiation sector [36],
Pmax = 0.24Mpil'o\/pe.1- (3.8)

3.2.2 Quantum statistics during single-sector reheating

The preceding discussion neglected the possible effects of quantum statistics during reheating. Typically, the
inflaton decays at rest, producing pairs of particles at a fixed energy My/2. To quantify the possible effects
of Pauli blocking or Bose enhancement of the inflaton decay, we need to specify the phase space distribution
in the radiation sector. For simplicity, we assume the radiation is in thermal equilibrium,

72g,

= T =aoT* :
P=35 ol”, (3.9)

which amounts to assuming that the thermalization time scale for the radiation sector is much faster than
any other time scale in the problem. This is in some sense a conservative assumption for the purpose of
analyzing the scattering and reheating processes discussed in this chapter: a less equilibrated sector has a
greater fraction of particles with energies concentrated near My /2, making both inflaton-mediated scattering
and quantum statistics more important. However, as we demonstrate below, the post-reheating properties of
the radiation baths are typically determined by the late-time behavior of the system, making the detailed
approach to thermal equilibrium within each radiation bath largely immaterial for the final outcome of
reheating. This separation of timescales generally makes prompt thermalization a robust assumption.
For temperatures T' < M /4, a constant (zero-temperature) inflaton decay width is a good approximation.
At these temperatures, the phase space where particles are injected by inflaton decays, E ~ My /2 , is sparsely
populated due to the fast thermalization of the injected particles, and thus the effects of Pauli blocking or
Bose enhancement are negligible. However, at higher temperatures, T' 2 My/4, the equilibrium thermal
distributions have significant support at E ~ M,/2, and the inflaton decay rate can be significantly altered.
The partial decay width of a parent scalar to pairs of particles in equilibrium at finite temperature is given by
exp(%) +1
¢

I(T) =Ty (3.10)

M b)
exp(m7) F 1

where Ty is the zero temperature decay width, and the upper (lower) sign holds for bosons (fermions) in the
final state. At high temperatures, the decay width is enhanced (suppressed) for bosons (fermions) due to

Bose enhancement (Pauli blocking). We now consider reheating to boson and fermionic radiation separately.
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Figure 3.1: Left panel: Energy density as a function of scale factor during reheating for 'y = 107 M,
Po. 1 = MlglMg7 and My = 2.4 x 10° GeV. Solid lines show the energy density of a thermal radiation bath with
different colors indicating different statistics: orange for Bose-Einstein (BE), black for Maxwell-Boltzman
(MB) and blue for Fermi-Dirac (FD). The energy density in the inflaton field is shown by the purple dashed
line. Right panel: Same as the left panel, with inflaton width given by I'o = 1072M,,. For these parameters
the reheat temperature is larger than the inflaton mass and hence different quantum statistics lead to different
reheat temperatures.

Bosonic reheating: In the case of decays to bosons, for T' > M, /4 the inflaton decay width is approximately
given by I' ~ 4TTy/M,. Using this decay width in eq. (3.4) immediately yields a new quasi-static equilibrium
solution for the radiation bath (¢ = —3/2 and p = 1/4), with power law evolution

2v/3 Mp )1/3 (;)1/2. G

T= M¢(TV;FWW

This reheating attractor curve can again be found analytically by solving the approximate Boltzmann equation
describing the radiation bath during reheating, analogous to the Maxwell-Boltzmann result. With initial

condition p(ay) = 0, the full temperature evolution is

riw = (2 ] () ())) a2

ar

The radiation bath attains its maximum temperature,
1 Mp, 1/3
Tmax = 0.95M¢(774F01/p¢’[) 5 (313)
a M by
at a = 1.6ay. For bosons, the inflaton decay width decreases with temperature, making energy injection into
the radiation sector less efficient as the temperature decreases. This results in the temperature dropping as

T o a~1/?, faster than the classical result 7' oc a=%/8 (eq. (3.6)).

Fermionic reheating: For an inflaton decaying to fermions at T' > My, the decay width can be well

approximated by I' ~ I'gM,/(4T), which gives ¢ = —3/2 and p = —1/4. In this regime, the radiation sector
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evolves as

5v/3 Mp) /5 (a0
T= M¢(56 M4r0,ﬁp¢,,) - . (3.14)

The full solution to the Boltzmann equations with initial condition p(a;) = 0 is

1/5

T(a) = M, (55‘6[ ]\AﬁIFOWKi)M - (51) SD : (3.15)

The maximum temperature attained by the radiation bath is

1/5
T = 0. 58M¢( STovpar) s (3.16)

M4
attained at a = 1.4aj.

In the analytic treatment of the Boltzmann equations for reheating in the fermionic and bosonic cases
above, we have taken T'(ay) = 0 as our initial condition. Strictly this is inconsistent with the high temperature
expansion used for the inflaton width. A more complete analytic treatment would use the zero-temperature
inflaton width to describe the early evolution of the radiation bath until its temperature rises to M, before
implementing the high temperature expansion. However, such a procedure only alters the scale factor at
which the maximum temperature is attained and not its value. Moreover, since the maximum temperature
is attained very quickly compared to other timescales in our problem, the error due to this simplifying
assumption is negligible. Perhaps the more consequential assumption in this region is that we have taken the
radiation bath to attain internal thermal equilibrium nearly instantaneously. In the very early periods of
reheating, the thermalization rate is likely to be smaller than the very rapid rate at which the energy density
of the radiation bath grows. The simple solutions presented here for the decay width and the initial evolution
of the energy densities are thus probably incorrect for describing these very early regions.

Once the temperature falls below the inflaton mass scale, the temperature dependence of the inflaton
decay width in eq. (3.10) becomes unimportant as inflaton decays now populate sparsely occupied regions of
phase space. Subsequently the radiation sector evolves as T o< a~3/8.

Reheating completes when the inflaton decays become efficient, I' ~ H, and the inflaton energy density
decreases exponentially. During this epoch the Universe transitions from the matter-dominated era of
reheating to a radiation-dominated expansion, where the temperature of the radiation sector redshifts
adiabatically as T oc a='. If I' ~ H occurs while T > M,/4, then the temperature of the radiation sector

directly transitions to 7 o< ¢~ without going through the classical T' o a~3/8

regime. In this scenario, the
resulting reheat temperature depends on the quantum statistics of the inflaton decay products. Estimating
the reheat temperature by setting H = I'(T') and taking H to be dominated by the radiation bath, we find

for T > My

4—\/§MPIFO boson
Ty = va My (3.17)

1/3 )
(4§MP1FOM¢> fermion
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in contrast to the classical result

1/2
T = (\\/[;Mpll‘o) , (3.18)
which holds for T}, < My. We summarize these different power law behaviors of the radiation temperature
in figure 3.1. In the left panel we show a case where the reheat temperature 7}y is below the inflaton mass.
In this case, quantum statistics are unimportant for determining 7}y, as all three scenarios converge onto the
attractor solution governing classical perturbative reheating, eq. (3.4). In the right panel of figure 3.1 we
show a case where T}y, is above the inflaton mass. As the inflaton decay width gets significant corrections
from quantum statistics at these high temperatures, we observe the different reheat temperatures of eq. (3.17)
expected for different quantum statistics at fixed zero-temperature decay width.

In the above scenario we have assumed that all particles coupled to the inflaton have the same quantum
statistics (bosons or fermions). If the inflaton couples to both bosons and fermions then the energy density of
the radiation sector as a whole evolves depending on the total inflaton decay width. In this scenario, the inflaton
width is dominated by the Bose-enhanced partial widths at very high temperatures, and hence the radiation
sector evolves according to the bosonic power law (7' a"V/ 2). If the zero-temperature partial-width into
fermions is larger than that to bosons, Fgermion > ['bosen then (assuming Ty, < My /4) there is a temperature,
T., for which ['boson(T,) = Dfermion(7.) " while ['Poson(T") < [fermion(T) for T' < T,.. For My/4 < T < Tk,
the radiation bath transitions to the power law T oc a=3/19 (characteristic of high-temperature fermionic
reheating) before ultimately transitioning to the classical T' a=3/8 for T < My /4.

Despite model-dependent uncertainties associated with the initial evolution of the radiation baths, the
attractor nature of these perturbative reheating solutions renders the later temperature evolution, and the
resulting reheat temperatures, insensitive to variations to the initial conditions and early evolution provided
that the attractor solution is obtained. Reaching the attractor solution requires that 1) the energy density
of the oscillating inflaton dominates the Hubble rate for some time, during which inflaton decays become a
cosmologically important source for the radiation bath, and 2) that the thermalization timescale is short
compared to the duration of inflaton domination. As we demonstrate in the remainder of this chapter,
similarly general results can be obtained for the more complicated scenarios that arise in two-sector reheating

as well.

3.2.3 Preheating and the Bose power law

In previous section we showed that the evolution of radiation bath is significantly affected by quantum
statistical distribution of its particles if the temperature of the radiation bath satisfies, T' > My /4. To obtain
such high temperatures, large values are required of the inflaton coupling with particles in the radiation bath.
One might be concerned that such large couplings to matter place the inflaton in the regime where preheating
dominates over perturbative reheating. In this section, we use a toy model to demonstrate that there is a
region of parameter space where one can have perturbative production of particles to be significantly affected
by quantum statistics.

We focus on a theory with an inflaton, ¢, coupled to a scalar field, y, via the trilinear coupling

1
Ling = 5#(;5)(2. (3.19)

This model can experience broad resonance preheating for sufficiently large values of p and sufficiently large
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inflaton oscillations ® = /(¢$2), in which case energy is effectively drained from the inflaton condensate

before perturbative reheating can occur. The condition that no broad resonances are present in the theory is
pd < M3 (3.20)

When this condition is satisfied, preheating is inefficient and perturbative reheating dominates the properties
of the radiation bath [55, 56, 64].

During perturbative reheating, for a given value of p, the inflaton amplitude ® uniquely specifies the
temperature of the matter sector. Using the reheating attractor solution eq. (3.4) along with the quantum

statistics correction to the inflaton decay width eq. (3.10), we obtain for the radiation bath

JVIQL,
1 w? [e=m 41 3
4 _
ol =—3p X35, <1> \@‘I’MP“ (3:21)
: N

- er

where

1

Eq. (3.21) can be solved to yield T as a function of ®. At high and low temperatures, the above relation

simplifies to

1/3
( V3 "—QMP@) T> My/4

T = { \16v2ra My (3.23)
Vi o 1/4 :
(8071’04'“ MPI(I)) T < M¢/4
Eq. (3.21) is valid as long as I'(T') < H, or
w2 [ew 41 _ My 1)
32M¢7T 61;4—1? -1 \EMPl. .

In figure 3.2 we show the resulting parameter space for perturbative reheating for three different values
of My. We show the equalities corresponding to broad resonance preheating (eq. (3.20)) and the end of
perturbative reheating (eq. (3.24)) in red and blue respectively; the yellow shaded region represents the
region where perturbative reheating dominates the evolution of the radiation bath. We further show contours
of T, from eq. (3.21). Above T' = M, /4, the matter sector realizes the T" o a~1/2 power law. We thus observe
that for all three mass points, there is some region of parameter space where reheating is dominated by
perturbative processes and the radiation bath realizes the bosonic power law. Lower inflaton masses enable
the radiation bath to reach higher temperatures during perturbative reheating.

For a given value of u, the theory may avoid preheating if the inflaton amplitude at the end of inflation
is below the red line in figure 3.2. As perturbative reheating occurs, the inflaton amplitude decreases due
to redshifting in an expanding universe. This redshifting corresponds to traversing downward in the y — ®
parameter space. The temperature of the radiation bath decreases correspondingly along this trajectory.

This downward trajectory continues until we reach the blue line and reheating occurs.
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Figure 3.2: Reheating parameter space for My = 1 GeV (left), My = 2.4 x 10° GeV (center) and M, = 10*°
GeV (right). If the inflaton amplitude at the end on inflation is in the region above the red line, then
the universe undergoes by broad resonance preheating, eq. (3.20). If the inflaton amplitude at the end of
inflation is in the yellow shaded region, then the effects of preheating are sub-dominant and the Universe
undergoes perturbative reheating. Perturbative reheating ends on the blue line, eq. (3.24). The dotted lines
represent constant temperature contours during perturbative reheating calculated using eq. (3.21), T' = 10M,
(magenta), T'= M, (green) and T = 0.1M, (cyan).

3.3 Two-sector reheating with inflaton-mediated interactions

In section 3.2, we demonstrated how quantum statistics alter the temperature evolution of the radiation
sector prior to reheating. We now incorporate inflaton decays into two sectors and study the effect of
inflaton-mediated scattering between the two sectors on the final temperature asymmetry. As we demonstrate
in this section, inflaton-mediated energy transfer between sectors also yields an attractor solution for the
temperature of the colder radiation bath, which allows us to make analytic predictions for the final temperature
asymmetries in the regime where inflaton-mediated scattering is important.

We begin by establishing our notation. Introducing the scattering terms in the Boltzmann equations and

ignoring any inflaton quanta, the Boltzmann equations in this limit read [42],

d
S 4 3Hps = —(Ta+T)ps (3:25)
dpa

('ft +4Hp, = Tapy—Cp (3.26)
d

% +4Hp, = Typs+Ch, (3.27)

where I', 5, are the (temperature-dependent) decay rates of ¢ to the respective sectors, H is the Hubble rate,

which is given by the Friedmann equation

1
H=———\/pa+py+ps, (3.28)
V/3Mp) ¢

and Cg is the collision term describing the energy transfer from the hotter radiation sector to the colder
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radiation sector via two-to-two scattering processes of the form 1+ 2 — 3 4+ 4,

d? d* d* d _
CE :/ P1 D2 b3 Y2 (27T)464(p1 +p2 — p3 _p4)‘M|2S(E1 + E2)

2E1(27)3 2E5(21)? 2E4(27)3 2Ea(27)
x [fi(p1) f2(p2) (1 £ f3(p3)) (1 £ fa(pa)) — f3(p3) fa(pa)(1 £ f1(p1))(1 £ fa(p2))]
=cl - cb. (3.29)

Here Cg and CY are the collision terms for forward and backward reactions respectively, |M|? is the spin-
summed scattering amplitude as determined by the particular inflaton-radiation interaction, and S is a
symmetry factor accounting for possible identical particles in the initial and/or final state. We retain the full
dependence on quantum statistics to accurately describe the energy transfer between two relativistic radiation
baths [42], which makes the evaluation of the collision term more challenging. In appendix A, we show how
the collision term eq. (3.29) can be simplified for two relativistic species at different temperatures.?

We use the subscript ‘a’ to denote the sector that attains the larger temperature at the end of reheating.
Generically, this corresponds to the sector with the largest zero-temperature decay width.* ‘Reheat tem-
perature’ in this context refers to the temperature of the hotter sector when the universe transitions from
matter to radiation domination. We define the transition from matter domination to radiation domination
at the point where energy density in the radiation becomes equal to the energy density in the inflaton,
pal@rn)+ pp(arn) = pg(arn). where

For the numerical results in the rest of the chapter we adopt a common reference set of numerical values
for the inflaton mass and initial energy density as well as the number of degrees of freedom in each radiation
bath,

2 2

g =0 g = DIt g0 A, = 10713 Mp; = 2.4 x 10° GeV, (3.30)
30 30
1
po.1 = 5 M(67) = ME M.

We assume for simplicity that «, and a; are constant over the range of temperatures we consider. While in
what follows we have fixed the value of My, our results are broadly independent of its precise value. As we
demonstrate below, our results for the final temperature asymmetry depend on My only through 7}, and the
ratio Ty, /My. The specific value of My is generally only important insofar as smaller values of M, make it
easier to obtain larger Tyy, /M.

We next demonstrate that the inflaton-mediated energy transfer yields a cosmological attractor solution
for the colder radiation bath, using the model where the inflaton has trilinear couplings to scalar fields in
both sectors as an illustrative example. We then analyze in detail how the interplay between this scattering
attractor solution and the reheating attractor curve of the previous section determines the final temperature
asymmetry. We then extend this analysis to other forms of the inflaton couplings to matter. In particular, we
consider theories where the inflaton has: Yukawa couplings to fermions in both sectors; axion-like couplings
to gauge bosons in both sectors; and a mixed scenario with a trilinear coupling to scalars in one sector and

Yukawa coupling to fermions in the other. For the collision term, Cg, we use the analytic approximations

3Note that there can also be energy exchange via t-channel scattering process mediated by inflaton. However the energy
transfer via t-channel scattering process is orders of magnitude smaller compared to s-channel process because only the latter
process is resonantly enhanced when inflaton is on-shell.

4This is not the case when the inflaton couples to bosons in one sector and fermions in the other and the resulting reheat
temperature is large, Ty, 2 Mg /4. For this case, the effective decay width into bosons to be larger than the effective decay
width into fermions even if the zero temperature decay width into bosons is smaller.
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derived in appendix A.4. For simplicity we continue to assume that the inflaton only couples to a single

species in each sector.

3.3.1 Scalar trilinear couplings

We begin by considering a theory where the inflaton is coupled to scalar fields in both sectors, x, and xp, via

trilinear couplings

1 1
Ling = 5%@(3 + §Mb¢X§~ (3.31)

This interaction results in zero-temperature decay widths given by

1yl Am? , 1y
Toap = ooy [1— —ab o T0b 3.32
000 391 M, M2 32mM, (8:32)

where m,;, denotes the mass of the fields x4, which we have assumed to be much smaller than the inflaton

mass, Mg < My. Our convention is that sector a is the hotter sector, and accordingly we take i, > pp in

what follows.

The collision term

The s-channel amplitude for x,xq <> X»X» scattering mediated by inflaton exchange is given by

> Hal
M = “ . 3.33
| (3)‘ (S _ Mq%)Q + (POa + Fob)2 ( )

In appendix A.4.1, we compute the collision term, Cg, following from this amplitude.

The collision term in general is a function of both T, and T;. However, for large asymmetries T}, < Ty,
the forward energy transfer term governing energy injection into the colder sector dwarfs the backward energy
transfer term. Moreover, in this regime we can also ignore the final state Bose enhancement of C’};: while xp
particles produced in the forward reaction typically have energies of order ~ T, for T, < T, those energy

levels are mostly unpopulated. In this simplified regime, the collision term thus depends only on 7T, as

2,2

Mg Uy, 3 |: < Ty ) :| >
7’% P T.]1.6log i)t 13| T, 2 My
1 paky 0T

_ ok (M¢) T, <M, 3.34
160 22 ea AT ~ Mo (3.34)

79 .[1“(21:[‘L§T5
3272 Mg @

Ma,p K T, < M¢7

as derived in appendix A.4.1; see figure A.1. For T, 2

~

Mg, the collision term is substantially enhanced by
the resonant exchange of inflaton particles. The divergence in the Bose-Einstein distributions at £ — 0
combined with the resonant peak in the scattering amplitude results in a logarithmic dependence on T, /M,
for T,, > My. As T, drops below the inflaton mass, the scattering goes off resonance and Cg drops rapidly.

Because the scattering is dominated by the energetic tail of the phase space distribution, this fall-off of
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Figure 3.3: Left panel: Example temperature evolution of radiation sectors during and after reheating via
scalar trilinear couplings. The solid (dashed) lines denote the temperatures obtained from numerically
solving the Boltzmann equations including (neglecting) the inflaton-mediated scatterings between the sectors.
Reheating is denoted by the vertical blue line at a,,. The figure has been plotted for p, = 1073M,,
o = 10755 My, mgp, = 1073 My with other parameters as specified in eq. (3.30). Right panel: Comparison of
the collision term to the redshifting of both sectors as well as inflaton decays for the same parameters as that
in left panel. The black dot on the curve for the collision term indicates T, = M,/4, which approximately
indicates the temperature below which the s-channel energy transfer rate becomes exponentially suppressed.

the energy transfer rate can be accurately described assuming Maxwell-Boltzmann statistics, thus yielding
a Bessel function Ko(My/T,) ~ (My/T,)%/? exp(—My/T,). Note that, in the resonant regime, the energy
transfer rate depends more strongly on the smaller coupling u; than the larger coupling p,, and in particular,
when pp < fiq, the rate is almost independent of p,. Below the resonance, the energy transfer rate drops
rapidly until it reaches the low-temperature regime 7, < My. In this regime, the inflaton can be integrated
out of the theory, leaving a constant scattering amplitude, |M(s)|? ~ uiu%/M;;. Thus we obtain the Cp oc T
behavior in the last line of eq. (3.34). Finally, at temperatures low enough that one or both of the scattering
species becomes non-relativistic, the energy transfer rate becomes Boltzmann-suppressed; we do not include
this effect, as we find that generically the behavior of Cg below T, < My/4 is inconsequential to determining
the final temperature asymmetry.

Finally, we stress that the expression for Cg given in eq. (3.34) is a limiting version that neglects its
dependence on Tp. Dependence on Tj, can enter in two ways: first, via the backward energy transfer term,
and second, from Bose enhancement of C};. The backward energy transfer term becomes important when
Ty, 2 0.97,, and as the two sectors approach equilibration the net energy transfer rate rapidly drops. The
Bose enhancement of the forward energy transfer term is more involved to model. This Bose enhancement
largely serves to increase CJ{; in the high and low temperature regimes in eq. (3.34) with increasing 7,. The
middle regime in eq. (3.34), however, is insensitive to the possible Bose enhancement terms, as that regime
is effectively described by Maxwell-Boltzmann statistics. As we show below, this last property enables us
to obtain analytic predictions of the final temperature asymmetry without needing to keep track of the full

behavior of the Bose enhancements.

The scattering attractor solution

Now we discuss the impact of the collision term on the temperature evolution of both sectors, and derive the

corresponding scattering attractor curve for the temperature of the colder sector. We begin by considering
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scenarios where Ty, > My, where, as we demonstrate, scattering becomes important post-reheating. One
such parameter point is shown in figure 3.3, which plots numerical solutions for the radiation temperatures
obtained using the collision term as given in eq. (A.78). To highlight the importance of scattering, we also
show the temperature evolution when the scattering has been turned off. In the right panel, we show the
evolution of the collision term, Cg, in comparison to the combinations 4H p, ; and I'g pps. We mark the point
T, = My/4 around which Cg begins to exhibit substantial Boltzmann suppression. As the scattering process
affects the temperature evolution substantially post-reheating in this example, we can cleanly separate the
effects of scattering from the contributions of reheating; in this discussion, reheating itself is only important
insofar as it provides initial conditions for the subsequent post-reheating evolution of T, and T}.

As figure 3.3 shows, T}, begins to deviate from the no-scattering solution as soon as the fractional energy
transfer rate into the colder sector becomes comparable to the Hubble rate, I'g, = Cg/py ~ H. When
this happens we say that inflaton-mediated scattering becomes effective. In contrast, when the fractional
energy transfer rate out of the hotter sector becomes comparable to the Hubble rate, I'g , = Cg/pq ~ H,
inflaton-mediated scattering becomes efficient and the two sectors attain thermal equilibrium. In the scenario
shown in figure 3.3, inflaton-mediated scattering becomes effective but never efficient. The solution to the
Boltzmann equation for 7T, when scattering becomes effective is approximated by the quasi-static attractor

solution (see section 2.5)

1 Cg(T,,Ty)
po(Th) = , (3.35)
44+ 1L H(Ta)
where
~ 0ln(Cg/H) ~ 0Iln(Cp/H)
pla) = “olpy and q(a) = ~ma (3.36)

We call this evolution of p, the scattering attractor curve. In evaluating g(a), the scale factor dependence in
Cg/H comes through T,, which in the present scenario is evolving adiabatically. For a given value of T,
there is a single corresponding value of T}, that satisfies eq. (3.35). In general, solving eq. (3.35) for Ty is
non-trivial given the dependence of Cr on Tp through Bose enhancement. The attractor curve exists as long as
4+q/(1 —p) > 0, which translates to the condition that Cp falls off more slowly with scale factor than Ha*.
At temperatures below T' ~ M /4 the collision term falls off exponentially (eq. (3.34)), marking the end of
the attractor evolution. Beyond that point, p, evolves adiabatically as seen in figure 3.3. Thus the scattering
attractor curve yields a final temperature asymmetry simply given by the asymmetry at T, ~ M,/4.

To further highlight the attractor nature of the collision term, figure 3.4 shows the post-reheating evolution
of the temperature ratio, = = (aqpp/(wpa))'/?, for the parameter point of figure 3.3, but now considering
a range of (post-reheating) initial conditions for p;, (or equivalently z). In the left panel, the solid blue
line tracks the evolution of T,/T, following from figure 3.3, where the initial conditions are determined
self-consistently from inflaton decays, z; = z;;, = 0.02. The purple dot-dashed line shows the evolution
when the initial temperature ratio is instead zero, x;; = 0; again, initial densities below the attractor
solution rise rapidly to attain the attractor. The yellow dot-dashed line shows the evolution with an initial
temperature ratio xo; = 0.1 > x,y,; this solution still attains the scattering attractor curve, eq. (3.35). The
green dot-dashed line denotes evolution with an initial temperature ratio, x3; = 0.5, much above the final
temperature ratio determined by the scattering attractor solution. In this case T} remains mostly unaffected

by inflaton-mediated interactions. Thus we see that the inflaton-mediated interactions impose a minimum
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Figure 3.4: Left panel: Evolution of post-reheating temperature ratios for several different initial conditions.
The solid blue line shows the evolution = Ty,/T, from figure 3.3. The dot-dashed lines (z1, x5 and
x3) indicate the temperature ratio evolution after artificially varying the initial condition for T} (z1,; = 0,
x2; = 0.1 and z3,; = 0.5). The horizontal black dashed line corresponds to the analytic estimation of the
final temperature ratio derived in eq. (3.41). Right panel: The collision terms (normalized by M;}H a=?)
experienced by the colder sectors plotted on the left panel. The solid light blue line represents the evolution of
the collision term when the Tjp-dependence of Cg is neglected. The vertical black line in both panels indicates
the scale where T, = My /4.

value for the final temperature ratio: any initial temperature ratio below this minimum value is increased to
that value by the scattering attractor solution while initial temperature ratios above this minimum remain
largely unaffected. This minimum final temperature ratio is simply determined by the behavior of Cg near
To ~ My/4, as we elaborate below.

The right panel of figure 3.4 shows the ratio Cg(T,,z)/(Ha~*) for all scenarios. The different behavior
of the curves at early times shows the differing importance of Bose enhancement on the final state in the
different scenarios. All curves converge onto a single common solution for Tj ~ My, when scattering is well
described by Maxwell-Boltzmann statistics. As Hp, evolves with scale factor as Ha~*, the value of a where
Cp/Ha™* is maximized® coincides with the value of a where the scattering attractor solution for p; ends.

To accurately determine the final temperature asymmetry predicted by the scattering attractor-curve, we
need to integrate the Boltzmann equations around the region where T, < M. Assuming no 73 dependence

in Cg or H, the Boltzmann equation for p, can be directly integrated,

4 (b _ [aPCs(T) 4 [V P VBMeiCE(My/2)
poa” = (pya”)a=a, / I da’ = aj 1 a}l/2M£ dz, (3.37)

ay

where we have defined a; as the scale factor at which T,(a1) = My, and z = a’/a;. We evaluate Cg by taking

5The visible hiccup near the peak in Cg(T,,0) is a feature of the imperfect fitting used in our analytic approximation of Cg,
eq. (A.78).
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the limit  — 0 around T}, ~ My in eq. (A.78) to obtain

4<2M2 Loal’op \/ng)
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(3.38)

We determine the initial energy density of the colder sector, (ppa?)a—a,, by assuming that the colder sector is
already on the scattering attractor curve defined by evaluating eq. (3.35) using Cg = Cg(T,,0). However, the
Maxwell-Boltzmann behavior of the collision term in this temperature range helps to ensure that the final

result is insensitive to the specific choice of x = 0. We find

To.oT M,
pb(al)—0.71< a2 Loalos V3 Pl) (3.39)

®Toa+Tos al/?

The final energy density of the colder sector is then given by

ai\*( 2 5 Toalos V3Mp
- 7,0(7> 2 M2 —0e20, . 3.40
po(a) a (71_2 ¢ To.o + Lo a(11/2 ( )

The final temperature ratio between the two sectors predicted by inflaton-mediated scattering is then

T = (Oéapb>1/4 -1 25<1 F07aF0,b MPI )1/4 (3 41)
sc Qappa Mg Lo +Top Jagow )

a>ay

where we have used p,(a) = aa]\/[;}(al/a)‘l. This is the value that the temperature ratios x,z; and x5
asymptote to as shown by the horizontal black dashed line in figure 3.4. Eq. (3.41) holds as long as zs. < 0.9.
Once the temperature ratio approaches unity, backward energy transfer and the contribution of p;, to the
Hubble parameter become important, and the attractor solution no longer captures the full behavior of the
system. In these cases, where the two sectors approach thermalization, a more detailed numerical study is
required.

Finally, it is worth emphasizing that the scattering attractor curve discussed here is dominated by the
resonant behavior of the energy transfer rate, and depends on the properties of the radiation baths at T, ~ M.
In the trilinear scalar model, a second attractor phase appears at temperatures well below the resonance
(T, < My). This is evident from the late-time increase in Cg/(Ha™*) in the right panel of figure 3.4, after
the resonant enhancement ends. This possibility of IR thermalization is a special feature of the trilinear
scalar model, where integrating out the inflaton introduces a renormalizeable quartic interaction between the
two sectors. In all other cases Cg falls off much faster at lower temperatures due to the higher (> 4) mass
dimensions of the operators that couple the inflaton to the radiation baths. Once T, ; ~ Mg, Cg becomes
exponentially suppressed and scattering is cut off. Thus, thermalization in the IR depends on the mass scales
in the matter sectors coupled to the inflaton, as well as the inflaton mass and T}1,. Late-time equilibration

through scalar portal interactions is studied in detail in [42, 65, 66] and we do not discuss it further here.
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Figure 3.5: Left panel: Contours of the final temperature ratio obtained numerically, z,, = T}, /T,, shown
in color, for the case when the inflaton is coupled to scalars in both sectors. The white dashed lines show
contours of log,o(Tyn/Myg). Right panel: Contours of relative fractional discrepancy, |5, — £ n|/2f 5, Where
Tfq is the analytic estimate of eq. (3.42) with eq. (3.41), in percent. The white dashed contours depict xy,,
and the red dashed line marks the region where T}, = M.

Final temperature ratios

Both reheating and scattering, considered independently, produce attractor solutions. In most of parameter
space, one attractor solution dominates over the other and thus is primarily responsible for determining the
final temperature asymmetry. As demonstrated above in section 3.3.1, when Ty, > My, a good semi-analytic

approximation to the final temperature asymmetry is therefore
Zf = max([Tn, Tse, 1], (3.42)

where xy, = (@ Top /abI‘Oa)l/ 4. is the temperature asymmetry obtained if we neglect inflaton mediated
scattering. Both z,;, and z4. can be straightforwardly computed from the Lagrangian parameters without
any need to solve the full Boltzmann equations.

In the case Ty, < Mg/4, the reheating attractor solution dominates, as we now show. As Cp redshifts
more slowly than I'yps during reheating, it suffices to show that Cg/Tppy < 1 at T, = My/4 when Cg is
maximized. Using eq. (3.4) for pg at T, = My/4 and eq. (A.75) for Cg(T, = My/4) (at x = 0) we find

( Ce ) N ( 2512y, )1/4 T (%)W Tin (3.43)
FObpqS To=My /4 3 X 215K2(4) M¢ 10 M¢. '

This ratio is small by assumption for SM-scale values of «,. Hence for low reheat temperatures inflaton-

mediated scattering is unimportant during reheating. After reheating, scattering cannot thermalize the two
sectors as the resonant enhancement has already ended. Thus, for T}, < My the final temperature asymmetry
is simply given by z., = (aqLop/l0q)"/*. Although z,., as defined in eq. (3.41) as the temperature ratio
obtained by the post-reheating scattering attractor curve, does not strictly pertain in this case, one can
check that its value is always less than z,, when Ty, < M, /4. Thereby we can extend eq. (3.42) to hold for
Tin < My /4 as well.

We are now ready to consider the full numerical solution to the Boltzmann equations, eq. (3.25). The

resulting numerical temperature asymmetry, y ,, is shown in the left panel of figure 3.5 as a function of the
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ratio of the zero-temperature widths w =T 4/To 4.

As expected, for low reheat temperatures the reheating attractor curve dominates the evolution. The
contours below Ty, S My show the same behavior as in the absence of inflaton-mediated scattering. Inflaton-
mediated scattering becomes important roughly for T;y, 2 My, and dominates for Ty, 2 10Myg. In this
high-temperature regime the contours are almost diagonal, reflecting the fact that z. is dominantly governed
by the smaller decay width I'g 5. In the right panel of figure 3.5 we compare our analytic estimate of eq. (3.42)
with the result obtained from numerically solving the Boltzmann equations. The analytic estimate agrees with
the numerical results within 20%. The discrepancies are greatest exactly where the scattering and reheating
attractor curves are no longer individually sufficient to capture the full behavior of the system: when both
scattering and inflaton decays are important for determining the final asymmetry, around 77y, ~ few My, and
when the sectors are approaching (but not obtaining) thermalization, z; ~ 0.7 — 0.8.

Finally, let us note the important point that our numerical results for xy, are themselves based on
analytic approximations to the collision term. Our analytic fits to the collision term deviate from the exact
numerical values by almost 50% near T' ~ M, (see figure A.1). As the final temperature ratio is predominantly
determined by the behavior of the collision term near T' ~ My, this error is unfortunately not negligible for
our final results. However, this error is made less numerically consequential once we take the fourth root to
find the temperature (eq. (3.41)), inducing uncertainties of up to ~ 15% in the numerical temperature ratio
plots at high T}y, figure 3.5.

3.3.2 Final temperature asymmetry for other theories

The two key properties of Cg—the exponential suppression at T, S My /4 and the weak dependence on T}, in
this range—that allowed us to analytically determine the final temperature asymmetry for the scalar trilinear
case are generic features of resonant s-channel interactions. Much of our analysis in the previous section can
thus be applied directly to other interaction structures. As we demonstrate, in models where the inflaton
has renormalizeable couplings to matter, scattering is only important for determining the final temperature
asymmetry when the endpoint of the scattering attractor curve occurs post-reheating. However, scattering
during reheating can also be important when the inflaton is a pseudoscalar with dimension-five couplings to

gauge fields in both sectors.

Yukawa couplings

We begin with a model where the inflaton has Yukawa couplings to fermions in both sectors,

Acint = ya@/_}alﬁa + ybdnzjbwb (344)

This interaction results in zero-temperature inflaton decay widths given by

2 2 2
ya,b 4ma,b ya,b
Poup = g My [1- e ~ My, (3.45)

where m, , < My denotes the mass of fields 1,,,. The s-channel spin-summed scattering amplitude between

the two species is

_ 4m? dm 52
o1 - —2 ) (1 - —2 . 4
‘M(S)‘ YaYb ( s ) ( S ) (S — Mg)g ¥ (FOa + FOb)2 (3 6)
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The total energy transfer collision term, Cg, following from this amplitude is discussed in appendix A.4.2 and
shown in figure A.2. Unlike the scalar case discussed in section 3.3.1, the collision term is almost insensitive
to the temperature of the colder sector unless the two temperatures are very close and C% becomes important.

In the limit that the temperature ratio between the two sectors is very small, x < 1, Cg is approximately

given by

3.0

32Ya¥ Ta T, > M,
Y22

0.29 2122M§T3 T, > My
a Y

1
Cg = ypes X - " (3.47)
YaYp 4+ta M

Y2 +y; M‘ﬁZKz(Tif) To s My

1.4x10% , , T

o2 YaYy 7,2 Ma,p K T, < M¢.

2T M¢

At temperatures much larger than the inflaton mass, the inflaton mass can be neglected and the scattering
amplitude is approximately constant, |M(s)|? ~ ygyf, yielding the Cg oc T® behavior required from
dimensional analysis. At temperatures closer to the inflaton mass, the energy transfer rate is resonantly
enhanced, yielding Cr oc T2 behavior. As the temperature drops below the inflaton mass, the energy transfer
rate is dominated by resonant scattering in the Boltzmann-suppressed tails. Analogously to the scalar case,
Cg can be well modeled in this region using Maxwell-Boltzmann statistics. In the low temperature regime the
scattering amplitude can be approximated as |[M(s)[? ~ yﬁy%sQ/Mg, yielding the steep Cg o< T behavior.
Note that, like the scalar trilinear case, the energy transfer rate depends most strongly on the smaller coupling
in the resonant regime.

We can again obtain an analytic expression for the final temperature asymmetry due to inflaton-mediated

scattering, as we did for scalars in section 3.3.1. Using Cg from eq. (A.89) and taking z — 0, we obtain

(3.48)

1 Toellop Mp )1/4

Tse = 1.19| —
¢ <Mq25 Lo, +Top apy/agq

The final temperature asymmetry can then be estimated using eq. (3.42), i.e., by comparing the lower bounds
from the scattering and reheating attractor solutions. In figure 3.6 we show numerical final temperature ratios
in the left panel and in the right panel compare our analytic estimate to the numerical results. We again
observe a transitional region around Ty, ~ few x M, where both reheating and scattering are important for
determining the final value of x¢. Note that the analytic estimate from the scattering attractor curve has
better agreement with the numerical results in the region near thermalization, 7 — 1, than we saw for the
scalar case; this is because the Fermi blocking of C}; that occurs here is nowhere near as large an effect as

the Bose enhancement we discussed in the previous subsection.
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Figure 3.6: Left panel: Contours of the final temperature ratio obtained numerically, z,, = T, /T,, shown
in color, for an inflaton with Yukawa couplings to fermions in both sectors. The white dashed lines show
contours of log,o(Tyn/Myg). Right panel: Contours of relative fractional discrepancy, |5, — £ n|/2f 5, Where
Tfq is the analytic estimate of eq. (3.42) with eq. (3.48), in percent. The white dashed contours depict x,,
and the red dashed line marks Ty, = M.

Axionic couplings to gauge bosons
We next consider a theory where a pseudo-scalar inflaton couples to gauge bosons in both sectors,

1

Eint = _4Aa

- 1 L~
SFIE, ) — 4_Ab¢Fg‘ 2 (3.49)

This interaction results in zero-temperature decay widths given by

r L Mg f Ay M 3.50
00t = 256m A2, \| T MZ T 256mAZ) (8:50)

where mq, < My denotes the mass of the gauge fields, Ay . The s-channel spin-summed amplitude for

A A, + Ap A, scattering mediated by inflaton exchange is

— 4 4m? 4m? st
2 _ _ a o b

In appendix A.4, we derive the total energy transfer rate, Cg for this amplitude; see figure A.3. When

the temperature ratio between the two sectors is very small, x < 1, the temperature dependence of Cg is
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approximately given by
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The steep rise in the collision term (Cg o< T7 ) at high temperatures is a consequence of the high mass-
dimension of the operators mediating the interaction. This behavior will be modified when T, 2 A, and the
effective field theory breaks down.

Repeating the calculation from section 3.3.1, using Cg from eq. (A.99) with z — 0, we obtain the

asymptotic temperature asymmetry resulting from the scattering attractor curve,

1 Toellop Mp )1/4 (3.53)

Tse = 1.49( —
) <Mq25 F0,0, + 1—‘O,b Qpy/Og

The final temperature asymmetry can then be estimated using eq. (3.42). In the left panel of figure 3.7 we
show the final temperature ratio determined by numerically solving the Boltzmann equations. In this section,
we take py 1 = 10_10M5M§1 in order to keep Tinax < A, in all of our parameter space, thus ensuring that the
effective field theory is valid throughout the entire evolution of the system. Due to the attractor nature of the
Boltzmann equations describing reheating, larger values of pg r do not change the final value of x that one
would compute for a given set of Lagrangian parameters. However, changing pg ; does alter the maximum
temperature attained (see eq. (3.13)), and therefore if we require Tiax < Ag, Ap then we are restricted to

parameters that satisfy

9116 1/5
Poo (s ) (3.54)
M¢ (2567T)3MP2)1[)¢’[

In the left panel of figure 3.7 the red dot-dashed lines indicate where Tinax = A, for different values of py 1.
Above those lines Ty, > Ag, and thus the early evolution of the system probes the theory above the cutoff.
In the right panel of figure 3.7 we compare our analytic estimate to the numerical result.

In the top left corner of the right panel of figure 3.7, large discrepancies between the analytic estimate
and the numerical computation are becoming evident. In the same region in the left panel, the contours
of fixed temperature asymmetry are beginning to extend more deeply into the region of small w than the
previous examples. Both these features are the consequence of early (i.e. pre-reheating) thermalization,
enabled by the UV-dominated energy transfer process (Cg v o< T) whose effects are not incorporated into
the analytic estimate in eq. (3.42). At sufficiently high temperatures, T, Cg,yv dominates over the energy

dumped from the inflaton. This UV behavior can be seen in figure 3.8, which shows the various contributions
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Figure 3.7: Left panel: Contours of the final temperature ratio obtained numerically, z ¢, = T}/T,, shown in
color, for an inflaton with axionic couplings to gauge bosons in both sectors. The white dashed contours show
log;o(Tin/My). The red dot-dashed lines mark the region where T max = A, for initial inflaton densities
P 1 = 10*8M§1M£, 10*4MF2,1M£ and 100M§1M§. Right panel: Contours of relative fractional discrepancy,
|Zfa — fn|/Tfn, where x4, is the analytic estimate of eq. (3.42) with eq. (3.53), in percent. The white
dashed contours depict s, and the red dashed line indicates where T}, = M.
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Figure 3.8: Comparison of the collision term with the inflaton decay terms into the two sectors. The plots
are for parameters {To, = 1071 w = 1078} (left), {To, = 1071%% w = 1078} (center) and {To, = 10719,
w = 107*} (right). The vertical blue line denotes the point where reheating occurs. In these plots 4Hp,
serve as proxies for the temperatures of the two sectors. Since we have taken a, = a3, the temperature ratio
is simply @ = (4Hpy/4H pa)*/*.
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to the evolution of the energy density in eq. (3.25) as a function of scale factor. Because Cg v redshifts
faster than I'oq 504, the energy injection due to inflaton decays can exceed Cg v before reheating terminates,
Ceuv(Tim) < Top(Tin)pg. When this occurs, (see, e.g. the left plot in figure 3.8), the temperature ratio
at the end of reheating is the same as the one obtained due to the reheating attractor. Thus, asymmetric
reheating overwhelms the collision term. However, when Cg v (Tin) > Lo p(Tih)ps, the temperature ratio
at the end of reheating, x,y, is larger than the case without scattering, i.e. the result obtained from the
reheating attractor. This deviation would not be reflected in the final temperature asymmetry if x,. is larger
than this modified z,, (center plot in figure 3.8). It is only when the modified z,, due to Cg yv (Tin) is larger
than xs. (right plot in figure 3.8), that the effects from Cg v impact the final temperature ratio as we see in
the top left corner of figure 3.7. It is worth recalling that thermal effects beyond the scope of this chapter,
in particular Landau damping and thermal blocking, can be important for determining the duration and

dynamics of reheating in the high-T};, regime where the effects from Cg try show up.

Mixed Yukawa and trilinear couplings
Finally, we consider a theory in which inflaton has trilinear couplings to scalars in sector a and Yukawa

couplings to fermions in sector b,

1 _
Lint = FHa9XaXa + YpOUps. (3.55)

This interaction results in zero-temperature partial widths given by

2
Yy

d Top~ Z2My. 3.56
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The spin-summed s-channel scattering amplitude between the two sectors is

_ Am? K
M(s)]? =2plyp (1 — —2 : 3.57

| ( >| HaYp S (S . Mg)g + (FOa +F0b)2 ( )
Using this scattering amplitude we derive the total energy transfer rate, Cg, given in eq. (A.111); see figure
A.4. The collision term is almost insensitive to T} except when Tj, ~ T,. However, since the two sectors have
different quantum statistics, the behavior of the collision term changes depending on which sector is hotter.

When there is a large temperature asymmetry between the two sectors (T, > Ty, or T} > T,), analogous to
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the cases considered above, the temperature dependence of Cg is approximately

%T?’[lMog(Ta)—kll} T, > My, Ty < T,
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where the minus signs appear when T}, > T, as consistent with our definition of the energy transfer term in
eq. (3.25).
Determining the final temperature asymmetry due to inflaton-mediated scattering as in section 3.3.1,

making use of Cg from eq. (A.111) with  — 0, we find

1 Tol.T M, Ve 124 T, < T,
xsc:( 0.a” 0b i ) x ’ (3.59)

ﬁg To,a + Top Qeoldy/Onot 119 T, > T,

where anet (eo1a) denotes the value of a = 2g, /30 corresponding to the hotter (colder) sector. The final
temperature asymmetry can then be estimated using eq. (3.42). In the left panel of figure 3.9 we show
numerical results for the final temperature ratio. In the right panel of figure 3.9 we show the disagreement

between our analytic estimate and the numerical result as a percentage of the numerical result.

3.4 Summary and conclusion

Asymmetric reheating is a minimal way to populate dark sectors that are otherwise completely decoupled
from the SM following inflation. In this work, we have performed the first detailed analysis of perturbative
asymmetric reheating. Specifically, by solving the Boltzmann equations describing the perturbative decay of
the inflaton into two otherwise decoupled radiation sectors, we have studied in detail the resulting temperature
asymmetries attained by the sectors. Scattering processes mediated by inflaton exchange couple the two
sectors in the UV, and our self-consistent treatment takes into account the associated collision terms that
transfer energy between the radiation sectors. Furthermore, we have carefully accounted for the effects of
quantum statistics. At high temperatures (compared to the relevant mass scale in the problem, the inflaton
mass) these quantum-statistical effects lead to important corrections in both the inflaton decay rate, as well
as the inflaton-mediated scattering processes that transfer energy between the sectors.

The system of Boltzmann equations describing the evolution of the energy densities in the various sectors
is a coupled set of three first-order non-linear differential equations, and a general analytic solution is not

available. However, in this work we have demonstrated that the system can be accurately analyzed by making
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Figure 3.9: Left panel: Contours of the final temperature ratio obtained numerically, = ,, = T},/T,, shown in
color, for an inflaton coupled to scalars in sector a and fermions in sector b. The white dashed lines show
contours of log,o(Tin/My). Right panel: Contours of relative fractional discrepancy, |xfq — ¢ n|/2fn, where
xfq is the analytic estimate of eq. (3.42) with eq. (3.59), in percent. The white dashed contours depict xy ,,
and the red dashed line marks Try, = My.

use of the attractor nature of its solutions. Broadly, we have identified two classes of quasi-static attractor
solutions to which the energy density of the radiation bath evolves depending on the physical process that is
dominating the evolution. In a broad range of parameter space and to a good approximation, at any given
time the evolution is dominated by either 1) the energy injection from the decay of the inflaton, 2) the transfer
of energy between the sectors through inflaton-mediated scattering, or 3) the adiabatic expansion of the
Universe. Case 1) leads to a reheating attractor curve, case 2) yields a scattering attractor curve, while in case
3) the radiation density simply redshifts as p oc a=*. As we have demonstrated, the utility of these attractor
solutions is that they allow for a very accurate semi-analytic determination of the resulting temperature
asymmetry between the sectors; the asymmetry is simply determined by the process which dominates the
evolution at the latest time.

Our results for the temperature asymmetries generated by asymmetric reheating are surprisingly universal
across various coupling structures and particle types. The key property that determines the outcome of

asymmetric reheating is the reheating temperature, T}y, relative to the inflaton mass-scale, My, as follows:

e When Ty, < My /4, the temperature asymmetry is solely determined by perturbative reheating process.
More specifically, when Ty, < Mg/10, the final temperature ratio is simply given by the ratio of the
zero-temperature decay widths, z = T, /T, = (aqTop/apT0q)"/%. As the reheat temperature is increased
(but still < My) quantum-statistical corrections to the inflaton decay width begin to significantly affect
the final temperature asymmetry. In this region asymmetric reheating can be achieved by quantum

statistical effects alone, with otherwise identical couplings.

e When Ty, > M,/4, the final temperature asymmetry is determined solely by inflaton-mediated
scattering. Inflaton-mediated energy transfer between the sectors falls off exponentially when the
temperature of the hotter sector falls below T, < My/4 due to the s-channel scattering process going
off-resonance. If the radiation sectors have not thermalized by this time, the colder sector is populated

by a freeze-in like process where its final density (or equivalently the temperature ratio x = T,/T,) is
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primarily determined by the collision term and the Hubble rate at T, = My/4,

( aacE )1/4
Tge ~ .
se Haoypy ) To=My/4

Because the collision term Cg (T, = M,/4) is largely insensitive to the inflaton coupling to the hotter
sector as well as (at T, = My /4) the quantum statistics of the interacting particles, the final temperature

ratio is determined solely by the coupling strength of the colder sector irrespective of its particle identity.

In the region Ty, ~ My,/4, both reheating and scattering are important in determining the final tempera-
ture asymmetry. We find that the final temperature asymmetry, as a function of T}, and the ratio of zero
temperature partial widths w depends on the inflaton mass only through T, /M. However, lower inflaton
masses allow for the consistent realization of higher values of T/My prior to reheating, which can be particu-
larly important for models where the inflaton couples to the radiation baths through non-renormalizeable
interactions (as in the axionic coupling to gauge bosons considered here).

The primary goal of this chapter was to analyze, in detail, the temperature evolution of two otherwise-
decoupled radiation sectors during and after asymmetric reheating, but along the way we obtained a number
of other novel results. We found novel power laws describing the evolution of radiation baths during reheating
at temperatures larger than the inflaton mass scale, when quantum statistics are important. We developed
methods to derive closed form (approximate) analytic expressions for energy transfer rates between two
relativistic particles at different temperatures via s-channel interactions mediated by a massive scalar field.
Finally, we derived reduced integral-expressions for energy-transfer rate between two relativistic sectors at
different temperatures via t-channel interactions.

The analytic estimates of the final temperature ratio developed here for two-sector reheating can be
straightforwardly extended to N-sector reheating scenarios [67]. In such cosmologies, for each of the sub-
dominant sectors, the dominant energy injection from scattering is the collision term determined by the
hottest sector. Provided the expansion rate is dominated by a single component (either the inflaton, or a
single dominant radiation bath), to a very good approximation, the subdominant sectors are insensitive to
each others presence.

In this work, we limited our analysis to perturbative reheating, ignoring the effects from 1) incomplete
internal thermalization in the sectors during early reheating, 2) thermal modifications to the inflaton decays
from collective effects, such as thermal blocking or Landau damping, 3) back-scatterings into inflaton quanta
and 4) preheating. As long as these effects do not significantly alter the final reheating temperature obtained
from perturbative reheating, our results for the final temperature asymmetry remain robust. Even in scenarios
where such effects do significantly alter the reheat temperatures, the scattering attractor curve provides a
strict upper bound to the temperature asymmetry between the sectors, x > z,. (see eq. (3.42)), as long as
reheating occurs before inflaton-mediated scattering drops off resonance, Ty, > My /4. We leave the further
study of temperature asymmetries under these potentially disruptive effects to future work. Another possible
extension of this work is to study scenarios that include large asymmetries in the number of degrees of freedom
in the two sectors. In such a scenario, the sector with the higher temperature could have a sub-dominant

energy density, a possibility we explicitly ignored in this work.
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Chapter 4

Cannibal imprints on the matter

power spectrum

4.1 Introduction

While standard cosmology posits that post-inflationary reheating is followed by uninterrupted radiation
domination prior to matter-radiation equality, a variety of well-motivated particle physics scenarios predict
departures from radiation domination in the poorly constrained epoch between the end of inflation and Big
Bang nucleosynthesis (BBN) [68]. For instance, supersymmetric theories often predict moduli whose energy
density can come to dominate the universe as they coherently oscillate in a quadratic potential, giving rise
to an early matter-dominated era (EMDE) that ends when the modulus decays [62]. The semi-classical
evolution of light spin-zero fields can also give rise to epochs of kination when the scalar field’s kinetic energy
dominates over its potential energy [69-71].

Early departures from radiation domination are also generic consequences of theories that contain an
internally thermalized hidden sector that is thermally decoupled from the Standard Model (SM). Such
decoupled self-interacting hidden sectors are readily obtained from straight-forward inflationary scenarios [17,
40-43], and can naturally provide a cosmological origin for the dark matter (DM) of our universe [6, 40, 72,
73], a possibility that becomes ever more compelling with the continued absence of direct detection signals to
date. If the lightest state in the hidden sector is massive, then it can easily come to dominate the energy
density of the universe after it becomes non-relativistic. If this particle is effectively pressureless when it
dominates, it produces an EMDE [11-13, 74, 75].

Altered expansion histories prior to BBN can leave potentially observable footprints in dark matter
perturbations on scales that experienced altered growth [18, 76-79]. Since subhorizon dark matter density
perturbations grow linearly with the scale factor during matter domination, an EMDE generates a significantly
enhanced population of sub-earth-mass dark matter halos if the dark matter particles are cold enough to
form such structures [18, 76]. The masses and central densities of the smallest microhalos are determined by
the small-scale cutoff in the matter power spectrum. The rapid growth of perturbations during the EMDE
implies that the observational signatures of these microhalos, such as the dark matter annihilation rates
within their dense cores, are extremely sensitive to the scale of this cutoff [18, 20, 80]. If dark matter does
not interact with SM particles, the small-scale cutoff is most often determined by the microphysics of the

species that produces the altered cosmic evolution, making the microhalo population a probe of the particle

50



physics of the early universe as well as its expansion history.

In many familiar theories, ranging from the simple and minimal example of a single scalar field to the
exceptionally well-motivated scenario of a confining Yang-Mills sector, the lightest particle in the dark sector
has number-changing “cannibal” self-interactions that remain in equilibrium even after the particle becomes
non-relativistic [7, 10, 81-89]. Such “cannibal” interactions [7, 90, 91] are natural properties for the lightest
particle in a hidden sector with a mass gap, and meta-stable cannibal species arise frequently in models of
hidden sector DM [10, 11, 74, 75, 92-94]. If this cannibal particle comes to dominate the energy density of
the universe prior to BBN, then the subsequent early cannibal-dominated era (ECDE) will leave its imprint
on the small scale dark matter perturbations. As we show here, cannibal interactions alter the evolution of
density perturbations during an early cannibal-dominated era (ECDE) compared to their evolution during an
EMDE and typically determine the small-scale cutoff in the matter power spectrum.

In contrast to previous studies of structure formation with a cannibal species [89, 95, 96] or a related
toy model [97], the cannibal here is unstable, decaying to SM particles during the Universe’s first second.
Therefore, it does not contribute to the present-day dark matter abundance, which we assume to be composed
of a separate species. For simplicity we consider the DM abundance to have formed prior to the ECDE, as is
easily realized, e.g., when DM is a thermal relic in the hidden sector. We are thus interested in the evolution
of perturbations in a three-component universe, consisting of cold decoupled DM, the SM radiation bath, and
the metastable cannibal species.

We find that an ECDE generates a peak in the power spectrum of DM density fluctuations on scales
that enter the cosmological horizon during the ECDE. We show that the shape, amplitude, and scale of the
ECDE peak is determined by the properties of the cannibal particle, with little sensitivity to DM particle
properties. This enhancement to the matter power spectrum will generate DM microhalos long before
structure formation would occur in the absence of an ECDE, and we relate the characteristic mass and
formation time of these microhalos to the mass of the cannibal field, the strength of its number-changing
interactions, its temperature relative to the Standard Model particles, and its lifetime. Our results reveal a
new window into the thermal history of the pre-BBN Universe and further establish that hidden sectors can
generate distinctive observational signatures even in the absence of interactions between DM and the SM.

The organization of this chapter is as follows. In section 4.2 we review the novel cosmic evolution of a
cannibal fluid. Then in section 4.3, we embed the cannibal in the early universe along with dark matter and
Strandard Model radiation, and discuss the homogeneous evolution of the resulting cosmologies. In section 4.4,
we study perturbation growth in these cosmologies and highlight important length scales, showing that both
the magnitude and scale of maximum DM perturbation growth are directly connected to cannibal particle
properties. We discuss possible breakdowns of the perfect-fluid approximation in section 4.5. Implications
of early cannibal-dominated eras for the earliest-forming microhalos are discussed in section 4.6, and we

conclude in section 4.7. Several technical results used in this chapter are derived in appendix B.

4.2 Cannibal evolution
A representative particle model for cannibal involves a scalar field with quartic and cubic self couplings,

1 1 g 2 A
Lean = 56“@8#90 - §m2 2 gga‘s - E<P4' (4.1)
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Figure 4.1: Representative Feynmann diagrams for cannibal three-to-two scattering process.

In this theory the Feynmann diagrams shown in figure 4.1 contribute to the three-to-two number changing
interactions, which maintains the chemical equilibrium in the cannibal plasma. While eq. (4.1) describes
a specific cannibal model, it also provides a useful toy model for a broad class of theories with cannibal
interactions. For instance, the lightest glueballs in a pure SU(IV) sector have cannibal interactions that can
be described with an effective Lagrangian of the form in eq. (4.1) [83, 84, 86, 87, 89]. In the remainder of the
section we solve the cosmic evolution of cannibal for the above model.

As there is no external energy injection or ejection in the cannibal, the cannibal density evolution follows
the energy conservation equation in expanding spacetime,

dpcan

o T 3Hpean (1 +we(a)) =0, (4.2)

where p.qn is the energy density of the cannibal, w,. is the equation of state of thhe cannibal and H is the
Hubble rate. Considering the cannibal to be in thermal equilibrium!, we can express both its density and its

equation of state in terms of temperature,

d?’ﬁ mt [ 2. /o o) — m*
Pcan = Pcan,eq = / WEfeq(E/TC) - ﬁ/l dEE E? — 1feq(Ex) - ﬁh(gj)a (43)
Pcan,eq o floo dE(EQ - 1)3/2feq(Ex) _ g({E)

Peanea 3 [* AEE2VE? — 1foq(Ex) M)

We(a) = weeq(a) = (4.4)

where F = \/m , m is the mass of cannibal, E=F /m, T, is the temperature of cannibal, Py, is the
pressure of cannibal, pean,eq and Pean,eq are equilibrium density and pressure respectively, and feq is the
Bose-Einstein distribution in chemical equilibrium. At temperatures T, > m, eq.. (4.4) yields w. = 1/3.
Consequently eq. (4.2) gives back the expected evolution of radiation bath. However, as cannibal becomes
non-relativistic, the reverse 2 — 3 reactions are phase-space suppressed but annihilations via 3 — 2 processes
remain active. This causes the comoving number density to deplete, and the rest mass energy is converted to
thermal energy. This gives rise to the novel behaviour of cannibalism. Combining eq. (4.2) with eq. (4.3) and
eq. (4.4), we can solve for the evolution of temperature with scale factor as the cannibal transitions from the
relativistic to the non-relativistic regime. Note that— like the evolution behaviour for radiation and matter—

the evolution of T, and pcan,eq With scale factor are independent of the form of Hubble rate.

1In this section by thermal equilibrium we mean that both chemical and kinetic equilibrium are maintained.
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4.2.1 Equilibrium cannibal evolution

We first evaluate T, as a function of scale factor by integrating eq. (4.2) through

—In(a/a;) = /I %di = F(z), (4.5)
0.1 3[A(Z) + g()]

where we have used z(a;) = 0.1 and primes denotes derivatives with respect to x. We evaluate F(z) at several
values of = and use the resulting table to define an interpolating function for x as a function of F' = —1In(a/a;).
We find pean,eq(a) by inserting the resulting z(a) into eq. (4.3). For a < ag,/3 in figure 4.2, the blue and
black curves shows the evolution of the equilibrium cannibal density and temperature obtained using this
procedure. The orange dotted line shows the evolution if we completely neglect mass inside fe, in eq. (4.3)
and eq. (4.4). For T, > m, the cannibal evolves like radiation as expected.

In the limits = > 1 and z < 1, we find simple analytical expressions for F'(x) using the asymptotic

expansions
ﬂii <1
15 24 v
h(z) ~ (4.6)
1 27 705 _a T .
32 (1+87:z:+7128x2 +O(x ))\/;e r>1
45 4 *
g(z) ~ (4.7)
1 /1 15 a0 [T
W(;‘f‘@"ﬁ‘O(ﬁ? ))\/;e x> 1.

Using the < 1 limits for g(x) and h(z) in eq. (4.5) gives the expected T' o 1/a scaling for relativistic
particles. The x > 1 limits give us the evolution of the cannibal fluid during cannibalism. To connect
the non-relativistic evolution of the cannibal fluid to its early relativistic evolution we need to integrate in
the semi-relativistic regime (z ~ 1) where no simple analytical expressions are available. We handle the
integration in the semi-relativistic regime by breaking up the integral in eq. (4.5) into two integrals: one in
the region 0.1 < & < 10, and one in the region 10 < Z < . Then we use the large-z approximations for h(z)

and g(x) in the second integral to obtain

1 /[ 1 35 .3 -
F(10) — 3 /10 (1 + o + 532 +0(z )) dz ~ —1In(a/a;). (4.8)
Taking F'(10) = —6.5 in eq. (4.8) implies
—31In % +§+(’)( —2) (49)
T\ rses) Tl OV ) '

To obtain a simpler relation between x and a, we neglect the 1/x term and set = 10 in the logarithm, which
is approximately true during cannibalism, as seen in figure 4.2. With these simplifications,

T, 1 1
fe - (4.10)

m mwgln(a)

25.6a;
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Figure 4.2: Temperature (left) and density (right) of the cannibal fluid as a function of scale factor. Solid
blue (black) lines show numerical results for the cannibal when the universe is cannibal- (SM radiation-)
dominated and correspond to m = 35 TeV, a, = 1, Ty, = 10 MeV, and §; = 10 (§; = 0.1), where T}y, and &;
are as defined in eq. (4.34) and eq. (4.30), respectively. The orange and red dashed lines show analytical
results for the equilibrium cannibal fluid applicable in the relativistic and non-relativistic limits, respectively
(egs. (4.10) and (4.12)). The vertical red dot-dashed line marks the onset of cannibalism. The remaining
vertical dot-dashed lines indicate ag, for the parameter point corresponding to the solid line of the same color.

In the left panel of figure 4.2 the red dashed curve shows this result for the temperature evolution, which
accurately describes the evolution of the cannibal fluid once it becomes non-relativistic.

To determine the evolution of the cannibal density in the non-relativistic regime we first write its density
in the large x limit by using eq. (4.6) in eq. (4.4). Since h(x) has an exponential dependence on z, we use

eq. (4.9) instead of eq. (4.10) in the exponential term. Expanding the resulting equation to order 1/22 gives

pesmcq 5 1 [\/Z (127;5)3] <a/;)3x 1 roe)] (4.11)

Since the temperature of cannibal particles remains of order 0.1m during cannibalism, as seen in left panel of

figure 4.2, the next-to-leading order term in 1/ above provides a ~ 10% correction. As the above relation no

longer depends exponentially on x, we express x in terms of a using eq. (4.10) to obtain

148m* 1

Pean.ea N (33 0 (a/[25.64.]) = a5 oay O (4.12)

In the right panel of figure 4.2 we show the above estimate of pcan.cq as the red-dashed line. We define the

beginning of cannibalism at

Te(tcan) = Qean = 101a;, (4.13)

SE

which marks the point at which T, and p.4, can be well approximated by eq. (4.10) and eq. (4.12), respectively.

4.2.2 Cannibal freeze-out

The cannibalism phase continues until the number-changing interaction rate goes below the Hubble rate.
After this point the cannibal no longer maintains chemical equilibrium and evolves like cold matter. Since

two-to-two interactions are stronger than three-to-two interactions, the cannibal stays in kinetic equilibrium
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throughout the freeze-out process. The freeze-out process for the cannibal is governed by the equation

d can
T;T + 3anan = <UU2>cann§an (neq,can - ncan)7 (414)

where ncqn is the number density of the cannibal, neq can is the number density of cannibal in thermal
equilibrium and (ov?)cap is the 3 — 2 cross-section of the cannibal. We are only interested in scenarios in
which freeze-out happens when cannibal is non-relativistic. To leading order in T,./m, the s-wave component

of (0v?)can dominates and is given by (see appendix B.1)

_25\/5(9/7”)2[(9/7”)2 + 32 _ 25512’

2
can — — 4.1
(o) 1474567m? 5184m> (4.15)
Here o, parametrizes the combination of cannibal couplings that determines the strength of 3 — 2 reactions,?
9
(4mac)* = 2 (g/m)*[(g/m)* = BAJ”. (4.16)

We define the scale-factor at freeze-out of 3 — 2 reactions, ag,, through
(00 cantun(at,) = H(as,). (4.17)

At early times, a < ay,, eq. (4.14) effectively sets Ncan = Necan,eq, €quivalently eq. (4.14) sets the chemical
potential, u = 0. After a > ay,, cannibal reactions stop and the cannibal particles evolve as cold matter,
Pean X 1/ a® and T, x 1 / a?. However, to accurately find the cannibal density and temperature near a f2 We
need to solve for both eq. (4.14) and eq. (4.2).

Numerically, we find that the cannibal fluid starts to depart from its chemical equilibrium around a > ay,/3.
Since the cannibal particles are non-relativistic by the time freeze-out occurs, we use Maxwell-Boltzmann

statistics to obtain

m? Ko(x
Ncan = eH/Tncan,eq = 6#x/mﬁ%); (418)
oim MY (2K (1) + 3Ks(x
Pcan = eu/Tpcan,eq = e / ﬁ( ( ).’132 ( )), (419)
We = Pean o Pcan,eq _ KQ(x) . (420)

B Pcan B Pcan,eq xKl (CL’) + 3K2 ((E) ’

where K;(x) is the modified Bessel function of i** order.
To find the evolution equation for & we begin by expressing pean in terms of ne,, and x using eqgs. (4.18)-
(4.20),

1
rwe(z)

Using the above relation to express pean in terms of ng,, in the energy conservation equation, eq. (4.2), yields

m dNcan MNcan [ We + 2wl (z) dx
o (a T +3ncan> -2 ( w2 a%—Sx =0. (4.22)

(4.21)

Pcan = MMNcan

2The factor of 9/4 in the front has been added to counter an earlier error made in calculating eq. (4.15).
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We then simplify the first bracket using eq. (4.14) to obtain the evolution equation for =,

dx Tw? TW, (ov?)
-3 < = can\Tlcan,eq = Tlcan)- 4.23
“da we + zwl(x)  we+awl(z) H Pcan(Mcan,cq ~ Mcan) (423)

Eq. (4.14) and eq. (4.23) form coupled differential equations which are evaluated together to solve for
Nean(a) and x(a). In the left panel of figure 4.2 we plot the temperature (blue and black lines) for a > ag,/3 by
numerically solving eq. (4.14) and eq. (4.23). In the right panel we plot the cannibal density for a > a¢,/3 using
the numerically evaluated = and nca, in eq. (4.21). Notice that the evolution of the cannibal thermodynamic
quantities is very similar in the two cases where the universe is cannibal dominated (blue line) or SM radiation
dominated (black line), with the only difference being the specific value of ag,. Here ay, is evaluated by finding

where equality in eq. (4.17) is satisfied for numerically obtained ncay,.

4.3 Homogeneous background evolution

We are interested in a universe comprised of three components: the cannibal species, DM, and the thermal SM
radiation bath. For simplicity, we consider the DM relic abundance to already be in place at the beginning of
our analysis. In the natural and minimal scenario where DM and the cannibal species are part of the same
thermal bath in the early universe, we expect DM to be heavier than the cannibal: to experience cannibalism
the cannibal species cannot be in equilibrium with any relativistic species while it is non-relativistic, and
thus is generically the lightest state in that sector. The cannibal species must be thermally decoupled from
the SM radiation bath, making the initial temperature ratio between the two sectors a free parameter. Once
the cannibal particle becomes non-relativistic, its energy density dilutes more slowly than that of the SM
radiation and will eventually come to dominate the universe provided the cannibal is sufficiently long-lived.
We focus on the parameter space where the universe undergoes such an early cannibal-dominated era (ECDE)
and caution that the cannibal may or may not be actively undergoing cannibalism during the ECDE. The
cannibal eventually decays into SM particles, which must occur before neutrino decoupling to avoid spoiling
the successful predictions of BBN [98-101] and altering the features of the CMB [102, 103].

The Boltzmann equations that describe the homogeneous evolution of the cannibal fluid in the early

universe, together with DM and SM radiation, are

d can
fit + 3Hpean(1l + we(a)) = —T'mncan (4.24)
dpr
dpt + 4Hp, = P'mncan (4.25)
d
PR 4 3H pout = 0 (4.26)
dNcan 2 9
dt + 3anan = <UU >canncan(ncan,eq - ncan) - Fncany (427)

where the Hubble rate is given by

1
= —F———VPcan + Pr + PDM (428)
V3Mp,

Pry pDM and pean are the energy densities of SM radiation, DM and the cannibals, respectively, w, is the

cannibal equation of state, ncan is the cannibal number density and ncan,eq its equilibrium value, I' is the
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Figure 4.3: Evolution of the cannibal (red), SM radiation (solid orange) and DM (solid blue) energy densities
as a function of scale factor. The inset figure highlights our definition of a,, (see eq. (4.34)) as the scale factor
when the SM energy density extrapolated adiabatically back in time (orange dot-dashed) becomes equal to
the total energy density required for the Hubble rate to equal decay rate of the cannibal particles (black
dashed). The shaded red region highlights the period of cannibalism. The yellow shaded region highlights
the period of early matter domination produced by the cannibal particles. This figure takes m = 190 GeV,
T = 10 MeV, a. = 0.06, and &; = 1.

zero-temperature decay width of the cannibal particle to the SM, and Mp; = 2.435 x 10'® GeV is the reduced
Planck mass. The collision operator describing cannibal decays that appears on the right-hand side of these
equations is derived in appendix A.2.

Chemical equilibrium in the cannibal fluid is maintained as long as the 3 — 2 scattering rate is rapid
compared to H; the freeze-out of this cannibal interaction is described by eq. (4.27). We assume that
two-to-two cannibal scatterings are fast enough to maintain internal kinetic equilibrium. Thus all the thermal
quantities for the cannibal fluid can be expressed in terms of its chemical potential, i, and its temperature,
T.. Consequently the system of eqs. (4.24)-(4.27) can be solved for the four unknowns p,, ppm, Pean, and Te.

We set our initial conditions at an initial scale factor a;, defined such that
T.(a;) = 10m. (4.29)

The cannibal fluid is in chemical equilibrium initially, so that p(a;) = 0. We find the initial DM density
by scaling the observed relic density back in time. Since the cannibal fluid and the SM radiation bath
are necessarily thermally decoupled, the initial SM temperature 7;.(a;) must be separately specified; we

parameterize it with the initial temperature ratio

&= < = . (4.30)

Figure 4.3 shows the evolution of energy densities beginning from these initial conditions until the cannibal
particles decay. For £ = 1 as shown here, the cannibal is subdominant to SM radiation at a; but eventually
comes to dominate. This fluid system goes through four important transitions, which we will discuss in turn:

1) the onset of cannibalism within the hidden sector, 2) the freeze-out of the 3-to-2 cannibal reactions, 3) the
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transition from SM radiation domination to cannibal domination, and 4) the decay of the cannibal particles
into the SM.

At temperatures T, > m, the cannibal behaves as radiation. As the cannibal particles become non-
relativistic (T. < m), 2 — 3 scattering processes become Boltzmann-suppressed while 3 — 2 processes remain
active. Thus the comoving number density depletes, which self-heats the cannibal particles by converting
rest mass to kinetic energy. In this “cannibal” phase of evolution, the cannibal temperature decreases as
T, o< 1/log(a) while its energy density decreases as peqn o 1/(a®log(a)), as seen in eq. (4.10) and eq. (4.12).

As long as the cannibal fluid is in chemical equilibrium, the evolution of pean(a) with a is independent of
the Hubble rate. However, the scale at which the cannibal fluid can no longer maintain chemical equilibrium
depends on the Hubble rate and thus on the presence of other species. After cannibal freeze-out, the
temperature of the cannibal cools as T, o 1/a?, as expected for massive non-interacting particles.

The universe is initially SM radiation-dominated when p,-(a;) > pean(a;) or
G[T(a;)]TH(a;) > (10m)*, (4.31)

where g.(T;) is the effective number of degrees of freedom in the SM. For g.[T,(a;)] ~ 100, SM radiation

domination at a; then requires
& <3.2. (4.32)

A universe that is SM radiation dominated at a; will transition to cannibal domination at the scale factor

Adom Where

pcan(adom) - pr(adom); (433)

where we have implicitly assumed that the cannibal lifetime is long enough that it will come to dominate
before it decays.

When I' exceeds the Hubble rate, the cannibal particles decay into the SM radiation bath and the universe
then evolves as in the standard ACDM cosmology. We define the reheat temperature, Ty, by equating the

Hubble rate in a SM radiation-dominated universe with the cannibal decay rate,

729+ (Tin) Tr2h
30 V3Mp

=T. (4.34)

We define the scale factor at reheating, a,y,, by isentropically extrapolating the temperature of the SM from

T to the present-day temperature Ty,

g*s(Trh)(arhTrh)3 = g*s(TO)(aOTO)3- (435)

Here g, is the effective number of entropic degrees of freedom in the SM and ag is the present-day scale
factor. Note that with the above definition of a1, the temperature of the SM at a,n, T)-(am), is not equal to
Trn. This can be seen in the inset panel of figure 4.3 where the SM energy density (solid orange line) at a,y, is
smaller than the radiation density when T = Ty}, (horizontal black dashed line). Figure 4.3 also shows that
the SM radiation density evolves adiabatically until the energy injection rate from the cannibal fluid into

the radiation becomes of order the Hubble rate (peanl’/pr ~ H). After this time, the radiation density is
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Figure 4.4: Evolution of the cannibal sound speed ¢? and equation of state w from initial cannibal temperature
T.(a;) = 10m. The red (yellow) dashed line shows the evolution of ¢2 (w) in thermal equilibrium, the gray
(cyan) dot-dashed line when completely decoupled, and the solid black (blue) line shows the full numerical
result. This figure uses the same parameter values as figure 4.3.

proportional to I'mnea,/H until the cannibal energy density becomes subdominant.

In solving perturbation equations we need the cannibal equation of state w,. and the cannibal sound speed

!
2_ OPean _, -~ awe(a) (4.36)

¢ "~ Opean - 3(1+w)’

S

where Pean = WepPean 1S the pressure of the cannibal fluid. In figure 4.4 we plot the evolution of both w, and

¢? as a function of scale factor. Both quantities begin to deviate from their equilibrium values around 2ag,.

For a > ag, both quantities evolve as

ot o
2 2 z z
s = Cs.fz a2 We = We,ty, 0 (437)

c
where C?,fz and w, g, are constants that give the correct asymptotic evolution (see dot-dashed line in figure 4.4).
We find that c; ¢, to a good approximation, is given by ¢, oq(3as,) while we g, is given by we oq(2as,), where the
subscript eq denotes that the variables are computed assuming the cannibal fluid to be in thermal equilibrium.

Then using the fact that in the non-relativistic limit ¢2 ., & Weeq & Te,eq/m, We obtain

1 1

2 ~
“ Yol ™ 3n(2ag,/(c2ar))”

sifs 31n(3ag,/(c2a4)) (4.38)

In figure 4.4, both w, and ¢? increase near a,;, because the cannibal particles with larger velocities decay
later due to time dilation. Consequently, the temperature of the cannibal fluid increases as cannibal particles
with slower speeds are removed first. However, the heating near a,} is unimportant for the evolution of dark
matter perturbations because we are interested in scenarios with a,, > ag,. Thus, the cannibal fluid is too

cold at a, for the heating due to time dilation to have any impact.
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4.3.1 Mapping between cannibal parameters and cosmological scales

Our early cannibal-dominated cosmology is governed by four free parameters: the initial temperature ratio ¢;
and the cannibal particle properties m, T, and a.. These four parameters determine the three important
scales ag,/a;, Gdom/a;, and a,p,/a; that will ultimately control the major features of the matter power spectrum.
Due to the non-trivial evolution of the cannibal density, the exact relations between these cosmological scales
and the underlying cannibal parameters are complicated, but useful approximate relations can be obtained
by fixing a/a; = 10 in the logarithm of the expression for pean(a) given in eq. (4.12):
40m*
Pcan ™~ W- (4.39)
This approximation is accurate to O(1) for scale factors between acan and a,,/10 and will enable us to provide
simple expressions for key quantities, albeit at the cost of obscuring logarithmic dependence on ag, /a;.
We can express a,,/a; in terms of m and Ty, by setting the cannibal density at reheating equal to the

radiation density. Using eq. (4.39) for the cannibal density then gives

Arh ~ 2.3 m 4/3 g*(Trh) o (4 40)
a; T\ T 10 ' ’

Similarly, we can find agom in terms of &; using eq. (4.39) for the cannibal density in the definition of agom,
eq. (4.33). With p,(adom) = pr(a;)(ai/agom)*, we then find

m 1
Qom . 80g. [T, (a:)] =

v o (4.41)

To express ag, in terms of cannibal parameters, we start with its definition in eq. (4.17). We then
approximate nean (@g,) ~ pPean(as,)/m and express pean and (0v?)can using eq. (4.39) and eq. (4.15) respectively.
In the case where the Hubble rate is dominated by the cannibal density during freeze-out, i.e. agom < ag,, we

obtain

2/9
GeV) . (4.42)

U 3% 104a§/3(—
a; m

Similarly, in the case where the Hubble rate is dominated by the SM radiation during freeze-out, i.e. aqom > afs,

we use p.(ag,) = pr(a;)(a;/ag)* to obtain

1/4 ~1/8
.1
s g5 10ta2agl? GOV 9+(10m/§) . (4.43)
a; m 100

We see that ag,/a; decreases slowly as m increases because increasing m reduces the 3 — 2 cross-section for
fixed a.. When the universe is SM dominated at ag,, ag,/a; decreases as we decrease &; because decreasing &;
increases p,, which in turn increases the Hubble rate, causing freeze-out to occur earlier.

4.4 Evolution of perturbations

In this section we describe the evolution of cosmological perturbations during an ECDE with particular focus

on the physics underlying the growth in DM density perturbations. We follow the conventions used in Ma
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and Bertschinger [104]. We work in conformal Newtonian gauge with metric given by
ds? = —(1+ 2¢)dt* + a*(t)(1 — 2¢)da?, (4.44)

where ¢ and v are spatial and temporal metric perturbations respectively. We consider all fluids to be perfect

fluids. Thus there is no anisotropic stress, which implies that

V=9 (4.45)

In section 4.5 we revisit the perfect-fluid assumption for the DM and cannibal fluids.

Perturbations of perfect fluids can be described by two quantities: § = [p(¢,x%) — p(t)]/p, which is the
density perturbation over the uniform background density p, and § = 9;v7, which is the comoving divergence
of the physical fluid velocity, v/ = adx? /dt. Our cannibal perturbation equations are similar to those in [82,
89, 96] but we also include leading-order contributions from cannibal decays into radiation, which are derived

in appendix B.3. Our suite of perturbation equations is then

0 3 r T 3
! T w) (= =3¢+ 2 (1— — ) (@ —w)de = ———¢ (1 - 2. 4.4
o)+ (1w (g =360+ 2 (1= g ) (@ -wadie = —opo (1-w) . (a9
p 1 w, 2k K T
0. (a) + a(l 3wl + o 1T, aQH(SC aQHd)— aHﬂccs, (4.47)
fom
/ DM 3y = 4.4
6DM(G’) + a2H 3¢ Oa ( 8)
1 2
! — — =
HDM(G)+a9DM 2r?=0 (4.49)
4 0 I'mne, 3
, x Ur — 4 = can _ e 2 4.
510) + g oy — 40 = T [ 5,4 e - ) (4.50)
) 1 k2 k? I'mncan (3
_ = — = -0, — 4.51
b:(a) 4a2H5T aQH(b aHp, (490 9,), (4.51)
1 1
kz(b + 3(0,H)2 (a¢/ + ¢> = _7a272(pcan50 + prfsr + pDM(SDM)- (452)
2 Mg

Here the subscripts ¢, and DM corresponds to perturbations of the cannibal, SM radiation and DM fluids
respectively, and the prime denotes a derivative with respect to a. We have taken DM to be kinetically
decoupled from both the cannibal and radiation fluids, so that its only interactions are gravitational; we will
discuss the effects of adding kinetic couplings between cannibal and DM fluids below.

At a;, when we begin our numerical calculations, the cannibal particles are still relativistic since T,.(a;) =

10m. For adiabatic perturbations, the initial conditions for super horizon modes at a; are:

1 R?

4
67‘:76DM:6€:_2¢1) HTZQDMZHC_EE

where ¢, is the primordial metric perturbation. Adiabatic initial conditions for all fields are naturally obtained
in the minimal cosmological scenario where the decays of a single inflaton field populate both the SM and a
hidden sector containing the cannibals and DM.?

Our primary interest is the evolution of modes that enter the horizon prior to reheating and thus experience

3Strictly speaking, these adiabatic initial conditions are applicable to p, as long as energy injection from cannibal decays is
negligible at a;. When instead T'pcan/pr > H at a;, pr o< a2, and the initial conditions for the radiation perturbations become
0r = ¢p/2 and 0, = 0.
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the epoch of modified cosmic expansion. Before numerically solving the perturbation equations given in
egs. (4.46)-(4.51), we first show how they simplify for modes deep inside the horizon (k > aH) during the
ECDE to gain insight into the essential physics governing the growth of DM density perturbations. Starting
with eq. (4.52) for the metric perturbation, we neglect the second term on the LHS of eq. (4.52). We can also
ignore ppmdpm on the RHS of eq. (4.52) because ppy is at least seven orders of magnitude smaller than
Pean and p,. prior to reheating (see figure 4.3), which must occur before BBN. Consequently, deep inside the
horizon and prior to reheating we have

3 (aH\? peande + prd,
__o(ed " 4.54
¢ 2 ( k > Pcan + Pr ( 5 )

Next we consider the evolution of the cannibal perturbations because they determine the evolution of DM
perturbations. We use eq. (4.47) to eliminate 6. from eq. (4.46). In doing so, we make three approximations.
First, we neglect terms proportional to ¢? — w,, w’,(a) and d(c?(a))/da, as w. and cs are slowly varying before
ag, and rapidly become negligible after ag,. Second, we neglect ¢’ in eq. (4.46) because the variation of the
metric perturbation is negligible compared to 6./(aH) deep inside the horizon. Third, we neglect terms
proportional to I'/H: before a,, we have I'/H < 1, and after a,;,, the cannibal fluid decays and becomes
irrelevant. Around a,,, when I'/H ~ O(1), the metric perturbation multiplying I" in eq. (4.46) is negligible
compared to . for modes deep within the horizon, and the sound speed term multiplying I" in eq. (4.47) is
much smaller than one by the time of reheating (see figure 4.4). Finally we eliminate ¢ using eq. (C.1) to

obtain

(a*H)
a?H

1 (cskJ)Q(S _ 3 (1 +we) prdr + peande
C_2 .

1
5" S(1-3 0]5’ Iy
(a) + —I—a( We) C+a2 H e et pr

(4.55)
Naively, eq. (4.55) implies that §, may affect §. during SM radiation domination, when p. > pean.
However, subhorizon radiation perturbation oscillate, and thus their gravitational influence on 4. is negligible.

Consequently one can set ¢, = 0 and rewrite eq. (4.55) in the form

d2(5c(a) dd.(a) (csk‘>2 3 Pean
— 3w, R B o) —Fean
d ln2 (a,) v dhl(a) + aH 2( tw )pcan + pr

5. =0. (4.56)

The first term in the square brackets arises from thermal pressure in the cannibal fluid and induces oscillations
in the cannibal density perturbation. The second term in the square brackets is inconsequential during SM
radiation domination, but during cannibal domination, it induces growth in the cannibal perturbation due
to the gravitational attraction between the cannibal particles. When pcan > p,, the terms in the square

brackets thus determine a Jeans wavenumber, k;, for the cannibal fluid,

il
ky = ,/%(1 +w,) ac . (4.57)

The corresponding Jeans length scale k;l determines when gravitational attraction overcomes the thermal

pressure and leads to growth in J..
Earlier we saw that the evolution of both ¢, and w, depend on when the cannibal self interactions
freeze-out. Consequently, both the scales ay, and agon, determine the growth in 6. and we find that the

ordering of the two scale produce qualitatively different growth in d.. To better understand this qualitative
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difference, in the next two subsections we describe the evolution of perturbations for two extreme cases:
one where the universe is always cannibal dominated prior to reheating, and one where cannibal comes to

dominate the universe much after the cannibal reactions freeze out, af, < Ggom < Grh.

4.4.1 Cannibal freeze-out during cannibal domination

In this section we highlight the key features of perturbations in a scenario with agom < ar, < arn. To reduce
the number of free parameters we focus on the sub-case where universe is already cannibal-dominated at a;,
&> 1.

In the top panel of figure 4.5 we plot the evolution of comoving horizon size (solid blue line) and that of the
cannibal Jeans scale (solid yellow line) and compare them with the length-scale of Fourier mode, k=1 (dashed
black line). These scales will determine the evolution of perturbation modes that enter the horizon prior to
cannibal freeze-out. In the bottom panel of figure 4.7 we show the evolution of density perturbations for one
such mode, indicated in the top panel as the black-dashed line. These results are obtained by numerically
solving eqs. (4.46)-(4.51) with initial conditions given by eq. (4.53). The particle parameters were chosen
to obtain a large separation between transition scale factors, a,n, > af. > acqn = 100a;, for pedagogical
purposes. Moreover, we show only the evolution of perturbations until shortly after reheating as beyond this
time the usual ACDM evolution pertains.

The perturbations shown in the bottom panel start to evolve once the mode enters the horizon at ayer,
defined through

anor H (anor) = k. (4.58)

All density perturbations grow by a factor of 10 to 100 shortly after they enter the horizon. Inside the horizon,
thermal pressure causes both the cannibal and SM radiation density perturbations to oscillate, whereas
the DM density perturbation approaches a constant value while the cannibal perturbation oscillates during
ECDE.

The oscillations in d. is due to the non-negligible sound speed of the cannibal (see figure 4.4). In the top
panel of figure 4.5, as long as k! (black dashed line) is inside the Jeans length (yellow shaded region), the
cannibal perturbations oscillate in the bottom panel. The Jeans length peaks at roughly ~ 2a¢. because
cannibal freeze-out is a slow process which starts at ay., as seen earlier in figures 4.2 and 4.4. After ~ 2ay.,
the sound speed falls as ¢2 o< 1/a? and the comoving horizon grows as (aH )1 a'/?, yielding k;l x a2,
Because of the slow decrease of the Jeans length, the cannibal density perturbation continues to oscillate long
after ay,. Eventually, once the Jeans length becomes smaller than the scale of the Fourier mode, k < k;, the
cannibal density starts to grow linearly as expected.

Using the WKB approximation (details in appendix C) in eq. (4.56) we find the evolution of amplitude,
D, of §, when the mode is inside the Jeans length as

1
D.(a) x a~(173we)/2, (4.59)

We can see that the amplitude is inversely proportional to the frequency of oscillations determined by c2.
The dependence on w, in the exponent of a is associated with the damping caused by the (1 — 3w,.) factor
multiplying &’ in eq. (4.56). In the relativistic limit, w. = ¢ = 1/3, eq (4.59) recovers the standard result of

radiation perturbations oscillating with constant amplitude. In figure 4.5, after entering the Jeans damping
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Figure 4.5: Top: Evolution of comoving horizon (solid blue line) and cannibal’s Jean’s damping horizon
(solid yellow line) relative to the horizon size at the beginning, k;olr’i ~ 9 pc. The horizontal black dashed
line marks the size of the Fourier mode, k = kpor /12, for whom perturbations are plotted in the bottom
panel. The blue and shaded yellow region highlights when a mode is inside the horizon and the Jeans length,
respectively. Bottom: Evolution of SM radiation, cannibal and DM density perturbation relative to the
primordial metric perturbation, ¢,. The vertical dashed red, green and blue lines marks the scale at acqn,
af. and a,p respectively. The vertical dot dashed black line marks the scale when mode % enters the horizon
at apor. The vertical dashed grey lines mark the scale factor when the mode enters and exits the Jeans
damping scale. The figure is plotted for a scenario with parameters &; = 500, m ~ 58 TeV, T;.;, =5 MeV and
a. ~ 0.88, chosen to give ay,/a; ~ 2 x 10% and a,p/a; = 5 x 10°.
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scale but before ay., we can see that D. decreases slowly. This slow decrease is due to the logarithmic decay
of sound speed and the small value of w,, which does not completely counter the a=/2 decay in eq (4.59).
After ay,, we can neglect w, in the exponent and the sound speed evolves as ¢; o 1/a, leading to a constant
amplitude of oscillations as observed.

The evolution of §, seen in the bottom panel of figure 4.7, although interesting, has no significant impact
on dpy. Radiation perturbations have an important gravitational impact on dpy; only during SM radiation
domination. However, during SM radiation domination ¢, oscillates, and hence its gravitational feedback on
both dpy and §. is negligible. The only time §,- has a significant influence on the other perturbations is near
horizon entry (a < 10ano,) before ¢, starts oscillating.

Finally, we analyze DM density perturbations which is the quantity we are primarily interested in. In the
bottom panel of figure 4.5 we see that dpps (blue line) stagnates after entering the horizon even though the
energy density dominating the universe is diluting as matter (approximately). The stagnation of dpys ca be
understood by simplifying the DM perturbation equations in the same way we simplified J. in eq. (4.56).
Correspondingly we obtain

2717y

8 (@) + [% n ﬂ 5y = %7/1: . (4.60)
The term on RHS comes directly from the metric perturbation term in eq. (4.49). Note that when the mode
is inside the Jeans length, J. oscillates (as does ¢) and d.’s time average feedback in the above equation is
effectively zero. Assuming the cannibal density dilutes as 1/a?, the coefficient of §%,,, equals to 3/(2a). As a
result, for modes inside Jeans length, 6pas has two solutions: dpas o< a=/2 and dpys o< a®. Consequently we
see dpps stagnating to a constant value in figure 4.5 when . is oscillating. Once the mode escapes the Jeans
length, §. starts to grow and consequently, DM starts falling into the gravitational potential well formed by
d.. This condition leads to the growth in dpys. Once §. becomes comparable to §pys, the DM perturbation
grows with dpys = 0. o a as seen in figure 4.5.

Above, we have described in detail the behaviour of perturbations for a mode entering the horizon prior
to freeze out of cannibal 3 — 2 reactions. Modes that enter the horizon after ~ as, do not enter the Jeans
damping scale and thus . does not experience oscillations. For these modes, §. behaves like cold matter

perturbation, w,c? = 0, and both §py; and J. grow linearly with a.

Transfer function

We now compare the present-day linear matter power spectrum following an ECDE to the matter power
spectrum in standard cosmology. Here, by “standard cosmology” we mean that the universe experienced
uninterrupted radiation domination between inflationary reheating and matter-radiation equality, aeq. With

dpm,s denoting the DM density perturbation in the standard cosmology, we define the transfer function

T(k’) o 5DM(ka a)

= fomika) 4.61
dpms(k,a) (4.61)

which is evaluated after matter-radiation equality.

After a perturbation mode enters the horizon, dpn s grows logarithmically with scale factor while the
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universe is radiation dominated,

B.a
dpm,s(a) = —Asgp(k) In <ah ) (4.62)
where A; = 9.11 and B, = 0.594 are numerical fitting factors [105], and aners is the scale factor when
the mode k enters the horizon in standard cosmology. With Hy denoting the Hubble rate in the standard

cosmology, we define ayor s through
ahor,sHs (ahor,s) =k. (463)

The logarithmic evolution of dpy continues until matter-radiation equality, after which dpy grows linearly
with scale factor. This evolution is described by the growing solution of the Meszaros equation [105, 106]

with initial conditions provided by eq. (4.69),

dpms(a) =

B 3A,¢,(k) I <4Bse3aeq
2

p— > (14 a/aeq)”’ a > Ueg- (4.64)
Here the exponent of 0.9 results from the fact that the scales affected by an ECDE are much smaller than the
baryon Jeans length [107]. Consequently, ~15% of the matter density does not participate in the gravitational
growth, causing the dark matter overdensities to undergo slower than linear growth. The argument of the
logarithmic term in eq. (4.64) also obtains O(1) baryonic corrections as described in [105]. However, we have
ignored these corrections because they have an insignificant effect on the final transfer function. The value of
¢p in eq. (4.64) is the same as in eq. (4.53) because the universe is radiation dominated at a; regardless of
whether the cannibal fluid or SM radiation is dominant at a;.

During the radiation-dominated era that follows an ECDE, dpy also grows logarithmically with scale
factor for subhorizon modes. Consequently, the post-reheating evolution of pp can be described by eq. (4.62),
but with Ag and B, replaced by k-dependent functions A(k) and B(k), which encode the evolution history
of dpy prior to reheating. After matter-radiation equality, the evolution of dpy can similarly be described
using eq. (4.64) but with A, and By again replaced by A(k) and B(k). For k < kyp, we recover A(k) = A,
and B(k) = B,. It follows that

_ Opm(k,a) _A(k) In[4B(k)e 3aeq/anor (k)]
T = S alha) ~ A, T[AB,e Bawfans()]

(4.65)

where in the latter equality we have neglected baryonic effects in the logarithm.

In the bottom right panel of figure 4.6 we plot the transfer function for a scenario where af,/a; =5 x 103
and a,/a; = 10%. To relate the transfer function at a given wavenumber with the background experienced
by that Fourier mode as shown in the top left panel of figure 4.6, we plot an inverted transfer function in the
top right panel. To increase computational speed while evaluating the transfer function, we ignore radiation
perturbations deep inside the horizon, as the feedback of 6, on dpy and . is negligible. We also neglect the
heating of the cannibal fluid caused by its decay (see figure 4.4), which has no noticeable impact on dpy in
this regime.

The transfer function is unity for modes that enter the horizon after reheating because épym and dpm s
undergo the same evolution for these modes. As we increase k (i.e. go down in y-axis in the top right panel),

the transfer function increases. This is because those modes (see ki in top left panel of figure 4.6) enter
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Figure 4.6: Top left: Evolution of comoving horizon (solid blue line), cannibal’s Jeans length (solid yellow
line) and comoving horizon in standard cosmology (dotted blue line) relative to k,:olr) ; =~ 0.3 pc. The horizontal
dashed line marks the wavenumbers for which we have plotted the evolution of d. and dpps in the bottom
panel. We have set k1 = kpi/10 and ko = 5kp,. Top right: The absolute value of the transfer function,
eq. (4.65), on the z-axis for every inverse wavenumber k~! shown on the y-axis. The horizontal blue dashed
line marks the Fourier mode that enters the horizon at reheating. The horizontal black dashed line marks our
analytical estimate of the inverse wavenumber corresponding to the peak of transfer function, eq. (4.66). The
vertical black dot-dashed line is our analytical estimate of the size of the peak of transfer function, eq. (4.84).
Bottom left: Evolution of d. (solid line) and dpps (semi-transparent dashed lines) corresponding to the
mode with largest transfer function, kpy, and two other modes. Bottom right: Same as top right panel just
with axes inverted to show the transfer function on the y-axis and k on the x-axis. This figure is plotted for
parameters & = 102, m ~ 3.2 TeV, T,, = 5 MeV and a, ~ 1.4.
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the horizon when cannibal behaves as cold matter and, correspondingly, the density perturbations grow as
0py = 0. < a. This linear growth can be seen in the bottom left panel of figure 4.6 where we plot the
evolution of §, in solid red and dpys (which always equals to d. in this case) in light dashed-red for the k4
mode. Since the horizon size grows as (aH)™! o a'/? between agom and arn, anor o k~2. Consequently,
Spm(awn) scales as d(awn) o< an/anor < k2. In the case of dpy s, the modes entering the horizon earlier
undergo more logarithmic growth between anor,s and aqq but the same linear growth after acq. Since the
horizon size grows as (aH,)™! o< a during radiation domination, an increase in k results in a linear decrease
in apors, which implies that dpa,s o< In[k/(8keq)] [105], where keq = (aH )eq. Thus in this regime the transfer
function goes as k?/In[k/(8keq)]-

As we further increase k, the transfer function continues to grow until the wavenumbers start intersecting
the yellow shaded region in the top left panel. The cannibal perturbations for modes entering the Jeans length
(ko mode in bottom left panel of figure 4.6) oscillates until the mode exits the Jeans length. Consequently,
these modes have less time to grow linearly after escaping the Jeans length but before reheating. The
oscillation in T'(k) is caused by the change in the phase of cannibal perturbation from when the mode enters
the horizon to when reheating occurs. Since dpjy; eventually falls into the potential well formed by §. after
the mode escapes the Jeans length (see k2 mode in bottom left panel), the oscillation of cannibal perturbation
is imprinted onto T'(k).

Large values of the transfer function imply that the DM perturbations after an ECDE reach the nonlinear

2> 1, overdense fluctuations

~

regime much earlier than they would in a standard cosmology. Once dpwm
collapse to form halos [108]. In section 4.6 we discuss how ki determines the mass of the earliest-forming
microhalos, while T'(kpx) determines the redshift of their formation. Due to the importance of kpx and T'(kpx)
in controlling microhalo formation, in the following subsection we find analytical estimates for both quantities
and highlight their connection to cannibal parameters.

The mode corresponding to the peak of the transfer function, kp, just misses entering the Jeans length

as seen in top left panel of figure 4.6. As k;l peaks near 2ay., the peak wavenumber is given by
e = 14(ky(2a52)) 7", (4.66)

where the factor 1.4 we find empirically. This estimate is accurate to within 30% for a,;, = 5ag, and reaches
3% accuracy for larger a,1,/ag,.

In the above scenario we focussed on the sub-case where universe is already cannibal-dominated at a;.
More generally, if the universe was SM-radiation-dominated at a; but becomes cannibal-dominated when
cannibal reaction freezes out, a4om < af., the qualitative feature of the transfer function is not drastically
affected. In particular, T'(k) for k < (aH)gom remains completely unaffected as those modes enter the
horizon after agom and are not affected by the period of SM-radiation domination. Since kpr < (aH)gom for

Qdom < af, the value of kpy is explained by the same physics as discussed in this sub-section.

4.4.2 Cannibal freeze-out during SM radiation domination

In this section we highlight the key features of perturbations in a scenario where the universe was SM
radiation-dominated during the freeze-out of cannibal 3 — 2 reactions, a¢, < @dom < @rp. In the previous
subsection we saw that k,, depends sensitively on when the cannibal reactions freeze-out. Consequently,
the SM radiation-dominated universe during the freeze out of cannibal reactions significantly changes the

behaviour of kp and T'(kpy), compared to the results obtained in the previous scenario where agom < af.
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We can understand the essential behavior of the perturbations in cosmologies with an initially-subdominant
cannibal density by separately considering the evolution of perturbation modes that enter the horizon prior
to cannibal freeze-out and modes that enter the horizon between cannibal freeze-out and cannibal decay.

Modes that enter the horizon prior to cannibal freeze-out

In the top panel of figure 4.7 we show the comoving horizon, (aH)~! (solid blue), the cannibal Jeans length

(solid orange), and the comoving cannibal sound horizon,

toat ¢ ey
= — = = d1n(a). 4.
Ts / Cs— / &Hd n(a) (4.67)

These scales will determine the evolution of perturbation modes that enter the horizon prior to cannibal

freeze-out. In the bottom panel of figure 4.7 we show the evolution of density perturbations for one such
mode, indicated in the top panel as the black-dashed line. These results are obtained by numerically solving
eqs. (4.46)-(4.51) with initial conditions given by eq. (4.53).

When the wavenumber k is much larger than aH/c,, the time scale of cannibal oscillations is much smaller
than the time scale over which the instantaneous frequency and the anti-damping terms in eq. (4.56) evolve.

Thus, one can use a WKB approximation to obtain
Cl 1-— 3wc

8e ~ NG exp <— /asmr 2dln(d)> sin [krs + Cs) , (4.68)

as detailed in appendix C. Here ag oy is the scale factor for which ¢sk/(aH) = 1, and Cy and Cs are constants
determined by 0¢(as nor) and 0. (as nor). Note that the instantaneous frequency of 0. oscillations is set by the
cannibal sound horizon.

In the bottom panel of figure 4.7, we see that the amplitude of . oscillations decreases slowly for a < 2ay,
and reaches a constant value for a > 2ag,. The slow decay prior to 2ag, results from the logarithmic decay of
¢s partially compensating for the exponential in eq. (4.68). While a 2 2ay,, ¢ and w, decay as ¢s = ¢ a8,/ a
and w, = wega? /a® (see figure 4.4). Inserting this evolution in eq. (4.68), one can check that the amplitude
of . remains constant after 2ag,.

Once cannibal domination begins, the Jeans length is again the scale that controls the oscillations in J.
For instance, the d. oscillations in the bottom panel of figure 4.7 end when the mode exits the Jeans horizon
in the top panel. The linear growth of ¢, after the mode exits the Jeans horizon can be seen analytically by
solving eq. (4.55) while neglecting ¢, w., and p, and using the fact that Hubble rate evolves as H oc a=3/2.

Like in previous subsection, the evolution of J, seen in the bottom panel of figure 4.7, has no significant
impact on dpy; because they oscillate too rapidly within the horizon.

In the bottom panel of figure 4.7 we see that dpym (blue line) grows logarithmically for aner < @ < adom-

This is the expected evolution for dpy in a radiation-dominated universe and is given by

B,
opm(a) = —Asdp(k)In ( a) Ohor < @ < Adom, (4.69)

Ghor

where A; = 9.11 and By = 0.594 are numerical fitting factors [105]. After the universe becomes cannibal
dominated, dpy is constant until é. grows to be of order dpyr, after which dpy grows linearly as dpy = . x a.

After reheating, dpy again grows logarithmically. Consequently, the growth experienced by DM perturbations
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Figure 4.7: Top: Comoving horizon (solid blue line), cannibal Jeans length (solid yellow line) and cannibal
sound horizon (solid brown line) relative to the horizon size at a;, with ki Olr,i = [a;H(a;)]7!. The dashed
yellow (brown) line represents when k;l (rs) is plotted in regimes outside of its validity. The horizontal
black dashed line marks the Fourier mode, k = 12.5 x 10_3k:h0r,i, of the perturbations shown in the bottom
panel. The shaded yellow region highlights the region within which ¢, oscillates. Bottom: Evolution of SM
radiation, cannibal and DM density perturbations relative to the primordial metric perturbation, ¢,. The
vertical dashed red, green, purple, and blue lines marks the scale at acan, afz, @dom, and a,n respectively. The
vertical dot-dashed black line marks the scale apo, when the mode enters the horizon. The vertical dashed
grey lines mark the scale factors when the mode enters the sound horizon and exits the Jeans horizon. The
ﬁglllre has been plotted for parameters £ = 0.68, m = 15 TeV, T}, = 10 MeV and «a, = 1, for which we obtain
kBl =2x1076 pc.

hor,i
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during an ECDE is determined by the growth of the cannibal perturbation.

Modes that enter the horizon after cannibal freeze-out

The homogeneous cannibal fluid behaves like pressureless matter after 2as, because w. < 1 in this regime.
Thus, for modes that enter the horizon after 2as,, one might expect d. to simply evolve as expected for
pressureless matter, i.e., with d. growing logarithmically between horizon entry and the end of radiation
domination. However, lingering thermal pressure affects the evolution of the cannibal perturbations that enter
the horizon shortly after cannibal freeze-out. The sound horizon grows logarithmically for af, < a < aqom, as

can be seen analytically by substituting H o 1/a? and cg = Cs 1201,/ In eq. (4.67):

T ~ (ac]S;;fZ In (2ZfZ> 2a¢, < & < Qdom- (4.70)
This logarithmic growth of r is also evident in figure 4.7 and in the top right panel of figure 4.8. Since the
sound horizon continues to grow while the universe is radiation dominated, modes that enter the horizon
after cannibal freeze-out may still oscillate. For example, in the bottom left panel of figure 4.8 we can see
that d.(kz) undergoes oscillations once k5 ! enters the sound horizon in the top left panel.

To better understand the evolution of . for modes entering the horizon between 2as, and agom, we solve
eq. (4.56). For a > ag,, the anti-damping term in eq. (4.56) rapidly decays while the frequency remains
constant. Moreover, since w, is already much less than one by ag,, the anti-damping term never has a
significant impact, as we have verified numerically. Consequently, for a > ay,, eq. (4.56) simplifies to a simple
harmonic oscillator equation in In(a). Using ¢; = ¢; t,a5,/a and H = H (afz)afzZ /a? for a > ag,, we can exactly

solve this simple harmonic oscillator equation to obtain

. k .
0. = C1sin (CSfZ In <C’2 a4 )) Qfz, Ahor < G < Gdom, (4.71)
) Qhor
where C’l and C’g are constants.

Eq. (4.71) suggests that the cannibal perturbation evolves logarithmically with a for a short time after
horizon entry. Since ¢; g,k/(aH )g, < 1 for modes entering the horizon after ag,, eq. (4.71) simplifies to

5.~ Cy (ZI;)]? In (@ a:()f) , (4.72)
while a does not greatly exceed ayo,- Hence the naive expectation that . should evolve logarithmically for
modes entering the horizon after cannibal freeze-out does hold for a brief period after horizon entry. During
this period of logarithmic growth, the influence of thermal pressure is initially negligible. However, the
influence of thermal pressure keeps growing logarithmically until it becomes large enough that the argument
of the sine becomes O(1) and §. begins to oscillate.

We can find C; and Cy for modes entering the horizon after 2a¢, by using the fact that the super horizon
initial condition is the same for both the cannibal and DM perturbations in this regime because the cannibal
particles are non-relativistic. Consequently, the early-time solution in eq. (4.72) should match the standard
logarithmic growth of DM during radiation domination in eq. (4.69). By matching eq. (4.72) to eq. (4.69) we
find the constants to be C; = —Asbp(aH)p,/(cs,p.k) and Cy = B,. Tt follows that the cannibal perturbation
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Figure 4.8: Top left: Comoving horizon (blue solid line), sound horizon (brown solid line) and Jeans
length (yellow solid line) relative to ki, Olm = [a;H (a;)]~!. Horizontal dashed lines mark the wavenumbers
corresponding to the perturbations in the bottom panel. Top right: Absolute value of the transfer function,
eq. (4.65), on the z-axis, for every inverse wavenumber k~! shown on the y-axis. The horizontal blue (purple)
dashed line marks the wavenumber that enters the horizon at @y, (@¢qom). The horizontal black dashed line
marks the analytical estimate of the wavenumber kpyx that maximizes dpm/dp, eq. (4.78). The vertical
black dot-dashed line is our analytical estimate of the the transfer function at horizontal black dashed line,
eq. (4.88). Bottom left: Evolution of 6. (solid) and dpn (light dot-dashed) for kpx and two other modes
k1 = kpk/10 and ke = 4kp,. Bottom right: Transfer function as in the top right panel but rotated by ninety
degrees. In this figure we take £; = 0.1, m = 180 TeV, T}, = 10 MeV and o, = 1.
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evolution within the horizon is given by

dc(a) = —Asoy (ij); sin (&s;)i In (Bsa:m)> Ghor < @ < Gdom- (4.73)
The fact that the cannibal and DM perturbations follow the same initial evolution after horizon entry can be
seen in the bottom left panel of figure 4.8.

Note that the argument of the sine in eq. (4.73) is similar to krs. By using the approximate evolution
of rg given by eq. (4.70), we find the difference between krs and the argument of the sine in eq. (4.73) to
be ~ ¢ p,k/(aH)s, In(anor/2ag,). This difference is much less than one for apo, > 2as, because ¢, < 1 and
k/(aH)t, = ag,/anor < 1, which follows from the fact that H o a=2 between ar, and ape,. Thus 6. deviates
from the logarithmic growth experienced by dpy approximately when the mode enters the sound horizon.
This can also be seen in the left panels of figure 4.8, where the intersection of k; L and 7, in the top panel
coincides with d.(k2) beginning to deviate from dpy(k2) in the bottom panel.

The dark matter density perturbation evolves in the same manner as in the previous subsection: it grows
logarithmically between apo, and aqom, after which it remains constant until é. grows to be of order dpy,
and then it grows linearly along with the cannibal perturbation, dpy = d. o a. Note that this linear growth
occurs independently of whether the mode enters the horizon before or after a¢,, as long as the mode is
outside the cannibal Jeans horizon during cannibal domination.

So far we have discussed modes that enter the horizon prior to cannibal domination. For modes that enter
the horizon after agom, d. evolves as cold matter, since k=1 > r4(agom). Thus, the evolution of perturbations
for modes that enter the horizon after aqom is the same as those studied in early matter-dominated eras [18,
24, 76-78].

The linear matter power spectrum after an ECDE

We now compare the present-day linear matter power spectrum following an ECDE to the matter power
spectrum in standard cosmology. In the bottom right panel of figure 4.8 we plot the transfer function for a
scenario with agem > agy.

The transfer function is unity for modes that enter the horizon after reheating because dpy and dpa,s
undergo the same evolution for these modes. As we increase k, the transfer function increases as approximately
k%/In[k/(8keq)] until k& ~ kdom = (aH)gom because these modes experience evolution similar to modes in an
early matter dominated universe.

For k > kqom, modes enter the horizon during SM radiation domination. Modes with larger & now see
dpm undergo a larger logarithmic growth between apo, and agom but the same linear growth between agom
and a,, (seen, for example, in the differing growth of dpm(k1) and dpm(kpk) in the bottom left panel of
fig. 4.8). Consequently, an increase in k results in a ~ In[k/(8kqom)] increase in the growth experienced by
dpm. Thus the transfer function increases as approximately In[k/(8kdqom)]/ In[k/(8keq)], and as kdqom > keq,
the k-dependence of the transfer function is primarily driven by the logarithm in the numerator.

As we further increase k beyond kqom in the top right panel of figure 4.8, the transfer function continues
to grow until k7' intersects the cannibal sound horizon in the top left panel. For these modes, the cannibal
perturbations undergo oscillations while their wavelength is contained within the yellow shaded region in
the top left panel, which inhibits the growth of DM perturbations. Modes with larger k£ spend more time
within the Jeans horizon, and thus have less time to grow prior to reheating. Since the Jeans length decays as
a~'/2 for a > ay,, the envelope of the transfer function for k > kyy falls as k=2/In[k/(8keq)]. The oscillations
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in T(k) are caused by changes in the phase of the cannibal perturbation between horizon entry and Jeans
horizon exit; the dark matter inherits these oscillations because it falls into the gravitational wells generated
by the cannibal perturbations after they stop oscillating [26]. When ¢, keeps oscillating until a,},, however,
the cannibal mode does not have a net gravitational impact on dpyr, and thus for k > k;(a,n) the oscillations
in T'(k) stop.

4.4.3 Analytical estimate of the peak of the matter power spectrum

In this section we find analytical relationship between the key features in the small scale matter power

spectrum, {kpk, T'(kpk)} and the key cosmological transitions scales in ECDE, {ay., @dom, rn}-

Estimating £,

Earlier in section 4.4.1 we found that peak in the transfer function occurs at k;kl = 1.4k;1(2afz) when the
cannibal reactions freeze-out during cannibal domination, aqom < 2a¢,. The k,; mode here corresponded to
the smallest-scale mode for which the cannibal perturbation did not oscillate. Similarly, if instead cannibal
reactions freeze out while the universe is SM dominated, then the matter power spectrum peaks near the
smallest-scale mode whose cannibal perturbation do not oscillate. This occurs for a mode that is larger than

the cannibal sound horizon, i.e.,
kpk ~ Ts_l(adom)' (474)

We can more accurately determine ki by using the fact that dpm(arn) = 6c(arn) for wavenumbers in the
vicinity of kpk. For these wavenumbers, §. and dpym undergo the same amount of linear growth between aqom
and a,p, as illustrated in the bottom left panel of figure 4.8. Consequently, we can find kpi by finding the
wavenumber that maximizes d.(@dom)-

As the top left panel of figure 4.8 demonstrates, wavenumbers with k ~ 7, (agom) enter the horizon
between ag, and agom. We can estimate 0.(aqom) for these modes using the analytical solution for . given in
eq. (4.73). Strictly speaking, the approximations yielding eq. (4.73) do not include the gradual transition to
cannibal domination around aqom, but as the impact of this transition is similar for all modes with & between
kdom and kg, these neglected terms will not affect the determination of k.

In eq. (4.73), some of the k-dependence is hidden inside ayo,. This dependence can be made explicit by
using the fact that the modes near kpy enter the horizon during radiation domination, yielding k/(aH ), =

(aH)wor/(aH ), = ag,/anor. Expressing k in terms of apo, and defining v = anor/as,, eq. (4.73) becomes

5,17 BS 1m
Se(adom) ~ — Ay —L— sin (C; In (‘“)) . (4.75)

Cs fz

Apart from the weak k-dependence in ¢, (¢, oc k~90?) [3], the rest of the k dependence is now encoded
inside . We maximize 6.(adom) by taking ¢, to be constant and setting the derivative of d.(adqom) with

respect to y to zero. Doing so yields

s £z Bs m s,fz s,tz BS m
tan [c‘(’f In (ado )] = Cofz + Ci’fln (%0> . (4.76)
Y

Y Qfg v Y Cs fz7Y Qfz

This equation has multiple solutions. We want the largest v for which the above equation is satisfied, because

the largest solution corresponds to the value of aye, for which é. does not oscillate. Since oscillations suppress
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Figure 4.9: Wavenumber corresponding to the peak of the matter power spectrum, kpk, as a function of
initial temperature ratio between cannibals and SM radiation, & = T,(a;)/T(a;). The yellow (green) solid
line shows the estimate of kpy given in eq. (4.78) (eq. (4.66)); the dashed yellow and green dashed lines show
extrapolations of these analytical estimates outside their regime of validity. Black dots are the numerically
obtained values of kpk. The bars on the black dots show the range of k around kpx for which dpm(k, Geq) is
within 5% of dpm (kpk, @eq). The blue dashed line is the inverse of the cannibal sound horizon (see eq. (4.67))
at a,,. The vertical gray dashed line marks the point at which aqom = 2ag,. In the secondary z-axis on top,
we show the values of aqom/(2as,). For & 2 3.2, the SM radiation density is subdominant to the cannibal
density until reheating, and agon, is not defined. In this figure we take m = 300 TeV, a. = 0.2 and T}, = 8
MeV. We have restricted the plot to &; > 0.03 because for smaller ¢; the cannibal density never exceeds SM
density.

dc(@dom ), this mode is the global maximum of d.(@qom). For the largest v satisfying the above equation, the
tangent is well-approximated by a second-order Taylor expansion. After simplifying the resulting equation we
obtain

SCs,fz

_ 7w3/2
Tk 2\/5

2( B ‘“‘”“)2/3] : (4.77)

3cs,fz Afz
where W is the Lambert function. Using v = anor/ag, = (aH )¢, /k, we obtain

kol = (cjﬁ (4.78)
In the right panels of figure 4.8, this estimate of kpk is shown with a black dashed line.

In figure 4.9, we plot the estimates of kpx given in egs. (4.78) and (4.66) as functions of &;. We also show
the values of k that maximize dpm(k, aeq)/@p as black dots. Since ¢p is only weakly scale-dependent, the
peak location in dpm(k, aeq)/@p is an excellent estimate of the peak location in the matter power spectrum.
The bars around the black dots indicate the range of k for which dpwm(k, deq)/¢p is within 5% of its maximum
value. This range is larger for aqom < 2as, because the logarithmic evolution of . prior to aqom causes

the transfer function to be flatter near the peak (see figure 4.8). Our analytical estimates are accurate
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approximations to the numerical results except in the transition region where aqom ~ 2a¢,. In figure 4.9, we
also plot the cannibal sound horizon at reheating, rs(ap). We plot r4(a,n) and not rs(aqom) because 7s(@dom)
provides an approximate estimate of kpx only for agom > 2ay,, while 74(a,n) can provide an order-of-magnitude
estimate of ki for all values of &;.

To understand how kyy depends on &;, we need to express kp in terms of cannibal parameters: m, a., Tin,
and &;. For agom < 2ay,, we can find a rough dependence of kpi on particle parameters by using eq. (4.57) to
estimate k;(2as,) and then performing the following steps to simplify eq. (4.57): 1) approximate ¢? ~ T./m
and neglect w,, 2) use eq. (4.39) to substitute peqn residing inside H, and 3) use (4.10) to substitute T..
Performing the above steps gives us the relation kp, ~ 0.3\/thm,,i, where kpori = a;H(a;). We can
get an estimate of knor; as a function of our cannibal parameters by splitting a;/ap = a;/am X an/ao,
estimating a,p,/ag using eq. (4.35) and a,,/a; using eq. (4.40), and using the initial densities of SM radiation

and cannibals in the Hubble rate to obtain

khor i —1 Trh 1/8 m 2/3 —4
Phori 345 ( ) 14 g.(10m/&)E. 4.79
2 pe o (o) () It g (omge (4.79)
Finally, by replacing ay, using eq. (4.42) we obtain
79/ T 1/3
- —1/3( M rh -1 4
ki ~ 0.05 % ] ( GeV) (IOMeV) peL. (4.80)

As we can see ki, has no §; dependence for agom < 2ay, case.

In the case where 2a¢, < agom, we first use ypi =~ In®/ 2(adom /ag,)/3.5 in eq. (4.78). This approximation
for vpk is an empirical relation that we found to be accurate to within 20% for 10 < agom/as < 105 and
102 < ay, Ja; < 10%. Furthermore, we use (aH)t; = knor,i0i/ag, because the universe is radiation dominated
between a; and ag,. Finally, expressing ag, and agom in terms of cannibal parameters using eq. (4.43) and

eq. (4.41) respectively, we obtain for agom > 2ag,

1/3 8
Fpx ~ 3.7 % 102 pc—la—3/4£f5/2 (i>11/12 T, / M 5/
a ¢ ™ GeV 10 MeV 100

y 1n73/2 (leac_3/4£i9/2 ( m )1/4 (9*(10771/51))9/8) pC_l. (481)

GeV 100

The location of the peak in the transfer function thus depends on all four cannibal parameters, but it is most
sensitive to &;, which is in contrast to eq. (4.80).

While our analytic estimates of kpi in the scenarios with aqom < 2af, and aqom > 2as, are given by
different functions, the underlying scale determining ki in both cases is the cannibal sound horizon, up to an
order of magnitude. For agqom > 2ag, we have already shown that k;;kl ~ 75(adom)- In the case of agom < 2ag,
one can show that rs(2ag,) is within an O(1) factor of k;1(2afz) R k;kl. Moreover, after cannibals freeze out
and dominate the universe, rs asymptotes to a constant value (see figure 4.7 and 4.8) as seen by inserting
H x a=/? and ¢,  1/a in the definition of 7, eq. (4.67). Consequently, the total comoving distance traveled
by the sound waves in the cannibal fluid, r4(a,n), provides an order-of-magnitude estimate of kpy for all
scenarios. In figure 4.9, we compare the dependence of 7;1(a,,) on &; to that of kp,. The value of r; ! (asm)

always falls within a factor of 5 from kyx in our parameter space.
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Estimating T'(k,)

We now semi-analytically estimate the value of T'(k,x).* Since DM particles are falling into the gravitational
potential formed by cannibal, the value of the DM perturbation at the end of reheating is approximately the
same as that of the cannibal’s, dpas(arn) = dc(arp). Consequently, we can estimate the peak of the transfer
function by first estimating the value of cannibal perturbation for kpy.

First we solve for the case where aqom < 2ay,. Since for this scenario, the cannibal density perturbations
with k < k; grow linearly after horizon entry, and the peak wavenumber kyy enters the horizon at a scale
factor anor,pk X G, We expect d¢(kpk, arn) X ¢p(kpk)arn/as,. This relation, particularly the assumed linear
scaling of anorpk = kpk/H (Ghor,pk) With ag,, does receive logarithmic corrections owing to the cannibal
interactions, but the logarithmic nature of those corrections implies that the linear scaling provides a useful
estimate. After reheating, we expect the DM perturbation to grow logarithmically. Thus we expect that the

behavior of dpnm(kpk) during the post-reheating epoch of radiation domination can be parametrized as

St (Fp, @ > arm) = —by —2¢, (o) In <b2 a ) : (4.82)
Qfy, Qyh

where b; and by reflect, respectively, the deviation of dpam(kpk) from perfect linear growth between a,, and

af,, and the transition of dpy; from linear to logarithmic growth around a,,. Empirically we find that both

by and by are O(1); for instance, in the parameter point shown in Fig. 4.6, b; = 2.5 and b = 1.7. Both b,

and by are insensitive to variations in a,/ag, as long as dpy achieves linear growth by the time of reheating,

2> 200. However, while bs is insensitive to variations in ag,/a;, by has a logarithmic

~

or equivalently a,1,/ag,
dependence on ag,/a; arising from the logarithmic corrections to the assumed proportionality anor pk X @fs-
Comparing Eq. (4.82) with Eq. (4.69) lets us identify
Ghor,pk

Qy
Alkpie) = by — B(kpk) = by—2E=. (4.83)
Aty Qrh

Using these relations of A(kpx) and B(kpk) in the transfer function, Eq. (4.65), yields

bl Arh ln(Bsbg_larh/ahor,s) 1 Qrh
T(kpi) = - _ - ~ O
A ag, In(4Bse=3acq/ahor,s) 5 agy,

(4.84)

where in the second relation we dropped the logarithmic factors (since ayn < Geq) and estimated by ~ 2.
Thus the peak of the transfer function is roughly proportional to the decades between the freeze out of 3 — 2
reactions and reheating.

The semi-analytical estimate of the peak of the transfer function given in the first equality is found to be
accurate with the numerical value (less than a 1% deviation) for different values of a,, as long as a,p, > ay,.
However, the semi-analytical estimate has a small variation of order ~ 20% with respect to its numerical
counterpart as we change ay, by a factor of order 10. This semi-analytical estimate is also shown in the right
panels of figure 4.6 as black dot-dashed lines.

Next we find an analytic estimate of T'(kpk) for scenarios with aqom > 2ag,. Again, we start by first
estimating the value of d.(a,n). Since the mode with wavenumber kpi typically remains outside of the cannibal
sound horizon, d.(kpk) evolves similarly to a cold matter perturbation. That is, §. evolves logarithmically

from horizon entry at anor = Ypk@r, until aqom. The linear growth of d.(kpk) after cannibal domination is

4Due to the presence of dpyp s in the denominator of the transfer function (eq (4.65)), the location of the peak in the transfer
function is slightly different from kp. However, this difference is negligible, as can be seen in figure 4.8.
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well described by the growing solution of the Meszaros equation:

3A, 4B, -3 om
6c(kpk7a) ~ 2¢P In I: e “aq

] a4 (4.85)

VpkOfz Gdom

As dpm(kpk, arn) = 0c(kpk, arn), the logarithmic growth of dpn after reheating will then be of the form

Ay 4Bse 3 agom o .
dpm (kpk, a) = 3450y In ¢ % drh by 1n ( by a
2 Ypkafz Adom Qyh

) . (4.86)

Here b; and by parameterize the transition from linear to logarithmic growth through reheating. Numerically
we find 51 =1.29 and 52 = 1.66.
Comparing eq. (4.86) with the standard logarithmic growth of dpy during radiation domination, eq. (4.69),

we find
3As 4Bsei3adom Grh 7 = Ghor
A(kpk) = 1 b B(kyx) =10 . 4.87
( Pk) 2 N |: YpkQafz :| Adom ! ( pk) 2 Qrh ( )
Using the above relations in the definition of the transfer function, eq. (4.65), gives
3~ 4Bse_?)adom Qrh ln(Bsgglarh/ahor s)
T(ky) ~=b11 1-— . 4.88
( pk) 2 L ( YpkOfz ) Adom ln(4Bs€73aeq/ahor,s) ( )

This estimate is accurate to within 5% as long as agqom > 100a¢, and a1, > 10agom, and is shown as a black
dot-dashed line in the right panels of figure 4.8).

We obtain a simple approximation for T'(kpk) by neglecting the logarithmic factors in the square bracket
in eq. (4.88) as they provide only an O(1) correction and using the fact that v is typically of O(1), yielding

Adom Grh
T(kyk) ~21n . 4.89
( pk) <1Oaf4> Gdom ( )

Notice that in both agom < 2ays, and aqom > 2ay, scenario, the peak of the transfer function is primarily
determined by the duration of cannibal domination after the freeze-out of cannibal reactions. In the scenarios
with 2ag, < agom one also gets an additional logarithmic enhancement due to the logarithmic growth of

dc(kpk) prior to ddom.

4.4.4 The effects of DM-cannibal interactions

Until now we have focused on scenarios where the DM only interacts gravitationally with the other constituents
of the universe. However, if DM and the cannibal particle are part of the same hidden sector, then it is
natural for the two species to have non-gravitational interactions as well. In this section we show that the
presence of non-gravitational DM-cannibal interactions does not change the key features of the transfer
function and does not change kpx and T'(kpy).

Scattering between the DM and cannibal particles can cause the DM to be kinetically coupled to the
cannibal fluid. The scenario we consider involves an interaction between two non-relativistic particles with

a mass hierarchy (mpy > m) and hence is similar to the baryon-DM interactions studied in Ref. [109].

1dp
p dt

to its s-wave scattering interactions with the cannibal bath is given by ncan(m/mpwm){(opM,cVc), Where

Using the results of Ref. [109], the momentum transfer rate ( ) experienced by a DM particle due
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Figure 4.10: Transfer functions for scenarios with different cannibal-DM interaction cross-sections. The
left panel shows an initially subdominant cannibal scenario with the same parameters as in figure 4.8. The
right panel shows a scenario with an initially dominant cannibal density with m = 1.8 TeV, Ty, = 10 MeV,
a, = 0.1, and & = 10,. The blue line corresponds to no kinetic coupling between DM and the cannibals.
The orange line corresponds to a scenario where the DM-cannibal scattering rate falls below the Hubble
rate at axa,pm = G,n/100, while the green line is for a scenario with axq, pm = 2a,1,. The transfer function is
unaffected by cannibal-DM interaction for modes where T'(k) > 1.

(opM,cVe) x v/Te/m is the velocity averaged cross-section for cannibal-DM scattering. When we include
these interactions, eq. (4.49)) for Opy becomes
k? m ncan<UDM,cUc>

A= e (0~ o). (4.90)

1
Opm(a) + —fpm —

The momentum transfer rate for a cannibal particle interacting with the DM fluid is given by npm(opm,cve)-
Consequently, a term similar to the RHS of eq. (4.90) would also appear in the 6. equation but with an
additional factor of —ppn/pean- AS ppM K Pean Prior to reheating, the effect of DM-cannibal scattering on 6.
is much smaller than its effect on fpy;. Consequently, the DM perturbations track the cannibal perturbations
while providing negligible feedback on the evolution of the cannibal perturbations. Hence we ignore the
impact of DM interactions on the cannibal fluid.

In figure 4.10 we compare the transfer functions resulting from scenarios with different values of (opm cve)-
We see that DM-cannibal interactions have no impact on the peak of the transfer function. In the limit
of strong kinetic coupling, i.e. Ncan{opM,cVc) > H, the DM-cannibal interactions cause dpm to track J.
However, regardless of the strength of the DM-cannibal kinetic coupling, the metric perturbation will always
drive dpy toward &, once the mode escapes the cannibal Jeans horizon. Consequently, the value of dpy at
reheating is insensitive to DM-cannibal scattering for modes that escape the cannibal Jeans horizon.

DM-cannibal interactions do affect the DM transfer function on very small scales, corresponding to
modes that do not escape the cannibal Jeans horizon before reheating. For these modes, J. oscillates until
reheating and so never generates a coherent gravitational pull on the DM perturbation. In scenarios with
only gravitational interactions, shown by the blue line in figure 4.10, dpn is larger than §. at reheating for
these small-scale modes because J. oscillates while dpy; grows logarithmically until agqon. However, in the
opposite limit where DM remains kinetically coupled to the cannibals until 2a,;, shown with the green line,
O0pMm has the same value as d. at aqp.

The intermediate case shown by the orange line in figure 4.10 is more suppressed on very small scales than

the tightly coupled case shown in green, even though the intermediate case has a smaller value of (opu cve)-
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This relative suppression results from diffusion damping of the dark matter perturbations. Diffusion damping
occurs when the cannibal perturbations oscillate faster than the DM-cannibal scattering rate prior to kinetic
decoupling, i.e. csk > Ncan(0DM,cVe) > H. During this period, the DM perturbations oscillate with the
same frequency as the oscillations in the cannibal perturbations, but the amplitude of their oscillation is
highly damped. This damping is similar to the Silk damping of baryon density perturbations [110]. In
figure 4.10, the orange line is more suppressed than the green line because the diffusion damping scale,
kpt ~ cs/(nean(opM cve)), is larger for smaller values of (opnmcve). Consequently, the modes experience
damping at smaller k£ values when DM decouples shortly before reheating compared to the tightly coupled

case.

4.5 Beyond the perfect-fluid approximation

So far we have assumed that the cannibals and the DM fluids are perfect fluids. The perfect-fluid approximation
will break down on scales where the random motion of the particles comprising the fluid cannot be neglected,
which can occur in a variety of regimes. Even while the homogeneous cannibal fluid is in kinetic equilibrium,
the cannibals still have a finite diffusion length. For perturbations on scales smaller than the diffusion length,
a perfect-fluid description is not sufficient. Once kinetic equilibrium is lost, the random thermal motion of
particles becomes important on scales quantified by either the free-streaming length or the collisionless Jeans
length, depending on the gravitational forces experienced by the particles. Again, for perturbations with
wavelengths smaller than these scales, the perfect-fluid description breaks down.

Momentum exchange among cannibal particles is dominated by elastic 2-to-2 scatterings, with a rate
given by nean{ocve). In appendix B.2 we derive the two-to-two scattering rate for the ¢* theory described by

eq. (4.1). We find that the s—wave contribution in the non-relativistic limit is

2
1 5 g> T, T,

= (A=29) x [ =gy 491

(ocve) 6473/2m?2 </\ 3m2> “Nom =7 (4.91)

where A and g are the coupling constants of the cubic and quartic interactions in eq. (4.1), respectively, and in
the second equality we pulled out a factor of v, = \/m to define an effective scattering cross-section. Note
that the parameter o, that controls the cannibal number-changing interactions does not uniquely determine
o. because a. and o, depend on different combinations of g and .

In a Hubble time, a cannibal particle will undergo N = (ncan{ocvc))/H scatterings. The average distance

travelled by a cannibal particle between two collisions is g ~ 1/(Ncanerr). Consequently, the comoving

1 1 v
Aif = — VN X lppy = — S 4.92
4Ty P70\ Neanoer H (4.92)

For modes with wavelengths shorter than the comoving diffusion length, the higher moments of the Boltzmann

diffusion length is given by

hierarchy can no longer be neglected, and will suppress d. [111]. The perfect-fluid approximation also breaks
down for modes that oscillate faster than the 2-to-2 scattering rate, i.e. if csk > nean{ocve). Since ¢s ~ v,
requiring the oscillation frequency to be slower than the scattering rate is equivalent to requiring k=1 > Lnfp-
Since the cannibal diffusion length is larger than the mean free path prior to kinetic decoupling (as N > 1),
modes will be damped by diffusion before the scattering rate falls below the oscillation frequency.

The diffusion length is relevant as long as the cannibal fluid maintains internal kinetic equilibrium, i.e.
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Nean(0cUe) > H. We define the scale factor, ayxq, at which the cannibal fluid falls out of its kinetic equilibrium

through the relation

ncan(akd)<gcvc(akd)> = H(akd)- (493)

After kinetic decoupling, the cannibal fluid is effectively collisionless. Cannibal number-changing interactions,
which involve three particles in the initial state, freeze out substantially before the cannibal fluid loses internal
kinetic equilibrium, so after kinetic decoupling the cannibal fluid evolves as pressureless matter.’

While the universe is radiation dominated, the cannibals experience no coherent gravitational force and

have a comoving free-streaming length given by

a ’UC
Ats(a) = Aair(axa) + / a2Hda axd < a < Adom- (4.94)

akd

Here we have imposed that the cannibal diffusion length is equal to the free-streaming length at kinetic
decoupling. When the cannibal comes to dominate the universe, metric perturbations can begin to pull
particles toward overdense regions. In this regime, departures from perfect-fluid behavior are governed by the
collisionless Jeans length. Analogous to the collisional Jeans length described in the previous section, the
collisionless Jeans length determines the scale above which gravitational attraction is sufficient to overcome
the random motion of particles.

To find the collisionless Jeans length we need to include the anisotropic stress, ocan, in eq. (4.47), which
governs the evolution of 6.. Before kinetic decoupling, elastic cannibal scattering ensures that o, is only
relevant for modes within the diffusion length. After kinetic decoupling, the anisotropic stress is determined
by the free-streaming velocity of the cannibals. Ref. [112] finds the anisotropic stress for a collisionless fluid
to be given by o = f§<v2>5 , which follows from the assumption that the phase-space density of the particles
remains unchanged while particles fall into gravitational potential wells. After kinetic decoupling, the sound
speed term in eq. (4.47) is ill-defined and no longer appears in that equation. Consequently, the 6. equation

after cannibal kinetic decoupling is

by 1 w, k2 kK% 5, ,
0. (a) = a(l 3we)f. 1+w09¢:+ a2H¢+ a2H3<v )0. (4.95)

We find the collisionless Jeans length from eq. (4.95) by following the same steps as we performed for
calculating the collisional Jeans length: find the simple harmonic oscillator equation for . analogous to
eq. (4.56) and then find the wavenumber k for which the frequency becomes imaginary. Doing so, we find
the collisionless Jeans length, k:;i, to be the same as the collisional Jeans length in eq. (4.57), except with
/(1 + w,) replaced by 5(v?)/3:

9
kjc= aH. 4.96
7=\ 100 20
After cannibal freeze-out and before cannibal kinetic decoupling, the sound speed is given by ¢? = g% = %(vf)
5The s-wave component of the two-to-two scattering cross-section vanishes for A = (5/3)g%/m?2; for couplings in the

neighborhood of such values, the p-wave component will dominate the elastic scattering cross-section in the non-relativistic
regime. As the three-to-two cannibal interactions are phase-space suppressed as well as higher order in the couplings, they will
still generically decouple earlier than the elastic scattering interactions, but to examine this specific sliver of parameter space in
detail requires the retention of p-wave contributions beyond eq. 4.91, and is beyond the scope of this work.
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Figure 4.11: Length scales where the perfect-fluid approximation for the cannibals breaks down. The left
panel uses the same parameters as in figure 4.8 and shows a scenario where both cannibal freeze-out and
kinetic decoupling occur during SM radiation domination. The right panel takes m = 6.1 TeV, T, = 10 MeV,
o, = 0.42, and &; = 10 and shows a scenario where cannibal freeze-out occurs during cannibal domination.
The green line prior to axg shows the comoving cannibal diffusion length as given in eq. (4.92), and in the
left panel between axq and aqom, the comoving free-streaming length of the cannibals as given in eq. (4.94).
The orange solid line is the collisional Jeans length, eq. (4.57), for a < axq and the collisionless Jeans length,
eq. (4.96), for a > axq. The brown line indicates the cannibal sound horizon, eq. (4.67). The green shaded
region marks the regimes where the perfect-fluid approximation for the cannibals breaks down. Here we show
the diffusion length taking A = 0 in eq. (4.91).

and w, < 1. Therefore, the collisionless Jeans length has the same value as the collisional Jeans length would
have had in the absence of kinetic decoupling.

We show the evolution of all three length scales (diffusion, free-streaming, and collisional Jeans lengths)
in fig. 4.11. In the left panel we show a scenario where kinetic decoupling occurs before the cannibal density
comes to dominate, and in the right panel we show a scenario where the cannibal density is always dominant.
In both panels, the solid green line shows the growth of the diffusion length up until axq, which, in the left
panel, transitions smoothly into the free-streaming length given in eq. (4.94) in the region axq < a < @gom-
In the left panel, the solid orange line after agqom shows the collisionless Jeans length. In the right panel, the
orange line shows the collisional Jeans length before ayxq and the collisionless Jeans length after axq. The
green shaded region indicates the scales where the cannibal particles no longer behave as a perfect fluid. For
modes that enter the green shaded region in figure 4.11, we expect d.(a,1) to experience a suppression that is
not captured in our suite of perturbation equations. The black dashed line shows the peak of the matter
power spectrum in the perfect-fluid approximation, and thus indicates the location of the cutoff that follows
from oscillations in the cannibal fluid. We see that, in the cases shown, the modes that are affected by the
breakdown of the perfect-fluid approximation are already suppressed by the cannibal oscillations.

Cutoffs arising from imperfect-fluid behavior can be important for the transfer function when they occur
on scales larger than the small-scale cutoff provided by cannibal oscillations. In scenarios where the cannibals
freeze out during cannibal domination, the cutoff provided by cannibal interactions sets kyk ~ kj(2a¢,)/1.4,
which ensures that any deviations from perfect-fluid behavior occur at scales substantially below k;kl when

af, < axq. In scenarios where the cannibals freeze out during radiation domination, however, the situation is

82



a little more subtle. In this case, the perfect-fluid calculation of the cannibal cutoff gives kpx ~ rs(adom). As
both the sound horizon and the free-streaming length grow logarithmically during the period of radiation
domination following ayq, the sound horizon will generically stay outside the free-streaming length, and
therefore the cannibal oscillation cutoff k;kl as given by eq. (4.78) will occur at larger scales than the
free-streaming length. However, the derivation of eq. (4.78) assumes a collisional fluid. Thus while we expect
the cannibal oscillation cutoff to be the relevant small-scale cutoff for axq > agom, this conclusion does not
necessarily hold if axq < aqom. The regime with aiq < agom can be realized in a small region of parameter
space, as we show in section 4.6. A full calculation of the small-scale cutoff in this regime would require
incorporating higher moments of the Boltzmann hierarchy and is beyond the scope of this work; see [113] for
related calculations in a similar model. However in general we can expect this cutoff to lie somewhere in
the vicinity of 7s(akq) and Ags(adom)- These two scales are relatively similar: the sound horizon is governed
by the distance traveled by sound waves in the cannibal fluid, while the free-streaming horizon is governed
by the distance traveled by the non-relativistic cannibal particles in this epoch. Both the sound speed and
the cannibal particle speed are determined by the cannibal temperature, which changes only logarithmically
between aiq and agom-

Finally, we quantify the relationship between ag, and axq in our cannibal model. Since the 2 — 2 and
3 — 2 scattering cross-sections depend on different combinations of the quartic coupling A and cubic coupling
g/m, we can obtain a range of possible ayxq for a fixed ag,. To evaluate axq/as, in terms of the Lagrangian
couplings, we first divide eq. (4.93) by eq. (4.17):

Nean (axa) (Tcve(ara)) H(axq)

ngan(afz)<ov2>can - H(afz) ' (497)

We then express Nean(arq) and T.(akq) in terms of their values at ag, by using nean o 1/a® and T, oc 1/a®
for a > af,. Next, we approximate mncan(as,) = Pean,eq(@z) and Te(ag,) = Teeq(as,) and use eq. (4.12) and
eq. (4.10) to express pean,eq and T, eq in terms of the scale factor. Finally, we set ap,/a; = 103 inside the

logarithms to obtain

aby Hlaw) 5 (an\®  owr o e\’ 20736 [A—5¢%/(3m)]°
ag, H(ag,) 0 <az> m3<av2>can_10 (az) 995v/57 (9/m)2[(g/m)2 — 3N (4.98)

In the last equality above we used eq. (4.91) and eq. (4.15) for oeg and (0v?)can respectively. When the

3/2 and ay, is given

universe is cannibal dominated between ag, and axq, then H(ag,)/H (axq) = (axa/as)
by eq. (4.42). Defining ¢ as the ratio of the quartic and the cubic coupling, ¢ = A\/(g/m)?, and expressing

(g/m)? using the definition of . in eq. (4.98) yields

4/15
a’ﬁ ~ 105043/5 <GBV) /
Qg m

q_5/3 4/5

(3 — 17

(4.99)

Similarly, if the universe is radiation dominated between ag, and awq, H(as,)/H (axq) = (axq/as,)? and ay, is
given by eq. (4.43). Eq. (4.98) then implies that

3/8
Ued o 108a3/8¢3/4 <GeV>
Aty ’ m

qg—>5/3
(3¢ — 1)?/3

. (4.100)

In most of the parameter space that realizes an ECDE, varying A while keeping «. fixed results in a variation
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in aga/ar, of up to an order of magnitude. Figure 4.11 shows results with A = ¢ = 0; for the value of «.
shown in figure 4.11 increasing A to non-perturbative values results in a correction of less than 30% to the
values of axq shown in the figure.

Departures of the DM from perfect-fluid behavior can also be important for determining the transfer
function. Prior to reheating, the DM free-streaming, diffusion, and collisionless Jeans lengths are always
smaller than the perfect-fluid result for k;kl, as the DM speed vpy = \/m is always smaller than
the cannibal sound speed, ¢s ~ \/T'/m, which controls the scale of kpx. However, DM free streaming after
reheating can affect the peak of the DM transfer function in some regions of parameter space. Ref. [26]
evaluated the post-reheating free streaming of DM in the case where DM kinetically decouples from the
cannibal fluid after ag,. In this case we have Tpy(an) = Te(awm), which gives for the DM free-streaming
length

—1/2

to dt Te(am) 1 e da 1\* 1
= — = — - + —_ 4.101
ADM,f5 /t UDM a mpy  (aH ) /a ad Gla) (a) G(eq) <a3aeq) ’ (4.101)

rh

where we defined G(a) = g. (a)gi/ (awm)/ gié‘?(a) and dropped negligible contributions from dark energy at
late times. This result is applicable regardless of whether the universe was radiation dominated or SM
radiation dominated at a;. While the DM free-streaming length in any given model will depend in detail on
the DM coupling to the cannibal species, eq. (4.101) provides an upper bound on Apas,¢s: DM that decouples
from the cannibals prior to ag, will have a reduced free-streaming length as the temperature of the DM at
reheating will be colder than the cannibal temperature.

If the DM free-streaming length is larger than the small-scale cutoff coming from cannibal self-interactions,
then the DM transfer function will be maximized on a scale ~ ABI{/I,&, which depends on DM as well as
cannibal microphysics. For mpy 2 10m, we find DM free-streaming can provide the small-scale cutoff in the

transfer function in a small portion of the parameter space, as we discuss in the following section.

4.6 Implications for microhalo formation

In this section, we first discuss how the key features of the linear transfer function, namely kyx and T'(kpk),
relate to the properties of the earliest-forming microhalos. We then express kyik and T'(kpk) as a function of
the cannibal parameters m, Ty, o, and &;. Finally, we briefly discuss the microhalos’ observational signatures
and how these observations probe cannibalism in the early Universe.

After an ECDE, the DM perturbations with wavenumber kpi have experienced the most growth. Although
the stochastic nature of the primordial perturbations prevents us from knowing exactly which mode has the
largest amplitude, the near scale-invariance of the primordial power spectrum implies that perturbations on
scales near kpyk are the first to collapse and form gravitationally bound structures. Since perturbations that
enter the horizon prior to BBN form halos that are too small to capture baryons [114], the characteristic

mass of the earliest-forming halos is given by the amount of DM in a sphere of comoving radius kl;kl:

47

My = gk;kSPDM,o, (4.102)

where ppu,o is the dark matter density today, which we take to be ppymo = 9.7 x 107*® GeV* [3]. When

cannibals freeze out while they dominate the energy density of the universe (aqom < 2ag,), we calculate Mpy
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from the expression for kpyx given in eq. (4.80):

.\ (10MeVY [/ TeV ™3
My ~ 1011 M, (061)( T ><m> . (4.103)

For agom > 2ag,, we calculate Mk from the expression for kpx given in eq. (4.81):

M3 10-1a (2 (& /2 110MeV [ TeV\*'/* 100 15/8
Pk~ 9 X G(ﬁ> 0.4 T m g+(10m/&;)
9/2
1 0.4\"2 70.1\** / m \V4 [ g.(10m/&;)\ "
><<61n [500(5) (a) (Tev> ( o ) . (4.104)

We remind the reader that the expression for kyk given in eq. (4.81) is a good approximation for 10 <

Adom/ 0tz < 10° and 102 < ag, Ja; < 10%. Since the peak halo mass is typically much smaller than one Earth
mass, the earliest-forming halos are microhalos.

In both cases, Mpx increases as either Ty, or m decreases because My is determined by the sound horizon
at reheating, r(an). Decreasing Ty, delays reheating and hence increases r4(a.). Decreasing m increases
rs(amm) by delaying the freeze-out of cannibal reactions, which increases the cannibal temperature. Since
increasing o also delays the freeze-out of cannibal reactions, we see a positive correlation between M and
. The peak halo mass has a stronger dependence on «, when the cannibals freeze out while the universe is
SM radiation dominated because the Hubble rate falls faster in a radiation-dominated universe compared to
a cannibal-dominated universe.

An ECDE enhances the amplitude of all perturbations with k < kpx that enter the horizon during the
ECDE. Therefore, the largest halos that are affected by the ECDE have masses equal to the amount of DM
within the horizon at reheating, My, which is given by eq. (4.102) but with kpy replaced by ky, = amnH (arn).
We find M.y, in terms of cannibal parameters by taking H(a,,) ~ I' and then expressing I' in terms of T8

We then express a,1,/ap in terms of SM temperatures using entropy conservation to obtain

10MeV\® /10 \'?
Mrh~104M@< The ) <g (Th)> . (4.105)

While deriving the above relation we set g.s(Tin) = g«(Tin). An ECDE increases the abundance of all halos
with masses between Mpyx and M.y, and these halos form earlier than they would in a standard cosmology.

Halos form when dpy; becomes of order unity. In a standard cosmology, the amplitude of small-scale
perturbations increases only logarithmically with %k, so microhalos with masses within several orders of
magnitude of an earth mass form near a redshift of 60 [115, 116]. Since baryons do not participate in
structure formation for modes that enter the horizon during an ECDE, dpy o (1 + 2)7%9 for z < 2.4 on
these scales [105, 107]. Consequently, the collapse redshift of the microhalos corresponding to overdensities
with wavenumber k increases by a factor of ~ [T'(k)]''!! compared to that in the standard cosmology as long
as the collapse occurs after matter-radiation equality, i.e. for T'(k) < 30. For T'(k) > 30, the formation of the
microhalos occurs prior to matter-radiation equality, and the exact increase in the collapse redshift depends
non-trivially on T'(k) [19].

The central density of a dark matter halo scales with the homogeneous matter density at the time of its

6The Hubble rate at a,, does not equal I" because a,y, is defined as the scale factor when the Hubble rate equals I in a
standard cosmology. However, since pcan ~ pr at ayn, H(arn) is some O(1) factor times I'.
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formation [117-119], so the microhalos that form after an ECDE have central densities that are significantly
larger than those in standard cosmology [120]. These central densities are large enough for the microhalos to
survive within galaxies, although they experience significant mass loss [20, 25, 116, 121-123].

If T'(kpk) is significantly large, then the cannibals and DM particles assemble into microhalos before
reheating. For modes in the vicinity of the peak in the matter power spectrum, eq. (4.87) implies that the
DM overdensity at reheating is related to the primordial metric fluctuation via opwm(k, arn) =~ A(k)ép. For a
nearly scale-invariant spectrum, we expect ¢p ~ 1075 [3], and thus density perturbations on all scales remain
perturbative until reheating provided A(kpk) < 10°. As T'(kpk) ~ A(kpk)/As, where Ag = 9.11, microhalos
will form prior to reheating if T'(kpk) exceeds 10*. These microhalos are destroyed once reheating occurs
because they are primarily composed of cannibal particles. When the cannibal particles decay, DM particles
free stream out of the microhalos with typical speeds given by the virial speed within the microhalos, which
is of order 1072 [19]. The subsequent free streaming of DM particles acts to erase the structure within the
comoving horizon at the time of reheating, thus washing out much of the enhanced structure resulting from
the ECDE.

The peak amplitude of the transfer function, and thus the formation time of the first microhalos, can be
directly related to the properties of the cannibal field. In the case where cannibal freeze-out occurs during
cannibal domination (¢dom < 2as,), we use the expression for T'(kpk) given in eq. (4.84) and express ar, and

a,n using eq. (4.42) and eq. (4.40) respectively to obtain

0.1\ / m \14/9 (10MeV\Y? /10 \VP
18 (01 . 4.1
(Fpic) x 10 (ac> (TeV) ( Tin ) <g*(Trh)> o

For adgom > 2ay,, we use eq. (4.89) for T'(kpk) and express ag,, ayn, and aqom using eq. (4.43), eq. (4.40), and

eq. (4.41) respectively to obtain

&\ m s (10MeV\YE 0 10 NP 100
T(kpk)N2X102 <O4> (TeV) < T > (g*(Trh)> (g*(l()m/&)>
1 0.4\"2 10.1\** / m \V4 [ g.(10m/&)\"®
i (g) (a) (TeV) ( 100 ) - (4107)

In both cases, T(kpk) is approximately proportional to m/Ty, because for a given a. and &; this ratio

X = 1In

determines the post-freeze-out duration of the ECDE. Since dpm(kpk) grows faster during this period than at
any other time prior to matter-radiation equality, increasing this duration increases T'(kpk). The amplitude
of the transfer function at kpx has a power-law dependence on . when the cannibals freeze out in a
cannibal-dominated universe, while it only depends logarithmically on «, when the cannibals freeze out
in a SM radiation-dominated universe. This difference in sensitivity to a. reflects the linear growth of
dpm(kpk) between ag, and an for agom < 2ag,, as opposed to its logarithmic growth between ag, and agom for
Gdom > 2ag,. These two growth histories for dpnm(kpk) also explain why T'(kpk) is independent of &; when
adom < 2ag,, but is strongly dependent on & when aqom > 2ag,: since & determines aqom/a;, it sets the
transition from logarithmic to linear growth when cannibals freeze out prior to the start of the ECDE.

In figure 4.12, white-dashed contours show My as a function of m and T}y, for fixed values of &; and a.
The My contours were calculated from the expression for kpx given in eq. (4.66) if the cannibals freeze out
in a cannibal-dominated universe and eq. (4.78) if the cannibals freeze out in a SM radiation-dominated

universe. The colored contours show T'(kpk), which is evaluated by numerically solving the cosmological
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Figure 4.12: Colored contours show the value of the DM transfer function at the scale that maximizes the
matter power spectrum, T'(kyk), as a function of m and Ty, for fixed o, and &;. In the top left panel, the
cannibal density exceeds the SM radiation density up until reheating. In all other panels, the cannibals
freeze out in a SM radiation-dominated universe. The white dashed contours show the mass scale of the
first microhalos, eq. (4.102). The secondary y-axis shows the microhalo mass scale corresponding to modes
entering the horizon at reheating. In the white space on the top left, reheating either occurs prior to cannibal
freeze-out (top left panel) or the cannibal density does not dominate the universe prior to the decay of the
cannibals (all other panels). In the white space on the right, cannibalism does not occur. Above the red
dashed (dot-dashed) line, thermal freezeout cannot generate the observed DM abundance for mpy > 10m
(mpm > 100m). To the left of the black dashed (dot-dashed) line, the post-reheating free streaming of DM
modifies kpx if DM kinetically decouples from the cannibals after ar, and mpm = 10m (mpym = 100m). In
the bottom left panel, the cannibal fluid becomes collisionless prior to aqom to the right of the orange-dashed
line, and consequently cannibal free streaming modifies k.
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perturbation equations for kpx. The secondary y-axis on the right shows the values of M, obtained from
eq. (4.105). The parameter space with 5 < T'(kpk) < 10% is the region that generates a significantly enhanced
abundance of microhalos with masses between Mpk and M,y,. As T'(kpk) is roughly proportional to m /T,
there is an enhanced abundance of microhalos for a band of m /Ty, values.

The parameter space shown in figure 4.12 is bounded on all sides by three conditions. First, the reheat
temperature defined by eq. (4.34) must exceed 8.1 MeV to be compatible with the constraints from BBN and
the CMB [102, 103]. Second, significantly increasing the microhalo abundance requires a period of cannibal
domination following cannibal freeze-out, i.e. max(ag,, Gdom) < @rn. Finally, as here we are specifically
interested in the impact of cannibal interactions on perturbation growth, we require an epoch of cannibalism
to occur, i.e., Qean < Agy.

A period of cannibalism only occurs if the cannibals remain in chemical equilibrium after they become
non-relativistic. For a fixed value of o, this condition imposes an upper bound on m because a¢,/a; decreases
as m increases. Using eq. (4.42) and eq. (4.43) for ag,/a; and the fact that ac.n, =~ 100a;, the ag, > acan

condition can be rewritten as:

3
108 (%) Adom < 2afz7

m
< 4.108
(GeV) e 9 3 100 12 ( )
2 x 10 <04> (ﬁ) <M) Qdom > 2ag,.

If m exceeds the bound in eq. (4.108), then the number-changing self-interactions decouple while the cannibal

particles are relativistic, and any subsequent ECDE is simply a matter-dominated era. The evolution of
perturbations in such scenarios (without cannibal interactions) have already been studied in the context of
decoupled hidden sector theories [19, 74].

To obtain a substantial amount of growth, reheating must occur well after the cannibal reactions freeze out
(ayn > bag,) and in a cannibal-dominated universe (a,, > adom).7 This requirement imposes a lower bound
on m for a given Ty, following from the expressions for a,p, ag,, and aqom given in eq. (4.40), eq. (4.42), and
eq. (4.41):

0.1 10 MeV 10
( o >> (4.109)

GeV
o (0AY (T N (g000m/E) T (g T\
3 10 MeV 100 10 dom fe:

If a;n < Hag,, the modes that enter the horizon during the ECDE do not escape the cannibal Jeans horizon

3/7 67 3/14
0(55)" ()" (“5)

much prior to reheating. Consequently, there is no significant enhancement of DM perturbations, and the
a;n < Hag, section of parameter space does not provide interesting cosmological signatures.

As the initial density of the cannibals decreases relative to the SM radiation density, the upper and lower
bounds on m given by egs. (4.108) and (4.109) become more restrictive, as seen in figure 4.12. For smaller &;,
larger values of m /Ty, are needed to give sufficient time for the cannibal density to overcome the SM radiation

density prior to reheating. Decreasing &; also increases the Hubble rate at a given cannibal temperature, so

7Our numerical calculations neglect cannibal decays during cannibal freezeout. For the parameter space of interest for
enhanced structure formation, this is an excellent approximation, but for a,;, < 5ag,, the impact of cannibal decays can be
nonnegligible during freezeout. Thus we only show numerical results for a,;, > bag,.
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smaller values of m/a3 are required to keep the cannibals in equilibrium after they become non-relativistic.

Figure 4.12 also illustrates how decreasing .. shrinks the region of cannibal parameter space that yields a
substantially enhanced microhalo population. If cannibal freeze-out occurs while the universe is cannibal
dominated, then decreasing o, makes it possible for lighter cannibals to freeze out before reheating (for fixed
T:n). However, decreasing «. also reduces the parameter space where the cannibal particles will freeze out
while non-relativistic, so the net effect of lowering a. is to reduce the range of m values that can realize
Gean < gz < Bayy. If cannibal freeze-out occurs during SM radiation domination, the lower bound on m is
set by the requirement that aqom < a@.n, which is independent of a.. Consequently, in the right panels in
figure 4.12, only the upper bound on m moves as a. is changed.

If either & or «, becomes too small, then it is not possible for particles that undergo an epoch of
cannibalism to significantly affect the growth of structure because they do not dominate the universe after
freezing out. Since decreasing Ty, reduces the lower bound on m given by eq. (4.109), we compare the lower
and upper bounds on m at the smallest reheat temperatures allowed by BBN and the CMB constraints.

With T}, = 10 MeV, it is possible to satisfy both upper and lower bounds on m if

T\ 12
2 x 104 (g(loh)> dom < 201,
o > (4.110)
5/12 1/12
_ L(10m/&; (T,
10_35@ 5/3 (g ( 15’8/5 )) (9 (loh)) Gdom > 2as,.

Not all regions of cannibal parameter space that realize an ECDE are compatible with DM production
through thermal freeze-out. If we suppose that the DM relic abundance is fixed by annihilations to hidden
sector species (e.g., the cannibal itself), then for a given set of cannibal parameters, {m, Typ, e, &; }, we can
solve for the value of the DM annihilation cross-section, (ocv)pu, that generates the observed DM abundance.
If the DM annihilation cross-section takes the form

2
<O'U>DM = ﬂ-aDM

4.111
o, (4.111)

requiring apy < 1 for perturbativity then implies an upper bound on mpy;.

We can estimate this upper bound using a sudden freezeout approximation for the DM abundance,

H(as,pm)

nDM(afyDM) = ) (4.112)
<JU>DM
which defines the scale factor at DM freeze-out, as pm. The DM number density today is
af,pMm s H(agpm) {arpm @i Gy s
npm(ao) =~ npm(ar,pm) = X X (4.113)
ao <0U>DM Q; Qrh ao
As the cannibals evolve like radiation prior to a;, we have
af, DM T.(a;) 10m
2 = = xDMa 4.114
a; Te(agpm)  mbm ( )

where zpm = mpm/Te(as,pm). We use eq. (4.35) and eq. (4.40) to express apn/ag and apn/a; in terms of Tip
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and m. Given that

a2 m2DM 2
H = H(a;))—=+— = H(a,; SN 4.11
(af,DM) (a )a%,DM (a )(lom)ngM ( 5)
eq. (4.113) implies that
(rvhom ~ 2 VI g.(10m/6) e) (21 Qanly (Lo ) (TeV (4.116)
DM Gev? G AT 0.12 0MeV )\ m )’ '

where we assume g.s(Tin) = g«(Trn). Keeping apy < 1 then demands that

ST (lehf)/my (anll;ﬂ)l (mcirahev) (7ev) VI +g.(10m/g) /€] < 0%, (4.117)

The above bound still depends on xpy. While xpy is typically determined by inserting the equilibrium

number density into Eq. (4.112), this procedure makes xpy logarithmically dependent on (ov)py. To avoid
this dependency, we instead determine xpy; through
a?’,DM

nDMVEQ(ﬁDM)T = npm(ao)- (4.118)
0

Thus, given mpnm/m, eq. (4.117) provides an upper bound on m. The red dashed line in figure 4.12 shows

8 For larger values of m,

the upper bound on m resulting from the condition apy < 1 for mpy = 10m.
alternative production mechanisms such as freeze-in can still generate the observed DM density [15].

As discussed in section 4.5, departures from perfect-fluid behavior for either the cannibals or DM can
be important in some regions of parameter space. The impact of DM free streaming depends on its kinetic
coupling to the cannibal fluid and is model-dependent. In figure 4.12 the black dashed lines show where
the free-streaming horizon Apw s, given in eq. (4.101), equals kyi for mpy = 10m, in the case where DM
kinetically decouples from the cannibal fluid after cannibal freeze-out. Above and to the left of this line, DM
free-streaming, rather than cannibal interactions, can determine the peak of the transfer function.

To better illustrate when DM free-streaming can be relevant, we simplify eq. (4.101) by neglecting the

temperature dependence of g, and the DM density inside the Hubble rate. This yields

T
(1) )V iog(aeg farm) ~ 4| —

k7Y (amm) 1og(aeq /arn ). 4.119
p— p— 7 (am)log(aeq/arm) (4.119)

ADM, g5 ~

In the last relation we have used the definition of the Jeans length, eq. (4.57), and the fact that ¢ = 5T, /(3m)
and w. = T./m < 1 for a > ag,. For scenarios where cannibals freeze out in a cannibal-dominated universe,
we have k5" (am)/ k;kl ~ kj(2ag,)/kj(am). Consequently, DM free streaming becomes relevant when a,y, is
close to ag, and the ratio m/mpy is not too small. In contrast, when cannibals freeze out in a SM-dominated
universe, we have k;l(arh)/k;kl ~ k7 (am)/rs(adom). Here, the logarithmic growth of the sound horizon
until agem increases the gap between k;l(arh) and k;kl (as seen in the top left panel of figure 4.8). In the
bottom left panel of figure 4.12, this gap is large enough that the DM free-streaming horizon remains less

than k;kl for mpy > 10m.

8While decreasing mp relative to m relaxes the upper bound on m, our analysis assumes the DM and cannibal species to
be chemically decoupled by T.(a;) = 10m, and thus we consider mpy 2 10m.
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In the bottom left panel of figure 4.12, the cannibal fluid becomes collisionless prior to aqom, i-€. axq < Gdom,
in the region right of the orange dashed line. In this regions, the peak of the transfer function is determined
by the cannibal free-streaming horizon instead of the cannibal sound horizon. In computing the axq = aqom
boundary shown in figure 4.12 we set A = 0 when evaluating (o.v.) through eq. (4.91). To see how the timing
of cannibal kinetic decoupling depends on cannibal parameters more generally, we begin with the inequality
axd > Gdom, Write axq = axda/ag, X ag,, and subsequently use eqgs. (4.100), (4.43), and (4.41) for axq/as,, as,,

and agom, respectively. The condition ayxq > aqom then becomes
o\ 11/5 N 42/5 8/5
m<6><105(—c> <5>

4=5/3 1" ey, (4.120)

0.1 0.4 (3¢ —1)2/3

where ¢ = \/(g/m)?. This restriction on m is only relevant if it is more constraining than eq. (4.108).

Consequently, the restriction on m in eq. (4.120) becomes relevant when

q— 5/3 —1/4
(3¢~ 1273

1/8
&) (4.121)

¢ < 0.68 (0_1

For values of ¢; larger than the RHS of eq. (4.121), ayxq is always greater than aqom, and cannibal free
streaming does not affect kpi in the parameter space where the cannibals significantly enhance microhalo
abundance and also undergo cannibalism. Thus, there is no axq = aqom boundary in the panels with §; =1
or 10 in figure 4.12. As we decrease &; below the RHS of eq. (4.121), a larger fraction of the parameter
space has axq < agom. However, the parameter space where the cannibals significantly enhance microhalo
abundance also shrinks as we decrease &;, until there is no allowed parameter space for &; < 0.07(a./ 0.1)’3/ 5

see eq. (4.110)). Consequently, cannibal free streaming may affect &k, only in the narrow parameter space
P

between 0.07(cr./0.1)73/% < & < 0.68(./0.1)"/8 %

expect only a marginal correction to the perfect-fluid result for ki in the parameter space where axg < @dom-

4
. Furthermore, as discussed in section 4.5, we

The early-forming microhalos generated by an ECDE have large enough central densities to survive
accretion into galaxies [20, 122, 123]. While sub-Earth-mass halos are too diffuse to be detected by photometric
microlensing searches [124] and too small to be detected via astrometric microlensing [124-126], they can be
detected by pulsar timing arrays [21, 22] and by their impact on stellar microlensing within galaxy clusters
[23-25]. Furthermore, if the dark matter is a thermal relic, early-forming halos significantly boost the dark
matter annihilation rate regardless of their masses, and the isotropic gamma-ray background places powerful
constraints on the microhalo population [19, 20]. If dark matter annihilation is eventually detected in dwarf
spheroidal galaxies, the emission profile could distinguish annihilation within microhalos from both decaying
dark matter and dark matter annihilation outside of microhalos [20].

A full analysis of the observational constraints on cannibalism within a hidden sector lies beyond the
scope of this article, but we can use constraints on EMDE cosmologies to forecast which regions of cannibal
parameter space are likely to be probed by current and future observations. Constraints on EMDE cosmologies
are often expressed in terms of a generic exponential cutoff scale: P(k) o< exp[—k?/k2,]. Ref. [127] showed
that weekly observations of 500 pulsars over 20 years with an rms timing residual of 10 ns would detect
microhalos arising from an EMDE with kcut/km > 20 and Ty, < 30 MeV. Increasing the observational
period to 40 years extends the reach of pulsar timing arrays to reheat temperatures up to 100 MeV with 200
pulsars; see also Ref. [128]. The EMDE transfer function [76] implies that T'(kpx) ~ 25 for keyy/kn = 20,

nearly independently of the reheat temperature. If cannibal reactions freeze out during the ECDE, then
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the power spectrum on scales k < kpk is the same in EMDE and ECDE cosmologies, and ECDE scenarios
with 25 S T'(kpk) S 10* would generate pulsar timing signals that are at least as strong as those produced
by an EMDE with kcyut/km =~ 20. If cannibal reactions freeze out prior to cannibal domination, then the
ECDE power spectrum differs more substantially from the EMDE power spectrum analyzed by Ref. [127] for
k 2 kdom, but we can still predict which ECDE scenarios are likely to be accessible by pulsar timing arrays.
If kcue/kwn = 20, then the EMDE power spectrum peaks at kpk ~ 27k,,. Therefore, ECDE scenarios with
T(27kw) 2 25 and T'(kpk) < 10* will generate a microhalo population that is at least as detectable as the
microhalos that result from an EMDE with keyt/kmn = 20. For a. = 0.1, obtaining T'(27k,) = 25 requires
T(kpk) 2 100 for & =1 and T'(kpk) 2 500 for & = 0.4. Estimates of potential sensitivity from observations
of cluster caustic microlensing are at a far more preliminary stage, but suggest broadly similar reach for Ty
and T'(kpk) individually [25].

The best current constraints on EMDE cosmologies with thermal relic dark matter come from the isotropic
gamma-ray background [19, 20]. Since the dark matter annihilation rate within microhalos does not change
after the microhalos form and the microhalos track the dark matter density, dark matter annihilations within
early-forming microhalos generate the same constant emission per dark matter mass as decaying dark matter.

It is therefore possible to define an effective dark matter decay lifetime for these scenarios [19]:

o 10710 GeV~? ( mpM ) 7 x 10°® seconds (4.122)
eff = (ov)DM 106 GeV By ’ '

where By = (pd\)/phy is the structure boost factor generated by the microhalos. This effective lifetime
should be compared to bounds on dark matter lifetime for particles with twice the mass. When accounting
for emission from astrophysical sources, Ref. [129] found that Fermi-LAT observations of the IGRB [130]
demand that 7og = 1028 seconds for mpy between 10 GeV and 10° GeV and a wide range of annihilation
channels.

The microhalo boost factor that arises from an EMDE has been calculated for scenarios in which all
modes with ky, < k < kcyt, enter the horizon during the EMDE [18, 20] and for scenarios that include a
radiation-dominated era prior to the EMDE with keyt > kdom [19]. The former case generates a sharp peak
in the matter power spectrum that is qualitatively similar to the peak generated when cannibal reactions
freeze out during the ECDE, while the latter generates the same plateau feature as an ECDE that starts after
cannibals freeze out. However, for the limited range of T'(kyk) values that were considered in both analyses,
the two scenarios have values of By that differ by less than a factor of 10, and much of that variation can be
attributed to differing assumptions regarding the microhalo density profiles [20]. The fact that By is largely
insensitive to changes in reheat temperature for fixed T'(kpk) further supports the conclusion that the shape
of the peak in the power spectrum does not significantly affect the dark matter annihilation rate: it does not
matter how the microhalos are distributed in mass as long as they have the same formation time and contain
the same fraction of the dark matter, both of which are determined by T'(kpk).

The ECDE scenarios shown in Figure 4.12 generally require (ov)py = 1072 GeV =2 to generate the
observed DM abundance through thermal freeze-out, which implies that mpy < 2 x 106 GeV is required
to satisfy the unitarity bound. For these parameters, By < 1013 is required to keep 7o > 10?® seconds if
the annihilations are predominantly s-wave so that (cv)py is independent of the DM velocity. Refs. [18,
20] did not consider boost factors this large because they restricted their analyses to microhalos that form
after matter-radiation equality, but Ref. [19] included microhalos that form during radiation domination and
found that By > 10'3 for T'(kpx) = 80. However, if we only consider ECDE scenarios with T'(kp) < 80, then
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(ov)pm = 10710 GeV =2 and mpy < 2 x 10% GeV. For these parameters, the IGRB bound on 7.g demands
that By < 10'°, which corresponds to T'(kpx) < 20. It therefore seems likely that all of the ECDE parameter
space in Figure 4.12 that contains dark matter that thermally froze out (via s-wave annihilations) prior to
the ECDE is already ruled out by observations of the IGRB.

4.7 Summary and conclusions

We have shown that an early cannibal-dominated era (ECDE) leaves a distinctive peak in the matter power
spectrum. Perturbation modes that enter the horizon after the freeze-out of cannibal reactions but before the
end of the ECDE are enhanced. On smaller scales, the pressure generated by the self-heating of the cannibal
particles suppresses the growth of dark matter perturbations. Consequently, the properties of the cannibal
field generally establish the minimum halo mass following an ECDE. We show how the properties of the
cannibal field establish the minimum halo mass even if the cannibal reactions freeze out prior to cannibal
domination.

Cannibals are generically predicted in theories with thermally decoupled hidden sectors that have a
mass gap and a number-changing self-interactions. If the lightest particle in such a hidden sector remains
in chemical equilibrium after it becomes non-relativistic, it undergoes a period of cannibalism. During
cannibalism, the cannibal number-changing self-interactions convert the particles’ rest-mass energy into
kinetic energy to maintain chemical equilibrium while conserving entropy within the cannibal fluid. The
period of cannibalism ends when the rate of number-changing self-interaction falls below the Hubble rate.
Such a cannibal fluid can easily come to dominate the energy density of the universe even if the hidden sector
was initially colder than the SM bath. The ECDE ends when the cannibal particles decay into relativistic
SM particles prior to the onset of BBN.

During the ECDE, we find that sub-horizon cannibal density perturbations grow linearly with the scale
factor on scales that are larger than the cannibal Jeans length. The DM perturbations follow the cannibal
density perturbations because the DM particles fall into the gravitational potential wells formed by the
cannibals. Consequently, the enhancement of the DM perturbations after an ECDE relative to those in the
standard cosmology reflects the cannibal perturbation spectrum and contains information about the cannibal
self-interactions. This enhancement of the DM perturbations due to an ECDE is unaffected by possible
scattering between the DM and the cannibals.

Enhanced small-scale DM perturbations collapse earlier than they otherwise would and hence lead to an
enhanced population of halos at high redshift. Since an ECDE only affects perturbations on scales that enter
the horizon during the ECDE, perturbations on these scales form microhalos with masses far less than the
mass of the Sun. The characteristic mass of the earliest-forming microhalos, My, is determined by the scale
with the largest enhancement in DM perturbations (kpk) whereas the formation time of these microhalos is
determined by the amplitude of the enhancement, which is given by T'(kpk).

The location of the peak of the DM power spectrum is determined by the process that counteracts
gravitationally induced growth and prevents structure formation on small scales. In earlier works that have
studied microhalo formation due to an early matter-dominated era (EMDE), this cutoff in the matter power
spectrum was assumed to be generated by DM free streaming [18, 76-78] or axion DM oscillations [24].
Consequently, the peak scale is determined by DM microphysics. If the DM belongs to a hidden sector whose
lightest particle causes the EMDE, then the DM particle may be cold enough that the relativistic pressure of
the lightest hidden-sector particle sets the small-scale cutoff [19, 74]. We showed here that the cutoff in the
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matter power spectrum following an ECDE is typically generated by the thermal pressure in the cannibal
fluid and is independent of DM microphysics when there is no period of SM radiation domination prior to
the ECDE. We then extended our analysis to scenarios in which the cannibals freeze-out while cannibal
density is subdominant to SM density and showed that the cannibal thermal pressure still determines the
cutoff. We find the cutoff scale to be given by the cannibal sound horizon at reheating, up to an order of
magnitude, irrespective of the initial temperature ratio between the cannibal fluid and SM plasma and the
properties of the DM particles. The only exceptions occur in narrow bands of parameter space where the DM
free-streaming horizon overcomes the cannibal sound horizon or where the cannibal fluid becomes collisionless
prior to cannibal domination.

While the cannibal sound horizon provides a rough estimate of the wavenumber at which the power
spectrum is maximized, kpk, we have also found a more accurate (within ~ 10%) expression for kpx. In the
case where the freeze-out of cannibal reactions occurs during cannibal domination we find kpx ~ kj(2as,)/1.4,
where k;l is the cannibal Jeans length, and ag, is the scale factor when cannibal reactions freeze out. If the
freeze-out of cannibal reactions occurs during SM radiation domination, then we find ki to be given by
eq. (4.78). These analytical estimates allow us to provide a map between the key microhalo properties, Mpx
and T'(kpk), and the cannibal particle properties.

The peak amplitude of enhancement in dark matter perturbations due to an ECDE, T'(kpx), is determined
by how long cannibals dominate the universe after they freeze out, which depends on the cannibal mass, m,
its 3 — 2 reaction coupling, a., its initial temperature relative to the SM, &;, and the reheat temperature, T;y.
A longer period of post-freeze-out cannibal domination leads to larger values of T'(kpk) and earlier microhalo
formation. If T'(kpk) 2 10%, the cannibals and DM particles assemble into halos prior to reheating. After the
cannibals decay, the DM particles are released from these halos with sufficient velocity that their subsequent
motion erases nearly all the perturbations that are within the horizon at reheating [19]. Consequently, an
ECDE will generate a significantly enhanced abundance of microhalos for 5 < T'(kpk) < 10%. Since T'(kpy) is
roughly proportional to the ratio m /Ty, a band of m /Ty, values is expected to yield an enhanced microhalo
population. The upper and lower limits of this band are fixed by a. and &;. The range of possible values for
m, T, ¢, and &;, is further constrained by the requirement that cannibals undergo cannibalism and that
reheating occurs early enough to avoid altering the neutrino abundance, which would spoil the success of
BBN [98-101] and alter the anisotropies in the CMB [102, 103]. Thus, we have identified a bounded region in
the cannibal parameter space that produces an enhanced abundance of microhalos due to an ECDE. Within
this parameter space, we provide estimates for the masses of the earliest-forming halos and their formation
times in terms of the properties of the cannibal field.

Finally, we briefly discussed potential observational sensitivity to this enhanced microhalo population.
We expect the microhalos generated by ECDEs with reheat temperatures up to Ty, =~ 100 MeV with
T(27ke) 2 25 and T (kpk) < 10* to be detectable in the future pulsar timing arrays analyzed in Refs. [127,
128], while the results of Refs. [19, 20, 129, 130] imply that the observed IGRB likely excludes s-wave thermal
relic DM in almost all ECDE scenarios. Cluster caustic microlensing is a promising alternative gravitational
means of detecting the ECDE-enhanced population of microhalos in the low-redshift universe, but projections
for such observations are not developed enough to allow for similarly definitive statements.

It is important to remember, however, that all of these observational probes are sensitive to the internal
structure of the microhalos. While it is possible to predict the density profiles of the first microhalos from the
matter power spectrum [120], it is unknown how subsequent mergers between microhalos and their further

evolution within galactic halos affect their internal structure. Analyses that employ different assumptions
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regarding the microhalos’ density profiles, substructure, and survival rate give similar but not identical bounds
on EMDE cosmologies. There is also a great deal of uncertainty regarding how the gravitational heating of
the dark matter following structure formation during the EMDE or ECDE affects the subsequent formation
of microhalos [19], and it has been suggested that microhalo remnants could persist through reheating [131].
Therefore, we cannot yet establish robust observational constraints on cannibalism within a hidden sector.
Nevertheless, we have identified which regions of cannibal parameter space enhance the microhalo abundance,
which demonstrates how observations of small-scale structure provide a window into the evolution and particle

content of the early Universe.
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Chapter 5

N.g constraints on portal couplings

with hidden sectors

5.1 Introduction

Next-generation cosmic microwave background (CMB) experiments, such as CMB-Stage 4 [132], will mea-
sure the details of the acoustic peaks in the microwave background with unprecedented accuracy. These
measurements will result in subpercent-level determinations of the contents and geometry of the Universe.
In particular, the fidelity with which the locations of the acoustic peaks are forecast to be determined will
improve the measurement of the energy density in free-streaming radiation, parametrized by the effective
number of neutrino species, Neg, by almost an order of magnitude. Future CMB experiments, beyond Stage-4,
aim to reach a threshold of on_, < 0.027, where any new relativistic beyond-the-Standard Model (BSM)
particle must be always out of equilibrium with the Standard Model (SM) in the early Universe [133] if the
measured central value agrees with the SM prediction of N5M = 3.044 [34, 35, 134-136]. A measurement of
Neg that deviates from N, eSfIE\/I would be compelling evidence of physics beyond the standard model. Conversely,
models that require additional light states must be coupled to the SM in such a way that does not violate
bounds on Ngg.

Constraints on new relativistic degrees of freedom through N.g are often restated as a constraint on the
decoupling temperature at which any BSM relativistic particle must lose thermal contact with the SM plasma
in the early universe (see, e.g., Refs. [137-140]). For an out-of-equilibrium relativistic particle, measurements
of Neg can be used to constrain the total energy transferred between BSM relativistic particles and the SM
plasma in the early Universe, and can provide a powerful probe of the interactions of the SM with light,
feebly-interacting particles.

Our primary interest in this work is the case where a SM singlet mediator particle has renormalizable
couplings to both the SM and the dark radiation species. This scenario is ultraviolet (UV) insensitive insofar
as it yields interaction rates that grow more rapidly than the Hubble rate as the universe expands, provided
that the SM temperature remains larger than the mediator mass. This UV insensitivity means that the
asymptotic dark radiation density predicted in these models does not depend on the unknown early thermal
history of our universe provided the reheating temperature is above the mediator mass. In this work, we
focus on mediator masses m > 0.1 MeV where thermal production in the early universe provides one of the

leading avenues to test these models. Constraints from stellar cooling are typically stronger than cosmological
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constraints for masses m < 0.1 MeV [140, 141].

Similar UV-insensitive and out-of-equilibrium dark radiation production has been explored earlier in the
context of specific models. For instance, in the case of axions, freeze-in production can receive important
contributions from both heavy states in the UV completion [142] and fermion annihilation, which proceeds
through infrared-dominated processes below the scale of electroweak symmetry breaking [143-146]. BSM
neutrino model-building can also yield sizeable out-of-equilibrium dark radiation production [147, 148].
Meanwhile LHC searches can provide a complementary window onto the freeze-in of dark radiation in
scenarios where a weak-scale mediator carries SM charge [149].

In this chapter, we study the production of dark radiation in minimal BSM models that consist of a
massive (m > 0.1 MeV) SM gauge singlet mediator coupled to new light degrees of freedom. We begin by
considering two well-motivated extensions to the SM: a millicharged particle (MCP) model [150], and a model
where the SM baryon-number-minus-lepton number (B — L) symmetry is gauged [151, 152]. In the MCP
model, a dark photon that kinetically mixes with SM hypercharge is the dark radiation and the MCP is the
mediator. In the gauged B — L model the three right-handed neutrinos required to cancel gauge anomalies are
the dark radiation, while the new B — L gauge boson is the massive mediator. By developing and solving the
relevant Boltzmann equations, we use the production of dark radiation in these models to place constraints
on the strength of their interactions with the SM. We update constraints on the minimal MCP model given in
Refs. [153, 154] and present forecasts for future CMB observatories. We further demonstrate that future CMB
experiments will be able to rule out (or discover evidence for) the extended model proposed by Ref. [155] to
explain the EDGES anomaly. For the B — L model, we improve on the analysis of Ref. [156] by incorporating
two further effects that lead to more stringent constraints in the unequilibriated regime. In particular, we
take into account the out-of-equilibrium production of right-handed neutrinos, and further show that the
out-of-equilibrium decays of the B — L gauge bosons lead to a more powerful constraint on the B — L coupling
in the relevant regions of parameter space.

In the process of deriving these results, we develop a number of approximations which allow us to
analytically solve the Boltzmann equations in the regions of parameter space where the new light degrees
of freedom are out of equilibrium with the SM. We use these solutions to argue, on general grounds, that
a conservative lower bound on the dark radiation density can be quickly obtained for a generic class of
hidden sectors containing light degrees of freedom that interact with the SM via a heavier SM gauge singlet
mediator. The lower bound is governed by the properties of the mediator and is insensitive to the details of
the hidden sector, such as the number of degrees of freedom and their internal interactions, and relies solely
on the assumption that the mediator preferentially transfers its energy into the HS rather than the SM. This
amounts to assuming that the mediator interacts more strongly with the HS than the SM.

This chapter is organized as follows. In sections 5.2 and 5.3, we study dark radiation production in the
MCP and gauged B — L models, respectively. We develop and solve the relevant Boltzmann equations to find
the allowed regions of parameter space given current and projected CMB constraints on Neg. In both models,
we develop approximations that allow us to analytically solve the Boltzmann equation in various regimes. In
section 5.4, we consider the applicability of dark radiation constraints to generic classes of hidden sectors
containing relativistic particles. We conclude in section 5.5. The details of many of our computations are
relegated to appendices. In appendix A.5 we describe various processes transferring energy between the SM
and the dark photons in the MCP model, and similarly in appendix A.6 we describe processes transferring
energy from the SM into right-handed neutrinos in the gauged B — L model. Finally, in appendix A, we

simplify the phase space integral of the energy transfer collision terms for generic annihilations, decays, and
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elastic scatterings, while taking into account the quantum statistical distributions of relevant particles.

5.2 Millicharged particle model

In this section we derive constraints on the allowed parameter space of a MCP model from CMB measurements
of Neg. In this model, a massless dark photon kinetically mixes with the SM hypercharge gauge boson, while
the MCP is a massive Dirac fermion charged under the dark U(1).

MCP models have recently been explored in detail as potential explanations of the anomalously small spin
temperature of the hydrogen atoms inferred from the 21 c¢m signal measured by the EDGES experiment [155,
157-160]. This anomaly can be resolved if the baryons were cooled by scattering with DM particles. In
the scenario where the MCP comprises some of the dark matter, the millicharge interactions can cool the
baryons to explain the EDGES anomaly. However, the required values of the millicharge, @, are ruled out by
a combination of bounds from the CMB and e*e™ colliders [159].! Recently, an extension of the minimal
MCP model was proposed with multiple millicharged fermions that could resolve the EDGES anomaly while
evading current constraints [155]. In this section we both update the current CMB constraints on the minimal
MCP model and show that measurements of Neg from future CMB experiments will provide a stringent test
of these extended MCP models.

This section is organized as follows. We begin by describing the MCP model in section 5.2.1. In
section 5.2.2, we describe the relevant Boltzmann equations and solve them to find the region of parameter
space that saturates the Neg bounds from current and upcoming CMB experiments, updating the results of
[153]. Next, in section 5.2.3 we go into more detail about the physics responsible for the production of dark
radiation, and the relevant features of the resulting parameter space constraints from Neg measurements.
Finally, in section 5.2.4, we show how these constraints can be extended to models with multiple MCPs in
a detail-insensitive way. We then apply these constraints to the MCP model proposed by Ref. [155] and
show that measurements of N.g at the level of accuracy forecast by CMB-S4 can potentially rule out this

explanation of the EDGES anomaly.

5.2.1 The millicharged particle model

!/
”’
Dirac fermion, ¥, with mass m. The dark photon kinetically mixes with the SM hypercharge gauge boson,

The MCP model is an extension of the SM that contains a massless dark photon, A/, and an additional

A, and the Dirac fermion has charge €’ under the dark U(1). The relevant interactions for our study are
€ —
Lint = f§B’WF['W +eJgAu + ey 2+ eyt AL, (5.1)

where B,,,, is the hypercharge field strength, Z, is the Z boson, Jf,, is the electromagnetic current, and J%
is the weak neutral current.
We work in the basis where the gauge boson kinetic terms are diagonal and where Jf,; and J% do not

couple to the dark photon. Thus the dark photon remains ‘dark’. After performing the relevant redefinitions

1If the baryons are cooled by a millicharged dark fermion that is not coupled to dark radiation, then one can explain the
EDGES result if the dark fermions compose a 0.4% fraction of dark matter [161-164]. However, Ref. [165] found that this
solution is incompatible with the constraints on the millicharge and dark fermion mass imposed by its production history in the
early universe.
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of the A and A’ fields and considering the limit of weak kinetic mixing, ¢ < 1, the interaction Lagrangian is
Ling = e (Jhy — QUAHY) A, + 6/’1/_1’}/“¢A1L + Qe tan Oy oy " Z,,, (5.2)

where Oy is the weak mixing angle, and the dark fermion has obtained a millicharge, @, given by

/

Q= e% cos Oy . (5.3)

While the dark photon does not directly couple to SM degrees of freedom, dark photons are produced by
annihilations of millicharged fermions, which themselves are produced by interactions with the SM plasma in
the early Universe. In this work, we consider the regime where the fermion mass is m > 0.1 MeV; stellar

cooling observations provide the dominant constraint for smaller masses [153].

5.2.2 Evaluation of the dark radiation density and the constraints on the model

Dark photons contribute to the energy budget of the Universe as radiation, and their presence in the early
Universe is constrained by measurements of the effective number of (free-streaming) relativistic species, Neg.
Specifically, dark photons shift the value of Neg away from its SM value of folf\A = 3.044, by

4/3
ANy = Nogr — NS = ; <f) "’p ‘i (5.4)
where p4 and p, are the energy densities of the dark photon and the SM photon, respectively. The dark
photon energy density p4s during recombination is controlled by @, m, and €/, and thus measurements of
Neg can be translated into constraints on the parameter space of the model.

We demonstrate below that, for the regions of parameter space that lead to dark radiation densities that
saturate the bounds on ANeg from upcoming experiments, the dark charge ¢’ must be large enough to enable
almost all the MCPs to efficiently annihilate. In this limit, the final dark photon abundance is insensitive to
the value of ¢/. Moreover, due to the tight coupling of the MCPs to the dark photons, the hidden sector
(HS) thermal bath comprising the MCP and the dark photon is well-approximated by a fluid in chemical
equilibrium. Thus, instead of solving for the individual MCP and dark photon abundances, we can solve for

the combined HS energy density through the Boltzmann equations

d
[ZlStM + 3H (1 + wsm)psm = —C
d
Z‘;S +3H(1 + wis)pus = C, (5.5)

where C is the energy transfer collision term due to millicharge interactions, p is the energy density, H =
Vpus T psm/[V3Mpi], w = P/p is the equation of state, P is the pressure, and Mp; = 2.435 x 10'® GeV
is the reduced Planck mass. After the MCPs become non-relativistic and annihilate into dark photons,
PHS = pPA’.
Both pygg and wyg are determined in terms of Tyg by
§ gHS p

™
T4 — 5P 5.6
PHS = 309HS HS>» WHS 39H87 ( )
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where

30 < d3p 1
P 5 , 5.7
gHs +W2T§s - /0 (2m)? " exp(E/Tus) + 1 o
90 > d¥p p? 1
L , 5.8
o =2+ g x4 | e o B T T Y

Similarly, wgy is related to Tgy via

Gxp (TSM)

30 (Tsnr)’ (5:9)

WsMm =
where g, and g., count the effective degrees of freedom in the SM energy density and the SM pressure,
respectively. We model the QCD phase transition using the g, tables from Ref. [166] for Ty > 100 MeV.

The collision term in eq. (5.5) includes all processes that transfer energy from the SM plasma into the HS
bath due to the millicharge interactions. There are four important processes contributing to energy transfer:
(1) SM fermion annihilation into MCPs; (2) Z-boson decays into MCPs; (3) plasmon decays into MCPs; and
(4) Coulomb scattering of SM fermions with MCPs.? We include the quantum statistical distributions of SM
particles while deriving the collision term for each of these processes, relegating the details to appendix A.5.
The use of quantum statistics instead of Maxwell-Boltzmann distributions provides a ~ 20% correction to the
net energy transfer. Among the three s-channel processes (numbers 1-3 above), we find that energy transfer
via fermion annihilation dominates over the other two in the bulk of parameter space. For instance, the
energy transferred by fermion annihilations dominates over that from Z-boson decays except for the region of
parameter space where 1 GeV < m < 40 GeV. The energy transferred via plasmon decays is typically around
~ 20% of that transferred by fermion annihilations.

Finally, we find that the energy transferred by Coulomb scattering dominates over that from fermion
annihilations for the values of Q and m that saturate the bounds on ANgg from both current and upcoming
experiments. Naively, one might expect energy transfer via Coulomb scattering to be subdominant in the out-
of-equilibrium regime because these processes are suppressed by the small MCP abundance in the initial state.
However, due to the forward-scattering singularity, the energy transfer via Coulomb scattering dominates over
that via SM fermion annihilations for Tg as low as 0.35Tsy (for more detail, see appendix A.5). Temperature
ratios of Tys/Tsm > 0.35 during recombination produce enough dark radiation to shift ANeg > 0.06, which
can be detected in the upcoming CMB-S4 experiments [132]. Hence, Coulomb scattering processes are key
for evaluating the dark radiation densities relevant for the values of AN g that can be tested in upcoming as
well as current experiments.

To determine the relic dark radiation density, and the resulting parameter space allowed by Neg mea-
surements, we solve the Boltzmann equations in eq. (5.5) from an initial SM temperature Tsy > m until
the energy injection into the HS ends, Tsy < m. We assume the HS is initially empty, which provides a
conservative constraint; any significant initial HS density only increases the final dark radiation density and
thus AN.g.

The various shaded regions in figure 5.1 show the regions of parameter space where the resulting energy
density in dark radiation exceeds various current and future experimental sensitivities to shifts in Neg. The
constraint contours saturate the current one-sided 2¢ upper bound from Planck [3] AN.g = 0.3 (black solid),
the projected 20 sensitivity for CMB-S4 [132] AN.g = 0.06 (gray solid), and the threshold goal for future

2Energy transfer from Compton-like scattering, A 41 — 1 4+ A’, can be more important than the processes mentioned here
for large values of the dark coupling constant, ¢’ > 0.9. We neglect this process for simplicity and genericity.
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Figure 5.1: Constraints on the mass and millicharge of the millicharged particle. The black solid, gray
solid, and gray dashed contours indicate the parameter space that yields ANgg = 0.3, ANeg = 0.06, and
AN.g = 0.027, respectively. The blue dashed contour is the CMB constraint derived in Ref. [153] for
ANg = 0.8. The green color on our ANeg contours marks the region where we expect the millicharge
interactions to cool the electron-photon bath relative to neutrinos and strengthen our constraints by an O(1)
factor. Also shown are constraints from SLAC [167], MiniBooNE [168], LEP [169], LHC [170], BBN [153],
supernova 1987A [171] and stellar observations [153].
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CMB experiments ANy = 0.027 (gray dashed). The threshold of ANyg = 0.027 physically corresponds to
the shift in N.g due to the energy density at recombination in a relativistic spin-zero particle that was in
thermal equilibrium with the SM in the early Universe and decoupled while all SM species were relativistic.

For comparison, in figure 5.1 we also display the results of Ref. [153] as the blue dashed line, which
shows the parameter points that lead to ANy = 0.8. We have verified that our results agree with Ref. [153]
within O(1) when we assume Maxwell-Boltzmann statistics for all particles. The use of Maxwell-Boltzmann
statistics as opposed to Fermi-Dirac statistics overestimates the dark radiation density by around 20%. As
the energy density in dark radiation depends on @2, using Fermi-Dirac statistics for SM fermions weakens
the Ngg constraint on @ by around 10%.

In figure 5.1 we also show the constraints on the MCP from collider experiments, stellar evolution, and
supernova observations (see Ref. [172] for a review). We omit limits from direct detection experiments because
those constraints are dependent on the interaction of MCPs with the magnetic fields in the galaxy [173, 174].
Among the displayed constraints, the current Planck limit is already the dominant bound in a substantial
portion of parameter space, while upcoming CMB observations will provide the strongest constraint for the
entire region with m > 0.1 MeV, assuming no deviation is observed from the SM value of N5M = 3.044.

The curves of constant ANeg in the MCP model parameter space shown in figure 5.1 have four key
features. First, at low masses, the contours of constant dark radiation density at recombination (and therefore
constant AN.g) relate the millicharge, @Q, to the MCP mass via Q o< v/mAN.g. In this region the HS is
out-of-equilibrium with the SM. Second, as one moves along the contour of constant AN.g toward increasing
m, one reaches a threshold mass my, where the millicharge @ becomes large enough that the HS thermalizes
with the SM. When the HS is thermalized with the SM plasma, the net energy transfer between sectors
becomes insensitive to the specific value of @) since forward and backward processes balance each other. In
this regime the asymptotic dark radiation density, and therefore the constraint from AN.g, depends primarily
on m and only logarithmically on @, as seen in the figure.

Third, the contour corresponding to AN.g = 0.06 has a narrow exclusion region (where AN.g > 0.06)
extending from m = my, up to arbitrarily large m, while no such excluded strip exists for either the
ANog = 0.3 or the AN.g = 0.027 contours. The existence (or non-existence) of this strip beyond the threshold
mass is related to the fact that ANg < 0.06 still allows the dark photon itself to have been in equilibrium
with the SM plasma for temperatures above the TeV scale, but is not compatible with the MCP also having
entered equilibrium, which would increase the hidden sector relativistic degrees of freedom to an unacceptably
large value at early times. Finally, the ANgg < 0.06 and ANgg < 0.027 constraints have a bump below
m ~ myz/2 which is due to energy injection from on-shell Z-boson decays. In the following subsection we
elaborate on this discussion by analytically solving the Boltzmann equations in the relevant regimes.

For m < 2 MeV, energy transfer into the HS occurs predominantly after neutrino decoupling. In this part
of parameter space, the production of dark photons as well as the relative cooling of the electron-photon
bath compared to neutrinos contributes to ANeg during recombination, while our analysis only considers the
contribution from dark photons. Taking into account the relative cooling of photons should further strengthen
the Nog constraints calculated in this study by an O(1) factor. We indicate this region in figure 5.1 by
coloring the N.g contours green. A full treatment of early universe constraints on the MCP model below
m < 2 MeV requires a detailed treatment of neutrino decoupling as well as light element formation during
BBN, and is beyond the scope of this work.
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5.2.3 Dark radiation production in different regimes

The parameter space that saturates the bounds on N.g can be separated into two distinct regions: a region
where the HS remains out of equilibrium with the SM plasma and a region where the HS thermalizes with
the SM. In this subsection we focus on the evolution of the HS energy density, pug, in these two regions of
parameter space. By studying the Boltzmann equations, we develop approximate analytic descriptions that

enable a deeper understanding of the shapes of the curves in figure 5.1.

Collisions, redshifting, and the evolution of pyg: The evolution of the energy density in dark radiation
is controlled by two factors. The first is the (net) rate at which energy is injected into the HS, C = C¢ — Gy,
where C¢, and Cy, are the forward and backward collision terms describing energy transfer from the SM
into the HS. The second factor is the rate at which the energy density is redshifting, Hpys. The ratio
C¢/H, then, indicates the energy density transferred to the HS within a Hubble time. When ppg is out
of equilibrium with the SM, C¢/H serves as a useful indicator of whether energy injection is important
(C¢/H > pug) or not (C¢/H < pus) in governing its evolution. When pgs is in equilibrium with the SM,
puS.cq = [m2gus(Tem)/30](Tem)* and C = Cy —Cp, = 0, as both forward and backward rates become large. The
HS remains in equilibrium with the SM plasma as long as the fractional energy injection rate, I'y = C¢/pus eq,
is larger than H.

To develop some intuition about the evolution of these rates, and their impact on the resulting dark
radiation density, in figure 5.2 we show the evolution of pgga* (black line) along with Cra*/H (blue dot-dashed
line) after numerically solving the Boltzmann equations given in eq. (5.5). The red-dashed line shows the
evolution of pys eqa® = [7?gus(Tsm)/30](aTenm)?.? The ratio between the black and red lines is proportional to
(Tus/Tsm)* and thus indicates how far away the HS is from equilibrating with the SM plasma. Two parameter
choices are shown to illustrate the two different regimes for computing the resulting dark radiation density.
The left panel shows a parameter point where C;/H is always smaller than pys eq, and consequently the HS
remains out-of-equilibrium with the SM plasma. The right panel shows a second choice of parameters where
the HS comes into thermal equilibrium with the SM for some period of time, indicated by the overlapping
red and black lines. In both panels, the initial hidden sector energy density is small compared to the energy
injection from the SM, pps < C¢/H, and the evolution of ppg is driven by the energy injection, giving the
initial increase in pusa®.

In the left panel of figure 5.2, energy injection into the HS ceases to be important after Cy becomes
Boltzmann-suppressed and C;/H falls below pps. In particular, Cra?/H attains its maximum around
Tsm = m/2, but it is not until Tgy = m/4 (yellow dashed line) that energy injection into the HS effectively
ends. For this choice of parameters, the HS does not come into thermal equilibrium with the SM, and
consequently the final value of pysa* can be estimated from the maximum value of Cra*/H. As ANg
parametrizes the energy density of dark photons, it constrains the maximum value of Cra®/H, which is
proportional to Q2 Mp;/m.

In the right panel, C;/H grows until it exceeds pus eq and subsequently the HS thermalizes with the SM
plasma. The two sectors remain in equilibrium until C¢/H falls below pug.eq. The final value of pusa’ is

given by pus.cqa’ evaluated at T, where Ty is the temperature below which HS thermally decouples from

3We use the same scale factor for both the red dashed and black solid lines, which is obtained after numerically solving for
pus indicated by the black line. The red line should not be confused with the solution for the comoving energy density for a HS
always in thermal equilibrium. The bump in the red line near Tgy = 200 MeV is due to the sudden decrease in g« below the
QCD phase transition. The red line decreases for Tgn < m/4 because the degrees of freedom in the HS decreases when MCPs
become non-relativistic.

103



]_0—39E 1039 - v
a0 [T e —~ e
<,_>]_0 40_E : \‘ <'_>]_0 40 |
[} K [}
z / z
< | | A <
Y Lo\t T
03510—41_: I m \‘ &10—41_
] ] \
1 — pusa’ —-= Cra*/H
PHs, eqa4 ----- ANgr= 0.3
w2 ] 0%
10! 102 103 10
TSM (MeV) TSM (MeV)

Figure 5.2: Evolution of the comoving HS energy density (solid black) as a function of SM temperature for
MCP mass and charges {m,Q} = {10 MeV,2 x 1078} (left) and {m,Q} = {10* MeV,8 x 107>} (right).
The red dashed line shows (72/30)gus(Tsm)T6ya®, and the blue dot-dashed line is Cra®/H. The vertical
orange dashed line marks Tgy = m/4. The horizontal black dashed line marks the dark radiation density
that produces ANyg = 0.3. For an out-of-equilibrium HS, the final dark radiation density depends on the
maximum value of Cra*/H, while for a HS that thermalizes with the SM plasma the dark radiation density
depends on the decoupling temperature.

the SM plasma, H(T;) = I'g. Consequently, if the HS thermalizes with the SM plasma, measurements of
Neg probe Ty, which is only logarithmically sensitive to Q.
We now separately study the regimes where the HS remains out of equilibrium with the SM plasma and

where it equilibrates.

Dark radiation production in the out-of-equilibrium regime: For scenarios where the HS remains
out of equilibrium with the SM plasma, the Boltzmann equations simplify because for Tys < Tsm, the
cooling of the SM plasma due to millicharge interactions is negligible, and the Hubble rate is dominated
by psm. Consequently, the SM plasma evolves adiabatically and we only need to integrate the Boltzmann
equation for pyg.

Integrating the remaining Boltzmann equation for pyg is non-trivial because the collision term depends
on both Ty and Ths. In particular, for Tys < Tsm, C = Cr, and while C¢ = C¢(Tsm) for s-channel processes,
for Coulomb scattering processes Cr = C¢(Tus, Tsm)- The energy transfer from Coulomb scattering process
dominates over that from s-channel processes for the regions of parameters space that saturate ANeg = 0.3
(see section 5.2.2). However, if ANyg is constrained to smaller values by future experiments, the HS will
be constrained to regions of parameter space with lower temperatures, and consequently, the contribution
from Coulomb scattering processes will become less important compared to the contribution from s-channel
processes.

In order to obtain a simple expression for a conservative lower bound on the asymptotic dark radiation
deunsity, we neglect the Coulomb scattering processes. This allows us to take C¢ = C¢(Tsm). Then with the

additional simplifying assumption that wsyn = wngs = 1/3, we can integrate the Boltzmann equation for pys

104



to obtain

Tsm, 1 dT. M Tsm, 1 dT.
<PHS> _(PHS> m/ sm G V3Mp / SMe (5.10)
F I

PSM PSM Tor Tsm Hpsm  (94m2/30)3/2 [y, Ty

Because the annihilations of SM fermions into MCPs typically dominates the s-channel energy transfer
processes, we focus on its contribution to the production of dark photons. In appendix A, we compute the
collision term describing the forward energy transfer for these annihilation processes. The corresponding

collision term for the forward energy transfer in SM fermion annihilations into MCPs is given by*
an 1 > 2
Ci" = Z 32,7/, ( . ds(s —4m%$)so ¢ y5(5)TsmGe, (V's/Tsm), (5.11)
I max(ms,m

where 04, is the spin-summed center-of-mass (CM) frame cross-section (see eq. A.114) and the summation
runs over all SM fermions. The dimensionless function G¢,(z), given by eq. (A.18), is determined by the
quantum statistical distribution f(p) = [e” /T 4 ¢]~!, where ¢ = 1 for fermions and ¢ = —1 for bosons.
In the limit when SM fermions can be approximated to have a Maxwell-Boltzmann distribution ({; — 0),
G¢, () asymptotes to the second-order modified Bessel function of the second kind, K5(z), and eq. (5.11)
then matches with the well-known result of Ref. [175].

The integral on the RHS of eq. (5.10) can be simplified for the collision term of eq. (5.11) by first rewriting

the integral as

Tsmt gTon 1 [ (s —4m3) g 1
cim = 7/ ds——— o W/ Za () (5.12)
/ TSYM ! ; 32t 4 max(m,my)? S\/g 1= T a0 ° €

Tsm,r F

where = Ty /+/s. One can show, to an excellent approximation, that the integration limits for z can
be replaced by 0 and infinity for Tsy, r < max(m,m,) < Ten, 7. With this approximation the integral
over x yields a factor of 157k, /2, where r1 = 0.80, kg = 1 and x_; = 1.5. Taking into account quantum
statistics in the phase-space distribution of fermions therefore leads to a correction of about 20% to the final
dark photon density. This result is indicative of the size of quantum-statistical effects in all energy transfer
processes we considered (including Coulomb scattering).

Numerically, we find that the integral over the collision term obtains its asymptotic value at Tgy ~
max(m,m.)/4. The dependence on m, is a consequence of the fact that for Ty < m,. the abundance of all
electromagnetically-charged SM fermions is Boltzmann-suppressed.

Using the simplified collision integral, we find the fraction of energy transferred from the SM plasma into

the HS is given by

PHS _ [ pHS PHS 153 Mp,
— = (== - =) = 3 CRETNEYD x L, (5.13)
PM ) et \PsM ) g —n \psm /) 64m3[gu(4A)72 /30132 A
4While deriving eq. (5.11) we make two key approximations. First, we neglect the Pauli-blocking effect from MCPs; second,
we assume Tsy > my. The first approximation is valid in the parameter space where MCPs are produced out-of-equilibrium
with Tgs < Tsm. The second approximation has negligible impact on the production of dark radiation for m > my because
MCP production is Boltzmann-suppressed by the time Tsn ~ my, while for m < m; the energy injection is dominated by
lighter fermions that are relativistic during Tsy ~ m.
5This approximation is possible for two reasons. First, the terms outside of the z integral peak at energy scale v/s ~ max(m, me).

Second, the integrand of the = integral goes to 0 as © — oo and as  — 0. Thus, as long as Ty, < max(m, me) < Tsm, 1, the
total integral is insensitive to the initial and final temperatures.
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where

max(m, m, o0 (s —4m?)
A (4 3 L=Am Z/ dSTSfof—ww(S)- (5.14)
f

4max(m,my)?

The energy injection decoupling temperature, A, determines the SM temperature below which energy injection
ceases to be important, and the leak factor, L, parameterizes the leakage of energy from the SM plasma due
to BSM interactions. While the above approximation assumes a constant g, until Tgy < A, numerically we
find that (pus/ pSM)TSM: A is primarily sensitive to g. at Tsm = 4A. Finally, this result is only valid as long
as the HS does not thermalize with the SM, or equivalently, if (pns/psm) g, —a < (9HS/Gx) Tsr=A-

The leak factor L has a simple analytical form when the MCP mass m is not close to any of the SM
fermion masses. Using the cross-section for fermion annihilation to MCP pairs given in eq. (A.114), and

neglecting Z-mediated contributions, we obtain

my<4A 5 o 922
RYigfe" N,
Lxk Y @ SQf <f), (5.15)

!

where « is the fine structure constant, Q; and N.(f) are the charge and color factor of the SM fermions,
respectively, and the sum over f runs over all SM fermions that are relativistic at Tgy ~ 4A.

To evaluate the final dark photon energy density we adiabatically evolve ppg from the end of energy
injection until recombination, (para®)oms = (pus/PsM)jear (PsMa*)Tyy=a. The dark photons act as free-
streaming dark radiation and cause a shift in Neg given in eq. (5.4). Requiring that the resulting A Neg

remains below the (ANeg)max upper bound set by CMB measurements limits the value of the charge to

@ SR () e (M=) (a) o

In deriving eq. (5.16), we set g.s(Tcmp) = 3.94 and approximated g.s(A) = g«(A), where g,s counts the

effective entropic degrees of freedom in the SM and Teyp = 0.25 €V is the temperature of photons near
recombination. The constraint on @ for m > m. is roughly proportional to /m, with the proportionality
constant determined by \/m . Note that taking into account the Fermi-Dirac statistics of SM fermions
weakens the constraint on @ by ~ 10%.

In the left panels of figure 5.3, the dark blue dashed lines show the values of the parameters that saturate
various Neg thresholds. These points are evaluated by numerically solving the Boltzmann equations after
including all s-channel energy transfer processes but not the t-channel Coulomb scattering processes. We
compare this s-channel result with the full result, which includes Coulomb scattering processes, given by the
black solid lines. Note that the agreement between the full and the s-channel-only results improves as A Neg
is restricted to smaller values. The light blue dot-dashed lines show the analytical result given by eq. (5.16).
Our analytical result does not include the contribution from Z-boson decays and hence underestimates the
dark radiation density in the range 1 GeV< m < 40 GeV in the bottom left panel of figure 5.3.

Dark radiation production in the equilibrium regime: The analysis in the previous section is only

valid when the HS remains out of equilibrium with the SM plasma. However, starting in the out-of-equilibrium

60ne can straightforwardly incorporate Z-boson decays into the approximate analytical treatment by substituting the
corresponding collision term, given in eq. (A.115), into eq. (5.10). We omit this calculation for brevity.
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Figure 5.3: Left: Solid black lines mark the parameter space for the MCP model that yields ANeg = 0.3 (top)
and ANeg = 0.027 (bottom). The blue dashed lines show the numerical solution after neglecting contributions
from Coulomb scattering processes. The light blue dot-dashed line is our analytical approximation to the
blue dashed line, as given in eq. (5.16). The orange dashed line marks the values of @ at which the HS
thermalizes with the SM plasma after neglecting Coulomb scattering processes. The exact Neg constraint is
well described by the constraint calculated with only s-channel processes as N.g measurements are improved.
Right: Solid black, solid gray and dashed gray lines mark the MCP parameter space that yields ANg = 0.3,
ANog = 0.06, and AN.g = 0.027, respectively, and are the same as those in figure 5.1. The orange line marks
the parameter space above which the hidden sector thermalizes with the SM plasma. The green and maroon
lines mark the parameter space where the MCP relic density matches the observed dark matter density via
freeze-out [165] and freeze-in [37], respectively. For values of @ relevant for Neg constraints, almost all MCPs
produced in the early universe must annihilate into dark photons to avoid overclosure of the universe.
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regime, as one follows a contour of constant ANeg by increasing m, the value of @) increases. At some point
the coupling can become large enough that the HS thermalizes with the SM. Once the sectors are thermalized,
the dark radiation density is no longer sensitive to the maximum of the forward energy transfer Cra*/H.
Instead, the final dark radiation density is determined by the temperature T,; at which the HS decouples from
the SM. This decoupling temperature is determined by the Boltzmann suppression of the collision term, and
is principally determined by the mass of the MCP, while remaining only weakly dependent on the coupling Q.
This is illustrated in the right panel of figure 5.2, which shows the evolution of the densities for a parameter
point where the HS and SM thermalize. Here, decoupling occurs with the Boltzmann suppression of the
collision term at T' ~ m/4.

The orange lines in figure 5.3 mark the values of @) above which the HS thermalizes with the SM plasma
for a given mass m. In the left panel, the orange lines are plotted after considering only s-channel energy
transfer processes while in the right panel they are plotted after including all processes. In the left panel,
the s-channel result that saturates AN.g = 0.3 becomes largely insensitive to the coupling @) once the curve
crosses above the s-channel thermalization contour; similar weakening occurs in the right panel for the full
result.

We can determine the thermalization threshold, the mass scale beyond which we can no longer use the
out-of-equilibrium result in eq. (5.16), as follows. On the one hand, a given relic dark radiation density, or
value of ANgg, can be translated to a decoupling temperature, Ty, by assuming that entropy is separately
conserved in the HS and SM sectors after Ty. This leads to the implicit relation

8 /11\*/3 (T, 4/3
(1) () s 17

which can be solved to determine T,;(ANeg, gus).” This expression for Ty(ANeg, gus) is independent of the
masses and couplings in the hidden sector, depending only on the effective number of degrees of freedom.

On the other hand, given a model, in this case the MCP model, we can compute the decoupling temperature
directly from the collision term by setting the energy transfer rate I'g(T) = C¢(T)/pus,eq(T) equal to the
Hubble rate at T,;. This condition determines the decoupling temperature in terms of the model parameters
Q and m, T4(Q, m). Consequently, when the HS is thermalized with the SM plasma, the contour in MCP
parameter space that yields a given value of ANeg is found by setting

Tu(Q,m) = Ty(ANeg, gus)- (5.18)

The energy transfer rate I'g increases compared to the Hubble rate until Ty ~ m/2, after which it
starts decreasing. Consequently, the decoupling temperature has to be smaller than m/2. Thus the lowest
value of m for which the HS can be in equilibrium with the SM plasma for a given (ANef)max is determined
by Tq(ANes, gus). Empirically we find that the Boltzmann suppression of I'g becomes prohibitive for
Tsm S m/4, and thus the precise location of the decoupling temperature becomes logarithmically sensitive to
the value of @ for Ty < m/4. Therefore, the value of m above which the the dark radiation constraint on @

become exponentially weak occurs at

mip = 4Td[(ANeff)maxngS}- (519)

"Note that there is a many-to-one map from Ty to AN.g because g«s(Ty) is constant away from mass thresholds. For ANeg
values that exactly coincide with regions where g.s(7y) is constant, we calculate Tj(ANeg, gus) by finding the minimum Ty
that satisfies eq. (5.17).
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Notice that the evaluation of myy, is independent of the strength of energy transfer processes and only depends
on the sensitivity of the Nog measurement and the degrees of freedom in the HS. Consequently, eq. (5.19) does
not depend on the detailed calculation of C, and in particular whether we do or do not include contributions
from Coulomb scattering.

If future CMB missions continue to see an agreement with the SM value of Neg, the thermalization
threshold myy, will be pushed to larger values. The gray solid and dashed lines in the right panel of figure 5.3
show the values of the parameters that lead to AN.g = 0.06 and ANeg = 0.027, respectively. The excluded
regions extend to much larger values of m because more of the parameter space is required to have the
HS remain out of equilibrium with the SM plasma. For AN.g < 0.027, there is no allowed thermalization
threshold.

The exponential behavior of the constant AN.g contours for m > myy, eventually stops at sufficiently
large values of @@, when direct energy transfer from SM into dark photons through off-shell MCPs become
larger than the Boltzmann-suppressed energy transfer into on-shell dark fermions. These off-shell processes
depend on additional model parameters, in particular the dark gauge coupling constant, and are beyond the

scope of the study.

Requirement of chemical equilibrium: Our analysis assumes that the HS energy density can be treated
as a whole, including both the MCP and the dark photon, instead of tracking their energy densities separately.
This assumption is strictly valid when the HS is in internal chemical equilibrium throughout the period
of energy transfer, which is not necessarily true everywhere throughout our parameter space. However,
this assumption of internal chemical equilibrium is only critical to our final result for the dark radiation
abundance in the regions near and above the thermalization threshold(s) for the MCP, where it does hold
(as we discuss below). Below the thermalization threshold, where the MCPs remain out-of-equilibrium with
the SM, the assumption of internal chemical equilibrium remains an excellent approximation as long as (i)
the HS energy density is dominated by radiation throughout the period of energy transfer, and (ii) we can
treat all the entropy carried by the MCPs as deposited into dark radiation, rather than the SM, after it
becomes non-relativistic. Given these two conditions, the detailed evolution of the MCP number density itself
is unimportant to the final dark radiation abundance. In fact condition (ii) follows from condition (i) when
the MCPs are out of equilibrium with the SM, as requiring the HS to be dominated by radiation means that
almost all the produced MCPs must rapidly annihilate, and if the MCP is out of equilibrium with the SM,
then necessarily n(0v)yy—sy, < H. Thus the MCP must dominantly annihilate into dark photons.

The condition that almost all the produced MCPs efficiently annihilate into dark radiation is met in the
regions of our parameter space relevant for current and forecast out-of-equilibrium constraints, given the mild
constraint on the dark gauge coupling ¢’ that follows from requiring that the relic MCP abundance does not
overclose the universe, as we now argue. The green line in figure 5.3 indicates where the freezeout of SM
annihilations into pairs of MCPs would produce the observed DM relic density in the absence of dark photons,
i.e., if the MCP’s only annihilation channel is to SM fermions [165]. Meanwhile the maroon line indicates
where the freezein production of MCPs from the SM produces the observed DM relic density, again turning
off the MCP annihilations into dark photons [37]. As current and future Ng constraints lie between these two
lines (except for a small region above the thermalization threshold in the case of current constraints), in the
region of parameter space relevant for evaluating these constraints, SM processes alone overproduce MCPs by
multiple orders of magnitude. Thus the dark gauge coupling constant must be large enough to enable the

vast majority of MCPs to annihilate efficiently into dark photons. If this condition is not met, the model is
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excluded simply by overclosure; our Nyg analysis applies to the surviving model parameter space where ¢’ is
large enough to avoid overclosure, and otherwise does not depend on the detailed value of ¢’. Thus avoiding
overclosure alone establishes the requirement for out-of-equilibrium case discussed above, which suffices as
long as the final result for dark radiation density does not depend on the evolution of gyg with temperature.

To accurately determine the production of dark radiation when the hidden sector is close to the ther-
malization threshold, we need to track the evolution of gyg with temperature, and thus the evolution of
the MCP number abundance with temperature, up until Tys < m/3. Once Thas < m/3, the hidden sector
equation of state is given by wngs = 1/3 to an excellent approximation. In particular this is necessary to
accurately determine the location of the excluded strip running up to high masses in fig. 5.1. Using the
results of Ref. [176], we have checked that internal chemical equilibrium for Tyg > m/3 is indeed necessary if

the relic MCPs are not to overclose the universe.

5.2.4 Dark radiation production in extended MCP models and implications for
EDGES

We have so far considered a minimal MCP model where only one fermion is charged under the dark U(1)
gauge symmetry. More generally, the hidden sector may contain multiple particles with dark charges. A
full evaluation of the resulting dark radiation density in these models depends on the detailed spectrum of
the hidden sector, including properties such as the number of particles and the values of their various dark
charges. However, in this section, we show that a conservative lower bound on the dark photon density at
recombination can be estimated that is insensitive to such details. This conservative lower bound can then be
used to place general constraints on the allowed parameter space of these models.

The conservative lower bound on the dark photon density is obtained by considering only s-channel
energy transfer processes (annihilations or decays) and considering only one MCP and one dark photon in
the HS bath. On the one hand, if the HS equilibrates with the SM plasma, the final dark radiation density is
largely insensitive to the specifics of the energy transfer processes but remains proportional to the degrees
of freedom in the HS bath, ggys. Thus, minimizing the particles in the HS also minimizes the final value
obtained for the dark radiation density. On the other hand, if the HS remains out-of-equilibrium with the
SM plasma, the dark radiation density is determined by the energy transfer from the SM. While the energy
transferred by ¢-channel scattering processes decreases as we increase gys (holding the total ppg fixed), the
energy transferred by s-channel processes is insensitive to ggg as long as it is dominated by a single mediating
species. Consequently, the dark radiation density cannot be smaller than that following from s-channel
processes alone for an out-of-equilibrium hidden sector.

This conservative lower bound on the dark radiation density can be translated directly into a lower bound
on AN.g. This lower bound has an immediate application to the MCP model proposed by Ref. [155] to
explain the anomalously small hydrogen spin temperature as measured by the EDGES experiment [158].
Their model consists of two fermions that are charged under a dark U(1) gauge symmetry. One fermion is the
main component of dark matter, x1, and the other fermion, x2, constitutes a small fraction of dark matter.
The particle xo is responsible for cooling hydrogen atoms via millicharge interactions and then transfers that
heat to the dark matter bath via dark long range interactions. The dark photon mediating the long-range
interaction is a light relativistic relic that contributes to Neg-.

In figure 5.4 we show the parameter space in the model of Ref. [155] that is consistent with various current
and projected CMB measurements of Neg. The orange lines in figure 5.4 show the values of the millicharge,

2, and mass, ma, of the xo particle required to resolve the EDGES anomaly, as calculated in Ref. [155].
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Figure 5.4: Constraints on the mass and millicharge of the millicharged particle in the context of extended
models. The orange lines mark the values of charge and mass of the MCP x for which the model given in
Ref. [155] resolves the EDGES anomaly. The orange lines have been plotted after fixing the dark matter
mass to 10 MeV and setting the fraction of ya density relative to dark matter to f,, = 1074, 1076, and 10~8
as indicated. The green line marks the values of ()2 for which x2 would obtain f,, = 10~% in the absence
of dark annihilation channels. The black solid and dot-dashed contours mark the parameter space that
yields ANy = 0.3 and AN.g = 0.06, respectively, after neglecting energy transfer from Coulomb scattering
processes and assuming one millicharged particle in the hidden sector bath. The blue dashed contour is the
CMB constraint derived in Ref. [153] for ANeg = 0.8. The pink shaded regions marks the parameter space
ruled out by SLAC [167], MiniBooNE [168], LEP [169] and LHC [170].
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The lines are plotted for fixed values of dark charges and x; masses chosen such that the cooling of hydrogen
atoms is maximized while remaining consistent with cosmological bounds from the CMB and BBN. The black
solid and dashed lines show the values of N.g computed using the conservative method described above that
saturate the Planck and projected CMB-S4 20 bounds, respectively. The contours below the thermalization
threshold are well described by eq. (5.16). Current measurements of Neg already limit mo >2 GeV, while
future CMB experiments can completely rule out the MCP model proposed by Ref. [155]. Since the dark
radiation constraints we show here are largely insensitive to the details of the specific extended MCP model,
they offer a powerful way to constrain model-building in this direction to explain the EDGES anomaly.

Naively one might imagine that the dark radiation constraints on (2 can be circumvented if yo pre-
dominantly annihilates into SM particles rather than dark photons. However, for xs to resolve the EDGES
anomaly, it must have significant couplings with a lighter dark particle in order to avoid being overproduced
in the early universe. For instance, the solid green line in figure 5.4 marks the values of Q3 that produce
X2 constituting a fraction f,, = 107 of dark matter density today if o only has annihilation channels to
SM fermions. Assuming SM-only freezeout, the relic abundance of x5 increases below the green line by a
factor of 1/Q%. Consequently, the values of Q2 required to resolve the EDGES anomaly result in a x» relic
abundance multiple orders of magnitude larger than what is required unless x» has an additional annihilation
channel. The minimal possibility is that x2 dominantly annihilates into the dark mediator that sources the
requisite long-ranged interaction between y; and x2.® The produced dark mediator is then constrained by
the Neg measurements, which consequently restricts ()2 as shown in figure 5.4.

Finally, applying the CMB Ng constraint to any MCP model assumes that the dark photon is free-
streaming during recombination. If the dark photon and the MCPs have sufficiently large self-interactions
during recombination, they can instead form a fluid, and the dark photon would accordingly contribute to
Niauiq instead of producing a neutrino-like signal. The ability to form a fluid depends on the MCP relic
abundance as well as the interaction between the MCP and the dark photon, both of which are determined
by the dark coupling constant, ¢’. A more detailed analysis would be required to find the relevant values
of ¢’ that can produce a self-interacting radiation bath without violating either unitarity or cosmological
bounds. For such values of €', one would instead have to look to Nguiq measurements, which are factors of
2 — 3 less sensitive than measurements of Neg [177]. A future CMB-S4 constraint of ANg,iq < 0.16 would

yield a thermalization threshold of my ¢, ~ GeV.

5.3 B — L right-handed neutrinos

In this section we derive dark radiation constraints on the scenario where the global SM symmetry of baryon
number minus lepton number (B — L) is promoted to a gauge symmetry. This promotion requires the addition
of three right-handed neutrinos to cancel gauge anomalies. When these three additional neutrinos are light,
they contribute to the energy budget of the Universe as dark radiation. Consequently, their energy density
and the parameter space of the model are constrained by measurements of Neg.

The gauged B — L model is also constrained by fifth-force searches [178], stellar evolution [179], supernova
1987A [180], and collider experiments [181-188]. Constraints on this model from Neg measurements have
been studied previously in Ref. [189] and updated in Ref. [156]. Here we improve over previous studies by

taking into account the out-of-equilibrium production of right-handed neutrinos.

8An alternative non-minimal method to dilute the x> abundance is to have an unstable field preferentially reheat the SM
plasma at some temperature Ty, < ma.
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This section is organized as follows. We begin in section 5.3.1 by introducing the model and our conventions.
In section 5.3.2 we describe the relevant Boltzmann equations, detailing the approximations within which we
work. We then solve the Boltzmann equations to find the model parameter space that saturates the Nog
bounds from current and upcoming CMB experiments. Next, in section 5.3.3 we analyze the evolution of
the energy density in right handed neutrinos, p,,, and show that its final value is qualitatively changed
depending on the lifetime of the Z’ boson. Finally in section 5.3.4, we provide an analytical explanation of

the features of the dark radiation constraint on the model parameter space.

5.3.1 The model

The Lagrangian describing the interactions of the SM with the B — L gauge boson Z’ and the right-handed

neutrinos is given by

4" — | 3

3

1 1 1 -
L=— *F/ FMVI + ng/Z;/LZ/M + g/Z;L Z |:(’ELZ’}/P’U1 + dl’yudi) - ém“ei — DL,i'YNVL,i
- g'Z/; Z VRV VR (5.20)

Here, the index 7 runs over the three generations of SM fermions, while u, d, e, v;, and vr denote the up
quark, down quark, electron, left-handed neutrino and right-handed neutrino counterparts of each generation.
Above we have explicitly separated the interaction of the Z’ gauge boson with the vy from its interactions
with the known SM fermions. We consider the minimal version of the model where the three right-handed
neutrinos form Dirac particles with the left-handed neutrinos after electroweak symmetry breaking. Because
the neutrinos are always relativistic during and prior to recombination, we ignore neutrino masses in the
subsequent analysis and treat vy and vg as distinct Weyl fermions. The Z’ gauge boson has mass Mz, which
can come from a Stueckelberg or a Higgs mechanism. To remain as model-independent as possible, we ignore
potential contributions to the dark radiation density arising from possible Higgs fields associated with B — L
breaking and focus on the irreducible contribution from the Z’ itself.?

Right-handed neutrinos are produced in this model as a result of the B — L interactions with the Standard
Model in the early Universe. Because they are approximately massless and sterile at late times, after the Z’
freezes out, these right-handed neutrinos are dark radiation and contribute to Neg. Furthermore, for values
of ¢’ allowed by current Nyg constraints, the B — L interactions with v, are significantly weaker than the
weak interactions with vy prior to neutrino decoupling. We focus on the region of parameter space where
dark radiation is produced prior to BBN, and thus before the weak interactions freeze out and the vy, leave
equilibrium. In this region of parameter space, the production of vg provides the major contribution to
ANeg,

4/3

11

ANy = o (L) Pun. (5.21)
7\ 4 Py

5.3.2 Boltzmann equations and constraints for the B — L. model

Right-handed neutrinos in this model are dominantly produced by Z’-mediated SM fermion annihilation. In

part of the relevant parameter space, the Z’ bosons are long-lived, i.e., they do not decay within a Hubble

9This is an excellent approximation when a B — L Higgs is more massive than the Z’, and conservative in the case when it is
not; this treatment is also applicable to the technically natural scenario where the Z’’s only interactions are the Stueckelberg
mass and the coupling to the SM B — L current as given in eq. 5.20.

113



time. Consequently, the energy transferred into v can depend on the cosmic evolution of the on-shell Z’

density. The relevant Boltzmann equations for this system need to track the evolution of both Z’ and vg,

and read
d,z;stM +3H(1+ wsm)psm = — Crpozr — C?fff—wm}m (5.22)
PL 4 3H( v wz)pz ~Crp = Cormpn, (5.23)
dfi? +4Hpun =Czrvmvn + CFsunun: (5.24)

Here the Hubble rate is H = \/p,,, T psm + pz'/[V3Mpi], and the various C; denote energy transfer collision
terms from three processes: Cy¢_, 7/, for the inverse decay of SM fermions into Z’s; Cz/—y 1y, describing the
decay of Z’s into right handed neutrinos; and C})gcf —wrwr Which describes contact interactions between SM
fermions and v, mediated by off-shell Z’s (see also Refs. [190, 191]). We include the quantum phase space
distributions for initial state particles but ignore final state quantum effects in the evaluation of the collision
terms.'® The detailed expressions for the collision terms are given in appendix A.6.

While evaluating the backward collision terms describing vrvr — ff and vrrvg — Z', we assume that
right-handed neutrinos are internally thermalized with a temperature T,,, = [pu;/(gu,72/30)]*/%, where
gvr = 2 X 3 X 7/8. On the one hand, this assumption is unimportant if the two sectors do not thermalize as
the backward collision term is negligibly small in comparison to the forward collision term for 7}, < Tgm.
On the other hand, if they do thermalize then the assumption is automatically satisfied. The transition
regime, where the backward collision term can be important, is relevant for the current N.g constraints in
the mass range 1 GeV < Mz < 2 GeV; in this range a differential treatment of the phase space distribution
of the right-handed neutrinos would be required to improve on our treatment. For AN.g < 0.06 we expect to
be well into the out-of-equilibrium regime where the backward collision term is unimportant.

When right-handed neutrinos are in equilibrium with the SM plasma, the decoupling temperature is
determined by either Z’ decays or contact interactions. When the right-handed neutrinos are out-of-equilibrium
with the SM plasma, the energy transferred through Z’ decays and inverse decays is orders of magnitude
larger than that via contact interactions. The forward energy transfer collision terms for Z/ — ff and

7' — vrvpR are given by
CfZ’Hii = MZ’].—‘Z’*)inZI7 (525)

where nz: is the number density of the Z’ and I'z/_,; is the Z' decay width into particle species i. While
computing Iz, g we neglect the decays of Z’ bosons into hadrons for Mz < 2Tgcp, where we set the
QCD transition scale at Toep = 200 MeV. For Mz > 2Tqep, we include Z’ decays into free quarks in
Iz ssm-

We approximate pzr = Mznyz and wz = 0 in the Boltzmann equations, as appropriate for non-
relativistic Z’ bosons. Most of the energy injection into v occurs when the Z’ bosons are non-relativistic,
as demonstrated explicitly below, and therefore this approximation has a minimal effect on the final dark

radiation density and the ensuing constraints.

0Tgnoring final-state quantum effects is an excellent approximation as long as the Z’ is out of equilibrium with both the
vr and SM plasma. On the other hand, if the B — L interactions are strong enough to thermalize the Z’ and the v with the
SM, the precise value of the collision term has only a marginal impact on the final densities of Z’ and vg and hence final-state
quantum effects are not quantitatively important.
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Figure 5.5: Constraints on B — L gauge coupling and gauge boson mass. The black solid, black dot-dashed,
and gray dashed contours mark the parameter space that yields ANeg = 0.3, ANeg = 0.06, and ANg = 0.027
respectively. These bounds correspond to the 20 upper limit for Planck [3], 20 upper limit for CMB-S4 [132],
and the sensitivity goal for future CMB experiments, and update the BBN+CMB constraints derived in
Ref [156], which are shown with the blue dashed contour. The red dots mark the points on the constant Neg
curves below and to the left of which 'z is smaller than the Hubble rate at Tsp = Mz /2. The green color
on our ANgg contours marks the region where we expect Z’ decays into vy, to contribute to ANy and alter
our results by an O(1) factor. Brown lines show constraints from supernova 1987A from Refs. [180] (dashed)
and [192] (dot-dashed). We also show constraints from BABAR [181], LHCb [182], LHC [183, 184], and beam

dump experiments [185-188].
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We are now ready to compute the final dark radiation density in vg by solving the Boltzmann equations
given in eq. (5.22)-(5.24). We begin the evolution at an initial SM temperature Tgy > My, setting
pz = puvy = 0, and evolve forward until the end of energy injection. In figure 5.5, we show the contours of ¢’
as a function of My that saturate the current one-tailed 2¢ upper limit from Planck [3], ANeg = 0.3 (black
solid); the projected 20 upper limit from CMB-S4 [132], ANeg = 0.06 (black dot-dashed); and the threshold
goal for future CMB experiments ANg = 0.027 (gray dashed).

The curves of constant ANgg in figure 5.5 have a number of key features. As in the MCP model, these
curves have a thermalization threshold beyond which they are only logarithmically sensitive to ¢’. For the
ANog = 0.3 curve, the threshold is at Mz ~ 1.7 GeV, while for other contours displayed, there is no threshold.
This is because ANqg = 0.3 allows three BSM Weyl fermions to decouple from the SM plasma before the
QCD phase transition, but the smaller values AN.g = 0.06 and AN.g = 0.027 cannot accommodate so
many new degrees of freedom ever thermalizing with the SM. For AN.g = 0.3, the logarithmic sensitivity
to ¢’ becomes a power law again above ¢’ < My /(16 TeV) (see also [193]), as the decoupling temperature
goes from being determined by Z’ decays and inverse decays to being determined by contact interactions,
described by C?ff SRR

The curves corresponding to ANeg = 0.06 and lower (as well as the curve for ANz = 0.3 below the
thermalization threshold) are controlled by the out-of-equilibrium production of right-handed neutrinos. As
we describe below, there are two qualitatively different out-of-equilibrium production mechanisms depending
on the ratio I'z//H at Tgy ~ Mz /2, where 'z is the total decay width of Z’ bosons. The red dots on
the curves indicate where I'z/ is equal to the Hubble rate at Tgy = Mz /2. Along the contours below and
to the left of the red dots, the Z’ bosons become long-lived and we need to track their number density to
evaluate dark radiation production. This key result, together with the usual out-of-equilibrium production of
vR, accounts for the difference between the results in this work and those previously obtained in Ref. [156],
shown in figure 5.5 as the blue dashed curve.

Constraints on the B — L gauge boson can also be derived by considering the production of vy in colliders
or in supernova. In figure 5.5 we also show the regions of parameter space that are excluded by measurements
from these other sources. Current CMB constraints are already the leading probe of this hidden sector
across much of parameter space, with LHC constraints taking over for masses above 100 GeV. The N.g
measurements from future CMB experiments along with existing supernova measurements will provide the
strongest constraint on ¢’ for all masses Mz 2> 1 MeV.

For ¢’ < 10710 \/W/]\{[Z/ , the Z’ bosons decay after neutrino decoupling. In this part of parameter
space, decays to both vy, and vgi contribute to ANeg during recombination, while our analysis only considers
the contribution from vz. We estimate that the additional production of vz, provides no more than an O(1)
correction to the Neg constraints calculated in this study. We indicate this region in figure 5.5 by coloring
the Neg contours green. Furthermore, for Mz < 2m,, the dominant energy transfer occurs between vy, and
VR, while our Boltzmann equations assume energy injection from a thermal SM plasma with all species at
the photon temperature. Thus below the MeV scale, our analysis no longer applies, and hence we restrict
our attention here to Mz > 2m,.. Meanwhile, stellar cooling places powerful constraints on this theory for
Mz < 0.1 MeV [140, 194]. A full treatment of early universe constraints on the B — L model in the mass
range between 0.1 MeV < Mz < (1072°/¢'?) MeV requires a detailed treatment of neutrino decoupling as

well as light element formation during BBN, and is beyond the scope of this work.
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5.3.3 Dark radiation density in the out-of-equilibrium regime

In the out-of-equilibrium (OOE) regime, the final energy deposited into v depends on whether or not the
total decay width of the Z’, T'z/, is less than the Hubble rate at SM temperatures around Tsn ~ Mz, where
the production rate of Z’s is maximized. In the case where I'z//H > 1 at Tsy ~ My, the large population
of on-shell Z’ bosons produced at resonance decay almost immediately into vr. However when 'z /H < 1
at Tsy ~ Mz, the on-shell Z’ bosons produced at resonance are cosmologically long-lived and, because they
are non-relativistic at production, their energy density redshifts like matter. The right-handed neutrinos
are then dominantly produced at some SM temperature Tgecay < Mz when the population of massive Z’
bosons decays, I'zr = H(Tgecay). Numerically, we find that setting (I'z//H)zg\—nr,, 2 = 1 is a convenient
criterion to separate the long- and short-lived regimes.

We illustrate these two regimes with two representative parameter points in figure 5.6. Here in both panels
the black line shows the comoving energy density of vg, while the red dashed line indicates the energy density
of vg after setting T,,, = Ty (similarly to the red line in figure 5.2). The vg do not thermalize with the SM
for either the parameter points shown, and correspondingly the black line remains below the red line in both
panels. The blue dot-dashed line shows the evolution of Mz 'z, .1 gat /H, which indicates the amount of
comoving energy injected into vg in a Hubble time from the decay of on-shell Z’ bosons. The energy injected
by SM fermions annihilating to vg through off-shell Z’ bosons, given by C})? —>uRuRa4 /H, is below the range
covered in figure 5.6 and is not shown. The vertical orange dashed line marks when Tsy = My /8, after
which temperature we find empirically that the production of Z’ bosons from the SM plasma is negligible.

The left panel in figure 5.6 corresponds to a parameter point where I'z, exceeds the Hubble rate at some
Tsm > Mz /2. The Z' bosons produced after I'zs = H are short-lived and decay within a Hubble time. The
SM plasma keeps producing Z’ bosons until Tgy ~ My /8, and thus the energy injection into vz ends once
Tsm < Mz//8. The right panel of figure 5.6 corresponds to a parameter point where (I'z//H) 1=, 2 < 1.
In this scenario, the SM plasma first produces Z’ bosons via inverse decays. The production of Z’ bosons
ends once Tgy < Mz /8. Subsequently, nys evolves adiabatically until Iz, becomes of the order of H, after
which Z’ decays into SM particles as well as vg.

We now develop analytic approximations to the final value of p,, for the short- and long-lived Z’ cases

separately.

Dark radiation production for short-lived Z’ bosons: In the regime where the Z’s are cosmologically
short-lived, (I'z/ / H)gy=nr,, /2 > 1, the Boltzmann equations can be simplified by noticing that after I'z: = H
the abundance of Z’ bosons follows a quasi-static equilibrium where the production rate of Z’ bosons balances
its decay rate. Setting the RHS of eq. (5.23) to zero and replacing Cys_, 7z and Cz/—p 0, using eq. (77) gives

the quasi-static equilibrium abundance of Z’ bosons,

s Iz ~ Tz VR ~
ng = %:WnC(TSM) + %nc(TyR), (5.26)

where 7 is defined in eq. (?7). Substituting this quasi-static abundance n%, into eq. (5.24), we obtain an

effective collision term describing energy injection into vy given by

3M3/ F(Z/ — I/R)F(Z/ — SM) MZ’ MZ/ o
Crf—vrvn= 27_‘_5 T, TsmGr Tomt - T,,G1 K +Cf§f_>”RVR7 (5.27)
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Figure 5.6: Evolution of comoving v energy density (black line) and comoving Z’ energy density (light green
line) as a function of SM temperature for { Mz, ¢’} = {10 GeV,107%} and {Mz/, ¢’} = {2x GeV,2x 107}
in the left and right panels, respectively. The red line shows the evolution of (72/30)g,,Té\a*, and the blue
dot-dashed line is Mz I'z/_,, . nz/a4/H. The vertical orange dashed line marks the point where Tsy = Mz /8.
The vertical purple dashed line marks the point where the Z’ decay rate equals the Hubble rate. The gray
dashed line shows the analytical estimate of the asymptotic value of p,, a*, which is calculated using eq. (5.28)
in the left panel and eq. (5.33) in the right panel.

where G is a dimensionless function given by eq. (A.18). In this regime, the collision term in eq. (5.27)
reproduces the collision term calculated using the complete ff — vrvgr cross-section, including the on-shell
7' bosons, as we show explicitly in appendix A.6. As this collision term no longer depends on pz:, we need
only solve for p,, and pgy to find the contribution of vg to ANyg. Thus, in the short-lived Z’ limit, the
resulting system of Boltzmann equations is similar to that for the MCP model, eq. (5.5).

We can determine the asymptotic value of p,, by following steps similar to those in section 5.2.3 to
obtain eq. (5.13). We can neglect the contribution from C)‘?;f —upvy Decause the net energy transferred to
out-of-equilibrium v through contact interactions is much smaller than the resonantly-enhanced contribution

from the on-shell collision term. The fraction of SM energy transferred into vg is then given by

(Pm) _ 153 Mpr L (5.28)
PSM ) teare 0473 (g4 (4A) 72 /30]3/2 A

where A = My /8, and

FZ/_>DRFZ/—>SM] 31k g/2 {FZ’—MS'M} ) (5.29)

L = 6712 =
O r { T, 4 T,

This limiting result for the comoving density of vg, pu,a* = (pur/PsM)1ear (@*PSM)Tuy=11,, /8, is shown by
the gray dashed line in the left panel of figure 5.6, which demonstrates its agreement with the numerically
evaluated asymptote of p,,a*. Eq. (5.28) is only valid as long as the vg do not thermalize with the SM
plasma. Numerically we find that for (I'z:/H)7g\,—ar,, /2 2 30, the v thermalize with the SM plasma and
the final density ratio is simply given by (pu,/psm)s = Gur/gs-
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Out-of-equilibrium dark radiation production from long-lived Z’ bosons: To solve for the dark
radiation density in vg in the case where the Z’ bosons are long-lived, we first need to calculate the freeze-in
abundance of Z’. To proceed, we make two simplifications. First, since the Z’ bosons are long-lived and,
until they decay, the vz abundance is negligible, we can neglect the decays of Z’ as well as the inverse decays
of vg into Z' when calculating the freeze-in Z’' abundance. Second, because psy > pz7, pv, We neglect the
contributions of the Z’ and vy in determining the Hubble rate. Assuming the SM degrees of freedom remain
constant until the production of Z’ ends at Tsyy < Mz /8, we can then simply integrate eq. (5.23) for pz.
With pzr = Mznz and Cyy,z given by eq. (7?), the frozen-in abundance of Z’ bosons is then

3, fz—in 3 'z _sm

_ 3
a“ny, = (aTSM)TSM:MZ//S X @ H(TSM = MZ//2) s (530)

where A = [ G1(1/z)x " dz ~ 5.93.
The frozen-in population of Z’ boson eventually decays, and accordingly the comoving number density

evolves as
ng =ng e ot (5.31)

Note that the final number density of vy is not affected by whether the Z’ bosons decay before or after
achieving their freeze-in abundance. This is because the number density of vg is set by the branching ratio of
7' decays into vg and the number of Z’ bosons produced by the SM plasma, neither of which depend on
when the Z’ bosons decay. In contrast, the energy density of the vz does depend on the timing of the Z’
boson decay because the vgr are produced with a fixed energy of Mz /2, which subsequently redshifts as 1/a.
Consequently, Z’ bosons that decay later result in more energetic vg at recombination, and thus a larger
contribution to Neg.

The asymptotic value of p,,, is found by substituting the evolution of the massive Z's, eq. (5.31), into
the Boltzmann equation for vg, eq. (5.24). Once again, both inverse decays of vg into Z’ and off-shell
contributions to SM fermion annihilation can be ignored in comparison to the contribution from Z’ decays.

The resulting p,,, is given by

pﬂ :MZ’FZ’—H/R “ dSanZTineirzltd& (5 32)
PSM ) atpsm H .
decay 0
~ o (pVR ) {H(TSM - MZ,/Z)} " [QE(MZ’/Q)Q*(Tdecay) v (5.33)
15y/mr1 \ psM / eak Lz 9:(Mz/8) ’ .

where Tyecay is the SM temperature at which H(Tgecay) = I'z2 and (pu/psm) e 1S defined in eq. (5.28). In
the second line we approximated g, to be constant around Tgecay and set g.s = g«. The numerical coefficient
in eq. (5.33) and the ratio of g, factors in the square brackets are both O(1). Consequently, p,, is enhanced
by a factor of (\/m )Tsm=01,, /2 if the Z " bosons are long-lived compared to the cases where the Z’ bosons
decay instantaneously. The right panel of figure 5.6, shows the analytical estimate of the comoving density of

4

VR, given by pu,a* = (pun/psm) ecay (0 PSM ) Tsri=Tieeny » @5 the gray dashed line. At late times, this analytical

estimate is in close agreement with the numerically evaluated p,,a*, as shown by the black solid line.
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5.3.4 Dark radiation production and analytical approximations to the N.g con-

straint

In this section we provide analytical expressions for the curves of constant ANgg in the B — L parameter

space. We consider the out-of-equilibrium and equilibrated regions of parameter space separately.

Out-of-equilibrium dark radiation production In the case when vz remains out-of-equilibrium with
the SM plasma, the dependence of the final dark radiation density, p,,, on the B — L coupling, ¢’, depends
on whether T'z: is larger or smaller than the Hubble rate at Tsy = My /2. We find that the ¢’ and My
values on the ANg = 0.3 constraint contour typically satisfy (I'z//H )1y =nr,, 2 2 1. Consequently, we use
eq. (5.28) to evaluate the constraint on g’ and Mz for AN.g < 0.3. In particular, we adiabatically evolve p,,
given in eq. (5.28) from the end of energy injection at Tgy = Mz /8 to recombination and restrict the ANog
shift given in eq. (5.21) to remain below the (ANef)max upper bound set by CMB measurements. Doing so
yields

/2 1/3
2 1o (9 (Mz 2\Y? [ g (M1 /8) Tz (ANei)max \ [ Mz
g7 < 58 x 10 < 10 10 T su 03 Gov ) (534)

The ratio of decay widths here is typically an O(1) number depending on the value of My .

For the AN.g = 0.06 and AN.g = 0.027 constraint contours, the condition
(Tz//H)1gu=n, 2 > 1 is satisfied above and to the right of the red dot in figure 5.5. Consequently, the
analytical result for short-lived Z’s in eq. (5.34) also applies to the ANyg = 0.06 and AN.g = 0.027 contours
in this region. To find an analytical result applicable below and to the left of the red dot, we start from the
expression for p,,. given in eq. (5.33). We then evolve p,,, adiabatically from the end of Z’ decays at Tgecay

to recombination. The corresponding constraint on ¢’ is then given by

9/2 < 81x 10_21 g*(MZ'/2) g*(MZ’/S) ? g*(Tdecay) 1/6 FZ’ FZ’ 2
. 10 10 10 T2 g Iy
(ANeff)max 2 Mz
X ( 506 G )+ (5:39)

Note that the constraint on ¢’ for short-lived Z’s, given in eq. (5.34), is proportional to (ANeg)max While the
2

max*

long-lived Z' result in eq. (5.35) is proportional to (A Neg) The delayed Z’ decays parametrically enhance

the ultimate dark radiation density and hence the sensitivity of N.g measurements to the model parameters.

Dark radiation production in the equilibrium regime: If the right-handed neutrinos thermalize with
the SM, then the final comoving energy density in v depends on the decoupling temperature, T, which is
only logarithmically sensitive to ¢’. The thermalization threshold for the B — L model can be calculated
in a similar manner to the MCP model in section 5.2.3 above, see eq. (5.19). Since the ratio of the energy
injection rate to the Hubble rate, ' /H = C¢/(puy,eqH ), is negligible for temperatures below Tgy ~ My /8
in the B — L model (as compared to to Tsy ~ m/4 in the MCP model), the thermalization threshold in
eq. (5.19) is for the B — L model

MZ’,th = STd[(ANeff)maxyguR]a (536)
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where T, is defined through eq. (5.17). In figure 5.5, this thermalization threshold for ANy = 0.3 occurs
around Mz ¢, ~ 1.7 % 103. For AN.g < 0.14, the thermalization threshold is pushed to arbitrarily large
values of Mz ¢, because restricting ANeg < 0.14 rules out ever having three right-handed neutrinos in
thermal equilibrium with the SM plasma, assuming no new degrees of freedom in the SM.

The exponential weakening of the ANyg = 0.3 curve in figure 5.5 stops around Mz ~ 15 GeV, after

which the constraint follows ¢’ < Mz /(16 TeV) (see also Ref. [156, 193]). At these large masses the

off
ff—=vrvRr?

Mz Tz, ,nz, in determining decoupling temperatures that are much smaller than My, .

contact-operator-mediated annihilations, described by C dominate over on-shell Z’ production,

Note that, unlike the MCP model, the B — L model does not have an excluded strip in parameter space
extending up to high masses. For such a strip to exist, the mediator between the SM particles and the BSM
relativistic particles must have stronger couplings to the BSM relativistic particles than it does to the SM. In
the B — L model, the decay width of Z’ into SM particles is larger than its decay width into v, in contrast
to the MCP model, where the mediating MCP has much stronger interactions with the dark photons than
with the SM photon.

5.4 Dark radiation constraints on classes of hidden sectors

We have so far considered dark radiation constraints on specific, minimal BSM models where a particle ¢
with mass mg 2 MeV has renormalizable couplings to both the SM and new relativistic particles. While in
general the heavy particle could be the SM Higgs boson (or indeed the Z boson), in this work we focus on
the case where the heavy particle is a new SM gauge singlet particle. Additionally we focus on mass scales
me 2 MeV because for lighter masses the constraints from stellar cooling observations generically become
important. We have seen in two specific examples that such models will be stringently tested by upcoming
CMB experiments that promise to measure Nog to an accuracy of (ANeg)max = 0.06 at 95% confidence. In
particular, we have demonstrated that, while detailed constraints on the parameter space require numerical
evaluation of a coupled system of Boltzmann equations, a conservative, semi-analytic estimate of the allowed
parameter space can be made by making a number of simplifying assumptions.

In this section we highlight the general methodology and assumptions required to estimate this conservative
constraint and argue that the constraint holds even when the new relativistic particles are part of a much
larger hidden sector (HS). We then explore the restrictions on HS model building that will be placed by

upcoming CMB measurements of Ng-.

5.4.1 Hidden sector models

We consider classes of HS models that contain light degrees of freedom that are relativistic during recombination.
These degrees of freedom may be required by symmetries (as the vr were above), or they may be required
to sequester entropy to facilitate the freezeout of HS dark matter. Stellar cooling observations strongly
constrain direct renormalizable couplings of these light degrees of freedom to stable SM particles, and we
assume they couple to the SM through new, heavy, SM gauge-singlet particles, ¢, with masses which we take
to be mg > MeV. The existence of this portal coupling enables the production of the mediator ¢ particles
in the early universe via annihilation or decay of SM particles. These mediator particles then lead to the
production of the light degrees of freedom in the HS, whose energy density is constrained by measurements of

Negr. These Neg constraints are applicable as long as these light degrees of freedom remain relativistic during
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recombination. For masses larger than 0.1 eV, the combined constraints from the large scale structure and
the CMB measurements are more stringent [195].

We seek to derive conservative constraints on the couplings of such sectors to the SM by estimating the
production of dark radiation. The precise computation of the dark radiation density depends on the details
of the HS, such as the number of degrees of freedom, masses of the particles, and interactions between them.
However, we argue that a lower bound on the dark radiation density can be estimated from the production
of mediator particles by the SM plasma, provided the energy in the mediator is preferentially transferred
to the HS degrees of freedom. This amounts to assuming that the mediator interacts more strongly with
the HS than with the SM. Any HS energy density that subsequently becomes freestreaming dark radiation
at the decoupling of the CMB is minimized if all the energy dilutes as radiation as soon as it is produced.
Therefore, assuming that all the energy that is transferred to the mediator particles by the SM plasma
is rapidly deposited into light degrees of freedom in the HS provides a lower bound on the resulting dark
radiation density. This lower bound provides a conservative estimate on the shift in ANyg. Below we quantify
this conservative estimate for different types of couplings between the mediator and the Standard Model. As
above, we separate the estimates into the regions where the HS thermalizes, and those where it remains out

of equilibrium.

Out-of-equilibrium dark radiation production

Practically, in the out-of-equilibrium regime, our conservative estimate of AN.g is obtained by assuming a
hidden sector consisting of a single massless particle together with a massive mediator ¢ that couples to the
SM. The HS equation of state is taken to be that of radiation, wgs = 1/3. The dark radiation density is
determined by solving the Boltzmann equation given by eq. (5.5), where the collision term is determined by
all the energy transfer processes from the SM plasma into the HS bath enabled by the portal coupling. While
taking into account all the energy transfer process depends on the specifics of a particular HS model under
consideration, energy transfer through the production of ¢ is common in the vast majority of HS models.
Consequently, to obtain a conservative estimate of the asymptotic energy density in dark radiation, we evaluate
the collision term only for processes involving on-shell production of ¢. For renormalizable interactions with
the SM, these processes are annihilations of SM particles, aa — ¢¢; decays of SM particles a — ¢¢; or inverse
decays of SM particles aa — ¢. In all cases a denotes a SM particle coupled to ¢ via a renormalizable portal
coupling. We further restrict our attention to s-channel processes, which are independent of the properties of
the HS radiation bath as long as the interaction proceeds well out of equilibrium.

In the out-of-equilibrium regime, we can analytically find the energy transferred into the HS by taking the
SM temperature to evolve as T' < 1/a (a good approximation away from mass thresholds). The calculation is

analogous to that in section 5.2.3 leading to eq. (5.10), and we obtain

3M, > dT
<PH8> n V3 . / Me, (5.37)
psm ) poy=n 19+ (4A)72/30] o Tsm

where A is the energy injection decoupling temperature, below which the production of ¢ ends and Cy is the
forward energy transfer collision term for production of ¢.
The integral over the forward collision term can be carried out given a specific model for the cross-section,

allowing us to express the energy density injected during out-of-equilibrium scattering in terms of a leak
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factor L,

L

64m® [ dT;
0

15 Ty
Annihilation of SM particles into the HS. For annihilations of SM particles into the HS, aa — ¢¢,

the forward collision term is

1 oo
=Y 5 A ds(s — 4m2)50 s 0(5) TG, (V5 Tn). (5.39)
f

max(mq,me)?

This production process occurs in the millicharged particle model when the SM fermions annihilate into
millicharged particles. The corresponding energy injection decoupling temperature and the leak factor are

given by

1 (s —4m?)
A=- , , L =re, A ds—2= . 5.40
7 max(1ma, mg) K, /6 - Taa—spp(5) (5.40)
Here 044—¢4(s) is the spin-summed CM frame cross-section and k¢, is determined by the quantum statistical

distribution of a, as described below eq. (5.12).

Inverse decay of SM particles into the HS. For the inverse decay process, aa — ¢, the collision term

is of the form
Ct = molyanc, (Tsm), (5.41)

where I'y_,, is the decay width of ¢ to a, and 7, is given by eq. (??). We encountered this production
process for the gauged B — L model in section 5.3.2. After integrating the RHS of eq. (5.37) for the process
aa — ¢, the final result can can be written in the form of eq. (5.38) with

r
L = 2m2ggre, 222, (5.42)
mg

A=
8

where g4 is the number of spin degrees of ¢.

The final HS energy density calculated using eq. (5.42) is different from the one we obtained in the case
of the gauged B — L model for two reasons. First, the decay width of Z’ into vg is smaller than its total
decay width into SM particles for Mz > 2m,. Thus most of the energy transferred into Z’ bosons does
not end up in vg but is rather returned to the SM plasma. If we consider the Z’ bosons to couple much
more strongly with additional HS particles, then the above calculation would accurately reflect the minimum
energy transferred into the HS. Second, the final energy density in vg is enhanced when the Z’ bosons are

long lived.

Decays of SM particles into the HS. Finally for decays of SM particles into the HS, a — ¢¢, the

collision term is of the form

Cf = maFa_,¢neq7a(TSM), (543)
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where

d3p 1
neq,a - ga/ (27’(’)3 [eE/TSM n Ca] (544)

is the equilibrium number density of particle a. This production process occurs in the millicharged particle
model when the Z bosons decay into millicharged particles.!! Again the energy transferred into the HS can
be expressed by eq. (5.38) with

Fa~>¢

A=—2 L = 7n%g,i , 5.45
8’ ﬂ—g"{ga Mq ( )

where &1 = 317°/30240, o = 1, and &_; = 75/945.
When the HS remains out of equilibrium with the SM plasma, we can find the contribution to ANeg by
starting from eq. (5.38) and then adiabatically evolving pps as radiation from the end of energy injection

until recombination. Requiring ANeg to be less than the CMB sensitivity, (A Nef)max, yields

A

L < g (48)92" (A) (A Net)mase 7
P1

(5.46)
The above calculations assume that all produced ¢ particles decay rapidly into relativistic HS particles. This
assumption holds if ¢ has sufficiently strong couplings with HS particles. This is a conservative assumption

because a long-lived ¢ would result in a larger density in the HS, and a larger shift in A Neg-.

Equilibrium dark radiation production

If the HS thermalizes with the SM plasma, then the final energy density in the HS depends on the decoupling
temperature, Ty, which is only logarithmically sensitive to the strength of the portal coupling. Consequently,
the Nog constraint on the portal coupling become exponentially weak once the HS thermalizes. Similar to
the case of the B — L and millicharged particle models, the weakening of constraints occur for values of the

energy injection decoupling temperature, A, larger than

Ath = Td[(ANeff)maxngS]a (547)

where T} is given by eq. (5.17). Thus, the Neg constraint given by eq. (5.46) is only valid for A < Ay,. Note
that a larger gus would push the thermalization threshold given in eq. (5.47) to larger Ay,. Thus, eq. (5.46)
together with a thermalization threshold scale Ay, calculated assuming gyg = 1 provides a conservative

constraint on the portal coupling that is independent of details within the hidden sector.

5.4.2 TImplications for HS model building

In this section, we have argued that under fairly generic conditions, a conservative lower bound on the energy
density in dark radiation in a generic HS may be estimated. This lower bound can in turn be used to place
bounds on the couplings between a mediator that couples the dark sector to the SM. As future measurements
of Neg become more and more precise, increasing pressure will be placed on models of BSM physics that

contain light states contributing to dark radiation.

HThis production process can also be realized in the case of a SM singlet scalar coupling through the Higgs portal, in which
case the Higgs boson can decay into pairs of scalar fields; for a specific recent application producing dark radiation through this
coupling, see [148].
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From a different perspective, this analysis also points at ways such models may be brought into agreement
with future data. There are a number of possibilities. In particular, one may simply be able to arrange the
couplings so that the mediator interacts more strongly with the SM than the HS, and thereby energy is
transferred back into the SM from the mediator. Another possibility is to have new degrees of freedom in
equilibrium with the SM plasma that become non-relativistic after Tgy < A. Consequently, the annihilation
of the new degrees of freedom heat the SM plasma relative to the HS, diluting the dark radiation today.
Similarly, if a massive field comes to dominate the universe and subsequently decays predominantly into
the SM at some temperature T, < A, the resulting reheating of the SM relaxes constraints from Neg; this
mechanism was invoked, for instance, to ameliorate dark radiation constraints on Twin Higgs models [196,
197]. The entropy of the SM plasma can also increase if the SM comes into equilibrium with a new light
species at a temperature Teq < A that later becomes nonrelativistic and deposits its entropy into the SM.
This mechanism generally requires a light BSM field with couplings to the SM that become cosmologically
important at late times. While stellar cooling constraints are typically prohibitive for models that realize
equilibration after SM neutrino decoupling [198], the BSM dark radiation considered here has a thermal
decoupling scale A > MeV and thus suppressing Neg using this mechanism can be much simpler. Finally,
Neg also decreases if one or more of the states contributing to the dark radiation at 7'~ A can decay back
into the SM prior to recombination; in this case the decay can produce visible signatures in light element
abundances and/or CMB spectral distortions, depending on the details of the decay.

If one considers a minimal extension of the SM, where the SM has renormalizable interactions with a
single massive particle in the HS and the cosmological evolution of the SM plasma is not otherwise altered,
then one cannot completely evade the bounds set by N.g measurements. However, the constraints can be
somewhat ameliorated if the relic energy density in the HS does not always evolve as free-streaming dark
radiation. For instance, if the relativistic HS particles have strong self-interactions, such that they behave as
an ideal fluid during recombination, then they would instead contribute to Npuiq, the constraints on which
are are weaker by factors of 2-3 compared to Neg [177]. Examples of this scenario include interacting neutrino
models, recently surveyed in [199]. Alternatively, while a single hot HS relic that subsequently becomes
nonrelativistic is more stringently constrained than if it remains relativistic [195], the combination of N.g
and large-scale structure constraints may be mitigated in a system with more than one hot relic if one HS
species becomes non-relativistic before recombination while at least one other species remains relativistic. In
principle, one can obtain a conservative constraint on portal interactions between the SM and a HS containing
light degrees of freedom that can accommodate such variations in the spectrum of the HS by combining both

CMB and large-scale structure measurements. We leave this to future work.

5.5 Summary and discussion

In this work, we have studied the production of dark radiation in scenarios where the SM has renormalizable
interactions with a heavy (mg > MeV) gauge singlet mediator that annihilates or decays into dark radiation
prior to BBN. We have focused on two specific minimal models: (i) a MCP model with a massless dark
photon, and (ii) a gauged B — L model with light right-handed neutrinos. By numerically solving the
relevant Boltzmann equations, we have computed the resulting dark radiation abundance and determined
the corresponding shifts in Neg in the regions of parameter space relevant for upcoming CMB experiments.
We present updated CMB constraints for the MCP model, and have shown that future CMB measurements

will be sensitive enough to either rule out or discover the extended MCP model invoked to explain the

125



EDGES anomaly [155]. In the case of the gauged B — L model, our computations extend and improve
previous analyses by taking into account all relevant out-of-equilibrium processes, including the potentially
out-of-equilibrium decays of the B — L gauge boson. As a result, our projected constraints on the allowed
parameter space of the B — L model are stronger than previous studies. In both models we take into account
the quantum statistical phase space distribution for Standard Model particles, which was not done in previous
studies. We find that quantum statistics provide a correction of about 10% to the predicted shift in Ngg.

The relation between dark radiation production and the model parameters depends crucially on whether
or not the HS comes into thermal equilibrium with the SM. We have provided simple semi-analytical recipes
to obtain the predicted shift in Neg in both cases. When the HS remains out of equilibrium with the SM,
we have demonstrated that the resulting dark radiation density is determined by the energy transfer rate
from the SM into the HS at temperatures of order the mediator mass, (I'z/H )15y ~m,- The energy transfer
rate typically goes like I'g(Tsm ~ mg) gimd), where g4 is the Standard Model coupling with the heavy
mediator particle with mass m4. Consequently, the contour of constant AN.g relates gy o< \/m,
which accounts approximately for the shape of the contours in the regions where the sectors are out-of
equilibrium in figures 5.1 and 5.5. We provide a simple formula for evaluating the resulting Neg constraint,
given an input cross-section. CMB A Neg constraints are already the leading limit on both models in most
of the out-of-equilibrium parameter space, along with constraints from SN1987A; these astrophysical and
cosmological constraints far exceed terrestrial accelerator constraints in the sub-GeV regime.

As one increases my at a fixed value of the dark radiation density, the coupling g4 can increase to a point
where the HS comes into thermal equilibrium with the SM. When the HS thermalizes with the SM, the
resulting dark radiation density is determined by the temperature at which the HS and SM decouple. This
decoupling temperature is primarily determined by Boltzmann suppression of the collision term. Consequently,
the decoupling temperature is mainly set by the mass of the mediator, mg, and only depends logarithmically
on the coupling g4; once the sectors are in thermal equilibrium, increasing the coupling only marginally
decreases the resulting decoupling temperature, and thus marginally increases the resulting dark radiation
density. Because of the weak sensitivity to g4, the constraint imposed by N.g measurements on gy is
exponentially weakened if the HS thermalizes with the SM. This effect gives rise to a thermalization mass
threshold, myy, beyond which the constraint curves in figures 5.1 and 5.5 are exponentially weakened.

The example models discussed above consider a minimal hidden sector that is coupled to the SM via
a heavy mediator. More generally, one can consider the mediator to communicate with a hidden sector
that may have a nonminimal internal spectrum. While the exact evaluation of dark radiation production in
extended models would require a numerical computation of the Boltzmann equations that take into account
all internal hidden sector interactions, we have shown how to obtain a simple analytical lower bound on
the relic dark radiation that depends only on the mass and coupling of the mediator, and is independent of
the number of particles in the hidden sector or their internal interactions. This minimum dark radiation
abundance is obtained by considering that energy transfer into the HS occurs through the production of
heavy mediators by the SM plasma, and assuming that any energy transferred to the mediator is promptly
deposited in the relativistic HS degrees of freedom. This amounts to assuming that the mediator is more
strongly coupled to the HS than to the SM. In the regime where CMB constrains the HS to remain out of
equilibrium with the SM in the early universe, this is a very mild requirement on the mediator coupling. This
model-insensitive lower bound on A N.g assumes there are no BSM contributions to the entropy of the SM
plasma, and that the relic dark radiation remains a free-streaming relativistic relic throughout the formation

of the CMB. Relaxing these assumptions can evade our lower bound.
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We have shown that future CMB measurements of N.g have the potential to constrain portal couplings
to values which typically are orders of magnitude weaker than those probed by collider experiments, and
provided simple semi-analytic recipes to evaluate their reach. If future CMB observations do not find any
deviation from the Standard Model prediction for Neg, hidden sector models with light species will also be
out of reach for accelerator experiments, unless there are departures from the standard cosmology. This work
highlights the potential of future CMB missions to significantly narrow down the space of observationally

relevant BSM theories.
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Chapter 6

BBN constraints on dark radiation

isocurvature

6.1 Introduction

Upcoming stage 4 cosmic microwave background (CMB) experiments will make exquisite measurements of
the energy content of the Universe [200]. These measurements will improve the constraint on the contribution
of free-streaming radiation (through the effective number of relativistic species Neg) by an order of magnitude
over current constraints. A measurement of Neg consistent with the standard model (SM) prediction of
Neg = 3.044 [31-35] will place extremely strong constraints on particle content beyond the SM [201].

Alternatively, these measurement could reveal the existence of additional light-particles (dark radiation)
beyond the SM by measuring Neg # 3.044 at high significance. If these additional particles were ever in
thermal equilibrium with the standard model, they will exhibit the usual adiabatic fluctuations in their
density (see, e.g. [202]), and their effects on cosmology would be indistinguishable from additional neutrinos.
However, this dark radiation may be completely decoupled from the standard model sector. In this decoupled
scenario, fluctuations in the dark radiation density may be independent of the density fluctuations in the
visible sector—there may be a dark-radiation isocurvature mode. Isocurvature modes are generically predicted
by cosmological theories that have a second clock beyond the SM temperature field [203]. In this work we
remain agnostic to the exact origin of such an initial condition and leave detailed model-building to future
work.

The presence of dark radiation isocurvature affects the cosmic microwave background (CMB). Earlier
work [204] constrained neutrino + dark radiation isocurvature to be less than ~ 107° at scales around 500
Mpc using data from WMAP and ACT (see also Ref. [205] for non-Gaussian dark radiation isocurvature
constraints). Planck is sensitive to dark-radiation isocurvature for scales > 10 Mpc [16]. However, the
inability to observe CMB fluctuations on angular sizes smaller than ~ 5 arcmins prohibits the estimation of
isocurvature constraints on smaller scales [206]. In this work we probe dark radiation isocurvature down to
~ 1 Mpc scales through its impact on Big Bang nucleosynthesis (BBN).

BBN is a period in the early universe when the SM plasma became cold enough for the free protons
and neutrons to combine and form the first nuclei. This process primarily produces Helium and deuterium
(along with trace amounts of tritium and Lithium). Adiabatic fluctuations during BBN do not lead to spatial

variations in the outcome of BBN. This result follows directly from the separate universe picture—different
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patches of the Universe with differing density fluctuations simply appear to be a little older or younger as
viewed by local observers. Since the local physics is identical, the outcome is identical. The presence of
isocurvature during BBN can change the story by changing the physical conditions locally in a way that
is distinguishable from a local shift in the clock. In this way, isocurvature leads to spatial variation in
primordial elemental yields. Spatial variations in the yields of *He/H and D/H during BBN would then lead
to corresponding differences in abundances in widely separated locations. To date, baryon isocurvature modes
as a source of inhomogeneous BBN have been extensively studied in the literature [207-211]. In this work we
consider the effect of dark radiation isocurvature on the primordial elemental abundances from BBN.

Our results can be summarized as follows. We demonstrate that the presence of dark-radiation isocurvature
leads to spatially varying elemental abundances. As a result, galactic “He/H and D/H ratios are sensitive to
dark-radiation isocurvature on galactic scales, ~ 1 Mpc. We use data on Helium abundances in nearby galaxies
[212] and deuterium abundances in high-redshift Lyman-a absorption systems [213] to place constraints on
the existence of dark radiation isocurvature. We constrain the variance of average isocurvature fluctuations
in galaxies, to be less than 0.13/AN.g at 20 confidence for scales around ~ 1 Mpc. Here AN.g is the
spatially averaged increase in Neg due to the additional dark radiation component. In the absence of any
dark-radiation, i.e. AN.g = 0, our constraints are relaxed as expected.

This chapter is organized as follows. In section 6.2, we show how dark-radiation isocurvature leads to
spatially varying BBN yields and demonstrate that this leads to differences in the primordial abundances of
light elements in different galaxies. In section 6.3, we use excess variance in existing “He/H and D/H data to
place constraints on dark-radiation isocurvature. We conclude in section 6.4. Finally, in appendix D we use
the separate universe approach to demonstrate how dark-radiation isocurvature leads to spatially varying
ANg.

6.2 Inhomogenous Big Bang Nucleosynthesis through dark radia-

tion isocurvature

In this section we demonstrate the impact of dark-radiation isocurvature on BBN. We first show how the
effect of dark-radiation isocurvature on BBN is distinct from the more studied baryon-isocurvature case
[207-211]. We then demonstrate that dark-radiation isocurvature leads to spatially varying Neg that in turn
causes spatial variation in primordial abundances of hydrogen and helium.

The elemental abundances produced by BBN are primarily determined by two processes: the weak
processes which convert neutrons to protons, and by the deuterium formation process that forms deuterium
from all the remaining neutrons. The temperature at which deuterium formation begins, Ty, is insensitive to
the Hubble rate and is primarily determined by the baryon-to-photon ratio. Baryon-isocurvature modes cause
the baryon-to-photon ratio to vary spatially. This in turn leads to a spatially varying T}, and to spatial
variations of the resulting elemental abundances. In contrast, a dark-radiation isocurvature mode leads to a
spatially varying Neg, as we show below. The abundance of neutrons at Ty, is sensitive to the Hubble rate
at Thue, and since Nog affects the Hubble rate through the Friedmann equation, an inhomogeneous Nog leads
to an inhomogeneous abundance of neutrons at Tjc.

To show how dark-radiation isocurvature leads to spatial variation in Neg, we first highlight the relation
between dark-radiation energy density and Neg. At T~ 1 MeV, before BBN begins, neutrinos have chemically
decoupled from SM plasma and thus evolve adiabatically like dark radiation. We can therefore absorb the

density of dark radiation, ppg, into an extra neutrino component [3],

129



4/3
AN.g = 8 (11 PDR _ (6.1)
7T\ 4 P
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Thus AN.g depends on the ratio of homogeneous densities of dark-radiation to SM.

Now consider a spherical volume of radius r = Aza1/2, the matter within which later collapses to form a
galaxy. In appendix D we show that an isocurvature fluctuation, dp}(k), of a superhorizon-sized mode can
be absorbed into the homogeneous density. For the spherical patch we are considering, using the separate
universe principle, we can absorb the net dp}(Z) inside the volume into the homogeneous density (using
eq. (D.17) and eq. (D.14)),

psm = psm + Appg PpR = PDR — AppR) (6.2)
where Aplpp = —Apl,, is the average isocurvature fluctuation in the dark radiation inside a spherical volume
of radius r,

/ * d3‘r /
Appr = 75PDR(x)Wr($)- (6.3)
0 T

Here W, is a window function which weights the integral to be within r radius from origin and V,. is the
volume swept by the window function, V, = [ d3xW,(Z). The spherical volume effectively has p; as its
homogeneous density. Note that while Ap} involves contributions from all Fourier modes, the contribution
from modes k~! < r is suppressed. The suppression is because the small wavelength modes have around
the same number of over-densities and under-densities in a patch much larger than the mode’s wavelength.
Consequently, the super-horizon assumption in eq. (6.2) approximately holds as long as r is super-horizon
sized.
Due to the presence of isocurvature, Neg inside the spherical volume is also modified

PprR _ PDR+AppR

ANeH XX = 7 )
PSM PSM — APDR

where we have used the fact that pgas o< p.

Isocurvature between the dark-radiation and the SM plasma is defined as

3(5pDR _ 5PSM) _ 3psm+poRs

PR 4N or  psm 4 psuppr R (6.5)

where in the second equality we have expressed Spg in the uniform density gauge where dplhp = =005,
Consequently, the average isocurvature in the spherical volume is given by
< d3x _ 3psm+poR

ASpr= [ CXSpp(@)W,(T) =
b 0o Vi DR(E)W:() 4 psmpDR

Adpr. (6.6)

Replacing above back in eq. (6.4), we can rewrite ANqg as

ANEH o

4 1
PDR 1+ §mASDR (ppRrR/PsM)ASprR<K1  PDR 4
1+ gASDR .

4 _ppRr/Psm
M1 — 4 _PDR/pSM M
psm 1 3 1+ppR/PsSM ASpr ps
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Because ASpr takes different values in different regions, dark-radiation isocurvature leads to spatial variations
in ANyg.

While we have derived Eq. (6.7) in uniform-density slicing, this equation is gauge invariant. Uniform
density slicing makes transparent the relation between AN.g in a super-horizon patch and Spg, both of
which are gauge-invariant. Although the Hubble rate has the same value everywhere in uniform density
slicing, the presence of dark-radiation isocurvature causes the individual SM and dark radiation densities to
be inhomogeneous. Consequently, in this slicing, the photon temperature is inhomogeneous. Because the
photon temperature is the relevant clock during BBN, the effect of dark radiation isocurvature on BBN is
most easily understood in the slicing where the temperature is uniform. In uniform SM temperature (density)
slicing, the presence of dark radiation isocurvature causes the Hubble rate to be inhomogeneous.

In the presence of a dark-radiation isocurvature mode, regions of the Universe that were causally
disconnected during BBN have different primordial abundances of light elements due to their different values
of AN.g. For example, the D/H ratio, D, is primarily a function of AN.g and the baryon fraction Q,h?.

Assuming small fluctuations in ANeg, the fluctuation in D is given by

oD

p~Dy 2P
t AN,

(ANeff - ANeff)v (68)
ANt

where D = D(ANg, Qph?). This gives us a direct relation between the variance in D, given by o4, and the

variance in AN.g fluctuations

oD

= 9AN.g O Nege+ (6.9)

ANest

0d

In practice, the derivatives, 0D /OANeg, can be obtained numerically from publicly available codes. In this
work, we use Parthenope [214].

Immediately following BBN, the primordial abundances in the patches are conserved. As the Universe
expands, and overdensities collapse to form galaxies, variations on scales smaller than those scales that collapse
to form galaxies get mixed.! Measurements from different galaxies are therefore sensitive to isocurvature
fluctuations down to galactic scales. Consequently, the scale r entering in eq. (6.6) is the comoving size of a

patch, Aga1/2, which collapses to form the galaxies we observe

-1/3
Mg " (Quh2\ 7
=3, M 1
Agal 37(1012M@> 0.14 pe (6.10)

where Mg, is the mass of the galaxy. The scale Aga is larger than the horizon during BBN, ~kpc, which
implies that our analysis built on eq. (6.2) is self-consistent.
The value of AN.g experienced by a galaxy is sampled from a distribution with mean AN.g and variance

ON.- Moreover, oy, is related to the power spectrum of isocurvature fluctuation, Pg, as

eff

(6.11)

16 , - 16 ANg > dk kSPS(k)
U]2Veff = jANe25<AS%R> = B /O |2 .

- — | Wix,u/2(k)
9 U A3 W/\gal/2(’f)}2 Lk 1/2 272

IThe ratio of BBN yields to hydrogen can increase slightly during the collapse of structures [215]. However, we ignore this
effect as the increase is well below the current sensitivities of measurements. Moreover, a post-BBN diffusion of elements [216]
will erase differences in 4He/H or D/H ratios inside the diffusion volume. Our analysis is unaffected by this post-BBN diffusion
as long as the diffusion length scales are smaller than the galactic-scales.
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where W,.(k) and Pg(k) are the Fourier transforms of W,.(Z) and (Spr(Z)Spr(Z’)) respectively. Since the
details of galaxies providing *He/H or D/H are usually not observable, the accurate estimation of Wi,ay2 18
not feasible. Consequently, we cannot exactly relate the variance in the average isocurvature experienced by
a galaxy, (AS,2j R, to the isocurvature power spectrum. However, we can obtain an approximate relation
between (AS% ) and Ps. Assuming a blue-tilted isocurvature power spectrum
k* Ps (k)

PN/ k”
22 *7

A% (6.12)

with n > 0, and assuming a spherical Gaussian window function, Wy 2(k) = exp(—k*X?/8), eq. (6.11) yields

L(n/2)

(AS? ) = AL (22 0). (6.13)

gal
Here I'(z) is the Euler Gamma function. As (AS% ) determines oy, which in turn informs the variance in
D/H (or *He/H) ratios, the intrinsic variance in the D/H (or *He/H) ratio in a given galaxy is determined by

dark-radiation isocurvature at scales ~ Aga1/2.

6.3 Constraints from ‘He/H and D/H data

In this section we use data from observations of the ratios of “He/H and D/H to place constraints on
dark-radiation isocurvature. We first describe the datasets which we use for our analysis and then describe

our methodology for D/H and “He/H data separately.

6.3.1 Datasets

D/H measurements are taken from gas clouds that are seen in absorption against the light of an unrelated
background quasar [217]. Correspondingly, by looking at the frequency distribution of the light from the
quasar, one can estimate the redshift of the gas cloud as well as the column densities of neutral hydrogen and
deuterium atoms.

For our analysis we use the D/H measurements provided in Ref. [212]. The data uses measurements
from seven damped Lyman-o systems? around redshifts z ~ 2 — 3, that satisfy the strict selection criteria of
precision stated in Ref. [219]. To estimate the comoving scale in the early universe from which the gas cloud
formed, we require the mass of the gas cloud. While the masses of individual damped Lyman-« systems are
not known, their masses have been estimated to be in the range 10'' — 102 M, [220, 221].

The “He abundance is derived from observations of the helium and hydrogen emission lines from H
IT regions in low-metallicity blue compact dwarf galaxies that have undergone little chemical evolution
[222]. Regions with minimal chemical evolution are selected so as to minimize *He enrichment by stellar
processes. However, there still remains some contamination that leads to an increase in the “He/H ratio over
its primordial value.

In this study we use “He/H data provided in Ref. [213]. The data consists of 15 measurements of He
IT regions from 14 different galaxies. For our analysis, we assume that each galaxy has a uniform value of

the primordial *He/H ratio. Correspondingly, we combine the two measurements of the same galaxy into

2The damped Lyman-a systems are distinct from the Lyman-a forest systems which provide matter structure constraints
around 2> 1 Mpc. They are differentiated on the basis of the amount of neutral hydrogen column densities, N(H I). Lyman-«
forest systems are those with N(H I) < 10'7cm~! and damped Lyman-a systems are those with 2 x 1020ecm ™! < N(H I) [218].

132



a single data point using a weighted average. Unlike in the case of deuterium measurements, the galaxies
providing Helium measurements have low redshifts z < 0.05. Out of the 14 galaxies used in measuring *He/H
abundance we find the masses of three® of them in the SPARC database [223]. Their masses are in the range
1010.2 _ 1010.6M®_

6.3.2 Constraints from D/H data

The gas in damped Lyman-« systems is assumed not to have produced or destroyed significant amounts of
deuterium. Correspondingly, the measurement from a gas cloud samples the primordial value of D which
is assumed to be drawn from a distribution with mean and variance given by {D,o4}. The probability of

getting a measurement of D; from gas cloud ¢ is then given by

{D,o :—1 ex —7(Di_D)2
P(D;|{D,oa}) paT gy p( 2(02’i+03)>, (6.14)

n,i
where o, ; is the estimated noise in the measurement of D. We have assumed that each measurement has the
same intrinsic variance in D. We do so because the damped Lyman-« systems typically have masses in the
relatively narrow range 10'* — 102 M, [220, 221]. Correspondingly, the gas clouds in our data have roughly
the same Aga1 (see eq. (6.10)) and thus the same variance in D (see egs. (6.13) and (6.9)). Moreover, we have
neglected covariance between different measurements. This approximation is valid because isocurvature on
the scales of separation between different galaxies in our data (usually > 100 Mpc) is constrained by CMB
measurements [16] to be much smaller than the variance to which our analysis is sensitive.

The constraints from D; measurements are degenerate in ANyg and Q,h%. To remove this degeneracy
we fix the value of Q,h? using the Planck data,* Q,h% = 0.02239 & 0.00018 = Q,h? + 0q, [3], where oq, is
the uncertainty on the baryon density, which is assumed to be spatially homogeneous. The corresponding
likelihood function is then given by

2 & 12)2
eXP ( - (QthU??bh ) )
b d

2
ANot, Q72,0 N g \ QWUQb

We numerically marginalize over {2,h? to obtain our likelihood estimate.

Using Parthenope [214] to estimate D(ANeg, Qh?) and %ﬁﬁ_, we find the 1o and 20 limits on

{AN.g, 0N, } shown as orange contours in left panel of figure 6.1.

Lo(ANeft, OAN.,) = / (Qph?). (6.15)
0

HP<DZ-|{D7ad}>]

6.3.3 Constraints from ‘He/H data

The methodology used in analysing D/H data is also applicable for *He/H data after accounting for the
4He produced by stellar processes. To estimate the amount of primordial *He/H ratio, Y), in a given galaxy

we assume a linear relation between the oxygen to hydrogen ratio (O/H) and the *He/H ratio produced by

3The galaxies of whose masses we found are aliased as Mrk 209, Mrk 71 and SBS 1415+437 in [213]. While their aliases used
in SPARC database are UGCA 281, NGA 2366, and PGC51017, respectively.

4The Planck constraints on §2,h2 are slightly degenerate with Neg. Correspondingly we take Planck constraints on € h?
values marignalised over Nog from TT+TE+EE+lowl+lowlE4+BAO data.
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Figure 6.1: Left: 1o and 20 constraints on {ANeg,oanN,, } from *He/H data (blue contours), D/H data
(orange contours) and from combined data (red contours). The vertical dashed line denotes the upper limit
on ANy from Planck data with 95% confidence [3]. Right: Constraints on {ANeg, (AS3R)} from combined
data. Here ASpg is the average dark radiation in a galaxy. For blue-tilted isocurvature mode (AS]%R> is
approximately same as the normalized isocurvature power spectrum at 1 Mpc, A2S(1Mpc_1) (see eq. (6.13)).
The red-dashed line marks the parameters space at which AN.gASpr = 0.1. Correspondingly, the small
AN.gASpr approximation made in eq. (6.7) holds for most of our parameter space.

stellar processes. Thus the net *He/H ratio, Y, found in a galaxy is given by
Y =Y, +mx (O/H), (6.16)

where m is the proportionality between O/H production and *He/H production through stellar processes.
Above, Y, fluctuates with ANy in a similar manner as in eq. (6.8), except with D replaced by Y,,. Similarly,
the variance in Y),, given by o, and the variance in AN.g fluctuations are related by eq. (6.9), except with
D replaced by Y.

Taking into account the linear relation between O/H and Y, the probability of getting a measurement of

Y; from galaxy i is given by

(Yi — (Yp + m(O/H)i)V)

- _ 1
P(YYZ'Hvao'yvm}) = 2(0.2 4 g2 _|_m20.(2) )
n,i y n,i

- (6.17)
\/27(02 + 02+ m202, )

exp(—

where 00y, is the noise in O/H measurement. Just like in the case of deuterium, we have considered
all galaxies to have the same variance in ANgg and neglected covariance between different galaxies. We
marginalize over yh? as we did for deuterium in eq. (6.15). Additionally, as the precise value of m is

unknown, we explicitly marginalize over m assuming a uniform prior,

ﬁ(ANeH;UNeff) :/ /
o Jo
_ (Qbh"‘—f‘zbh%“)

o (- S

2
/ 2
27‘('O'Qb

Since the *He/H and O/H data prefers values of m ~ O(10%) [213], we have moo,; ~ 10720, ;. Thus we

neglect the contribution from mQUQOM terms in our likelihood function. Consequently, using the definition of

HP(YiHYaUy’m})]

ANett, 2,0 N4

X dm d(Qh?). (6.18)
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Lo in eq. (6.15) but with D replaced by Y, the above integral simplifies to,

‘C(ANeff’ JNeff) ~Lo (ANeffa JNeff)

= 1 (O/H)?
X —_— S . A—
/o P ( 2 [Z (02, +02)
Jmeb?/(2a) (erf (ﬁ) n 1)
\/a )
where a and b are the inverse variance weighted sum of (O/H)? and (Y; — Y)(O/H); respectively (terms in

the square bracket in the first line). Using Parthenope [214] to estimate Y (ANeg, Qyh?) and 82}\7“ we find

2

Y; - Y)(O/H);
Z( )(O/H)

(00 +03)

m) dm

i

=Lo(ANeft, ON.;) (6.19)

the 1o and 20 limits on {AN.g, on., }, shown as blue contours in left panel of figure 6.1.

The red contours in the left panel of figure 6.1 show the combined constraints from Helium and deuterium
data, which restricts the variance in ANeg to be oy, < 0.17 at 95% confidence. In the right panel of figure 6.1
we convert the constraints on o, to constraints on (AS3 ) using eq. (6.11). Since the masses of the galaxies
used in our measurements lie in the range 10'° — 1012M@, we consider all our measurements to have Aga; ~ 2
Mpe (see eq. (6.10)). Correspondingly, the variance in average dark radiation isocurvature in a galaxy, (AS3R)
approximately measures isocurvature on scales around Agaj/2 ~ 1 Mpc, i.e. (ASER) ~ AZ(k ~ 1Mpc ™) (see
eq. (6.13)). The constraints on isocurvature become significantly weaker for smaller values of AN.g. This is
indicative of the fact that smaller dark radiation densities make it harder for the isocurvature component to

gravitationally affect BBN.

6.4 Discussion and conclusions

In a universe with a dark radiation field that is populated independently of the SM sector following inflation,
an isocurvature mode can naturally occur between the two sectors. In this work, we have demonstrated
that such an isocurvature mode leads to spatially varying BBN yields. Correspondingly, we have derived
constraints on the existence of an isocurvature mode between SM plasma and putative dark radiation by
looking at spatial variations in “He/H and D/H abundances.

A lack of excess variance in observed “*He/H and D/H data limits the amount of isocurvature present
during BBN. Assuming each galaxy has internally uniform *He/H and D/H ratios, a single galaxy probes
dark radiation isocurvature at scales ~ Aga1/2. Here Aga corresponds to the comoving size of the overdensity
which eventually collapses to form the galaxy in question. Since the structures which provide “He/H or D/H
measurements typically have masses around 10'! M), our analysis is sensitive to dark radiation isocurvature
at scales ~ 1 Mpc. Subsequently, using *He/H data from measurements of nearby galaxies [212] and D/H
data from measurements of high-redshift Lyman-a absorption systems [213], we constrained the variance of
average dark radiation isocurvature fluctuations, to be m < 0.13/ AN,z (see right panel of figure 6.1)
at 95% confidence. The quantity <AS]23R> is approximately the same as the normalized isocurvature power
spectrum at 1 Mpc. The exact relation between (AS3y) and the isocurvature power spectrum requires an
accurate estimation of the primordial overdensities that collapse to form the galaxies in our data. Finally, we
also constrain the variance in ANyg to be on,, < 0.17 at 95% confidence.

By translating the neutrino isocurvature constraints by Planck [16] to dark radiation isocurvature,® we

5CMB measurements cannot distinguish between the effects from dark-radiation and neutrinos. Consequently the isocurvature,
3 (5PDR+5PV _ Sy

S constrained by CMB would have contributions from both dark-radiation and neutrinos, & = 3 Py -
v y
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find that dark radiation isocurvature fluctuations are constrained to be less than ~ 107° x N.g / AN, on
scales larger than ~ 10 Mpc. Although the CMB is much more sensitive probe than the *He/H and D/H
data, the latter is able to probe isocurvature at scales that are inaccessible to CMB measurements.

If dark radiation and dark matter fluctuations are correlated—which could occur, for example, in theories
of dark freeze-out in the presence of isocurvature—then constraints from measurements of clustering in the
Lyman-a forest on dark matter isocurvature can be translated to dark radiation. The Lyman-a forest data
constraints DM isocurvature to be less than 10™* at 1 Mpc [224], by putting limits on the excess power over
the adiabatic matter power spectrum extrapolated from CMB measurements. In contrast, the analysis in
this study is sensitive directly to the isocurvature mode between dark radiation and the SM sector, and is
unaffected by the adiabatic fluctuations.

The extension of constraints from Lyman-a forest data to smaller scales is limited by solving non-linear
structure formation—a complication that does not affect our analysis. In contrast, the techniques used in
this study can theoretically be used to extend the constraints down to scales ~ 0.01 Mpc, i.e. scales slightly
larger than the comoving horizon during BBN. To achieve the constraints at such small scales one would
require measurements of “He/H or D/H from structures with masses of order ~ 10° — 107 M,. Potential
future measurements of “He/H in halos of masses ~ 105 M, [225] would extend the constraints down to
~ 0.3 Mpc.

PDR
PDR+PV

Pv
PDRFPV

Spr + S,. The subscript v refer to quantities for neutrinos.
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Chapter 7

Summary and conclusion

This thesis explores various novel early universe cosmologies that are possible with hidden sectors and that can
potentially lead to observable signatures in the cosmic microwave background spectrum or in the distribution
of matter today.

The thesis particularly focuses on hidden sectors that are out-of equilibrium with the Standard Model
plasma. A simple mechanism to populate such hidden sectors is by making the inflaton to couple with both
Standard Model and hidden sector particles with different couplings. Consequently, after the end of inflation,
inflaton decays can populate the two sectors at different temperatures. However, inflaton mediated interaction
between the hidden sector and the Standard Model can alter the temperature ratio between the two sectors
from the naive expectation of the temperature ratio being determined by the ratio of inflaton couplings to the
two sectors. Chapter 3 highlights a simple criteria that determined when the naive expectation is violated:
when the inflaton decays occur at temperatures larger than quarter of inflaton mass, Ty, > My/4. The simple
criteria is a consequence of the fact that the temperature ratio is primarily determined by processes that
occur later in time. As the energy transfer via inflaton mediated interactions dominantly occur at T ~ My /4
because of on-shell resonance, these interactions determine the final temperature ratio for Ty, > M, /4.

A hidden sector that is out-of-equilibrium with the Standard Model plasma can alter the early universe
cosmology in a variety of ways. Chapter 4 discusses one such way where the hidden sector causes an early
cannibal dominated era (ECDE) prior to Big Bang nucleosynthesis (BBN). If the lightest particle in the
hidden sector has strong number changing interactions, then as the particle becomes non-relativistic its
interactions can maintain chemical equilibrium via self-annihilations. When such a cannibal particle comes to
dominate the universe, it can lead to a growth in dark matter perturbations with the peak enhancement in the
perturbations being determined by the thermal pressure in the cannibal fluid due to cannibal annihilations.
These enhanced perturbations collapse to form dark matter microhalos long before the collapse that occurs
in standard cosmology. As the mass and central density of the microhalos are determined by the peak
enhancement in the dark matter perturbations, we show a direct map between the observable properties of
the microhalos and the properties of the cannibal particle.

If the lightest particle in the hidden sector is massless, then the hidden sector can leave imprints on the
cosmic microwave background (CMB) spectrum because the CMB spectrum is sensitive to dark radiation.
Conventionally, the energy density in dark radiation is parameterized by its contribution to the effective
number of neutrino species, Neg. As upcoming CMB measurement of Neg become more precise, they will

constraint the lightest hidden sector particle to always be out-of-equilibrium with the Standard Model plasma
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in the early universe if no deviation is observed from the Standard Model value of Neg. In chapter 5 we show
that the N.g measurements can directly constrain the energy transfer rate between an out-of-equilibrium
hidden sector and the Standard Model without being dependent on the number of particles in the hidden
sector or internal hidden sector interactions. As the energy transfer rate in the early universe is determined by
beyond Standard Model interactions, Ng measurements can be used to directly constrain beyond Standard
Model interactions at energies E > MeV. The N.g constraints on beyond Standard Model interactions are
found to be orders of magnitude stronger than the sensitivity of collider experiments.

Apart from populating the hidden sector via inflaton decays or directly from interactions with Standard
Model particles, another natural possibility is that the hidden sector was populated by a curvaton field. In
such scenarios, if the hidden sector remains thermally decoupled from the Standard Model plasma, then the
density perturbations of the two sectors are out of sync, i.e. they have an isocurvature mode between them.
In chapter 6, we show that such an isocurvature causes a variation in the Hubble rate in different patches of
the universe during BBN. This inhomogeneous Hubble rate in turn leads to an inhomogeneous production of
the Helium to hydrogen ratio (He/H) as well as the deuterium to hydrogen ratio (D/H). Consequently, by
looking at the variation in D/H data collected from different Lyman-alpha clouds and the He/H data collected
from different galaxies, the variance of average dark radiation isocurvature fluctuations was constrained to
\/@ < 0.13/AN.g at 95% confidence, where ANy is the shift in Neg due to the dark radiation.

Taken together, the analyses in this thesis points towards interesting implications for hidden sector model
building relevant for upcoming experiments. For instance, we have argued that if future CMB experiments
do not detect dark radiation then portal couplings between Standard Model and hidden sectors containing
relativistic particles will typically be restricted to values that are orders of magnitude smaller than the
sensitivities of collider experiments. Then to have a chance of detecting hidden sectors in future collider
experiments, one would either have to consider the Standard Model plasma to be reheated at temperatures
below the mass scale of the portal interaction or consider hidden sectors without dark radiation. On one hand,
reheating at low temperatures implies an early matter dominated era (EMDE) and thus a possibly enhanced
abundance of dark matter microhalos today. On the other hand, hidden sector with a massive lightest particle
typically overclose the universe if the lightest particle is also stable. And if the lightest massive hidden sector
particle is unstable, then we open the possibility of hidden sector causing an early matter dominated era
(EMDE) or an early cannibal dominated era (ECDE), which would also enhance the abundance of dark
matter microhalos today. Thus, for hidden sectors theories that can be observed in colliders, we argue that
one should either expect a detection of dark radiation in future CMB experiments or an increased possibility

of large abundance of dark matter microhalos.

138



References

Ip. Zyla et al. (Particle Data Group), “Review of Particle Physics”, PTEP 2020, 083C01 (2020).

2P. A. R. Ade et al. (Planck), “Planck 2015 results. XIII. Cosmological parameters”, Astron. Astrophys.
594, A13 (2016).

3N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters”, (2018).

4M. Escudero, A. Berlin, D. Hooper, and M.-X. Lin, “Toward (Finally!) Ruling Out Z and Higgs Mediated
Dark Matter Models”, JCAP 1612, 029 (2016).

5J. Alexander et al., “Dark Sectors 2016 Workshop: Community Report”, in (2016).
6E. W. Kolb, D. Seckel, and M. S. Turner, “The Shadow World”, Nature 314, 415-419 (1985).

"E. D. Carlson, M. E. Machacek, and L. J. Hall, “Self-interacting dark matter”, Astrophys. J. 398, 43-52
(1992).

8K. Sigurdson, “Hidden Hot Dark Matter as Cold Dark Matter”, (2009).

9C. Cheung, G. Elor, L. J. Hall, and P. Kumar, “Origins of Hidden Sector Dark Matter I: Cosmology”,
JHEP 03, 042 (2011).

10D, Pappadopulo, J. T. Ruderman, and G. Trevisan, “Dark matter freeze-out in a nonrelativistic sector”,
Phys. Rev. D94, 035005 (2016).

11J. A. Dror, E. Kuflik, and W. H. Ng, “Codecaying Dark Matter”, Phys. Rev. Lett. 117, 211801 (2016).

12A. Berlin, D. Hooper, and G. Krnjaic, “Thermal Dark Matter From A Highly Decoupled Sector”, Phys.
Rev. D94, 095019 (2016).

13J. A. Dror, E. Kuflik, B. Melcher, and S. Watson, “Concentrated dark matter: Enhanced small-scale
structure from codecaying dark matter”, Phys. Rev. D97, 063524 (2018).

14J. Georg, B. Melcher, and S. Watson, “Primordial Black Holes and Co-Decaying Dark Matter”, (2019).

151, J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, “Freeze-In Production of FIMP Dark Matter”,
JHEP 03, 080 (2010).

16y, Akrami et al. (Planck), “Planck 2018 results. X. Constraints on inflation”, Astron. Astrophys. 641,
A10 (2020).

17P. Adshead, P. Ralegankar, and J. Shelton, “Reheating in two-sector cosmology”, JHEP 08, 151 (2019).

8A. L. Erickcek, “The Dark Matter Annihilation Boost from Low-Temperature Reheating”, Phys. Rev.
D92, 103505 (2015).

19C. Blanco, M. S. Delos, A. L. Erickcek, and D. Hooper, “Annihilation Signatures of Hidden Sector Dark
Matter Within Early-Forming Microhalos”, Phys. Rev. D100, 103010 (2019).

139


https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1088/1475-7516/2016/12/029
https://inspirehep.net/record/1484628/files/arXiv:1608.08632.pdf
https://doi.org/10.1038/314415a0
https://doi.org/10.1086/171833
https://doi.org/10.1086/171833
https://doi.org/10.1007/JHEP03(2011)042
https://doi.org/10.1103/PhysRevD.94.035005
https://doi.org/10.1103/PhysRevLett.117.211801
https://doi.org/10.1103/PhysRevD.94.095019
https://doi.org/10.1103/PhysRevD.94.095019
https://doi.org/10.1103/PhysRevD.97.063524
https://doi.org/10.1007/JHEP03(2010)080
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1007/JHEP08(2019)151
https://doi.org/10.1103/PhysRevD.92.103505
https://doi.org/10.1103/PhysRevD.92.103505
https://doi.org/10.1103/PhysRevD.100.103010

20M. Sten Delos, T. Linden, and A. L. Erickcek, “Breaking a dark degeneracy: The gamma-ray signature of
early matter domination”, Phys. Rev. D 100, 123546 (2019).

21J. A. Dror, H. Ramani, T. Trickle, and K. M. Zurek, “Pulsar timing probes of primordial black holes and
subhalos”, Phys. Rev. D 100, 023003, 023003 (2019).

22H. Ramani, T. Trickle, and K. M. Zurek, “Observability of Dark Matter Substructure with Pulsar Timing
Correlations”, (2020).

2L. Dai and J. Miralda-Escudé, “Gravitational Lensing Signatures of Axion Dark Matter Minihalos in
Highly Magnified Stars”, Astron. J. 159, 49 (2020).

24N. Blinov, M. J. Dolan, and P. Draper, “Imprints of the Early Universe on Axion Dark Matter Substructure”,
Phys. Rev. D 101, 035002 (2020).

25N. Blinov, M. J. Dolan, P. Draper, and J. Shelton, “Dark Matter Microhalos From Simplified Models”,
Phys. Rev. D 103, 103514 (2021).

26A. L. Erickcek, P. Ralegankar, and J. Shelton, “Cannibal domination and the matter power spectrum”,
(2020).
27A. L. Erickcek, P. Ralegankar, and J. Shelton, “Cannibalism’s lingering imprint on the matter power

spectrum”, JCAP 01, 017 (2022).

28p. Adshead, P. Ralegankar, and J. Shelton, “Neff constraints on portal interactions with hidden sector”,

In preparation.

29p. Adshead, G. Holder, and P. Ralegankar, “BBN constraints on dark radiation isocurvature”, JCAP 09,
016 (2020).

30M. D’Onofrio and K. Rummukainen, “Standard model cross-over on the lattice”, Phys. Rev. D 93, 025003
(2016).

31G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and P. D. Serpico, “Relic neutrino decoupling
including flavour oscillations”, Nuclear Physics B 729, 221-234 (2005).

32F. Grohs, G. M. Fuller, C. T. Kishimoto, M. W. Paris, and A. Vlasenko, “Neutrino energy transport in
weak decoupling and big bang nucleosynthesis”, Physical Review D 93, 10.1103/physrevd.93.083522
(2016).

33P. F. de Salas and S. Pastor, “Relic neutrino decoupling with flavour oscillations revisited”, JCAP 1607,
051 (2016).

34K. Akita and M. Yamaguchi, “A precision calculation of relic neutrino decoupling”, (2020).

35M. E. Abenza, “Precision early universe thermodynamics made simple: neff and neutrino decoupling in
the standard model and beyond”, Journal of Cosmology and Astroparticle Physics 2020, 048-048 (2020).

36D. J. H. Chung, E. W. Kolb, and A. Riotto, “Production of massive particles during reheating”, Phys.
Rev. D60, 063504 (1999).

37X. Chu, T. Hambye, and M. H. G. Tytgat, “The Four Basic Ways of Creating Dark Matter Through a
Portal”, JCAP 05, 034 (2012).

38]J. E. Evans, C. Gaidau, and J. Shelton, “Leak-in Dark Matter and Hidden Sectors Below the Equilibration

Floor”, to appear.

140


https://doi.org/10.1103/PhysRevD.100.123546
https://doi.org/10.1103/PhysRevD.100.023003
https://doi.org/10.3847/1538-3881/ab5e83
https://doi.org/10.1103/PhysRevD.101.035002
https://doi.org/10.1103/PhysRevD.103.103514
https://doi.org/10.1088/1475-7516/2022/01/017
https://doi.org/10.1088/1475-7516/2020/09/016
https://doi.org/10.1088/1475-7516/2020/09/016
https://doi.org/10.1103/PhysRevD.93.025003
https://doi.org/10.1103/PhysRevD.93.025003
https://doi.org/10.1016/j.nuclphysb.2005.09.041
https://doi.org/10.1103/physrevd.93.083522
https://doi.org/10.1103/physrevd.93.083522
https://doi.org/10.1103/physrevd.93.083522
https://doi.org/10.1088/1475-7516/2016/07/051
https://doi.org/10.1088/1475-7516/2016/07/051
https://doi.org/10.1088/1475-7516/2020/05/048
https://doi.org/10.1103/PhysRevD.60.063504
https://doi.org/10.1103/PhysRevD.60.063504
https://doi.org/10.1088/1475-7516/2012/05/034

39J. McDonald, “Thermally generated gauge singlet scalars as selfinteracting dark matter”, Phys. Rev. Lett.
88, 091304 (2002).

40H. M. Hodges, “Mirror baryons as the dark matter”, Phys. Rev. D47, 456-459 (1993).

417. G. Berezhiani, A. D. Dolgov, and R. N. Mohapatra, “Asymmetric inflationary reheating and the nature
of mirror universe”, Phys. Lett. B 375, 26-36 (1996).

42p. Adshead, Y. Cui, and J. Shelton, “Chilly Dark Sectors and Asymmetric Reheating”, JHEP 06, 016
(2016).

43]. Halverson, C. Long, B. Nelson, and G. Salinas, “Axion reheating in the string landscape”, Phys. Rev. D
99, 086014 (2019).

4“E. W. Kolb, A. Notari, and A. Riotto, “On the reheating stage after inflation”, Phys. Rev. D68, 123505
(2003).

45M. Drewes and J. U. Kang, “The Kinematics of Cosmic Reheating”, Nucl. Phys. B875, [Erratum: Nucl.
Phys.B888,284(2014)], 315-350 (2013).

46E. Hardy and J. Unwin, “Symmetric and Asymmetric Reheating”, JHEP 09, 113 (2017).

47M. Reece and T. Roxlo, “Nonthermal production of dark radiation and dark matter”, JHEP 09, 096
(2016).

48 A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems”, Phys.
Rev. D23, [Adv. Ser. Astrophys. Cosmol.3,139(1987)], 347-356 (1981).

49A. D. Linde, “A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness,
Homogeneity, Isotropy and Primordial Monopole Problems”, Phys. Lett. 108 B, [Adv. Ser. Astrophys.
Cosmol.3,149(1987)], 389-393 (1982).

50A. Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories with Radiatively Induced
Symmetry Breaking”, Phys. Rev. Lett. 48, [Adv. Ser. Astrophys. Cosmol.3,158(1987)], 1220-1223 (1982).

51J. Martin, C. Ringeval, and V. Vennin, “Encyclopedia Inflationaris”, Phys. Dark Univ. 5-6, 75-235 (2014).

52M. A. Amin, M. P. Hertzberg, D. I. Kaiser, and J. Karouby, “Nonperturbative Dynamics Of Reheating
After Inflation: A Review”, Int. J. Mod. Phys. D24, 1530003 (2014).

53K. D. Lozanov and M. A. Amin, “Equation of State and Duration to Radiation Domination after Inflation”,
Phys. Rev. Lett. 119, 061301 (2017).

54M. S. Turner, “Coherent Scalar Field Oscillations in an Expanding Universe”, Phys. Rev. D28, 1243
(1983).

55J. H. Traschen and R. H. Brandenberger, “Particle Production During Out-of-equilibrium Phase Transi-
tions”, Phys. Rev. D42, 2491-2504 (1990).

56L. Kofman, A. D. Linde, and A. A. Starobinsky, “Reheating after inflation”, Phys. Rev. Lett. 73, 3195-3198
(1994).

5TW. T. Emond, P. Millington, and P. M. Saffin, “Boltzmann equations for preheating”, (2018).

8L. F. Abbott, E. Farhi, and M. B. Wise, “Particle Production in the New Inflationary Cosmology”, Phys.
Lett. 117B, 29 (1982).

59A. Albrecht, P. J. Steinhardt, M. S. Turner, and F. Wilczek, “Reheating an Inflationary Universe”, Phys.
Rev. Lett. 48, 1437 (1982).

141


https://doi.org/10.1103/PhysRevLett.88.091304
https://doi.org/10.1103/PhysRevLett.88.091304
https://doi.org/10.1103/PhysRevD.47.456
https://doi.org/10.1016/0370-2693(96)00219-5
https://doi.org/10.1007/JHEP06(2016)016
https://doi.org/10.1007/JHEP06(2016)016
https://doi.org/10.1103/PhysRevD.99.086014
https://doi.org/10.1103/PhysRevD.99.086014
https://doi.org/10.1103/PhysRevD.68.123505
https://doi.org/10.1103/PhysRevD.68.123505
https://doi.org/10.1016/j.nuclphysb.2013.07.009, 10.1016/j.nuclphysb.2014.09.008
https://doi.org/10.1016/j.nuclphysb.2013.07.009, 10.1016/j.nuclphysb.2014.09.008
https://doi.org/10.1007/JHEP09(2017)113
https://doi.org/10.1007/JHEP09(2016)096
https://doi.org/10.1007/JHEP09(2016)096
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1016/j.dark.2014.01.003
https://doi.org/10.1142/S0218271815300037
https://doi.org/10.1103/PhysRevLett.119.061301
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevD.42.2491
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1016/0370-2693(82)90867-X
https://doi.org/10.1016/0370-2693(82)90867-X
https://doi.org/10.1103/PhysRevLett.48.1437
https://doi.org/10.1103/PhysRevLett.48.1437

60P, Adshead, J. T. Giblin, T. R. Scully, and E. I. Sfakianakis, “Gauge-preheating and the end of axion
inflation”, JCAP 1512, 034 (2015).

61p. Adshead and E. I. Sfakianakis, “Fermion production during and after axion inflation”, JCAP 1511, 021
(2015).

62G. Kane, K. Sinha, and S. Watson, “Cosmological Moduli and the Post-Inflationary Universe: A Critical
Review”, Int. J. Mod. Phys. D24, 1530022 (2015).

63R. T. Co, F. D’Eramo, L. J. Hall, and D. Pappadopulo, “Freeze-In Dark Matter with Displaced Signatures
at Colliders”, JCAP 1512, 024 (2015).

64J. F. Dufaux, G. N. Felder, L. Kofman, M. Peloso, and D. Podolsky, “Preheating with trilinear interactions:
Tachyonic resonance”, JCAP 0607, 006 (2006).

65G. Krnjaic, “Probing Light Thermal Dark-Matter With a Higgs Portal Mediator”, Phys. Rev. D94, 073009
(2016).

66J. A. Evans, S. Gori, and J. Shelton, “Looking for the WIMP Next Door”, JHEP 02, 100 (2018).

67N. Arkani-Hamed, T. Cohen, R. T. D’Agnolo, A. Hook, H. D. Kim, and D. Pinner, “Solving the Hierarchy
Problem at Reheating with a Large Number of Degrees of Freedom”, Phys. Rev. Lett. 117, 251801 (2016).

68R. Allahverdi, M. A. Amin, A. Berlin, N. Bernal, C. T. Byrnes, M. S. Delos, A. L. Erickcek, M. Escudero,
D. G. Figueroa, K. Freese, and et al., “The first three seconds: a review of possible expansion histories of
the early universe”, The Open Journal of Astrophysics 4, 10.21105/astro.2006.16182 (2021).

69B. Spokoiny, “Deflationary universe scenario”, Phys. Lett. B 315, 40-45 (1993).

"OM. Joyce, “Electroweak Baryogenesis and the Expansion Rate of the Universe”, Phys. Rev. D 55, 18751878
(1997).

"IP. G. Ferreira and M. Joyce, “Cosmology with a primordial scaling field”, Phys. Rev. D 58, 023503 (1998).
X. Chen and S. .-. H. Tye, “Heating in brane inflation and hidden dark matter”, JCAP 06, 011 (2006).
73]. L. Feng, H. Tu, and H.-B. Yu, “Thermal Relics in Hidden Sectors”, JCAP 0810, 043 (2008).

Y. Zhang, “Long-lived Light Mediator to Dark Matter and Primordial Small Scale Spectrum”, JCAP 05,
008 (2015).

"5A. Berlin, D. Hooper, and G. Krnjaic, “PeV-Scale Dark Matter as a Thermal Relic of a Decoupled Sector”,
Phys. Lett. B760, 106-111 (2016).

"6A. L. Erickcek and K. Sigurdson, “Reheating Effects in the Matter Power Spectrum and Implications for
Substructure”, Phys. Rev. D 84, 083503 (2011).

"TG. Barenboim and J. Rasero, “Structure formation during an early period of matter domination”, Journal
of High Energy Physics 2014, 138, 138 (2014).

], Fan, O. Ozsoy, and S. Watson, “Nonthermal histories and implications for structure formation”, Phys.
Rev. D 90, 043536, 043536 (2014).

™K. Redmond, A. Trezza, and A. L. Erickcek, “Growth of Dark Matter Perturbations during Kination”,
Phys. Rev. D 98, 063504 (2018).

80A. L. Erickcek, K. Sinha, and S. Watson, “Bringing Isolated Dark Matter Out of Isolation: Late-time
Reheating and Indirect Detection”, Phys. Rev. D 94, 063502 (2016).

142


https://doi.org/10.1088/1475-7516/2015/12/034
https://doi.org/10.1088/1475-7516/2015/11/021
https://doi.org/10.1088/1475-7516/2015/11/021
https://doi.org/10.1142/S0218271815300220
https://doi.org/10.1088/1475-7516/2015/12/024
https://doi.org/10.1088/1475-7516/2006/07/006
https://doi.org/10.1103/PhysRevD.94.073009
https://doi.org/10.1103/PhysRevD.94.073009
https://doi.org/10.1007/JHEP02(2018)100
https://doi.org/10.1103/PhysRevLett.117.251801
https://doi.org/10.21105/astro.2006.16182
https://doi.org/10.21105/astro.2006.16182
https://doi.org/10.1016/0370-2693(93)90155-B
https://doi.org/10.1103/PhysRevD.55.1875
https://doi.org/10.1103/PhysRevD.55.1875
https://doi.org/10.1103/PhysRevD.58.023503
https://doi.org/10.1088/1475-7516/2006/06/011
https://doi.org/10.1088/1475-7516/2008/10/043
https://doi.org/10.1088/1475-7516/2015/05/008
https://doi.org/10.1088/1475-7516/2015/05/008
https://doi.org/10.1016/j.physletb.2016.06.037
https://doi.org/10.1103/PhysRevD.84.083503
https://doi.org/10.1007/JHEP04(2014)138
https://doi.org/10.1007/JHEP04(2014)138
https://doi.org/10.1103/PhysRevD.90.043536
https://doi.org/10.1103/PhysRevD.90.043536
https://doi.org/10.1103/PhysRevD.98.063504
https://doi.org/10.1103/PhysRevD.94.063502

81S. Heeba, F. Kahlhoefer, and P. Stocker, “Freeze-in production of decaying dark matter in five steps”,
JCAP 11, 048 (2018).

82G. Heimersheim, N. Schoneberg, D. C. Hooper, and J. Lesgourgues, “Cannibalism hinders growth: Cannibal
Dark Matter and the Ss tension”, JCAP 12, 016 (2020).

83K. K. Boddy, J. L. Feng, M. Kaplinghat, and T. M. P. Tait, “Self-Interacting Dark Matter from a
Non-Abelian Hidden Sector”, Phys. Rev. D89, 115017 (2014).

84K. K. Boddy, J. L. Feng, M. Kaplinghat, Y. Shadmi, and T. M. P. Tait, “Strongly interacting dark matter:
Self-interactions and keV lines”, Phys. Rev. D90, 095016 (2014).

85N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye, and B. Zaldivar, “Production Regimes for Self-Interacting
Dark Matter”, JCAP 03, 018 (2016).

86A. Soni and Y. Zhang, “Hidden SU(N) Glueball Dark Matter”, Phys. Rev. D93, 115025 (2016).

87L. Forestell, D. E. Morrissey, and K. Sigurdson, “Non-Abelian Dark Forces and the Relic Densities of Dark
Glueballs”, Phys. Rev. D 95, 015032 (2017).

88M. Farina, D. Pappadopulo, J. T. Ruderman, and G. Trevisan, “Phases of Cannibal Dark Matter”, JHEP
12, 039 (2016).

89M. A. Buen-Abad, R. Emami, and M. Schmaltz, “Cannibal Dark Matter and Large Scale Structure”, Phys.
Rev. D 98, 083517 (2018).

99A. Dolgov, “On Concentration of Relict Theta Particles (in Russian)”, Yad. Fiz. 31, 1522-1528 (1980).
91A. Dolgov, “New Old Mechanism of Dark Matter Burning”, (2017).

92T. Tenkanen and V. Vaskonen, “Reheating the Standard Model from a hidden sector”, Phys. Rev. D94,
083516 (2016).

93]J. Kopp, J. Liu, T. R. Slatyer, X.-P. Wang, and W. Xue, “Impeded Dark Matter”, JHEP 12, 033 (2016).

94G. Krnjaic, “Freezing In, Heating Up, and Freezing Out: Predictive Nonthermal Dark Matter and Low-Mass
Direct Detection”, JHEP 10, 136 (2018).

95M. E. Machacek, “Growth of adiabatic perturbations in selfinteracting dark matter”, Astrophys. J. 431,
41-51 (1994).

96A. A. de Laix, R. J. Scherrer, and R. K. Schaefer, “Constraints of selfinteracting dark matter”, Astrophys.
J. 452, 495 (1995).

97A. Das, B. Dasgupta, and R. Khatri, “Ballistic Dark Matter oscillates above ACDM”, JCAP 04, 018
(2019).

98M. Kawasaki, K. Kohri, and N. Sugiyama, “Cosmological constraints on late time entropy production”,
Phys. Rev. Lett. 82, 4168 (1999).

99M. Kawasaki, K. Kohri, and N. Sugiyama, “MeV scale reheating temperature and thermalization of
neutrino background”, Phys. Rev. D62, 023506 (2000).

1005, Hannestad, “What is the lowest possible reheating temperature?”, Phys. Rev. D70, 043506 (2004).

101K Ichikawa, M. Kawasaki, and F. Takahashi, “The Oscillation effects on thermalization of the neutrinos

in the Universe with low reheating temperature”, Phys. Rev. D72, 043522 (2005).

143


https://doi.org/10.1088/1475-7516/2018/11/048
https://doi.org/10.1088/1475-7516/2020/12/016
https://doi.org/10.1103/PhysRevD.89.115017
https://doi.org/10.1103/PhysRevD.90.095016
https://doi.org/10.1088/1475-7516/2016/03/018
https://doi.org/10.1103/PhysRevD.93.115025
https://doi.org/10.1103/PhysRevD.95.015032
https://doi.org/10.1007/JHEP12(2016)039
https://doi.org/10.1007/JHEP12(2016)039
https://doi.org/10.1103/PhysRevD.98.083517
https://doi.org/10.1103/PhysRevD.98.083517
https://doi.org/10.1103/PhysRevD.94.083516
https://doi.org/10.1103/PhysRevD.94.083516
https://doi.org/10.1007/JHEP12(2016)033
https://doi.org/10.1007/JHEP10(2018)136
https://doi.org/10.1086/174465
https://doi.org/10.1086/174465
https://doi.org/10.1086/176322
https://doi.org/10.1086/176322
https://doi.org/10.1088/1475-7516/2019/04/018
https://doi.org/10.1088/1475-7516/2019/04/018
https://doi.org/10.1103/PhysRevLett.82.4168
https://doi.org/10.1103/PhysRevD.62.023506
https://doi.org/10.1103/PhysRevD.70.043506
https://doi.org/10.1103/PhysRevD.72.043522

102p_de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor, and O. Pisanti, “Bounds on very low reheating
scenarios after Planck”, Phys. Rev. D 92, 123534 (2015).

1037, Hasegawa, N. Hiroshima, K. Kohri, R. S. Hansen, T. Tram, and S. Hannestad, “MeV-scale reheating
temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive
particles”, JCAP 12, 012 (2019).

1040 _P. Ma and E. Bertschinger, “Cosmological perturbation theory in the synchronous and conformal
Newtonian gauges”, Astrophys. J. 455, 7-25 (1995).

105V, Hu and N. Sugiyama, “Small scale cosmological perturbations: An Analytic approach”, Astrophys. J.
471, 542-570 (1996).

106p_Meszaros, “The behaviour of point masses in an expanding cosmological substratum.”, Astronomy and
Astrophysics 37, 225-228 (1974).

107E, Bertschinger, “The Effects of Cold Dark Matter Decoupling and Pair Annihilation on Cosmological
Perturbations”, Phys. Rev. D 74, 063509 (2006).

108p. J. E. Peebles, The large-scale structure of the universe (1980).

109C, Dvorkin, K. Blum, and M. Kamionkowski, “Constraining Dark Matter-Baryon Scattering with Linear
Cosmology”, Phys. Rev. D 89, 023519 (2014).

107, Silk, “Cosmic Black-Body Radiation and Galaxy Formation”, Astrophys. J. 151, 459 (1968).
HIW, Hu and M. J. White, “The Damping tail of CMB anisotropies”, Astrophys. J. 479, 568 (1997).

12, F. Piattella, D. C. Rodrigues, J. C. Fabris, and J. A. de Freitas Pacheco, “Evolution of the phase-space
density and the Jeans scale for dark matter derived from the Vlasov-Einstein equation”, JCAP 11, 002
(2013).

13D, Egana-Ugrinovic, R. Essig, D. Gift, and M. LoVerde, “The Cosmological Evolution of Self-interacting
Dark Matter”, JCAP 05, 013 (2021).

14D, Tseliakhovich and C. Hirata, “Relative velocity of dark matter and baryonic fluids and the formation
of the first structures”, Phys. Rev. D 82, 083520 (2010).

115, Diemand, B. Moore, and J. Stadel, “Earth-mass dark-matter haloes as the first structures in the early
Universe”, Nature 433, 389-391 (2005).

16T Tshiyama, J. Makino, and T. Ebisuzaki, “Gamma-ray Signal from Earth-mass Dark Matter Microhalos”,
Astrophys. J. Lett. 723, L195 (2010).

7], F. Navarro, C. S. Frenk, and S. D. M. White, “A Universal Density Profile from Hierarchical Clustering”,
Astrophys. J. 490, 493-508 (1997).

183 8. Bullock, T. S. Kolatt, Y. Sigad, R. S. Somerville, A. V. Kravtsov, A. A. Klypin, J. R. Primack, and
A. Dekel, “Profiles of dark haloes. Evolution, scatter, and environment”, Mon. Not. Roy. Astron. Soc. 321,
559-575 (2001).

H9R. H. Wechsler, J. S. Bullock, J. R. Primack, A. V. Kravtsov, and A. Dekel, “Concentrations of dark halos
from their assembly histories”, Astrophys. J. 568, 52-70 (2002).

120M. S. Delos, M. Bruff, and A. L. Erickcek, “Predicting the density profiles of the first halos”, Phys. Rev.
D 100, 023523 (2019).

144


https://doi.org/10.1103/PhysRevD.92.123534
https://doi.org/10.1088/1475-7516/2019/12/012
https://doi.org/10.1086/176550
https://doi.org/10.1086/177989
https://doi.org/10.1086/177989
https://doi.org/10.1103/PhysRevD.74.063509
https://doi.org/10.1103/PhysRevD.89.023519
https://doi.org/10.1086/149449
https://doi.org/10.1086/303928
https://doi.org/10.1088/1475-7516/2013/11/002
https://doi.org/10.1088/1475-7516/2013/11/002
https://doi.org/10.1088/1475-7516/2021/05/013
https://doi.org/10.1103/PhysRevD.82.083520
https://doi.org/10.1038/nature03270
https://doi.org/10.1088/2041-8205/723/2/L195
https://doi.org/10.1086/304888
https://doi.org/10.1046/j.1365-8711.2001.04068.x
https://doi.org/10.1046/j.1365-8711.2001.04068.x
https://doi.org/10.1086/338765
https://doi.org/10.1103/PhysRevD.100.023523
https://doi.org/10.1103/PhysRevD.100.023523

121y, Berezinsky, V. Dokuchaev, Y. Eroshenko, M. Kachelrie, and M. A. Solberg, “Superdense cosmological
dark matter clumps”, Phys. Rev. D 81, 103529, 103529 (2010).

122\, S. Delos, “Tidal evolution of dark matter annihilation rates in subhalos”, Phys. Rev. D 100, 063505
(2019).

123M. S. Delos, “Evolution of dark matter microhalos through stellar encounters”, Phys. Rev. D 100, 083529
(2019).

124p 14, A. L. Erickcek, and N. M. Law, “A new probe of the small-scale primordial power spectrum:

astrometric microlensing by ultracompact minihalos”, Phys. Rev. D 86, 043519 (2012).

125 A L. Erickcek and N. M. Law, “Astrometric Microlensing by Local Dark Matter Subhalos”, Astrophys. J.
729, 49 (2011).

126K Van Tilburg, A.-M. Taki, and N. Weiner, “Halometry from Astrometry”, JCAP 07, 041 (2018).

127M. S. Delos and T. Linden, “Dark Matter Microhalos in the Solar Neighborhood: Pulsar Timing Signatures
of Early Matter Domination”, (2021).

128y, S. H. Lee, S. R. Taylor, T. Trickle, and K. M. Zurek, “Bayesian Forecasts for Dark Matter Substructure
Searches with Mock Pulsar Timing Data”, JCAP 08, 025 (2021).

129C. Blanco and D. Hooper, “Constraints on Decaying Dark Matter from the Isotropic Gamma-Ray
Background”, JCAP 03, 019 (2019).

130M. Ackermann et al. (Fermi-LAT), “The spectrum of isotropic diffuse gamma-ray emission between 100
MeV and 820 GeV”, Astrophys. J. 799, 86 (2015).

131G. Barenboim, N. Blinov, and A. Stebbins, “Smallest remnants of early matter domination”, JCAP 12,
026 (2021).

132K. Abazajian et al., “CMB-S4 Science Case, Reference Design, and Project Plan”, (2019).

133D, Green et al., “Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics”, Bull.
Am. Astron. Soc. 51, 159 (2019).

134G, Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and P. D. Serpico, “Relic neutrino decoupling
including flavour oscillations”, Nuclear Physics B 729, 2214€“234 (2005).

135F. Grohs, G. Fuller, C. Kishimoto, M. Paris, and A. Vlasenko, “Neutrino energy transport in weak
decoupling and big bang nucleosynthesis”, Physical Review D 93, 10.1103/physrevd.93.083522 (2016).

136p F. de Salas and S. Pastor, “Relic neutrino decoupling with flavour oscillations revisited”, JCAP 1607,
051 (2016).

I37K. A. Olive, D. N. Schramm, and G. Steigman, “Limits on New Superweakly Interacting Particles from
Primordial Nucleosynthesis”, Nucl. Phys. B 180, 497-515 (1981).

138C. Brust, D. E. Kaplan, and M. T. Walters, “New Light Species and the CMB”, JHEP 12, 058 (2013).
1398, Weinberg, “Goldstone Bosons as Fractional Cosmic Neutrinos”, Phys. Rev. Lett. 110, 241301 (2013).

1405 Knapen, T. Lin, and K. M. Zurek, “Light Dark Matter: Models and Constraints”, Phys. Rev. D 96,
115021 (2017).

141, An, M. Pospelov, and J. Pradler, “New stellar constraints on dark photons”, Phys. Lett. B 725, 190-195
(2013).

145


https://doi.org/10.1103/PhysRevD.81.103529
https://doi.org/10.1103/PhysRevD.100.063505
https://doi.org/10.1103/PhysRevD.100.063505
https://doi.org/10.1103/PhysRevD.100.083529
https://doi.org/10.1103/PhysRevD.100.083529
https://doi.org/10.1103/PhysRevD.86.043519
https://doi.org/10.1088/0004-637X/729/1/49
https://doi.org/10.1088/0004-637X/729/1/49
https://doi.org/10.1088/1475-7516/2018/07/041
https://doi.org/10.1088/1475-7516/2021/08/025
https://doi.org/10.1088/1475-7516/2019/03/019
https://doi.org/10.1088/0004-637X/799/1/86
https://doi.org/10.1088/1475-7516/2021/12/026
https://doi.org/10.1088/1475-7516/2021/12/026
https://doi.org/10.1016/j.nuclphysb.2005.09.041
https://doi.org/10.1103/physrevd.93.083522
https://doi.org/10.1103/physrevd.93.083522
https://doi.org/10.1088/1475-7516/2016/07/051
https://doi.org/10.1088/1475-7516/2016/07/051
https://doi.org/10.1016/0550-3213(81)90065-1
https://doi.org/10.1007/JHEP12(2013)058
https://doi.org/10.1103/PhysRevLett.110.241301
https://doi.org/10.1103/PhysRevD.96.115021
https://doi.org/10.1103/PhysRevD.96.115021
https://doi.org/10.1016/j.physletb.2013.07.008
https://doi.org/10.1016/j.physletb.2013.07.008

2R, D’Eramo, F. Hajkarim, and S. Yun, “Thermal QCD Axions across Thresholds”, JHEP 10, 224 (2021).

43R Z. Ferreira and A. Notari, “Observable Windows for the QCD Axion Through the Number of Relativistic
Species”, Phys. Rev. Lett. 120, 191301 (2018).

M4 D’Eramo, R. Z. Ferreira, A. Notari, and J. L. Bernal, “Hot Axions and the Hj tension”, JCAP 11, 014
(2018).

145F  Arias-Aragén, F. D’Eramo, R. Z. Ferreira, L. Merlo, and A. Notari, “Production of Thermal Axions
across the ElectroWeak Phase Transition”, JCAP 03, 090 (2021).

146D, Green, Y. Guo, and B. Wallisch, “Cosmological implications of axion-matter couplings”, JCAP 02, 019
(2022).

147X Luo, W. Rodejohann, and X.-J. Xu, “Dirac neutrinos and Neyy. Part II. The freeze-in case”, JCAP 03,
082 (2021).

148 A Biswas, D. Borah, N. Das, and D. Nanda, “Freeze-in Dark Matter and AN.g via Light Dirac Neutrino
Portal”, (2022).

149F, Bernreuther, F. Kahlhoefer, M. Lucente, and A. Morandini, “Searching for dark radiation at the LHC”,
(2022).

150B. Holdom, “T'wo U(1)’s and Epsilon Charge Shifts”, Phys. Lett. B 166, 196-198 (1986).
I51E. D. Carlson, “LIMITS ON A NEW U(1) COUPLING”, Nucl. Phys. B 286, 378-398 (1987).

152D, Feldman, P. Fileviez Perez, and P. Nath, “R-parity Conservation via the Stueckelberg Mechanism: LHC
and Dark Matter Signals”, JHEP 01, 038 (2012).

153H. Vogel and J. Redondo, “Dark Radiation constraints on minicharged particles in models with a hidden
photon”, JCAP 02, 029 (2014).

154R. Foot and S. Vagnozzi, “Dissipative hidden sector dark matter”, Phys. Rev. D 91, 023512 (2015).

155H. Liu, N. J. Outmezguine, D. Redigolo, and T. Volansky, “Reviving Millicharged Dark Matter for 21-cm
Cosmology”, Phys. Rev. D 100, 123011 (2019).

156K, N. Abazajian and J. Heeck, “Observing Dirac neutrinos in the cosmic microwave background”, Phys.
Rev. D 100, 075027 (2019).

157J. B. Mufioz and A. Loeb, “A small amount of mini-charged dark matter could cool the baryons in the
early Universe”, Nature 557, 684 (2018).

158], D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, “An absorption profile
centred at 78 megahertz in the sky-averaged spectrum”, Nature 555, 67-70 (2018).

159R, Barkana, N. J. Outmezguine, D. Redigolo, and T. Volansky, “Strong constraints on light dark matter
interpretation of the EDGES signal”, Phys. Rev. D 98, 103005 (2018).

160 A Mathur, S. Rajendran, and H. Ramani, “A composite solution to the EDGES anomaly”, (2021).

161 A Berlin, D. Hooper, G. Krnjaic, and S. D. McDermott, “Severely Constraining Dark Matter Interpretations
of the 21-cm Anomaly”, Phys. Rev. Lett. 121, 011102 (2018).

162F, D. Kovetz, V. Poulin, V. Gluscevic, K. K. Boddy, R. Barkana, and M. Kamionkowski, “Tighter limits
on dark matter explanations of the anomalous EDGES 21 cm signal”, Phys. Rev. D 98, 103529 (2018).

146


https://doi.org/10.1007/JHEP10(2021)224
https://doi.org/10.1103/PhysRevLett.120.191301
https://doi.org/10.1088/1475-7516/2018/11/014
https://doi.org/10.1088/1475-7516/2018/11/014
https://doi.org/10.1088/1475-7516/2021/03/090
https://doi.org/10.1088/1475-7516/2022/02/019
https://doi.org/10.1088/1475-7516/2022/02/019
https://doi.org/10.1088/1475-7516/2021/03/082
https://doi.org/10.1088/1475-7516/2021/03/082
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1016/0550-3213(87)90446-9
https://doi.org/10.1007/JHEP01(2012)038
https://doi.org/10.1088/1475-7516/2014/02/029
https://doi.org/10.1103/PhysRevD.91.023512
https://doi.org/10.1103/PhysRevD.100.123011
https://doi.org/10.1103/PhysRevD.100.075027
https://doi.org/10.1103/PhysRevD.100.075027
https://doi.org/10.1038/s41586-018-0151-x
https://doi.org/10.1038/nature25792
https://doi.org/10.1103/PhysRevD.98.103005
https://doi.org/10.1103/PhysRevLett.121.011102
https://doi.org/10.1103/PhysRevD.98.103529

163T R. Slatyer and C.-L. Wu, “Early-Universe constraints on dark matter-baryon scattering and their
implications for a global 21 cm signal”, Phys. Rev. D 98, 023013 (2018).

164R . de Putter, O. Doré, J. Gleyzes, D. Green, and J. Meyers, “Dark Matter Interactions, Helium, and the
Cosmic Microwave Background”, Phys. Rev. Lett. 122, 041301 (2019).

1650, Creque-Sarbinowski, L. Ji, E. D. Kovetz, and M. Kamionkowski, “Direct millicharged dark matter
cannot explain the EDGES signal”, Phys. Rev. D 100, 023528 (2019).

1661, Husdal, “On Effective Degrees of Freedom in the Early Universe”, Galaxies 4, 78 (2016).
167A. A. Prinz et al., “Search for millicharged particles at SLAC”, Phys. Rev. Lett. 81, 1175-1178 (1998).

168G, Magill, R. Plestid, M. Pospelov, and Y.-D. Tsai, “Millicharged particles in neutrino experiments”, Phys.
Rev. Lett. 122, 071801 (2019).

1695, Davidson, S. Hannestad, and G. Raffelt, “Updated bounds on millicharged particles”, JHEP 05, 003
(2000).

1703, Jaeckel, M. Jankowiak, and M. Spannowsky, “LHC probes the hidden sector”, Phys. Dark Univ. 2,
111117 (2013).

171J. H. Chang, R. Essig, and S. D. McDermott, “Supernova 1987A Constraints on Sub-GeV Dark Sectors,
Millicharged Particles, the QCD Axion, and an Axion-like Particle”, JHEP 09, 051 (2018).

I72M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, “The Dark Photon”, 10.1007/978-3-030-62519-1
(2020).

1731,. Chuzhoy and E. W. Kolb, “Reopening the window on charged dark matter”, JCAP 07, 014 (2009).

174 A Stebbins and G. Krnjaic, “New Limits on Charged Dark Matter from Large-Scale Coherent Magnetic
Fields”, JCAP 12, 003 (2019).

175P, Gondolo and G. Gelmini, “Cosmic abundances of stable particles: Improved analysis”, Nucl. Phys. B
360, 145-179 (1991).

176N, Fernandez, Y. Kahn, and J. Shelton, “Freeze-in, glaciation, and UV sensitivity from light mediators”,
(2021).

177D, Baumann, D. Green, J. Meyers, and B. Wallisch, “Phases of New Physics in the CMB”, JCAP 01, 007
(2016).

78T, A. Wagner, S. Schlamminger, J. H. Gundlach, and E. G. Adelberger, “Torsion-balance tests of the weak
equivalence principle”, Class. Quant. Grav. 29, 184002 (2012).

179J. Redondo and G. Raffelt, “Solar constraints on hidden photons re-visited”, JCAP 08, 034 (2013).

180D, Croon, G. Elor, R. K. Leane, and S. D. McDermott, “Supernova Muons: New Constraints on Z’ Bosons,
Axions and ALPs”, JHEP 01, 107 (2021).

181, P. Lees et al. (BaBar), “Search for a Dark Photon in eTe~ Collisions at BaBar”, Phys. Rev. Lett. 113,
201801 (2014).

I82R. Aaij et al. (LHCD), “Search for Dark Photons Produced in 13 TeV pp Collisions”, Phys. Rev. Lett.
120, 061801 (2018).

183M. Aaboud et al. (ATLAS), “Search for new high-mass phenomena in the dilepton final state using 36
fb~1 of proton-proton collision data at /s = 13 TeV with the ATLAS detector”, JHEP 10, 182 (2017).

147


https://doi.org/10.1103/PhysRevD.98.023013
https://doi.org/10.1103/PhysRevLett.122.041301
https://doi.org/10.1103/PhysRevD.100.023528
https://doi.org/10.3390/galaxies4040078
https://doi.org/10.1103/PhysRevLett.81.1175
https://doi.org/10.1103/PhysRevLett.122.071801
https://doi.org/10.1103/PhysRevLett.122.071801
https://doi.org/10.1088/1126-6708/2000/05/003
https://doi.org/10.1088/1126-6708/2000/05/003
https://doi.org/10.1016/j.dark.2013.06.001
https://doi.org/10.1016/j.dark.2013.06.001
https://doi.org/10.1007/JHEP09(2018)051
https://doi.org/10.1007/978-3-030-62519-1
https://doi.org/10.1007/978-3-030-62519-1
https://doi.org/10.1007/978-3-030-62519-1
https://doi.org/10.1088/1475-7516/2009/07/014
https://doi.org/10.1088/1475-7516/2019/12/003
https://doi.org/10.1016/0550-3213(91)90438-4
https://doi.org/10.1016/0550-3213(91)90438-4
https://doi.org/10.1088/1475-7516/2016/01/007
https://doi.org/10.1088/1475-7516/2016/01/007
https://doi.org/10.1088/0264-9381/29/18/184002
https://doi.org/10.1088/1475-7516/2013/08/034
https://doi.org/10.1007/JHEP01(2021)107
https://doi.org/10.1103/PhysRevLett.113.201801
https://doi.org/10.1103/PhysRevLett.113.201801
https://doi.org/10.1103/PhysRevLett.120.061801
https://doi.org/10.1103/PhysRevLett.120.061801
https://doi.org/10.1007/JHEP10(2017)182

184M. Escudero, S. J. Witte, and N. Rius, “The dispirited case of gauged U(1)5_ 1, dark matter”, JHEP 08,
190 (2018).

185M. Bauer, P. Foldenauer, and J. Jaeckel, “Hunting All the Hidden Photons”, JHEP 07, 094 (2018).

186]. D. Bjorken, R. Essig, P. Schuster, and N. Toro, “New Fixed-Target Experiments to Search for Dark
Gauge Forces”, Phys. Rev. D 80, 075018 (2009).

187G, Andreas, C. Niebuhr, and A. Ringwald, “New Limits on Hidden Photons from Past Electron Beam
Dumps”, Phys. Rev. D 86, 095019 (2012).

188 ], Bliimlein and J. Brunner, “New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung
in Beam-Dump Data”, Phys. Lett. B 731, 320-326 (2014).

189]. Heeck, “Unbroken B — L symmetry”, Phys. Lett. B 739, 256-262 (2014).
190A . Pilaftsis and T. E. J. Underwood, “Resonant leptogenesis”, Nucl. Phys. B 692, 303-345 (2004).

191G, F. Giudice, A. Notari, M. Raidal, A. Riotto, and A. Strumia, “Towards a complete theory of thermal
leptogenesis in the SM and MSSM”, Nucl. Phys. B 685, 89-149 (2004).

1923, S. Shin and S. Yun, “Dark gauge boson production from neutron stars via nucleon-nucleon bremsstrahlung”,
JHEP 02, 133 (2022).

193p, Fileviez Pérez, C. Murgui, and A. D. Plascencia, “Neutrino-Dark Matter Connections in Gauge Theories”,
Phys. Rev. D 100, 035041 (2019).

194D, K. Hong, C. S. Shin, and S. Yun, “Cooling of young neutron stars and dark gauge bosons”, Phys. Rev.
D 103, 123031 (2021).

195N, DePorzio, W. L. Xu, J. B. Mufioz, and C. Dvorkin, “Finding eV-scale light relics with cosmological
observables”, Phys. Rev. D 103, 023504 (2021).

1967 Chacko, N. Craig, P. J. Fox, and R. Harnik, “Cosmology in Mirror Twin Higgs and Neutrino Masses”,
JHEP 07, 023 (2017).

197N. Craig, S. Koren, and T. Trott, “Cosmological Signals of a Mirror Twin Higgs”, JHEP 05, 038 (2017).

198 A Berlin, N. Blinov, and S. W. Li, “Dark Sector Equilibration During Nucleosynthesis”, Phys. Rev. D
100, 015038 (2019).

1993 M. Berryman et al., “Neutrino Self-Interactions: A White Paper”, in 2022 Snowmass Summer Study
(Mar. 2022).

200K. N. Abazajian et al. (CMB-S4), “CMB-S4 Science Book, First Edition”, (2016).

2013, Errard, S. M. Feeney, H. V. Peiris, and A. H. Jaffe, “Robust forecasts on fundamental physics from the
foreground-obscured, gravitationally-lensed CMB polarization”, JCAP 1603, 052 (2016).

2028, Weinberg, “Must cosmological perturbations remain non-adiabatic after multi-field inflation?”, Phys.
Rev. D70, 083522 (2004).

203D, H. Lyth, C. Ungarelli, and D. Wands, “The Primordial density perturbation in the curvaton scenario”,
Phys. Rev. D67, 023503 (2003).

204M. Kawasaki, K. Miyamoto, K. Nakayama, and T. Sekiguchi, “Isocurvature perturbations in extra
radiation”, JCAP 1202, 022 (2012).

148


https://doi.org/10.1007/JHEP08(2018)190
https://doi.org/10.1007/JHEP08(2018)190
https://doi.org/10.1007/JHEP07(2018)094
https://doi.org/10.1103/PhysRevD.80.075018
https://doi.org/10.1103/PhysRevD.86.095019
https://doi.org/10.1016/j.physletb.2014.02.029
https://doi.org/10.1016/j.physletb.2014.10.067
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1016/j.nuclphysb.2004.02.019
https://doi.org/10.1007/JHEP02(2022)133
https://doi.org/10.1103/PhysRevD.100.035041
https://doi.org/10.1103/PhysRevD.103.123031
https://doi.org/10.1103/PhysRevD.103.123031
https://doi.org/10.1103/PhysRevD.103.023504
https://doi.org/10.1007/JHEP07(2017)023
https://doi.org/10.1007/JHEP05(2017)038
https://doi.org/10.1103/PhysRevD.100.015038
https://doi.org/10.1103/PhysRevD.100.015038
https://doi.org/10.1088/1475-7516/2016/03/052
https://doi.org/10.1103/PhysRevD.70.083522
https://doi.org/10.1103/PhysRevD.70.083522
https://doi.org/10.1103/PhysRevD.67.023503
https://doi.org/10.1088/1475-7516/2012/02/022

205E, Kawakami, M. Kawasaki, K. Miyamoto, K. Nakayama, and T. Sekiguchi, “Non-Gaussian isocurvature
perturbations in dark radiation”, JCAP 1207, 037 (2012).

206y Akrami et al. (Planck), “Planck 2018 results. I. Overview and the cosmological legacy of Planck”,
(2018).

207G. P. Holder, K. M. Nollett, and A. van Engelen, “On Possible Variation in the Cosmological Baryon
Fraction”, 716, 907 913 (2010).

208K . Inomata, M. Kawasaki, A. Kusenko, and L. Yang, “Big Bang Nucleosynthesis Constraint on Baryonic
Isocurvature Perturbations”, JCAP 1812, 003 (2018).

209, J. Copi, K. A. Olive, and D. N. Schramm, “Implications of a primordial origin for the dispersion in d/h
in quasar absorption systems”, Submitted to: Astrophys. J. (1996).

210R. V. Wagoner, “Big-Bang Nucleosynthesis Revisited”, ApJ 179, 343-360 (1973).

2117, D. Barrow and R. J. Scherrer, “Constraining density fluctuations with big bang nucleosynthesis in the
era of precision cosmology”, Physical Review D 98, 10.1103/physrevd.98.043534 (2018).

212R. J. Cooke, M. Pettini, and C. C. Steidel, “One Percent Determination of the Primordial Deuterium
Abundance”, Astrophys. J. 855, 102 (2018).

213K, Aver, K. A. Olive, and E. D. Skillman, “The effects of He I A10830 on helium abundance determinations”,
JCAP 1507, 011 (2015).

214R. Consiglio, P. F. de Salas, G. Mangano, G. Miele, S. Pastor, and O. Pisanti, “PArthENoPE reloaded”,
Comput. Phys. Commun. 233, 237-242 (2018).

215D, Medvigy and A. Loeb, Element diffusion during cosmological structure formation, 2001.

216M. Pospelov and N. Afshordi, Lithium diffusion in the post-recombination universe and spatial variation
of [li/h], 2012.

27T, F. Adams, “The detectability of deuterium Lyman alpha in QSOs.”, A& A 50, 461-462 (1976).

2I8A . M. Wolfe, E. Gawiser, and J. X. Prochaska, “Damped lya systems”, Annual Review of Astronomy and
Astrophysics 43, 861-918 (2005).

29R. Cooke, M. Pettini, R. A. Jorgenson, M. T. Murphy, and C. C. Steidel, “Precision measures of the
primordial abundance of deuterium”, Astrophys. J. 781, 31 (2014).

220R. Mackenzie, M. Fumagalli, T. Theuns, D. J. Hatton, T. Garel, S. Cantalupo, L. Christensen, J. P. U.
Fynbo, N. Kanekar, P. Mgller, J. O’Meara, J. X. Prochaska, M. Rafelski, T. Shanks, and J. Trayford,
“Linking gas and galaxies at high redshift: MUSE surveys the environments of six damped Ly« systems at
z = 37, MNRAS, 1435 (2019).

221 A, Font-Ribera, J. Miralda-Escudé, E. Arnau, B. Carithers, K.-G. Lee, P. Noterdaeme, I. Paris, P. Petitjean,
J. Rich, E. Rollinde, N. P. Ross, D. P. Schneider, M. White, and D. G. York, “The large-scale cross-
correlation of Damped Lyman alpha systems with the Lyman alpha forest: first measurements from BOSS”
JCAP 2012, 059, 059 (2012).

222)\[. Peimbert and S. Torres-Peimbert, “Chemical composition of H II regions in the Large Magellanic
Cloud and its cosmological implications.”, Apj 193, 327-333 (1974).

223p, Li, F. Lelli, S. McGaugh, M. S. Pawlowski, M. A. Zwaan, and J. Schombert, “The halo mass function
of late-type galaxies from HI kinematics”, Astrophys. J. 886, L11 (2019).

149


https://doi.org/10.1088/1475-7516/2012/07/037
https://doi.org/10.1088/0004-637X/716/2/907
https://doi.org/10.1088/1475-7516/2018/12/003
https://doi.org/10.1086/151873
https://doi.org/10.1103/physrevd.98.043534
https://doi.org/10.1103/physrevd.98.043534
https://doi.org/10.3847/1538-4357/aaab53
https://doi.org/10.1088/1475-7516/2015/07/011
https://doi.org/10.1016/j.cpc.2018.06.022
https://doi.org/10.1146/annurev.astro.42.053102.133950
https://doi.org/10.1146/annurev.astro.42.053102.133950
https://doi.org/10.1088/0004-637X/781/1/31
https://doi.org/10.1093/mnras/stz1501
https://doi.org/10.1088/1475-7516/2012/11/059
https://doi.org/10.1086/153166

224M. Beltran, J. Garcia-Bellido, J. Lesgourgues, and M. Viel, “Squeezing the window on isocurvature modes
with the lyman-alpha forest”, Phys. Rev. D72, 103515 (2005).

225(C, Sykes, M. Fumagalli, R. Cooke, and T. Theuns, “Determining the primordial helium abundance and

UV background using fluorescent emission in star-free dark matter haloes”, (2019).

226 ], Birrell, C.-T. Yang, and J. Rafelski, “Relic Neutrino Freeze-out: Dependence on Natural Constants”,
Nucl. Phys. B890, 481-517 (2014).

227G. G. Raffelt, Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and

other weakly interacting particles (May 1996).

228(. Dvorkin, T. Lin, and K. Schutz, “Making dark matter out of light: freeze-in from plasma effects”, Phys.
Rev. D 99, 115009 (2019).

2298, Weinberg, “Adiabatic modes in cosmology”, Phys. Rev. D67, 123504 (2003).

230D, H. Lyth and D. Wands, “The CDM isocurvature perturbation in the curvaton scenario”, Phys. Rev.
D68, 103516 (2003).

150


https://doi.org/10.1103/PhysRevD.72.103515
https://doi.org/10.1016/j.nuclphysb.2014.11.020
https://doi.org/10.1103/PhysRevD.99.115009
https://doi.org/10.1103/PhysRevD.99.115009
https://doi.org/10.1103/PhysRevD.67.123504
https://doi.org/10.1103/PhysRevD.68.103516
https://doi.org/10.1103/PhysRevD.68.103516

Appendix A

Energy transfer collision term with

quantum statistics

In this section we calculate the collision term describing energy transfer between two baths at different
temperatures via annihilation, decays, and scattering. Instead of approximating the thermal distribution
of all involved particles as Maxwell-Boltzmann distribution, which is the norm, we take into account the
quantum statistical thermal distributions (Bose-Einstein or Fermi-Dirac) in our calculations.

We then calculate these collision terms for the specific models used in the main body. In particular,
in appendix A.4 we calculate the collision term for energy transfer mediated by inflaton, in appendix A.5
we calculate the collision terms for various energy transfer processes from Standard Model plasma into
millicharged particle, and finally in appendix A.6 we calculate the collision term for energy transfer from

Standard Model plasma into right handed neutrinos via massive B — L gauge boson.

A.1 Annihilation

In this section we simplify the forward energy transfer collision term for particle a annihilating into particle b,

1(a) + 2(a) — 3(b) + 4(b). (A1)

We start the forward collision term given by

- d*pi 2 2 0 4¢4 2/.0 0
C =/ [H (%)35(1% —mg)O(p;) | (2m)70%(p1 + p2 — p3 — pa) S|M¢[*(p] + p2)
X [fa(p1) fa(p2)(1 £ fo(p3)) (1 £ fo(pa))], (A.2)

where © is the Heaviside function. Above |M|? is the spin-summed matrix element and S is the symmetry

factor.

In the limit density of b is more dilute compared to density of a, the final state effects (Bose-enhancement/Pauli-

blocking) can be neglected regardless of the exact distribution of b, f,. For instance, if b has large enough
self-interactions to thermalize then f;, will be peaked at momentas p ~ T, < T,, where T is the temperature.

As the b particles produced by annihilation of a will typically be at momenta p ~ T,, the values of f; probed
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by the collision integral will be much smaller than one even if f, ~ O(1) at its peak. In the case particle b
does not thermalize, f will be peaked at p ~ T, but its value will be much less than one because density of b
is more dilute compared to density of a.

By neglecting the final state effects, the phase space integration can be significantly simplified because
one can directly integrate the matrix element over the phase space of outgoing particles, particles 3 and 4, as
we show in section. If on the other hand we want to incorporate the contribution from final state effect, then
we need to consider that the matrix element is only a function of energy in center of mass frame to simplify

the integral, as we show in section.

A.1.1 Negligible final state effects

By neglecting the final state effect, the phase-space integration over ps and p; can simply be absorbed into

the definition of Lorentz invariant cross-section, o (see [175]),

d3ps d3py

= 454 e 2
1o = [ e et ) 5+ 2= s p)SIM P (A3)

where F' = \/(p1 - p2)2 — m?m3. If the mass of particles 1 and 2 are the same, which is typically true for the
processes we consider in this chapter, one can show that [(2E1)(2FE2)|vs — ¥4]] calculated in the CM frame is
equal to F. Thus for my = mg, o is identical to the spin-summed center-of-mass (CM) frame cross-section.

With the above mentioned simplifications, the collision term becomes

2

4.
i~ [ |1 it - ot

i=1

4F (P + p3)0aa—sbb,onr fa(p1) fa(p2)- (A.4)

The integral can be further simplified if we make the following change of variables

p=p1+p2, q=0p1—Dp2 (A.5)

Note that in this basis the Mandelstam parameter s is simply s = p?. Performing the above change of

variables in the collision term integral yields

= [ iat [d4q 5((p + @)2/4 — m2)0((p — 0)2/4 — m2)O(0 — |¢°))

21 207 |2t
X 4FP00aa—>bb,CMfa((pU +¢%)/2) fo((0° = ¢°)/2) (A.6)
4
E/ 214(37_£2qu X 4Fpoaaa—>bb,CMfa((p0 + qo)/2)fa((p0 _ (]0)/2)7 (A?)

where the phase space element dI,; is given by the square brackets in the first line.

Next we simplify dI,. The delta functions in d, together impose the following constraints:

0,,0

qa’p - 12 2 (qO)z) 2
= — = 1-— —4my, AR
q3 ‘]51 |Q12| D < ‘mQ ( )

where q3 is the component of ¢ along p, while ¢12 is the component of ¢ perpendicular to p. Consequently, we
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can perform the integral over g3 and |g12| in dI, to integrate over the delta functions, yielding

dl, = [5((p+q)2/4—m3)5((q p)?/4—mz)O° — |g°)dq’ |qra|d|qra| | db1o (gq; (A.9)

H o’ - 1¢"))e ( {1— (IT);} —4m 2)d012(d ;4 (A.10)

where 615 is the Azimuthal angle made by ¢j2 in the plane perpendicular to p. The second © function in the

last line imposes the requirement that |g12| > 0. The two © function together rule out the possibility of p? to

be less than 4m?2, which is expected. Thus the arguments of the © functions can be rewritten as

2 dq
I, = —0O(p? — 4m? . — g dBs—— A1l
Aly = O — 4m)O(pI0 — Dbz oy 5. (A-11)
where
2
B, = 1_4&. (A.12)
S

Substituting the simplified dI; back in the collision term, we obtain

277 d'p 2 2 0 #l8e 0., 0 0_ 0

Ce = O(p* — 4m2) x 4Fp°0aasph.om dg” fa((p” +47)/2) fa((p” — ") /2).  (A.13)
2% (2m)S |pl ~ 1718

To integrate over the phase-space distribution, we consider the particles a to be in thermal equilibrium such

that

1

P o (A.14)

fa(p) =
where Ty, is the temperature of particles a and (, =1 (-1) if a is a fermion (boson).

For a thermal phase-space distribution, the integral over ¢° can be analytically performed to yield

Ba

o d4 9 4Ta eXp P ‘Hﬁl + C

Cr = / L ( 4mi) X 4Fp00aa~>bb,CM X 0 /T, 5 1 \:\ﬁa
( ) |ﬂ € - C(L exp ﬁ + Ca exp 2T,

(A.15)

Rewriting the integration variable p* = (p°,p) in terms of Mandelstam s and y = [p]/y/s, and using

F = \/s(s —4m2)/2, we obtain

T o0
Cr = a4 / dssv/s(s —4m2)oaa—bb.cM
327 4max(m2,m2)

Vy2+1+Bay
1 eXp ( 2Ta/\/g ) + Ca

X 2/ dyy ln< ) . (A.16)
Vil Vyitl at
0 [exp (Tay/\-/‘_g> _Cg} exp (2Tj/\/§) + (4 exp (2T€/y\/§)

In the limit the thermal distribution of particle a can be approximated as Maxwell-Boltzmann, i.e. {; — 0,
the integral in the square brackets simplifies to 8, K2(1/s/T,), where K, is the modified Bessel function of
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second kind. Correspondingly, the collision term becomes

T o0
CH(T,) =2 / dss(s — 4m2)Taasn Ko (V/5/Ta), (A.17)
32m 4max(m2,m?)
which agrees with the result in Ref. [175].
In the case where m, < my, the energy injection into b particles is mostly dominated by annihilations of
a particles when a is relativistic. In the relativistic limit, we can approximate 3, = 1 making the integral in

square brackets in eq. (A.16) only a function of \/s/T,. Defining

00 1 ez(m+t)/2 +¢
Ge(z) = 2/0 dtt e e In TRy ont)? | (A.18)
and approximating the term in square brackets in eq. (A.16) as B,G¢, (v/s/T,) we obtain
T, > 9
Ce(T,) =39, dss(s —4m?2)oaa—stpGe, (V'S/Ta)- (A.19)
4max(m2,m2)

The above collision term matches with eq. (A.16) in the limit T, > m,. We use this simplified form of
collision term while calculating the energy injection from particles a into particles b in chapter 5. The error
induced from using the simplified collision term in the calculation of energy injection is maximum when
mg > my. This maximum error is about 2% if particle a is a fermion and 8% if it is a boson. Even this error
is typically inconsequential because energy injection into b is dominated by annihilations of particles lighter
than b.

The function G¢ can be computed analytically in the limit z > 1 and = < 1. In the large x limit, G¢
asymptotes to Ko as expected. In the small x limit, we find that

& ¢=1,
Gelw) =50 2 ¢=0, (A.20)
N e R §

where A is the Glaisher-Kinkelin constant. At high temperatures, T, > m, and m;, most of the integral in
eq. (A.19) is weighted at /s < T,. Thus the collision term computed with , = 1 (Fermi-Dirac statistics) is
suppressed by a factor of ~ 2 compared to the collision term calculated using ¢, = 0 (Maxwell-Boltzmann
statistics). While the collision term for ( = —1 (Bose-Einstein statistics) gets a non-trivial logarithmic
enhancement compared to ( = 0 case.

The total collision term is well approximated by C; as long as particles b remain more dilute than particle
a. However, close to thermalization, the phase-space distribution of particle b can no longer be neglected in
the computation of the total collision term. In scenarios where we are only interested in computing the final

energy density of particle b, we can approximate the total collision term using
C= Cf(Ta> — Cf(Tb), (A.Ql)

where T}, is the temperature of particle b if it is in internal thermal equilibrium. The above collision term
is not accurate close to thermalization because we have ignored the contribution of final state effects while

calculating Cr. However, the exact value of C is not important for the evaluation of energy density of particle
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b once b and a have thermalized. Consequently, the approximation will deviate from the true answer only in
the narrow parameter space where b is slightly away from thermalization with a.
One can include the contribution from final state effects if one makes some simplifying assumptions about

the matrix element, as we do in the next section.

A.1.2 With final state effects
If we want to include the contribution from final state effects, then we find that the computation of the
collision term is simplified if we shift to the following variables

p=p1+p2, P =ps+pa,

q=p1—p2, ¢ =p3—Dpa (A.22)

In terms of these variables, the Mandelstam variables are s = p?, t = (¢ — ¢’)?/4 and u = (¢ + ¢')*/4. In the
CM frame, p = (1/5,0,0,0) and consequently U = %(\/W,0,0, |p]), where |p] is the spatial component
of p in the frame U = (1,0,0,0). Reference [226] shows that the 12-dimensional phase-space integral of
eq. (A.2) can be reduced to

1 4rr’
f_ 2
Cy = 256(27)° /47T|ﬁ| d|ﬂ/d5 . S

x / [ / TP+ f3(U - pa)(1 £ fo(U - pa))d8'dy’ | 71U - 1) folU - po)dbdy,  (A.23)

where 7 is the magnitude of ¢ and y = cos ¢, 6 give the direction of § with respect to p, while 7/, ¢/, and 6’

denote the corresponding quantities for ¢’. The spatial and temporal magnitudes of g and ¢’ are given by

P =V GG ), o = T (A2
. :%\/(S = (ms + ma)?)(s = (ms —ma)?), ¢° = ﬂ@\}ﬁl (A.25)

For scenarios where the scattering amplitude is a function only of s, eq. (A.23) further simplifies to

00 o0 rr’ !
ct —64(2577)5/0 d|ﬁ]|ﬁ12/so dsM(s)2SU (L= f3(U - p3))(1 £ fa(U - pa))dy’

-1

X [/_11 fl(U'pl)f2(U'p2)dy} (A.26)

where sg = max((mj +mz)?, (mz+my4)?). To evaluate these final integrals, we need to specify the distribution

functions. We take particles 1 and 2 to be of species a at a temperature T, and particles 3 and 4 of species b
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at temperature Tj,. Inserting the corresponding equilibrium distribution functions, we obtain

o (V)

f T TbS / / Al ds [FA(s)? T
P + 5 PP+
o (75) = [ (V) -
ex VIPE + 5 + Balp] ox VI + s + Byl
x log ( p\stTa ) ;Tl_] ) log < p\SWZTb ) —; e ) (A.27)
P (T) + Ca exp (%) exp (27Tb> + (pexp (%)

Here ¢, = £1 depending on whether the respective particles are fermions/bosons and

4m?
Bap=1\/1— =. (A.28)

S

Next, we scale out the temperature of the hotter sector, T,, by defining

s_ S L - Mab T
s = ﬁ’ p= |j ma,b = Ta y and Xr = ?a § 1. (A29)

a

This isolates the temperature dependence in the integral, which becomes

S (1)
Ta/o /so/depd M )|2{exp(i\/m)—1} [exp(m)—l}

cl =

1 < exp (Y F5 + Bad)) + Ca )1 < exp (& (VP T3+ ) + G ) o)
x log og . .
exp (%\/152 + S) +Caexp (%Baﬁ) exp ( VP?+ 8) + Gy exp (QIBbp)
The temperature T, enters the integrand only through M(T25) and 7 p.
The total collision term describing net energy transfer is
oo [e’e} 1 ~9 ~ ~9 ~
— AP+ S8) — VDT +
Cr = s'ij’/ / a5 d5 [M(3) 2P VP T 5 —en(VP T 5) (A.31)
0 Jso/T2 {exp( P%+3) —1} {exp P —|—s)—l}
1 ( exp (VP +5+ Bu)) + Ga ) < xp (5 (VI +5+ 8D)) + Gy )
x log
exp (%\/152 + S) + (o exp (%&125) exp (% N 8) + Gpexp (zz Bbp)
= S'aT? / / dp d3 |IM(3)|*D(3, p, z, Map), (A.32)
0 So/T2

where S’ = S/(4(27)5).

Even if we are interested in the regime where all external particles are relativistic, Mg < 1, retaining
finite masses can be important for regulating collision terms with bosons because Bose-Einstein distribution
diverges when p — 0. This divergence for bosons ({ = —1) causes the integrand in the above equation to
2

diverges as §,p — 0 when m = 0. However, if [M(3)|? is finite at § — 0 then the divergence vanishes after
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integration over 3, and the collision term remains finite as 7, — 0.1 Thus, for our calculations we can

freely work in the limit m,; — 0.

A.2 Decays

In this section we simplify the collision term describing energy transfer via particle a decaying into particle b,
a—b+b.

The collision term describing the forward energy transferred from a to b is given by

Cg:_ﬂ;_;'_b = /deH1dH2 (2m)*6% (p — p1 — p2) SIMr 2 fa(p) (1 £ fu(p1)) (1 £ fo(p2))E, (A.33)

where f,, is the distribution function for a, dIly = d®py,/[(27)32E}], | Mr|? is the spin-summed matrix element
corresponding to the decay process, S is the symmetry factor, and variables with subscripts 1 and 2 correspond
to the daughter particles while those with no subscripts correspond to a.

In the following calculation we neglect the final state effects (Bose-enhancement/Pauli-blocking) from
particle b. As discussed in the previous subsection, this approximation is valid as long as density of particle b
is much more dilute than the density of particle a.

By neglecting f;, we can perform the phase space integration of the daughter particles in the rest frame
of particle a by using the definition of the rest frame decay width,

SIMrl? s 1
7|4F‘ B
T

/dl’[ldﬂg (27)45%(p — p1 — p2) SIMr|? = (A.34)

mga 2mg, ’

where m is the mass of particle a, g, are the spin degrees of freedom of a, 8, = \/1 — 4m?/m7 and m, is the
mass of particle b. Doing so simplifies the collision term to
. d3p
Ct{—>b+b - mrga/ (2m)3 fa(p) = mn,T. (A.35)

Next, we simplify the collision term describing energy transferred by inverse decays of particle b into

particle a. We start with,
cg;b% = /<1r1dr[1<1112(27r)454(p1 +pa — p)E [IMr|?Sfy(Er) fo(E2). (A.36)

Again we have neglected the final state effect from particle a by assuming particle a is much more dilute than
particle b.

For simplicity, we perform the calculation in the rest frame of particle a. Considering U = (1,0,0,0) to
denote the original isotropic frame, after changing frames such that, (\/gm,ﬁ) — (m,0) , we obtain

1n the collision term for rate of annihilations, i.e. when the collision term is not weighted with E; + Es, the cancellation of
the divergence depends on summing both forward and backward processes; the forward collision term alone retains a logarithmic
dependence on 7. In general one expects thermal self-energies to regulate this behavior when Ty, ; > mg p; see also [66].
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U= %(\/m2 + p?, —p). Consequently, the above collision term becomes

¢l :/ o /dH1dH2(27T)453(P1 + p2)6(2|p1| — me) |Mr[?S fo(pr - U) fo(p2 - U)|. (A.37)
b+b—a 2(27‘.)3

Note that after shifting the frame, p'no longer stands for momentum of a particle but instead is the label of

boosted frame. Integrating over py and |pi|, yields

i _ B
Cb+b~>a - 8(2b)5

p/dﬂp1|Mr|25fb(p1 ~U) fo(p2 - U). (A.38)

Now note that the spin-summed matrix element of a decay process is isotropic as well as independent of
the momentum of a. Consequently, we can pull | Mr|? outside of the integral. Considering b particles to have

a thermal distribution of form

1

fo®) = Sm v (A.39)

we can perform the angular integral over the distribution functions to yield,

25 t exp(2(VI+ 2+t
cl o =Tom?fy |MF| Tt . _log p(3(/1- Po)) + G (A.40)
o exp(avt*+1) -G exp(EE) 4 ¢ exp ()

where z = m /Ty, and t = |p]/m. In the limit m; < m, we can approximate By, = 1 inside the integral, yielding
¢l ~ml x [mQ gz T,Ge, (m/Tb)} = mI x fig, (Th), (A.A1)

where G is as defined in eq. (A.18). In the limit ¢, = 0, we have G¢, = K3, where K,, is the modified
Bessel function of the second kind. Consequently, 7o(7p) is the equilibrium number density of particles with

Maxwell-Boltzmann distribution as expected.

A.3 Scattering

In this section we simplify the phase space integral for the collision term which describes the energy transfer

from species a to b via t-channel process:
1(a) + 2(b) — 3(a) + 4(b). (A.42)

We consider both particles to be at different temperatures and additionally do not approximate their
distribution as Maxwell-Boltzmann.

The relevant energy transfer collision term for the process given in eq. (A.42) is

c= [ [211((2 25057~ m2)OGE) ) (20)'5 01+ 2 — -+ )| SIMEGE — )

X [fa(P1) fo(p2)(1 £ fa(p3))(1 £ fo(pa))] (A.43)
/ 4P SIMP ) — p)fulpr) folp2) (1 £ Fa(ps))(1 £ fo(p))] (A44)

158



where f; are the distributions for the i** particle, M is the amplitude of the process, a and b correspond to
two species and S includes the symmetry factors from the process along with each particles degree of freedom.
The first factor of two inside the integral is because the contribution from the backward scattering is the
same as the forward process and we have summed over both backward and forward process above. The phase
space element dP is given by the square bracket in the first line.

Because of the energy transfer term (p{ — p) in the integrand, we find that the computation of the

collision term is simplified if we shift to the following variables

p=D1—p3 P =pa—pa (A.45)
g=p1+ps q =p2+pa (A.46)
Correspondingly the Mandelstam variables are given by s = (¢ + ¢')?/4, t = p? and u = (¢ — ¢')?/4.

After performing the above shift in variables and integrating out p’ using the momentum conserving dirac

delta, we obtain

T 4 4 4
ap =EL | (-4 0/ = m2)o((a — /1 - m)Ola” — 1)
X {éﬁlé((—p +4)2/4—m})((¢ + p)?/4—mP)O(q° — po):| (A.A47)
d4
AP =57 dl, dly. (A.48)

where dI, and dI, are given by the first and second square brackets, respectively. Note that dI, and dI, are
identical integral elements except for the masses. Moreover, except for the argument in the © function, di,
defined above has the same form as dI, defined in eq. (A.7). Thus by performing the same steps as we did
before to obtain eq. (A.10), we find

2

— 2000 _ 10 o[, @?] m2 dg’
dly = 171 O(q Ip )@(p |:1 FE :| 4 a)d912 (27T)4’ (A.49)

where 015 is the Azimuthal angle made by ¢ in the plane perpendicular to p. The second © function in the

last line imposes the requirement that |¢12] > 0. The two O function together rule out the possibility of
p? > 0, which is expected as t = p? < 0. Thus the arguments of the © functions can be rewritten as

2 dq®

ﬁe<—p?>@<q° — |1Ba) (A.50)

dly = (2m)*’

where

2
_ Amg

a = 1
A t

(A.51)

The phase space element dl, has the exact same form as dI, with just m, interchanged with m;. Thus

the phase space element dP simplifies to

167

o
apP = WG(—pQ) [@(q0 - |ﬁ|6a)d912dq0:| [9(q’O — |§10)d0;5dq" | dlpldp® = . (A.52)

Replacing the above phase space element back in the collision term, and using the fact that the integrand is
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independent of the orientation of 5 as well as the overall phase 615 + 05, we obtain

,].(.2
s [ |06~ 8 ()1 £ £ dd”] [ 004 ~ 175 )12 o)

< [1meas) Patgastei) (A.53)

where 6 = 615 — 61,. Note that none of the square brackets depend on 6 because the Boltzmann distributions
are only functions of p° and ¢°. Thus only the matrix element can have possible § dependence.

Now the matrix element is a function of both t = p? = (p°)? — ] and s = (¢ + ¢')?/4. So its dependence
on ¢, ¢ forbids an independent integration of the square brackets in eq. (A.53). A t-channel matrix element

can generically be written as

2 Cow S LY
_ Lovw A.54
M = Dot (A54)

where the my is the mediator mass. The Mandelstam ¢ is simply equal to p* while s has a complicated
dependence on ¢, ¢’, and 6 given by

1
:Z(QQ + q'2 + 2q0q/0 - 2613(1§ - 2%2(132 COS 9) (A~55)

1
=1 [4m3 + 4mg —2p? —2¢°¢" v

e

() ) () ) e o

Note that after integration of matrix element over 6, all terms with odd powers of cos# vanish. Hence the

integrated matrix element is simply given by a polynomial of form

2 P2’\

nmaA

The values of of exponents above are restricted to n, m, A € {0, 1,2} because we require v+w < 2 in eq. (A.54)
for the matrix element to be unitary. Furthermore, since [ dfs” only depends on even combinations of ¢°
and ¢'°, n 4+ m is always even.

Substituting the above matrix element in the collision term we obtain

3212 Chm p° (¢°)"
¢= Z e / (pz_mwp”[ / O(a" = 1715a) falp)(1 £ falps)) e’

[ [ew = s a0 ifb<p4>>('w?n dq/O]dmdp‘J@( 2) (A.58)
_ 32m? Cnm\ po ,
=2 amy / 7wzl X o I PO () (A.59)

where the terms I,, ¢, and I, ¢, are given by the first and second square brackets in the first equation above.

Considering a thermal distribution for particle a as given in eq. (A.14), the term I can be analytically
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computed to yield

2T, 27, \" P1Ba p°
Ln¢, = —m—— A.60
n,Ca el)o/Ta 1 ( |ﬁ| ) n,Ca ( 2Ta 9 2Ta 9 ( )
where
- n!

— n—r : —a-+b . —a—b
Ln,c(a,b) = Z:% i Gl (=G ) + (L (<™ ), (A.61)
and Li is the Polylogarithmic function. Recall that ¢ = 1 if particle a is fermion and ¢ = —1 if particle a is

boson. In the Maxwell-Boltzmann limit, the square brackets in L simplify to e~**? for all r.
I! is same as I,, except with p" replaced by —p® and subscript a replaced by subscript b. Putting the
simplified 7,, and I/, back in the collision term yields

€= 23(22 2) 4TT”ZC”M/ dp0p0/| d‘ﬁ] = m3)? ng )H(ZI;}))WI

nmaA
|P1Ba  p° 15180 _ p°
Ly, ( 2T, 2T, Lim., 2T, * 2T,

er’/Ta — 1 e—p° /T _ 1

X ) . (A.62)
Note that p° > 0 indicates forward energy transfer from a to b, while p® < 0 indicates backward energy
transfer. Consequently, the forward energy transfer collision term is given by the above integral, except with
integral limits of p® changed to 0 to oo.

Using the fact that L, ¢(a, —b) = — Ly, ¢(a, b) we convert the integral over negative values of p° to positive

values, yielding

o 32 24T a0y ! !
27(2 ) b PP (ePO/Ta — 1)(1 _ epr/Tb) - (epo/Tb — 1)(1 _ e*pU/Ta)

p* 2T, \" (2T,\™ 718, p° 518
" %Cnm/ P —m2)y < i > <|ﬁ1> e < 2T, ’2Ta> Lm.c, < T, 2Tb> - (A63)

Notice that the first square-bracket vanishes in the limit T, = T} as expected.

In the limit both particles have Maxwell-Boltzmann distribution, the collision term simplifies to

32r2 o 0 0
—p°/2Ta ,p° /2Ty _ p"/2Ta ,—p" /2Ty
C =5 T Tb/ dp’p [e ¢ /2T, ]
2T " 2Tb m n Tl' ‘p‘lﬁa n—r
X Cnm)\/ d13’| ( ) () (
= e —e () (i) \& =\ om
o~ m! 116 \" " _Balpl _ By
" (;_:0 (m—r)! ( 2Ty, ) ) © e (A.64)

A.4 Collision terms for inflaton mediated annihilations

In this section we calculate the collision terms that are used in chapter 3 using the results from appendix A.1.2.
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A.4.1 Trilinear scalar couplings

We consider two scalar species, x, and xp, interacting via

1 1
Ling = 5%@(3 + gﬂb@(i' (A.65)

Here ¢ is a massive scalar (inflaton) mediator with mass Mg. As both the coupled fields are scalars (and
hence bosons), we take (,, = —1 and S = 1/(16(27)®).
The scattering amplitude for the s-channel process in this theory, for m, , < My, is given by

_ 1212 u2,
|M(§)|2 = ik PRI 1—‘Oa,b = 3271_M . (A66)
(s —M3)*+ (FOa + FOb) ¢
For pqp < My we can approximate the scattering amplitude as [42]
4
— wp? ~ ~ _\ HgW
IM(3)] ~ 327 2w +“1 ﬁ5( — M3) +O(M; — 3) ]&g . (A.67)

where w = T'gp/Toq = ,uﬁ /u2. To analytically estimate the behavior of Cg, we combine the simplified form of
the scattering amplitude given in eq. (A.67) along with approximations M¢ < 1 and ]\;[¢ > 1 at high and

low temperatures respectively.

High temperature limit, 7, > M,. In the high-temperature limit ]\Zf¢ — 0, the contribution to the
integral in eq. (A.32) from the © function term in eq. A.67 is dwarfed by the contribution from the Dirac
delta term. Subsequently, in the high temperature limit we can to good approximation retain only the Dirac

delta portion, giving

o0
Chigh.T = S'2T? / dp 32n* “al ﬁD(M;, P, z,0). (A.68)
0
To evaluate the above integral we separate it into two domains: p < 0.1 and p > 0.1. In the latter region we
approximate p > M¢ to give
o0

dp D(M,p,x,0)
0.1

N < exp(p/z) — exp(p)
p>My - /0.1 @ [exp(p) — 1][exp(p/z) — [ (1/M¢)

]
+ log (64p sinh(p/2) sinh(p/(2x) x) log 1/M¢
+ log (813 sinh(ﬁ/2)) log (8p sinh(p/(2z))x )]

= L (viog® (1) +val@og (1) + @) (A09)
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where

. _ " R exp(p/x) — exp(p) _ r 22 1og (0 1/ _

1) o [ (o) 1~ 901+ 42 sl 1)
2<0L g A (A.70)
L [F ) D) e

@) = 2| R S o (6477 sinh(/2) sinh 7/ (20)a )
201 ~0.712 + 1.6 + 4.7z log(z) (A.T1)

Ya(x) =

[ exp(p/a) — exp(p)
/ P lexp(5) — e (5/x)
~ 3.2z — 0.827 log(z) + 1.3. (A.72)

—ylos (s7sin(5/2)) tog (s5sinh(p/(20))x)

x<0.1
—_—

To evaluate the integral in the region p < 0.1 we first consider the case where Ty, Ty, > My, allowing us
to approximate M¢ < x < 1. Next, note that the integrand D(Md%,f), x,0,0) is peaked near p ~ M¢. Near
this peak we can use the approximation p < z. Assuming the contribution from the peak dominates the

integral, we extend the approximation p < x to the entire integration range p € (0,0.1), yielding

0.1 52 MQ + B
1— \/ D"+ p

@/ dﬁ(ix{ log? <~¢>

pMy<e 70 \/ P2+ M \/ PP+ M2 —p

%(1 — z)log® (0.2]\7;;). (A.73)

0.1
/ dp D(MZ, 5. z,0)
0

~
~

In the case T, < My < T, the assumptions we used above no longer hold. One can instead use the
approximations p, M¢ < 1 along with eMs/% > 1 to simplify the integral and show that its contribution is
always dwarfed by the contribution from p > 0.1. For brevity we do not show the calculations here. Thus
we can neglect contributions from p < 0.1 in eq. (A.68) when T}, < M,;?. We find empirically that using
eq. (A.73) for all T}, helps improve the agreement between the analytic estimate and the full numerical

calculation for T;, as low as T, ~ M. Thus we approximate the full collision term at high temperatures as

2
Chigh- %S'327r2uawT§’{

w1 %(1 — x):vlog?» (0,21\1;;) +Yi(2) log? (L)

3 i,
+ Ya(x) log (j};) + Yg(:c)} . (A.74)

From the asymptotic behavior at small x we see that Chign-T is largely insensitive to Tj. At extremely small z,
the logarithmic term is dominant. However, at large temperatures 7' 2> 102M¢, as x increases to x ~ 0.5, the
higher powers of the logarithm take over and enhance the collision term by roughly two orders of magnitude.
This enhancement is due to the Bose enhancement of the forward energy transfer. As z further increases
towards unity, the backward collision term starts catching up to forward collision term, eventually completely
cancelling it at x = 1.

In the left panel of figure A.1, we compare our high temperature estimate with the numerically evaluated
collision term. The Bose-Einstein enhancement over the classical Maxwell-Boltzmann result is clearly visible

at high temperatures.

2In fact, even when ]\;[4;, < z, the contributions from the p < 0.1 integral remains sub-dominant until extremely large
temperatures, Tq > 105M¢,.
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Intermediate temperatures, T, < Mg. As M¢ begins to exceed unity, the Dirac delta contribution to
the matrix element ensures that the integral of eq. (A.32) has support dominantly at § = M¢ > 1. However,
here the phase space distribution functions, contributing through the factor D, are exponentially suppressed.
This Boltzmann suppression causes the collision term to fall sharply. In other words, in the intermediate
temperature regime the integral receives its dominant contribution from an energy scale much larger than
either temperature, which means that to excellent approximation the scattering here can be described using
classical statistics.

Using classical statistics, the overall integral over p (eq. (A.68)) can be performed exactly,

2w T, M M
Cup = /327 M3 1202 (R (22 — k() A5

MB Tty a \2\, ) TG, ) ) (A.75)
where K5 is the modified Bessel function of second kind. Again, we can see that at small x the collision term
becomes insensitive to variations in the colder sector. As the temperatures fall further below the inflaton

mass, the collision term becomes Boltzmann-suppressed.

Low temperature limit, mq, < T << My. In the low-temperature regime, the integral is dominated
by off-shell inflaton scattering, described by the Heaviside term in eq. (A.67). Thus at low temperatures we

need to evaluate

xTP oo Mg
Clow.T = S’Mj; pdw / / dp diD(3,p,,0). (A.76)
@ 0 0

As D is exponentially suppressed at large values of 5, we can take the upper limit of the § integral to
infinity with negligible errors. Both the integrand and the limits of integration thus become independent of

temperature, giving

T5 (o) o0
ClOW—T ~ S/ a4 /Jiw |:I/ / df) ng(g,ﬁ,l'7O) )
M, o Jo
T5 - T5
=9 J\;‘l plwf(z) £=2L 7.9 J\Ia‘l piw. (A.TT)
¢ ¢

Again, as required, we find that the energy transfer function becomes insensitive to the colder sector as x — 0.

Total collision term. To get a complete analytic estimate of Cg over all temperature ranges we combine

the analytic estimates as

CE(Ta> = Clow-TG)(M¢> — Ta) + Chigh—TG)(Ta — M¢> + CMB@(O.2M¢, — Ta)
+ maX(CMB,Chigh_T)@(M¢ — Ta)@(Ta — 0.2M¢), (A78)

where Chigh-1,CyvB and Ciow-7 are given in eq. (A.74), (A.75) and (A.77). The Heaviside functions ensure
that each function contributes only in its region of validity. This function describes the collision term for all
temperature ranges as long as the scattering particles remain relativistic (T > map).

In the left panel of figure A.1, we compare the analytic approximations to the energy transfer collision
term derived in high-, low-, and intermediate temperature regions with the exact numerical value. For

illustrative purposes, each approximation is shown over a range larger than that taken in eq. (A.78). Together
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Figure A.1: Left Panel: Total energy transfer collision term Cp = CE/MQ? as a function of T, /M, at fixed
temperature ratio x = T/T, = 0.5. The black solid line corresponds to Cg numerically evaluated using
eq. (A.32) with matrix element given in eq. (A.66), red dashed line corresponds to Cpigh-1 (eq. (A.74)), purple
dashed line corresponds to Cyp (eq. (A.75)) and the blue dashed line corresponds to Ciow- (€q. (A.77)). Right
Panel: The ratio of the analytic approximation to Cg (eq. (A.78)) with the full numerical value as a function
of T, /My for z =0.99,0.5,0.001. Results are shown for p, = 0.01Mgy, pp/pe = 0.5, and mqp = 10_8M¢.

these approximations accuratelly describe the behavior of C in their respective regions. In the right panel
of figure A.1, we compare the ratio of our analytic approximation, eq. (A.78), to the numerically evaluated
collision term using the full matrix element of eq. (A.66). The largest deviation occurs during the transition
from Cpigh-T to Cmp between My /4 < T, < My and is of the order ~ 50%.

A.4.2 Yukawa couplings
We next consider two Dirac fermions, 1, and 1)y, interacting with a scalar inflaton ¢ via
Eint = yagmzjaﬂ}a + yb¢1zbwb~ (A79)

In this case we have (,, = 1 and S’ = 1/(4(27)5).
The s-channel scattering amplitude in this theory, for m, , < My, is given by

— 4m? 4m? 52
MR = i (1- ) (1= 1) : (A50)
(s = M2)? + (Tou + Ty

where
Loap = y?sz?]TWaﬁ (A.81)
For small y, ; the scattering amplitude can be approximated as [42]
()12 2 Ayaw o 2 s dmg Ainj 1,
|M(3)]* =~ 8m T_HM¢§(5—M¢)+®(M¢75) (1 3 >( §)4yawm
+0(5 — M) 4ypw. (A.82)
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where w =T /0.0 = Y2 /y2.

To estimate Cg analytically, we combine the simplified form of the scattering amplitude given in eq. (A.82)
along with the approximations M¢ < 1 and M¢ > 1 at high and low temperatures respectively. Moreover,
since for fermions the contribution of the distribution functions to the integrand, D, is regular at s,p = 0,

the limit m,, = 0 does not need any special attention.

High temperature limit, 7, > M. In the high temperature limit only the Dirac delta term and the

second Heaviside theta term in eq. (A.82) contribute to the integral. The collision term then becomes

4
Chigh-T ~ S/.%Tj [8 2 ya
w

M¢/ dp D(M¢,p,w 0) + 4ytw / dp dsD (8,p, x, 0)} (A.83)

Note that as § — 0 the integrand D(5, p, z,0) asymptotes to a finite value over all 5. Thus, we can safely
approximate M¢ = 0 in the integrand, making the integrals independent of Ty,

Chighr = S [8 [ M 4ya V()T + 4y3wV2(:c)Tas} . (A.84)

where,
Vi(z) = x/ooo dp D(0,p,z,0) 201, 0.29 (A.85)
@_x/mﬁgAWﬁD@@@ﬁ)ﬁﬂbso (A.86)

We can check that at small z we see that Cpign-1 is in this limit insensitive to T3, and at = 1 all these
functions go to zero as backward energy transfer exactly balances the forward energy transfer. The collision
term at very high temperatures in this case is not sensitive to the inflaton mass.

Intermediate regime, T,

a ~v

S My. For T, ~ My the Dirac delta part of the scattering amplitude will
dominate the collision term. As discussed in section A.4.1 above for scalars, the collision term can be well
approximated using Maxwell-Boltzmann statistics as the temperature drops below the inflaton mass scale,

T, < Mg. Thus, the collision term can be simply written as

Cun = $'sw2 2} 220 T (1, (V) iy (22, (A7)

where K5 is the modified Bessel function of the second kind.

Low temperature regime, mq, < 1T < Mg. In the low temperature regime, the integral is dominated

by the @(M; — §) term. Just as for scalars, we can to a good approximation replace M¢ — oo in the limit of

M4ya {/ / dp ds 5°D(5,p,z,0)|,

x<0.1

integration. This yields

~ I
Clow-T ~ S

T2 1.4 x 10387y (A.88)

<.
M¢
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Figure A.2: Left Panel: Energy transfer collision term CE/Mg as a function of T,, /My, for fixed = T}, /T, = 0.5.
The black solid line corresponds to Cg numerically evaluated using eq. (A.32) and scattering amplitude as
given in eq. (A.80), the red dashed line corresponds to Chigh-1 (eq. (A.84)), the purple dashed line corresponds
to Cup (eq. (A.87)) and the blue dashed line corresponds to Ciow-1 (eq. (A.88)). Right Panel: Ratio of
the analytic approximation to the total collision term as given in eq. (A.89) to the numerical value as a
function of T, /My for fixed temperature ratios T3/T, = = = 0.99,0.5,0.001. Results are shown for y, = 0.01,
Yp/Ya = 0.5, and m,p, = 1078 M.

Total collision term. We combine the analytic estimates derived above to approximate the collision term

for all temperatures as

Cg :Clow_Te(M¢ — Ta) + CMB@(O.2M¢, - Ta) + min(CMB,Chigh_T)@(M¢ — Ta)@(Ta - O.2M¢)
+ Chigh-1O(Ty — My). (A.89)

where Chigh-1,CmB, and Ciow-1 are as described in eq. (A.84),(A.87) and (A.88). Eq. (A.89) predicts the
collision term for all temperature ranges as long as the particles remain relativistic (T 5 > mq.p)-

In left panel of figure A.2, we compare our analytic estimate of the energy transfer collision term with the
exact numerical value. Together these approximations accurately model the behavior of Cg in their respective
regions. In the right panel of figure A.2, we compare the ratio of our analytic approximation, eq. (A.89), to
the collision term numerically evaluated (eq. (A.32)) with the scattering amplitude in eq. (A.80). The largest
deviation occurs during the transition from Chign-T to Cmp between My /4 < T, < My and is of the order
~ 50%.

A.4.3 Axionic couplings to gauge bosons
Next, we consider two (Abelian) gauge bosons interacting with a (pseudoscalar) inflaton ¢ via

1
4A,

~ 1 o
OFI Fypy — ——OFI Fy . (A.90)

['int = 4Ab

In this case we have (,, = —1 and S’ = 1/(16(27)5).

167



The s-channel scattering amplitude in this theory, for mg , < My, is given by

— 92 4 st
a’"b (S — M§)2 + (FOG. + Fob)
where
M
Topp =—"0 . A.92
000 T 256mA2, (A.92)
For A, > 1, we approximate the scattering amplitude as [42]
- on? 4w M} 4wT8 ~ 4wT? ~
3|2 ~ e 2 Nt a 2\ =
IM)] A2 w1 T2 T2 06— Mo)+ 128A4M46(M¢ 58+ 12874 (5= M;)s (A.93)

where w = Ly /To, = A2/AZ.
To estimate Cg analytically, we combine the simplified scattering amplitude given in eq. (A.93) along
with high and low-temperature approximations in the limits M¢ < 1 and M¢ > 1 respectively.

High temperature limit, T, > M. At high temperatures both the Dirac delta contribution and the
Heaviside theta term oc 52 contribute importantly to the integral. Subsequently we approximate the scattering
amplitude as
2 4
2w 4w M¢

. — ! 5 - 7
Chigh-T S;cha{A3 wil T2 J, dp D(Md),p,x 0) + 128A4/ dp/M2 ds 3®D(5,p,2,0)|.  (A.94)

In the above equation we have already assumed m,, = 0. The first integral on the RHS is exactly the same
as that evaluated for scalars at high temperatures. In the second integral, the integrand vanishes as s — 0,

allowing us to freely take M¢ ~ 0. This yields

27T2M4 4w 4 - T T T,
_ _q ¢ 3 Fq _ 3 a 2 a a
Chigh-T = S { A wi 17Ta <3(1 )z log (M¢) +Yi(z)log (M¢) + Ya(z) log (M¢)
+ Y3(x)> - PZ( )Tf}, (A.95)
where
Z(z) = = / dp / ds D(3,p,2,0) =2~ 14, (A.96)
128 J, 0

Here the Y; are defined in eq. (A.70), (A.71) and (A.72).
In the left panel of figure A.3 we compare this high temperature estimate with the numerically evaluated

collision term.
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Figure A.3: Left Panel: Total energy transfer collision term Cg/M 2 as a function of T, /My at fixed
x = Tp/T, = 0.5. The black solid line corresponds to Cr numerically evaluated using eq. (A.32) with
scattering amplitude given by eq. (A.91), the red dashed line corresponds to Chigh-1 (eq. (A.95)), the purple
dashed line corresponds to Cyp (eq. (A.97)) and the blue dashed line corresponds to Clow.1 (eq. (A.98)).
Right Panel: Ratio of our analytic estimate as given in eq. (A.99) to the numerically evaluated collision term
as a function of T, /My for fixed temperature ratios Ty, /T, = = 0.99,0.5,0.001. Here we fix A, = 100My,

s = 0.5 and mg, = 1075 M,

Intermediate temperatures, T, < M. In the intermediate regime near T, ~ My, integral can again be

well approximated with Maxwell-Boltzmann distribution. Thus the collision term can be simply written as

s = 5T S T () -1 () am

where K5 is the modified Bessel function of the second kind.

Low temperature limit mqp < T < My In this regime, the @(M; — §) term dominates in eq. (A.32).
We can again take M¢ — o0 in the limit of integration. This yields

4w T RO e
owT & ST —/ / dp ds §*D(5,p
CI T S a M(%Ag 128 0 0 pas s (S,p,l’,O) )

4w 13
MgAg T°. (A.98)

2201 79 % 1048

Total collision term. We combine the analytic estimates in the following manner,
CE = Clow-TQ(M¢ - Ta) + maX(CMB,Chigh_T)Q(M(z, — Ta) + Chigh—TG(Ta — M¢). (A.99)

where Chigh-1,CmB, and Cigw-T are as described in eq. (A.95),(A.97) and (A.98). This function describes the
collision term for all temperature ranges as long as the scattering particles remain relativistic (T, p >> mqp).

In the left panel of figure A.3, we compare our analytic estimate derived in the three regions with the
numerical value. In the right panel of figure A.3, we compare the ratio of our analytic estimate, eq. (A.99),
to the numerically evaluated collision term (eq. (A.32)) with scattering amplitude given in eq. (A.91). The

largest deviation occurs during transition from Cpign-1 to Cmp between My /4 < T, < My and is of the order
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~ 50%.

A.4.4 Mixed Yukawa and scalar trilinear couplings

In this case we consider a Dirac fermion ¢ and a scalar field x that interact with the inflaton ¢ via

1 _
‘cint = §Ma¢XaXa + yb¢¢bwb- (AlOO)

Note that sector a is not necessarily hotter in this scenario. For this theory (, = —1, ¢, = +1, and
S =1/(8(2m)%).

The spin-summed s-channel scattering amplitude in this theory, for mg,, < My, is given by

_ Am? s
M(s)]? =2p2y2(1— —2 , A.101
| ( )| HaYaq P (S — M;)Q + (FOa +F0b)2 ( )
where
2 2
Mg be¢
To, = . Top= : A.102
0 ™ 321 M, T T8 (A.102)
For y, u < 1 we approximate the scattering amplitude as [42]
=) (2 20 W 1 o 1 4mg <o o HaW o
~1 _— - M —(1-— Mi — T Al
V)R = 10750 s = )+ 5 (1= T8 oo - g a0y

where w =Ty /T = 4y§M£/M§.
To estimate the behavior of Cg analytically, we combine the simplified form of the scattering amplitude

given in eq. (A.103) along with the high- and low-temperature approximations ]\Zf(z, < 1and M¢ > 1.

High temperature limit, T > M,. When the temperature of the hotter sector, T' = max(T,,T), is
larger than the inflaton mass, the Dirac-delta term of the scattering amplitude dominates in the integral in
eq. (A.32), giving

o0

Chight = S'2T) {1679#3 dp D(M3,p, =, 0)} : (A.104)

w
w+1T2 J,

As the scalars x, follow BE distribution, D(]\Zl;, P, x,0) has a pole as ]\fo) — 0. We cannot simply approximate

M¢ =0, and we proceed analogously to the case of section A.4.1 and split the integral as,

00 ~ My ~
/ dp D(Mf;,ﬁ,x,m:/ dp D(3I2, 5, 2,0)
0 0

+ / dp D(M3,p,,0)

M,

(A.105)

57M¢<<1 ]5>>1\:[¢
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The integrand in the first term on RHS vanishes for small p. Hence, for M¢ < 1 the first integral can be
ignored. Expanding in p > M¢ limit, the second integral yields

/ dp D(Mf),ﬁ,:c, 0) %/ ds exp(p/x) — exp(p)
0

i, " Texp(p) — 1lexp(p/a) — 1]
M¢> log(cosh(p/Z/x))] (A.106)

| 1og(85 sinh(5/2)) log(cosh(5/2/)

+2log(

As the integrand above diverges only logarithmically as p — 0, the integral is insensitive to its lower limit,
which can be replaced with 0 with negligible error. The collision term at high temperatures can then be

simply written as

’ 2 Ma Ta
Cuignr = 1672 L2273 (W1 () 10g (m) + Walw)), (A.107)
where
[ exn(p/s) — explp) i 16 w<0l
Wi(z) = 2:0/0 dp oxp(5) — 1jexp(B/z) — 1] log(cosh(p/2/x)) — 0482?2510

Wale) = o / T ap [expe(xg’(”/ H) &j‘/’;)) 1y og(87sinh(5/2)log(cosh(7/2/)

1.1 z<0.1
N (A.108)

—0.30z% x> 10

Note that the high temperature collision term is approximately insensitive to the colder sector in this case.
The collision term’s logarithmic sensitivity on the inflaton mass depends on whether or not the scalars are
hotter than the fermions. However, in both the cases the collision term is IR-sensitive due to the dependence
on inflaton mass.

In left panels of figure A.4 we compare our high temperature estimate with the numerically evaluated

collision term.

Intermediate temperatures, T' < M. For temperatures near 1" ~ My the Dirac delta part of the
scattering amplitude dominates the behavior of collision term. As discussed above, in this region, the
distribution functions are well approximated by Maxwell-Boltzmann distributions as temperature drops below

the inflaton mass scale, T' < My. The collision term can therefore be simply computed as,

Cus = 51672 2 (1,16, (M) i, (M), (A.109)

where K5 is the modified Bessel function of second kind. Again, we can see that at small/large = the collision

term becomes insensitive to variations in the colder sector.

Low temperature limit, m, , < T < My. In the low-temperature regime, the contribution from the
Dirac delta part of the matrix element falls below the one from @(Mi — §) term in the integral in eq. (A.32).
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Just like in scalar case, to a good approximation we can replace M¢ — o0 in the integral limit. This yields

4
a

B P e 315”3\/1%”Ta7 z<0.1
Clow.T = S 20 LW 3 dp ds $D(8,p,z,0)| — - (A.110)
é o Jo —21 §"EaE T x> 10.
é

Similar to our high temperature estimate, we find that the energy transfer function becomes insensitive to

the colder sector as z — 0, co.

Total collision term. To get an analytic estimate of Cg over all temperature ranges we combine the

analytic estimates as

Cg :Clow—T@(M¢ — T) + CMBG(02M¢ — T) + maX(CMB,Chigh_T)@(qu — T)@(T — 02M¢)
+ Chigh-T@(T - M¢), (A.lll)

where T' = max(T,, T) and Chigh-1,Cnvp and Ciow.1 are as described in eq. (A.107), (A.109) and (A.110).

In the left panels of figure A.4, we compare our analytic estimate with the exact numerical value. In the
right panels of figure A.4, we compare the ratio of our analytic fit, eq. (A.111), with the numerical evaluation
of the full expression (eq. (A.32)) with scattering amplitude given in eq. (A.103). The largest deviation occurs
during the transition from Cpigh-r to Cmp between My, /4 < T < My and is of the order ~ 50%.

A.5 Collision terms for millicharge particle model

The Standard Model particles can inject energy into the hidden sector bath formed by millicharged particle
(MCP) and dark photon via annihilations, decays and scattering. The calculation of the collision term
for these processes involves phase space integration of the matrix element along with appropriate particle
distribution function. In appendix A, we show the how the multi-dimensional phase space integral can
be simplified for energy injection via generic annihilation or decay processes after considering a quantum
statistical thermal distribution of particles. Similarly in appendix A.3 we simplify the phase space integral
for scattering processes. In this section, we describe the particle physics processes that determine the matrix
element in the collision term for MCP model. We highlight the simplifications we employed in calculation of
these processes through electroweak and QCD phase transitions.

In what follows we first discuss energy injection via SM fermion annihilations into MCPs in section A.5.1.
In section A.5.2 and section A.5.3, we describe energy injection into HS due to Z-boson and plasmon decays
into MCPs, respectively. Finally, in section A.5.4 we describe energy transfer via Coulomb scattering between
SM fermions and MCPs. The Coulomb scattering processes has a forward singularity which is mitigated by
plasmon mass.

There are also additional processes involved in energy transfer into the HS bath, such as SM boson
annihilations into MCPs, Compton scattering of MCPs with photons and dark photons, and photon dark
photon fusion into MCPs. We have verified that energy transfer through SM boson annihilations and fusion
processes are around 2 orders of magnitude weaker than the processes we mentioned in previous paragraphs.
The Compton scattering is different because it depends on both the dark coupling constant, €/, and the
millicharge, @, while all other processes only depend on Q. We have checked that the collision term for

Coulomb scattering is always larger than the one for Compton scattering when ¢’ < 0.9. Consequently in
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Figure A.4: Left Panel: Magnitude of total energy transfer collision term Cg = abs(Cg)/M, g as a function
of T = max(Ty,Tp) at fixed temperature ratio = T,/T, = 0.5 (top left) and z = 2 (bottom left). The
collision term is always positive for the top left panel and always negative for the bottom left. The black
solid line corresponds to C numerically evaluated using eq. (A.32), the red dashed line corresponds to Chigh-T
(eq. (A.107)), the purple dashed line corresponds to Cyp (eq. (A.109)) and the blue dashed line corresponds
to Ciow-T (eq. (A.110)). Right Panel: Ratio of the analytic approximation to Cg (eq. (A.111)) to the full
numerical value as a function of 7' = max(Ty, T}) for fixed temperature ratios T,/7T, = = = 0.99,0.5,0.001
(top right) and = = 1.01,1,1000 (bottom right). Results are shown for p, = 0.01My, 2ypMy/pe = 0.5, and
Mab = 10_8M¢.
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our study we neglect the contribution of all the processes mentioned in this paragraph, and we omit their

detailed calculation here for brevity.

A.5.1 Fermion annihilations

The center-of-momentum (CM) frame spin-summed cross-section for SM fermion annihilation into MCPs is

given by
4TQ%N.(f)a? /s — 4m?
Off—=ipp = 53 5
\/§ —4m3
4
3(2m + s) me + s)

1 s%(s +2m?)
4cos* Oy (s —m%)? + m3T%

QsCv s(s —m%)
 cos? Oy (s —m%)2 + miT%

[3<Ca £ mhrack - mi| b

where Cy and C4 are the vector and axial couplings of the SM fermion f to the Z boson, respectively, given
by Cy = T;-’ —2Qf sin? Oy and C'y = TJ:?. Here the term proportional to Q?c comes from the photon-mediated
interaction. The terms proportional to C3 and C% comes from the Z-mediated interaction while the term
proportional to C'y Q) comes from the interference between photon and Z-mediated terms.

The cross-section in eq. (A.112) has a pole at s = M%,, which can be seen explicitly in the narrow width
limit,

1 1 mo(s — M2)

1
~ —O(M? TS =2 L L o(s — M A13
Goagrrrag ~ g oMzt Ty, afl M), (A.113)

where O is the Heaviside function. The contribution to the collision integral from the Dirac delta term gives
an identical contribution to the collision term due to Z-boson decays (see appendix A.6 or Refs. [190, 191]),
discussed in the next subsection. To avoid double-counting we subtract the Dirac delta piece. Additionally, we
also neglect the terms proportional to ©(M% — s) as the contribution from those terms is heavily suppressed

compared to others. This yields the effective off-shell cross-section

of  _A4mQ’Ne(f)a? Vs —4m?
T
X {;1(27712 +5)(2m3 + ) {Q? +O(s — M2) ((0‘2, +C3)  CvQy )}

4 cos? Oy cos? Oy
(CE +3C3)m?
st L(s+ 2m2)}.

—O(s — M32) (A.114)
We find that the cross-section from photon contributions alone (i.e., retaining only terms proportional to Q?)
to be at least an order of magnitude larger than the contribution from the remaining terms that involve at
least one coupling to the Z. Thus, in the analytical calculation of the leak factor in eq. (5.15) we neglect the
Z-mediated contributions for simplicity.

The forward energy transfer collision term, Cf, corresponding to fermion annihilations into MCPs is
calculated by using the cross-section in eq. (A.114) inside the generic collision term derived in eq. (A.19)
and summing over all SM fermions. The total energy transfer collision term is then evaluated through

C = C¢(Tsm) — C¢(Tus). We include quarks, treated as free fermions, for Tom > Tqcp, where we take
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Figure A.5: Collision terms from the three s-channel processes (fermion annihilations, Z decays, and plasmon
decays) for Q@ = 1072 and m = 10 MeV (left), m = 10 GeV (center), and m = 1 TeV (right). We plot C/T&,,
the maximum value of which provides the dominant contribution to the energy injected into the hidden sector.
The black line corresponds to the collision term from SM fermion annihilations, the green line to Z decays
(eq. (A.115)), and the orange line to plasmon decays (eq. (A.123)). Vertical red dashed and purple dashed
lines mark the temperatures used for the QCD and electroweak phase transitions, respectively. Fermion
annihilations into MCPs provide the dominant s-channel energy transfer process except in the mass range
0.3 GeV < m < 40 GeV where Z-boson decays dominate.

Tqep = 200 MeV; for Tsm < Tgep we neglect hadronic contributions, as they are generally Boltzmann-
suppressed.

In section 5.2.2, we found that the maximum of Cfa*/H roughly determines the final comoving energy
density of dark radiation, where Ct is the forward collision term and H is the Hubble rate. As Cra?/H o C¢/TE,
in figure A.5 we plot C;/T§); for fermion annihilation into MCPs (black line) for different values of m. The
collision term Cg /T, reaches its maximum around Tsyv ~ m/2 below which it becomes Boltzmann suppressed.
(We focus on the regime with m > m,.)

Above the electroweak phase transition, the dark photon mixes with the hypercharge gauge boson. In the
s> M2 limit, the cross-section in eq. (A.112) reduces to the cross-section describing annihilation through a
hypercharge boson. For simplicity, we neglect the temperature dependence of the Higgs vev, and thus the
(tree-level) Z mass, through the electroweak phase transition, as Z contributions are subleading below the

transition and negligible above it.

A.5.2 Z-boson decay

Next, we discuss energy transfer from Z decays into MCPs. The collision term due to Z decays is given by

Czopuw = Lzypymz(nz — neq,z(Ths)), (A.115)

where

2atan? 6 4m? 2m?
I‘Z*}ww:Qmezwll—iz (1—1—2) O(mz —m/2), (A.116)
m7, my

nz is the Z number density, nz cq is the equilibrium number density of bosons with three degrees of freedom,

and © is the Heaviside function. As Z bosons are always in equilibrium with the SM plasma, we have
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Nz = ng.eq(Tom)-

At temperatures above Trw = 160 GeV [30], electroweak symmetry is unbroken and thus the contribution
from Z decays is absent. We use a simple model of the electroweak phase transition, where we set Cz_,yy =0
for T' > Trw but neglect any temperature variation in the Z mass for T < Tgw. As the main contribution
from Z decays arises at temperatures significantly smaller than Tgw, this is a sufficient approximation
for our purposes. In figure A.5, we plot the resulting collision term, normalized by TSGM, as the green
line. The net energy injected into the HS is dominated by the peak values of C/T$,;, which occurs around
Tsm ~ Mz /4 < Tew.

The contribution from Z decays to the total energy injected into the HS can dominate over the contribution
from photon-mediated fermion annihilation when 0.3 GeV < m < 40 GeV. Elsewhere, Z decays provide a

sub-leading contribution.

A.5.3 Plasmon decay

Below the electroweak phase transition, Tsy < Tgw, the thermal effects in the plasma cause photons to
acquire an in-medium plasma mass. The corresponding plasmons can decay into MCPs with the collision
term given by [153, 227, 228]

Bk 1 1
Croyy = Z/ @) <ew/TSM 1~ oo/ 1) Wl sy, (A.117)

pol
where

2

«
Doy = %Z(mi +2m?), /1 —

4m?

5 -
2

(A.118)

m

Here Z is a wave-function renormalization factor and m,, is the plasmon mass, both of which differ for
transverse and longitudinal polarizations. For a relativistic photon, where w(k) = ,/m?y + k2 > m,,
the decays from the longitudinal polarization are negligible compared to the decays from the transverse

polarizations [227, 228]. Moreover, for the transverse polarization at relativistic energies we have Z = 1 and
2 2 4o >
My :ngQf? ; dp p fr(p), (A.119)
!

where f¢ is the phase space distribution of the SM fermion f and the summation runs over all fermions; g¢
counts the spin degrees of freedom of each fermion. Since m., < Tg\r, approximating w > m. in eq. (A.117)

is valid as the integrand is dominated by momenta with w ~ Tgy. Thus the collision term simplifies to

202 4m?
Cops = 22 2 4 2m?) 1~ Ty (Tin) — 1y (Tis) (A.120)
Y

where n, is the equilibrium number density of photons. Energy transfer from plasmon decay is prohibited
when m,, < 2m. Since m, ~ 0.1T5m, energy injection via plasmon is only efficient at high temperatures
where Tgy > 10m.

Above the electroweak phase transition, Tsy > Trw, we need to evaluate the decay of hypercharge bosons

into MCPs. The collision term for this process is similar to that for photon decay, up to the replacement
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of the electric charge e by the hypercharge coupling e/ cos 6y and the fermion electric charges Q¢ by their
hypercharges Qy . Consequently, we obtain

20Q° (m% +2m2), |1 — @ x (np(Tsm) — np(Ths)) (A.121)

C T e——
Bodv ™ gost Ow my

where npg is the equilibrium number density of hypercharge gauge bosons and mp is the thermal mass, given
by

11
T2, (A.122)

2
m = ——
B 73 cos? Oy

for large temperatures. We take the plasmon decay contribution to be given by

C Tsm < T
Cplasmon = ey SM Bw (A123)

Ceosyy Tsm > Tgw.

In figure A.5 we compare the resulting collision term C¢/T$); (orange line) to the collision term describing
photon-mediated SM fermion annihilations. The collision term C¢/ TsﬁM from fermion annihilation is maximized
around Tgy = m/4, while that from plasmon decay is maximized around Tgy = m/10. Since the maximum
value of C/T§,, controls the final energy injected into the HS, the energy injected into the HS via plasmon
decay is subdominant to the energy injected via fermion annihilations, even though at high temperatures
the collision term for plasmon decay is larger than the collision term for fermion annihilation. Thus, the
approximations used in Cplasmon near the electroweak and QCD phase transitions are of marginal consequence

in evaluating the resulting dark radiation density.

A.5.4 Coulomb scattering

SM particles can also inject energy into the HS through the Coulomb scattering of MCPs with SM particles,
¥+ f — Y+ f. The cross-section for Coulomb scattering has a forward singularity, which we regulate by
adding a plasmon mass in the propagator [153].

Below the electroweak scale, the Coulomb scattering is mediated by photons, with the plasmon mass given
by eq. (A.119). The relevant spin-summed matrix element for SM fermion scattering with MCPs is given by

8 QNC 2.4
MGy g =W (2(s —mF —m?)? + 25t +17) | (A.124)

where @, @y, m and my are the charge and mass of the MCP and the SM fermion, respectively, N.(f) is the
color factor of the SM fermion, m. is the plasmon mass given by eq. (A.119), and s and ¢ are the Mandelstam

variables. The collision term for the above process, including quantum statistics, is given by eq. (A.63) with
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mg — m., and the coefficients of non-zero cpma, defined in eq. (A.57), given by

€222 _ 3 €202 _ 1 €022 _ 1 €002 _ 3
167Q°Q%er — 47 167QQ3T 4 167Q2QRe' 47 16mQ2Q%e' 4
Co01 _ 2 9 C201 — 2 Co21 — 2
167TQ2Q?€4 (mf +m), 167TQ2Q?64 m 167TQ2Q?64 s
€000 2 9
—— =4 . A.125
167‘(@2@?64 mym ( )

Additionally, we multiply the resulting collision term by a factor of four to account for all combinations of
particles and antiparticles. While solving the Boltzmann equations in section 5.2, we sum over the contribution
from all SM fermions. Again, we include quarks for Tsm > Tep, and neglect hadron contributions for
Tsm < Tqep-

Above the electroweak scale the Coulomb scattering is mediated by the hypercharge boson. For a (Weyl)

SM fermion scattering with MCPs, the spin-summed matrix element is

AQ°Ne(f)Qy (£)%e!

cos* Oy (t — m%)?

MGy = (2(s —mF —m?)? + 2st +17) (A.126)
where 6y is the weak mixing angle, Qv (f) is the hypercharge of the fermion, and mp is the thermal mass of
hypercharge gauge boson (eq. (A.122)). The coefficients ¢, for the above matrix element are the same as
those given in eq. (A.125) up to an overall rescaling by the factor Q2 / (2Q§ cos* Oyy). Additionally, the Higgs

doublet can also scatter with MCPs, with the corresponding matrix element being

Mo :24C§§fzw = 1”23 3 Bl + st = e+ 2 + ] (A.127)
The corresponding coefficients ¢, are
C222 _3 €202 _ 1 Co22 _ !
ArQ%et/cost Oy 4’ A Q2% / cost Oy 4’ ArQ%et/ cost Oy 4’
47TQ2€Z(}0§OS4 Ow 7%’ 47‘(’@2622/0(11084 O m?, 4#@262(;0(12084 O . (A.128)

Unlike the s-channel processes, for Coulomb scattering the forward collision term describing energy
transfer into the HS is sensitive to the distributions of both HS and SM particles. Moreover, the backward
collision term for Coulomb scattering is of the same order of magnitude as the forward collision term for
Tus > 0.17snm, while the backward term for s-channel processes is almost negligible compared to the forward
term for Tys < 0.9Ts)-

In figure A.6 we compare the total collision term for Coulomb scattering between MCPs and SM particles
with the forward collision term for SM fermion annihilation into MCPs. The collision term for Coulomb
scattering decreases for smaller Tpg as the number density of HS particles in the initial state drops. The

Coulomb scattering collision becomes the dominant process for Thys/Tsm > 0.35.

A.6 Collision terms in B — L model

The dominant energy injection from the Standard Model plasma into right-handed neutrinos occurs through
the annihilations of the Standard Model fermions into right-handed neutrinos: f + f — Z’ — g + vg. In
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Figure A.6: Comparison between Coulomb scattering and fermion annihilation for Q@ = 1072 and MCP
masses m = 10 MeV (left) and m = 10 GeV (right). Green, blue and orange lines show the collision term
from Coulomb scattering, normalized by T§M7 at different values of Tys/Tsym as indicated in the legend, while
the black line shows the forward collision term due to SM fermion annihilation. The energy transferred via
Coulomb scatterings dominates over that via annihilation for Txyg > 0.35T 5y -

appendix A we compute the collision term describing the forward energy transfer for the above process and
include the quantum statistical phase space distribution for SM fermions. The corresponding collision term

for the forward reaction is given by

1

Gt =35

/ ds(s — 4m?c)80ff_prR(S)TSMG(f(\/g/TSM), (A.129)
4m?

where 0,7, - is the spin-summed center-of-mass (CM) frame cross-section, and G¢ is a dimensionless
function given by eq. (A.18) and is determined by the quantum statistical distribution f(p) = [e=#/T + ¢]~*
where ¢ = 1 for fermions and ¢ = —1 for bosons. Since the f particles are fermions, we take (y = 1. In the
limit fermion f can be approximated to have a Maxwell-Boltzmann distribution ({;y — 0), G asymptotes
to the second order modified Bessel function of second kind, K», and eq. (A.129) then matches with the
well-known result in Ref. [175].

The formula for the cross-section is

01 romin = o=@ NHS() ; (12 (A.130)
ff—=VvRVR o f c (S — M%/)Z + 12 ,M%, 5 — 4m? s ) .

where @ is the B — L charge, N.(f) is color factor that is equal to 3 for quarks and 1 for leptons, m  is the

mass of the fermion, and I'z: is the total decay width of the Z’ boson,

2m <My 2
r 9% v, 13 N, i) - dmj A131
70 = oMz + Z Qf (f) M2 M%, . (A.131)

Above the first factor of 3 comes from decays into vy, and vg and the summation is over all SM fermions,

except v, with mass my; < Mz /2.
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In the narrow width limit, I'z» < M/, we can approximate

S S

~ TMz8(s — M%)
s— M2)2+12,M2, M2,
z z z

O(M32 —s) + T,

1
+-O0(s — M%), (A.132)
S

where O is the Heaviside function. The resonant part of the cross-section, which correspond to the term with
Dirac delta, is proportional to ¢’ due to the division by the total decay width, while the cross-section due to
contact interactions, which correspond to terms with Heaviside functions, are proportional to ¢g’*. As ¢’ is
typically expected to be much smaller than 1, the energy injection is primarily determined by the resonant
cross-section.

The contact interactions have off-shell Z’ bosons. Consequently, the mediator Z’ boson is a virtual
particle and is unaffected by the expanding universe. The collision term corresponding to contact interaction,

cott is then simply given by eq. (A.129) with the following cross-section,

ff—=vRrvR?

1 s 2m? s 1
off _ 2 14 f 2 2
0¥ snion = 52 @79 Ne()S(f) /S_4m? <1+ , ) [Mg/@(M =)+ O = MZ)| . (A133)

In the limit I'z/ is much larger than the Hubble rate, the on-shell Z’ bosons do not experience any

significant evolution in the expanding universe. Consequently, we can calculate the forward collision term
due to the contribution from the Dirac-delta term, C3%_,, ., using eq. (A.129). After summing over the

annihilations from all SM fermions, we obtain

on 3M%, NZ' — vp)T(Z' — SM)
ff—=vrvr = 272 Ty

TsmGep (Mz [Tsm), (A.134)

where I'(Z' — vg) and I'(Z' — SM) are decay widths into right-handed neutrinos and SM fermions,
respectively. Note that the above collision matches with the effective collision term we derived using
Boltzmann equations in eq. (5.27).

In the limit I'z, is much smaller than the Hubble rate, the on-shell Z’ bosons experience significant evolution
in an expanding universe and hence we can no longer use eq. (A.134). Instead, we need to independently

solve for the evolution of abundance of Z’ using Boltzmann equations given in egs. (5.22)-(5.24).
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Appendix B

Collision operators relevant for

cannibals

In this appendix we derive the various collision terms that are used in chapter 4. We first calculate the
rate of 3 — 2 interactions that drive the cannibalistic evolution. We then calculate the 2 — 2 scattering
rate between cannibals that are required to maintain internal kinetic equilibrium. Finally, we derive the

perturbation equations for cannibal decaying into relativistic particles.

B.1 Three to two cannibal interaction

We begin by considering a number changing process of form
1+243—=4+45.

The corresponding scattering collision term is given by

C— / d*py d*ps dps dpy dps
] 2E1(27)3 2B5(27)3 2E5(2m)3 2F4(27)3 2E5(27)

[f1(p1) f2(p2) f3(P3) (1 £ fa(pa))(1 £ f5(ps)) — fa(pa) f5(ps)(1 £ f1(p1))(1 £ fa(p2)) (1 £ f3(p3))]-

=(2m)*0* (py + p2 + p3 — pa — ps)SIM[* (B.1)

Here |M|? is the spin and polarizaition summed matrix element and S include the identical particle factors

of initial and final states. Define Lorentz invariant phase space volume element as,

k

di, = [ b (B.2)
S PPN '

We can neglect the contribution from final state effects because we are in interested in regimes where T' < m,

where Maxwell-Boltzmann distribution is appropriate. Consequently, the collision term simplifies to

C= /dH5(27T)454(P1 + p2 + p3 — pa — ps)SIMPf1(p1) f2(p2) f3(p3) — fa(pa) f5(p5)]- (B.3)
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For such a collision term, principle of detailed balance tells us that the equilibrium distribution f is of the

form:

fea(p) =P/, (B.4)

In the absence of chemical equilibrium but assuming kinetic equilibrium ( due to some strong 2 — 2 scattering

process), the distribution function will attain a chemical potential,

f(p) = e/”‘/Te_pO/T — ie—pO/T, (B.5)
Negq
where n = 2m [ dII; f(p) is the number density and n., is the equilibrium number density. Substituting this

in the collision term we get,
C:/JM%WWM+m+m—m—mMMﬂﬁﬂkﬁﬂ%@”—&”a@ﬂWﬂ

=[e/T — 20/T) /dH5(27r)454(p1 ¥ o+ Py — pa— ps)S|M|Pe” BIFPEE)/T

1
=n’[n = neg) ln:a /dH5(27T)454(p1 ¥ o+ Py — pa— ps)S|IM|Ze~ BIFPEHPS)/T
eq
=(ov*)n’[n — neg)- (B.6)

Here in the second equality we made use of energy conservation to pull out the factor e~ (PY+p5+p3)/T

Now let us concentrate on the form of (ov?):

1 )
(ov?) =— /dH5(27T)454(p1 + P2+ ps —pg — p5)S|M|26_(p?+pg+pg)/T. (B.7)
ng,

In the limit the ingoing particles are non-relativistic, the s-wave component of the matrix element dominates
over other component and consequently the matrix element can be approximated to be momentum independent.
The remaining integral only has dependence on m (mass of the interacting particles) and T. We would like
to disentangle dependence on them so that we just have an integral over dimensionless number.

We are primarily interested in the scenario with 7' <« m where the cannibal dominated era begins. In this

limit, we can assume that particles 1,2 and 3 are non-relativistic,

7
p) ~m 4 1=1,2,3.
2m

However, particles 4 and 5 produced from such 3 — 2 process will necessarily be relativistic due to energy

conservation,

p0=my[1+ =L 751 > |pil i=1,2,3 j=4,5.
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With the above approximations we can rewrite (ov?) as,

3 3 3 3 3
(ov?) ~S|M[? 2 / d°p1 ; d’py ; d’ps ; d°py d’ps o—3m/T —(F+P5+03)/ (2mT)
nd, J 2m(2m)? 2m(2m)3 2m(27m)? 2, /m?2 + p3(21)3 2¢/m? + pE(2n)3
X (2m)49° (s — 5)3(3m — /m? + 7 — /m? + 78). (B.8)

Looking at above equation, we get obvious choice of making p; dimensionless with

o Di L Dj . .
T; = T =— 1=1,2,3 =4,5.
vmT Tom J
This yields,
(o0?) ~S| M 1 / (VmT)3d3xy (VmT)3d3xe (VmT)3d3x3 m3d3z4 m3d3xs
n?, 2m(2m)3 2m(27)3 2m(2m)®  2m/1 + 22(27)3 2m/1 + 72 (2)3
2 2 1 1
x e-3m/Te—<w?+w§+w§>/2(zw)‘*ﬁﬁ(—@ —5) 63 - \/1 + 22— \/1 +22). (B.9)
1 1 d?’l‘l d3l’2 d3.1‘3 d3.’174 d3x5 =2 | 22 | 22
=S|M 2 \/ﬁ Qie—Sm/T / e—(;c1+3c2+;c3)/2
M ngq( ) m3 2(2m)3 2(2m)3 2(2m)3 2,/1 4 23 (27)3 24/1 + £2(27)3
x (2m)*8%(— s — #)6(3 — 1+ 3 — /1 + 7). (B.10)
1 1 .
zS|M\2n3 me)gﬁe Sm/T ¢ (B.11)

eq
where ¢ is some dimensionless number. Using equilibrium number density formula n.,(T) = (”2”‘—3)3/ 2e=m/T

the above becomes

/
<0‘112> _ fS\M|2 ((22;; e3m/T(\/W)9%e—3m/T

= %S\MF (B.12)

where & = (2m)/2¢.
The quantity & can be evaluated analytically,

3
d3x =2 Bz Bz
I _ 9/2 —z°/2 4 5 453(_ 2 _ = . 2 —9
£t </2(27r)3e ) /2 1+f§(2w)32«/1+f§(2w)3(2ﬂ) B \/1+x4 \/H%)

9
1 8 1 —

NG

Vo B.14
1927 (B.14)

B.1.1 Calculating matrix element for real scalar field

Consider theory with
AN Ay o m? XN, am g om? o,
V(g)= ¢ + 519" + 50" = 70" + 5r¢" + 56"
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The topologically distinct diagrams which contribute to 3 to 2 process are

P1 p1 Pa
P4 p1
D2 Ps
P2
.
p3 3 s Pp3
1 -~ 1 A S
(p1+p2+p3)2—m? (p1+p2—pa)2—m? (p1—ps—p4)2—m?
. . pl\/m
D2 b2 D4
P2

'/\ 5 N ./\Ps

1
(p1+p2)2—m? (p1+p2—pa)2—m?

. /
p
1

1 1
(p1+p2)2—m?2 (p1+p2+p3)2—m? (p1—pa)2—m? (p1+p2—pa)2—m?

The third and the fourth diagrams each have two more arrangements with different permutations of py, ps

and p3. The second, fifth and the sixth diagram has 5 more terms similarly. Thus we can write the matrix

element as
1 6 3
iM :AA( + + )
(p1+p2+p3)2—m2  (p1+p2—ps)?2—m?  (p1 —ps—ps)? —m?
—A3( 3 1 n 6 1
(1 +p2)? —m? (p1 +p2 +p3)2 —m?  (p1+p2)? —m? (p1 +pa — pa)? — m?
6 1

B.15
(p1 —pa)* —m? (p1 +p2—p4)2—m2) (B.15)

Assuming pq, p2, p3 as non-relativistic and py4, p5 as semi relativistic; the momentum energy conservation gives

4] R .
|| = 175] = —-m Pa = —Ts. (B.16)

The above approximations simplifies the matrix element to

. ba 9
iM _8m( 3A+a”)

1 25a2
2 2,2
SIM| =3 % 21 642 B\ —a?) (B.17)
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The 3-to-2 cross section is then

& B 25+v/5a2

2 - 75 2 =
(o) = 3SIMI = 16

- (3\ —a*)? (B.18)

B.2 Cannibal 2-to-2 scattering rate

The 2-to-2 scattering rate can be computed from the forward piece of the collision term, I's. = C /Mecan, where

C is given by

A / d*py d3ps dps d3pa

= | 2E,(27)3 2E5(27)3 2E5(27)° 2E4(27)3 (2m)'8" (p1 + P2 = ps = ) SIMPPf(p1) f(p2)-  (B.19)

Here |M|? is the matrix element, S = 1/4 includes the identical particle factors of initial and final states
and f is the phase-space distribution. Since we are primarily concerned with the scattering rate when the
cannibal particles are non-relativistic, we have dropped the final state phase space distributions.

When the cannibal fluid is in kinetic equilibrium, f is given by the Maxwell-Boltzmann distribution,
flp) = eh=B)/Te (B.20)

In equilibrium, the collision term can be written as

A T. 1 [~

¢ —ermire _Te 1 / dsA(s)V/s — 4m2 K1 (v/5/T,) (B.21)
6474 2 42

where K7 is the modified Bessel function of the second kind, s is the Mandelstam variable, and A(s) is the

integral of the squared matrix element over final state phase space,

11 Vs —4m? @

A =3%:—5 ) 1m

|M2. (B.22)
We have included factors of 1/2 in both eq. (B.21) and eq. (B.22) to account for identical particles appearing
in both the final and initial states.

For the cannibal Lagrangian given in eq. (4.1), we find the matrix element describing scattering is, in the

non-relativistic limit,

IM|? = ()\ — 5g2>2. (B.23)

3m?2

Inserting the above matrix element in eq. (B.21) and expanding the integrand in T'/m gives the leading

contribution to the collision term in the non-relativistic limit:

2\ 2
3 A — QL)
A ~ 2( _m)/T(‘ @ 2 m
¢ men ( i ) RS (B.24)

Expressing the chemical potential in terms of number density and the temperature of the cannibal fluid
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using the relation

mT. 3/2
Ncan = eu/TCncameq = e(lt_m)/TC (2;) (B25)
yields our desired result
C
Ise = n :ncan<acvc>7 (B26)

where

1 5¢2\> [T,
(0cve) = Gamarzme (A - 3mz) Vi (B-27)

B.3 Perturbed collision operators for a decaying semi-relativistic

particle

In this section we derive the contribution from cannibal decays to the cosmological perturbation equations.
We include the decay terms up to first order in w, and ¢2, or equivalently up to first order in 7, /m.
We begin by writing the Boltzmann equations for a generic particle in a perturbed FRW universe, whose
metric given by
ds® = —[1 + 2¢]dt? + a®(t)[1 — 26)(da? + dy* + dz?). (B.28)

Expressing the particle’s phase space distribution in the form, f(p,Z,t) = f(p,t) + 0f (P, &, t), where f and Jf
are unperturbed homogeneous and perturbed inhomogeneous pieces, respectively, the Fourier transform of
the Boltzmann equation is given, to first order in perturbations, by
df of kP do) p* of k-p Of 1+ .
o _OF kP g de\prof kg OF 1t ve (B.29)
dt ot oF dt | EOF a OF E
Here k is the comoving Fourier wavenumber and C is the collision operator.
We are interested in the collision operator that describes the cannibal particle decaying into pairs of
relativistic SM particles. The corresponding collision operators for the cannibal and radiation distributions

are then given by

Colfo(p)) = 5 [ dMidTla(2r)!6(E — Bx — E)5* (5 B — 5o) S M £.(0) (5.30)

Crlfr(p1)] = /deH2(27T)45(E — By — E5)8° (5 — p1 — p2)|[Mr|* fo(p), (B.31)

where f. and f, are distribution functions for the cannibals and relativistic SM particles, respectively,
dlly, = d3k/[(27)32E}], |Mr|? is the matrix element corresponding to cannibal decays into radiation, and S
is the identical particle factor. The collision term for SM radiation does not include a factor of 1/2 because
two SM particles are produced in the decay. We have neglected the contribution from final state effects as
well as those from inverse decays because the cannibal decays become important (I' ~ H) when T, < m.
To obtain the evolution equations for density and velocity perturbations we take the energy-weighted

phase space integral ( [ %E) and the phase space integral of the first moment ( | %[E - p]) of eq. (B.29).
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B.3.1 Cannibal Perturbation Equations

First we use the definition of the rest-frame decay width, I', in eq. (A.34) to evaluate eq. (B.30) for the

cannibal collision operator:
OF [.fc] =-—ml'f, (B.32)

where m is the mass of the cannibal particle. The Boltzmann equation for cannibals (eq. (B.29)) will also
include collision operators originating from cannibal self-interactions. However, these collision operators do
not contribute to the perturbation equations for energy density or velocity as the self-interactions do not
affect the energy and momentum of the fluid. Consequently, only the contribution from the decay collision

3
operator remains after integrating the Boltzmann equation for cannibals over [ (‘;T’)’SE :

apcan 1 |:H _ d¢

- _C"m 7can can I can can) — — ra can- B.
50 T o (Pean + Pean)fean +3 dt}(p + Pean) = —mIL(1 +¢)n (B.33)

To obtain the above result we used the definitions of energy density (p), number density (n), and pressure

(P) in terms of f. We also used the definition of the divergence of fluid velocity:

i 5 -
o ﬁ(1+w)/(;l7r])33(k~ﬁ)6f. (B.34)

Writing p and P in terms of homogeneous and perturbed pieces,
p=p(l+90) P = wp + 2 po, (B.35)

in eq. (B.33) and using the energy conservation equation of the cannibal fluid (eq. (4.24)) to evaluate djcan/dt,

we obtain

mﬁcan

. 1 . &lcan
O + = (14 we)le = 3¢(1 + we) + 3H(c? —we)b. = —T [w + - 5c] : (B.36)

pCal’l nCaIl

where dot denotes differentiation with respect to t.

While T, < m, we can further simplify the RHS by relating n¢an to pean and Pean using

a3 2 3
pen > [ 5255 (14 iz ) = monc + 3P (537
It follows that
5” an 1- §C§ 3
ﬁa ~ e §2w ~ 0. [1 + i(wc — )+ O(wf)} . (B.38)
can 2 C

Using the above result to evaluate dncan/Mcan in eq. (B.36), we obtain the perturbation equation for . by

expanding the terms proportional to I to first order in w,. and c?,

be + 2(1 + we)b, — 36(1 +w.) + 3 <H - g) (2 —we)be = —T'yp <1 - 2%) : (B.39)

Next we calculate the perturbation equation for the divergence of fluid velocity, 8, by evaluating the phase-
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space integration of the first moment ([ % (lg . ]5')) of the Boltzmann equation for cannibals (eq. (B.29)).
Note that all integrals that are odd in p will be proportional to Jf, so any products of such integrals with
metric perturbations can be neglected. Most of the remaining integrals can be evaluated using the definitions
of p, n, P, and 6. The only integral not covered by these definitions contains (]% -p)? in the integrand, which

is contained in the definition of anisotropic stress:

U_p(liw)/(;ijr};3pE2 [(kp)gzﬂ o (B40)

Finally, we use P = €2 pean and evaluate pea, using the energy conservation equation (eq. (4.24)) to obtain

. k2 k2 Ak
90 H(1 - 29('*7 7can*576('
-+ H( 3¢50 ad}JraJ a(l4+w.) °
Tcan (1 + ¢2) i dp /- N\ Of
I g L Ba
" [pcan(uwc)ec ﬁcan(1+wc)/(27r)3 (k p) £l (B4

We further simplify the square bracket on the RHS by approximating E ~ m + p?/(2m) and using eq. (B.37).
Simplifying the resulting expression by keeping only leading order terms in w,. and ¢ and then using the

definition of 6, we obtain

: k2 kP 2k?
0.+ H(1—3c3)0, — —tp + —0ean — ———
+ ( cs) a w‘i‘ 0 g a(l +w()

_ o 2 i d3p p2 S
= (gt d) et e e (FA) W] )

To simplify the integral on the RHS, we note that the distribution function for a non-relativistic perfect

c

fluid can be written as
f = it RIT BT 5 F(B) — F(B) o + 5 7). (5.4

where dp and U encode the density and velocity perturbations in the fluid. Using the above expression of
f in the @ definition (eq. (B.34)) we obtain 6 = ik - #. Consequently, the integral on the RHS of eq. (B.42)
simplifies to yield

3 2 . 3 2 . B
/ (;lw];i% QZZnQ (k 'ﬁ) of ~ _/ (sﬂl))s # (k 'ﬁ) F(E)@ 0) = —ipcanbe Bw - (’)(wf)} : (B.44)

Therefore, the perturbation equation for 6, is given by

. k2 k2 2k2
96+H(1—3C§)96— f’lﬁ‘f’ —0Ocan — G
a

- — 2
- o+ ) d. =Tcz0, (B.45)

to leading order in w, and ¢? for terms proportional to I

B.3.2 Radiation Perturbation Equations

We find the equation for radiation density perturbations by taking the energy-weighted phase space integral
(f %E) of the Boltzmann equation for radiation (eq. (B.29)). The resulting integral of the collision term
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on the RHS is same as that encountered for the cannibal except with an opposite sign,

3 3
(1+4) [ Gt SECrlon)] = ~(1+4) [ GE=BOAm)] = (1 +Dmneal.  (B40)
where Cr[f.(p)] and Cr[f,(p1)] are given in eq. (B.30) and eq. (B.31). The above equality is a direct
consequence of energy conservation, which sets the energy of the daughter particle equal to half of the energy
of the cannibal particle, E; = F/2. Since the expression on the LHS now features integration over the phase
space of both radiation particles, the symmetry factor S appears.

Similar to the cannibal case, we simplify the LHS of the energy-weighted phase space integral of the
Boltzmann equation by using the definitions in eq. (B.35) and using the energy conservation equation for p,.
(eq. (4.25)) to yield

¢ 40r ) F_can
P 4¢:mn {

on
— - L6 B.47
3a ﬁr w * Tcan :| ( )
Above we have made use of the fact that w = ¢2 = 1/3 for radiation. The dn¢ay in the RHS can be further
simplified using eq. (B.38) to give

40,

. . I‘_En
54 40 g5 mTean

3 2
3 7 [1/) + 9. — o + 550(100 - cs)] . (B.48)

Next, we find the perturbation equations for the divergence of the radiation fluid velocity by evaluating
the phase-space integration of the first moment ([ %[Ig - p]) of the Boltzmann equation for radiation
(eq. (B.29)). The RHS of the resulting equation is of the form

3 - A
(14 ) / (;fr)%(ﬁl HCrlf(p)]

—2(1+4) / dILdIL I (27) (5 - B)S(E — By — E2)6*(5— pr — 5a)SIMo? fulp). (B.49)

In the above integral we replace p - kE— (P1 + p2) - E/ 2 as the labels 1 and 2 are interchangeable. Moreover,

by momentum conservation we have pj 4+ po = p, which yields

3 o A
a+v) | @iﬁf&(ﬁl Bl (1))

~+) [an { [ s zn) o — p2>S|MF|2} @R f) (B.50)
:F/ (;i})?3 (E.ﬁ) \/ﬁw ~ —iT peanfe [1 - Zw} . (B.51)

Here in the second line we first expanded the denominator to first order in p?/m? and then used the definition
of 6 (eq. (B.34)) along with the result given in eq. (B.44) to obtain the final answer.
We simplify the phase space integration of the first moment of the LHS of Boltzmann equation in the same

way as we did for cannibal perturbations. Expressing the cannibal energy density in terms of the cannibal
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number density using eq. (B.37) gives

0, — —08, — — —0, =T 0. —
4a aql)Jraa Dr 4

(B.52)

K2 k? k> MMNcan {3 0 }
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Appendix C

Steady-state solutions in cosmological

perturbations

In this section we show the procedure to analytically calculate the evolution of amplitude for cosmological
perturbations that are coupled to an external source, using WKB approximation deep inside the horizon. In
particular we explain the behaviour of cannibal and radiation perturbation amplitudes as seen in figures 4.5
and 4.7. We also explain why the feedback of radiation perturbation on other density perturbations can be
neglected deep inside the horizon.

We first simplify the system of perturbation equations for cannibal and radiation, eqs. (4.46)-(4.52), for
modes deep inside the horizon. For k > aH, the equation for metric perturbation, eq. (4.52), simplifies to

give

3 (aH 2 can5c + r57‘
o= =3 (A2 peande t 08 )
2\ k Pean + Pr

We can see that ¢ < d.,d, because k > aH. Using the smallness of ¢ we can then simplify radiation and
cannibal density perturbation. In particular, we can ignore ¢’ and ¢ terms in d. (eq. (4.46)) and 4, (eq. (4.50))
equations. Moreover for cannibal perturbation we also neglect the terms ¢ — w,, w’.(a) and d(c?(a))/da as
w, is slowly varying before ay. and rapidly become negligible after as.. Next we replace ¢ in the 6 equations
for both species (eq. (4.51) and in eq. (4.47)) using eq. (C.1). Finally, we combine the § and ¢ equations:
eq. (4.51) with eq. (4.50) for radiation and eq. (4.47) with eq. (4.46) for cannibal. While combining eq. (4.51)

with eq. (4.50) we neglect derivatives of

C = chan/(Hpr)- (02)

This is because ¢’ is at order ~ 1 values only for a very short while when decays just become important in SM

radiation. Before the decays become important, ¢’ is much less than one and afterwards ¢ = 5/2 (see eq. 3.4
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and section 2.5) and so ¢’ = 0. The simplified cannibal and radiation perturbation equations are of form,

2

217V 2
1 ((L H) 1 / (1 —|—U)C) Cs k 3 Pean =
e+ (T + g1 3w <1+wc (aH)? 7§pcan+pr)567

3 (1 + wc) prar

§ a? Pean + Pr (03)
6! (a) + (@+%)5/(a)+li(g _
" a’H T 3(a2H)2"
(@H)' ¢ & ¢ 2 pean 24w,
Tt a Tt e, ) >8(a). 4
( a2H a a’2 (12 a2 pcan+pr)6 + 1+wc ado(a) (C )

We checked numerically that above equations accurately describe the evolution of cannibal and radiation
perturbations for modes deep inside the horizon.

The terms with p.qn + pr in denominator come from the contribution of metric perturbation and causes
the density perturbation to grow. For radiation perturbation, the decays from cannibal act both like a
damping term (¢ term in the coefficient of 8..) as well as provide an external source to radiation perturbation
(¢ terms in the RHS). When the decays from cannibal have not become dominant for SM radiation bath,
¢ < 1, cannibal density affects radiation density only gravitationally.

We are primarily interested in understanding cannibal perturbations when the mode is within Jeans
length scale, and radiation perturbations when mode is within comoving horizon. Both these scenarios are
well described by the generic equation of form,

(a®’H) n w?(a)

8" (a) + ( a5+ a) ' (a) + Wa = S(a)et ) Ps(@da (C.5)

where n/a and w? represents damping term and oscillation frequency and S represents a source which is
oscillating with frequency €2,. The source function, S, we shall find to be independent of ¢ in the scenarios of
our interest (see discussion in section C.4). Consequently the equation described above has two forms of
solutions: a transient (homogeneous) solution that describes the evolution of perturbations in the absence of
external source, and a steady-state (inhomogeneous) solution that is driven purely by S.

In the following subsections we shall first apply WKB approximation to find the transient and steady-state
solution for the generic equation given in eq. (C.5). The application of WKB approximation varies significantly
for the steady-state solution depending on whether S is oscillating or evolving slowly (25 = 0). Consequently,
we solve for the inhomogeneous solution separately depending on evolution of S. Finally, we describe the
behaviour of cannibal and radiation perturbation amplitudes as seen in figures 4.5 and 4.7 using the transient

and steady-state solution.

C.1 Transient (homogeneous) solution

In this sub-section we solve for the transient solution of eq. (C.5) using WKB approximation.

The transient solution will be of form

615 = Dt(a)eifﬂ(“)d“, (CG)
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where D; and §2 are the amplitude and frequency of oscillations respectively. Substituting this solution back

in eq. (C.5) and setting S = 0 gives,

i (S5 o ()]
+i [21);9 + DY+ ((222[2)/ + Z) DtQ} ~0. (C.7)

Both imaginary part and the real part above have to be zero identically. The imaginary part can be solved

exactly to give
D? Q(a?H)ela. "@41n@) _ constant, (C.8)

where a, is some scale factor which provides the initial condition. To solve for the real part we use the WKB
approximation, w?/(a?H)? > D} /Dy, D, /(aDy), i.e. the oscillations are happening much faster than the rate
at which amplitude is changing. With this approximation the real part of the equation effectively gives us

the condition

w(a)
a*H'

Qa) = (C.9)

The amplitude D; can be solved by substituting the above relation back in eq. (C.8) to give the full transient

solution as

5:(a) = 0y(ay) t(&*))e Jo, m@)din@)/2 i [ w(@)/ (@ H)da (C.10)

Note that the damping due to the Hubble term present in the coefficient of ¢’ in eq. (C.5) is exactly
compensated by the Hubble term appearing in the frequency. Hence expanding universe does not lead to
damping of perturbations as one might naively think by looking at eq. (C.5). In fact by rewriting eq. (C.5) in

terms of conformal time, dn = da/(a®>H), one can see that the Hubble damping term completely disappears.

C.2 Steady-state (inhomogeneous) solution for slowly evolving

source

In this sub-section we solve for the steady-state solution of eq. (C.5) for a slowly varying S(a) with Qg = 0,
using WKB approximation.

Since the source is slowly varying, we can expect the steady-state solution, d:(a), sourced by S will also
be slowly varying compared to w. Consequently assuming w?/(a?H)? > ad’, /65, a%8%, /s in eq. (C.5) we

obtain

(a®H)?. (C.11)

The condition on S for the above solution to hold is simply aS’/S < w?/(a*H)?.
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C.3 Steady-state (inhomogeneous) solution for rapidly oscillating

source

In this sub-section we solve for the steady-state solution of eq. (C.5) for a rapidly oscillating source using
WKB approximation.
The steady-state solution, d4, being driven by external source, should primarily oscillate with frequency

Q. Correspondingly we assume d4; of form
Sot = Dst(a)ei(¢(a)+f Qs(a)da) (C.12)

where ¢ is some phase difference which is varying slowly compared to oscillation frequency!, ¢ < Q.
Replacing the above form of ds; back in eq. (C.5), assuming
Qs> DY, /Dst, D%, /(aDs:), ¢ and separating out the real and imaginary parts of the equation we obtain,

m — 2 = a ) Cos
Dy ((CLQH)Q Qs) S( ) (¢) (013)
! (D20 (a2H)2el "@dn@) — _5(q) sin(g). (C.14)

Dy, (a2H)2ef n(a)dln(a)

The above two equations can further be simplified if ¢ < 1. We can check that indeed ¢ < 1 by dividing

the two equations,

’
Qg {Dgt (a2H)2€f n(a)dln(a)} / {Dgt(cﬁH)Qef n(a)dln(a)} Q/S/QS

+ . (C.15)

tan(9) =~ ) — o Q. Q.

The quantities in the square bracket on LHS are very small under WKB approximation. Thus we have ¢ < 1
as long as Q4 # w/(a?H).Using the above equation one can also verify our earlier assumption of ¢’ < € is
consistent.

Consequently, setting ¢ = 0 in eq. (C.13) and eq. (C.12), we obtain

S5(a) :
55 _ i f Qs (a)da. C.16
t(a) wg/(GQH)Q _Qge ( )
In the limit of Q < w/(a?H), we recover the steady-state solution obtained for slowly varying S in eq. (C.11).
Since we do not have two species with same oscillating frequency, we do not solve the steady-state solution
for the resonant case (2 = w/(a2H)).

C.4 Application to cannibal and radiation perturbations

In this section we apply the formalism of steady-state and transient solutions developed in previous subsections,
to explain the evolution of cannibal and radiation density perturbations.

The cannibal and radiation perturbations, described by eq. (C.3) and eq. (C.4) respectively, do not
simultaneously feedback onto each other. For instance, when universe is SM radiation-dominated, terms with

both ¢ and pean/(pean + pr) are much smaller than one in eq. (C.4). Consequently, the feedback of §. on 4,

Hn reality the condition is ¢’ /¢ < Qs but since ¢ < 27, the slowly varying condition is equivalent to ¢/ < Q.
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is suppressed. However, the feedback of d,. to d. cannot be naively neglected (although we shall later prove it
is negligible). Thus, in SM radiation-dominated universe, d, acts as an external source for J.. Similarly, in
cannibal-dominated universe, d. acts as an external source for d,. Hence, we can describe the evolution of
both cannibal and radiation perturbation using the generic equation given in eq. (C.5). During radiation
(cannibal) domination we shall take S = 0 in radiation (cannibal) perturbation equation.

Given an equation of form eq. (C.5), the final solution will be determined by the steady-state solution
only if the transient solution falls below the steady-state solution and if transient solution is more damped
than steady-state solution. The latter condition is because at every moment of evolution of d(a), a transient
solution is generated with a. = a in eq. (C.10). For ¢ to follow steady-state solution, the transient solution
must be suppressed compared to steady-state solution. In the scenarios where § follows the steady-state
solution, the evolution of § is insensitive to the initial conditions. This insensitivity is because the steady-state
solution only depends on the value of S at that instant and thus acts like an attractor solution.

We shall first focus on the transient solutions of §. and ¢, as they are independent of whether the universe
is cannibal or radiation dominated. For radiation perturbations, comparing eq. (C.4) with eq. (C.5), we
have n = 2¢ and w = k/(3a®H). Using eq. (C.10), we obtain the evolution of the amplitude of the transient

solution of the radiation perturbation as
Dr,t = Dr,t(a*)e_ f‘f* ((a)dln(&). (Cl?)

When universe is radiation-dominated and subsequently ¢ = Tpeen/Hpr < 1, we recover the constant
amplitude of oscillations of §,.

For cannibal perturbations we are primarily interested in the period when the mode is inside the Jeans
scale where 0. (eq. (C.3)) is well described by eq. (C.5) with w = ¢;k and n = 1 — 3w,. Substituting this

back in eq. (C.10), we find amplitude of the transient solution of cannibal perturbations as

Des = Doslan) Cs(a/*)ef J2. (=3we(@)dn(@)/2. (C.18)

cs(a)

For slowly varying w,, the above relation can be approximated as D.; o cs_l/ 2q(1=3we)/2, Additionally,
putting w = ¢k in eq. (C.10), we can see that the phase of oscillation is given by krs, where 7, is the cannibal
sound horizon (see eq. (4.67)). We use eq. (C.18) along with the phase being krs to describe the evolution of
J. during SM radiation domination in eq. (4.68).

When analyzing d, in cannibal-dominated universe and vice-versa for d., the source in the RHS of (C.3)
(or eq. (C.4)) becomes important. Consequently, the final solution is determined either by transient or
steady-state solution depending on which is larger and less damped.

In the case of §. in SM-radiation-dominated universe, radiation perturbation acts as an external source
to the cannibal perturbations with S = 1.5(1 + w.)D,.;/a? and Qs = k/(3a?H) in eq. (C.5). Consequently,
using eq. (C.16) we find the amplitude of the steady-state solution of J. as

3 (1 4+ we)Dri(a) (aH)? -2

D,y == : . 1
A R Y ER (C.19)

Above we obtain the proportionality relation by approximating w,,c? < 1 and using the fact that D, ; and
a’H are constant during radiation domination. One can easily see that the steady-state solution sourced

by the radiation perturbations is suppressed by (aH/k)? and also more damped than the transient solution

195



16|

—— numerical
transient

]
¢P

]
¢P

10_4 Ahor afy arn
10° 10° 10 106 10° 10%0
alaj
10! _ numerical
VYT Tk —— steady-state k > k
10-t | ——- steady-state k <k;
rd
Ry ---- transient
A

161 1073 \\\.\‘ :

(3 O :

NN :

N O !

10—5 \\ T E

\ ~.

N Y
\\ : \
1o Al
\ L
10-9 8hor ar A 1)
10° 102 104 108 108 1010
ala;

1

103

102
10!
10°
107!
102
1073

1074

ahor

\
Adom

—— numerical
transient
steady-state

arh

10°

102

ala;

10° 108

102

10°

1072

1074

10-°

1078

0—10

numerical
transient
steady-state k > k;
steady-state k < k;

! ]

i H

|

]

i z
{ahor Eafz

arh

10°

102 104

alaij

108

Figure C.1: Comparing the transient (black-dashed lines) and steady-state solutions (dot-dashed lines)
obtained using WKB approximation with the numerical (solid lines) . (top panels) and ¢, (bottom panels)
evolution. The left (right) panels are for scenario shown in figure 4.5 (figure 4.7) where the universe is always
cannibal-dominated (initially SM radiation-dominated). The amplitude of the transient solution are described
by eq. (C.18) for cannibal and eq. (C.17) for radiation. The steady-state solution for cannibal is only valid
when universe is radiation-dominated, a < agom, and its amplitude is described by eq. (C.19). Similarly
the steady-state solution for radiation is only valid when universe is cannibal-dominated. The steady-state
solution is broken into two parts: inside Jeans scale we plot its amplitude as described by eq. (C.20) (blue
dot-dashed line) and outside Jeans scale we plot ¢, as described by eq. (C.21) (red dot-dashed line). The
steady-state solution describes the density perturbation only when steady-state solution is larger than the
transient solution and when the transient solution decays faster than the steady-state one.
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in eq. (C.18). Thus deep inside the horizon, §, can never appreciably affect ¢, irrespective of whether the
universe is radiation or cannibal dominated. This is seen explicitly in the top panels of figure. C.1 where é,
always follows the transient solution. In the top right panel, the steady-state solution (blue dot-dashed)—
determined by §, during SM-radiation domination— is heavily damped and thus cannot overcome transient
solution.

We break down the steady-state solution of ¢, into two components. The first one corresponds to the
steady-state solution sourced by oscillating §. when the mode is inside the Jeans length, and the second one
corresponds to the steady-state solution sourced by monotonically evolving §. when the mode escapes the Jeans
length. For the first case, since 4, is oscillating rapidly frequency csk/a?H), we have ad’, ~ (csk/aH)d. > ..
Consequently the 0., term in the RHS of eq. (C.4) is the dominant source for §,. Correspondingly, the
amplitude of &, can be described using eq. (C.16) with S = (2 4+ w.)(QsD.+/[(1 + we)a] and Qg = c5k/(a*H)
giving,

1 (aH) 2 + wc CSDC,t
3= & 1gw cPet > im k> ky. (C.20)

Dr,st =

Above we obtain the proportionality relation by approximating w.,c? < 1 and H o a=3/2. In the bottom
panels of figure C.1 we compare the numerical §, with D, s (blue dot-dashed line) described above. For the
case in left panel, ¢ is small initially and correspondingly D,.; has constant amplitude. Once the decays in
SM radiation bath become important, ¢ becomes 5/2 and correspondingly D,., decays. After D, , falls below
D, st, Dy s+ accurately describes the behaviour of §, while ¢, is oscillating. In the right panel, ¢ is initially
very small but a growing quantity. Due to this, D, . is orders of magnitude smaller than the transient
solution but is growing. Thus the evolution of 4, is given by D, even after cannibal domination. The
transient solution gets damped once cannibal decays in SM-radiation bath become important. The fact that
escape from Jeans scale matches with the point where cannibal decays become important in SM-radiation
bath (in the right plot) is due to pure coincidence of parameters. In both the panels we stop plotting D, 4
once the mode exits the Jeans scale.

Next we analyse the steady-state solution of §,. once the mode escapes the Jeans scale. In this case
ad!, = §. < a. Correspondingly the source is determined by both §/, and ¢, terms in the RHS of eq. (C.4). We
estimate S in eq. (C.11) by neglecting w, and setting ad., = d. in RHS term of eq. (C.4). Doing so results in

2 2
(CLH) dln(a H)C+C2 +C+ 2pcan

_2pean_ 15 k< hy. C.21
2/3 | dln(a) Pean + Pr = (€20

Or st =
Note that d, ¢ is not an oscillating solution unlike the solutions we discussed earlier. Using the fact that
Hxa 3?2, 6, xaand ¢ = 5/2 before reheating, we can see that 0, s remains constant. Interestingly, d.
sources 0, via both the decays (¢ terms) and the metric (pean/(Pean + pr) term). In the bottom left panel of
figure C.1 we see that the behaviour of 4, outside of Jeans scale is accurately explained by 4, s; described
above (red dot-dashed line). After reheating both ¢ and peq, drop exponentially thereby leading to the decay
of 6, s just after reheating. Once the decay of 6, s+ becomes larger than the decay of D, ;, the transient
solution takes over. Correspondingly 4, oscillates with constant amplitude after reheating. In the bottom
right panel, we find the d, 5; to be orders of magnitude smaller than the homogeneous solution. However, had
there been sufficient time between the decays becoming important in radiation bath and reheating, then D, ;
would have eventually decayed below 4, s;. After which the steady-state solution would have governed the

evolution of 6,.
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Finally, note that the effects of oscillating density perturbations on any other density perturbations,
through gravitational coupling, can always be ignored deep inside the horizon. In the above discussion, we
showed the negligible feedback of §, for cannibal perturbations using eq. (C.20). One can show that the
steady-state solution imposed by oscillating d. on dpas will also be given by eq. (C.20), except with w, and ¢?
set to 0, the factor of 1/3 replaced with ¢2, and D, replaced by D.;. Again we can see that the steady-state
solution imposed by cannibal on DM is suppressed by factors of (aH)/k?. Had there been no cannibal decays
into SM-radiation, ( = 0, the feedback of oscillating . on §,, would have also been negligible.
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Appendix D

Separate universe principle and total

density fluctuations

The separate universe principle (see, e.g., Refs. [229, 230]) posits that each super-horizon sized patch can be
treated as an isolated, independent, Friedman-Robertson-Walker (FRW) universe. Any fluctuations on scales
larger than the horizon simply become a part of the background variables of that island universe.

We begin by demonstrating that zero-mode fluctuations (Fourier mode k = 0) can be absorbed into the
background quantities (density, pressure, etc.). The reason is straightforward. After fixing our coordinate
system (fixing the gauge), there remains a residual coordinate transformation which can be used to absorb
the fluctuations into a redefinition of the background. This can be seen explicitly as follows. We write the
perturbed FRW metric as

—(1 +21/)) —a&ﬂ

] (D.1)
—adif  a®[(1+2¢)di; + 20;0,7]

Guv] =

Under an infinitesimal coordinate transformation (gauge transformation) z#' = z* + &#, with &; = 9;¢, the

scalar parts of the metric perturbations transform as

. 1 .

W=yp-£, B'=B- =" +aé,
¢'=¢— HE, Y =v-¢C (D.2)
The two scalar parts of the coordinate transformation, £° and &, can be used to set two of the four scalar
perturbations in eq. (D.1) to zero. In conformal Newton gauge, £ and ¢ are chosen to set =~ = 0 and
make the metric diagonal. However, because only gradients of 5 and -y appear in the metric, spatially uniform

changes of coordinates leave the metric diagonal. Specifically, consider a transformation of the conformal

Newton metric given by

0 =€t € = wa'a? s, (D.3)
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where w is a constant. The metric perturbations transform as

W =) —¢ B = —ée(t)7 (D.4)
¢ = ¢ — He(t) v = —wr'z? ;. (D.5)

Because only spatial derivatives of 8 and « appear in the metric, the transformation in eq. (D.3) leaves the

metric diagonal. The diagonal term from 4’ can be absorbed into ¢ to give

’ll/ = 1/J - éa (D6)
¢ =¢— He(t) + 0,0, /3= ¢ — He(t) — 2w. (D.7)

The transformation as described in eq. (D.3) keeps the metric diagonal and is a residual gauge freedom for
conformal Newton gauge. This residual gauge freedom in eqgs. (D.6) and (D.7) can be used to remove the
spatially homogeneous fluctuations in ¢ and 1, and set the k = 0 fourier mode to zero, ¢j,_, = ¢¥}._, =0,

giving the relations
He + 2w = ¢p—o, € = Prp—o. (D8)

In the absence of metric perturbations, the Einstein equations imply that the total density perturbation
vanishes. We can demonstrate this explicitly by noting that, under the residual gauge transformation,

eq. (D.3), the density perturbation transforms as

1 .
’ e T o
0p" = 0p — pe e (4wGdép — 3HHe), (D.9)
where in the second equality we used Friedmann equation for the background, H? = 87Gp/3. Further,

because w = const., eq. (D.8) gives us the relation
He = d—0 — Hpeo. (D.10)
Substituting this result into the gauge transformation given in eq. (D.9) for k¥ = 0 mode, we obtain

1 .
5Py = m(élﬂGépk:o — 3H¢p—o + 3H?*h—). (D.11)

The above vanishes identically after using the Einstein equation for dpgp—g. The residual gauge transformation
in eq. (D.3) self-consistently removes all zero mode perturbations in the total density. The shift € that is
required to gauge away the perturbations is simply a uniform shift in coordinate time.

While the above analysis holds exactly for £ = 0 mode, it can be extended to superhorizon modes up
to corrections of order O(k?/(aH)?). To see this, consider a Universe with a single superhorizon mode
fluctuation, ¢, with k¥ < aH. On a patch of the Universe with a scale sufficiently small compared to k!,
but still large compared to the horizon, the fluctuation ¢, appears almost constant. If we consider two such
patches separated by a distance comparable to k™!, each patch samples a different approximately uniform
value of ¢y. Consequently, in each patch, we may use the residual gauge freedom to remove this approximately
constant ¢y. The approximately uniform shift in coordinate needed to make each patch uniform is different

in each patch. Due to the equivalence principle, the only observable effects of such a shift enter at order
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O(k*/(aH)?).

D.1 Adiabatic vs isocurvature perturbations and residual gauge
shifts

Above we showed that the total density fluctuations can be removed on super-horizon scales. However, if the
Universe is filled with a multi-component fluid, the perturbations in each fluid species need not necessarily
vanish after this procedure. In fact, only adiabatic perturbations in each species necessarily vanish, as we

now demonstrate. Adiabatic perturbations between different species are related by

o1 _ 9p2 _ 903

" = ...=E€E (D.12)
P1 P2 P3

where € is the quantity obtained by solving eq. (D.8). We also show that isocurvature perturbations do
not in general vanish, but can be absorbed into the background quantites within each patch. In a Universe
with isocurvature perturbations, separate Universes evolve with both shifted clocks due to the background
adiabatic fluctuations, but also spatially varying background densities, as we now demonstrate.

Consider now a universe comprised of two non-interacting perfect fluids, with densities p; and p,. We
suppose that on large scales k=! > (aH)™!, there exists density fluctuations in both species. We then
consider a patch of the Universe small compared to k~! but large compared to the horizon. In this patch,
after the residual gauge shift with magnitude specified by eq. (D.8), the total density perturbation in this

patch vanishes giving
Optor = 0Py +3ph = 0. (D.13)

However, note that this only constrains the total density to vanish; it is not necessary for individual §p} to
also vanish. When they do, then using eq. (D.9), we see that the species satisfy eq. (D.12).

For an isocurvature mode, the density perturbations in individual species do not vanish after the gauge
shift

dpy = —6ph # 0. (D.14)

However, these isocurvature perturbations can be absorbed into the background variables. To see this

explicitly we consider the zero-mode density-perturbation equation,
8pi + 3H(1 + w;)dp; + 3pid = 0, (D.15)
where ¢ = 1,2 and w; is the equation of state of the i-th perfect fluid. After gauge shift this becomes
8p; + 3H (1 + w;)dp, = 0, (D.16)
which can be trivially absorbed into the a redefinition of the background density

pi = pi + 0p;. (D.17)
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This redefinition will not affect the metric or other Einstein variables as they only depend on total density in

the universe, which remains unchanged after the absorption of isocurvature perturbations.
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