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Abstract

There is no fundamental requirement for all particles to be charged under the Standard Model gauge

symmetries. Consequently, there could naturally be a hidden sector of particles that have gone undetected

and dark matter could reside in it. A hidden sector of particles could naturally have a different temperature

than the plasma formed by the Standard Model particles in the early universe. Such a hidden sector can alter

early universe cosmology from the assumed behavior in a variety of ways, which we explore in this thesis.

First, we discuss how both hidden sector and Standard Model sector can be populated via inflaton decays

after inflation. Next, we explore how thermally decoupled hidden sector with a massive lightest particle

(m≫ MeV) can enhance the abundance of sub-Earth mass dark matter microhalos today. We then explore

how hidden sectors with a massless lightest particle can cause an inhomogeneous distribution of helium to

hydrogen ratios if the hidden sector never had any interaction with the Standard Model sector. If instead the

hidden sector had some interaction, then we show how the constraints on dark radiation energy density can

be employed to constrain the interaction strength between the two sectors.
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Chapter 1

Introduction

The Standard Model of particle physics has had resounding success in explaining the nature of fundamental

particles that form the building blocks of all known matter [1]. However, a host of observational data from

galactic rotation curves to the cosmic microwave background (CMB) signals the existence of an unknown

form of matter comprising more than 85% of the matter in our Universe [2, 3]. While this dark matter could

be a single particle or a family of particles missing from the Standard Model of particle physics, to date no

signs of non-gravitational interaction of dark matter with the Standard Model have been detected. Further,

the traditional weakly interacting massive particle (WIMP) paradigm for dark matter is under ever-increasing

pressure from the dearth of observational signatures in collider, direct, and indirect detection experiments [4,

5].

An alternative — and arguably more generic — scenario is that there exists a whole sector of particles,

one of them comprising the DM today, that do not interact with Standard Model gauge forces: the strong

and the electroweak force, but might have their own dark gauge forces. Such hidden sectors are also predicted

in several classes of string compactification theories that attempt to unify the Standard Model of physics

with gravity [6]. Moreover, exotic dynamics in a hidden sector can lead to substantial changes in dark matter

properties relative to a traditional WIMP, which might explain the null results in the terrestrial experiments

while also motivating new strategies for detection (e.g., [7–15]).

In standard cosmology, all the Standard Model particles equilibrate with each other to form a thermal

plasma in the early universe (within ∼1 second of the birth of the universe), and this thermal state washes

out any information of the prior history. Consequently, we have little to no information about the state

of the universe prior to Big Bang nucleosynthesis (BBN), which occurs when the Standard Model plasma

is at a temperature of around TSM ∼ MeV. However, if a hidden sector of particles exists, then they may

not equilibrate with the Standard Model particles in the early universe. This opens the window for the

information of the early universe to remain preserved until today and thus be observable. In this thesis, we

explore different potentially observable ways an out-of-equilibrium hidden sector can cause deviation from

the assumed cosmology prior to BBN. As the particles in the early universe are at much higher temperatures

than today, the cosmological imprints we study allow us to probe the properties of hidden sector at very high

energies, E > MeV.

A key parameter on which any observable in hidden sector cosmology depends on is the relative temperature

between the hidden sector particles and the Standard Model particles.1 This temperature ratio between the

1Although we consider the hidden sector to not thermalize with the Standard Model plasma, we will be primarily interested
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two sectors is determined by the processes that populate the two sectors at the very beginning of the universe.

In traditional cosmology, the Standard Model particles are considered to be populated by the decay of the

inflaton field. Here the inflaton field is a spin-0 field that causes an epoch of accelerated expansion right

after the birth of the universe, for which we have compelling evidence from the observations of the CMB

spectrum [16]. A natural mechanism to populate the hidden sector would be to have the inflaton field to also

decay into hidden sector particles. In Chapter 3, which is based on the work in Ref. [17], we study how the

temperature ratio between the hidden sector and the Standard Model sector depend on the inflaton couplings

with the two sectors.

After the temperature of the hidden sector, the mass and couplings of the lightest hidden sector particle

are the next most cosmologically relevant parameters. This is because at any given hidden sector temperature,

all hidden sector particles with masses larger than the temperature would typically have annihilated or

decayed into lighter hidden sector particles. As the late time behavior of hidden sector has maximum impact

on cosmological observables, the behavior of lightest hidden sector particle has the most phenomenological

relevance.

For instance, if the lightest sector particle has a large mass, m≫ MeV, then it can generically cause an

early matter dominated era (EMDE) prior to BBN. Such an EMDE enhances the abundance of dark matter

micro-halos with masses smaller than 10−6 M⊙ [18, 19]. A large abundance of micro-halos would boost the

DM annihilation signals and thus can noticeably change predictions for indirect detection experiments like

Fermi-LAT [18–20]. These halos might also be detected by pulsar timing arrays [21, 22] or by their impact on

stellar microlensing within galaxy clusters [23–25].

In chapter 4, based on the work in Refs. [26, 27], we study a scenario where the lightest hidden sector

particle has a large mass (m≫ MeV) as well as strong number changing self interactions. In this case, once

the temperature of the hidden sector falls below the mass of the lightest particle, its strong number-changing

self-interactions can cause the particles to annihilate among themselves. This self-annihilation converts the

particles’ rest mass energy into thermal energy, leading to a logarithmic evolution of the temperature of

its plasma, T ∝ 1/ log(a) [7]. This self-annihilating phase of evolution is commonly known as cannibalism

and the particle that undergoes such an evolution is known as a cannibal. We show that when the lightest

hidden sector particle is a cannibal, then there can be an early cannibal-dominated era (ECDE) prior to

BBN. Similar to EMDE, we show that an ECDE also enhances the population of dark matter microhalos

today and we study how the cannibal particle properties are imprinted in the microhalo spectrum.

If instead the lightest hidden sector particle is massless, then the lightest particle contributes to dark

radiation today. The fluctuations in the CMB spectrum are sensitive to the energy density in dark radiation,

and as no dark radiation has been observed, the energy density in dark radiation is severely constrained [3].

In chapter 4, which represents the content in Ref. [28], we show how one can convert the constraint on dark

radiation density to a constraint on interactions between Standard Model sector and hidden sector that might

be active prior to BBN.

While there has been no evidence of dark radiation in current measurements of CMB, it is possible that

we might detect dark radiation in future with improved CMB measurements. If we do observe dark radiation,

then a natural question one might ask is whether the particle behind dark radiation was always out of contact

with Standard Model particles or if it had some contact in the early universe. We can distinguish between the

non-interacting and weak-interacting scenario by checking if the density fluctuations of dark radiation is in or

out of sync with the density fluctuations of photons. In chapter 5, which represents the work in Ref. [29],

in the regime where the internal hidden sector interactions are strong enough to have internally thermalized the hidden sector.
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we show that an out-of-sync fluctuation, also known as isocurvature, produces different amounts of helium

to hydrogen ratio (He/H) in different parts of the universe during BBN. Consequently, we explain how an

absence of excess variance in the measurements of He/H from different galaxies can be used to constrain

isocurvature between dark radiation and photons.

Before proceeding with the detailed discussion of above topics, we provide a brief review of the thermal

history of the Standard Model particles during and prior to BBN in chapter 2. We highlight the primary

physics that determine the evolution of the thermal plasma in an expanding universe and thus lay the ground

work for rest of the thesis.

We work in natural units which set ℏ = c = 1, while retaining factors of the reduced Planck mass,

MPl = 1/
√
8πGN ≈ 2.435× 1018 GeV.
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Chapter 2

Early Universe thermal cosmology

In this chapter we review the standard cosmology of the universe within the few seconds after its birth,

when all the Standard Model (SM) particles were in a hot thermal plasma. We begin in section 2.1 by

first reviewing the cosmological equations that determine the evolution of this early universe. Using these

equations, we show why the early universe is primarily dominated by relativistic particles of the SM and that

the contribution of dark matter is negligible. In section 2.2, we review the Boltzmann equations that describe

how particles maintain thermal equilibrium in an expanding universe. Using these equations, we explain why

the SM particles form a relativistic plasma in the early universe. Subsequently, we focus on the dynamics of

the SM plasma in section 2.3. In particular, we review 1) the evolution of the number of particles in the SM

plasma as the plasma cools, 2) how the matter-antimatter asymmetry determines the proton abundance,

3) the decoupling of neutrinos, and finally 4) the formation of helium and deuterium nuclei at Big Bang

nucleosynthesis. In section 2.4, we discuss a possible minimal origin of dark matter from the SM plasma.

Finally, in section 2.5 we discuss how an out-of-equilibrium hidden sector might be produced from the SM

plasma in the early universe via renormalizeable interactions and highlight the attractor nature of the system

of equations governing the hidden sector.

2.1 Equations of motion in a homogeneous and isotropic universe

Einstein’s theory of general relativity describes how the metric of spacetime depends on the matter content

at a given location. When the theory is applied to the whole universe along with the cosmological principle

that the universe on large scales is isotropic and homogeneous, we find that our universe must dynamically

expand with time.

To capture this expansion we work in the comoving coordinates, xi, which remain fixed with time, while

the physical coordinates are given by axi, where a is the scale factor of the expanding universe. The metric

for an expanding flat universe is then given by

ds2 = dt2 − a2(dx2 + dy2 + dz2), (2.1)

where t denotes time. More generally, the universe can also have an overall curvature. However, as the

current observations place stringent limit on the existence of such curvature [3], we only focus on the spatially

flat universe.
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The energy momentum tensor for an isotropic and homogeneous universe is given by

Tµν =


−ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 , (2.2)

where ρ and P are the total energy density and pressure of the matter in the universe, respectively.

Using the metric in eq. (2.1) and the energy momentum tensor in eq. (2.2) in the Einstein equations gives

us the Friedmann equation:

1

a

da

dt
=

1√
3MPl

√
ρ ≡ H, (2.3)

where H is called the Hubble rate, and MPl is the reduced Planck mass. This equation highlights how the

expansion rate of the universe depends on the energy content of the universe.

The energy density of the total matter in the universe also evolves due to the expansion of the universe.

The evolution can be determined through the energy momentum conservation equation, ∇µT
µν = 0, which

yields,

dρ

dt
+ 3H(ρ+ P) = 0. (2.4)

As H, ρ and P are all positive, the above equation implies that the energy density of the universe dilutes as

the universe expands. Conversely, in the early universe when the scale factor was much smaller, the matter

content was compressed to much higher densities.

To complete the coupled set of equations given by eq. (2.4) and eq. (2.3), we need to specify the relationship

between P and ρ. This relationship is commonly parameterized through the equation-of-state,

w =
P
ρ
. (2.5)

The equation of state so defined is better analyzed for individual particles comprising the total matter content

in the universe.

For any particle i in a homogeneous and isotropic universe, their phase space distribution function fi is

only a function of the particle’s energy. Both the particle’s energy density and pressure can be evaluated

using the distribution function via

ρi = gi

∫
d3p

(2π)3
Efi(E), Pi = gi

∫
d3p

(2π)3
p2

3E
fi(E), (2.6)

where gi is the number of degrees of freedom of particle i. One can see that for relativistic particles, i.e. for

particles’ whose distribution function is heavily weighted at p≫ m, the equation of state is simply wi = 1/3.

Conversely, for non-relativistic particles we have wi ≪ 1. Thus, from eq. (2.4) we can see that for relativistic

particles ρ ∝ 1/a4, while for non-relativistic particles, ρ ∝ 1/a3. Hence, at sufficiently early times, we expect

the energy density of relativistic particles to dominate the universe.

Note that even if a particle is non-relativistic today, we expect them to become relativistic at sufficiently

early times. To see why, we need to look at the geodesic equation of motion of individual particles in
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expanding spacetime. For a particle with four momenta pµ = (E, p⃗), the geodesic equation yields,

|p⃗| ∝ 1/a. (2.7)

Consequently, for a≪ 1 in the early universe, we can expect all particles to become relativistic, |p⃗| ≫ m.

The redshifting of momenta also explains the difference in the evolution of ρ between relativistic and

non-relativistic particles. In particular, the energy of a relativistic particle also redshifts as E = p ∝ 1/a,

but that of a non-relativistic particle stays constant, E = m. As the energy density of particles can be

approximately expressed as ρ ∼ ⟨E⟩n, where ⟨E⟩ is the average energy and n is the number density, we can

see that for non-relativistic matter ρ ∝ 1/a3 because the number density dilutes as 1/a3. Meanwhile, for

relativistic matter ρ ∝ 1/a4 because the average energy of the particle is also redshifting in an expanding

universe.

From observations of our universe, we find that the matter in our universe is comprised of SM particles as

well as an unknown dark matter. While the present day dark matter abundance is about five times larger

than the abundance of SM particles, in the early universe the energy density of SM particles dominates over

that of dark matter. In particular, experiments indicate that the energy density of neutrinos and photons

overcome the dark matter density at aeq/a0 = 1/3411 [3], where a0 is the present day scale factor and aeq

is the scale factor at matter-radiation equality. As we go further back in time, the photons and neutrinos

reach sufficiently high energies to pair-produce the rest of the SM particles at relativistic energies and form a

plasma. In this thesis we are primarily concerned in the early history of the universe, when the plasma of SM

particles was at temperatures larger than T ≳ 0.1 MeV.

At such early times, the Hubble rate is predominantly determined by the energy density of SM particles,

and the Friedmann equation yields,

H =
1√
3MPl

√
ρSM ∝ 1/a2. (2.8)

On cosmological timescales, only those particle interactions can have a significant impact whose rates are

larger than the Hubble rate. Consequently, the evolution of H is critical in determining when various

non-gravitational interactions become important cosmologically.

2.2 Equilibrium in an expanding universe

In this section we discuss how particles maintain thermal equilibrium in an expanding universe and highlight

the conditions necessary to maintain thermal equilibrium. Using these conditions, we then argue why the

SM particles come into thermal equilibrium in the early universe. Towards the end, we discuss how the

distribution function of individual particles evolve once they fall out-of-equilibrium due to the expansion of

the universe.

2.2.1 The Boltzmann equation

We begin by first considering the evolution of the single particle phase space distribution function, f(x⃗, p⃗, t),

in an expanding universe. The distribution function, f , quantifies the number of particles in a volume element

6



of phase space, d3p⃗
(2π)3 d

3x⃗, such that the number density is determined by

n(x⃗, t) =

∫
d3p⃗

(2π)3
f(x⃗, p⃗, t). (2.9)

Note that f is a Lorentz scalar because both the phase space element, d3x⃗d3p⃗, and the total number of

particles N =
∫

d3p⃗
(2π)3 d

3x⃗f are Lorentz scalars.

In an isotropic and homogeneous universe, the distribution function is only a function of particle energy,

f(E, t). The evolution equation for such a distribution function in an expanding spacetime is given by the

following Boltzmann equation,

∂f

∂t
−H

p⃗2

E

∂f

∂E
= C[f ], (2.10)

where C is the collision operator that quantifies the change in particle number occupying momenta p⃗ due to

collisions with other particles. The collision operator is given by

C[f ] = −
∑
pr

1

2E

∫
dΠadΠb...dΠidΠj ...|Mp|2S(2π)4δ4

(
p+

∑
i

pi −
∑
a

pa

)

×
[
f(p)fa(pa)fb(pb)...[1± fi(pi)][1± fj(pj)]...− fi(pi)fj(pj)...[1± f(p)][1± fa(pi)]...

]
, (2.11)

where the summation goes over all processes of form ψ + i+ j + ..→ a+ b such that the final state does not

have the original ψ particle occupying momenta |p⃗|. Above

dΠi =
d3p⃗i

(2π)32Ei
=

d4pi
(2π)3

δ(p2i −m2
i ) (2.12)

is the Lorentz-invariant phase space element of the involved particles, |Mp|2 is the spin-summed matrix

element for the given processes, S is the symmetry factor to account for identical particles in the initial

and final states, and the δ4 term is a Dirac delta enforcing energy-momentum conservation. In the square

brackets in eq. (2.11) we are subtracting the number of times the reverse processes occurs from the number

of times forward process occurs. Here for simplicity we have assumed that |Mp|2 is the same for reverse and

forward process, which is only true for processes that are CP invariant. The factors of fa(pa) denote the

probability of finding particle a with momentum pa while the factors of [1±fi(pi)] indicate Bose-enhancement

or Pauli-suppression by final state particle i depending on whether it is a boson or fermion.

If the interaction rate of a given process is much larger than the Hubble rate, then on time scales much

shorter than the expansion rate of the universe, the Boltzmann equation for all the involved particles would

be driven to an equilibrium state where the square brackets in eq. (2.11) for the given process becomes zero.

The detailed balance of the square brackets is satisfied only if

f = feq ≡
1

exp (E − µ)/T ± 1
, (2.13)

and if µ+ µi + µj + ... = µa + ..+ µb. Above, the plus (minus) sign is if the particle is a fermion (boson), T

is the temperature of the system, and µ is the chemical potential of the particle.

In the limit f = feq, the collision terms on the RHS of the Boltzmann equation (eq. (2.10)) are set to
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zero. Assuming feq also satisfies the LHS of the Boltzmann equation, requires

∂feq
∂t

−H
p⃗2

E

∂feq
∂E

= 0. (2.14)

Substituting the equilibrium distribution yields

EH

(
d ln(aT )

d ln a
− m2

E2

)
+ T

d(µ/T )

dt
= 0. (2.15)

For relativistic particles, we can see that f = feq(p, T, µ) with T ∝ 1/a and µ/T = constant satisfies both

LHS and RHS of the Boltzmann equations independently. For non-relativistic particles the LHS and the

RHS cannot be be independently satisfied. Any non-zero values from the LHS of the Boltzmann equation for

non-relativistic particles is canceled by the collision term on the RHS by having small distortions around the

equilibrium distribution.

Thus one cannot find the temperature evolution of a plasma that also have non-relativistic particles

just by looking at the Boltzmann equation of a single particle. The temperature evolution can be found by

applying energy-momentum conservation for the total plasma, eq. (2.4), and expressing the energy density

and pressure in terms of the temperature of the plasma. In the next subsection we provide the expressions

for these densities and then using these expressions we find the evolution of temperature of the Standard

Model plasma in section 2.3.1.

2.2.2 List of equilibrium parameters

In this subsection, we tabulate the expression for energy, pressure and number density in terms of temperature

and chemical potential.

For relativistic bosons with negligible chemical potential, we have

ρ =
gπ2

30
T 4, n =

gζ(3)

π2
T 3, P =

ρ

3
. (2.16)

For relativistic fermions with negligible chemical potential, we have

ρ =
7

8

gπ2

30
T 4, n =

3

4

gζ(3)

π2
T 3, P =

ρ

3
. (2.17)

If we approximate the equilibrium distribution of particles as Maxwell-Boltzmann distribution, feq =

e(µ−E)/T , then we obtain

ρ = eµ/T
gm4

2π2

(xK1(x) + 3K2(x)

x2

)
, n = eµ/T

gm3

2π2

K2(x)

x
, P = nT, (2.18)

where x = m/T and Kn is the modified Bessel function of the second kind. In the limit, T ≫ m or x≪ 1, ρ

and n simplify to

ρ = eµ/T
3gT 4

π2
, n = eµ/T

gT 3

π2
. (2.19)
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Whereas in the limit T ≪ m we obtain

ρ = mn, n = e(µ−m)/T g

(
mT

2π

)3/2

. (2.20)

Note that the distribution of both bosons and fermions approximate to Maxwell-Boltzmann distribution in

the limit, T ≪ m.

For Standard Model particles, the chemical potential is always negligible, µ≪ T , when the particles are

relativistic. Since particles and antiparticles must have opposite chemical potential in equilibrium, the excess

of particles over antiparticles for µ≪ T and T ≫ m is

nb − n̄b =
gT 3

3

µ

T
nf − n̄f =

gT 3

6

µ

T
, (2.21)

where the first relation is for bosons and the second one is for fermions.

While we do not see large chemical potentials in the Standard Model, it is possible for fermions to have

a significant chemical potential even when they are relativistic because of Pauli-exclusion. In the limit

µ≫ {T,m}, when fermions are degenerate, we find

ρ =
1

8π2
gµ4 n =

1

6π2
gµ3 P =

ρ

3
. (2.22)

For bosons, the chemical potential has an upper bound, µ < m. In the limit µ→ m, any new particles

added to the system fill the zero momentum state and lead to the formation of a Bose-condensate. Thus, the

condition µ≫ T can never be achieved for a relativistic boson.

2.2.3 Condition for thermalization

So far we have been interested in the regimes where the rates at which the thermalizing interactions occur

are much larger than the expansion rate of the universe. To see why that condition is generically satisfied in

the early universe, let us consider the process: e+ + e− → 2γ, which maintains electrons and positrons in

thermal equilibrium. Integrating the Boltzmann equation for electrons (eq. (2.10)) with
∫
d3p/(2π)3 yields,1

dne−

dt
+ 3Hne− = −

∫
dΠe−dΠe+dΠγ1dΠγ2 |M|2S(2π)4δ4(pe− + pe+ − pγ1 − pγ2)

×
[
fe−(pe−)fe+(pe+)[1 + fγ(pγ1)][1 + fγ(pγ2)]− fγ(pγ1)fγ(pγ2)

]
. (2.23)

For simplicity, we have ignored the Pauli-suppression from electrons above. Ignoring final state quantum

statistical effects of particles amounts to setting their equilibrium distribution to be Maxwell-Boltzmann,

feq = e(µ−E)/T , as can be seen using detailed balance. When e+ + e− → 2γ process is in equilibrium, the

chemical potentials of electron and positron satisfy, µe− +µe+ = 0 because the photons do not have a chemical

potential.2 As the process goes out of equilibrium, we consider the distribution function of electron and

1Integrating the the Boltzmann equation eq. (2.10) with
∫
d3p E/(2π)3 returns the Boltzmann equation for energy density, ρ,

given in eq. (2.4), except on the RHS we have collision terms that describe energy transfer from the concerned particle to other
particles.

2Since the number of photons is not conserved in Standard Model processes, the photon chemical potential is driven to zero
when photon number changing processes are in equilibrium.
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positron to become of the form,

fe±(pe±) = eµ̃±/T feq,e±(pe±) =
ne±

neq,e±
feq,e± , (2.24)

where neq,e± is the number density of electrons/positrons if they are in thermal equilibrium, f = feq. Doing

so simplifies the collision term on the RHS to

dne−

dt
+ 3Hne− = ⟨σv⟩(T )[neq,e−neq,e+ − ne−ne+ ], (2.25)

where

⟨σv⟩(T ) = 1

neq,e−neq,e+

∫
dΠe−dΠe+dΠγ1dΠγ2 |M|2S(2π)4δ4(pe− + pe+ − pγ1 − pγ2)feq,γ(pγ1)feq,γ(pγ2).

(2.26)

From eq. (2.25) it is clear that that electron positron annihilation rate can maintain electrons in thermal

equilibrium if

⟨σv⟩(T )neq,e+
H

> 1. (2.27)

Now let us see how this ratio evolves with the scale factor, a, as we go back in time. Sufficiently early when

the universe is radiation dominated, we know that the Hubble rate evolves as H ∝ 1/a2. In contrast, the

equilibrium number density of electrons and positrons grows exponentially for T < me because neq,e± ∝
e−me/T and T increases with decreasing scale factor. Because of the electromagnetic gauge interactions, the

cross-section ⟨σv⟩ for electrons is large enough for the ratio in eq. (2.27) to exceed one at some T < me.

Consequently, as we go back in time and T approaches me, the photons obtain significant energy to pair

produce electrons and positrons and form a thermal bath where electrons and positrons are in equilibrium.

While here we concentrated on electrons, similar analysis also holds for most of the other particles in the SM

and thus we expect all of them to come into thermal equilibrium at some point in the early universe.3

2.2.4 Thermal decoupling

Apart from neutrinos and photons, all other particles in the SM fall out of thermal equilibrium once the

temperature falls below the mass of the particle. After the particles become non-relativistic, their equilibrium

number density is Boltzmann suppressed, neq ∝ e−m/T , because while the particles undergo annihilations

into lighter particles in the SM plasma, the lighter particles do not have sufficient energy to produce the

massive particles in the reverse process. As neq falls exponentially with temperature, ⟨σv⟩(T )neq soon falls

below the Hubble rate. Once that happens, the annihilations stop and particle number density is conserved

from that point onwards. The deviation from the equilibrium number density is encaptured by particle

developing a chemical potential, n = eµ̃/Tneq, that no longer satisfies chemical balance equation imposed by

by the particle number changing interactions. Thus, a particle falls out of chemical equilibrium whenever

3Interestingly, even much earlier in the history of the universe, T > 1016 GeV, the SM particles are expected to fall out of
thermal equilibrium. This is because when all the involved particles are relativistic, the only dimensionful quantity that can set
interaction rate is the temperature of the plasma, Γ ∝ T . Consequently, if we extrapolate sufficiently back in time, the Hubble
rate, H ∝ T 2, exceeds all inter particle interaction rate. Here we do not focus on such early history because one generically
expects new physics to come into play and alter this naive extrapolation.
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its number changing interaction rate falls below the Hubble rate. We revisit this departure from chemical

equilibrium in more detail in the context of WIMP dark matter in section 2.4.

Note that even if the particles have fallen out of chemical equilibrium they can still maintain the same

temperature with rest of the plasma via elastic scattering processes. For electrons and positrons this occurs

via Compton scattering, e + γ → e + γ. One can check that detailed balance for such elastic scattering

processes enforce particles to have the same temperature, but allow the particles to have an arbitrary value

of chemical potential. When these scattering processes are larger than the Hubble rate, the particles are said

to be in kinetic equilibrium. Almost always one finds that the particles fall out of kinetic equilibrium much

after chemical equilibrium.

For particles that fall out of chemical and kinetic equilibrium after they become non-relativistic, their

distribution remains that of a thermal particle. This is because, in the absence of any interaction, the

momentum of particles redshifts as p ∝ 1/a. Consequently, the particles maintain their Maxwell-Boltzmann

distribution, ∝ e−p
2/(2mT ), by having its effective temperature redshift as T ∝ 1/a2. Note that since the

comoving number density of particles if fixed, their chemical potential must asymptote to the particle mass

such that e(µ−m)/T remains constant in eq. (2.20).

For particles that fall out of chemical and kinetic equilibrium while they are relativistic, for e.g. neutrinos

and photons, their effective temperature redshifts as T ∝ 1/a even if they become non-relativistic at some

later point. This is because, they inherit the distribution of relativistic particles at decoupling, which is only

a function of particle momenta, p. As the momentum of particles redshifts as p ∝ 1/a, their distribution

too redshifts such that we can define a temperature that evolves as T ∝ 1/a and a chemical potential that

remains constant relative to temperature, µ/T = constant.

2.3 Cosmological evolution of the Standard Model plasma

Having discussed the evolution of distribution function for individual particles, we now turn our attention

to the combined evolution of a thermal plasma formed by Standard Model (SM) particles. We first discuss

the temperature evolution of this plasma as the particles in the SM become non-relativistic. Next, we

explain how the matter-antimatter asymmetry causes the particles to have a small chemical potential in the

early universe and how it determines the relic abundance of nucleons. We then discuss the physics behind

neutrino decouupling, which marks the start of thermal decoupling of the SM plasma. Finally, we describe

the formation helium and deuterium nuclei in the early universe, whose abundances today provide the only

direct evidence of the thermal state of SM particles in the early universe.

2.3.1 Degrees of freedom

Earlier we discussed how the temperature evolution of plasma consisting of non-relativistic particles cannot

be described by looking at Boltzmann equations of individual particles. In the context of SM, apart from

photons and neutrinos, all other particles become non-relativistic when they are still part of the SM plasma.

Consequently, to describe the temperature evolution of the plasma we need to evolve the combined energy

density of the plasma in an expanding universe using eq. (2.4).

We begin by first expressing energy density of the SM plasma, ρSM , in terms of the relativistic degrees of
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freedom in the plasma and its temperature, TSM ,

ρSM =
∑
i

gi

∫
d3p

(2π)3
E

1

eE/TSM + ξi
≡ g∗π

2

30
T 4
SM , (2.28)

where g∗ is the effective degrees of freedom in the SM plasma,

g∗ =
∑
i

gi
30

π2

∫
d3p

(2π)3
E

1

eE/TSM + ξi
. (2.29)

In the above definition of g∗ we have neglected the contribution from the chemical potential, µi ≪ T . As

discussed in the previous section, the chemical potential can become significantly large once particles become

non-relativistic and fall out of chemical equilibrium. However, as the abundance of particles is exponentially

suppressed in the process, their contribution to total SM energy is negligible compared to other particles that

are relativistic. Note that relativistic particles in thermal equilibrium are allowed to have significant chemical

potential, µ > T , but in the context of SM we find that µ≪ T when particles are relativistic. We elaborate

more on the chemical potentials in the SM in the next subsection.

At any given temperature, we can approximately calculate g∗ by considering contribution from particles

with masses mi < TSM . Doing so yields,

g∗ ≈
∑

i=bosons

gi +
7

8

∑
i=fermions

gi. (2.30)

Note that the contribution of fermions and bosons to g∗ is slightly different because they follow different

thermal distributions. Thus at TSM ≫ 200 GeV, when all the SM particles are relativistic, we find

g∗ = (2 + 2× 8 + 2× 3 + 4) +
7

8
× 3 [4 + 2 + 4× 2× 3] = 106.75, (2.31)

where we have counted photons, eight gluons, three SU(2) gauge bosons, and the complex Higgs boson

doublet in the first bracket. In the second bracket we have three generations of fermions, with four degrees of

freedom for each of the charged leptons and the quark doublets but only 2 degrees of freedom for left handed

neutrinos. Additionally, the quark doublet has been multiplied by three to take into account the three colour

degrees of freedom. As the SM plasma cools and particles become non-relativistic, g∗ decreases.

In the left panel of figure 2.1 we show the evolution of g∗ with photon temperature, Tγ . The largest

change occurs at Tγ ∼ 200 MeV where QCD phase transition occurs and all quarks become bounded into

hadrons and mesons. At TEW = 160 GeV the electroweak phase transition occurs [30].

Similar to g∗, we can also define an effective degrees of freedom for pressure, g∗p, via

g∗p =
∑
i

gi
90

π2

∫
d3p

(2π)3
p2

3E

1

eE/TSM + ξi
. (2.32)

Then we can rewrite PSM = g∗pπ
2T 4
SM/90. In the left panel of figure 2.1 we also show the evolution of g∗p

with temperature. Note that away from mas thresholds, g∗p = g∗ as expected.

By replacing ρSM and PSM in terms of g∗, g∗p and TSM , we can find the evolution of TSM with scale factor

using the Boltzmann equation, eq. (2.4). Alternatively, we can also find the evolution without integrating the
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Figure 2.1: Left Panel: Effective degrees of freedom in SM plasma as a function of temperature of photon.
The black, blue and orange lines correspond to degrees of freedom in energy, pressure and entropy density,
respectively. Right Panel: Evolution of comoving photon temperature as a function of scale factor of the
universe. The comoving temperature has been normalized with Tγ,i = 10 TeV and the scale factor has been
normalized with the scale factor today, a0. The vertical green dashed lines corresponds to Tγ = me = 0.511
MeV. The vertical red and purple dashed lines mark when QCD and electroweak phase transition occur.

Boltzmann equation by noting that in the limit µi = 0,

∂Pi
∂Ti

=
ρi + Pi
Ti

. (2.33)

Then using the above equation along with the Boltzmann equation, one can show that

a3
(
ρSM + PSM

TSM

)
= const. ≡ a3sSM , (2.34)

where s is the entropy density. Defining g∗s as the effective degrees of freedom in the entropy such that,

sSM =
2π2

45
g∗sT

3
SM , g∗s =

3

4
(g∗ + g∗p/3), (2.35)

we can obtain the evolution of TSM simply via,

TSM = TSM,i
ai
a

(
g∗s(TSM,i)

g∗s(TSM )

)1/3

. (2.36)

In the left panel of figure 2.1 we also show the evolution of g∗s with Tγ and in the right panel we show the

evolution of aTγ with scale factor.

Note that the while TSM is always decreasing as the universe expands, TSM cools more slowly than 1/a

when a SM particle becomes non-relativistic. This reduction in cooling occurs because as a SM particle

becomes non-relativistic, it annihilates or decays into lighter SM particles. Consequently, the rest mas energy

of the particle is converted into heat which slightly counters the cooling due to expanding universe. The heat

from particle annihilations/decay is large enough such that ρSMa
4 ∝ g∗(aTSM )4 also increases whenever a

particle becomes non-relativistic.
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After neutrinos decouple around TSM ∼ 1 MeV, there is no common temperature for the SM plasma. Below

this temperature, we define the effective degrees of freedom in the SM relative to the photon temperature, Tγ .

Note that as Tγ = TSM before neutrino decoupling, one can use the entropy conservation equation to find

the evolution of Tγ with a even through neutrino decoupling.

With the evolution of TSM given by eq. (2.36), we can find the evolution of the Hubble rate via

H = 4.3× 10−22 MeV

(
g∗(TSM )

10

)1/2(
TSM
MeV

)2

. (2.37)

2.3.2 Chemical potentials and baryon asymmetry

In the previous subsection, we assumed that the chemical potential of SM particles is negligible. For particles

in the SM whose number is not conserved, for e.g. the photon, this assumption is automatically true because

their chemical potential is driven to zero by number changing interactions. However, there are various particle

numbers that are conserved in the SM and thus thermal equilibrium alone is not sufficient to drive all the

chemical potentials to zero.

For instance, in quantum electrodynamics, the total electron number is conserved, (ne− − ne+)a
3 =

Q =constant. So when electrons and positrons are in thermal equilibrium, their chemical potentials are

related by µe− = −µe+ and can have a non-zero value set by Q. The value of Q itself has to be specified

either from an initial condition or from observations. The individual chemical potential of electron and

positron vanish only if Q = 0.

The SM has several such conserved quantities: hypercharge, colour, SU(2) charge, baryon number, and

lepton number. Additionally, Lepton number for each generation is also approximately conserved in the early

universe because the neutrino masses are negligible. Consequently, when all the SM processes are active,

there are only seven independent chemical potentials and chemical potentials of all involved particles can

be written in terms of these seven chemical potentials. For hypercharge, colour, and SU(2), we observe no

net charge in the universe today and consequently we can set the chemical potential corresponding to those

charges to zero. Thus the number of independent non-zero chemical potentials are further reduced to four.

However, we do observe an abundance of nucleons over anti nucleons today, i.e. a non-zero value of baryon

number. There is also an equivalent abundance of electrons over positrons to make the total charge of the

universe zero. Since the abundance of neutrinos over anti-neutrinos is very poorly constrained, we cannot

comment if there is a net non-zero value of Lepton number as well.

The total baryon number is defined as

B =
nb − n̄b

s
(2.38)

where nb and n̄b are the number density of particles carrying +1 and −1 baryon number, respectively. Their

difference is divided by the entropy density of the SM because both the numerator and denominator evolve

as 1/a3, keeping B constant. From present day observations we find

B =
np(a0) + nn(a0)

s(T0)
≈ ρb(a0)

mps(T0)
= 7.6× 10−11

(
Ωbh

2

0.02

)
, (2.39)

where the subscript 0 denotes the value of the parameters today. In the above approximation we have

neglected the contribution of electrons to the observed energy density of visible matter, ρb, because me ≪ mp.
4

4Here I am using the astrophysical convention of classifying baryon energy density, ρb, as the total energy density of visibile
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Prior to QCD phase transition, T > TQCD ≈ 200 MeV, when all the quarks were free, the number of

quarks must exceed the number of antiquarks by∑
q

nq − n̄q
s

= 3B. (2.40)

As the quarks as relativistic prior to QCD phase transition, nq and n̄q is of the same order as the entropy

density, nq ∼ s ∼ T 3
SM . Which means the difference between their number densities is exceedingly small

compared to their total number density. Consequently, their chemical potential also has to be very small,

µq/T ≪ 1. One can then use eq. (2.21) to quantify the relationship between µq and nq − n̄q. Doing so yields,

µq
T

∼ 10−8, (2.41)

thereby validating the assumption that chemical potentials are very small in the early universe.

After QCD phase transition, all the quarks and anti quarks are almost instantaneously bound into

hadrons, of which only protons and neutrons survive until today. As mp,mn ∼ GeV ≫ TQCD, the abundance

of protons and neutrons is already Boltzmann suppressed by ∼ e−m/T ∼ 10−2 just after the QCD phase

transition. As the universe cools further, nucleons and anti-nucleons undergo more annihilations and the

Boltzmann suppression of their number densities continues such that

np,eq − n̄p,eq + nn,eq − n̄n,eq
s

≈ 2 sinh(µN/T )
4e−mp/T [mpT/(2π)]

3/2

2π2g∗s(T )T 3/45
= B, (2.42)

where we have approximated mn = mp, and µN is the chemical potential of the nucleons in equilibrium.

Once µN/T becomes order one, nucleon annihilations freeze-out because the anti-nucleons are not in sufficient

concentration to significantly disrupt nucleon number density. Plugging µN/T = 1 in the above equation

gives us an approximate estimate of the freezeout temperature, T ∼ 40 MeV. Note that anti-nucleons continue

to undergo further annihilations below T ∼ 40 MeV because nucleon density has stopped falling exponentially.

Consequently, the freeze-out of anti-nucleon annihilation occurs later with a relic anti-nucleon density orders

of magnitude smaller than the relic nucleon density.

2.3.3 Neutrino decoupling

So far we have focussed on periods when the interactions between SM particles are large enough to maintain

thermal equilibrium between all the particles. However, as the SM particles cool in an expanding universe,

the interaction rate eventually falls below the Hubble rate. Among all the stable SM particles, neutrinos have

the weakest interaction with rest of the particles. Consequently, neutrinos are the first to thermally decouple

at temperatures around TSM ∼ 1.5 MeV.

The neutrinos maintain equilibrium with other SM particles via scattering with electrons,

e± + νe ⇄ e± + νe, e± + ν̄e ⇄ e± + ν̄e. (2.43)

Both the above interactions are mediated by W and Z bosons. At temperatures much smaller than W and Z

matter, which includes both nucleons and electrons.
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boson mass, the interaction rate for the above processes is well approximated as

Γeν = neσeν ∼ G2
FT

5
SM , (2.44)

where GF = 1.16 × 10−11 MeV−2 is the Fermi constant and the above rate assumes that electrons are

relativistic, ne ∝ T 3
SM . Comparing this interaction rate with the Hubble rate in eq. (2.37), we find

Γeν
H

∼
(

TSM
1.5 MeV

)3

. (2.45)

Consequently, the neutrinos thermally decouple once TSM falls below ∼ MeV. Beyond this point the neutrinos

freestream without further scattering.

Note that even though the neutrinos are no longer in thermal equilibrium, they have a well-defined

temperature because the neutrino thermal distribution remains unaffected after thermal decoupling. As the

momentum of each neutrino redshifts as p ∝ 1/a, the effective neutrino temperature also scales as Tν ∝ 1/a

after neutrino decoupling. Consequently, right after neutrino decoupling, we have Tν = Tγ , where γ stands

for photons, even if neutrinos are not in thermal contact with photons.

However, once Tγ falls below the mass of the electron, me = 0.511 MeV, the electrons and positrons

annihilate and heat the photons compared to neutrinos. The corresponding temperature asymmetry between

neutrinos and photons after electron-positron annihilation can be readily calculated using entropy conservation.

Enforcing entropy conservation above and below the electron-positron annihilation in electron-photon fluid

yields,

(2 + 4× 7/8)(aTγ)
3
i = 2(aTγ,f )

3, (2.46)

where subscript i and f refer to some time just above and below electron positron annihilation. In contrast,

the neutrinos just cool as 1/a and initially have the same temperature as photons,

(aTγ)i = (aTν)f . (2.47)

Comparing the above two equations, we obtain(
Tν
Tγ

)
f

=

(
4

11

)1/3

. (2.48)

The presence of cosmic neutrinos can be indirectly detected in the fluctuations of the cosmic microwave

background (CMB) spectrum because of the gravitational influence of free-streaming neutrino radiation

density. In particular, the CMB is sensitive to the ratio ρν/ργ which is parameterized in terms of effective

number of neutrino species, Neff ,

ρν
ργ

=
7/8×Neff × 2× T 4

ν

2× T 4
γ

=
7

8

(
4

11

)4/3

Neff . (2.49)

The SM prediction of NSM
eff is 3.044 [31–35], which is slightly above three because the neutrinos have

not completely decoupled from the photons when the electron-positron annihilations occur. The current

measurement of Neff from Planck mission is Neff = 2.96± 0.33 [3], which agrees with the SM prediction.
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2.3.4 Big Bang Nucleosynthesis

After the QCD phase transition, all the quarks are bounded into hadrons and mesons, of which the longest

lived particles are protons and neutrons. Unbounded free neutrons are unstable because they decay into

protons along with electrons and neutrinos via weak process. However, prior to all the neutrons can decay,

the neutrons combine with protons to form nuclei such as helium, deuterium, lithium, etc. In this section

we briefly review the formation of these nuclei in the early universe. In particular we highlight how their

abundances are sensitive probes of Neff and the baryon-to-photon ratio, ηb = ρb/(mpnγ).

There are three primary processes that together determine the final relic abundance of nuclei:

1. At Tγ ≲ 1 MeV, the reactions n+ ν̄e → p+ e− and n+ e+ → p+ νe start depleting neutrons. However,

before any significant depletion occurs, the rate of the reaction falls below the Hubble rate and the

depletion is halted.

2. At Tγ ≲ 0.1 MeV, the age of the universe is around the half-life of the neutron decay process

n→ p+ νe + e− and thus neutron depletion again starts to occur.

3. Fortunately, before the decays become significant, the neutrons get absorbed to form deuterium,

n+ p→ D + γ, at Tγ ∼ 0.07 MeV. Once there is a significant abundance of deuterium, the deuterium

quickly reacts with protons to form Helium and Lithium. Note that the neutron number is conserved

as soon as neutrons are first bounded into deuterium.

We next look at equations governing each of the above steps in more detail.

The neutrons are slightly heavier than protons by ∆ ≡ mn − mp = 1.293 MeV. Consequently, at

temperatures Tγ ≫ ∆, the same amount of forward and backward reaction of neutron-to-proton conversion

occurs and the number densities of both neutrons and protons are equal, nn = np. However, once Tγ falls

below ∆, backward reactions becomes less kinetically feasible as electrons and neutrinos do not have enough

kinetic energy to compensate for the mass difference. Hence, the abundance of neutrons start falling compared

to that of protons.

The evolution of neutron and proton number abundances around Tγ ∼ ∆, is well described by the

Boltzmann equations

dnn
dt

+ 3Hnn = −Cn→p (2.50)

dnp
dt

+ 3Hnp = +Cn→p, (2.51)

where Cn→p is the collision term describing depletion of neutrons to protons via n + ν̄e → p + e− and

n + e+ → p + νe. In the limit Cn→p = 0, the above Boltzmann equations simply yield nn ∝ 1/a3 and

np ∝ 1/a3, as expected. The collision term, Cn→p, is given by

C =

∫
d3pn

2En(2π)3
d3pν̄e

2Eν̄e(2π)
3

d3pp
2Ep(2π)3

d3pe−

2Ee−(2π)3
(2π)4δ3(p⃗n + p⃗ν̄e − p⃗p + p⃗e−)δ(En + Eν̄e − Ep − Ee−)|M|2

[fn(pn)fν̄e(pν̄e)(1± fp(pp))(1± fe−(pe−))− fp(pp)fe−(pe−)(1± fn(pn))(1± fν̄e(pν̄e))].

(2.52)

As the temperature is close to MeV where neutrons and protons are non-relativistic, their distribution

functions are well approximated as f ∼ e(−m+µ−p⃗2/2m)/T . The electrons and neutrinos are relativistic, but we
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neglect the effect of quantum statistics (Pauli blocking) and assume f ∼ e−|p⃗|/T . Furthermore, the amplitude

for the above processes is given by |M|2 = 39.26π3τ−1
n m2

ppνpe/m
5
e, where τn = 886.7 sec is the neutron

lifetime. With the above replacements, the phase space integral of the collision term can be performed

analytically to obtain

C =Γn→p(x)[nn − npe
−x], (2.53)

where x = ∆/Tγ and Γn→p is the rate at which the neutron to proton conversion reaction proceeds,

Γn→p(x) =
255

τn

1

x5
(x2 + 12 + 6x). (2.54)

Since we are primarily concerned with the neutron abundance relative to proton, it is convenient to

express nn in terms of neutron fraction, Xn = nn/(nn + np), and total baryon abundance, nB = nn + np.

Correspondingly, the equations given in eq. (2.50) simplify to yield nB ∝ 1/a3 and

x
dXn

dx
= −Γn→p(x)

H(x)
[Xn − (1−Xn)e

−x]. (2.55)

Note that as H ∝ T 2
SM ∝ 1/x2, the ratio Γn→p/H grows as 1/x for x → 0. Consequently, at Tγ ≫ ∆, the

above equation enforces the factors inside the bracket in the RHS to go to zero, which yields Xn = 1/2 as

expected. Conversely, in the limit x → ∞, the coefficient of RHS itself goes to zero and we obtain Xn =

constant. The constant asymptote is a consequence of the fact that neutrons cannot efficiently interact with

electrons and neutrinos because the expanding universe is diluting their abundance faster than the rate at

which the conversion occurs.

While one has to solve the above equation numerically to find the exact relic value of Xn, one can

obtain an O(1) estimate using the instantaneous freeze-out approximation. The instantaneous freeze-out

approximation assumes that the concerned process is in perfect equilibrium until Γ = H, after which

the process is instantaneously shut off. Using the Hubble rate given in eq. (2.37) and using that g∗ =

2 + 7
8 (2Neff + 4) ≡ 10.75(1 + δN ) near TSM ∼ 1 MeV, we find Γn→p(xf ) = H(xf ) at

x−1
f =

(
4
√

1 + δN +
1

18

)1/3
1

121/3
− 1

6
. (2.56)

For Neff = 3 or δN = 0, we find freeze-out of reaction occurs at xf ≈ 1.89 or Tf ≈ 0.7 MeV. The final value

of Xn is then approximated as Xn,∞ ≈ Xn,eq(xf ), where Xn,eq is the Xn for which the RHS of eq. (2.55) is

zero. This yields

Xn,∞ ≈ 1

1 + exf
. (2.57)

The above analytical result gives Xn,∞ = 0.13 when δN = 0, in comparison to the exact numerical result

Xn,∞ = 0.15.

The remaining abundance of neutrons can convert into protons once neutron decays begin, n→ p+νe+e
−,

which occurs when age of the universe is around the neutron lifetime, τn. The corresponding Boltzmann
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equation for this process is

dnn
dt

+ 3Hnn =− τ−1
n nn. (2.58)

Again we can rewrite the above process by replacing nn = Xnnb and then integrate the differential equation

to obtain

Xn(Tγ) =Xi exp

[
− 3

2π

MPl

τn

(
10

g∗

)1/2(
1

T 2
γ

− 1

T 2
i

)]
, (2.59)

where Ti is some initial temperature and we assumed g∗ is constant between Ti and Tγ . The decays

primarily take place after electron-positron annihilation. So we have g∗ = 3.36 + 7/8× 2×Neff × (4/11)4/3 =

3.36(1 + 0.82δN ). Then taking Xn,i = Xn,∞ and neglecting 1/T 2
γ,i yields,

Xn(Tγ) ≈
1

1 + exf
exp

[
− 0.3√

1 + 0.82δN

(
0.07 MeV

Tγ

)2
]
. (2.60)

We can see that as Tγ continues to drop, the abundance of neutrons exponentially decreases.

The neutron decay stops once deuterium production starts and neutrons and protons are bounded into

stable nuclei. To find the temperature when the deuterium production becomes feasible, we need to consider

detailed balance for n+ p → D + γ, where D stands for deuterium. In thermal equilibrium, the chemical

potential on both side of the reaction should match. Photons in thermal equilibrium do not have a chemical

potential, so we obtain

e(µn+µp)/Tγ = eµD/Tγ (2.61)

nn
neqn

np
neqp

=
nD
neqD

, (2.62)

nD
npnn

=
neqD

neqp n
eq
n

=
(4π)3/2

2

1

(mpTγ)3/2
eBD/Tγ (2.63)

nD
nb

=Xn(1−Xn)
(4π)3/2

π2
ηb

( Tγ
mp

)3/2
eBD/Tγ ∼ ηb

( Tγ
mp

)3/2
eBD/Tγ , (2.64)

where BD = mn +mp −mD is the binding energy for deuterium, and we used nn = Xnnb, np = (1−Xn)nb,

and ηb = nb/nγ to obtain the last line. The neutron decays almost stop instantaneously as soon as nD/nb

becomes of order one. Solving for Tγ = Tnuc at which deuterium abundance reaches ∼ O(1) yields,

ln(ηb) +
3

2
ln(Tnuc/mp) ∼ −BD/Tnuc. (2.65)

We can see that the determination of Tnuc is primarily set by the logarithm of ηb and is independent of the

Hubble rate. For ηb ∼ 10−10, we find Tnuc ∼ 0.07 MeV. Note that naively, deuterium production would have

happened much before at T ∼ BD = 2.22 MeV. However, due to very tiny amount of baryons in the plasma,

this process is kinematically postponed until T ∼ 0.1 MeV.

The final abundance of neutrons in the universe is obtained by setting Tγ = Tnuc in eq. (2.60). Note that

even though the decay can potentially cause an exponential reduction in Xn, the fact that Tnuc occurs very

close to the half life of neutrons halts the neutron decay rather quickly.

After Tnuc, the number of neutrons remain conserved. While neutrons are first assembled in deuterium
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nuclei, they are quickly transferred into He4 nuclei because the binding energy of Helium nuclei is much

larger than that of deuterium and other nuclei with small atomic numbers. Formation of much heavier nuclei

with even larger binding energies does not occur because their formation typically require three particle

interactions. Nuclear processes involving more than two particles occur very rarely in the early universe

because baryon concentrations are very low.

Thus, virtually all the neutrons are swept up inside the helium nuclei after Tnuc. Consequently, one can

estimate the mass fraction of helium to hydrogen nuclei, Y = mHenHe/(mpnH), simply as

Y = 2Xn(Tnuc) ≈ 2
1

1 + exf
exp

[
− 0.3√

1 + 0.82δN

]
. (2.66)

For δN = 0, the above yields Y = 0.2 which is slightly smaller than the numerical estimate of Y = 0.22. The

present day abundance of helium to hydrogen mass fraction agrees with the primordial abundance calculated

above. Consequently, the successful prediction of BBN provides stringent constraint on any deviation from

Standard Cosmology at Tγ ≲ 1 MeV.

Note that not all of the deuterium gets converted into Helium. This is because the rate of nuclear reactions

converting deuterium into Helium eventually fall below the Hubble rate once the concentration of deuterium

falls below a threshold. Compared to Tnuc, the freeze-out of the nuclear reactions is much more sensitive to

ηb. Consequently, the leftover trace of deuterium is a much more sensitive probe of ηb than the abundance of

Helium.

2.4 Thermal origin for dark matter: WIMP

In this section we describe the mechanism by which dark matter can obtain the observed relic abundance by

being part of the SM plasma in the early universe. Additionally, we emphasize a simple way to calculate the

model parameters that yield the correct relic abundance.

Let us imagine that the particle comprising the dark matter today, χ was part of the SM plasma in

the early universe. One can naively imagine a process of type: χ+ χ→ l + l kept dark matter in thermal

equilibrium, where l is some particle in the SM that is much lighter than dark matter. Let us further consider

χ to have no particle anti-particle asymmetry. Correspondingly, the relic abundance of χ is primarily set by

when the annihilation reactions of χ drop out-of-equilibrium and the number density of χ is frozen in. In

particular, we focus in the region of parameter space where the Boltzmann suppression of equlibrium dark

matter abundance after T < mχ causes the annihilation reaction to fall out-of-equilibrium.

One can find the relevant Boltzmann equations for dark matter number density in the limit of non-

relativistic dark matter similar to how we derived eq. (2.25) earlier. Except, the equation is further simplified

here because we consider nχ = nχ̄,

a−3 d(a
3nDM )

dt
= ⟨σv⟩(n2DM,eq − n2DM ), (2.67)

where nDM,eq is the equilibrium number density of DM. Additionally, considering dark matter annihilation is

a s-wave process, in the non-relativistic limit the annihilation cross-section has no temperature dependence,

⟨σv⟩ = constant.

With the Hubble rate calculated considering a SM radiation-dominated universe, the above equation can be

solved with the initial condition that nDM = nDM,eq. Because both entropy density and dark matter number
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Figure 2.2: Evolution of Y = nDM/s as a function of x = mDM/T . The black dashed line shows equilibrium
evolution, the solid lines show evolution of Y for a given value of Λ, the dashed lines follows xDM/Λ, and the
dotted lines shows the value of Y∞ for a given mDM . The green lines have been plotted for Λ = 4.5× 1010

while the blue lines have been plotted for Λ = 6.4× 1012. We have set g∗ = g∗s = 100 for the above plot for
simplicity.

density evolve as ∝ 1/a3 after dark matter annihilations have stopped, we rewrite the above Boltzmann

equation in terms of

Y =
nDM
s

, xDM =
mDM

T
, Λ =

s(T = mDM )⟨σv⟩
H(T = mDM )

. (2.68)

Doing so yields,

dY

dxDM
= −

(
1− d ln g∗s

3d lnxDM

)(
g∗(mDM )

g∗(mDM/xDM )

)0.5(
g∗s(mDM/xDM )

g∗s(mDM )

)
Λ

x2DM
(Y 2 − Y 2

eq). (2.69)

Above the derivative of g∗s was obtained by calculating dxDM/da using entropy conservation. For simplicity,

in the following analysis we assume that the freeze-out of dark matter annihilation occurs away from mass

thresholds, such that g∗ and g∗s are constant.

For a given Λ, one can see that the above equation causes Y = Yeq in the early universe when xDM ≪ 1.

As x becomes larger than one, Yeq starts to fall exponentially as e−xDM . The value of Y follows the drop in

Yeq until,

Yeq(xf ) =
xf
Λ
. (2.70)

Beyond this point, xDM > xf , Yeq becomes too small and can be neglected. Note that as xDM is increasing,

the overall coefficient on the RHS is also decreasing. Thus soon after the contribution from the whole RHS

becomes negligible and Y asymptotes to a constant. This asymptote sets the relic abundance of dark matter.

In figure 2.2, the solid lines show the evolution of Y as a function of x for two different values of Λ. The

black dashed line shows the evolution of Yeq and we can see that initially Y follows Yeq. Once the value of

Yeq and Y drops near xDM/Λ, Y departs from its equilibrium value and starts to asymptote to a constant.
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Considering the asymptote value of Y to be Y∞, we require that Y∞ appropriately yields the present day

dark matter density. Thus we have

Y∞ =
ρDM,0

mDMs(T0)
= 4.3× 10−10

(
ΩDMh

2

0.12

)(
GeV

mDM

)
. (2.71)

where we have used the fact that ρDM,0 = ρcritΩDM = 0.81 × 10−46ΩDMh
2GeV4. Figure 2.2 also shows

different values of Y∞ that obtain the correct relic abundance for different dark matter masses.

From the figure it is apparent that a given value of mDM fixes the value of Λ that yields the correct relic

abundance of dark matter. Thus we obtain a one-to-one mapping between the required values of annihilation

cross-section, ⟨σv⟩, and the value of mDM that gives the correct relic abundance. In practice we find that

⟨σv⟩ is only weakly sensitive to mDM . To understand why let us analytically solve the freeze-out abundance

of dark matter.

One can analytically solve the freeze-out equation using instantaneous freeze-out approximation, where

the following three equalities hold at xf ,

Yeq(xf ) =
xf
Λ

= Y∞. (2.72)

From figure 2.2, we can see why the above is approximately valid.

The simplest way to solve for xf is by equating the first and last term. In this way we avoid any superfluous

dependence of xf on Λ, which we would have obtained if matched the second and third term or first and

second term. As Y∞ is inversely proportional to mDM and Yeq is exponentially dependent on xf , xf only

depends logarithmically on mDM .

With xf on hand we can directly evaluate Λ by matching the second and third term above. As Λ is

proportional to mDM , the factors on mDM on both sides cancel and we obtain,

⟨σv⟩ = 4.1× 10−10 GeV−2
(xf
20

)( 0.12

ΩDMh2

)(
g∗(mDM )

100

)0.5(
100

g∗s(mDM )

)
(2.73)

The above cross-section has a weak dependence on mDM through xf .

A typical form of cross-section is given by

⟨σv⟩ ∼ λ2

16πm2
DM

, (2.74)

where λ is the coupling strength of dark matter with the light SM particles. Interestingly, one sees that for

λ2 being around weak coupling strength α2
W ∼ 10−3 and for mDM being around weak scale mass mW ∼ 100

GeV, we obtain the correct expected value of dark matter abundance. This coincidence is known as the

WIMP miracle.

2.5 Out of equilibrium sectors and cosmological attractors

So far we have focussed on particles that were in equilibrium with the SM plasma in the early universe. The

rest of thesis explores the dynamics of a hidden sector of particles that were always out-of-equilibrium with

the SM plasma. In this section, we provide a general insight on how out-of-equilibrium sectors evolve if we

consider there might be energy transfer from one sector to the other. Our primary interest here is in the
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energy density contained in a thermal radiation bath, where notable examples of such attractor solutions

include the T ∝ a−3/8 evolution of a radiation bath during (classical, perturbative) reheating [36] and the

T ∝ a−3/4 behavior of a radiation bath fed by out-of-equilibrium renormalizeable scattering processes [37, 38].

Another important class of examples is realized by various models of freeze-in dark matter [15, 39], where the

relevant quantity is the number density of DM. We show that the energy density of the dilute sector follow a

quasi-static attractor solution in a sense that we make precise here.

Since we are considering two sectors that might have much more stronger internal interactions than

interactions between them, we need to solve for energy momentum conservation in each of the sectors

independently,

dρa
dt

+ 3Hρa(1 + wa) = −CE (2.75)

dρ

dt
+ 3Hρ(1 + w) = CE . (2.76)

where the collision term encodes the amount of energy transfer from one sector to the other and the Hubble

rate is determined by

H =
1√
3MPl

√
ρa + ρ. (2.77)

Generically, one can consider one sector is much more dilute compared to the other, ρ≪ ρa. Consequently,

the Hubble rate is primarily determined by ρa. Furthermore, one can neglect the effect of C on ρa as any

energy transfer from b is insignificant for a. Under these conditions, ρa evolves independent of the other

sector, while the evolution of the other sector is driven by ρa

With the above approximation, we can rewrite the equation for ρ in the form

a
dρ

da
+ 3(1 + w)ρ =

CE
H

≡ F (ρ, a). (2.78)

By defining new variables as

λ(a) =
ρ(a)

F (ρ(a), a)
, p(a) =

∂ lnF

∂ ln ρ
, q(a) =

∂ lnF

∂ ln a
, (2.79)

and assuming w to be constant, we can further modify eq. (2.78) to yield

d lnλ

d ln a
= (1− p)

1

λ
− 3(1 + w)(1− p)− q. (2.80)

This equation dictates how the ratio ofHρ/CE evolves depending on the functional behavior of F (ρ, a) = CE/H
encoded in p, q. Now note that for p < 1 and q > −3(1 + w)(1− p),

λ =
1

3(1 + w) + q
1−p

(2.81)

is a stable attractor solution for this equation, provided that p and q slowly vary with a (∂ ln(p,q)
∂ ln a ≪ 1). This

solution is an attractor: radiation baths initially below this steady-state solution rise up very rapidly to meet

it, while radiation baths initially above it redshift as ρ ∝ a−3(1+w) until the attractor solution is attained.

The attractor nature of the system of equations is a consequence of the fact that the process of thermalization
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tends to remove the information about initial conditions.

The quasi-static behavior of ρ can be found by simply solving the equation

ρ(a) =
1

3(1 + w) + q
1−p

CE
H
. (2.82)

The above result just highlights the fact that in a given e-fold, the energy density in the dilute sector is

dominated by the amount of energy density transferred from the dominant sector in a Hubble time, CE/H.

In cases of cosmological interest F very frequently has power law dependence on ρ and a, thus making λ a

fixed and readily computable constant (usually of O(1)). In such cases, the relevant power law describing the

temperature evolution can then be quickly obtained by solving ρ ∝ C/H.

When q < −3(1 + w)(1 − p), there is no attractor solution (as λ is always positive) and λ increases

uncontrollably. This corresponds to the cases when CE is falling faster than the redshifting of the energy

density, and the evolution of ρ is approximately adiabatic. On the other hand, when p > 1, the attractor

solution (when it exists) is not stable. If CE ever came to dominate in this scenario then it would lead to an

indefinite explosive rise in ρ due to the positive feedback from CE . The subsequent solution can be obtained

by simply solving ρ̇ = CE .
We can perform an analogous exercise for number density. The Boltzmann equation we start with here is

dn

dt
+ 3Hn = C, (2.83)

and, defining

κ(a) =
n(a)

F (n, a)
, p(a) =

∂ lnF

∂ lnn
, q(a) =

∂ lnF

∂ ln a
, (2.84)

we may rewrite this equation as

d lnκ

d ln a
= (1− p)

1

κ
− 3(1− p)− q. (2.85)

Then the attractor solution is given by

κ =
1

3 + q
1−p

, or n(a) =
1

3 + q
1−p

C
H
. (2.86)
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Chapter 3

Reheating in two-sector cosmology

3.1 Introduction

There is now strong evidence from observations of the fluctuations in the CMB that the thermal era was

preceded by an epoch of early accelerated expansion—inflation. Inflation exponentially dilutes any pre-existing

matter and radiation leaving the Universe cold and empty. The population of otherwise decoupled sectors

cannot therefore be put in ‘by hand’ as an initial condition. Instead it must be generated dynamically in the

post-inflationary evolution of the Universe. In the simplest scenarios, the accelerated expansion is driven

by a single fundamental scalar degree of freedom, whose weak couplings to matter reheat the Universe via

perturbative decays. One of the simplest mechanisms for populating hidden sectors is to couple them to the

inflaton so that they are populated at reheating along with the visible sector. By arranging the couplings so

that the hidden sector couples differently to the inflaton than the SM, reheating can be asymmetric, whereby

the SM and the hidden sector are heated to different temperatures [40–43]. However, coupling both the SM

and a hidden sector to the inflaton in the UV necessarily results in inflaton-mediated interactions between the

two sectors. As demonstrated in reference [42], this irreducible inflaton-mediated scattering can thermalize

the two sectors under fairly generic conditions.

This chapter is based on the work in Ref. [17], where we extend the analysis of reference [42] to explore

the effects of out-of-equilibrium inflaton-mediated interactions on asymmetric reheating. Along the way,

we develop and implement methods to numerically solve the Boltzmann equations describing the reheating

of two otherwise-decoupled sectors from the perturbative decay of the inflaton. In particular, we develop

accurate approximations (including the effects of quantum statistics) for the collision terms that describe

the inflaton-mediated scattering between thermalized gases of fermionic and bosonic particles. We take

an effective field theory approach and consider combinations of trilinear scalar, Yukawa, and pseudo-scalar

couplings between fermions, bosons, and the inflaton. When inflaton couplings to matter become sufficiently

large, both non-perturbative effects such as preheating and collective effects in the radiation baths such

as Landau damping and thermal masses can provide important corrections to the inflaton decay rate and

hence the evolution of the temperature asymmetry, particularly at very high radiation temperatures [44–

46]. However, as we show here, both inflaton decays and inflaton-mediated scattering furnish cosmological

attractor solutions during the perturbative phase of reheating, making the final temperature asymmetry

largely sensitive to the dynamics of the system at and below the perturbative reheat temperature Trh. Thus

the perturbative reheating process that we analyze in the present chapter will often serve as a good guide to
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the final temperature asymmetry despite the presence of richer dynamics at early times.

This chapter is organized as follows. In section 3.2, we review standard perturbative reheating and extend

the well-known single-sector results to include the effects of quantum statistics on the decay width of the

inflaton. In section 3.3, we begin our study of reheating into two sectors and introduce the inflaton-mediated

interactions between the two sectors (required by self-consistency). We show how inter-sector scattering

dominates over any features from quantum statistics in most of the parameter space. We conclude in section

3.4.

We work in units where ℏ = c = kB = 1, and denote by MPl = 2.435× 1018 GeV the reduced Planck mass.

3.2 Quantum statistics in single-sector reheating

In this section we revisit the perturbative reheating of a radiation bath. After reviewing the classic treatment,

we demonstrate that at temperatures T > Mϕ/4, where Mϕ is the inflaton mass, quantum effects such as

Bose enhancement and Pauli blocking can significantly affect the evolution of the temperature of the radiation

bath during reheating. We show that the effects of quantum statistics disappear once T drops below Mϕ/4,

and thus alter the outcome of reheating only when Trh ≳Mϕ/4. While we refer to the decaying particle as

an inflaton and have post-inflationary reheating primarily in mind, our results apply also to other “reheatons”

such as curvatons or moduli (see also [47]).

3.2.1 Perturbative reheating

A generic scenario of inflation [48–50] consists of one or more scalar fields ϕi slowly rolling on a sufficiently flat

potential, V (ϕi) (see, for example, [51] and references within). Inflation ends when the slow-roll conditions are

violated, and the fields ϕi roll quickly to the potential minima and start oscillating. For this work, we assume

that only one field ϕ is relevant during the reheating process, and that its potential is analytic and can be

expanded in a Taylor series about its minimum. We further assume that only the leading quadratic term in

this Taylor series is needed.1 The time-averaged equation of state of a field oscillating in a quadratic potential

is that of a stationary massive particle, and thus the Universe undergoes a period of matter domination while

the inflaton energy density dominates [54]. During this oscillating phase, the inflaton condensate starts to

decay through its couplings to matter, initiating reheating. If these couplings are large enough, the first

stage of reheating can proceed through a period of parametric resonance known as preheating [55, 56]. In

the preheating regime, particle production is non-perturbative and typically requires numerical treatment

(however, see [57]). As the amplitude of inflaton oscillations decreases, due to both Hubble friction and

inflaton decay, preheating ceases and particle production can be treated perturbatively. Unless preheating

is violent enough to drain an O(1) fraction of energy out of the inflaton condensate, this final epoch of

perturbative reheating typically dominates the properties of the radiation bath produced by inflaton decays.

For this work, we thus consider perturbative reheating in a quadratic potential [58, 59]. We consider the

generic case where all particle masses besides the inflaton mass are negligible at the energies we consider, and

therefore treat all matter species as radiation. We further neglect inverse decays from radiation into inflaton

quanta; this is a good approximation provided the number of species in the radiation bath is large, g∗ ≫ 1.

1We are explicitly ignoring anharmonic corrections to the inflaton potential that may be relevant during reheating. These
anharmonic terms can be important for non-perturbative effects during reheating, such as the formation of oscillons, as recently
reviewed in [52]. Conversely, the absence of a quadratic minima generically leads to a radiation equation-of-state very quickly
following inflation [53].
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With these approximations, the Boltzmann equations describing reheating read (see, for example, [36])

dρϕ
dt

+ 3Hρϕ = −Γρϕ (3.1)

dρ

dt
+ 4Hρ = Γρϕ, (3.2)

where the Hubble rate H is given by the Friedmann equation

H =
1√
3MPl

√
ρ+ ρϕ . (3.3)

The inflaton width is denoted by Γ, and ρϕ and ρ are the inflaton and radiation energy densities, respectively.

These equations are (approximately) valid from the end of inflation at some scale factor a = aI , which we

take as our initial point. The radiation sector is initially empty,2 ρ,I = 0, whereas the initial energy density

of the inflaton is given in terms of the mean-square value of the inflaton field just after the end of inflation,

⟨ϕ2I⟩, as ρϕ,I =M2
ϕ⟨ϕ2I⟩/2.

In figure 3.1, we plot the inflaton and radiation energy densities obtained by numerically solving eqns.

(3.1) and (3.2) with a constant inflaton decay width, Γ = Γ0. Initially, Γ ≪ H and therefore inflaton decays

are inefficient. Thus the inflaton energy density during this phase can be well approximated as diluting only

through redshifting, ρϕ ≈ ρϕ,I(a/aI)
−3. The evolution of the radiation sector, however, is dominated by the

energy injection from inflaton decays. Initially, the radiation energy density grows rapidly until the rate at

which energy is injected into the radiation bath by inflaton decays, governed by Γρϕ, matches the rate at

which the radiation bath loses energy due to the expansion of the universe, governed by 4Hρ. After this point,

the evolution of the radiation sector follows an attractor solution, which realizes a quasi-static equilibrium

between energy injection and dilution (see section 2.5),

4Hρ =
4

4 + q
1−p

Γρϕ, (3.4)

where

q(a) =
∂ ln(Γρϕ/H)

∂ ln a
, and p(a) =

∂ ln(Γρϕ/H)

∂ ln ρ
. (3.5)

We call the above evolution imposed on the radiation sector by inflaton decays the reheating attractor curve.

For a temperature-independent decay width, Γ = Γ0, the factors q and p are readily determined to be

constants, q = −3/2 and p = 0, yielding the relation 4Hρ = (8/5)Γ0ρϕ. On this attractor solution the

radiation bath evolves as [36]

ρ =
(2
5
Γ0MPl

√
ρϕ,I

)( a

aI

)−3/2

, (3.6)

when a ≫ aI . The attractor nature of this solution means that the evolution of the energy density of the

radiation bath during reheating is relatively insensitive to its initial conditions. Radiation baths with energy

2This is generally a good approximation for models with tri-linear scalar couplings and Yukawa interactions with fermions, as
in these cases the daughter fields get a large mass during inflation, shutting off inflaton decays. However, for a pseudo-scalar
inflaton coupling to either fermions or gauge bosons, there can be significant energy density already in the radiation sector as
inflation ends (see, for example, [60, 61]). However, as we demonstrate below, the specific initial conditions are largely irrelevant
for the detailed outcome of reheating.
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density initially below the attractor solution rise rapidly to meet the attractor. Meanwhile radiation densities

initially above the attractor curve redshift as ρ ∝ a−4 until they meet the attractor, as can occur in (e.g.)

scenarios where a modulus comes to dominate the post-reheating universe [47, 62, 63].

The attractor solution can also be obtained by solving the Boltzmann equations during reheating. Well

before reheating, the inflaton condensate dominates the energy budget of the Universe; its comoving energy

density is approximately constant and the Boltzmann equation describing the radiation bath can be simplified

to yield [36]

d

da

(
ρa4
)

=
√
3MPla

3√ρϕ Γ0. (3.7)

Solving eq. (3.7) with the initial condition ρ(aI) = 0 also allows us to determine the maximum energy density

attained by the radiation sector [36],

ρmax = 0.24MPlΓ0
√
ρϕ,I . (3.8)

3.2.2 Quantum statistics during single-sector reheating

The preceding discussion neglected the possible effects of quantum statistics during reheating. Typically, the

inflaton decays at rest, producing pairs of particles at a fixed energy Mϕ/2. To quantify the possible effects

of Pauli blocking or Bose enhancement of the inflaton decay, we need to specify the phase space distribution

in the radiation sector. For simplicity, we assume the radiation is in thermal equilibrium,

ρ =
π2g∗
30

T 4 ≡ αT 4, (3.9)

which amounts to assuming that the thermalization time scale for the radiation sector is much faster than

any other time scale in the problem. This is in some sense a conservative assumption for the purpose of

analyzing the scattering and reheating processes discussed in this chapter: a less equilibrated sector has a

greater fraction of particles with energies concentrated near Mϕ/2, making both inflaton-mediated scattering

and quantum statistics more important. However, as we demonstrate below, the post-reheating properties of

the radiation baths are typically determined by the late-time behavior of the system, making the detailed

approach to thermal equilibrium within each radiation bath largely immaterial for the final outcome of

reheating. This separation of timescales generally makes prompt thermalization a robust assumption.

For temperatures T ≲Mϕ/4, a constant (zero-temperature) inflaton decay width is a good approximation.

At these temperatures, the phase space where particles are injected by inflaton decays, E ∼Mϕ/2 , is sparsely

populated due to the fast thermalization of the injected particles, and thus the effects of Pauli blocking or

Bose enhancement are negligible. However, at higher temperatures, T ≳ Mϕ/4, the equilibrium thermal

distributions have significant support at E ∼Mϕ/2, and the inflaton decay rate can be significantly altered.

The partial decay width of a parent scalar to pairs of particles in equilibrium at finite temperature is given by

Γ(T ) = Γ0

exp(
Mϕ

2T )± 1

exp(
Mϕ

2T )∓ 1
, (3.10)

where Γ0 is the zero temperature decay width, and the upper (lower) sign holds for bosons (fermions) in the

final state. At high temperatures, the decay width is enhanced (suppressed) for bosons (fermions) due to

Bose enhancement (Pauli blocking). We now consider reheating to boson and fermionic radiation separately.
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Figure 3.1: Left panel: Energy density as a function of scale factor during reheating for Γ0 = 10−14Mϕ,
ρϕ,I =M2

PlM
2
ϕ, and Mϕ = 2.4×105 GeV. Solid lines show the energy density of a thermal radiation bath with

different colors indicating different statistics: orange for Bose-Einstein (BE), black for Maxwell-Boltzman
(MB) and blue for Fermi-Dirac (FD). The energy density in the inflaton field is shown by the purple dashed
line. Right panel: Same as the left panel, with inflaton width given by Γ0 = 10−9Mϕ. For these parameters
the reheat temperature is larger than the inflaton mass and hence different quantum statistics lead to different
reheat temperatures.

Bosonic reheating: In the case of decays to bosons, for T ≫Mϕ/4 the inflaton decay width is approximately

given by Γ ≈ 4TΓ0/Mϕ. Using this decay width in eq. (3.4) immediately yields a new quasi-static equilibrium

solution for the radiation bath (q = −3/2 and p = 1/4), with power law evolution

T =Mϕ

(2√3

α

MPl

M4
ϕ

Γ0
√
ρϕ,I

)1/3( a

aI

)−1/2

. (3.11)

This reheating attractor curve can again be found analytically by solving the approximate Boltzmann equation

describing the radiation bath during reheating, analogous to the Maxwell-Boltzmann result. With initial

condition ρ(aI) = 0, the full temperature evolution is

T (a) =Mϕ

(
2
√
3

α

MPl

M4
ϕ

Γ0
√
ρϕ,I

[(
a

aI

)−3/2

−
(
a

aI

)−3])1/3

. (3.12)

The radiation bath attains its maximum temperature,

Tmax = 0.95Mϕ

( 1
α

MPl

M4
ϕ

Γ0
√
ρϕ,I

)1/3
, (3.13)

at a = 1.6aI . For bosons, the inflaton decay width decreases with temperature, making energy injection into

the radiation sector less efficient as the temperature decreases. This results in the temperature dropping as

T ∝ a−1/2, faster than the classical result T ∝ a−3/8 (eq. (3.6)).

Fermionic reheating: For an inflaton decaying to fermions at T ≫ Mϕ, the decay width can be well

approximated by Γ ≈ Γ0Mϕ/(4T ), which gives q = −3/2 and p = −1/4. In this regime, the radiation sector
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evolves as

T =Mϕ

(5√3

56α

MPl

M4
ϕ

Γ0
√
ρϕ,I

)1/5( a

aI

)−3/10

. (3.14)

The full solution to the Boltzmann equations with initial condition ρ(aI) = 0 is

T (a) =Mϕ

(
5
√
3

56α

MPl

M4
ϕ

Γ0
√
ρϕ,I

[(
a

aI

)−3/2

−
(
a

aI

)−5])1/5

. (3.15)

The maximum temperature attained by the radiation bath is

Tmax = 0.58Mϕ

( 1
α

MPl

M4
ϕ

Γ0
√
ρϕ,I

)1/5
, (3.16)

attained at a = 1.4aI .

In the analytic treatment of the Boltzmann equations for reheating in the fermionic and bosonic cases

above, we have taken T (aI) = 0 as our initial condition. Strictly this is inconsistent with the high temperature

expansion used for the inflaton width. A more complete analytic treatment would use the zero-temperature

inflaton width to describe the early evolution of the radiation bath until its temperature rises to Mϕ before

implementing the high temperature expansion. However, such a procedure only alters the scale factor at

which the maximum temperature is attained and not its value. Moreover, since the maximum temperature

is attained very quickly compared to other timescales in our problem, the error due to this simplifying

assumption is negligible. Perhaps the more consequential assumption in this region is that we have taken the

radiation bath to attain internal thermal equilibrium nearly instantaneously. In the very early periods of

reheating, the thermalization rate is likely to be smaller than the very rapid rate at which the energy density

of the radiation bath grows. The simple solutions presented here for the decay width and the initial evolution

of the energy densities are thus probably incorrect for describing these very early regions.

Once the temperature falls below the inflaton mass scale, the temperature dependence of the inflaton

decay width in eq. (3.10) becomes unimportant as inflaton decays now populate sparsely occupied regions of

phase space. Subsequently the radiation sector evolves as T ∝ a−3/8.

Reheating completes when the inflaton decays become efficient, Γ ∼ H, and the inflaton energy density

decreases exponentially. During this epoch the Universe transitions from the matter-dominated era of

reheating to a radiation-dominated expansion, where the temperature of the radiation sector redshifts

adiabatically as T ∝ a−1. If Γ ∼ H occurs while T ≳ Mϕ/4, then the temperature of the radiation sector

directly transitions to T ∝ a−1 without going through the classical T ∝ a−3/8 regime. In this scenario, the

resulting reheat temperature depends on the quantum statistics of the inflaton decay products. Estimating

the reheat temperature by setting H = Γ(T ) and taking H to be dominated by the radiation bath, we find

for Trh ≫Mϕ

Trh =


4
√
3√
α

MPlΓ0

Mϕ
boson( √

3

4
√
α
MPlΓ0Mϕ

)1/3

fermion

, (3.17)
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in contrast to the classical result

Trh =

(√
3√
α
MPlΓ0

)1/2

, (3.18)

which holds for Trh ≪Mϕ. We summarize these different power law behaviors of the radiation temperature

in figure 3.1. In the left panel we show a case where the reheat temperature Trh is below the inflaton mass.

In this case, quantum statistics are unimportant for determining Trh, as all three scenarios converge onto the

attractor solution governing classical perturbative reheating, eq. (3.4). In the right panel of figure 3.1 we

show a case where Trh is above the inflaton mass. As the inflaton decay width gets significant corrections

from quantum statistics at these high temperatures, we observe the different reheat temperatures of eq. (3.17)

expected for different quantum statistics at fixed zero-temperature decay width.

In the above scenario we have assumed that all particles coupled to the inflaton have the same quantum

statistics (bosons or fermions). If the inflaton couples to both bosons and fermions then the energy density of

the radiation sector as a whole evolves depending on the total inflaton decay width. In this scenario, the inflaton

width is dominated by the Bose-enhanced partial widths at very high temperatures, and hence the radiation

sector evolves according to the bosonic power law (T ∝ a−1/2). If the zero-temperature partial-width into

fermions is larger than that to bosons, Γfermion
0 > Γboson

0 , then (assuming Trh < Mϕ/4) there is a temperature,

T∗, for which Γboson(T∗) = Γfermion(T∗), while Γboson(T ) < Γfermion(T ) for T < T∗. For Mϕ/4 < T < T∗,

the radiation bath transitions to the power law T ∝ a−3/10 (characteristic of high-temperature fermionic

reheating) before ultimately transitioning to the classical T ∝ a−3/8 for T < Mϕ/4.

Despite model-dependent uncertainties associated with the initial evolution of the radiation baths, the

attractor nature of these perturbative reheating solutions renders the later temperature evolution, and the

resulting reheat temperatures, insensitive to variations to the initial conditions and early evolution provided

that the attractor solution is obtained. Reaching the attractor solution requires that 1) the energy density

of the oscillating inflaton dominates the Hubble rate for some time, during which inflaton decays become a

cosmologically important source for the radiation bath, and 2) that the thermalization timescale is short

compared to the duration of inflaton domination. As we demonstrate in the remainder of this chapter,

similarly general results can be obtained for the more complicated scenarios that arise in two-sector reheating

as well.

3.2.3 Preheating and the Bose power law

In previous section we showed that the evolution of radiation bath is significantly affected by quantum

statistical distribution of its particles if the temperature of the radiation bath satisfies, T > Mϕ/4. To obtain

such high temperatures, large values are required of the inflaton coupling with particles in the radiation bath.

One might be concerned that such large couplings to matter place the inflaton in the regime where preheating

dominates over perturbative reheating. In this section, we use a toy model to demonstrate that there is a

region of parameter space where one can have perturbative production of particles to be significantly affected

by quantum statistics.

We focus on a theory with an inflaton, ϕ, coupled to a scalar field, χ, via the trilinear coupling

Lint =
1

2
µϕχ2. (3.19)

This model can experience broad resonance preheating for sufficiently large values of µ and sufficiently large
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inflaton oscillations Φ =
√
⟨ϕ2⟩, in which case energy is effectively drained from the inflaton condensate

before perturbative reheating can occur. The condition that no broad resonances are present in the theory is

µΦ < M2
ϕ. (3.20)

When this condition is satisfied, preheating is inefficient and perturbative reheating dominates the properties

of the radiation bath [55, 56, 64].

During perturbative reheating, for a given value of µ, the inflaton amplitude Φ uniquely specifies the

temperature of the matter sector. Using the reheating attractor solution eq. (3.4) along with the quantum

statistics correction to the inflaton decay width eq. (3.10), we obtain for the radiation bath

αT 4 =
1

4− 3/2
1−p

× µ2

32π

(
e

Mϕ
2T + 1

e
Mϕ
2T − 1

)√
3

2
ΦMPl, (3.21)

where

p =
1

2

e
Mϕ
2T

(
Mϕ

2T

)
e

Mϕ
T − 1

. (3.22)

Eq. (3.21) can be solved to yield T as a function of Φ. At high and low temperatures, the above relation

simplifies to

T =


( √

3
16

√
2πα

µ2

Mϕ
MPlΦ

)1/3
T ≫Mϕ/4( √

3
80παµ

2MPlΦ
)1/4

T ≪Mϕ/4.
(3.23)

Eq. (3.21) is valid as long as Γ(T ) < H, or

µ2

32Mϕπ

(
e

Mϕ
2T + 1

e
Mϕ
2T − 1

)
<

MϕΦ√
6MPl

. (3.24)

In figure 3.2 we show the resulting parameter space for perturbative reheating for three different values

of Mϕ. We show the equalities corresponding to broad resonance preheating (eq. (3.20)) and the end of

perturbative reheating (eq. (3.24)) in red and blue respectively; the yellow shaded region represents the

region where perturbative reheating dominates the evolution of the radiation bath. We further show contours

of T , from eq. (3.21). Above T =Mϕ/4, the matter sector realizes the T ∝ a−1/2 power law. We thus observe

that for all three mass points, there is some region of parameter space where reheating is dominated by

perturbative processes and the radiation bath realizes the bosonic power law. Lower inflaton masses enable

the radiation bath to reach higher temperatures during perturbative reheating.

For a given value of µ, the theory may avoid preheating if the inflaton amplitude at the end of inflation

is below the red line in figure 3.2. As perturbative reheating occurs, the inflaton amplitude decreases due

to redshifting in an expanding universe. This redshifting corresponds to traversing downward in the µ− Φ

parameter space. The temperature of the radiation bath decreases correspondingly along this trajectory.

This downward trajectory continues until we reach the blue line and reheating occurs.
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Figure 3.2: Reheating parameter space for Mϕ = 1 GeV (left), Mϕ = 2.4× 105 GeV (center) and Mϕ = 1010

GeV (right). If the inflaton amplitude at the end on inflation is in the region above the red line, then
the universe undergoes by broad resonance preheating, eq. (3.20). If the inflaton amplitude at the end of
inflation is in the yellow shaded region, then the effects of preheating are sub-dominant and the Universe
undergoes perturbative reheating. Perturbative reheating ends on the blue line, eq. (3.24). The dotted lines
represent constant temperature contours during perturbative reheating calculated using eq. (3.21), T = 10Mϕ

(magenta), T =Mϕ (green) and T = 0.1Mϕ (cyan).

3.3 Two-sector reheating with inflaton-mediated interactions

In section 3.2, we demonstrated how quantum statistics alter the temperature evolution of the radiation

sector prior to reheating. We now incorporate inflaton decays into two sectors and study the effect of

inflaton-mediated scattering between the two sectors on the final temperature asymmetry. As we demonstrate

in this section, inflaton-mediated energy transfer between sectors also yields an attractor solution for the

temperature of the colder radiation bath, which allows us to make analytic predictions for the final temperature

asymmetries in the regime where inflaton-mediated scattering is important.

We begin by establishing our notation. Introducing the scattering terms in the Boltzmann equations and

ignoring any inflaton quanta, the Boltzmann equations in this limit read [42],

dρϕ
dt

+ 3Hρϕ = −(Γa + Γb)ρϕ (3.25)

dρa
dt

+ 4Hρa = Γaρϕ − CE (3.26)

dρb
dt

+ 4Hρb = Γbρϕ + CE , (3.27)

where Γa,b are the (temperature-dependent) decay rates of ϕ to the respective sectors, H is the Hubble rate,

which is given by the Friedmann equation

H =
1√
3MPl

√
ρa + ρb + ρϕ, (3.28)

and CE is the collision term describing the energy transfer from the hotter radiation sector to the colder
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radiation sector via two-to-two scattering processes of the form 1 + 2 → 3 + 4,

CE =

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3
(2π)4δ4(p1 + p2 − p3 − p4)|M|2S(E1 + E2)

× [f1(p1)f2(p2)(1± f3(p3))(1± f4(p4))− f3(p3)f4(p4)(1± f1(p1))(1± f2(p2))]

≡CfE − CbE . (3.29)

Here CfE and CbE are the collision terms for forward and backward reactions respectively, |M|2 is the spin-

summed scattering amplitude as determined by the particular inflaton-radiation interaction, and S is a

symmetry factor accounting for possible identical particles in the initial and/or final state. We retain the full

dependence on quantum statistics to accurately describe the energy transfer between two relativistic radiation

baths [42], which makes the evaluation of the collision term more challenging. In appendix A, we show how

the collision term eq. (3.29) can be simplified for two relativistic species at different temperatures.3

We use the subscript ‘a’ to denote the sector that attains the larger temperature at the end of reheating.

Generically, this corresponds to the sector with the largest zero-temperature decay width.4 ‘Reheat tem-

perature’ in this context refers to the temperature of the hotter sector when the universe transitions from

matter to radiation domination. We define the transition from matter domination to radiation domination

at the point where energy density in the radiation becomes equal to the energy density in the inflaton,

ρa(arh)+ ρb(arh) = ρϕ(arh). where

For the numerical results in the rest of the chapter we adopt a common reference set of numerical values

for the inflaton mass and initial energy density as well as the number of degrees of freedom in each radiation

bath,

αa =
π2g∗,a
30

= αb =
π2g∗,b
30

= 30, Mϕ = 10−13MPl = 2.4× 105 GeV, (3.30)

ρϕ,I =
1

2
M2
ϕ⟨ϕ2I⟩ =M2

PlM
2
ϕ.

We assume for simplicity that αa and αb are constant over the range of temperatures we consider. While in

what follows we have fixed the value of Mϕ, our results are broadly independent of its precise value. As we

demonstrate below, our results for the final temperature asymmetry depend on Mϕ only through Trh and the

ratio Trh/Mϕ. The specific value of Mϕ is generally only important insofar as smaller values of Mϕ make it

easier to obtain larger Trh/Mϕ.

We next demonstrate that the inflaton-mediated energy transfer yields a cosmological attractor solution

for the colder radiation bath, using the model where the inflaton has trilinear couplings to scalar fields in

both sectors as an illustrative example. We then analyze in detail how the interplay between this scattering

attractor solution and the reheating attractor curve of the previous section determines the final temperature

asymmetry. We then extend this analysis to other forms of the inflaton couplings to matter. In particular, we

consider theories where the inflaton has: Yukawa couplings to fermions in both sectors; axion-like couplings

to gauge bosons in both sectors; and a mixed scenario with a trilinear coupling to scalars in one sector and

Yukawa coupling to fermions in the other. For the collision term, CE , we use the analytic approximations

3Note that there can also be energy exchange via t-channel scattering process mediated by inflaton. However the energy
transfer via t-channel scattering process is orders of magnitude smaller compared to s-channel process because only the latter
process is resonantly enhanced when inflaton is on-shell.

4This is not the case when the inflaton couples to bosons in one sector and fermions in the other and the resulting reheat
temperature is large, Trh ≳ Mϕ/4. For this case, the effective decay width into bosons to be larger than the effective decay
width into fermions even if the zero temperature decay width into bosons is smaller.
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derived in appendix A.4. For simplicity we continue to assume that the inflaton only couples to a single

species in each sector.

3.3.1 Scalar trilinear couplings

We begin by considering a theory where the inflaton is coupled to scalar fields in both sectors, χa and χb, via

trilinear couplings

Lint =
1

2
µaϕχ

2
a +

1

2
µbϕχ

2
b . (3.31)

This interaction results in zero-temperature decay widths given by

Γ0a,b =
1

32π

µ2
a,b

Mϕ

√
1−

4m2
a,b

M2
ϕ

≈
µ2
a,b

32πMϕ
, (3.32)

where ma,b denotes the mass of the fields χa,b, which we have assumed to be much smaller than the inflaton

mass, ma,b ≪Mϕ. Our convention is that sector a is the hotter sector, and accordingly we take µa ≥ µb in

what follows.

The collision term

The s-channel amplitude for χaχa ↔ χbχb scattering mediated by inflaton exchange is given by

|M(s)|2 =
µ2
aµ

2
b

(s−M2
ϕ)

2 + (Γ0a + Γ0b)2
. (3.33)

In appendix A.4.1, we compute the collision term, CE , following from this amplitude.

The collision term in general is a function of both Ta and Tb. However, for large asymmetries Tb ≪ Ta,

the forward energy transfer term governing energy injection into the colder sector dwarfs the backward energy

transfer term. Moreover, in this regime we can also ignore the final state Bose enhancement of CfE : while χb

particles produced in the forward reaction typically have energies of order ∼ Ta, for Tb ≪ Ta those energy

levels are mostly unpopulated. In this simplified regime, the collision term thus depends only on Ta as

CE =
1

16π3
×



µ2
aµ

2
b

µ2
a + µ2

b

T 3
a

[
1.6 log

(
Ta

Mϕ

)
+ 1.3

]
Ta ≳Mϕ

µ2
aµ

2
b

µ2
a + µ2

b

M2
ϕ

Ta
4
K2

(
Mϕ

Ta

)
Ta ≲Mϕ

7.9

32π2

µ2
aµ

2
b

M4
ϕ

T 5
a ma,b ≪ Ta ≪Mϕ,

(3.34)

as derived in appendix A.4.1; see figure A.1. For Ta ≳Mϕ, the collision term is substantially enhanced by

the resonant exchange of inflaton particles. The divergence in the Bose-Einstein distributions at E → 0

combined with the resonant peak in the scattering amplitude results in a logarithmic dependence on Ta/Mϕ

for Ta ≫Mϕ. As Ta drops below the inflaton mass, the scattering goes off resonance and CE drops rapidly.

Because the scattering is dominated by the energetic tail of the phase space distribution, this fall-off of
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Figure 3.3: Left panel: Example temperature evolution of radiation sectors during and after reheating via
scalar trilinear couplings. The solid (dashed) lines denote the temperatures obtained from numerically
solving the Boltzmann equations including (neglecting) the inflaton-mediated scatterings between the sectors.
Reheating is denoted by the vertical blue line at arh. The figure has been plotted for µa = 10−3Mϕ,
µb = 10−5.5Mϕ, ma,b = 10−3Mϕ with other parameters as specified in eq. (3.30). Right panel: Comparison of
the collision term to the redshifting of both sectors as well as inflaton decays for the same parameters as that
in left panel. The black dot on the curve for the collision term indicates Ta =Mϕ/4, which approximately
indicates the temperature below which the s-channel energy transfer rate becomes exponentially suppressed.

the energy transfer rate can be accurately described assuming Maxwell-Boltzmann statistics, thus yielding

a Bessel function K2(Mϕ/Ta) ∼ (Mϕ/Ta)
3/2 exp(−Mϕ/Ta). Note that, in the resonant regime, the energy

transfer rate depends more strongly on the smaller coupling µb than the larger coupling µa, and in particular,

when µb ≪ µa, the rate is almost independent of µa. Below the resonance, the energy transfer rate drops

rapidly until it reaches the low-temperature regime Ta ≪Mϕ. In this regime, the inflaton can be integrated

out of the theory, leaving a constant scattering amplitude, |M(s)|2 ≈ µ2
aµ

2
b/M

4
ϕ. Thus we obtain the CE ∝ T 5

a

behavior in the last line of eq. (3.34). Finally, at temperatures low enough that one or both of the scattering

species becomes non-relativistic, the energy transfer rate becomes Boltzmann-suppressed; we do not include

this effect, as we find that generically the behavior of CE below Ta < Mϕ/4 is inconsequential to determining

the final temperature asymmetry.

Finally, we stress that the expression for CE given in eq. (3.34) is a limiting version that neglects its

dependence on Tb. Dependence on Tb can enter in two ways: first, via the backward energy transfer term,

and second, from Bose enhancement of CfE . The backward energy transfer term becomes important when

Tb ≳ 0.9Ta, and as the two sectors approach equilibration the net energy transfer rate rapidly drops. The

Bose enhancement of the forward energy transfer term is more involved to model. This Bose enhancement

largely serves to increase CfE in the high and low temperature regimes in eq. (3.34) with increasing Tb. The

middle regime in eq. (3.34), however, is insensitive to the possible Bose enhancement terms, as that regime

is effectively described by Maxwell-Boltzmann statistics. As we show below, this last property enables us

to obtain analytic predictions of the final temperature asymmetry without needing to keep track of the full

behavior of the Bose enhancements.

The scattering attractor solution

Now we discuss the impact of the collision term on the temperature evolution of both sectors, and derive the

corresponding scattering attractor curve for the temperature of the colder sector. We begin by considering
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scenarios where Trh ≫Mϕ, where, as we demonstrate, scattering becomes important post-reheating. One

such parameter point is shown in figure 3.3, which plots numerical solutions for the radiation temperatures

obtained using the collision term as given in eq. (A.78). To highlight the importance of scattering, we also

show the temperature evolution when the scattering has been turned off. In the right panel, we show the

evolution of the collision term, CE , in comparison to the combinations 4Hρa,b and Γa,bρϕ. We mark the point

Ta =Mϕ/4 around which CE begins to exhibit substantial Boltzmann suppression. As the scattering process

affects the temperature evolution substantially post-reheating in this example, we can cleanly separate the

effects of scattering from the contributions of reheating; in this discussion, reheating itself is only important

insofar as it provides initial conditions for the subsequent post-reheating evolution of Ta and Tb.

As figure 3.3 shows, Tb begins to deviate from the no-scattering solution as soon as the fractional energy

transfer rate into the colder sector becomes comparable to the Hubble rate, ΓE,b = CE/ρb ∼ H. When

this happens we say that inflaton-mediated scattering becomes effective. In contrast, when the fractional

energy transfer rate out of the hotter sector becomes comparable to the Hubble rate, ΓE,a = CE/ρa ∼ H,

inflaton-mediated scattering becomes efficient and the two sectors attain thermal equilibrium. In the scenario

shown in figure 3.3, inflaton-mediated scattering becomes effective but never efficient. The solution to the

Boltzmann equation for Tb when scattering becomes effective is approximated by the quasi-static attractor

solution (see section 2.5)

ρb(Tb) =
1

4 + q
1−p

CE(Ta, Tb)
H(Ta)

, (3.35)

where

p(a) =
∂ ln(CE/H)

∂ ln ρb
, and q(a) =

∂ ln(CE/H)

∂ ln a
. (3.36)

We call this evolution of ρb the scattering attractor curve. In evaluating q(a), the scale factor dependence in

CE/H comes through Ta, which in the present scenario is evolving adiabatically. For a given value of Ta,

there is a single corresponding value of Tb that satisfies eq. (3.35). In general, solving eq. (3.35) for Tb is

non-trivial given the dependence of CE on Tb through Bose enhancement. The attractor curve exists as long as

4 + q/(1− p) > 0, which translates to the condition that CE falls off more slowly with scale factor than Ha−4.

At temperatures below T ∼Mϕ/4 the collision term falls off exponentially (eq. (3.34)), marking the end of

the attractor evolution. Beyond that point, ρb evolves adiabatically as seen in figure 3.3. Thus the scattering

attractor curve yields a final temperature asymmetry simply given by the asymmetry at Ta ≈Mϕ/4.

To further highlight the attractor nature of the collision term, figure 3.4 shows the post-reheating evolution

of the temperature ratio, x = (αaρb/(αbρa))
1/4, for the parameter point of figure 3.3, but now considering

a range of (post-reheating) initial conditions for ρb (or equivalently x). In the left panel, the solid blue

line tracks the evolution of Tb/Ta following from figure 3.3, where the initial conditions are determined

self-consistently from inflaton decays, xi = xrh = 0.02. The purple dot-dashed line shows the evolution

when the initial temperature ratio is instead zero, x1,i = 0; again, initial densities below the attractor

solution rise rapidly to attain the attractor. The yellow dot-dashed line shows the evolution with an initial

temperature ratio x2,i = 0.1 > xrh; this solution still attains the scattering attractor curve, eq. (3.35). The

green dot-dashed line denotes evolution with an initial temperature ratio, x3,i = 0.5, much above the final

temperature ratio determined by the scattering attractor solution. In this case Tb remains mostly unaffected

by inflaton-mediated interactions. Thus we see that the inflaton-mediated interactions impose a minimum

37



104 106 108

1015

1020

1025

Figure 3.4: Left panel: Evolution of post-reheating temperature ratios for several different initial conditions.
The solid blue line shows the evolution x = Tb/Ta from figure 3.3. The dot-dashed lines (x1, x2 and
x3) indicate the temperature ratio evolution after artificially varying the initial condition for Tb (x1,i = 0,
x2,i = 0.1 and x3,i = 0.5). The horizontal black dashed line corresponds to the analytic estimation of the
final temperature ratio derived in eq. (3.41). Right panel: The collision terms (normalized by M4

ϕHa
−4)

experienced by the colder sectors plotted on the left panel. The solid light blue line represents the evolution of
the collision term when the Tb-dependence of CE is neglected. The vertical black line in both panels indicates
the scale where Ta =Mϕ/4.

value for the final temperature ratio: any initial temperature ratio below this minimum value is increased to

that value by the scattering attractor solution while initial temperature ratios above this minimum remain

largely unaffected. This minimum final temperature ratio is simply determined by the behavior of CE near

Ta ∼Mϕ/4, as we elaborate below.

The right panel of figure 3.4 shows the ratio CE(Ta, x)/(Ha−4) for all scenarios. The different behavior

of the curves at early times shows the differing importance of Bose enhancement on the final state in the

different scenarios. All curves converge onto a single common solution for Ta ∼Mϕ, when scattering is well

described by Maxwell-Boltzmann statistics. As Hρa evolves with scale factor as Ha−4, the value of a where

CE/Ha−4 is maximized5 coincides with the value of a where the scattering attractor solution for ρb ends.

To accurately determine the final temperature asymmetry predicted by the scattering attractor-curve, we

need to integrate the Boltzmann equations around the region where Ta ≲Mϕ. Assuming no Tb dependence

in CE or H, the Boltzmann equation for ρb can be directly integrated,

ρba
4 − (ρba

4)a=a1 =

∫ a

a1

a′3CE(Ta)
H

da′ = a41

∫ a/a1

1

z5
√
3MPlCE(Mϕ/z)

α
1/2
a M2

ϕ

dz, (3.37)

where we have defined a1 as the scale factor at which Ta(a1) =Mϕ, and z = a′/a1. We evaluate CE by taking

5The visible hiccup near the peak in CE(Ta, 0) is a feature of the imperfect fitting used in our analytic approximation of CE ,
eq. (A.78).
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the limit x→ 0 around Ta ∼Mϕ in eq. (A.78) to obtain

ρba
4 − (ρba

4)a=a1 = a41

(
2

π2
M2
ϕ

Γ0,aΓ0,b

Γ0,a + Γ0,b

√
3MPl

α
1/2
a

)
×
∫ a/a1

1

max
{
z2
(
1.3− 1.6 log(z)

)
,
1

4
z4K2(z)

}
dz

a/a1large−−−−−−→ 6.3a41

(
2

π2
M2
ϕ

Γ0,aΓ0,b

Γ0,a + Γ0,b

√
3MPl

α
1/2
a

)
. (3.38)

We determine the initial energy density of the colder sector, (ρba
4)a=a1 , by assuming that the colder sector is

already on the scattering attractor curve defined by evaluating eq. (3.35) using CE = CE(Ta, 0). However, the
Maxwell-Boltzmann behavior of the collision term in this temperature range helps to ensure that the final

result is insensitive to the specific choice of x = 0. We find

ρb(a1) = 0.71

(
2

π2
M2
ϕ

Γ0,aΓ0,b

Γ0,a + Γ0,b

√
3MPl

α
1/2
a

)
. (3.39)

The final energy density of the colder sector is then given by

ρb(a) = 7.0
(a1
a

)4( 2

π2
M2
ϕ

Γ0,aΓ0,b

Γ0,a + Γ0,b

√
3MPl

α
1/2
a

)
. (3.40)

The final temperature ratio between the two sectors predicted by inflaton-mediated scattering is then

xsc ≡
(
αaρb
αbρa

)1/4

a>a1

= 1.25

(
1

M2
ϕ

Γ0,aΓ0,b

Γ0,a + Γ0,b

MPl√
αaαb

)1/4

, (3.41)

where we have used ρa(a) = αaM
4
ϕ(a1/a)

4. This is the value that the temperature ratios x, x1 and x2

asymptote to as shown by the horizontal black dashed line in figure 3.4. Eq. (3.41) holds as long as xsc ≲ 0.9.

Once the temperature ratio approaches unity, backward energy transfer and the contribution of ρb to the

Hubble parameter become important, and the attractor solution no longer captures the full behavior of the

system. In these cases, where the two sectors approach thermalization, a more detailed numerical study is

required.

Finally, it is worth emphasizing that the scattering attractor curve discussed here is dominated by the

resonant behavior of the energy transfer rate, and depends on the properties of the radiation baths at Ta ∼Mϕ.

In the trilinear scalar model, a second attractor phase appears at temperatures well below the resonance

(Ta ≪Mϕ). This is evident from the late-time increase in CE/(Ha−4) in the right panel of figure 3.4, after

the resonant enhancement ends. This possibility of IR thermalization is a special feature of the trilinear

scalar model, where integrating out the inflaton introduces a renormalizeable quartic interaction between the

two sectors. In all other cases CE falls off much faster at lower temperatures due to the higher (≥ 4) mass

dimensions of the operators that couple the inflaton to the radiation baths. Once Ta,b ∼ ma,b, CE becomes

exponentially suppressed and scattering is cut off. Thus, thermalization in the IR depends on the mass scales

in the matter sectors coupled to the inflaton, as well as the inflaton mass and Trh. Late-time equilibration

through scalar portal interactions is studied in detail in [42, 65, 66] and we do not discuss it further here.
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Figure 3.5: Left panel : Contours of the final temperature ratio obtained numerically, xf,n = Tb/Ta, shown
in color, for the case when the inflaton is coupled to scalars in both sectors. The white dashed lines show
contours of log10(Trh/Mϕ). Right panel : Contours of relative fractional discrepancy, |xf,a − xf,n|/xf,n, where
xf,a is the analytic estimate of eq. (3.42) with eq. (3.41), in percent. The white dashed contours depict xf,n
and the red dashed line marks the region where Trh =Mϕ.

Final temperature ratios

Both reheating and scattering, considered independently, produce attractor solutions. In most of parameter

space, one attractor solution dominates over the other and thus is primarily responsible for determining the

final temperature asymmetry. As demonstrated above in section 3.3.1, when Trh > Mϕ, a good semi-analytic

approximation to the final temperature asymmetry is therefore

xf = max[xrh, xsc, 1], (3.42)

where xrh = (αaΓ0b/αbΓ0a)
1/4, is the temperature asymmetry obtained if we neglect inflaton mediated

scattering. Both xrh and xsc can be straightforwardly computed from the Lagrangian parameters without

any need to solve the full Boltzmann equations.

In the case Trh ≪Mϕ/4, the reheating attractor solution dominates, as we now show. As CE redshifts

more slowly than Γbρϕ during reheating, it suffices to show that CE/Γbρϕ < 1 at Ta ≈ Mϕ/4 when CE is

maximized. Using eq. (3.4) for ρϕ at Ta =Mϕ/4 and eq. (A.75) for CE(Ta =Mϕ/4) (at x = 0) we find

(
CE

Γ0bρϕ

)
Ta=Mϕ/4

≈
(

25π2αa
3× 215K2(4)

)1/4
Trh
Mϕ

≈
(αa
10

)1/4 Trh
Mϕ

. (3.43)

This ratio is small by assumption for SM-scale values of αa. Hence for low reheat temperatures inflaton-

mediated scattering is unimportant during reheating. After reheating, scattering cannot thermalize the two

sectors as the resonant enhancement has already ended. Thus, for Trh ≪Mϕ the final temperature asymmetry

is simply given by xrh = (αaΓ0b/αbΓ0a)
1/4. Although xsc, as defined in eq. (3.41) as the temperature ratio

obtained by the post-reheating scattering attractor curve, does not strictly pertain in this case, one can

check that its value is always less than xrh when Trh ≪Mϕ/4. Thereby we can extend eq. (3.42) to hold for

Trh ≪Mϕ/4 as well.

We are now ready to consider the full numerical solution to the Boltzmann equations, eq. (3.25). The

resulting numerical temperature asymmetry, xf,n, is shown in the left panel of figure 3.5 as a function of the
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ratio of the zero-temperature widths w = Γ0,b/Γ0,a.

As expected, for low reheat temperatures the reheating attractor curve dominates the evolution. The

contours below Trh ≲Mϕ show the same behavior as in the absence of inflaton-mediated scattering. Inflaton-

mediated scattering becomes important roughly for Trh ≳ Mϕ, and dominates for Trh ≳ 10Mϕ. In this

high-temperature regime the contours are almost diagonal, reflecting the fact that xsc is dominantly governed

by the smaller decay width Γ0,b. In the right panel of figure 3.5 we compare our analytic estimate of eq. (3.42)

with the result obtained from numerically solving the Boltzmann equations. The analytic estimate agrees with

the numerical results within 20%. The discrepancies are greatest exactly where the scattering and reheating

attractor curves are no longer individually sufficient to capture the full behavior of the system: when both

scattering and inflaton decays are important for determining the final asymmetry, around Trh ∼ fewMϕ, and

when the sectors are approaching (but not obtaining) thermalization, xf ∼ 0.7− 0.8.

Finally, let us note the important point that our numerical results for xf,n are themselves based on

analytic approximations to the collision term. Our analytic fits to the collision term deviate from the exact

numerical values by almost 50% near T ∼Mϕ (see figure A.1). As the final temperature ratio is predominantly

determined by the behavior of the collision term near T ∼Mϕ, this error is unfortunately not negligible for

our final results. However, this error is made less numerically consequential once we take the fourth root to

find the temperature (eq. (3.41)), inducing uncertainties of up to ∼ 15% in the numerical temperature ratio

plots at high Trh, figure 3.5.

3.3.2 Final temperature asymmetry for other theories

The two key properties of CE—the exponential suppression at Ta ≲Mϕ/4 and the weak dependence on Tb in

this range—that allowed us to analytically determine the final temperature asymmetry for the scalar trilinear

case are generic features of resonant s-channel interactions. Much of our analysis in the previous section can

thus be applied directly to other interaction structures. As we demonstrate, in models where the inflaton

has renormalizeable couplings to matter, scattering is only important for determining the final temperature

asymmetry when the endpoint of the scattering attractor curve occurs post-reheating. However, scattering

during reheating can also be important when the inflaton is a pseudoscalar with dimension-five couplings to

gauge fields in both sectors.

Yukawa couplings

We begin with a model where the inflaton has Yukawa couplings to fermions in both sectors,

Lint = yaϕψ̄aψa + ybϕψ̄bψb. (3.44)

This interaction results in zero-temperature inflaton decay widths given by

Γ0a,b =
y2a,b
8π

Mϕ

√
1−

4m2
a,b

M2
ϕ

≈
y2a,b
8π

Mϕ, (3.45)

where ma,b ≪Mϕ denotes the mass of fields ψa,b. The s-channel spin-summed scattering amplitude between

the two species is

|M(s)|2 = 4y2ay
2
b

(
1− 4m2

a

s

)(
1− 4m2

b

s

)
s2

(s−M2
ϕ)

2 + (Γ0a + Γ0b)2
. (3.46)
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The total energy transfer collision term, CE , following from this amplitude is discussed in appendix A.4.2 and

shown in figure A.2. Unlike the scalar case discussed in section 3.3.1, the collision term is almost insensitive

to the temperature of the colder sector unless the two temperatures are very close and CbE becomes important.

In the limit that the temperature ratio between the two sectors is very small, x≪ 1, CE is approximately

given by

CE =
1

4π3
×



3.0

2π2
y2ay

2
bT

5
a Ta ≫Mϕ

0.29
y2ay

2
b

y2a + y2b
M2
ϕT

3
a Ta ≳Mϕ

y2ay
2
b

y2a + y2b
M4
ϕ

Ta
4
K2

(
Mϕ

Ta

)
Ta ≲Mϕ

1.4× 103

2π2
y2ay

2
b

T 9
a

M4
ϕ

ma,b ≪ Ta ≪Mϕ.

(3.47)

At temperatures much larger than the inflaton mass, the inflaton mass can be neglected and the scattering

amplitude is approximately constant, |M(s)|2 ≈ y2ay
2
b , yielding the CE ∝ T 5 behavior required from

dimensional analysis. At temperatures closer to the inflaton mass, the energy transfer rate is resonantly

enhanced, yielding CE ∝ T 3 behavior. As the temperature drops below the inflaton mass, the energy transfer

rate is dominated by resonant scattering in the Boltzmann-suppressed tails. Analogously to the scalar case,

CE can be well modeled in this region using Maxwell-Boltzmann statistics. In the low temperature regime the

scattering amplitude can be approximated as |M(s)|2 ≈ y2ay
2
bs

2/M4
ϕ, yielding the steep CE ∝ T 9 behavior.

Note that, like the scalar trilinear case, the energy transfer rate depends most strongly on the smaller coupling

in the resonant regime.

We can again obtain an analytic expression for the final temperature asymmetry due to inflaton-mediated

scattering, as we did for scalars in section 3.3.1. Using CE from eq. (A.89) and taking x→ 0, we obtain

xsc = 1.19

(
1

M2
ϕ

Γ0,aΓ0,b

Γ0,a + Γ0,b

MPl

αb
√
αa

)1/4

. (3.48)

The final temperature asymmetry can then be estimated using eq. (3.42), i.e., by comparing the lower bounds

from the scattering and reheating attractor solutions. In figure 3.6 we show numerical final temperature ratios

in the left panel and in the right panel compare our analytic estimate to the numerical results. We again

observe a transitional region around Trh ∼ few ×Mϕ where both reheating and scattering are important for

determining the final value of xf . Note that the analytic estimate from the scattering attractor curve has

better agreement with the numerical results in the region near thermalization, xf → 1, than we saw for the

scalar case; this is because the Fermi blocking of CfE that occurs here is nowhere near as large an effect as

the Bose enhancement we discussed in the previous subsection.
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Figure 3.6: Left panel : Contours of the final temperature ratio obtained numerically, xf,n = Tb/Ta, shown
in color, for an inflaton with Yukawa couplings to fermions in both sectors. The white dashed lines show
contours of log10(Trh/Mϕ). Right panel : Contours of relative fractional discrepancy, |xf,a − xf,n|/xf,n, where
xf,a is the analytic estimate of eq. (3.42) with eq. (3.48), in percent. The white dashed contours depict xf,n
and the red dashed line marks Trh =Mϕ.

Axionic couplings to gauge bosons

We next consider a theory where a pseudo-scalar inflaton couples to gauge bosons in both sectors,

Lint = − 1

4Λa
ϕFµνa F̃a,µν −

1

4Λb
ϕFµνb F̃b,µν . (3.49)

This interaction results in zero-temperature decay widths given by

Γ0a,b =
1

256π

M3
ϕ

Λ2
a,b

√
1−

4m2
a,b

M2
ϕ

≈
M3
ϕ

256πΛ2
a,b

, (3.50)

where ma,b ≪ Mϕ denotes the mass of the gauge fields, Aνa,b. The s-channel spin-summed amplitude for

AaAa ↔ AbAb scattering mediated by inflaton exchange is

|M(s)|2 =
4

128Λ2
aΛ

2
b

(
1− 4m2

a

M2
ϕ

)(
1− 4m2

b

M2
ϕ

)
s4

(s−M2
ϕ)

2 + (Γ0a + Γ0b)2
. (3.51)

In appendix A.4, we derive the total energy transfer rate, CE for this amplitude; see figure A.3. When

the temperature ratio between the two sectors is very small, x ≪ 1, the temperature dependence of CE is
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approximately given by

CE =
1

64π3
×



14.0

2π2

1

Λ2
aΛ

2
b

T 9
a Λa > Ta ≫Mϕ

M4
ϕ

Λ2
a + Λ2

b

T 3
a

[
1.6 log

(
Ta

Mϕ

)
+ 1.3

]
Ta ≳Mϕ

M6
ϕ

Λ2
a + Λ2

b

Ta
4
K2

(
Mϕ

Ta

)
Ta ≲Mϕ

7.1× 104

2π2

1

Λ2
aΛ

2
b

T 13
a

M4
ϕ

ma,b ≪ Ta ≪Mϕ.

(3.52)

The steep rise in the collision term (CE ∝ T 9
a ) at high temperatures is a consequence of the high mass-

dimension of the operators mediating the interaction. This behavior will be modified when Ta ≳ Λa and the

effective field theory breaks down.

Repeating the calculation from section 3.3.1, using CE from eq. (A.99) with x → 0, we obtain the

asymptotic temperature asymmetry resulting from the scattering attractor curve,

xsc = 1.49

(
1

M2
ϕ

Γ0,aΓ0,b

Γ0,a + Γ0,b

MPl

αb
√
αa

)1/4

. (3.53)

The final temperature asymmetry can then be estimated using eq. (3.42). In the left panel of figure 3.7 we

show the final temperature ratio determined by numerically solving the Boltzmann equations. In this section,

we take ρϕ,I = 10−10M2
ϕM

2
Pl in order to keep Tmax < Λa in all of our parameter space, thus ensuring that the

effective field theory is valid throughout the entire evolution of the system. Due to the attractor nature of the

Boltzmann equations describing reheating, larger values of ρϕ,I do not change the final value of x that one

would compute for a given set of Lagrangian parameters. However, changing ρϕ,I does alter the maximum

temperature attained (see eq. (3.13)), and therefore if we require Tmax < Λa,Λb then we are restricted to

parameters that satisfy

Γ0a

Mϕ
<

(
α2
aM

6
ϕ

(256π)3M2
Plρϕ,I

)1/5

. (3.54)

In the left panel of figure 3.7 the red dot-dashed lines indicate where Tmax = Λa for different values of ρϕ,I .

Above those lines Tmax > Λa, and thus the early evolution of the system probes the theory above the cutoff.

In the right panel of figure 3.7 we compare our analytic estimate to the numerical result.

In the top left corner of the right panel of figure 3.7, large discrepancies between the analytic estimate

and the numerical computation are becoming evident. In the same region in the left panel, the contours

of fixed temperature asymmetry are beginning to extend more deeply into the region of small w than the

previous examples. Both these features are the consequence of early (i.e. pre-reheating) thermalization,

enabled by the UV-dominated energy transfer process (CE,UV ∝ T 9
a ) whose effects are not incorporated into

the analytic estimate in eq. (3.42). At sufficiently high temperatures, Ta, CE,UV dominates over the energy

dumped from the inflaton. This UV behavior can be seen in figure 3.8, which shows the various contributions
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Figure 3.7: Left panel : Contours of the final temperature ratio obtained numerically, xf,n = Tb/Ta, shown in
color, for an inflaton with axionic couplings to gauge bosons in both sectors. The white dashed contours show
log10(Trh/Mϕ). The red dot-dashed lines mark the region where Ta,max = Λa for initial inflaton densities
ρϕ,I = 10−8M2
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2
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ϕ. Right panel : Contours of relative fractional discrepancy,

|xf,a − xf,n|/xf,n, where xf,a is the analytic estimate of eq. (3.42) with eq. (3.53), in percent. The white
dashed contours depict xf,n and the red dashed line indicates where Trh =Mϕ.
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Figure 3.8: Comparison of the collision term with the inflaton decay terms into the two sectors. The plots
are for parameters {Γ0a = 10−11, w = 10−8} (left), {Γ0a = 10−10.5, w = 10−8} (center) and {Γ0a = 10−10,
w = 10−4} (right). The vertical blue line denotes the point where reheating occurs. In these plots 4Hρa,b
serve as proxies for the temperatures of the two sectors. Since we have taken αa = αb, the temperature ratio
is simply x = (4Hρb/4Hρa)

1/4.
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to the evolution of the energy density in eq. (3.25) as a function of scale factor. Because CE,UV redshifts

faster than Γ0a,bρϕ, the energy injection due to inflaton decays can exceed CE,UV before reheating terminates,

CE,UV (Trh) < Γ0,b(Trh)ρϕ. When this occurs, (see, e.g. the left plot in figure 3.8), the temperature ratio

at the end of reheating is the same as the one obtained due to the reheating attractor. Thus, asymmetric

reheating overwhelms the collision term. However, when CE,UV (Trh) > Γ0,b(Trh)ρϕ, the temperature ratio

at the end of reheating, xrh, is larger than the case without scattering, i.e. the result obtained from the

reheating attractor. This deviation would not be reflected in the final temperature asymmetry if xsc is larger

than this modified x
rh

(center plot in figure 3.8). It is only when the modified xrh due to CE,UV (Trh) is larger
than xsc (right plot in figure 3.8), that the effects from CE,UV impact the final temperature ratio as we see in

the top left corner of figure 3.7. It is worth recalling that thermal effects beyond the scope of this chapter,

in particular Landau damping and thermal blocking, can be important for determining the duration and

dynamics of reheating in the high-Trh regime where the effects from CE,UV show up.

Mixed Yukawa and trilinear couplings

Finally, we consider a theory in which inflaton has trilinear couplings to scalars in sector a and Yukawa

couplings to fermions in sector b,

Lint =
1

2
µaϕχaχa + ybϕψ̄bψb. (3.55)

This interaction results in zero-temperature partial widths given by

Γ0,a ≈ µ2
a

32πMϕ
, and Γ0,b ≈

y2b
8π
Mϕ. (3.56)

The spin-summed s-channel scattering amplitude between the two sectors is

|M(s)|2 = 2µ2
ay

2
b

(
1− 4m2

b

s

)
s

(s−M2
ϕ)

2 + (Γ0a + Γ0b)2
. (3.57)

Using this scattering amplitude we derive the total energy transfer rate, CE , given in eq. (A.111); see figure

A.4. The collision term is almost insensitive to Tb except when Tb ≈ Ta. However, since the two sectors have

different quantum statistics, the behavior of the collision term changes depending on which sector is hotter.

When there is a large temperature asymmetry between the two sectors (Ta ≫ Tb or Tb ≫ Ta), analogous to
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the cases considered above, the temperature dependence of CE is approximately

CE =
1

16π3
×



4µ2
ay

2
b

(µa/Mϕ)2 + 4y2b
T 3
a

[
1.6 log

(
Ta

Mϕ

)
+ 1.1

]
Ta > Mϕ, Tb ≪ Ta

−0.30
4µ2

ay
2
b

(µa/Mϕ)2 + 4y2b
T 3
b Tb > Mϕ, Tb ≫ Ta

± 4µ2
ay

2
b

(µa/Mϕ)2 + 4y2b
M2
ϕ

Ta,b
4
K2

(
Mϕ

Ta,b

)
Ta,b ≲Mϕ, Tb,a ≫ Ta,b

31

4π2
µ2
ay

2
b

T 7
a

M4
ϕ

ma,b ≪ Ta ≪Mϕ, Tb ≪ Ta

− 21

4π2
µ2
ay

2
b

T 7
b

M4
ϕ

ma,b ≪ Tb ≪Mϕ, Ta ≪ Tb,

(3.58)

where the minus signs appear when Tb > Ta, as consistent with our definition of the energy transfer term in

eq. (3.25).

Determining the final temperature asymmetry due to inflaton-mediated scattering as in section 3.3.1,

making use of CE from eq. (A.111) with x→ 0, we find

xsc =

(
1

M2
ϕ

Γ0,aΓ0,b

Γ0,a + Γ0,b

MPl

αcold
√
αhot

)1/4

×

1.24 Tb ≪ Ta

1.19 Tb ≫ Ta,
(3.59)

where αhot (αcold) denotes the value of α = π2g∗/30 corresponding to the hotter (colder) sector. The final

temperature asymmetry can then be estimated using eq. (3.42). In the left panel of figure 3.9 we show

numerical results for the final temperature ratio. In the right panel of figure 3.9 we show the disagreement

between our analytic estimate and the numerical result as a percentage of the numerical result.

3.4 Summary and conclusion

Asymmetric reheating is a minimal way to populate dark sectors that are otherwise completely decoupled

from the SM following inflation. In this work, we have performed the first detailed analysis of perturbative

asymmetric reheating. Specifically, by solving the Boltzmann equations describing the perturbative decay of

the inflaton into two otherwise decoupled radiation sectors, we have studied in detail the resulting temperature

asymmetries attained by the sectors. Scattering processes mediated by inflaton exchange couple the two

sectors in the UV, and our self-consistent treatment takes into account the associated collision terms that

transfer energy between the radiation sectors. Furthermore, we have carefully accounted for the effects of

quantum statistics. At high temperatures (compared to the relevant mass scale in the problem, the inflaton

mass) these quantum-statistical effects lead to important corrections in both the inflaton decay rate, as well

as the inflaton-mediated scattering processes that transfer energy between the sectors.

The system of Boltzmann equations describing the evolution of the energy densities in the various sectors

is a coupled set of three first-order non-linear differential equations, and a general analytic solution is not

available. However, in this work we have demonstrated that the system can be accurately analyzed by making
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Figure 3.9: Left panel : Contours of the final temperature ratio obtained numerically, xf,n = Tb/Ta, shown in
color, for an inflaton coupled to scalars in sector a and fermions in sector b. The white dashed lines show
contours of log10(Trh/Mϕ). Right panel : Contours of relative fractional discrepancy, |xf,a − xf,n|/xf,n, where
xf,a is the analytic estimate of eq. (3.42) with eq. (3.59), in percent. The white dashed contours depict xf,n
and the red dashed line marks Trh =Mϕ.

use of the attractor nature of its solutions. Broadly, we have identified two classes of quasi-static attractor

solutions to which the energy density of the radiation bath evolves depending on the physical process that is

dominating the evolution. In a broad range of parameter space and to a good approximation, at any given

time the evolution is dominated by either 1) the energy injection from the decay of the inflaton, 2) the transfer

of energy between the sectors through inflaton-mediated scattering, or 3) the adiabatic expansion of the

Universe. Case 1) leads to a reheating attractor curve, case 2) yields a scattering attractor curve, while in case

3) the radiation density simply redshifts as ρ ∝ a−4. As we have demonstrated, the utility of these attractor

solutions is that they allow for a very accurate semi-analytic determination of the resulting temperature

asymmetry between the sectors; the asymmetry is simply determined by the process which dominates the

evolution at the latest time.

Our results for the temperature asymmetries generated by asymmetric reheating are surprisingly universal

across various coupling structures and particle types. The key property that determines the outcome of

asymmetric reheating is the reheating temperature, Trh relative to the inflaton mass-scale, Mϕ, as follows:

• When Trh ≪Mϕ/4, the temperature asymmetry is solely determined by perturbative reheating process.

More specifically, when Trh < Mϕ/10, the final temperature ratio is simply given by the ratio of the

zero-temperature decay widths, x = Tb/Ta = (αaΓ0b/αbΓ0a)
1/4. As the reheat temperature is increased

(but still < Mϕ) quantum-statistical corrections to the inflaton decay width begin to significantly affect

the final temperature asymmetry. In this region asymmetric reheating can be achieved by quantum

statistical effects alone, with otherwise identical couplings.

• When Trh ≫ Mϕ/4, the final temperature asymmetry is determined solely by inflaton-mediated

scattering. Inflaton-mediated energy transfer between the sectors falls off exponentially when the

temperature of the hotter sector falls below Ta < Mϕ/4 due to the s-channel scattering process going

off-resonance. If the radiation sectors have not thermalized by this time, the colder sector is populated

by a freeze-in like process where its final density (or equivalently the temperature ratio x = Tb/Ta) is
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primarily determined by the collision term and the Hubble rate at Ta =Mϕ/4,

xsc ∼
( αaCE
Hαbρa

)1/4
Ta=Mϕ/4

.

Because the collision term CE(Ta =Mϕ/4) is largely insensitive to the inflaton coupling to the hotter

sector as well as (at Ta =Mϕ/4) the quantum statistics of the interacting particles, the final temperature

ratio is determined solely by the coupling strength of the colder sector irrespective of its particle identity.

In the region Trh ∼Mϕ/4, both reheating and scattering are important in determining the final tempera-

ture asymmetry. We find that the final temperature asymmetry, as a function of Trh and the ratio of zero

temperature partial widths w depends on the inflaton mass only through Trh/Mϕ. However, lower inflaton

masses allow for the consistent realization of higher values of T/Mϕ prior to reheating, which can be particu-

larly important for models where the inflaton couples to the radiation baths through non-renormalizeable

interactions (as in the axionic coupling to gauge bosons considered here).

The primary goal of this chapter was to analyze, in detail, the temperature evolution of two otherwise-

decoupled radiation sectors during and after asymmetric reheating, but along the way we obtained a number

of other novel results. We found novel power laws describing the evolution of radiation baths during reheating

at temperatures larger than the inflaton mass scale, when quantum statistics are important. We developed

methods to derive closed form (approximate) analytic expressions for energy transfer rates between two

relativistic particles at different temperatures via s-channel interactions mediated by a massive scalar field.

Finally, we derived reduced integral-expressions for energy-transfer rate between two relativistic sectors at

different temperatures via t-channel interactions.

The analytic estimates of the final temperature ratio developed here for two-sector reheating can be

straightforwardly extended to N -sector reheating scenarios [67]. In such cosmologies, for each of the sub-

dominant sectors, the dominant energy injection from scattering is the collision term determined by the

hottest sector. Provided the expansion rate is dominated by a single component (either the inflaton, or a

single dominant radiation bath), to a very good approximation, the subdominant sectors are insensitive to

each others presence.

In this work, we limited our analysis to perturbative reheating, ignoring the effects from 1) incomplete

internal thermalization in the sectors during early reheating, 2) thermal modifications to the inflaton decays

from collective effects, such as thermal blocking or Landau damping, 3) back-scatterings into inflaton quanta

and 4) preheating. As long as these effects do not significantly alter the final reheating temperature obtained

from perturbative reheating, our results for the final temperature asymmetry remain robust. Even in scenarios

where such effects do significantly alter the reheat temperatures, the scattering attractor curve provides a

strict upper bound to the temperature asymmetry between the sectors, x ≥ xsc (see eq. (3.42)), as long as

reheating occurs before inflaton-mediated scattering drops off resonance, Trh > Mϕ/4. We leave the further

study of temperature asymmetries under these potentially disruptive effects to future work. Another possible

extension of this work is to study scenarios that include large asymmetries in the number of degrees of freedom

in the two sectors. In such a scenario, the sector with the higher temperature could have a sub-dominant

energy density, a possibility we explicitly ignored in this work.
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Chapter 4

Cannibal imprints on the matter

power spectrum

4.1 Introduction

While standard cosmology posits that post-inflationary reheating is followed by uninterrupted radiation

domination prior to matter-radiation equality, a variety of well-motivated particle physics scenarios predict

departures from radiation domination in the poorly constrained epoch between the end of inflation and Big

Bang nucleosynthesis (BBN) [68]. For instance, supersymmetric theories often predict moduli whose energy

density can come to dominate the universe as they coherently oscillate in a quadratic potential, giving rise

to an early matter-dominated era (EMDE) that ends when the modulus decays [62]. The semi-classical

evolution of light spin-zero fields can also give rise to epochs of kination when the scalar field’s kinetic energy

dominates over its potential energy [69–71].

Early departures from radiation domination are also generic consequences of theories that contain an

internally thermalized hidden sector that is thermally decoupled from the Standard Model (SM). Such

decoupled self-interacting hidden sectors are readily obtained from straight-forward inflationary scenarios [17,

40–43], and can naturally provide a cosmological origin for the dark matter (DM) of our universe [6, 40, 72,

73], a possibility that becomes ever more compelling with the continued absence of direct detection signals to

date. If the lightest state in the hidden sector is massive, then it can easily come to dominate the energy

density of the universe after it becomes non-relativistic. If this particle is effectively pressureless when it

dominates, it produces an EMDE [11–13, 74, 75].

Altered expansion histories prior to BBN can leave potentially observable footprints in dark matter

perturbations on scales that experienced altered growth [18, 76–79]. Since subhorizon dark matter density

perturbations grow linearly with the scale factor during matter domination, an EMDE generates a significantly

enhanced population of sub-earth-mass dark matter halos if the dark matter particles are cold enough to

form such structures [18, 76]. The masses and central densities of the smallest microhalos are determined by

the small-scale cutoff in the matter power spectrum. The rapid growth of perturbations during the EMDE

implies that the observational signatures of these microhalos, such as the dark matter annihilation rates

within their dense cores, are extremely sensitive to the scale of this cutoff [18, 20, 80]. If dark matter does

not interact with SM particles, the small-scale cutoff is most often determined by the microphysics of the

species that produces the altered cosmic evolution, making the microhalo population a probe of the particle
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physics of the early universe as well as its expansion history.

In many familiar theories, ranging from the simple and minimal example of a single scalar field to the

exceptionally well-motivated scenario of a confining Yang-Mills sector, the lightest particle in the dark sector

has number-changing “cannibal” self-interactions that remain in equilibrium even after the particle becomes

non-relativistic [7, 10, 81–89]. Such “cannibal” interactions [7, 90, 91] are natural properties for the lightest

particle in a hidden sector with a mass gap, and meta-stable cannibal species arise frequently in models of

hidden sector DM [10, 11, 74, 75, 92–94]. If this cannibal particle comes to dominate the energy density of

the universe prior to BBN, then the subsequent early cannibal-dominated era (ECDE) will leave its imprint

on the small scale dark matter perturbations. As we show here, cannibal interactions alter the evolution of

density perturbations during an early cannibal-dominated era (ECDE) compared to their evolution during an

EMDE and typically determine the small-scale cutoff in the matter power spectrum.

In contrast to previous studies of structure formation with a cannibal species [89, 95, 96] or a related

toy model [97], the cannibal here is unstable, decaying to SM particles during the Universe’s first second.

Therefore, it does not contribute to the present-day dark matter abundance, which we assume to be composed

of a separate species. For simplicity we consider the DM abundance to have formed prior to the ECDE, as is

easily realized, e.g., when DM is a thermal relic in the hidden sector. We are thus interested in the evolution

of perturbations in a three-component universe, consisting of cold decoupled DM, the SM radiation bath, and

the metastable cannibal species.

We find that an ECDE generates a peak in the power spectrum of DM density fluctuations on scales

that enter the cosmological horizon during the ECDE. We show that the shape, amplitude, and scale of the

ECDE peak is determined by the properties of the cannibal particle, with little sensitivity to DM particle

properties. This enhancement to the matter power spectrum will generate DM microhalos long before

structure formation would occur in the absence of an ECDE, and we relate the characteristic mass and

formation time of these microhalos to the mass of the cannibal field, the strength of its number-changing

interactions, its temperature relative to the Standard Model particles, and its lifetime. Our results reveal a

new window into the thermal history of the pre-BBN Universe and further establish that hidden sectors can

generate distinctive observational signatures even in the absence of interactions between DM and the SM.

The organization of this chapter is as follows. In section 4.2 we review the novel cosmic evolution of a

cannibal fluid. Then in section 4.3, we embed the cannibal in the early universe along with dark matter and

Strandard Model radiation, and discuss the homogeneous evolution of the resulting cosmologies. In section 4.4,

we study perturbation growth in these cosmologies and highlight important length scales, showing that both

the magnitude and scale of maximum DM perturbation growth are directly connected to cannibal particle

properties. We discuss possible breakdowns of the perfect-fluid approximation in section 4.5. Implications

of early cannibal-dominated eras for the earliest-forming microhalos are discussed in section 4.6, and we

conclude in section 4.7. Several technical results used in this chapter are derived in appendix B.

4.2 Cannibal evolution

A representative particle model for cannibal involves a scalar field with quartic and cubic self couplings,

Lcan =
1

2
∂µφ∂µφ− 1

2
m2φ2 − g

3!
φ3 − λ

4!
φ4. (4.1)
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Figure 4.1: Representative Feynmann diagrams for cannibal three-to-two scattering process.

In this theory the Feynmann diagrams shown in figure 4.1 contribute to the three-to-two number changing

interactions, which maintains the chemical equilibrium in the cannibal plasma. While eq. (4.1) describes

a specific cannibal model, it also provides a useful toy model for a broad class of theories with cannibal

interactions. For instance, the lightest glueballs in a pure SU(N) sector have cannibal interactions that can

be described with an effective Lagrangian of the form in eq. (4.1) [83, 84, 86, 87, 89]. In the remainder of the

section we solve the cosmic evolution of cannibal for the above model.

As there is no external energy injection or ejection in the cannibal, the cannibal density evolution follows

the energy conservation equation in expanding spacetime,

dρcan
dt

+ 3Hρcan(1 + wc(a)) = 0, (4.2)

where ρcan is the energy density of the cannibal, wc is the equation of state of thhe cannibal and H is the

Hubble rate. Considering the cannibal to be in thermal equilibrium1, we can express both its density and its

equation of state in terms of temperature,

ρcan = ρcan,eq =

∫
d3p⃗

(2π)3
Efeq(E/Tc) =

m4

2π2

∫ ∞

1

dẼẼ2
√
Ẽ2 − 1feq(Ẽx) ≡

m4

2π2
h(x), (4.3)

wc(a) = wc,eq(a) =
Pcan,eq
ρcan,eq

=

∫∞
1
dẼ(Ẽ2 − 1)3/2feq(Ẽx)

3
∫∞
1
dẼẼ2

√
Ẽ2 − 1feq(Ẽx)

≡ g(x)

h(x)
, (4.4)

where E =
√
p⃗2 +m2, m is the mass of cannibal, Ẽ ≡ E/m, Tc is the temperature of cannibal, Pcan is the

pressure of cannibal, ρcan,eq and Pcan,eq are equilibrium density and pressure respectively, and feq is the

Bose-Einstein distribution in chemical equilibrium. At temperatures Tc ≫ m, eq.. (4.4) yields wc = 1/3.

Consequently eq. (4.2) gives back the expected evolution of radiation bath. However, as cannibal becomes

non-relativistic, the reverse 2 → 3 reactions are phase-space suppressed but annihilations via 3 → 2 processes

remain active. This causes the comoving number density to deplete, and the rest mass energy is converted to

thermal energy. This gives rise to the novel behaviour of cannibalism. Combining eq. (4.2) with eq. (4.3) and

eq. (4.4), we can solve for the evolution of temperature with scale factor as the cannibal transitions from the

relativistic to the non-relativistic regime. Note that— like the evolution behaviour for radiation and matter—

the evolution of Tc and ρcan,eq with scale factor are independent of the form of Hubble rate.

1In this section by thermal equilibrium we mean that both chemical and kinetic equilibrium are maintained.
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4.2.1 Equilibrium cannibal evolution

We first evaluate Tc as a function of scale factor by integrating eq. (4.2) through

− ln(a/ai) =

∫ x

0.1

h′(x̃)

3[h(x̃) + g(x̃)]
dx̃ ≡ F (x), (4.5)

where we have used x(ai) = 0.1 and primes denotes derivatives with respect to x. We evaluate F (x) at several

values of x and use the resulting table to define an interpolating function for x as a function of F = − ln(a/ai).

We find ρcan,eq(a) by inserting the resulting x(a) into eq. (4.3). For a < afz/3 in figure 4.2, the blue and

black curves shows the evolution of the equilibrium cannibal density and temperature obtained using this

procedure. The orange dotted line shows the evolution if we completely neglect mass inside feq in eq. (4.3)

and eq. (4.4). For Tc > m, the cannibal evolves like radiation as expected.

In the limits x ≫ 1 and x ≪ 1, we find simple analytical expressions for F (x) using the asymptotic

expansions

h(x) ≈


π4

15

1

x4
x≪ 1

1

x3/2

(
1 +

27

8x
+

705

128x2
+O(x−3)

)√π

2
e−x x≫ 1

(4.6)

g(x) ≈


π4

45

1

x4
x≪ 1

1

x3/2

( 1
x
+

15

8x2
+O(x−3)

)√π

2
e−x x≫ 1.

(4.7)

Using the x ≪ 1 limits for g(x) and h(x) in eq. (4.5) gives the expected T ∝ 1/a scaling for relativistic

particles. The x ≫ 1 limits give us the evolution of the cannibal fluid during cannibalism. To connect

the non-relativistic evolution of the cannibal fluid to its early relativistic evolution we need to integrate in

the semi-relativistic regime (x ∼ 1) where no simple analytical expressions are available. We handle the

integration in the semi-relativistic regime by breaking up the integral in eq. (4.5) into two integrals: one in

the region 0.1 < x̃ < 10, and one in the region 10 < x̃ < x. Then we use the large-x approximations for h(x)

and g(x) in the second integral to obtain

F (10)− 1

3

∫ x

10

(
1 +

1

2x̃
+

35

8x̃2
+O(x̃−3)

)
dx̃ ≈ − ln(a/ai). (4.8)

Taking F (10) = −6.5 in eq. (4.8) implies

x = 3 ln

(
a/ai

17.5x1/6

)
+

35

8x
+O

(
x−2

)
. (4.9)

To obtain a simpler relation between x and a, we neglect the 1/x term and set x = 10 in the logarithm, which

is approximately true during cannibalism, as seen in figure 4.2. With these simplifications,

Tc
m

=
1

x
≈ 1

3 ln
(

a
25.6ai

) . (4.10)
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Figure 4.2: Temperature (left) and density (right) of the cannibal fluid as a function of scale factor. Solid
blue (black) lines show numerical results for the cannibal when the universe is cannibal- (SM radiation-)
dominated and correspond to m = 35 TeV, αc = 1, Trh = 10 MeV, and ξi = 10 (ξi = 0.1), where Trh and ξi
are as defined in eq. (4.34) and eq. (4.30), respectively. The orange and red dashed lines show analytical
results for the equilibrium cannibal fluid applicable in the relativistic and non-relativistic limits, respectively
(eqs. (4.10) and (4.12)). The vertical red dot-dashed line marks the onset of cannibalism. The remaining
vertical dot-dashed lines indicate afz for the parameter point corresponding to the solid line of the same color.

In the left panel of figure 4.2 the red dashed curve shows this result for the temperature evolution, which

accurately describes the evolution of the cannibal fluid once it becomes non-relativistic.

To determine the evolution of the cannibal density in the non-relativistic regime we first write its density

in the large x limit by using eq. (4.6) in eq. (4.4). Since h(x) has an exponential dependence on x, we use

eq. (4.9) instead of eq. (4.10) in the exponential term. Expanding the resulting equation to order 1/x2 gives

ρcan,eq ≈ m4

[√
π

2

(17.5)3

2π2

]
1

(a/ai)3x

[
1− 1

x
+O(x−2)

]
. (4.11)

Since the temperature of cannibal particles remains of order 0.1m during cannibalism, as seen in left panel of

figure 4.2, the next-to-leading order term in 1/x above provides a ∼ 10% correction. As the above relation no

longer depends exponentially on x, we express x in terms of a using eq. (4.10) to obtain

ρcan,eq ≈ 148m4

(a/ai)3 ln(a/[25.6ai])

[
1− 1

3 ln(a/[25.6ai])
+O(x−2)

]
. (4.12)

In the right panel of figure 4.2 we show the above estimate of ρcan,eq as the red-dashed line. We define the

beginning of cannibalism at

Tc(acan) ≡
m

5
acan = 101ai, (4.13)

which marks the point at which Tc and ρcan can be well approximated by eq. (4.10) and eq. (4.12), respectively.

4.2.2 Cannibal freeze-out

The cannibalism phase continues until the number-changing interaction rate goes below the Hubble rate.

After this point the cannibal no longer maintains chemical equilibrium and evolves like cold matter. Since

two-to-two interactions are stronger than three-to-two interactions, the cannibal stays in kinetic equilibrium
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throughout the freeze-out process. The freeze-out process for the cannibal is governed by the equation

dncan
dt

+ 3Hncan = ⟨σv2⟩cann2can(neq,can − ncan), (4.14)

where ncan is the number density of the cannibal, neq,can is the number density of cannibal in thermal

equilibrium and ⟨σv2⟩can is the 3 → 2 cross-section of the cannibal. We are only interested in scenarios in

which freeze-out happens when cannibal is non-relativistic. To leading order in Tc/m, the s-wave component

of ⟨σv2⟩can dominates and is given by (see appendix B.1)

⟨σv2⟩can =
25
√
5(g/m)2[(g/m)2 + 3λ]2

147456πm5
≡ 25

√
5π2α3

c

5184m5
. (4.15)

Here αc parametrizes the combination of cannibal couplings that determines the strength of 3 → 2 reactions,2

(4παc)
3 ≡ 9

4
(g/m)2[(g/m)2 − 3λ]2. (4.16)

We define the scale-factor at freeze-out of 3 → 2 reactions, afz, through

⟨σv2⟩cann2can(afz) = H(afz). (4.17)

At early times, a≪ afz, eq. (4.14) effectively sets ncan = ncan,eq, equivalently eq. (4.14) sets the chemical

potential, µ = 0. After a ≫ afz, cannibal reactions stop and the cannibal particles evolve as cold matter,

ρcan ∝ 1/a3 and Tc ∝ 1/a2. However, to accurately find the cannibal density and temperature near afz we

need to solve for both eq. (4.14) and eq. (4.2).

Numerically, we find that the cannibal fluid starts to depart from its chemical equilibrium around a > afz/3.

Since the cannibal particles are non-relativistic by the time freeze-out occurs, we use Maxwell-Boltzmann

statistics to obtain

ncan = eµ/Tncan,eq = eµx/m
m3

2π2

K2(x)

x
; (4.18)

ρcan = eµ/T ρcan,eq = eµx/m
m4

2π2

(xK1(x) + 3K2(x)

x2

)
; (4.19)

wc =
Pcan

ρcan
=

Pcan,eq

ρcan,eq
=

K2(x)

xK1(x) + 3K2(x)
; (4.20)

where Ki(x) is the modified Bessel function of ith order.

To find the evolution equation for x we begin by expressing ρcan in terms of ncan and x using eqs. (4.18)-

(4.20),

ρcan = mncan
1

xwc(x)
. (4.21)

Using the above relation to express ρcan in terms of ncan in the energy conservation equation, eq. (4.2), yields

m

xwc

(
a
dncan

da
+ 3ncan

)
− mncan

x2

(
wc + xw′

c(x)

w2
c

a
dx

da
− 3x

)
= 0. (4.22)

2The factor of 9/4 in the front has been added to counter an earlier error made in calculating eq. (4.15).
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We then simplify the first bracket using eq. (4.14) to obtain the evolution equation for x,

a
dx

da
− 3

xw2
c

wc + xw′
c(x)

=
xwc

wc + xw′
c(x)

⟨σv2⟩
H

ncan(ncan,eq − ncan). (4.23)

Eq. (4.14) and eq. (4.23) form coupled differential equations which are evaluated together to solve for

ncan(a) and x(a). In the left panel of figure 4.2 we plot the temperature (blue and black lines) for a > afz/3 by

numerically solving eq. (4.14) and eq. (4.23). In the right panel we plot the cannibal density for a > afz/3 using

the numerically evaluated x and ncan in eq. (4.21). Notice that the evolution of the cannibal thermodynamic

quantities is very similar in the two cases where the universe is cannibal dominated (blue line) or SM radiation

dominated (black line), with the only difference being the specific value of afz. Here afz is evaluated by finding

where equality in eq. (4.17) is satisfied for numerically obtained ncan.

4.3 Homogeneous background evolution

We are interested in a universe comprised of three components: the cannibal species, DM, and the thermal SM

radiation bath. For simplicity, we consider the DM relic abundance to already be in place at the beginning of

our analysis. In the natural and minimal scenario where DM and the cannibal species are part of the same

thermal bath in the early universe, we expect DM to be heavier than the cannibal: to experience cannibalism

the cannibal species cannot be in equilibrium with any relativistic species while it is non-relativistic, and

thus is generically the lightest state in that sector. The cannibal species must be thermally decoupled from

the SM radiation bath, making the initial temperature ratio between the two sectors a free parameter. Once

the cannibal particle becomes non-relativistic, its energy density dilutes more slowly than that of the SM

radiation and will eventually come to dominate the universe provided the cannibal is sufficiently long-lived.

We focus on the parameter space where the universe undergoes such an early cannibal-dominated era (ECDE)

and caution that the cannibal may or may not be actively undergoing cannibalism during the ECDE. The

cannibal eventually decays into SM particles, which must occur before neutrino decoupling to avoid spoiling

the successful predictions of BBN [98–101] and altering the features of the CMB [102, 103].

The Boltzmann equations that describe the homogeneous evolution of the cannibal fluid in the early

universe, together with DM and SM radiation, are

dρcan
dt

+ 3Hρcan(1 + wc(a)) = −Γmncan (4.24)

dρr
dt

+ 4Hρr = Γmncan (4.25)

dρDM

dt
+ 3HρDM = 0 (4.26)

dncan
dt

+ 3Hncan = ⟨σv2⟩cann2can(ncan,eq − ncan)− Γncan, (4.27)

where the Hubble rate is given by

H =
1√
3MPl

√
ρcan + ρr + ρDM, (4.28)

ρr, ρDM and ρcan are the energy densities of SM radiation, DM and the cannibals, respectively, wc is the

cannibal equation of state, ncan is the cannibal number density and ncan,eq its equilibrium value, Γ is the
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Figure 4.3: Evolution of the cannibal (red), SM radiation (solid orange) and DM (solid blue) energy densities
as a function of scale factor. The inset figure highlights our definition of arh (see eq. (4.34)) as the scale factor
when the SM energy density extrapolated adiabatically back in time (orange dot-dashed) becomes equal to
the total energy density required for the Hubble rate to equal decay rate of the cannibal particles (black
dashed). The shaded red region highlights the period of cannibalism. The yellow shaded region highlights
the period of early matter domination produced by the cannibal particles. This figure takes m = 190 GeV,
Trh = 10 MeV, αc = 0.06, and ξi = 1.

zero-temperature decay width of the cannibal particle to the SM, and MPl = 2.435× 1018 GeV is the reduced

Planck mass. The collision operator describing cannibal decays that appears on the right-hand side of these

equations is derived in appendix A.2.

Chemical equilibrium in the cannibal fluid is maintained as long as the 3 → 2 scattering rate is rapid

compared to H; the freeze-out of this cannibal interaction is described by eq. (4.27). We assume that

two-to-two cannibal scatterings are fast enough to maintain internal kinetic equilibrium. Thus all the thermal

quantities for the cannibal fluid can be expressed in terms of its chemical potential, µ, and its temperature,

Tc. Consequently the system of eqs. (4.24)-(4.27) can be solved for the four unknowns ρr, ρDM, ρcan, and Tc.

We set our initial conditions at an initial scale factor ai, defined such that

Tc(ai) = 10m. (4.29)

The cannibal fluid is in chemical equilibrium initially, so that µ(ai) = 0. We find the initial DM density

by scaling the observed relic density back in time. Since the cannibal fluid and the SM radiation bath

are necessarily thermally decoupled, the initial SM temperature Tr(ai) must be separately specified; we

parameterize it with the initial temperature ratio

ξi ≡
Tc(ai)

Tr(ai)
=

10m

Tr(ai)
. (4.30)

Figure 4.3 shows the evolution of energy densities beginning from these initial conditions until the cannibal

particles decay. For ξi = 1 as shown here, the cannibal is subdominant to SM radiation at ai but eventually

comes to dominate. This fluid system goes through four important transitions, which we will discuss in turn:

1) the onset of cannibalism within the hidden sector, 2) the freeze-out of the 3-to-2 cannibal reactions, 3) the

57



transition from SM radiation domination to cannibal domination, and 4) the decay of the cannibal particles

into the SM.

At temperatures Tc ≫ m, the cannibal behaves as radiation. As the cannibal particles become non-

relativistic (Tc < m), 2 → 3 scattering processes become Boltzmann-suppressed while 3 → 2 processes remain

active. Thus the comoving number density depletes, which self-heats the cannibal particles by converting

rest mass to kinetic energy. In this “cannibal” phase of evolution, the cannibal temperature decreases as

Tc ∝ 1/ log(a) while its energy density decreases as ρcan ∝ 1/(a3 log(a)), as seen in eq. (4.10) and eq. (4.12).

As long as the cannibal fluid is in chemical equilibrium, the evolution of ρcan(a) with a is independent of

the Hubble rate. However, the scale at which the cannibal fluid can no longer maintain chemical equilibrium

depends on the Hubble rate and thus on the presence of other species. After cannibal freeze-out, the

temperature of the cannibal cools as Tc ∝ 1/a2, as expected for massive non-interacting particles.

The universe is initially SM radiation-dominated when ρr(ai) > ρcan(ai) or

g∗[Tr(ai)]T
4
r (ai) > (10m)4, (4.31)

where g∗(Tr) is the effective number of degrees of freedom in the SM. For g∗[Tr(ai)] ∼ 100, SM radiation

domination at ai then requires

ξi ≲3.2. (4.32)

A universe that is SM radiation dominated at ai will transition to cannibal domination at the scale factor

adom where

ρcan(adom) = ρr(adom), (4.33)

where we have implicitly assumed that the cannibal lifetime is long enough that it will come to dominate

before it decays.

When Γ exceeds the Hubble rate, the cannibal particles decay into the SM radiation bath and the universe

then evolves as in the standard ΛCDM cosmology. We define the reheat temperature, Trh, by equating the

Hubble rate in a SM radiation-dominated universe with the cannibal decay rate,√
π2g∗(Trh)

30

T 2
rh√

3MPl

≡ Γ. (4.34)

We define the scale factor at reheating, arh, by isentropically extrapolating the temperature of the SM from

Trh to the present-day temperature T0,

g∗s(Trh)(arhTrh)
3 = g∗s(T0)(a0T0)

3. (4.35)

Here g∗s is the effective number of entropic degrees of freedom in the SM and a0 is the present-day scale

factor. Note that with the above definition of arh, the temperature of the SM at arh, Tr(arh), is not equal to

Trh. This can be seen in the inset panel of figure 4.3 where the SM energy density (solid orange line) at arh is

smaller than the radiation density when T = Trh (horizontal black dashed line). Figure 4.3 also shows that

the SM radiation density evolves adiabatically until the energy injection rate from the cannibal fluid into

the radiation becomes of order the Hubble rate (ρcanΓ/ρr ∼ H). After this time, the radiation density is
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Figure 4.4: Evolution of the cannibal sound speed c2s and equation of state w from initial cannibal temperature
Tc(ai) = 10m. The red (yellow) dashed line shows the evolution of c2s (w) in thermal equilibrium, the gray
(cyan) dot-dashed line when completely decoupled, and the solid black (blue) line shows the full numerical
result. This figure uses the same parameter values as figure 4.3.

proportional to Γmncan/H until the cannibal energy density becomes subdominant.

In solving perturbation equations we need the cannibal equation of state wc and the cannibal sound speed

c2s =
∂Pcan

∂ρcan
= wc −

aw′
c(a)

3(1 + w)
, (4.36)

where Pcan = wcρcan is the pressure of the cannibal fluid. In figure 4.4 we plot the evolution of both wc and

c2s as a function of scale factor. Both quantities begin to deviate from their equilibrium values around 2afz.

For a≫ afz both quantities evolve as

c2s = c2s,fz
a2fz
a2

wc = wc,fz
a2fz
a2
, (4.37)

where c2s,fz and wc,fz are constants that give the correct asymptotic evolution (see dot-dashed line in figure 4.4).

We find that cs,fz, to a good approximation, is given by cs,eq(3afz) while wc,fz is given by wc,eq(2afz), where the

subscript eq denotes that the variables are computed assuming the cannibal fluid to be in thermal equilibrium.

Then using the fact that in the non-relativistic limit c2s,eq ≈ wc,eq ≈ Tc,eq/m, we obtain

c2s,fz ≈
1

3 ln(3afz/(c2ai))
wc,fz ≈

1

3 ln(2afz/(c2ai))
. (4.38)

In figure 4.4, both wc and c
2
s increase near arh because the cannibal particles with larger velocities decay

later due to time dilation. Consequently, the temperature of the cannibal fluid increases as cannibal particles

with slower speeds are removed first. However, the heating near arh is unimportant for the evolution of dark

matter perturbations because we are interested in scenarios with arh ≫ afz. Thus, the cannibal fluid is too

cold at arh for the heating due to time dilation to have any impact.
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4.3.1 Mapping between cannibal parameters and cosmological scales

Our early cannibal-dominated cosmology is governed by four free parameters: the initial temperature ratio ξi

and the cannibal particle properties m,Trh, and αc. These four parameters determine the three important

scales afz/ai, adom/ai, and arh/ai that will ultimately control the major features of the matter power spectrum.

Due to the non-trivial evolution of the cannibal density, the exact relations between these cosmological scales

and the underlying cannibal parameters are complicated, but useful approximate relations can be obtained

by fixing a/ai = 103 in the logarithm of the expression for ρcan(a) given in eq. (4.12):

ρcan ∼ 40m4

(a/ai)3
. (4.39)

This approximation is accurate to O(1) for scale factors between acan and arh/10 and will enable us to provide

simple expressions for key quantities, albeit at the cost of obscuring logarithmic dependence on afz/ai.

We can express arh/ai in terms of m and Trh by setting the cannibal density at reheating equal to the

radiation density. Using eq. (4.39) for the cannibal density then gives

arh
ai

∼ 2.3

(
m

Trh

)4/3(
g∗(Trh)

10

)−1/3

. (4.40)

Similarly, we can find adom in terms of ξi using eq. (4.39) for the cannibal density in the definition of adom,

eq. (4.33). With ρr(adom) = ρr(ai)(ai/adom)
4, we then find

adom
ai

∼ 80g∗[Tr(ai)]
1

ξ4i
. (4.41)

To express afz in terms of cannibal parameters, we start with its definition in eq. (4.17). We then

approximate ncan(afz) ≈ ρcan(afz)/m and express ρcan and ⟨σv2⟩can using eq. (4.39) and eq. (4.15) respectively.

In the case where the Hubble rate is dominated by the cannibal density during freeze-out, i.e. adom < afz, we

obtain

afz
ai

∼ 3× 104α2/3
c

(GeV

m

)2/9
. (4.42)

Similarly, in the case where the Hubble rate is dominated by the SM radiation during freeze-out, i.e. adom > afz,

we use ρr(afz) = ρr(ai)(ai/afz)
4 to obtain

afz
ai

∼ 3.3× 104α3/4
c ξ

1/2
i

(
GeV

m

)1/4(
g∗(10m/ξ)

100

)−1/8

. (4.43)

We see that afz/ai decreases slowly as m increases because increasing m reduces the 3 → 2 cross-section for

fixed αc. When the universe is SM dominated at afz, afz/ai decreases as we decrease ξi because decreasing ξi

increases ρr, which in turn increases the Hubble rate, causing freeze-out to occur earlier.

4.4 Evolution of perturbations

In this section we describe the evolution of cosmological perturbations during an ECDE with particular focus

on the physics underlying the growth in DM density perturbations. We follow the conventions used in Ma
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and Bertschinger [104]. We work in conformal Newtonian gauge with metric given by

ds2 = −(1 + 2ψ)dt2 + a2(t)(1− 2ϕ)dx2, (4.44)

where ϕ and ψ are spatial and temporal metric perturbations respectively. We consider all fluids to be perfect

fluids. Thus there is no anisotropic stress, which implies that

ψ = ϕ. (4.45)

In section 4.5 we revisit the perfect-fluid assumption for the DM and cannibal fluids.

Perturbations of perfect fluids can be described by two quantities: δ = [ρ(t, xi)− ρ̄(t)]/ρ̄, which is the

density perturbation over the uniform background density ρ̄, and θ = ∂jv
j , which is the comoving divergence

of the physical fluid velocity, vj = a dxj/dt. Our cannibal perturbation equations are similar to those in [82,

89, 96] but we also include leading-order contributions from cannibal decays into radiation, which are derived

in appendix B.3. Our suite of perturbation equations is then

δ′c(a) + (1 + wc)(
θc
a2H

− 3ϕ′) +
3

a

(
1− Γ

2H

)
(c2s − wc)δc = − Γ

aH
ϕ

(
1− 3

2
wc

)
, (4.46)

θc
′(a) +

1

a
(1− 3wc)θc +

w′
c

1 + wc
θc −

c2s
1 + wc

k2

a2H
δc −

k2

a2H
ϕ =

Γ

aH
θcc

2
s, (4.47)

δ′DM(a) +
θDM

a2H
− 3ϕ′ = 0, (4.48)

θ′DM(a) +
1

a
θDM − k2

a2H
ϕ = 0, (4.49)

δ′r(a) +
4

3

θr
a2H

− 4ϕ′ =
Γmncan
aHρr

[
ϕ+ δc − δr +

3

2
δc(wc − c2s)

]
, (4.50)

θ′r(a)−
1

4

k2

a2H
δr −

k2

a2H
ϕ =

Γmncan
aHρr

(3
4
θc − θr

)
, (4.51)

k2ϕ+ 3(aH)2
(
aϕ′ + ϕ

)
= −1

2
a2

1

M2
Pl

(ρcanδc + ρrδr + ρDMδDM). (4.52)

Here the subscripts c, r and DM corresponds to perturbations of the cannibal, SM radiation and DM fluids

respectively, and the prime denotes a derivative with respect to a. We have taken DM to be kinetically

decoupled from both the cannibal and radiation fluids, so that its only interactions are gravitational; we will

discuss the effects of adding kinetic couplings between cannibal and DM fluids below.

At ai, when we begin our numerical calculations, the cannibal particles are still relativistic since Tc(ai) =

10m. For adiabatic perturbations, the initial conditions for super horizon modes at ai are:

δr =
4

3
δDM = δc = −2ϕp θr = θDM = θc =

1

2

k2

aH
ϕp, (4.53)

where ϕp is the primordial metric perturbation. Adiabatic initial conditions for all fields are naturally obtained

in the minimal cosmological scenario where the decays of a single inflaton field populate both the SM and a

hidden sector containing the cannibals and DM.3

Our primary interest is the evolution of modes that enter the horizon prior to reheating and thus experience

3Strictly speaking, these adiabatic initial conditions are applicable to ρr as long as energy injection from cannibal decays is
negligible at ai. When instead Γρcan/ρr ≫ H at ai, ρr ∝ a−2, and the initial conditions for the radiation perturbations become
δr = ϕp/2 and θr = θc.
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the epoch of modified cosmic expansion. Before numerically solving the perturbation equations given in

eqs. (4.46)-(4.51), we first show how they simplify for modes deep inside the horizon (k ≫ aH) during the

ECDE to gain insight into the essential physics governing the growth of DM density perturbations. Starting

with eq. (4.52) for the metric perturbation, we neglect the second term on the LHS of eq. (4.52). We can also

ignore ρDMδDM on the RHS of eq. (4.52) because ρDM is at least seven orders of magnitude smaller than

ρcan and ρr prior to reheating (see figure 4.3), which must occur before BBN. Consequently, deep inside the

horizon and prior to reheating we have

ϕ = −3

2

(
aH

k

)2
ρcanδc + ρrδr
ρcan + ρr

. (4.54)

Next we consider the evolution of the cannibal perturbations because they determine the evolution of DM

perturbations. We use eq. (4.47) to eliminate θc from eq. (4.46). In doing so, we make three approximations.

First, we neglect terms proportional to c2s −wc, w
′
c(a) and d(c

2
s(a))/da, as wc and cs are slowly varying before

afz and rapidly become negligible after afz. Second, we neglect ϕ′ in eq. (4.46) because the variation of the

metric perturbation is negligible compared to θc/(aH) deep inside the horizon. Third, we neglect terms

proportional to Γ/H: before arh we have Γ/H ≪ 1, and after arh, the cannibal fluid decays and becomes

irrelevant. Around arh, when Γ/H ∼ O(1), the metric perturbation multiplying Γ in eq. (4.46) is negligible

compared to δc for modes deep within the horizon, and the sound speed term multiplying Γ in eq. (4.47) is

much smaller than one by the time of reheating (see figure 4.4). Finally we eliminate ϕ using eq. (C.1) to

obtain

δ′′c (a) +
[ (a2H)′

a2H
+

1

a
(1− 3wc)

]
δ′c +

1

a2

(
csk

aH

)2

δc =
3

2

(1 + wc)

a2
ρrδr + ρcanδc
ρcan + ρr

. (4.55)

Naively, eq. (4.55) implies that δr may affect δc during SM radiation domination, when ρr ≫ ρcan.

However, subhorizon radiation perturbation oscillate, and thus their gravitational influence on δc is negligible.

Consequently one can set δr = 0 and rewrite eq. (4.55) in the form

d2δc(a)

d ln2(a)
− 3wc

dδc(a)

d ln(a)
+

[(
csk

aH

)2

− 3

2
(1 + wc)

ρcan
ρcan + ρr

]
δc =0. (4.56)

The first term in the square brackets arises from thermal pressure in the cannibal fluid and induces oscillations

in the cannibal density perturbation. The second term in the square brackets is inconsequential during SM

radiation domination, but during cannibal domination, it induces growth in the cannibal perturbation due

to the gravitational attraction between the cannibal particles. When ρcan ≫ ρr, the terms in the square

brackets thus determine a Jeans wavenumber, kJ , for the cannibal fluid,

kJ ≡
√

3

2
(1 + wc)

aH

cs
. (4.57)

The corresponding Jeans length scale k−1
J determines when gravitational attraction overcomes the thermal

pressure and leads to growth in δc.

Earlier we saw that the evolution of both cs and wc depend on when the cannibal self interactions

freeze-out. Consequently, both the scales afz and adom determine the growth in δc and we find that the

ordering of the two scale produce qualitatively different growth in δc. To better understand this qualitative
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difference, in the next two subsections we describe the evolution of perturbations for two extreme cases:

one where the universe is always cannibal dominated prior to reheating, and one where cannibal comes to

dominate the universe much after the cannibal reactions freeze out, afz ≪ adom ≪ arh.

4.4.1 Cannibal freeze-out during cannibal domination

In this section we highlight the key features of perturbations in a scenario with adom < afz < arh. To reduce

the number of free parameters we focus on the sub-case where universe is already cannibal-dominated at ai,

ξi ≫ 1.

In the top panel of figure 4.5 we plot the evolution of comoving horizon size (solid blue line) and that of the

cannibal Jeans scale (solid yellow line) and compare them with the length-scale of Fourier mode, k−1 (dashed

black line). These scales will determine the evolution of perturbation modes that enter the horizon prior to

cannibal freeze-out. In the bottom panel of figure 4.7 we show the evolution of density perturbations for one

such mode, indicated in the top panel as the black-dashed line. These results are obtained by numerically

solving eqs. (4.46)-(4.51) with initial conditions given by eq. (4.53). The particle parameters were chosen

to obtain a large separation between transition scale factors, arh ≫ afz ≫ acan = 100ai, for pedagogical

purposes. Moreover, we show only the evolution of perturbations until shortly after reheating as beyond this

time the usual ΛCDM evolution pertains.

The perturbations shown in the bottom panel start to evolve once the mode enters the horizon at ahor,

defined through

ahorH(ahor) ≡ k. (4.58)

All density perturbations grow by a factor of 10 to 100 shortly after they enter the horizon. Inside the horizon,

thermal pressure causes both the cannibal and SM radiation density perturbations to oscillate, whereas

the DM density perturbation approaches a constant value while the cannibal perturbation oscillates during

ECDE.

The oscillations in δc is due to the non-negligible sound speed of the cannibal (see figure 4.4). In the top

panel of figure 4.5, as long as k−1 (black dashed line) is inside the Jeans length (yellow shaded region), the

cannibal perturbations oscillate in the bottom panel. The Jeans length peaks at roughly ∼ 2afz because

cannibal freeze-out is a slow process which starts at afz, as seen earlier in figures 4.2 and 4.4. After ∼ 2afz,

the sound speed falls as c2s ∝ 1/a2 and the comoving horizon grows as (aH)−1 ∝ a1/2, yielding k−1
J ∝ a−1/2.

Because of the slow decrease of the Jeans length, the cannibal density perturbation continues to oscillate long

after afz. Eventually, once the Jeans length becomes smaller than the scale of the Fourier mode, k < kJ , the

cannibal density starts to grow linearly as expected.

Using the WKB approximation (details in appendix C) in eq. (4.56) we find the evolution of amplitude,

Dc, of δc when the mode is inside the Jeans length as

Dc(a) ∝
1

√
cs
a−(1−3wc)/2. (4.59)

We can see that the amplitude is inversely proportional to the frequency of oscillations determined by c2s.

The dependence on wc in the exponent of a is associated with the damping caused by the (1− 3wc) factor

multiplying δ′c in eq. (4.56). In the relativistic limit, wc = c2s = 1/3, eq (4.59) recovers the standard result of

radiation perturbations oscillating with constant amplitude. In figure 4.5, after entering the Jeans damping
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Figure 4.5: Top: Evolution of comoving horizon (solid blue line) and cannibal’s Jean’s damping horizon
(solid yellow line) relative to the horizon size at the beginning, k−1

hor,i ≃ 9 pc. The horizontal black dashed
line marks the size of the Fourier mode, k = khor,i/12, for whom perturbations are plotted in the bottom
panel. The blue and shaded yellow region highlights when a mode is inside the horizon and the Jeans length,
respectively. Bottom: Evolution of SM radiation, cannibal and DM density perturbation relative to the
primordial metric perturbation, ϕp. The vertical dashed red, green and blue lines marks the scale at acan,
afz and arh respectively. The vertical dot dashed black line marks the scale when mode k enters the horizon
at ahor. The vertical dashed grey lines mark the scale factor when the mode enters and exits the Jeans
damping scale. The figure is plotted for a scenario with parameters ξi = 500, m ≃ 58 TeV, Trh = 5 MeV and
αc ≃ 0.88, chosen to give afz/ai ≃ 2× 103 and arh/ai = 5× 109.
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scale but before afz, we can see that Dc decreases slowly. This slow decrease is due to the logarithmic decay

of sound speed and the small value of wc, which does not completely counter the a−1/2 decay in eq (4.59).

After afz, we can neglect wc in the exponent and the sound speed evolves as cs ∝ 1/a, leading to a constant

amplitude of oscillations as observed.

The evolution of δr seen in the bottom panel of figure 4.7, although interesting, has no significant impact

on δDM. Radiation perturbations have an important gravitational impact on δDM only during SM radiation

domination. However, during SM radiation domination δr oscillates, and hence its gravitational feedback on

both δDM and δc is negligible. The only time δr has a significant influence on the other perturbations is near

horizon entry (a ≲ 10ahor) before δr starts oscillating.

Finally, we analyze DM density perturbations which is the quantity we are primarily interested in. In the

bottom panel of figure 4.5 we see that δDM (blue line) stagnates after entering the horizon even though the

energy density dominating the universe is diluting as matter (approximately). The stagnation of δDM ca be

understood by simplifying the DM perturbation equations in the same way we simplified δc in eq. (4.56).

Correspondingly we obtain

δ′′DM (a) +
[ (a2H)′

a2H
+

1

a

]
δ′DM =

3

2a2
ρcan

ρcan + ρr
δc. (4.60)

The term on RHS comes directly from the metric perturbation term in eq. (4.49). Note that when the mode

is inside the Jeans length, δc oscillates (as does ϕ) and δc’s time average feedback in the above equation is

effectively zero. Assuming the cannibal density dilutes as 1/a3, the coefficient of δ′DM equals to 3/(2a). As a

result, for modes inside Jeans length, δDM has two solutions: δDM ∝ a−1/2 and δDM ∝ a0. Consequently we

see δDM stagnating to a constant value in figure 4.5 when δc is oscillating. Once the mode escapes the Jeans

length, δc starts to grow and consequently, DM starts falling into the gravitational potential well formed by

δc. This condition leads to the growth in δDM . Once δc becomes comparable to δDM , the DM perturbation

grows with δDM = δc ∝ a as seen in figure 4.5.

Above, we have described in detail the behaviour of perturbations for a mode entering the horizon prior

to freeze out of cannibal 3 → 2 reactions. Modes that enter the horizon after ∼ afz do not enter the Jeans

damping scale and thus δc does not experience oscillations. For these modes, δc behaves like cold matter

perturbation, w, c2s = 0, and both δDM and δc grow linearly with a.

Transfer function

We now compare the present-day linear matter power spectrum following an ECDE to the matter power

spectrum in standard cosmology. Here, by “standard cosmology” we mean that the universe experienced

uninterrupted radiation domination between inflationary reheating and matter-radiation equality, aeq. With

δDM,s denoting the DM density perturbation in the standard cosmology, we define the transfer function

T (k) ≡ δDM(k, a)

δDM,s(k, a)
, (4.61)

which is evaluated after matter-radiation equality.

After a perturbation mode enters the horizon, δDM,s grows logarithmically with scale factor while the
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universe is radiation dominated,

δDM,s(a) = −Asϕp(k) ln
(
Bsa

ahor,s

)
(4.62)

where As = 9.11 and Bs = 0.594 are numerical fitting factors [105], and ahor,s is the scale factor when

the mode k enters the horizon in standard cosmology. With Hs denoting the Hubble rate in the standard

cosmology, we define ahor,s through

ahor,sHs(ahor,s) ≡ k. (4.63)

The logarithmic evolution of δDM continues until matter-radiation equality, after which δDM grows linearly

with scale factor. This evolution is described by the growing solution of the Meszaros equation [105, 106]

with initial conditions provided by eq. (4.69),

δDM,s(a) = −3Asϕp(k)

2
ln

(
4Bse

−3aeq
ahor,s

)
(1 + a/aeq)

0.9
a > aeq. (4.64)

Here the exponent of 0.9 results from the fact that the scales affected by an ECDE are much smaller than the

baryon Jeans length [107]. Consequently, ∼15% of the matter density does not participate in the gravitational

growth, causing the dark matter overdensities to undergo slower than linear growth. The argument of the

logarithmic term in eq. (4.64) also obtains O(1) baryonic corrections as described in [105]. However, we have

ignored these corrections because they have an insignificant effect on the final transfer function. The value of

ϕp in eq. (4.64) is the same as in eq. (4.53) because the universe is radiation dominated at ai regardless of

whether the cannibal fluid or SM radiation is dominant at ai.

During the radiation-dominated era that follows an ECDE, δDM also grows logarithmically with scale

factor for subhorizon modes. Consequently, the post-reheating evolution of δDM can be described by eq. (4.62),

but with As and Bs replaced by k-dependent functions A(k) and B(k), which encode the evolution history

of δDM prior to reheating. After matter-radiation equality, the evolution of δDM can similarly be described

using eq. (4.64) but with As and Bs again replaced by A(k) and B(k). For k < krh, we recover A(k) = As

and B(k) = Bs. It follows that

T (k) ≡ δDM(k, a)

δDM,s(k, a)
≈A(k)

As

ln[4B(k)e−3aeq/ahor(k)]

ln[4Bse−3aeq/ahor,s(k)]
, (4.65)

where in the latter equality we have neglected baryonic effects in the logarithm.

In the bottom right panel of figure 4.6 we plot the transfer function for a scenario where afz/ai = 5× 103

and arh/ai = 108. To relate the transfer function at a given wavenumber with the background experienced

by that Fourier mode as shown in the top left panel of figure 4.6, we plot an inverted transfer function in the

top right panel. To increase computational speed while evaluating the transfer function, we ignore radiation

perturbations deep inside the horizon, as the feedback of δr on δDM and δc is negligible. We also neglect the

heating of the cannibal fluid caused by its decay (see figure 4.4), which has no noticeable impact on δDM in

this regime.

The transfer function is unity for modes that enter the horizon after reheating because δDM and δDM,s

undergo the same evolution for these modes. As we increase k (i.e. go down in y-axis in the top right panel),

the transfer function increases. This is because those modes (see k1 in top left panel of figure 4.6) enter
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Figure 4.6: Top left: Evolution of comoving horizon (solid blue line), cannibal’s Jeans length (solid yellow
line) and comoving horizon in standard cosmology (dotted blue line) relative to k−1

hor,i ≃ 0.3 pc. The horizontal
dashed line marks the wavenumbers for which we have plotted the evolution of δc and δDM in the bottom
panel. We have set k1 = kpk/10 and k2 = 5kpk. Top right: The absolute value of the transfer function,
eq. (4.65), on the x-axis for every inverse wavenumber k−1 shown on the y-axis. The horizontal blue dashed
line marks the Fourier mode that enters the horizon at reheating. The horizontal black dashed line marks our
analytical estimate of the inverse wavenumber corresponding to the peak of transfer function, eq. (4.66). The
vertical black dot-dashed line is our analytical estimate of the size of the peak of transfer function, eq. (4.84).
Bottom left: Evolution of δc (solid line) and δDM (semi-transparent dashed lines) corresponding to the
mode with largest transfer function, kpk, and two other modes. Bottom right: Same as top right panel just
with axes inverted to show the transfer function on the y-axis and k on the x-axis. This figure is plotted for
parameters ξi = 102, m ≃ 3.2 TeV, Trh = 5 MeV and αc ≃ 1.4.
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the horizon when cannibal behaves as cold matter and, correspondingly, the density perturbations grow as

δDM = δc ∝ a. This linear growth can be seen in the bottom left panel of figure 4.6 where we plot the

evolution of δc in solid red and δDM (which always equals to δc in this case) in light dashed-red for the k1

mode. Since the horizon size grows as (aH)−1 ∝ a1/2 between adom and arh, ahor ∝ k−2. Consequently,

δDM(arh) scales as δ(arh) ∝ arh/ahor ∝ k2. In the case of δDM,s, the modes entering the horizon earlier

undergo more logarithmic growth between ahor,s and aeq but the same linear growth after aeq. Since the

horizon size grows as (aHs)
−1 ∝ a during radiation domination, an increase in k results in a linear decrease

in ahor,s, which implies that δDM,s ∝ ln[k/(8keq)] [105], where keq ≡ (aH)eq. Thus in this regime the transfer

function goes as k2/ ln[k/(8keq)].

As we further increase k, the transfer function continues to grow until the wavenumbers start intersecting

the yellow shaded region in the top left panel. The cannibal perturbations for modes entering the Jeans length

(k2 mode in bottom left panel of figure 4.6) oscillates until the mode exits the Jeans length. Consequently,

these modes have less time to grow linearly after escaping the Jeans length but before reheating. The

oscillation in T (k) is caused by the change in the phase of cannibal perturbation from when the mode enters

the horizon to when reheating occurs. Since δDM eventually falls into the potential well formed by δc after

the mode escapes the Jeans length (see k2 mode in bottom left panel), the oscillation of cannibal perturbation

is imprinted onto T (k).

Large values of the transfer function imply that the DM perturbations after an ECDE reach the nonlinear

regime much earlier than they would in a standard cosmology. Once δDM ≳ 1, overdense fluctuations

collapse to form halos [108]. In section 4.6 we discuss how kpk determines the mass of the earliest-forming

microhalos, while T (kpk) determines the redshift of their formation. Due to the importance of kpk and T (kpk)

in controlling microhalo formation, in the following subsection we find analytical estimates for both quantities

and highlight their connection to cannibal parameters.

The mode corresponding to the peak of the transfer function, kpk, just misses entering the Jeans length

as seen in top left panel of figure 4.6. As k−1
J peaks near 2afz, the peak wavenumber is given by

k−1
pk = 1.4(kJ(2afz))

−1, (4.66)

where the factor 1.4 we find empirically. This estimate is accurate to within 30% for arh = 5afz and reaches

3% accuracy for larger arh/afz.

In the above scenario we focussed on the sub-case where universe is already cannibal-dominated at ai.

More generally, if the universe was SM-radiation-dominated at ai but becomes cannibal-dominated when

cannibal reaction freezes out, adom < afz, the qualitative feature of the transfer function is not drastically

affected. In particular, T (k) for k < (aH)dom remains completely unaffected as those modes enter the

horizon after adom and are not affected by the period of SM-radiation domination. Since kpk < (aH)dom for

adom < afz, the value of kpk is explained by the same physics as discussed in this sub-section.

4.4.2 Cannibal freeze-out during SM radiation domination

In this section we highlight the key features of perturbations in a scenario where the universe was SM

radiation-dominated during the freeze-out of cannibal 3 → 2 reactions, afz < adom < arh. In the previous

subsection we saw that kpk depends sensitively on when the cannibal reactions freeze-out. Consequently,

the SM radiation-dominated universe during the freeze out of cannibal reactions significantly changes the

behaviour of kpk and T (kpk), compared to the results obtained in the previous scenario where adom < afz.
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We can understand the essential behavior of the perturbations in cosmologies with an initially-subdominant

cannibal density by separately considering the evolution of perturbation modes that enter the horizon prior

to cannibal freeze-out and modes that enter the horizon between cannibal freeze-out and cannibal decay.

Modes that enter the horizon prior to cannibal freeze-out

In the top panel of figure 4.7 we show the comoving horizon, (aH)−1 (solid blue), the cannibal Jeans length

(solid orange), and the comoving cannibal sound horizon,

rs ≡
∫ t

cs
dt̃

ã
=

∫ a cs
ãH

d ln(ã). (4.67)

These scales will determine the evolution of perturbation modes that enter the horizon prior to cannibal

freeze-out. In the bottom panel of figure 4.7 we show the evolution of density perturbations for one such

mode, indicated in the top panel as the black-dashed line. These results are obtained by numerically solving

eqs. (4.46)-(4.51) with initial conditions given by eq. (4.53).

When the wavenumber k is much larger than aH/cs, the time scale of cannibal oscillations is much smaller

than the time scale over which the instantaneous frequency and the anti-damping terms in eq. (4.56) evolve.

Thus, one can use a WKB approximation to obtain

δc ≈
C1√
cs

exp

(
−
∫ a

as,hor

1− 3wc
2

d ln(ã)

)
sin [krs + C2] , (4.68)

as detailed in appendix C. Here as,hor is the scale factor for which csk/(aH) = 1, and C1 and C2 are constants

determined by δc(as,hor) and δ
′
c(as,hor). Note that the instantaneous frequency of δc oscillations is set by the

cannibal sound horizon.

In the bottom panel of figure 4.7, we see that the amplitude of δc oscillations decreases slowly for a < 2afz

and reaches a constant value for a > 2afz. The slow decay prior to 2afz results from the logarithmic decay of

cs partially compensating for the exponential in eq. (4.68). While a ≳ 2afz, cs and wc decay as cs = cs,fzafz/a

and wc = wc,fza
2
fz/a

2 (see figure 4.4). Inserting this evolution in eq. (4.68), one can check that the amplitude

of δc remains constant after 2afz.

Once cannibal domination begins, the Jeans length is again the scale that controls the oscillations in δc.

For instance, the δc oscillations in the bottom panel of figure 4.7 end when the mode exits the Jeans horizon

in the top panel. The linear growth of δc after the mode exits the Jeans horizon can be seen analytically by

solving eq. (4.55) while neglecting cs, wc, and ρr and using the fact that Hubble rate evolves as H ∝ a−3/2.

Like in previous subsection, the evolution of δr seen in the bottom panel of figure 4.7, has no significant

impact on δDM because they oscillate too rapidly within the horizon.

In the bottom panel of figure 4.7 we see that δDM (blue line) grows logarithmically for ahor < a < adom.

This is the expected evolution for δDM in a radiation-dominated universe and is given by

δDM(a) = −Asϕp(k) ln
(
Bsa

ahor

)
ahor < a < adom, (4.69)

where As = 9.11 and Bs = 0.594 are numerical fitting factors [105]. After the universe becomes cannibal

dominated, δDM is constant until δc grows to be of order δDM, after which δDM grows linearly as δDM = δc ∝ a.

After reheating, δDM again grows logarithmically. Consequently, the growth experienced by DM perturbations
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Figure 4.7: Top: Comoving horizon (solid blue line), cannibal Jeans length (solid yellow line) and cannibal
sound horizon (solid brown line) relative to the horizon size at ai, with k

−1
hor,i ≡ [aiH(ai)]

−1. The dashed

yellow (brown) line represents when k−1
J (rs) is plotted in regimes outside of its validity. The horizontal

black dashed line marks the Fourier mode, k = 12.5× 10−3khor,i, of the perturbations shown in the bottom
panel. The shaded yellow region highlights the region within which δc oscillates. Bottom: Evolution of SM
radiation, cannibal and DM density perturbations relative to the primordial metric perturbation, ϕp. The
vertical dashed red, green, purple, and blue lines marks the scale at acan, afz, adom, and arh respectively. The
vertical dot-dashed black line marks the scale ahor when the mode enters the horizon. The vertical dashed
grey lines mark the scale factors when the mode enters the sound horizon and exits the Jeans horizon. The
figure has been plotted for parameters ξi = 0.68, m = 15 TeV, Trh = 10 MeV and αc = 1, for which we obtain
k−1
hor,i = 2× 10−6 pc.
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during an ECDE is determined by the growth of the cannibal perturbation.

Modes that enter the horizon after cannibal freeze-out

The homogeneous cannibal fluid behaves like pressureless matter after 2afz because wc ≪ 1 in this regime.

Thus, for modes that enter the horizon after 2afz, one might expect δc to simply evolve as expected for

pressureless matter, i.e., with δc growing logarithmically between horizon entry and the end of radiation

domination. However, lingering thermal pressure affects the evolution of the cannibal perturbations that enter

the horizon shortly after cannibal freeze-out. The sound horizon grows logarithmically for afz < a < adom, as

can be seen analytically by substituting H ∝ 1/a2 and cs = cs,fzafz/a in eq. (4.67):

rs ∼
cs,fz

(aH)fz
ln

(
a

2afz

)
2afz < a < adom. (4.70)

This logarithmic growth of rs is also evident in figure 4.7 and in the top right panel of figure 4.8. Since the

sound horizon continues to grow while the universe is radiation dominated, modes that enter the horizon

after cannibal freeze-out may still oscillate. For example, in the bottom left panel of figure 4.8 we can see

that δc(k2) undergoes oscillations once k
−1
2 enters the sound horizon in the top left panel.

To better understand the evolution of δc for modes entering the horizon between 2afz and adom, we solve

eq. (4.56). For a > afz, the anti-damping term in eq. (4.56) rapidly decays while the frequency remains

constant. Moreover, since wc is already much less than one by afz, the anti-damping term never has a

significant impact, as we have verified numerically. Consequently, for a > afz, eq. (4.56) simplifies to a simple

harmonic oscillator equation in ln(a). Using cs = cs,fzafz/a and H = H(afz)a
2
fz/a

2 for a > afz, we can exactly

solve this simple harmonic oscillator equation to obtain

δc = C̃1 sin

(
cs,fzk

afzH(afz)
ln

(
C̃2

a

ahor

))
afz, ahor < a < adom, (4.71)

where C̃1 and C̃2 are constants.

Eq. (4.71) suggests that the cannibal perturbation evolves logarithmically with a for a short time after

horizon entry. Since cs,fzk/(aH)fz ≪ 1 for modes entering the horizon after afz, eq. (4.71) simplifies to

δc ≈ C̃1
cs,fzk

(aH)fz
ln

(
C̃2

a

ahor

)
, (4.72)

while a does not greatly exceed ahor. Hence the naive expectation that δc should evolve logarithmically for

modes entering the horizon after cannibal freeze-out does hold for a brief period after horizon entry. During

this period of logarithmic growth, the influence of thermal pressure is initially negligible. However, the

influence of thermal pressure keeps growing logarithmically until it becomes large enough that the argument

of the sine becomes O(1) and δc begins to oscillate.

We can find C̃1 and C̃2 for modes entering the horizon after 2afz by using the fact that the super horizon

initial condition is the same for both the cannibal and DM perturbations in this regime because the cannibal

particles are non-relativistic. Consequently, the early-time solution in eq. (4.72) should match the standard

logarithmic growth of DM during radiation domination in eq. (4.69). By matching eq. (4.72) to eq. (4.69) we

find the constants to be C̃1 = −Asϕp(aH)fz/(cs,fzk) and C̃2 = Bs. It follows that the cannibal perturbation
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Figure 4.8: Top left: Comoving horizon (blue solid line), sound horizon (brown solid line) and Jeans
length (yellow solid line) relative to k−1

hor,i ≡ [aiH(ai)]
−1. Horizontal dashed lines mark the wavenumbers

corresponding to the perturbations in the bottom panel. Top right: Absolute value of the transfer function,
eq. (4.65), on the x-axis, for every inverse wavenumber k−1 shown on the y-axis. The horizontal blue (purple)
dashed line marks the wavenumber that enters the horizon at arh (adom). The horizontal black dashed line
marks the analytical estimate of the wavenumber kpk that maximizes δDM/ϕP , eq. (4.78). The vertical
black dot-dashed line is our analytical estimate of the the transfer function at horizontal black dashed line,
eq. (4.88). Bottom left: Evolution of δc (solid) and δDM (light dot-dashed) for kpk and two other modes
k1 = kpk/10 and k2 = 4kpk. Bottom right: Transfer function as in the top right panel but rotated by ninety
degrees. In this figure we take ξi = 0.1, m = 180 TeV, Trh = 10 MeV and αc = 1.
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evolution within the horizon is given by

δc(a) = −Asϕp
(aH)fz
cs,fzk

sin

(
cs,fzk

(aH)fz
ln

(
Bs

a

ahor

))
ahor < a < adom. (4.73)

The fact that the cannibal and DM perturbations follow the same initial evolution after horizon entry can be

seen in the bottom left panel of figure 4.8.

Note that the argument of the sine in eq. (4.73) is similar to krs. By using the approximate evolution

of rs given by eq. (4.70), we find the difference between krs and the argument of the sine in eq. (4.73) to

be ∼ cs,fzk/(aH)fz ln(ahor/2afz). This difference is much less than one for ahor > 2afz because cs,fz ≪ 1 and

k/(aH)fz = afz/ahor < 1, which follows from the fact that H ∝ a−2 between afz and ahor. Thus δc deviates

from the logarithmic growth experienced by δDM approximately when the mode enters the sound horizon.

This can also be seen in the left panels of figure 4.8, where the intersection of k−1
2 and rs in the top panel

coincides with δc(k2) beginning to deviate from δDM(k2) in the bottom panel.

The dark matter density perturbation evolves in the same manner as in the previous subsection: it grows

logarithmically between ahor and adom, after which it remains constant until δc grows to be of order δDM,

and then it grows linearly along with the cannibal perturbation, δDM = δc ∝ a. Note that this linear growth

occurs independently of whether the mode enters the horizon before or after afz, as long as the mode is

outside the cannibal Jeans horizon during cannibal domination.

So far we have discussed modes that enter the horizon prior to cannibal domination. For modes that enter

the horizon after adom, δc evolves as cold matter, since k−1 ≫ rs(adom). Thus, the evolution of perturbations

for modes that enter the horizon after adom is the same as those studied in early matter-dominated eras [18,

24, 76–78].

The linear matter power spectrum after an ECDE

We now compare the present-day linear matter power spectrum following an ECDE to the matter power

spectrum in standard cosmology. In the bottom right panel of figure 4.8 we plot the transfer function for a

scenario with adom ≫ afz.

The transfer function is unity for modes that enter the horizon after reheating because δDM and δDM,s

undergo the same evolution for these modes. As we increase k, the transfer function increases as approximately

k2/ ln[k/(8keq)] until k ∼ kdom ≡ (aH)dom because these modes experience evolution similar to modes in an

early matter dominated universe.

For k > kdom, modes enter the horizon during SM radiation domination. Modes with larger k now see

δDM undergo a larger logarithmic growth between ahor and adom but the same linear growth between adom

and arh (seen, for example, in the differing growth of δDM(k1) and δDM(kpk) in the bottom left panel of

fig. 4.8). Consequently, an increase in k results in a ∼ ln[k/(8kdom)] increase in the growth experienced by

δDM. Thus the transfer function increases as approximately ln[k/(8kdom)]/ ln[k/(8keq)], and as kdom ≫ keq,

the k-dependence of the transfer function is primarily driven by the logarithm in the numerator.

As we further increase k beyond kdom in the top right panel of figure 4.8, the transfer function continues

to grow until k−1 intersects the cannibal sound horizon in the top left panel. For these modes, the cannibal

perturbations undergo oscillations while their wavelength is contained within the yellow shaded region in

the top left panel, which inhibits the growth of DM perturbations. Modes with larger k spend more time

within the Jeans horizon, and thus have less time to grow prior to reheating. Since the Jeans length decays as

a−1/2 for a > afz, the envelope of the transfer function for k > kpk falls as k−2/ ln[k/(8keq)]. The oscillations
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in T (k) are caused by changes in the phase of the cannibal perturbation between horizon entry and Jeans

horizon exit; the dark matter inherits these oscillations because it falls into the gravitational wells generated

by the cannibal perturbations after they stop oscillating [26]. When δc keeps oscillating until arh, however,

the cannibal mode does not have a net gravitational impact on δDM, and thus for k > kJ (arh) the oscillations

in T (k) stop.

4.4.3 Analytical estimate of the peak of the matter power spectrum

In this section we find analytical relationship between the key features in the small scale matter power

spectrum, {kpk, T (kpk)} and the key cosmological transitions scales in ECDE, {afz, adom, arh}.

Estimating kpk

Earlier in section 4.4.1 we found that peak in the transfer function occurs at k−1
pk = 1.4k−1

J (2afz) when the

cannibal reactions freeze-out during cannibal domination, adom < 2afz. The kpk mode here corresponded to

the smallest-scale mode for which the cannibal perturbation did not oscillate. Similarly, if instead cannibal

reactions freeze out while the universe is SM dominated, then the matter power spectrum peaks near the

smallest-scale mode whose cannibal perturbation do not oscillate. This occurs for a mode that is larger than

the cannibal sound horizon, i.e.,

kpk ≈ r−1
s (adom). (4.74)

We can more accurately determine kpk by using the fact that δDM(arh) = δc(arh) for wavenumbers in the

vicinity of kpk. For these wavenumbers, δc and δDM undergo the same amount of linear growth between adom

and arh, as illustrated in the bottom left panel of figure 4.8. Consequently, we can find kpk by finding the

wavenumber that maximizes δc(adom).

As the top left panel of figure 4.8 demonstrates, wavenumbers with k ∼ r−1
s (adom) enter the horizon

between afz and adom. We can estimate δc(adom) for these modes using the analytical solution for δc given in

eq. (4.73). Strictly speaking, the approximations yielding eq. (4.73) do not include the gradual transition to

cannibal domination around adom, but as the impact of this transition is similar for all modes with k between

kdom and kfz, these neglected terms will not affect the determination of kpk.

In eq. (4.73), some of the k-dependence is hidden inside ahor. This dependence can be made explicit by

using the fact that the modes near kpk enter the horizon during radiation domination, yielding k/(aH)fz =

(aH)hor/(aH)fz = afz/ahor. Expressing k in terms of ahor and defining γ ≡ ahor/afz, eq. (4.73) becomes

δc(adom) ≈ −Asϕp
γ

cs,fz
sin

(
cs,fz
γ

ln

(
Bs
γ

adom
afz

))
. (4.75)

Apart from the weak k-dependence in ϕp (ϕp ∝ k−0.02) [3], the rest of the k dependence is now encoded

inside γ. We maximize δc(adom) by taking ϕp to be constant and setting the derivative of δc(adom) with

respect to γ to zero. Doing so yields

tan

[
cs,fz
γ

ln

(
Bs
γ

adom
afz

)]
=
cs,fz
γ

+
cs,fz
γ

ln

(
Bs
cs,fzγ

adom
afz

)
. (4.76)

This equation has multiple solutions. We want the largest γ for which the above equation is satisfied, because

the largest solution corresponds to the value of ahor for which δc does not oscillate. Since oscillations suppress
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Figure 4.9: Wavenumber corresponding to the peak of the matter power spectrum, kpk, as a function of
initial temperature ratio between cannibals and SM radiation, ξi = Tc(ai)/Tr(ai). The yellow (green) solid
line shows the estimate of kpk given in eq. (4.78) (eq. (4.66)); the dashed yellow and green dashed lines show
extrapolations of these analytical estimates outside their regime of validity. Black dots are the numerically
obtained values of kpk. The bars on the black dots show the range of k around kpk for which δDM(k, aeq) is
within 5% of δDM(kpk, aeq). The blue dashed line is the inverse of the cannibal sound horizon (see eq. (4.67))
at arh. The vertical gray dashed line marks the point at which adom = 2afz. In the secondary x-axis on top,
we show the values of adom/(2afz). For ξi ≳ 3.2, the SM radiation density is subdominant to the cannibal
density until reheating, and adom is not defined. In this figure we take m = 300 TeV, αc = 0.2 and Trh = 8
MeV. We have restricted the plot to ξi > 0.03 because for smaller ξi the cannibal density never exceeds SM
density.

δc(adom), this mode is the global maximum of δc(adom). For the largest γ satisfying the above equation, the

tangent is well-approximated by a second-order Taylor expansion. After simplifying the resulting equation we

obtain

γpk =
3cs,fz

2
√
2
W 3/2

[
2

(
Bs

3cs,fz

adom
afz

)2/3
]
, (4.77)

where W is the Lambert function. Using γ = ahor/afz = (aH)fz/k, we obtain

k−1
pk =

γpk
(aH)fz

. (4.78)

In the right panels of figure 4.8, this estimate of kpk is shown with a black dashed line.

In figure 4.9, we plot the estimates of kpk given in eqs. (4.78) and (4.66) as functions of ξi. We also show

the values of k that maximize δDM(k, aeq)/ϕP as black dots. Since ϕP is only weakly scale-dependent, the

peak location in δDM(k, aeq)/ϕP is an excellent estimate of the peak location in the matter power spectrum.

The bars around the black dots indicate the range of k for which δDM(k, aeq)/ϕP is within 5% of its maximum

value. This range is larger for adom < 2afz because the logarithmic evolution of δc prior to adom causes

the transfer function to be flatter near the peak (see figure 4.8). Our analytical estimates are accurate
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approximations to the numerical results except in the transition region where adom ∼ 2afz. In figure 4.9, we

also plot the cannibal sound horizon at reheating, rs(ah). We plot rs(arh) and not rs(adom) because rs(adom)

provides an approximate estimate of kpk only for adom > 2afz, while rs(arh) can provide an order-of-magnitude

estimate of kpk for all values of ξi.

To understand how kpk depends on ξi, we need to express kpk in terms of cannibal parameters: m, αc, Trh,

and ξi. For adom < 2afz, we can find a rough dependence of kpk on particle parameters by using eq. (4.57) to

estimate kJ (2afz) and then performing the following steps to simplify eq. (4.57): 1) approximate c2s ≈ Tc/m

and neglect wc, 2) use eq. (4.39) to substitute ρcan residing inside H, and 3) use (4.10) to substitute Tc.

Performing the above steps gives us the relation kpk ∼ 0.3
√
ai/afzkhor,i, where khor,i = aiH(ai). We can

get an estimate of khor,i as a function of our cannibal parameters by splitting ai/a0 = ai/arh × arh/a0,

estimating arh/a0 using eq. (4.35) and arh/ai using eq. (4.40), and using the initial densities of SM radiation

and cannibals in the Hubble rate to obtain

khor,i
a0

∼ 34.5 pc−1 ×
(

Trh
10MeV

)1/3 ( m

GeV

)2/3√
[1 + g∗(10m/ξi)ξ

−4
i ]. (4.79)

Finally, by replacing afz using eq. (4.42) we obtain

kpk ∼ 0.05× α−1/3
c

( m

GeV

)7/9( Trh
10MeV

)1/3

pc−1. (4.80)

As we can see kpk has no ξi dependence for adom < 2afz case.

In the case where 2afz < adom, we first use γpk ≈ ln3/2(adom/afz)/3.5 in eq. (4.78). This approximation

for γpk is an empirical relation that we found to be accurate to within 20% for 10 < adom/afz < 105 and

102 < afz/ai < 104. Furthermore, we use (aH)fz = khor,iai/afz because the universe is radiation dominated

between ai and afz. Finally, expressing afz and adom in terms of cannibal parameters using eq. (4.43) and

eq. (4.41) respectively, we obtain for adom > 2afz

kpk
a0

∼ 3.7× 10−2 pc−1α−3/4
c ξ

−5/2
i

( m

GeV

)11/12( Trh
10MeV

)1/3(
g∗(10m/ξi)

100

)5/8

× ln−3/2

(
1

4
α−3/4
c ξ

−9/2
i

( m

GeV

)1/4(g∗(10m/ξi)
100

)9/8
)
pc−1. (4.81)

The location of the peak in the transfer function thus depends on all four cannibal parameters, but it is most

sensitive to ξi, which is in contrast to eq. (4.80).

While our analytic estimates of kpk in the scenarios with adom < 2afz and adom > 2afz are given by

different functions, the underlying scale determining kpk in both cases is the cannibal sound horizon, up to an

order of magnitude. For adom > 2afz we have already shown that k−1
pk ≈ rs(adom). In the case of adom < 2afz

one can show that rs(2afz) is within an O(1) factor of k−1
J (2afz) ≈ k−1

pk . Moreover, after cannibals freeze out

and dominate the universe, rs asymptotes to a constant value (see figure 4.7 and 4.8) as seen by inserting

H ∝ a−3/2 and cs ∝ 1/a in the definition of rs, eq. (4.67). Consequently, the total comoving distance traveled

by the sound waves in the cannibal fluid, rs(arh), provides an order-of-magnitude estimate of kpk for all

scenarios. In figure 4.9, we compare the dependence of r−1
s (arh) on ξi to that of kpk. The value of r−1

s (arh)

always falls within a factor of 5 from kpk in our parameter space.
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Estimating T (kpk)

We now semi-analytically estimate the value of T (kpk).
4 Since DM particles are falling into the gravitational

potential formed by cannibal, the value of the DM perturbation at the end of reheating is approximately the

same as that of the cannibal’s, δDM (arh) ≈ δc(arh). Consequently, we can estimate the peak of the transfer

function by first estimating the value of cannibal perturbation for kpk.

First we solve for the case where adom < 2afz. Since for this scenario, the cannibal density perturbations

with k < kJ grow linearly after horizon entry, and the peak wavenumber kpk enters the horizon at a scale

factor ahor,pk ∝ afz, we expect δc(kpk, arh) ∝ ϕp(kpk)arh/afz. This relation, particularly the assumed linear

scaling of ahor,pk = kpk/H(ahor,pk) with afz, does receive logarithmic corrections owing to the cannibal

interactions, but the logarithmic nature of those corrections implies that the linear scaling provides a useful

estimate. After reheating, we expect the DM perturbation to grow logarithmically. Thus we expect that the

behavior of δDM(kpk) during the post-reheating epoch of radiation domination can be parametrized as

δDM(kpk, a > arh) = −b1
arh
afz

ϕp(kpk) ln

(
b2

a

arh

)
, (4.82)

where b1 and b2 reflect, respectively, the deviation of δDM(kpk) from perfect linear growth between arh and

afz, and the transition of δDM from linear to logarithmic growth around arh. Empirically we find that both

b1 and b2 are O(1); for instance, in the parameter point shown in Fig. 4.6, b1 = 2.5 and b2 = 1.7. Both b1

and b2 are insensitive to variations in arh/afz as long as δDM achieves linear growth by the time of reheating,

or equivalently arh/afz ≳ 200. However, while b2 is insensitive to variations in afz/ai, b1 has a logarithmic

dependence on afz/ai arising from the logarithmic corrections to the assumed proportionality ahor,pk ∝ afz.

Comparing Eq. (4.82) with Eq. (4.69) lets us identify

A(kpk) = b1
arh
afz

B(kpk) = b2
ahor,pk
arh

. (4.83)

Using these relations of A(kpk) and B(kpk) in the transfer function, Eq. (4.65), yields

T (kpk) =
b1
As

arh
afz

[
1− ln(Bsb

−1
2 arh/ahor,s)

ln(4Bse−3aeq/ahor,s)

]
∼ 1

5

arh
afz

, (4.84)

where in the second relation we dropped the logarithmic factors (since arh ≪ aeq) and estimated b1 ∼ 2.

Thus the peak of the transfer function is roughly proportional to the decades between the freeze out of 3 → 2

reactions and reheating.

The semi-analytical estimate of the peak of the transfer function given in the first equality is found to be

accurate with the numerical value (less than a 1% deviation) for different values of arh as long as arh ≫ afz.

However, the semi-analytical estimate has a small variation of order ∼ 20% with respect to its numerical

counterpart as we change afz by a factor of order 10. This semi-analytical estimate is also shown in the right

panels of figure 4.6 as black dot-dashed lines.

Next we find an analytic estimate of T (kpk) for scenarios with adom > 2afz. Again, we start by first

estimating the value of δc(arh). Since the mode with wavenumber kpk typically remains outside of the cannibal

sound horizon, δc(kpk) evolves similarly to a cold matter perturbation. That is, δc evolves logarithmically

from horizon entry at ahor = γpkafz until adom. The linear growth of δc(kpk) after cannibal domination is

4Due to the presence of δDM,s in the denominator of the transfer function (eq (4.65)), the location of the peak in the transfer
function is slightly different from kpk. However, this difference is negligible, as can be seen in figure 4.8.
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well described by the growing solution of the Meszaros equation:

δc(kpk, a) ≈
3Asϕp

2
ln

[
4Bse

−3adom
γpkafz

]
a

adom
. (4.85)

As δDM(kpk, arh) = δc(kpk, arh), the logarithmic growth of δDM after reheating will then be of the form

δDM(kpk, a) =
3Asϕp

2
ln

[
4Bse

−3adom
γpkafz

]
arh
adom

b̃1 ln

(
b̃2

a

arh

)
. (4.86)

Here b̃1 and b̃2 parameterize the transition from linear to logarithmic growth through reheating. Numerically

we find b̃1 = 1.29 and b̃2 = 1.66.

Comparing eq. (4.86) with the standard logarithmic growth of δDM during radiation domination, eq. (4.69),

we find

A(kpk) =
3As
2

ln

[
4Bse

−3adom
γpkafz

]
arh
adom

b̃1 B(kpk) = b̃2
ahor
arh

. (4.87)

Using the above relations in the definition of the transfer function, eq. (4.65), gives

T (kpk) ≈
3

2
b̃1 ln

(
4Bse

−3adom
γpkafz

)
arh
adom

[
1− ln(Bsb̃

−1
2 arh/ahor,s)

ln(4Bse−3aeq/ahor,s)

]
. (4.88)

This estimate is accurate to within 5% as long as adom > 100afz and arh > 10adom, and is shown as a black

dot-dashed line in the right panels of figure 4.8).

We obtain a simple approximation for T (kpk) by neglecting the logarithmic factors in the square bracket

in eq. (4.88) as they provide only an O(1) correction and using the fact that γpk is typically of O(1), yielding

T (kpk) ∼ 2 ln

(
adom
10afz

)
arh
adom

. (4.89)

Notice that in both adom < 2afz and adom > 2afz scenario, the peak of the transfer function is primarily

determined by the duration of cannibal domination after the freeze-out of cannibal reactions. In the scenarios

with 2afz < adom one also gets an additional logarithmic enhancement due to the logarithmic growth of

δc(kpk) prior to adom.

4.4.4 The effects of DM-cannibal interactions

Until now we have focused on scenarios where the DM only interacts gravitationally with the other constituents

of the universe. However, if DM and the cannibal particle are part of the same hidden sector, then it is

natural for the two species to have non-gravitational interactions as well. In this section we show that the

presence of non-gravitational DM-cannibal interactions does not change the key features of the transfer

function and does not change kpk and T (kpk).

Scattering between the DM and cannibal particles can cause the DM to be kinetically coupled to the

cannibal fluid. The scenario we consider involves an interaction between two non-relativistic particles with

a mass hierarchy (mDM > m) and hence is similar to the baryon-DM interactions studied in Ref. [109].

Using the results of Ref. [109], the momentum transfer rate ( 1p
dp
dt ) experienced by a DM particle due

to its s-wave scattering interactions with the cannibal bath is given by ncan(m/mDM)⟨σDM,cvc⟩, where
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Figure 4.10: Transfer functions for scenarios with different cannibal-DM interaction cross-sections. The
left panel shows an initially subdominant cannibal scenario with the same parameters as in figure 4.8. The
right panel shows a scenario with an initially dominant cannibal density with m = 1.8 TeV, Trh = 10 MeV,
αc = 0.1, and ξi = 10,. The blue line corresponds to no kinetic coupling between DM and the cannibals.
The orange line corresponds to a scenario where the DM-cannibal scattering rate falls below the Hubble
rate at akd,DM = arh/100, while the green line is for a scenario with akd,DM = 2arh. The transfer function is
unaffected by cannibal-DM interaction for modes where T (k) > 1.

⟨σDM,cvc⟩ ∝
√
Tc/m is the velocity averaged cross-section for cannibal-DM scattering. When we include

these interactions, eq. (4.49)) for θDM becomes

θ′DM(a) +
1

a
θDM − k2

a2H
ϕ =

m

mDM

ncan⟨σDM,cvc⟩
aH

(θc − θDM). (4.90)

The momentum transfer rate for a cannibal particle interacting with the DM fluid is given by nDM⟨σDM,cvc⟩.
Consequently, a term similar to the RHS of eq. (4.90) would also appear in the θc equation but with an

additional factor of −ρDM/ρcan. As ρDM ≪ ρcan prior to reheating, the effect of DM-cannibal scattering on θc

is much smaller than its effect on θDM. Consequently, the DM perturbations track the cannibal perturbations

while providing negligible feedback on the evolution of the cannibal perturbations. Hence we ignore the

impact of DM interactions on the cannibal fluid.

In figure 4.10 we compare the transfer functions resulting from scenarios with different values of ⟨σDM,cvc⟩.
We see that DM-cannibal interactions have no impact on the peak of the transfer function. In the limit

of strong kinetic coupling, i.e. ncan⟨σDM,cvc⟩ ≫ H, the DM-cannibal interactions cause δDM to track δc.

However, regardless of the strength of the DM-cannibal kinetic coupling, the metric perturbation will always

drive δDM toward δc once the mode escapes the cannibal Jeans horizon. Consequently, the value of δDM at

reheating is insensitive to DM-cannibal scattering for modes that escape the cannibal Jeans horizon.

DM-cannibal interactions do affect the DM transfer function on very small scales, corresponding to

modes that do not escape the cannibal Jeans horizon before reheating. For these modes, δc oscillates until

reheating and so never generates a coherent gravitational pull on the DM perturbation. In scenarios with

only gravitational interactions, shown by the blue line in figure 4.10, δDM is larger than δc at reheating for

these small-scale modes because δc oscillates while δDM grows logarithmically until adom. However, in the

opposite limit where DM remains kinetically coupled to the cannibals until 2arh, shown with the green line,

δDM has the same value as δc at arh.

The intermediate case shown by the orange line in figure 4.10 is more suppressed on very small scales than

the tightly coupled case shown in green, even though the intermediate case has a smaller value of ⟨σDM,cvc⟩.
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This relative suppression results from diffusion damping of the dark matter perturbations. Diffusion damping

occurs when the cannibal perturbations oscillate faster than the DM-cannibal scattering rate prior to kinetic

decoupling, i.e. csk > ncan⟨σDM,cvc⟩ > H. During this period, the DM perturbations oscillate with the

same frequency as the oscillations in the cannibal perturbations, but the amplitude of their oscillation is

highly damped. This damping is similar to the Silk damping of baryon density perturbations [110]. In

figure 4.10, the orange line is more suppressed than the green line because the diffusion damping scale,

k−1
D ∼ cs/(ncan⟨σDM,cvc⟩), is larger for smaller values of ⟨σDM,cvc⟩. Consequently, the modes experience

damping at smaller k values when DM decouples shortly before reheating compared to the tightly coupled

case.

4.5 Beyond the perfect-fluid approximation

So far we have assumed that the cannibals and the DM fluids are perfect fluids. The perfect-fluid approximation

will break down on scales where the random motion of the particles comprising the fluid cannot be neglected,

which can occur in a variety of regimes. Even while the homogeneous cannibal fluid is in kinetic equilibrium,

the cannibals still have a finite diffusion length. For perturbations on scales smaller than the diffusion length,

a perfect-fluid description is not sufficient. Once kinetic equilibrium is lost, the random thermal motion of

particles becomes important on scales quantified by either the free-streaming length or the collisionless Jeans

length, depending on the gravitational forces experienced by the particles. Again, for perturbations with

wavelengths smaller than these scales, the perfect-fluid description breaks down.

Momentum exchange among cannibal particles is dominated by elastic 2-to-2 scatterings, with a rate

given by ncan⟨σcvc⟩. In appendix B.2 we derive the two-to-two scattering rate for the φ4 theory described by

eq. (4.1). We find that the s−wave contribution in the non-relativistic limit is

⟨σcvc⟩ =
1

64π3/2m2

(
λ− 5

3

g2

m2

)2

×
√
Tc
m

≡ σeff

√
Tc
m
, (4.91)

where λ and g are the coupling constants of the cubic and quartic interactions in eq. (4.1), respectively, and in

the second equality we pulled out a factor of vc =
√
Tc/m to define an effective scattering cross-section. Note

that the parameter αc that controls the cannibal number-changing interactions does not uniquely determine

σc because αc and σc depend on different combinations of g and λ.

In a Hubble time, a cannibal particle will undergo N = (ncan⟨σcvc⟩)/H scatterings. The average distance

travelled by a cannibal particle between two collisions is ℓmfp ∼ 1/(ncanσeff). Consequently, the comoving

diffusion length is given by

λdiff =
1

a

√
N × ℓmfp =

1

a

√
vc

ncanσeffH
. (4.92)

For modes with wavelengths shorter than the comoving diffusion length, the higher moments of the Boltzmann

hierarchy can no longer be neglected, and will suppress δc [111]. The perfect-fluid approximation also breaks

down for modes that oscillate faster than the 2-to-2 scattering rate, i.e. if csk > ncan⟨σcvc⟩. Since cs ∼ vc,

requiring the oscillation frequency to be slower than the scattering rate is equivalent to requiring k−1 > ℓmfp.

Since the cannibal diffusion length is larger than the mean free path prior to kinetic decoupling (as N > 1),

modes will be damped by diffusion before the scattering rate falls below the oscillation frequency.

The diffusion length is relevant as long as the cannibal fluid maintains internal kinetic equilibrium, i.e.
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ncan⟨σcvc⟩ > H. We define the scale factor, akd, at which the cannibal fluid falls out of its kinetic equilibrium

through the relation

ncan(akd)⟨σcvc(akd)⟩ = H(akd). (4.93)

After kinetic decoupling, the cannibal fluid is effectively collisionless. Cannibal number-changing interactions,

which involve three particles in the initial state, freeze out substantially before the cannibal fluid loses internal

kinetic equilibrium, so after kinetic decoupling the cannibal fluid evolves as pressureless matter.5

While the universe is radiation dominated, the cannibals experience no coherent gravitational force and

have a comoving free-streaming length given by

λfs(a) = λdiff(akd) +

∫ a

akd

vc
a2H

da akd < a < adom. (4.94)

Here we have imposed that the cannibal diffusion length is equal to the free-streaming length at kinetic

decoupling. When the cannibal comes to dominate the universe, metric perturbations can begin to pull

particles toward overdense regions. In this regime, departures from perfect-fluid behavior are governed by the

collisionless Jeans length. Analogous to the collisional Jeans length described in the previous section, the

collisionless Jeans length determines the scale above which gravitational attraction is sufficient to overcome

the random motion of particles.

To find the collisionless Jeans length we need to include the anisotropic stress, σcan, in eq. (4.47), which

governs the evolution of θc. Before kinetic decoupling, elastic cannibal scattering ensures that σcan is only

relevant for modes within the diffusion length. After kinetic decoupling, the anisotropic stress is determined

by the free-streaming velocity of the cannibals. Ref. [112] finds the anisotropic stress for a collisionless fluid

to be given by σ = − 5
3 ⟨v

2⟩δ, which follows from the assumption that the phase-space density of the particles

remains unchanged while particles fall into gravitational potential wells. After kinetic decoupling, the sound

speed term in eq. (4.47) is ill-defined and no longer appears in that equation. Consequently, the θc equation

after cannibal kinetic decoupling is

θc
′(a) = −1

a
(1− 3wc)θc −

w′
c

1 + wc
θc +

k2

a2H
ϕ+

k2

a2H

5

3
⟨v2⟩δ. (4.95)

We find the collisionless Jeans length from eq. (4.95) by following the same steps as we performed for

calculating the collisional Jeans length: find the simple harmonic oscillator equation for δc analogous to

eq. (4.56) and then find the wavenumber k for which the frequency becomes imaginary. Doing so, we find

the collisionless Jeans length, k−1
J,c , to be the same as the collisional Jeans length in eq. (4.57), except with

c2s/(1 + wc) replaced by 5⟨v2c ⟩/3:

kJ,c =

√
9

10⟨v2c ⟩
aH. (4.96)

After cannibal freeze-out and before cannibal kinetic decoupling, the sound speed is given by c2s =
5
3
Tc

m = 5
3 ⟨v

2
c ⟩

5The s-wave component of the two-to-two scattering cross-section vanishes for λ = (5/3)g2/m2; for couplings in the
neighborhood of such values, the p-wave component will dominate the elastic scattering cross-section in the non-relativistic
regime. As the three-to-two cannibal interactions are phase-space suppressed as well as higher order in the couplings, they will
still generically decouple earlier than the elastic scattering interactions, but to examine this specific sliver of parameter space in
detail requires the retention of p-wave contributions beyond eq. 4.91, and is beyond the scope of this work.
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Figure 4.11: Length scales where the perfect-fluid approximation for the cannibals breaks down. The left
panel uses the same parameters as in figure 4.8 and shows a scenario where both cannibal freeze-out and
kinetic decoupling occur during SM radiation domination. The right panel takes m = 6.1 TeV, Trh = 10 MeV,
αc = 0.42, and ξi = 10 and shows a scenario where cannibal freeze-out occurs during cannibal domination.
The green line prior to akd shows the comoving cannibal diffusion length as given in eq. (4.92), and in the
left panel between akd and adom, the comoving free-streaming length of the cannibals as given in eq. (4.94).
The orange solid line is the collisional Jeans length, eq. (4.57), for a < akd and the collisionless Jeans length,
eq. (4.96), for a > akd. The brown line indicates the cannibal sound horizon, eq. (4.67). The green shaded
region marks the regimes where the perfect-fluid approximation for the cannibals breaks down. Here we show
the diffusion length taking λ = 0 in eq. (4.91).

and wc ≪ 1. Therefore, the collisionless Jeans length has the same value as the collisional Jeans length would

have had in the absence of kinetic decoupling.

We show the evolution of all three length scales (diffusion, free-streaming, and collisional Jeans lengths)

in fig. 4.11. In the left panel we show a scenario where kinetic decoupling occurs before the cannibal density

comes to dominate, and in the right panel we show a scenario where the cannibal density is always dominant.

In both panels, the solid green line shows the growth of the diffusion length up until akd, which, in the left

panel, transitions smoothly into the free-streaming length given in eq. (4.94) in the region akd < a < adom.

In the left panel, the solid orange line after adom shows the collisionless Jeans length. In the right panel, the

orange line shows the collisional Jeans length before akd and the collisionless Jeans length after akd. The

green shaded region indicates the scales where the cannibal particles no longer behave as a perfect fluid. For

modes that enter the green shaded region in figure 4.11, we expect δc(arh) to experience a suppression that is

not captured in our suite of perturbation equations. The black dashed line shows the peak of the matter

power spectrum in the perfect-fluid approximation, and thus indicates the location of the cutoff that follows

from oscillations in the cannibal fluid. We see that, in the cases shown, the modes that are affected by the

breakdown of the perfect-fluid approximation are already suppressed by the cannibal oscillations.

Cutoffs arising from imperfect-fluid behavior can be important for the transfer function when they occur

on scales larger than the small-scale cutoff provided by cannibal oscillations. In scenarios where the cannibals

freeze out during cannibal domination, the cutoff provided by cannibal interactions sets kpk ≈ kJ(2afz)/1.4,

which ensures that any deviations from perfect-fluid behavior occur at scales substantially below k−1
pk when

afz ≪ akd. In scenarios where the cannibals freeze out during radiation domination, however, the situation is
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a little more subtle. In this case, the perfect-fluid calculation of the cannibal cutoff gives kpk ∼ rs(adom). As

both the sound horizon and the free-streaming length grow logarithmically during the period of radiation

domination following akd, the sound horizon will generically stay outside the free-streaming length, and

therefore the cannibal oscillation cutoff k−1
pk as given by eq. (4.78) will occur at larger scales than the

free-streaming length. However, the derivation of eq. (4.78) assumes a collisional fluid. Thus while we expect

the cannibal oscillation cutoff to be the relevant small-scale cutoff for akd > adom, this conclusion does not

necessarily hold if akd < adom. The regime with akd < adom can be realized in a small region of parameter

space, as we show in section 4.6. A full calculation of the small-scale cutoff in this regime would require

incorporating higher moments of the Boltzmann hierarchy and is beyond the scope of this work; see [113] for

related calculations in a similar model. However in general we can expect this cutoff to lie somewhere in

the vicinity of rs(akd) and λfs(adom). These two scales are relatively similar: the sound horizon is governed

by the distance traveled by sound waves in the cannibal fluid, while the free-streaming horizon is governed

by the distance traveled by the non-relativistic cannibal particles in this epoch. Both the sound speed and

the cannibal particle speed are determined by the cannibal temperature, which changes only logarithmically

between akd and adom.

Finally, we quantify the relationship between afz and akd in our cannibal model. Since the 2 → 2 and

3 → 2 scattering cross-sections depend on different combinations of the quartic coupling λ and cubic coupling

g/m, we can obtain a range of possible akd for a fixed afz. To evaluate akd/afz in terms of the Lagrangian

couplings, we first divide eq. (4.93) by eq. (4.17):

ncan(akd)⟨σcvc(akd)⟩
n2can(afz)⟨σv2⟩can

=
H(akd)

H(afz)
. (4.97)

We then express ncan(akd) and Tc(akd) in terms of their values at afz by using ncan ∝ 1/a3 and Tc ∝ 1/a2

for a > afz. Next, we approximate mncan(afz) ≈ ρcan,eq(afz) and Tc(afz) ≈ Tc,eq(afz) and use eq. (4.12) and

eq. (4.10) to express ρcan,eq and Tc,eq in terms of the scale factor. Finally, we set afz/ai = 103 inside the

logarithms to obtain

a4kd
a4fz

H(akd)

H(afz)
∼ 10−2

(
afz
ai

)3
σeff

m3⟨σv2⟩can
= 10−2

(
afz
ai

)3
20736

225
√
5π

[
λ− 5g2/(3m2)

]2
(g/m)2[(g/m)2 − 3λ]2

. (4.98)

In the last equality above we used eq. (4.91) and eq. (4.15) for σeff and ⟨σv2⟩can respectively. When the

universe is cannibal dominated between afz and akd, then H(afz)/H(akd) = (akd/afz)
3/2 and afz is given

by eq. (4.42). Defining q as the ratio of the quartic and the cubic coupling, q ≡ λ/(g/m)2, and expressing

(g/m)2 using the definition of αc in eq. (4.98) yields

akd
afz

∼ 105α2/5
c

(
GeV

m

)4/15 ∣∣∣∣ q − 5/3

(3q − 1)2/3

∣∣∣∣4/5 . (4.99)

Similarly, if the universe is radiation dominated between afz and akd, H(afz)/H(akd) = (akd/afz)
2 and afz is

given by eq. (4.43). Eq. (4.98) then implies that

akd
afz

∼ 2× 106α5/8
c ξ

3/4
i

(
GeV

m

)3/8 ∣∣∣∣ q − 5/3

(3q − 1)2/3

∣∣∣∣ . (4.100)

In most of the parameter space that realizes an ECDE, varying λ while keeping αc fixed results in a variation
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in akd/afz of up to an order of magnitude. Figure 4.11 shows results with λ = q = 0; for the value of αc

shown in figure 4.11 increasing λ to non-perturbative values results in a correction of less than 30% to the

values of akd shown in the figure.

Departures of the DM from perfect-fluid behavior can also be important for determining the transfer

function. Prior to reheating, the DM free-streaming, diffusion, and collisionless Jeans lengths are always

smaller than the perfect-fluid result for k−1
pk , as the DM speed vDM =

√
TDM/mDM is always smaller than

the cannibal sound speed, cs ∼
√
T/m, which controls the scale of kpk. However, DM free streaming after

reheating can affect the peak of the DM transfer function in some regions of parameter space. Ref. [26]

evaluated the post-reheating free streaming of DM in the case where DM kinetically decouples from the

cannibal fluid after afz. In this case we have TDM(arh) = Tc(arh), which gives for the DM free-streaming

length

λDM,fs ≈
∫ t0

trh

vDM
dt

a
=

√
Tc(arh)

mDM

1

(aH)rh

∫ a0

arh

da

a3

[
G(a)

(
1

a

)4

+G(aeq)

(
1

a3aeq

)]−1/2

, (4.101)

where we defined G(a) ≡ g∗(a)g
1/3
∗ (arh)/g

4/3
∗s (a) and dropped negligible contributions from dark energy at

late times. This result is applicable regardless of whether the universe was radiation dominated or SM

radiation dominated at ai. While the DM free-streaming length in any given model will depend in detail on

the DM coupling to the cannibal species, eq. (4.101) provides an upper bound on λDM,fs: DM that decouples

from the cannibals prior to afz will have a reduced free-streaming length as the temperature of the DM at

reheating will be colder than the cannibal temperature.

If the DM free-streaming length is larger than the small-scale cutoff coming from cannibal self-interactions,

then the DM transfer function will be maximized on a scale ∼ λ−1
DM,fs, which depends on DM as well as

cannibal microphysics. For mDM ≳ 10m, we find DM free-streaming can provide the small-scale cutoff in the

transfer function in a small portion of the parameter space, as we discuss in the following section.

4.6 Implications for microhalo formation

In this section, we first discuss how the key features of the linear transfer function, namely kpk and T (kpk),

relate to the properties of the earliest-forming microhalos. We then express kpk and T (kpk) as a function of

the cannibal parameters m,Trh, αc, and ξi. Finally, we briefly discuss the microhalos’ observational signatures

and how these observations probe cannibalism in the early Universe.

After an ECDE, the DM perturbations with wavenumber kpk have experienced the most growth. Although

the stochastic nature of the primordial perturbations prevents us from knowing exactly which mode has the

largest amplitude, the near scale-invariance of the primordial power spectrum implies that perturbations on

scales near kpk are the first to collapse and form gravitationally bound structures. Since perturbations that

enter the horizon prior to BBN form halos that are too small to capture baryons [114], the characteristic

mass of the earliest-forming halos is given by the amount of DM in a sphere of comoving radius k−1
pk :

Mpk ≡ 4π

3
k−3
pk ρDM,0, (4.102)

where ρDM,0 is the dark matter density today, which we take to be ρDM,0 = 9.7 × 10−48 GeV4 [3]. When

cannibals freeze out while they dominate the energy density of the universe (adom < 2afz), we calculate Mpk
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from the expression for kpk given in eq. (4.80):

Mpk ∼ 10−11M⊙

( αc
0.1

)(10MeV

Trh

)(
TeV

m

)7/3

. (4.103)

For adom > 2afz, we calculate Mpk from the expression for kpk given in eq. (4.81):

Mpk ∼ 3× 10−13M⊙

( αc
0.1

)9/4( ξi
0.4

)15/2(
10MeV

Trh

)(
TeV

m

)11/4(
100

g∗(10m/ξi)

)15/8

×

(
1

6
ln

[
500

(
0.4

ξi

)9/2(
0.1

αc

)3/4 ( m

TeV

)1/4(g∗(10m/ξi)
100

)9/8
])9/2

. (4.104)

We remind the reader that the expression for kpk given in eq. (4.81) is a good approximation for 10 <

adom/afz < 105 and 102 < afz/ai < 104. Since the peak halo mass is typically much smaller than one Earth

mass, the earliest-forming halos are microhalos.

In both cases, Mpk increases as either Trh or m decreases because Mpk is determined by the sound horizon

at reheating, rs(arh). Decreasing Trh delays reheating and hence increases rs(arh). Decreasing m increases

rs(arh) by delaying the freeze-out of cannibal reactions, which increases the cannibal temperature. Since

increasing αc also delays the freeze-out of cannibal reactions, we see a positive correlation between Mpk and

αc. The peak halo mass has a stronger dependence on αc when the cannibals freeze out while the universe is

SM radiation dominated because the Hubble rate falls faster in a radiation-dominated universe compared to

a cannibal-dominated universe.

An ECDE enhances the amplitude of all perturbations with k < kpk that enter the horizon during the

ECDE. Therefore, the largest halos that are affected by the ECDE have masses equal to the amount of DM

within the horizon at reheating, Mrh, which is given by eq. (4.102) but with kpk replaced by krh = arhH(arh).

We find Mrh in terms of cannibal parameters by taking H(arh) ∼ Γ and then expressing Γ in terms of Trh.
6

We then express arh/a0 in terms of SM temperatures using entropy conservation to obtain

Mrh ∼ 10−4M⊙

(
10MeV

Trh

)3(
10

g∗(Trh)

)1/2

. (4.105)

While deriving the above relation we set g∗s(Trh) = g∗(Trh). An ECDE increases the abundance of all halos

with masses between Mpk and Mrh, and these halos form earlier than they would in a standard cosmology.

Halos form when δDM becomes of order unity. In a standard cosmology, the amplitude of small-scale

perturbations increases only logarithmically with k, so microhalos with masses within several orders of

magnitude of an earth mass form near a redshift of 60 [115, 116]. Since baryons do not participate in

structure formation for modes that enter the horizon during an ECDE, δDM ∝ (1 + z)−0.9 for z < zeq on

these scales [105, 107]. Consequently, the collapse redshift of the microhalos corresponding to overdensities

with wavenumber k increases by a factor of ∼ [T (k)]1.11 compared to that in the standard cosmology as long

as the collapse occurs after matter-radiation equality, i.e. for T (k) < 30. For T (k) > 30, the formation of the

microhalos occurs prior to matter-radiation equality, and the exact increase in the collapse redshift depends

non-trivially on T (k) [19].

The central density of a dark matter halo scales with the homogeneous matter density at the time of its

6The Hubble rate at arh does not equal Γ because arh is defined as the scale factor when the Hubble rate equals Γ in a
standard cosmology. However, since ρcan ∼ ρr at arh, H(arh) is some O(1) factor times Γ.
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formation [117–119], so the microhalos that form after an ECDE have central densities that are significantly

larger than those in standard cosmology [120]. These central densities are large enough for the microhalos to

survive within galaxies, although they experience significant mass loss [20, 25, 116, 121–123].

If T (kpk) is significantly large, then the cannibals and DM particles assemble into microhalos before

reheating. For modes in the vicinity of the peak in the matter power spectrum, eq. (4.87) implies that the

DM overdensity at reheating is related to the primordial metric fluctuation via δDM(k, arh) ≈ A(k)ϕP . For a

nearly scale-invariant spectrum, we expect ϕP ∼ 10−5 [3], and thus density perturbations on all scales remain

perturbative until reheating provided A(kpk) ≲ 105. As T (kpk) ≈ A(kpk)/As, where As = 9.11, microhalos

will form prior to reheating if T (kpk) exceeds 104. These microhalos are destroyed once reheating occurs

because they are primarily composed of cannibal particles. When the cannibal particles decay, DM particles

free stream out of the microhalos with typical speeds given by the virial speed within the microhalos, which

is of order 10−2 [19]. The subsequent free streaming of DM particles acts to erase the structure within the

comoving horizon at the time of reheating, thus washing out much of the enhanced structure resulting from

the ECDE.

The peak amplitude of the transfer function, and thus the formation time of the first microhalos, can be

directly related to the properties of the cannibal field. In the case where cannibal freeze-out occurs during

cannibal domination (adom < 2afz), we use the expression for T (kpk) given in eq. (4.84) and express afz and

arh using eq. (4.42) and eq. (4.40) respectively to obtain

T (kpk) ∼ 2× 103
(
0.1

αc

)2/3 ( m

TeV

)14/9(10MeV

Trh

)4/3(
10

g∗(Trh)

)1/3

. (4.106)

For adom > 2afz, we use eq. (4.89) for T (kpk) and express afz, arh, and adom using eq. (4.43), eq. (4.40), and

eq. (4.41) respectively to obtain

T (kpk) ∼ 2× 102
(
ξi
0.4

)4 ( m

TeV

)4/3(10MeV

Trh

)4/3(
10

g∗(Trh)

)1/3(
100

g∗(10m/ξi)

)
× 1

6
ln

[
50

(
0.4

ξi

)9/2(
0.1

αc

)3/4 ( m

TeV

)1/4(g∗(10m/ξi)
100

)9/8
]
. (4.107)

In both cases, T (kpk) is approximately proportional to m/Trh because for a given αc and ξi this ratio

determines the post-freeze-out duration of the ECDE. Since δDM(kpk) grows faster during this period than at

any other time prior to matter-radiation equality, increasing this duration increases T (kpk). The amplitude

of the transfer function at kpk has a power-law dependence on αc when the cannibals freeze out in a

cannibal-dominated universe, while it only depends logarithmically on αc when the cannibals freeze out

in a SM radiation-dominated universe. This difference in sensitivity to αc reflects the linear growth of

δDM(kpk) between afz and arh for adom < 2afz, as opposed to its logarithmic growth between afz and adom for

adom > 2afz. These two growth histories for δDM(kpk) also explain why T (kpk) is independent of ξi when

adom < 2afz, but is strongly dependent on ξi when adom > 2afz: since ξi determines adom/ai, it sets the

transition from logarithmic to linear growth when cannibals freeze out prior to the start of the ECDE.

In figure 4.12, white-dashed contours show Mpk as a function of m and Trh for fixed values of ξi and αc.

The Mpk contours were calculated from the expression for kpk given in eq. (4.66) if the cannibals freeze out

in a cannibal-dominated universe and eq. (4.78) if the cannibals freeze out in a SM radiation-dominated

universe. The colored contours show T (kpk), which is evaluated by numerically solving the cosmological
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Figure 4.12: Colored contours show the value of the DM transfer function at the scale that maximizes the
matter power spectrum, T (kpk), as a function of m and Trh for fixed αc and ξi. In the top left panel, the
cannibal density exceeds the SM radiation density up until reheating. In all other panels, the cannibals
freeze out in a SM radiation-dominated universe. The white dashed contours show the mass scale of the
first microhalos, eq. (4.102). The secondary y-axis shows the microhalo mass scale corresponding to modes
entering the horizon at reheating. In the white space on the top left, reheating either occurs prior to cannibal
freeze-out (top left panel) or the cannibal density does not dominate the universe prior to the decay of the
cannibals (all other panels). In the white space on the right, cannibalism does not occur. Above the red
dashed (dot-dashed) line, thermal freezeout cannot generate the observed DM abundance for mDM ≥ 10m
(mDM ≥ 100m). To the left of the black dashed (dot-dashed) line, the post-reheating free streaming of DM
modifies kpk if DM kinetically decouples from the cannibals after afz and mDM = 10m (mDM = 100m). In
the bottom left panel, the cannibal fluid becomes collisionless prior to adom to the right of the orange-dashed
line, and consequently cannibal free streaming modifies kpk.
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perturbation equations for kpk. The secondary y-axis on the right shows the values of Mrh obtained from

eq. (4.105). The parameter space with 5 ≲ T (kpk) ≲ 104 is the region that generates a significantly enhanced

abundance of microhalos with masses between Mpk and Mrh. As T (kpk) is roughly proportional to m/Trh,

there is an enhanced abundance of microhalos for a band of m/Trh values.

The parameter space shown in figure 4.12 is bounded on all sides by three conditions. First, the reheat

temperature defined by eq. (4.34) must exceed 8.1 MeV to be compatible with the constraints from BBN and

the CMB [102, 103]. Second, significantly increasing the microhalo abundance requires a period of cannibal

domination following cannibal freeze-out, i.e. max(afz, adom) < arh. Finally, as here we are specifically

interested in the impact of cannibal interactions on perturbation growth, we require an epoch of cannibalism

to occur, i.e., acan < afz.

A period of cannibalism only occurs if the cannibals remain in chemical equilibrium after they become

non-relativistic. For a fixed value of αc, this condition imposes an upper bound on m because afz/ai decreases

as m increases. Using eq. (4.42) and eq. (4.43) for afz/ai and the fact that acan ≈ 100ai, the afz > acan

condition can be rewritten as:

( m

GeV

)
<


108

( αc
0.1

)3
adom < 2afz,

2× 106
(
ξi
0.4

)2 ( αc
0.1

)3( 100

g∗(10m/ξ)

)1/2

adom > 2afz.

(4.108)

If m exceeds the bound in eq. (4.108), then the number-changing self-interactions decouple while the cannibal

particles are relativistic, and any subsequent ECDE is simply a matter-dominated era. The evolution of

perturbations in such scenarios (without cannibal interactions) have already been studied in the context of

decoupled hidden sector theories [19, 74].

To obtain a substantial amount of growth, reheating must occur well after the cannibal reactions freeze out

(arh > 5afz) and in a cannibal-dominated universe (arh > adom).
7 This requirement imposes a lower bound

on m for a given Trh, following from the expressions for arh, afz, and adom given in eq. (4.40), eq. (4.42), and

eq. (4.41):

( m

GeV

)
>


10
( αc
0.1

)3/7 ( Trh
10MeV

)6/7(g∗(Trh)
10

)3/14

adom < 2afz,

70

(
0.4

ξi

)3(
Trh

10MeV

)(
g∗(10m/ξi)

100

)3/4(
g∗(Trh)

10

)1/4

adom > 2afz.

(4.109)

If arh < 5afz, the modes that enter the horizon during the ECDE do not escape the cannibal Jeans horizon

much prior to reheating. Consequently, there is no significant enhancement of DM perturbations, and the

arh < 5afz section of parameter space does not provide interesting cosmological signatures.

As the initial density of the cannibals decreases relative to the SM radiation density, the upper and lower

bounds on m given by eqs. (4.108) and (4.109) become more restrictive, as seen in figure 4.12. For smaller ξi,

larger values of m/Trh are needed to give sufficient time for the cannibal density to overcome the SM radiation

density prior to reheating. Decreasing ξi also increases the Hubble rate at a given cannibal temperature, so

7Our numerical calculations neglect cannibal decays during cannibal freezeout. For the parameter space of interest for
enhanced structure formation, this is an excellent approximation, but for arh < 5afz, the impact of cannibal decays can be
nonnegligible during freezeout. Thus we only show numerical results for arh > 5afz.
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smaller values of m/α3
c are required to keep the cannibals in equilibrium after they become non-relativistic.

Figure 4.12 also illustrates how decreasing αc shrinks the region of cannibal parameter space that yields a

substantially enhanced microhalo population. If cannibal freeze-out occurs while the universe is cannibal

dominated, then decreasing αc makes it possible for lighter cannibals to freeze out before reheating (for fixed

Trh). However, decreasing αc also reduces the parameter space where the cannibal particles will freeze out

while non-relativistic, so the net effect of lowering αc is to reduce the range of m values that can realize

acan < afz < 5arh. If cannibal freeze-out occurs during SM radiation domination, the lower bound on m is

set by the requirement that adom < arh, which is independent of αc. Consequently, in the right panels in

figure 4.12, only the upper bound on m moves as αc is changed.

If either ξi or αc becomes too small, then it is not possible for particles that undergo an epoch of

cannibalism to significantly affect the growth of structure because they do not dominate the universe after

freezing out. Since decreasing Trh reduces the lower bound on m given by eq. (4.109), we compare the lower

and upper bounds on m at the smallest reheat temperatures allowed by BBN and the CMB constraints.

With Trh = 10 MeV, it is possible to satisfy both upper and lower bounds on m if

αc >


2× 10−4

(
g∗(Trh)

10

)1/12

adom ≪ 2afz

10−3ξ
−5/3
i

(
g∗(10m/ξi)

100

)5/12(
g∗(Trh)

10

)1/12

adom ≫ 2afz.

(4.110)

Not all regions of cannibal parameter space that realize an ECDE are compatible with DM production

through thermal freeze-out. If we suppose that the DM relic abundance is fixed by annihilations to hidden

sector species (e.g., the cannibal itself), then for a given set of cannibal parameters, {m,Trh, αc, ξi}, we can

solve for the value of the DM annihilation cross-section, ⟨σv⟩DM, that generates the observed DM abundance.

If the DM annihilation cross-section takes the form

⟨σv⟩DM ≡ πα2
DM

m2
DM

, (4.111)

requiring αDM < 1 for perturbativity then implies an upper bound on mDM.

We can estimate this upper bound using a sudden freezeout approximation for the DM abundance,

nDM(af,DM) ≡ H(af,DM)

⟨σv⟩DM
, (4.112)

which defines the scale factor at DM freeze-out, af,DM. The DM number density today is

nDM(a0) ≈ nDM(af,DM)

(
af,DM

a0

)3

=
H(af,DM)

⟨σv⟩DM

(
af,DM

ai
× ai
arh

× arh
a0

)3

. (4.113)

As the cannibals evolve like radiation prior to ai, we have

af,DM

ai
=

Tc(ai)

Tc(af,DM)
=

10m

mDM
xDM, (4.114)

where xDM ≡ mDM/Tc(af,DM). We use eq. (4.35) and eq. (4.40) to express arh/a0 and arh/ai in terms of Trh
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and m. Given that

H(af,DM) = H(ai)
a2i

a2f,DM

= H(ai)
m2

DM

(10m)2
x−2
DM, (4.115)

eq. (4.113) implies that

⟨σv⟩DM ≈ 10−12

GeV2

√
[1 + g∗(10m/ξi)/ξ4i ]

(xDM

10

)(Ωdmh
2

0.12

)−1(
Trh

10MeV

)(
TeV

m

)
, (4.116)

where we assume g∗s(Trh) = g∗(Trh). Keeping αDM < 1 then demands that

(xDM

10

)(mDM/m

10

)2(
Ωdmh

2

0.12

)−1(
Trh

10MeV

)( m

TeV

)√
[1 + g∗(10m/ξi)/ξ4i ] < 104. (4.117)

The above bound still depends on xDM. While xDM is typically determined by inserting the equilibrium

number density into Eq. (4.112), this procedure makes xDM logarithmically dependent on ⟨σv⟩DM. To avoid

this dependency, we instead determine xDM through

nDM,eq(xDM)
a3f,DM

a30
= nDM(a0). (4.118)

Thus, given mDM/m, eq. (4.117) provides an upper bound on m. The red dashed line in figure 4.12 shows

the upper bound on m resulting from the condition αDM < 1 for mDM = 10m.8 For larger values of m,

alternative production mechanisms such as freeze-in can still generate the observed DM density [15].

As discussed in section 4.5, departures from perfect-fluid behavior for either the cannibals or DM can

be important in some regions of parameter space. The impact of DM free streaming depends on its kinetic

coupling to the cannibal fluid and is model-dependent. In figure 4.12 the black dashed lines show where

the free-streaming horizon λDM,fs, given in eq. (4.101), equals kpk for mDM = 10m, in the case where DM

kinetically decouples from the cannibal fluid after cannibal freeze-out. Above and to the left of this line, DM

free-streaming, rather than cannibal interactions, can determine the peak of the transfer function.

To better illustrate when DM free-streaming can be relevant, we simplify eq. (4.101) by neglecting the

temperature dependence of g∗ and the DM density inside the Hubble rate. This yields

λDM,fs ∼

√
Tc(arh)

mDM
(aH)−1

rh log(aeq/arh) ∼
√

m

mDM
k−1
J (arh) log(aeq/arh). (4.119)

In the last relation we have used the definition of the Jeans length, eq. (4.57), and the fact that c2s = 5Tc/(3m)

and wc = Tc/m≪ 1 for a≫ afz. For scenarios where cannibals freeze out in a cannibal-dominated universe,

we have k−1
J (arh)/k

−1
pk ≈ kJ(2afz)/kJ(arh). Consequently, DM free streaming becomes relevant when arh is

close to afz and the ratio m/mDM is not too small. In contrast, when cannibals freeze out in a SM-dominated

universe, we have k−1
J (arh)/k

−1
pk ≈ k−1

J (arh)/rs(adom). Here, the logarithmic growth of the sound horizon

until adom increases the gap between k−1
J (arh) and k

−1
pk (as seen in the top left panel of figure 4.8). In the

bottom left panel of figure 4.12, this gap is large enough that the DM free-streaming horizon remains less

than k−1
pk for mDM ≥ 10m.

8While decreasing mDM relative to m relaxes the upper bound on m, our analysis assumes the DM and cannibal species to
be chemically decoupled by Tc(ai) = 10m, and thus we consider mDM ≳ 10m.
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In the bottom left panel of figure 4.12, the cannibal fluid becomes collisionless prior to adom, i.e. akd < adom,

in the region right of the orange dashed line. In this regions, the peak of the transfer function is determined

by the cannibal free-streaming horizon instead of the cannibal sound horizon. In computing the akd = adom

boundary shown in figure 4.12 we set λ = 0 when evaluating ⟨σcvc⟩ through eq. (4.91). To see how the timing

of cannibal kinetic decoupling depends on cannibal parameters more generally, we begin with the inequality

akd > adom, write akd = akd/afz × afz, and subsequently use eqs. (4.100), (4.43), and (4.41) for akd/afz, afz,

and adom, respectively. The condition akd > adom then becomes

m < 6× 105
( αc
0.1

)11/5( ξi
0.4

)42/5 ∣∣∣∣ q − 5/3

(3q − 1)2/3

∣∣∣∣8/5 GeV, (4.120)

where q ≡ λ/(g/m)2. This restriction on m is only relevant if it is more constraining than eq. (4.108).

Consequently, the restriction on m in eq. (4.120) becomes relevant when

ξi < 0.68
( αc
0.1

)1/8 ∣∣∣∣ q − 5/3

(3q − 1)2/3

∣∣∣∣−1/4

. (4.121)

For values of ξi larger than the RHS of eq. (4.121), akd is always greater than adom, and cannibal free

streaming does not affect kpk in the parameter space where the cannibals significantly enhance microhalo

abundance and also undergo cannibalism. Thus, there is no akd = adom boundary in the panels with ξi = 1

or 10 in figure 4.12. As we decrease ξi below the RHS of eq. (4.121), a larger fraction of the parameter

space has akd < adom. However, the parameter space where the cannibals significantly enhance microhalo

abundance also shrinks as we decrease ξi, until there is no allowed parameter space for ξi < 0.07(αc/0.1)
−3/5

(see eq. (4.110)). Consequently, cannibal free streaming may affect kpk only in the narrow parameter space

between 0.07(αc/0.1)
−3/5 < ξi < 0.68(αc/0.1)

1/8
∣∣∣ q−5/3
(3q−1)2/3

∣∣∣−1/4

. Furthermore, as discussed in section 4.5, we

expect only a marginal correction to the perfect-fluid result for kpk in the parameter space where akd < adom.

The early-forming microhalos generated by an ECDE have large enough central densities to survive

accretion into galaxies [20, 122, 123]. While sub-Earth-mass halos are too diffuse to be detected by photometric

microlensing searches [124] and too small to be detected via astrometric microlensing [124–126], they can be

detected by pulsar timing arrays [21, 22] and by their impact on stellar microlensing within galaxy clusters

[23–25]. Furthermore, if the dark matter is a thermal relic, early-forming halos significantly boost the dark

matter annihilation rate regardless of their masses, and the isotropic gamma-ray background places powerful

constraints on the microhalo population [19, 20]. If dark matter annihilation is eventually detected in dwarf

spheroidal galaxies, the emission profile could distinguish annihilation within microhalos from both decaying

dark matter and dark matter annihilation outside of microhalos [20].

A full analysis of the observational constraints on cannibalism within a hidden sector lies beyond the

scope of this article, but we can use constraints on EMDE cosmologies to forecast which regions of cannibal

parameter space are likely to be probed by current and future observations. Constraints on EMDE cosmologies

are often expressed in terms of a generic exponential cutoff scale: P (k) ∝ exp[−k2/k2cut]. Ref. [127] showed
that weekly observations of 500 pulsars over 20 years with an rms timing residual of 10 ns would detect

microhalos arising from an EMDE with kcut/krh > 20 and Trh ≤ 30 MeV. Increasing the observational

period to 40 years extends the reach of pulsar timing arrays to reheat temperatures up to 100 MeV with 200

pulsars; see also Ref. [128]. The EMDE transfer function [76] implies that T (kpk) ≃ 25 for kcut/krh = 20,

nearly independently of the reheat temperature. If cannibal reactions freeze out during the ECDE, then
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the power spectrum on scales k ≲ kpk is the same in EMDE and ECDE cosmologies, and ECDE scenarios

with 25 ≲ T (kpk) ≲ 104 would generate pulsar timing signals that are at least as strong as those produced

by an EMDE with kcut/krh ≃ 20. If cannibal reactions freeze out prior to cannibal domination, then the

ECDE power spectrum differs more substantially from the EMDE power spectrum analyzed by Ref. [127] for

k ≳ kdom, but we can still predict which ECDE scenarios are likely to be accessible by pulsar timing arrays.

If kcut/krh = 20, then the EMDE power spectrum peaks at kpk ≃ 27krh. Therefore, ECDE scenarios with

T (27krh) ≳ 25 and T (kpk) ≲ 104 will generate a microhalo population that is at least as detectable as the

microhalos that result from an EMDE with kcut/krh = 20. For αc = 0.1, obtaining T (27krh) ≳ 25 requires

T (kpk) ≳ 100 for ξi = 1 and T (kpk) ≳ 500 for ξi = 0.4. Estimates of potential sensitivity from observations

of cluster caustic microlensing are at a far more preliminary stage, but suggest broadly similar reach for Trh

and T (kpk) individually [25].

The best current constraints on EMDE cosmologies with thermal relic dark matter come from the isotropic

gamma-ray background [19, 20]. Since the dark matter annihilation rate within microhalos does not change

after the microhalos form and the microhalos track the dark matter density, dark matter annihilations within

early-forming microhalos generate the same constant emission per dark matter mass as decaying dark matter.

It is therefore possible to define an effective dark matter decay lifetime for these scenarios [19]:

τeff =

(
10−10 GeV−2

⟨σv⟩DM

)( mDM

106 GeV

)(7× 1038 seconds

B0

)
, (4.122)

where B0 ≡ ⟨ρ2DM⟩/ρ̄2DM is the structure boost factor generated by the microhalos. This effective lifetime

should be compared to bounds on dark matter lifetime for particles with twice the mass. When accounting

for emission from astrophysical sources, Ref. [129] found that Fermi-LAT observations of the IGRB [130]

demand that τeff ≳ 1028 seconds for mDM between 10 GeV and 109 GeV and a wide range of annihilation

channels.

The microhalo boost factor that arises from an EMDE has been calculated for scenarios in which all

modes with krh < k < kcut enter the horizon during the EMDE [18, 20] and for scenarios that include a

radiation-dominated era prior to the EMDE with kcut > kdom [19]. The former case generates a sharp peak

in the matter power spectrum that is qualitatively similar to the peak generated when cannibal reactions

freeze out during the ECDE, while the latter generates the same plateau feature as an ECDE that starts after

cannibals freeze out. However, for the limited range of T (kpk) values that were considered in both analyses,

the two scenarios have values of B0 that differ by less than a factor of 10, and much of that variation can be

attributed to differing assumptions regarding the microhalo density profiles [20]. The fact that B0 is largely

insensitive to changes in reheat temperature for fixed T (kpk) further supports the conclusion that the shape

of the peak in the power spectrum does not significantly affect the dark matter annihilation rate: it does not

matter how the microhalos are distributed in mass as long as they have the same formation time and contain

the same fraction of the dark matter, both of which are determined by T (kpk).

The ECDE scenarios shown in Figure 4.12 generally require ⟨σv⟩DM ≳ 10−12 GeV−2 to generate the

observed DM abundance through thermal freeze-out, which implies that mDM ≲ 2 × 106 GeV is required

to satisfy the unitarity bound. For these parameters, B0 ≲ 1013 is required to keep τeff > 1028 seconds if

the annihilations are predominantly s-wave so that ⟨σv⟩DM is independent of the DM velocity. Refs. [18,

20] did not consider boost factors this large because they restricted their analyses to microhalos that form

after matter-radiation equality, but Ref. [19] included microhalos that form during radiation domination and

found that B0 ≳ 1013 for T (kpk) ≳ 80. However, if we only consider ECDE scenarios with T (kpk) ≲ 80, then
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⟨σv⟩DM ≳ 10−10 GeV−2 and mDM ≲ 2× 105 GeV. For these parameters, the IGRB bound on τeff demands

that B0 ≲ 1010, which corresponds to T (kpk) ≲ 20. It therefore seems likely that all of the ECDE parameter

space in Figure 4.12 that contains dark matter that thermally froze out (via s-wave annihilations) prior to

the ECDE is already ruled out by observations of the IGRB.

4.7 Summary and conclusions

We have shown that an early cannibal-dominated era (ECDE) leaves a distinctive peak in the matter power

spectrum. Perturbation modes that enter the horizon after the freeze-out of cannibal reactions but before the

end of the ECDE are enhanced. On smaller scales, the pressure generated by the self-heating of the cannibal

particles suppresses the growth of dark matter perturbations. Consequently, the properties of the cannibal

field generally establish the minimum halo mass following an ECDE. We show how the properties of the

cannibal field establish the minimum halo mass even if the cannibal reactions freeze out prior to cannibal

domination.

Cannibals are generically predicted in theories with thermally decoupled hidden sectors that have a

mass gap and a number-changing self-interactions. If the lightest particle in such a hidden sector remains

in chemical equilibrium after it becomes non-relativistic, it undergoes a period of cannibalism. During

cannibalism, the cannibal number-changing self-interactions convert the particles’ rest-mass energy into

kinetic energy to maintain chemical equilibrium while conserving entropy within the cannibal fluid. The

period of cannibalism ends when the rate of number-changing self-interaction falls below the Hubble rate.

Such a cannibal fluid can easily come to dominate the energy density of the universe even if the hidden sector

was initially colder than the SM bath. The ECDE ends when the cannibal particles decay into relativistic

SM particles prior to the onset of BBN.

During the ECDE, we find that sub-horizon cannibal density perturbations grow linearly with the scale

factor on scales that are larger than the cannibal Jeans length. The DM perturbations follow the cannibal

density perturbations because the DM particles fall into the gravitational potential wells formed by the

cannibals. Consequently, the enhancement of the DM perturbations after an ECDE relative to those in the

standard cosmology reflects the cannibal perturbation spectrum and contains information about the cannibal

self-interactions. This enhancement of the DM perturbations due to an ECDE is unaffected by possible

scattering between the DM and the cannibals.

Enhanced small-scale DM perturbations collapse earlier than they otherwise would and hence lead to an

enhanced population of halos at high redshift. Since an ECDE only affects perturbations on scales that enter

the horizon during the ECDE, perturbations on these scales form microhalos with masses far less than the

mass of the Sun. The characteristic mass of the earliest-forming microhalos, Mpk, is determined by the scale

with the largest enhancement in DM perturbations (kpk) whereas the formation time of these microhalos is

determined by the amplitude of the enhancement, which is given by T (kpk).

The location of the peak of the DM power spectrum is determined by the process that counteracts

gravitationally induced growth and prevents structure formation on small scales. In earlier works that have

studied microhalo formation due to an early matter-dominated era (EMDE), this cutoff in the matter power

spectrum was assumed to be generated by DM free streaming [18, 76–78] or axion DM oscillations [24].

Consequently, the peak scale is determined by DM microphysics. If the DM belongs to a hidden sector whose

lightest particle causes the EMDE, then the DM particle may be cold enough that the relativistic pressure of

the lightest hidden-sector particle sets the small-scale cutoff [19, 74]. We showed here that the cutoff in the
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matter power spectrum following an ECDE is typically generated by the thermal pressure in the cannibal

fluid and is independent of DM microphysics when there is no period of SM radiation domination prior to

the ECDE. We then extended our analysis to scenarios in which the cannibals freeze-out while cannibal

density is subdominant to SM density and showed that the cannibal thermal pressure still determines the

cutoff. We find the cutoff scale to be given by the cannibal sound horizon at reheating, up to an order of

magnitude, irrespective of the initial temperature ratio between the cannibal fluid and SM plasma and the

properties of the DM particles. The only exceptions occur in narrow bands of parameter space where the DM

free-streaming horizon overcomes the cannibal sound horizon or where the cannibal fluid becomes collisionless

prior to cannibal domination.

While the cannibal sound horizon provides a rough estimate of the wavenumber at which the power

spectrum is maximized, kpk, we have also found a more accurate (within ∼ 10%) expression for kpk. In the

case where the freeze-out of cannibal reactions occurs during cannibal domination we find kpk ≈ kJ (2afz)/1.4,

where k−1
J is the cannibal Jeans length, and afz is the scale factor when cannibal reactions freeze out. If the

freeze-out of cannibal reactions occurs during SM radiation domination, then we find kpk to be given by

eq. (4.78). These analytical estimates allow us to provide a map between the key microhalo properties, Mpk

and T (kpk), and the cannibal particle properties.

The peak amplitude of enhancement in dark matter perturbations due to an ECDE, T (kpk), is determined

by how long cannibals dominate the universe after they freeze out, which depends on the cannibal mass, m,

its 3 → 2 reaction coupling, αc, its initial temperature relative to the SM, ξi, and the reheat temperature, Trh.

A longer period of post-freeze-out cannibal domination leads to larger values of T (kpk) and earlier microhalo

formation. If T (kpk) ≳ 104, the cannibals and DM particles assemble into halos prior to reheating. After the

cannibals decay, the DM particles are released from these halos with sufficient velocity that their subsequent

motion erases nearly all the perturbations that are within the horizon at reheating [19]. Consequently, an

ECDE will generate a significantly enhanced abundance of microhalos for 5 ≲ T (kpk) ≲ 104. Since T (kpk) is

roughly proportional to the ratio m/Trh, a band of m/Trh values is expected to yield an enhanced microhalo

population. The upper and lower limits of this band are fixed by αc and ξi. The range of possible values for

m, Trh, αc, and ξi, is further constrained by the requirement that cannibals undergo cannibalism and that

reheating occurs early enough to avoid altering the neutrino abundance, which would spoil the success of

BBN [98–101] and alter the anisotropies in the CMB [102, 103]. Thus, we have identified a bounded region in

the cannibal parameter space that produces an enhanced abundance of microhalos due to an ECDE. Within

this parameter space, we provide estimates for the masses of the earliest-forming halos and their formation

times in terms of the properties of the cannibal field.

Finally, we briefly discussed potential observational sensitivity to this enhanced microhalo population.

We expect the microhalos generated by ECDEs with reheat temperatures up to Trh ≃ 100 MeV with

T (27krh) ≳ 25 and T (kpk) ≲ 104 to be detectable in the future pulsar timing arrays analyzed in Refs. [127,

128], while the results of Refs. [19, 20, 129, 130] imply that the observed IGRB likely excludes s-wave thermal

relic DM in almost all ECDE scenarios. Cluster caustic microlensing is a promising alternative gravitational

means of detecting the ECDE-enhanced population of microhalos in the low-redshift universe, but projections

for such observations are not developed enough to allow for similarly definitive statements.

It is important to remember, however, that all of these observational probes are sensitive to the internal

structure of the microhalos. While it is possible to predict the density profiles of the first microhalos from the

matter power spectrum [120], it is unknown how subsequent mergers between microhalos and their further

evolution within galactic halos affect their internal structure. Analyses that employ different assumptions
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regarding the microhalos’ density profiles, substructure, and survival rate give similar but not identical bounds

on EMDE cosmologies. There is also a great deal of uncertainty regarding how the gravitational heating of

the dark matter following structure formation during the EMDE or ECDE affects the subsequent formation

of microhalos [19], and it has been suggested that microhalo remnants could persist through reheating [131].

Therefore, we cannot yet establish robust observational constraints on cannibalism within a hidden sector.

Nevertheless, we have identified which regions of cannibal parameter space enhance the microhalo abundance,

which demonstrates how observations of small-scale structure provide a window into the evolution and particle

content of the early Universe.
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Chapter 5

Neff constraints on portal couplings

with hidden sectors

5.1 Introduction

Next-generation cosmic microwave background (CMB) experiments, such as CMB-Stage 4 [132], will mea-

sure the details of the acoustic peaks in the microwave background with unprecedented accuracy. These

measurements will result in subpercent-level determinations of the contents and geometry of the Universe.

In particular, the fidelity with which the locations of the acoustic peaks are forecast to be determined will

improve the measurement of the energy density in free-streaming radiation, parametrized by the effective

number of neutrino species, Neff, by almost an order of magnitude. Future CMB experiments, beyond Stage-4,

aim to reach a threshold of σNeff
< 0.027, where any new relativistic beyond-the-Standard Model (BSM)

particle must be always out of equilibrium with the Standard Model (SM) in the early Universe [133] if the

measured central value agrees with the SM prediction of NSM
eff = 3.044 [34, 35, 134–136]. A measurement of

Neff that deviates from NSM
eff would be compelling evidence of physics beyond the standard model. Conversely,

models that require additional light states must be coupled to the SM in such a way that does not violate

bounds on Neff.

Constraints on new relativistic degrees of freedom through Neff are often restated as a constraint on the

decoupling temperature at which any BSM relativistic particle must lose thermal contact with the SM plasma

in the early universe (see, e.g., Refs. [137–140]). For an out-of-equilibrium relativistic particle, measurements

of Neff can be used to constrain the total energy transferred between BSM relativistic particles and the SM

plasma in the early Universe, and can provide a powerful probe of the interactions of the SM with light,

feebly-interacting particles.

Our primary interest in this work is the case where a SM singlet mediator particle has renormalizable

couplings to both the SM and the dark radiation species. This scenario is ultraviolet (UV) insensitive insofar

as it yields interaction rates that grow more rapidly than the Hubble rate as the universe expands, provided

that the SM temperature remains larger than the mediator mass. This UV insensitivity means that the

asymptotic dark radiation density predicted in these models does not depend on the unknown early thermal

history of our universe provided the reheating temperature is above the mediator mass. In this work, we

focus on mediator masses m > 0.1 MeV where thermal production in the early universe provides one of the

leading avenues to test these models. Constraints from stellar cooling are typically stronger than cosmological
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constraints for masses m < 0.1 MeV [140, 141].

Similar UV-insensitive and out-of-equilibrium dark radiation production has been explored earlier in the

context of specific models. For instance, in the case of axions, freeze-in production can receive important

contributions from both heavy states in the UV completion [142] and fermion annihilation, which proceeds

through infrared-dominated processes below the scale of electroweak symmetry breaking [143–146]. BSM

neutrino model-building can also yield sizeable out-of-equilibrium dark radiation production [147, 148].

Meanwhile LHC searches can provide a complementary window onto the freeze-in of dark radiation in

scenarios where a weak-scale mediator carries SM charge [149].

In this chapter, we study the production of dark radiation in minimal BSM models that consist of a

massive (m > 0.1 MeV) SM gauge singlet mediator coupled to new light degrees of freedom. We begin by

considering two well-motivated extensions to the SM: a millicharged particle (MCP) model [150], and a model

where the SM baryon-number-minus-lepton number (B − L) symmetry is gauged [151, 152]. In the MCP

model, a dark photon that kinetically mixes with SM hypercharge is the dark radiation and the MCP is the

mediator. In the gauged B−L model the three right-handed neutrinos required to cancel gauge anomalies are

the dark radiation, while the new B −L gauge boson is the massive mediator. By developing and solving the

relevant Boltzmann equations, we use the production of dark radiation in these models to place constraints

on the strength of their interactions with the SM. We update constraints on the minimal MCP model given in

Refs. [153, 154] and present forecasts for future CMB observatories. We further demonstrate that future CMB

experiments will be able to rule out (or discover evidence for) the extended model proposed by Ref. [155] to

explain the EDGES anomaly. For the B−L model, we improve on the analysis of Ref. [156] by incorporating

two further effects that lead to more stringent constraints in the unequilibriated regime. In particular, we

take into account the out-of-equilibrium production of right-handed neutrinos, and further show that the

out-of-equilibrium decays of the B−L gauge bosons lead to a more powerful constraint on the B−L coupling

in the relevant regions of parameter space.

In the process of deriving these results, we develop a number of approximations which allow us to

analytically solve the Boltzmann equations in the regions of parameter space where the new light degrees

of freedom are out of equilibrium with the SM. We use these solutions to argue, on general grounds, that

a conservative lower bound on the dark radiation density can be quickly obtained for a generic class of

hidden sectors containing light degrees of freedom that interact with the SM via a heavier SM gauge singlet

mediator. The lower bound is governed by the properties of the mediator and is insensitive to the details of

the hidden sector, such as the number of degrees of freedom and their internal interactions, and relies solely

on the assumption that the mediator preferentially transfers its energy into the HS rather than the SM. This

amounts to assuming that the mediator interacts more strongly with the HS than the SM.

This chapter is organized as follows. In sections 5.2 and 5.3, we study dark radiation production in the

MCP and gauged B −L models, respectively. We develop and solve the relevant Boltzmann equations to find

the allowed regions of parameter space given current and projected CMB constraints on Neff. In both models,

we develop approximations that allow us to analytically solve the Boltzmann equation in various regimes. In

section 5.4, we consider the applicability of dark radiation constraints to generic classes of hidden sectors

containing relativistic particles. We conclude in section 5.5. The details of many of our computations are

relegated to appendices. In appendix A.5 we describe various processes transferring energy between the SM

and the dark photons in the MCP model, and similarly in appendix A.6 we describe processes transferring

energy from the SM into right-handed neutrinos in the gauged B − L model. Finally, in appendix A, we

simplify the phase space integral of the energy transfer collision terms for generic annihilations, decays, and
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elastic scatterings, while taking into account the quantum statistical distributions of relevant particles.

5.2 Millicharged particle model

In this section we derive constraints on the allowed parameter space of a MCP model from CMB measurements

of Neff . In this model, a massless dark photon kinetically mixes with the SM hypercharge gauge boson, while

the MCP is a massive Dirac fermion charged under the dark U(1).

MCP models have recently been explored in detail as potential explanations of the anomalously small spin

temperature of the hydrogen atoms inferred from the 21 cm signal measured by the EDGES experiment [155,

157–160]. This anomaly can be resolved if the baryons were cooled by scattering with DM particles. In

the scenario where the MCP comprises some of the dark matter, the millicharge interactions can cool the

baryons to explain the EDGES anomaly. However, the required values of the millicharge, Q, are ruled out by

a combination of bounds from the CMB and e+e− colliders [159].1 Recently, an extension of the minimal

MCP model was proposed with multiple millicharged fermions that could resolve the EDGES anomaly while

evading current constraints [155]. In this section we both update the current CMB constraints on the minimal

MCP model and show that measurements of Neff from future CMB experiments will provide a stringent test

of these extended MCP models.

This section is organized as follows. We begin by describing the MCP model in section 5.2.1. In

section 5.2.2, we describe the relevant Boltzmann equations and solve them to find the region of parameter

space that saturates the Neff bounds from current and upcoming CMB experiments, updating the results of

[153]. Next, in section 5.2.3 we go into more detail about the physics responsible for the production of dark

radiation, and the relevant features of the resulting parameter space constraints from Neff measurements.

Finally, in section 5.2.4, we show how these constraints can be extended to models with multiple MCPs in

a detail-insensitive way. We then apply these constraints to the MCP model proposed by Ref. [155] and

show that measurements of Neff at the level of accuracy forecast by CMB-S4 can potentially rule out this

explanation of the EDGES anomaly.

5.2.1 The millicharged particle model

The MCP model is an extension of the SM that contains a massless dark photon, A′
µ, and an additional

Dirac fermion, ψ, with mass m. The dark photon kinetically mixes with the SM hypercharge gauge boson,

Aµ, and the Dirac fermion has charge e′ under the dark U(1). The relevant interactions for our study are

Lint = − ϵ

2
BµνF ′

µν + eJµEMAµ + eJµZZµ + e′ψ̄γµψA′
µ, (5.1)

where Bµν is the hypercharge field strength, Zµ is the Z boson, JµEM is the electromagnetic current, and JµZ
is the weak neutral current.

We work in the basis where the gauge boson kinetic terms are diagonal and where JµEM and JµZ do not

couple to the dark photon. Thus the dark photon remains ‘dark’. After performing the relevant redefinitions

1If the baryons are cooled by a millicharged dark fermion that is not coupled to dark radiation, then one can explain the
EDGES result if the dark fermions compose a 0.4% fraction of dark matter [161–164]. However, Ref. [165] found that this
solution is incompatible with the constraints on the millicharge and dark fermion mass imposed by its production history in the
early universe.
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of the A and A′ fields and considering the limit of weak kinetic mixing, ϵ≪ 1, the interaction Lagrangian is

Lint ≈ e
(
JµEM −Qψ̄γµψ

)
Aµ + e′ψ̄γµψA′

µ +Qe tan θW ψ̄γ
µψZµ, (5.2)

where θW is the weak mixing angle, and the dark fermion has obtained a millicharge, Q, given by

Q ≡ ϵ
e′

e
cos θW . (5.3)

While the dark photon does not directly couple to SM degrees of freedom, dark photons are produced by

annihilations of millicharged fermions, which themselves are produced by interactions with the SM plasma in

the early Universe. In this work, we consider the regime where the fermion mass is m > 0.1 MeV; stellar

cooling observations provide the dominant constraint for smaller masses [153].

5.2.2 Evaluation of the dark radiation density and the constraints on the model

Dark photons contribute to the energy budget of the Universe as radiation, and their presence in the early

Universe is constrained by measurements of the effective number of (free-streaming) relativistic species, Neff .

Specifically, dark photons shift the value of Neff away from its SM value of NSM
eff = 3.044, by

∆Neff ≡ Neff −NSM
eff =

8

7

(
11

4

)4/3
ρA′

ργ
, (5.4)

where ρA′ and ργ are the energy densities of the dark photon and the SM photon, respectively. The dark

photon energy density ρA′ during recombination is controlled by Q, m, and e′, and thus measurements of

Neff can be translated into constraints on the parameter space of the model.

We demonstrate below that, for the regions of parameter space that lead to dark radiation densities that

saturate the bounds on ∆Neff from upcoming experiments, the dark charge e′ must be large enough to enable

almost all the MCPs to efficiently annihilate. In this limit, the final dark photon abundance is insensitive to

the value of e′. Moreover, due to the tight coupling of the MCPs to the dark photons, the hidden sector

(HS) thermal bath comprising the MCP and the dark photon is well-approximated by a fluid in chemical

equilibrium. Thus, instead of solving for the individual MCP and dark photon abundances, we can solve for

the combined HS energy density through the Boltzmann equations

dρSM
dt

+ 3H(1 + wSM)ρSM = −C

dρHS

dt
+ 3H(1 + wHS)ρHS = C, (5.5)

where C is the energy transfer collision term due to millicharge interactions, ρ is the energy density, H =
√
ρHS + ρSM/[

√
3MPl], w = P/ρ is the equation of state, P is the pressure, and MPl = 2.435 × 1018 GeV

is the reduced Planck mass. After the MCPs become non-relativistic and annihilate into dark photons,

ρHS ≈ ρA′ .

Both ρHS and wHS are determined in terms of THS by

ρHS =
π2

30
gHST

4
HS, wHS =

gHS,p

3gHS
, (5.6)
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where

gHS = 2 +
30

π2T 4
HS

× 4

∫ ∞

0

d3p

(2π)3
E

1

exp(E/THS) + 1
, (5.7)

gHS,p = 2 +
90

π2T 4
HS

× 4

∫ ∞

0

d3p

(2π)3
p2

3E

1

exp(E/THS) + 1
. (5.8)

Similarly, wSM is related to TSM via

wSM =
g∗p(TSM)

3g∗(TSM)
, (5.9)

where g∗ and g∗p count the effective degrees of freedom in the SM energy density and the SM pressure,

respectively. We model the QCD phase transition using the g∗ tables from Ref. [166] for TSM > 100 MeV.

The collision term in eq. (5.5) includes all processes that transfer energy from the SM plasma into the HS

bath due to the millicharge interactions. There are four important processes contributing to energy transfer:

(1) SM fermion annihilation into MCPs; (2) Z-boson decays into MCPs; (3) plasmon decays into MCPs; and

(4) Coulomb scattering of SM fermions with MCPs.2 We include the quantum statistical distributions of SM

particles while deriving the collision term for each of these processes, relegating the details to appendix A.5.

The use of quantum statistics instead of Maxwell-Boltzmann distributions provides a ∼ 20% correction to the

net energy transfer. Among the three s-channel processes (numbers 1-3 above), we find that energy transfer

via fermion annihilation dominates over the other two in the bulk of parameter space. For instance, the

energy transferred by fermion annihilations dominates over that from Z-boson decays except for the region of

parameter space where 1 GeV ≲ m ≲ 40 GeV. The energy transferred via plasmon decays is typically around

∼ 20% of that transferred by fermion annihilations.

Finally, we find that the energy transferred by Coulomb scattering dominates over that from fermion

annihilations for the values of Q and m that saturate the bounds on ∆Neff from both current and upcoming

experiments. Naively, one might expect energy transfer via Coulomb scattering to be subdominant in the out-

of-equilibrium regime because these processes are suppressed by the small MCP abundance in the initial state.

However, due to the forward-scattering singularity, the energy transfer via Coulomb scattering dominates over

that via SM fermion annihilations for THS as low as 0.35TSM (for more detail, see appendix A.5). Temperature

ratios of THS/TSM > 0.35 during recombination produce enough dark radiation to shift ∆Neff > 0.06, which

can be detected in the upcoming CMB-S4 experiments [132]. Hence, Coulomb scattering processes are key

for evaluating the dark radiation densities relevant for the values of ∆Neff that can be tested in upcoming as

well as current experiments.

To determine the relic dark radiation density, and the resulting parameter space allowed by Neff mea-

surements, we solve the Boltzmann equations in eq. (5.5) from an initial SM temperature TSM ≫ m until

the energy injection into the HS ends, TSM ≪ m. We assume the HS is initially empty, which provides a

conservative constraint; any significant initial HS density only increases the final dark radiation density and

thus ∆Neff.

The various shaded regions in figure 5.1 show the regions of parameter space where the resulting energy

density in dark radiation exceeds various current and future experimental sensitivities to shifts in Neff . The

constraint contours saturate the current one-sided 2σ upper bound from Planck [3] ∆Neff = 0.3 (black solid),

the projected 2σ sensitivity for CMB-S4 [132] ∆Neff = 0.06 (gray solid), and the threshold goal for future

2Energy transfer from Compton-like scattering, A+ ψ → ψ +A′, can be more important than the processes mentioned here
for large values of the dark coupling constant, e′ > 0.9. We neglect this process for simplicity and genericity.

100



10 1 100 101 102 103 104 105 106

m (MeV)

10 10

10 8

10 6

10 4

10 2

Q

SLAC

miniboone

LHCLEP
Stellar

SN1987A

BBN

previous CMB constraint
CMB Neff = 0.3

CMB Neff = 0.06
CMB Neff = 0.027

Figure 5.1: Constraints on the mass and millicharge of the millicharged particle. The black solid, gray
solid, and gray dashed contours indicate the parameter space that yields ∆Neff = 0.3, ∆Neff = 0.06, and
∆Neff = 0.027, respectively. The blue dashed contour is the CMB constraint derived in Ref. [153] for
∆Neff = 0.8. The green color on our ∆Neff contours marks the region where we expect the millicharge
interactions to cool the electron-photon bath relative to neutrinos and strengthen our constraints by an O(1)
factor. Also shown are constraints from SLAC [167], MiniBooNE [168], LEP [169], LHC [170], BBN [153],
supernova 1987A [171] and stellar observations [153].
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CMB experiments ∆Neff = 0.027 (gray dashed). The threshold of ∆Neff = 0.027 physically corresponds to

the shift in Neff due to the energy density at recombination in a relativistic spin-zero particle that was in

thermal equilibrium with the SM in the early Universe and decoupled while all SM species were relativistic.

For comparison, in figure 5.1 we also display the results of Ref. [153] as the blue dashed line, which

shows the parameter points that lead to ∆Neff = 0.8. We have verified that our results agree with Ref. [153]

within O(1) when we assume Maxwell-Boltzmann statistics for all particles. The use of Maxwell-Boltzmann

statistics as opposed to Fermi-Dirac statistics overestimates the dark radiation density by around 20%. As

the energy density in dark radiation depends on Q2, using Fermi-Dirac statistics for SM fermions weakens

the Neff constraint on Q by around 10%.

In figure 5.1 we also show the constraints on the MCP from collider experiments, stellar evolution, and

supernova observations (see Ref. [172] for a review). We omit limits from direct detection experiments because

those constraints are dependent on the interaction of MCPs with the magnetic fields in the galaxy [173, 174].

Among the displayed constraints, the current Planck limit is already the dominant bound in a substantial

portion of parameter space, while upcoming CMB observations will provide the strongest constraint for the

entire region with m ≳ 0.1 MeV, assuming no deviation is observed from the SM value of NSM
eff = 3.044.

The curves of constant ∆Neff in the MCP model parameter space shown in figure 5.1 have four key

features. First, at low masses, the contours of constant dark radiation density at recombination (and therefore

constant ∆Neff) relate the millicharge, Q, to the MCP mass via Q ∝
√
m∆Neff. In this region the HS is

out-of-equilibrium with the SM. Second, as one moves along the contour of constant ∆Neff toward increasing

m, one reaches a threshold mass mth where the millicharge Q becomes large enough that the HS thermalizes

with the SM. When the HS is thermalized with the SM plasma, the net energy transfer between sectors

becomes insensitive to the specific value of Q since forward and backward processes balance each other. In

this regime the asymptotic dark radiation density, and therefore the constraint from ∆Neff , depends primarily

on m and only logarithmically on Q, as seen in the figure.

Third, the contour corresponding to ∆Neff = 0.06 has a narrow exclusion region (where ∆Neff > 0.06)

extending from m ≈ mth up to arbitrarily large m, while no such excluded strip exists for either the

∆Neff = 0.3 or the ∆Neff = 0.027 contours. The existence (or non-existence) of this strip beyond the threshold

mass is related to the fact that ∆Neff < 0.06 still allows the dark photon itself to have been in equilibrium

with the SM plasma for temperatures above the TeV scale, but is not compatible with the MCP also having

entered equilibrium, which would increase the hidden sector relativistic degrees of freedom to an unacceptably

large value at early times. Finally, the ∆Neff < 0.06 and ∆Neff < 0.027 constraints have a bump below

m ∼ mZ/2 which is due to energy injection from on-shell Z-boson decays. In the following subsection we

elaborate on this discussion by analytically solving the Boltzmann equations in the relevant regimes.

For m ≲ 2 MeV, energy transfer into the HS occurs predominantly after neutrino decoupling. In this part

of parameter space, the production of dark photons as well as the relative cooling of the electron-photon

bath compared to neutrinos contributes to ∆Neff during recombination, while our analysis only considers the

contribution from dark photons. Taking into account the relative cooling of photons should further strengthen

the Neff constraints calculated in this study by an O(1) factor. We indicate this region in figure 5.1 by

coloring the Neff contours green. A full treatment of early universe constraints on the MCP model below

m ≲ 2 MeV requires a detailed treatment of neutrino decoupling as well as light element formation during

BBN, and is beyond the scope of this work.

102



5.2.3 Dark radiation production in different regimes

The parameter space that saturates the bounds on Neff can be separated into two distinct regions: a region

where the HS remains out of equilibrium with the SM plasma and a region where the HS thermalizes with

the SM. In this subsection we focus on the evolution of the HS energy density, ρHS, in these two regions of

parameter space. By studying the Boltzmann equations, we develop approximate analytic descriptions that

enable a deeper understanding of the shapes of the curves in figure 5.1.

Collisions, redshifting, and the evolution of ρHS: The evolution of the energy density in dark radiation

is controlled by two factors. The first is the (net) rate at which energy is injected into the HS, C = Cf − Cb,
where Cf , and Cb are the forward and backward collision terms describing energy transfer from the SM

into the HS. The second factor is the rate at which the energy density is redshifting, HρHS. The ratio

Cf/H, then, indicates the energy density transferred to the HS within a Hubble time. When ρHS is out

of equilibrium with the SM, Cf/H serves as a useful indicator of whether energy injection is important

(Cf/H > ρHS) or not (Cf/H < ρHS) in governing its evolution. When ρHS is in equilibrium with the SM,

ρHS,eq = [π2gHS(TSM)/30](TSM)4 and C = Cf −Cb = 0, as both forward and backward rates become large. The

HS remains in equilibrium with the SM plasma as long as the fractional energy injection rate, ΓE ≡ Cf/ρHS,eq,

is larger than H.

To develop some intuition about the evolution of these rates, and their impact on the resulting dark

radiation density, in figure 5.2 we show the evolution of ρHSa
4 (black line) along with Cfa4/H (blue dot-dashed

line) after numerically solving the Boltzmann equations given in eq. (5.5). The red-dashed line shows the

evolution of ρHS,eqa
4 = [π2gHS(TSM)/30](aTSM)4.3 The ratio between the black and red lines is proportional to

(THS/TSM)4 and thus indicates how far away the HS is from equilibrating with the SM plasma. Two parameter

choices are shown to illustrate the two different regimes for computing the resulting dark radiation density.

The left panel shows a parameter point where Cf/H is always smaller than ρHS,eq, and consequently the HS

remains out-of-equilibrium with the SM plasma. The right panel shows a second choice of parameters where

the HS comes into thermal equilibrium with the SM for some period of time, indicated by the overlapping

red and black lines. In both panels, the initial hidden sector energy density is small compared to the energy

injection from the SM, ρHS < Cf/H, and the evolution of ρHS is driven by the energy injection, giving the

initial increase in ρHSa
4.

In the left panel of figure 5.2, energy injection into the HS ceases to be important after Cf becomes

Boltzmann-suppressed and Cf/H falls below ρHS. In particular, Cfa4/H attains its maximum around

TSM = m/2, but it is not until TSM = m/4 (yellow dashed line) that energy injection into the HS effectively

ends. For this choice of parameters, the HS does not come into thermal equilibrium with the SM, and

consequently the final value of ρHSa
4 can be estimated from the maximum value of Cfa4/H. As ∆Neff

parametrizes the energy density of dark photons, it constrains the maximum value of Cfa4/H, which is

proportional to Q2MPl/m.

In the right panel, Cf/H grows until it exceeds ρHS,eq and subsequently the HS thermalizes with the SM

plasma. The two sectors remain in equilibrium until Cf/H falls below ρHS,eq. The final value of ρHSa
4 is

given by ρHS,eqa
4 evaluated at Td, where Td is the temperature below which HS thermally decouples from

3We use the same scale factor for both the red dashed and black solid lines, which is obtained after numerically solving for
ρHS indicated by the black line. The red line should not be confused with the solution for the comoving energy density for a HS
always in thermal equilibrium. The bump in the red line near TSM = 200 MeV is due to the sudden decrease in g∗ below the
QCD phase transition. The red line decreases for TSM ≲ m/4 because the degrees of freedom in the HS decreases when MCPs
become non-relativistic.
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Figure 5.2: Evolution of the comoving HS energy density (solid black) as a function of SM temperature for
MCP mass and charges {m,Q} = {102 MeV, 2 × 10−8} (left) and {m,Q} = {104 MeV, 8 × 10−5} (right).
The red dashed line shows (π2/30)gHS(TSM)T 4

SMa
4, and the blue dot-dashed line is Cfa4/H. The vertical

orange dashed line marks TSM = m/4. The horizontal black dashed line marks the dark radiation density
that produces ∆Neff = 0.3. For an out-of-equilibrium HS, the final dark radiation density depends on the
maximum value of Cfa4/H, while for a HS that thermalizes with the SM plasma the dark radiation density
depends on the decoupling temperature.

the SM plasma, H(Td) = ΓE . Consequently, if the HS thermalizes with the SM plasma, measurements of

Neff probe Td, which is only logarithmically sensitive to Q.

We now separately study the regimes where the HS remains out of equilibrium with the SM plasma and

where it equilibrates.

Dark radiation production in the out-of-equilibrium regime: For scenarios where the HS remains

out of equilibrium with the SM plasma, the Boltzmann equations simplify because for THS ≪ TSM, the

cooling of the SM plasma due to millicharge interactions is negligible, and the Hubble rate is dominated

by ρSM. Consequently, the SM plasma evolves adiabatically and we only need to integrate the Boltzmann

equation for ρHS.

Integrating the remaining Boltzmann equation for ρHS is non-trivial because the collision term depends

on both TSM and THS. In particular, for THS ≪ TSM, C ≈ Cf , and while Cf = Cf(TSM) for s-channel processes,

for Coulomb scattering processes Cf = Cf(THS, TSM). The energy transfer from Coulomb scattering process

dominates over that from s-channel processes for the regions of parameters space that saturate ∆Neff = 0.3

(see section 5.2.2). However, if ∆Neff is constrained to smaller values by future experiments, the HS will

be constrained to regions of parameter space with lower temperatures, and consequently, the contribution

from Coulomb scattering processes will become less important compared to the contribution from s-channel

processes.

In order to obtain a simple expression for a conservative lower bound on the asymptotic dark radiation

density, we neglect the Coulomb scattering processes. This allows us to take Cf = Cf(TSM). Then with the

additional simplifying assumption that wSM = wHS = 1/3, we can integrate the Boltzmann equation for ρHS
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to obtain (
ρHS

ρSM

)
F

−
(
ρHS

ρSM

)
I

≈
∫ TSM,I

TSM,F

dTSM
TSM

Cf
HρSM

=

√
3MPl

(g∗π2/30)3/2

∫ TSM,I

TSM,F

dTSM
T 7
SM

Cf . (5.10)

Because the annihilations of SM fermions into MCPs typically dominates the s-channel energy transfer

processes, we focus on its contribution to the production of dark photons. In appendix A, we compute the

collision term describing the forward energy transfer for these annihilation processes. The corresponding

collision term for the forward energy transfer in SM fermion annihilations into MCPs is given by4

Can
f =

∑
f

1

32π4

∫ ∞

4max(mf ,m)2
ds(s− 4m2

f )sσff→ψψ̄(s)TSMGζf (
√
s/TSM), (5.11)

where σff→ψψ̄ is the spin-summed center-of-mass (CM) frame cross-section (see eq. A.114) and the summation

runs over all SM fermions. The dimensionless function Gζf (z), given by eq. (A.18), is determined by the

quantum statistical distribution f(p) = [e−E/T + ζ]−1, where ζ = 1 for fermions and ζ = −1 for bosons.

In the limit when SM fermions can be approximated to have a Maxwell-Boltzmann distribution (ζf → 0),

Gζf (z) asymptotes to the second-order modified Bessel function of the second kind, K2(z), and eq. (5.11)

then matches with the well-known result of Ref. [175].

The integral on the RHS of eq. (5.10) can be simplified for the collision term of eq. (5.11) by first rewriting

the integral as∫ TSM,I

TSM,F

dTSM
T 7
SM

Can
f =

∑
f

1

32π4

∫ ∞

4max(m,mf )2
ds

(s− 4m2
f )

s
√
s

σff→ψψ

∫ xI

xF

dx

x6
Gζf

(
1

x

)
, (5.12)

where x = TSM/
√
s. One can show, to an excellent approximation, that the integration limits for x can

be replaced by 0 and infinity for TSM,F ≪ max(m,me) ≪ TSM,I .
5 With this approximation the integral

over x yields a factor of 15πκζf /2, where κ1 = 0.80, κ0 = 1 and κ−1 = 1.5. Taking into account quantum

statistics in the phase-space distribution of fermions therefore leads to a correction of about 20% to the final

dark photon density. This result is indicative of the size of quantum-statistical effects in all energy transfer

processes we considered (including Coulomb scattering).

Numerically, we find that the integral over the collision term obtains its asymptotic value at TSM ∼
max(m,me)/4. The dependence on me is a consequence of the fact that for TSM ≪ me the abundance of all

electromagnetically-charged SM fermions is Boltzmann-suppressed.

Using the simplified collision integral, we find the fraction of energy transferred from the SM plasma into

the HS is given by(
ρHS

ρSM

)
leak

≡
(
ρHS

ρSM

)
TSM=Λ

−
(
ρHS

ρSM

)
I

≈ 15
√
3

64π3[g∗(4Λ)π2/30]3/2
MPl

Λ
× L, (5.13)

4While deriving eq. (5.11) we make two key approximations. First, we neglect the Pauli-blocking effect from MCPs; second,
we assume TSM ≫ mf . The first approximation is valid in the parameter space where MCPs are produced out-of-equilibrium
with THS ≪ TSM. The second approximation has negligible impact on the production of dark radiation for m≫ mf because
MCP production is Boltzmann-suppressed by the time TSM ∼ mf , while for m < mf the energy injection is dominated by
lighter fermions that are relativistic during TSM ∼ m.

5This approximation is possible for two reasons. First, the terms outside of the x integral peak at energy scale
√
s ∼ max(m,me).

Second, the integrand of the x integral goes to 0 as x→ ∞ and as x→ 0. Thus, as long as TSM,F ≪ max(m,me) ≪ TSM,I , the
total integral is insensitive to the initial and final temperatures.
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where

Λ ≡ max(m,me)

4
, L = Λκ1

∑
f

∫ ∞

4max(m,mf )2
ds

(s− 4m2
f )

s
√
s

σff→ψψ(s). (5.14)

The energy injection decoupling temperature, Λ, determines the SM temperature below which energy injection

ceases to be important, and the leak factor, L, parameterizes the leakage of energy from the SM plasma due

to BSM interactions. While the above approximation assumes a constant g∗ until TSM < Λ, numerically we

find that (ρHS/ρSM)TSM=Λ is primarily sensitive to g∗ at TSM = 4Λ. Finally, this result is only valid as long

as the HS does not thermalize with the SM, or equivalently, if (ρHS/ρSM)TSM=Λ < (gHS/g∗)TSM=Λ.

The leak factor L has a simple analytical form when the MCP mass m is not close to any of the SM

fermion masses. Using the cross-section for fermion annihilation to MCP pairs given in eq. (A.114), and

neglecting Z-mediated contributions, we obtain

L ≈ κ1

mf<4Λ∑
f

3π2α2Q2Q2
fNc(f)

8
, (5.15)

where α is the fine structure constant, Qf and Nc(f) are the charge and color factor of the SM fermions,

respectively, and the sum over f runs over all SM fermions that are relativistic at TSM ∼ 4Λ.

To evaluate the final dark photon energy density we adiabatically evolve ρHS from the end of energy

injection until recombination, (ρA′a4)CMB = (ρHS/ρSM)leak (ρSMa
4)TSM=Λ. The dark photons act as free-

streaming dark radiation and cause a shift in Neff given in eq. (5.4). Requiring that the resulting ∆Neff

remains below the (∆Neff)max upper bound set by CMB measurements limits the value of the charge to

Q2 <
10−14

κ1

(
1/137

α

)2(
g∗(Λ)

10

)1/3(
g∗(4Λ)

10

)3/2
(

4∑
f Q

2
fNc(f)

)(
(∆Neff)max

0.3

)(
Λ

GeV

)
. (5.16)

In deriving eq. (5.16), we set g∗s(TCMB) = 3.94 and approximated g∗s(Λ) = g∗(Λ), where g∗s counts the

effective entropic degrees of freedom in the SM and TCMB = 0.25 eV is the temperature of photons near

recombination. The constraint on Q for m > me is roughly proportional to
√
m, with the proportionality

constant determined by
√
(∆Neff)max. Note that taking into account the Fermi-Dirac statistics of SM fermions

weakens the constraint on Q by ∼ 10%.

In the left panels of figure 5.3, the dark blue dashed lines show the values of the parameters that saturate

various Neff thresholds. These points are evaluated by numerically solving the Boltzmann equations after

including all s-channel energy transfer processes but not the t-channel Coulomb scattering processes. We

compare this s-channel result with the full result, which includes Coulomb scattering processes, given by the

black solid lines. Note that the agreement between the full and the s-channel-only results improves as ∆Neff

is restricted to smaller values. The light blue dot-dashed lines show the analytical result given by eq. (5.16).

Our analytical result does not include the contribution from Z-boson decays and hence underestimates the

dark radiation density in the range 1 GeV≲ m ≲ 40 GeV in the bottom left panel of figure 5.3.6

Dark radiation production in the equilibrium regime: The analysis in the previous section is only

valid when the HS remains out of equilibrium with the SM plasma. However, starting in the out-of-equilibrium

6One can straightforwardly incorporate Z-boson decays into the approximate analytical treatment by substituting the
corresponding collision term, given in eq. (A.115), into eq. (5.10). We omit this calculation for brevity.
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Figure 5.3: Left: Solid black lines mark the parameter space for the MCP model that yields ∆Neff = 0.3 (top)
and ∆Neff = 0.027 (bottom). The blue dashed lines show the numerical solution after neglecting contributions
from Coulomb scattering processes. The light blue dot-dashed line is our analytical approximation to the
blue dashed line, as given in eq. (5.16). The orange dashed line marks the values of Q at which the HS
thermalizes with the SM plasma after neglecting Coulomb scattering processes. The exact Neff constraint is
well described by the constraint calculated with only s-channel processes as Neff measurements are improved.
Right: Solid black, solid gray and dashed gray lines mark the MCP parameter space that yields ∆Neff = 0.3,
∆Neff = 0.06, and ∆Neff = 0.027, respectively, and are the same as those in figure 5.1. The orange line marks
the parameter space above which the hidden sector thermalizes with the SM plasma. The green and maroon
lines mark the parameter space where the MCP relic density matches the observed dark matter density via
freeze-out [165] and freeze-in [37], respectively. For values of Q relevant for Neff constraints, almost all MCPs
produced in the early universe must annihilate into dark photons to avoid overclosure of the universe.
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regime, as one follows a contour of constant ∆Neff by increasing m, the value of Q increases. At some point

the coupling can become large enough that the HS thermalizes with the SM. Once the sectors are thermalized,

the dark radiation density is no longer sensitive to the maximum of the forward energy transfer Cfa4/H.

Instead, the final dark radiation density is determined by the temperature Td at which the HS decouples from

the SM. This decoupling temperature is determined by the Boltzmann suppression of the collision term, and

is principally determined by the mass of the MCP, while remaining only weakly dependent on the coupling Q.

This is illustrated in the right panel of figure 5.2, which shows the evolution of the densities for a parameter

point where the HS and SM thermalize. Here, decoupling occurs with the Boltzmann suppression of the

collision term at T ∼ m/4.

The orange lines in figure 5.3 mark the values of Q above which the HS thermalizes with the SM plasma

for a given mass m. In the left panel, the orange lines are plotted after considering only s-channel energy

transfer processes while in the right panel they are plotted after including all processes. In the left panel,

the s-channel result that saturates ∆Neff = 0.3 becomes largely insensitive to the coupling Q once the curve

crosses above the s-channel thermalization contour; similar weakening occurs in the right panel for the full

result.

We can determine the thermalization threshold, the mass scale beyond which we can no longer use the

out-of-equilibrium result in eq. (5.16), as follows. On the one hand, a given relic dark radiation density, or

value of ∆Neff, can be translated to a decoupling temperature, Td, by assuming that entropy is separately

conserved in the HS and SM sectors after Td. This leads to the implicit relation

8

7

(
11

4

)4/3(
g∗s(TCMB)

g∗s(Td)

)4/3
gHS

2
= ∆Neff, (5.17)

which can be solved to determine Td(∆Neff, gHS).
7 This expression for Td(∆Neff, gHS) is independent of the

masses and couplings in the hidden sector, depending only on the effective number of degrees of freedom.

On the other hand, given a model, in this case the MCP model, we can compute the decoupling temperature

directly from the collision term by setting the energy transfer rate ΓE(T ) ≡ Cf(T )/ρHS,eq(T ) equal to the

Hubble rate at Td. This condition determines the decoupling temperature in terms of the model parameters

Q and m, Td(Q,m). Consequently, when the HS is thermalized with the SM plasma, the contour in MCP

parameter space that yields a given value of ∆Neff is found by setting

Td(Q,m) = Td(∆Neff, gHS). (5.18)

The energy transfer rate ΓE increases compared to the Hubble rate until TSM ∼ m/2, after which it

starts decreasing. Consequently, the decoupling temperature has to be smaller than m/2. Thus the lowest

value of m for which the HS can be in equilibrium with the SM plasma for a given (∆Neff)max is determined

by Td(∆Neff, gHS). Empirically we find that the Boltzmann suppression of ΓE becomes prohibitive for

TSM ≲ m/4, and thus the precise location of the decoupling temperature becomes logarithmically sensitive to

the value of Q for Td < m/4. Therefore, the value of m above which the the dark radiation constraint on Q

become exponentially weak occurs at

mth ≡ 4Td[(∆Neff)max, gHS]. (5.19)

7Note that there is a many-to-one map from Td to ∆Neff because g∗s(Td) is constant away from mass thresholds. For ∆Neff

values that exactly coincide with regions where g∗s(Td) is constant, we calculate Td(∆Neff, gHS) by finding the minimum Td
that satisfies eq. (5.17).
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Notice that the evaluation of mth is independent of the strength of energy transfer processes and only depends

on the sensitivity of the Neff measurement and the degrees of freedom in the HS. Consequently, eq. (5.19) does

not depend on the detailed calculation of C, and in particular whether we do or do not include contributions

from Coulomb scattering.

If future CMB missions continue to see an agreement with the SM value of Neff, the thermalization

threshold mth will be pushed to larger values. The gray solid and dashed lines in the right panel of figure 5.3

show the values of the parameters that lead to ∆Neff = 0.06 and ∆Neff = 0.027, respectively. The excluded

regions extend to much larger values of m because more of the parameter space is required to have the

HS remain out of equilibrium with the SM plasma. For ∆Neff < 0.027, there is no allowed thermalization

threshold.

The exponential behavior of the constant ∆Neff contours for m > mth eventually stops at sufficiently

large values of Q, when direct energy transfer from SM into dark photons through off-shell MCPs become

larger than the Boltzmann-suppressed energy transfer into on-shell dark fermions. These off-shell processes

depend on additional model parameters, in particular the dark gauge coupling constant, and are beyond the

scope of the study.

Requirement of chemical equilibrium: Our analysis assumes that the HS energy density can be treated

as a whole, including both the MCP and the dark photon, instead of tracking their energy densities separately.

This assumption is strictly valid when the HS is in internal chemical equilibrium throughout the period

of energy transfer, which is not necessarily true everywhere throughout our parameter space. However,

this assumption of internal chemical equilibrium is only critical to our final result for the dark radiation

abundance in the regions near and above the thermalization threshold(s) for the MCP, where it does hold

(as we discuss below). Below the thermalization threshold, where the MCPs remain out-of-equilibrium with

the SM, the assumption of internal chemical equilibrium remains an excellent approximation as long as (i)

the HS energy density is dominated by radiation throughout the period of energy transfer, and (ii) we can

treat all the entropy carried by the MCPs as deposited into dark radiation, rather than the SM, after it

becomes non-relativistic. Given these two conditions, the detailed evolution of the MCP number density itself

is unimportant to the final dark radiation abundance. In fact condition (ii) follows from condition (i) when

the MCPs are out of equilibrium with the SM, as requiring the HS to be dominated by radiation means that

almost all the produced MCPs must rapidly annihilate, and if the MCP is out of equilibrium with the SM,

then necessarily n2ψ⟨σv⟩ψψ→γγ < H. Thus the MCP must dominantly annihilate into dark photons.

The condition that almost all the produced MCPs efficiently annihilate into dark radiation is met in the

regions of our parameter space relevant for current and forecast out-of-equilibrium constraints, given the mild

constraint on the dark gauge coupling e′ that follows from requiring that the relic MCP abundance does not

overclose the universe, as we now argue. The green line in figure 5.3 indicates where the freezeout of SM

annihilations into pairs of MCPs would produce the observed DM relic density in the absence of dark photons,

i.e., if the MCP’s only annihilation channel is to SM fermions [165]. Meanwhile the maroon line indicates

where the freezein production of MCPs from the SM produces the observed DM relic density, again turning

off the MCP annihilations into dark photons [37]. As current and future Neff constraints lie between these two

lines (except for a small region above the thermalization threshold in the case of current constraints), in the

region of parameter space relevant for evaluating these constraints, SM processes alone overproduce MCPs by

multiple orders of magnitude. Thus the dark gauge coupling constant must be large enough to enable the

vast majority of MCPs to annihilate efficiently into dark photons. If this condition is not met, the model is
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excluded simply by overclosure; our Neff analysis applies to the surviving model parameter space where e′ is

large enough to avoid overclosure, and otherwise does not depend on the detailed value of e′. Thus avoiding

overclosure alone establishes the requirement for out-of-equilibrium case discussed above, which suffices as

long as the final result for dark radiation density does not depend on the evolution of gHS with temperature.

To accurately determine the production of dark radiation when the hidden sector is close to the ther-

malization threshold, we need to track the evolution of gHS with temperature, and thus the evolution of

the MCP number abundance with temperature, up until THS ≲ m/3. Once THS < m/3, the hidden sector

equation of state is given by wHS = 1/3 to an excellent approximation. In particular this is necessary to

accurately determine the location of the excluded strip running up to high masses in fig. 5.1. Using the

results of Ref. [176], we have checked that internal chemical equilibrium for THS > m/3 is indeed necessary if

the relic MCPs are not to overclose the universe.

5.2.4 Dark radiation production in extended MCP models and implications for

EDGES

We have so far considered a minimal MCP model where only one fermion is charged under the dark U(1)

gauge symmetry. More generally, the hidden sector may contain multiple particles with dark charges. A

full evaluation of the resulting dark radiation density in these models depends on the detailed spectrum of

the hidden sector, including properties such as the number of particles and the values of their various dark

charges. However, in this section, we show that a conservative lower bound on the dark photon density at

recombination can be estimated that is insensitive to such details. This conservative lower bound can then be

used to place general constraints on the allowed parameter space of these models.

The conservative lower bound on the dark photon density is obtained by considering only s-channel

energy transfer processes (annihilations or decays) and considering only one MCP and one dark photon in

the HS bath. On the one hand, if the HS equilibrates with the SM plasma, the final dark radiation density is

largely insensitive to the specifics of the energy transfer processes but remains proportional to the degrees

of freedom in the HS bath, gHS. Thus, minimizing the particles in the HS also minimizes the final value

obtained for the dark radiation density. On the other hand, if the HS remains out-of-equilibrium with the

SM plasma, the dark radiation density is determined by the energy transfer from the SM. While the energy

transferred by t-channel scattering processes decreases as we increase gHS (holding the total ρHS fixed), the

energy transferred by s-channel processes is insensitive to gHS as long as it is dominated by a single mediating

species. Consequently, the dark radiation density cannot be smaller than that following from s-channel

processes alone for an out-of-equilibrium hidden sector.

This conservative lower bound on the dark radiation density can be translated directly into a lower bound

on ∆Neff . This lower bound has an immediate application to the MCP model proposed by Ref. [155] to

explain the anomalously small hydrogen spin temperature as measured by the EDGES experiment [158].

Their model consists of two fermions that are charged under a dark U(1) gauge symmetry. One fermion is the

main component of dark matter, χ1, and the other fermion, χ2, constitutes a small fraction of dark matter.

The particle χ2 is responsible for cooling hydrogen atoms via millicharge interactions and then transfers that

heat to the dark matter bath via dark long range interactions. The dark photon mediating the long-range

interaction is a light relativistic relic that contributes to Neff.

In figure 5.4 we show the parameter space in the model of Ref. [155] that is consistent with various current

and projected CMB measurements of Neff . The orange lines in figure 5.4 show the values of the millicharge,

Q2, and mass, m2, of the χ2 particle required to resolve the EDGES anomaly, as calculated in Ref. [155].
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Figure 5.4: Constraints on the mass and millicharge of the millicharged particle in the context of extended
models. The orange lines mark the values of charge and mass of the MCP χ2 for which the model given in
Ref. [155] resolves the EDGES anomaly. The orange lines have been plotted after fixing the dark matter
mass to 10 MeV and setting the fraction of χ2 density relative to dark matter to fχ2

= 10−4, 10−6, and 10−8

as indicated. The green line marks the values of Q2 for which χ2 would obtain fχ2
= 10−4 in the absence

of dark annihilation channels. The black solid and dot-dashed contours mark the parameter space that
yields ∆Neff = 0.3 and ∆Neff = 0.06, respectively, after neglecting energy transfer from Coulomb scattering
processes and assuming one millicharged particle in the hidden sector bath. The blue dashed contour is the
CMB constraint derived in Ref. [153] for ∆Neff = 0.8. The pink shaded regions marks the parameter space
ruled out by SLAC [167], MiniBooNE [168], LEP [169] and LHC [170].
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The lines are plotted for fixed values of dark charges and χ1 masses chosen such that the cooling of hydrogen

atoms is maximized while remaining consistent with cosmological bounds from the CMB and BBN. The black

solid and dashed lines show the values of Neff computed using the conservative method described above that

saturate the Planck and projected CMB-S4 2σ bounds, respectively. The contours below the thermalization

threshold are well described by eq. (5.16). Current measurements of Neff already limit m2 >2 GeV, while

future CMB experiments can completely rule out the MCP model proposed by Ref. [155]. Since the dark

radiation constraints we show here are largely insensitive to the details of the specific extended MCP model,

they offer a powerful way to constrain model-building in this direction to explain the EDGES anomaly.

Naively one might imagine that the dark radiation constraints on Q2 can be circumvented if χ2 pre-

dominantly annihilates into SM particles rather than dark photons. However, for χ2 to resolve the EDGES

anomaly, it must have significant couplings with a lighter dark particle in order to avoid being overproduced

in the early universe. For instance, the solid green line in figure 5.4 marks the values of Q2 that produce

χ2 constituting a fraction fχ2
= 10−4 of dark matter density today if χ2 only has annihilation channels to

SM fermions. Assuming SM-only freezeout, the relic abundance of χ2 increases below the green line by a

factor of 1/Q2
2. Consequently, the values of Q2 required to resolve the EDGES anomaly result in a χ2 relic

abundance multiple orders of magnitude larger than what is required unless χ2 has an additional annihilation

channel. The minimal possibility is that χ2 dominantly annihilates into the dark mediator that sources the

requisite long-ranged interaction between χ1 and χ2.
8 The produced dark mediator is then constrained by

the Neff measurements, which consequently restricts Q2 as shown in figure 5.4.

Finally, applying the CMB Neff constraint to any MCP model assumes that the dark photon is free-

streaming during recombination. If the dark photon and the MCPs have sufficiently large self-interactions

during recombination, they can instead form a fluid, and the dark photon would accordingly contribute to

Nfluid instead of producing a neutrino-like signal. The ability to form a fluid depends on the MCP relic

abundance as well as the interaction between the MCP and the dark photon, both of which are determined

by the dark coupling constant, e′. A more detailed analysis would be required to find the relevant values

of e′ that can produce a self-interacting radiation bath without violating either unitarity or cosmological

bounds. For such values of e′, one would instead have to look to Nfluid measurements, which are factors of

2− 3 less sensitive than measurements of Neff [177]. A future CMB-S4 constraint of ∆Nfluid ≲ 0.16 would

yield a thermalization threshold of m2,th ∼ GeV.

5.3 B − L right-handed neutrinos

In this section we derive dark radiation constraints on the scenario where the global SM symmetry of baryon

number minus lepton number (B−L) is promoted to a gauge symmetry. This promotion requires the addition

of three right-handed neutrinos to cancel gauge anomalies. When these three additional neutrinos are light,

they contribute to the energy budget of the Universe as dark radiation. Consequently, their energy density

and the parameter space of the model are constrained by measurements of Neff .

The gauged B−L model is also constrained by fifth-force searches [178], stellar evolution [179], supernova

1987A [180], and collider experiments [181–188]. Constraints on this model from Neff measurements have

been studied previously in Ref. [189] and updated in Ref. [156]. Here we improve over previous studies by

taking into account the out-of-equilibrium production of right-handed neutrinos.

8An alternative non-minimal method to dilute the χ2 abundance is to have an unstable field preferentially reheat the SM
plasma at some temperature Trh < m2.
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This section is organized as follows. We begin in section 5.3.1 by introducing the model and our conventions.

In section 5.3.2 we describe the relevant Boltzmann equations, detailing the approximations within which we

work. We then solve the Boltzmann equations to find the model parameter space that saturates the Neff

bounds from current and upcoming CMB experiments. Next, in section 5.3.3 we analyze the evolution of

the energy density in right handed neutrinos, ρνR , and show that its final value is qualitatively changed

depending on the lifetime of the Z ′ boson. Finally in section 5.3.4, we provide an analytical explanation of

the features of the dark radiation constraint on the model parameter space.

5.3.1 The model

The Lagrangian describing the interactions of the SM with the B − L gauge boson Z ′ and the right-handed

neutrinos is given by

L =− 1

4
F ′
µνF

µν ′ +
1

2
M2
Z′Z ′

µZ
′µ + g′Z ′

µ

∑
i

[
1

3
(ūiγ

µui + d̄iγ
µdi)− ēiγ

µei − ν̄L,iγ
µνL,i

]
− g′Z ′

µ

∑
i

ν̄R,iγ
µνR,i. (5.20)

Here, the index i runs over the three generations of SM fermions, while u, d, e, νL and νR denote the up

quark, down quark, electron, left-handed neutrino and right-handed neutrino counterparts of each generation.

Above we have explicitly separated the interaction of the Z ′ gauge boson with the νR from its interactions

with the known SM fermions. We consider the minimal version of the model where the three right-handed

neutrinos form Dirac particles with the left-handed neutrinos after electroweak symmetry breaking. Because

the neutrinos are always relativistic during and prior to recombination, we ignore neutrino masses in the

subsequent analysis and treat νL and νR as distinct Weyl fermions. The Z ′ gauge boson has mass MZ′ , which

can come from a Stueckelberg or a Higgs mechanism. To remain as model-independent as possible, we ignore

potential contributions to the dark radiation density arising from possible Higgs fields associated with B − L

breaking and focus on the irreducible contribution from the Z ′ itself.9

Right-handed neutrinos are produced in this model as a result of the B−L interactions with the Standard

Model in the early Universe. Because they are approximately massless and sterile at late times, after the Z ′

freezes out, these right-handed neutrinos are dark radiation and contribute to Neff. Furthermore, for values

of g′ allowed by current Neff constraints, the B − L interactions with νL are significantly weaker than the

weak interactions with νL prior to neutrino decoupling. We focus on the region of parameter space where

dark radiation is produced prior to BBN, and thus before the weak interactions freeze out and the νL leave

equilibrium. In this region of parameter space, the production of νR provides the major contribution to

∆Neff,

∆Neff =
8

7

(
11

4

)4/3
ρνR
ργ

. (5.21)

5.3.2 Boltzmann equations and constraints for the B − L model

Right-handed neutrinos in this model are dominantly produced by Z ′-mediated SM fermion annihilation. In

part of the relevant parameter space, the Z ′ bosons are long-lived, i.e., they do not decay within a Hubble

9This is an excellent approximation when a B − L Higgs is more massive than the Z′, and conservative in the case when it is
not; this treatment is also applicable to the technically natural scenario where the Z′’s only interactions are the Stueckelberg
mass and the coupling to the SM B − L current as given in eq. 5.20.
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time. Consequently, the energy transferred into νR can depend on the cosmic evolution of the on-shell Z ′

density. The relevant Boltzmann equations for this system need to track the evolution of both Z ′ and νR,

and read

dρSM
dt

+ 3H(1 + wSM)ρSM =− Cff→Z′ − Coff
ff→νRνR , (5.22)

dρZ′

dt
+ 3H(1 + wZ′)ρZ′ =Cff→Z′ − CZ′→νRνR , (5.23)

dρνR
dt

+ 4HρνR =CZ′→νRνR + Coff
ff→νRνR . (5.24)

Here the Hubble rate is H =
√
ρνR + ρSM + ρZ′/[

√
3MPl], and the various Ci denote energy transfer collision

terms from three processes: Cff→Z′ , for the inverse decay of SM fermions into Z ′s; CZ′→νRνR , describing the

decay of Z ′s into right handed neutrinos; and Coff
ff→νRνR

, which describes contact interactions between SM

fermions and νR, mediated by off-shell Z ′s (see also Refs. [190, 191]). We include the quantum phase space

distributions for initial state particles but ignore final state quantum effects in the evaluation of the collision

terms.10 The detailed expressions for the collision terms are given in appendix A.6.

While evaluating the backward collision terms describing νRνR → ff and νRνR → Z ′, we assume that

right-handed neutrinos are internally thermalized with a temperature TνR ≡ [ρνR/(gνRπ
2/30)]1/4, where

gνR = 2× 3× 7/8. On the one hand, this assumption is unimportant if the two sectors do not thermalize as

the backward collision term is negligibly small in comparison to the forward collision term for TνR ≪ TSM.

On the other hand, if they do thermalize then the assumption is automatically satisfied. The transition

regime, where the backward collision term can be important, is relevant for the current Neff constraints in

the mass range 1 GeV < MZ′ < 2 GeV; in this range a differential treatment of the phase space distribution

of the right-handed neutrinos would be required to improve on our treatment. For ∆Neff < 0.06 we expect to

be well into the out-of-equilibrium regime where the backward collision term is unimportant.

When right-handed neutrinos are in equilibrium with the SM plasma, the decoupling temperature is

determined by either Z ′ decays or contact interactions. When the right-handed neutrinos are out-of-equilibrium

with the SM plasma, the energy transferred through Z ′ decays and inverse decays is orders of magnitude

larger than that via contact interactions. The forward energy transfer collision terms for Z ′ → ff and

Z ′ → νRνR are given by

Cf
Z′→ii =MZ′ΓZ′→inZ′ , (5.25)

where nZ′ is the number density of the Z ′ and ΓZ′→i is the Z
′ decay width into particle species i. While

computing ΓZ′→SM we neglect the decays of Z ′ bosons into hadrons for MZ′ < 2TQCD, where we set the

QCD transition scale at TQCD = 200 MeV. For MZ′ > 2TQCD, we include Z ′ decays into free quarks in

ΓZ′→SM .

We approximate ρZ′ = MZ′nZ′ and wZ′ = 0 in the Boltzmann equations, as appropriate for non-

relativistic Z ′ bosons. Most of the energy injection into νR occurs when the Z ′ bosons are non-relativistic,

as demonstrated explicitly below, and therefore this approximation has a minimal effect on the final dark

radiation density and the ensuing constraints.

10Ignoring final-state quantum effects is an excellent approximation as long as the Z′ is out of equilibrium with both the
νR and SM plasma. On the other hand, if the B − L interactions are strong enough to thermalize the Z′ and the νR with the
SM, the precise value of the collision term has only a marginal impact on the final densities of Z′ and νR and hence final-state
quantum effects are not quantitatively important.
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Figure 5.5: Constraints on B − L gauge coupling and gauge boson mass. The black solid, black dot-dashed,
and gray dashed contours mark the parameter space that yields ∆Neff = 0.3, ∆Neff = 0.06, and ∆Neff = 0.027
respectively. These bounds correspond to the 2σ upper limit for Planck [3], 2σ upper limit for CMB-S4 [132],
and the sensitivity goal for future CMB experiments, and update the BBN+CMB constraints derived in
Ref [156], which are shown with the blue dashed contour. The red dots mark the points on the constant Neff

curves below and to the left of which ΓZ′ is smaller than the Hubble rate at TSM =MZ′/2. The green color
on our ∆Neff contours marks the region where we expect Z ′ decays into νL to contribute to ∆Neff and alter
our results by an O(1) factor. Brown lines show constraints from supernova 1987A from Refs. [180] (dashed)
and [192] (dot-dashed). We also show constraints from BABAR [181], LHCb [182], LHC [183, 184], and beam
dump experiments [185–188].
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We are now ready to compute the final dark radiation density in νR by solving the Boltzmann equations

given in eq. (5.22)-(5.24). We begin the evolution at an initial SM temperature TSM ≫ MZ′ , setting

ρZ′ = ρνR = 0, and evolve forward until the end of energy injection. In figure 5.5, we show the contours of g′

as a function of MZ′ that saturate the current one-tailed 2σ upper limit from Planck [3], ∆Neff = 0.3 (black

solid); the projected 2σ upper limit from CMB-S4 [132], ∆Neff = 0.06 (black dot-dashed); and the threshold

goal for future CMB experiments ∆Neff = 0.027 (gray dashed).

The curves of constant ∆Neff in figure 5.5 have a number of key features. As in the MCP model, these

curves have a thermalization threshold beyond which they are only logarithmically sensitive to g′. For the

∆Neff = 0.3 curve, the threshold is atMZ′ ∼ 1.7 GeV, while for other contours displayed, there is no threshold.

This is because ∆Neff = 0.3 allows three BSM Weyl fermions to decouple from the SM plasma before the

QCD phase transition, but the smaller values ∆Neff = 0.06 and ∆Neff = 0.027 cannot accommodate so

many new degrees of freedom ever thermalizing with the SM. For ∆Neff = 0.3, the logarithmic sensitivity

to g′ becomes a power law again above g′ ≲MZ′/(16 TeV) (see also [193]), as the decoupling temperature

goes from being determined by Z ′ decays and inverse decays to being determined by contact interactions,

described by Coff
ff→νRνR

.

The curves corresponding to ∆Neff = 0.06 and lower (as well as the curve for ∆Neff = 0.3 below the

thermalization threshold) are controlled by the out-of-equilibrium production of right-handed neutrinos. As

we describe below, there are two qualitatively different out-of-equilibrium production mechanisms depending

on the ratio ΓZ′/H at TSM ∼ MZ′/2, where ΓZ′ is the total decay width of Z ′ bosons. The red dots on

the curves indicate where ΓZ′ is equal to the Hubble rate at TSM =MZ′/2. Along the contours below and

to the left of the red dots, the Z ′ bosons become long-lived and we need to track their number density to

evaluate dark radiation production. This key result, together with the usual out-of-equilibrium production of

νR, accounts for the difference between the results in this work and those previously obtained in Ref. [156],

shown in figure 5.5 as the blue dashed curve.

Constraints on the B−L gauge boson can also be derived by considering the production of νR in colliders

or in supernova. In figure 5.5 we also show the regions of parameter space that are excluded by measurements

from these other sources. Current CMB constraints are already the leading probe of this hidden sector

across much of parameter space, with LHC constraints taking over for masses above 100 GeV. The Neff

measurements from future CMB experiments along with existing supernova measurements will provide the

strongest constraint on g′ for all masses MZ′ ≳ 1 MeV.

For g′ ≲ 10−10
√
MeV/MZ′ , the Z ′ bosons decay after neutrino decoupling. In this part of parameter

space, decays to both νL and νR contribute to ∆Neff during recombination, while our analysis only considers

the contribution from νR. We estimate that the additional production of νL provides no more than an O(1)

correction to the Neff constraints calculated in this study. We indicate this region in figure 5.5 by coloring

the Neff contours green. Furthermore, for MZ′ < 2me, the dominant energy transfer occurs between νL and

νR, while our Boltzmann equations assume energy injection from a thermal SM plasma with all species at

the photon temperature. Thus below the MeV scale, our analysis no longer applies, and hence we restrict

our attention here to MZ′ > 2me. Meanwhile, stellar cooling places powerful constraints on this theory for

MZ′ < 0.1 MeV [140, 194]. A full treatment of early universe constraints on the B − L model in the mass

range between 0.1 MeV < MZ′ < (10−20/g′2) MeV requires a detailed treatment of neutrino decoupling as

well as light element formation during BBN, and is beyond the scope of this work.
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5.3.3 Dark radiation density in the out-of-equilibrium regime

In the out-of-equilibrium (OOE) regime, the final energy deposited into νR depends on whether or not the

total decay width of the Z ′, ΓZ′ , is less than the Hubble rate at SM temperatures around TSM ∼MZ′ , where

the production rate of Z ′s is maximized. In the case where ΓZ′/H ≫ 1 at TSM ∼MZ′ , the large population

of on-shell Z ′ bosons produced at resonance decay almost immediately into νR. However when ΓZ′/H ≪ 1

at TSM ∼MZ′ , the on-shell Z ′ bosons produced at resonance are cosmologically long-lived and, because they

are non-relativistic at production, their energy density redshifts like matter. The right-handed neutrinos

are then dominantly produced at some SM temperature Tdecay ≪MZ′ when the population of massive Z ′

bosons decays, ΓZ′ = H(Tdecay). Numerically, we find that setting (ΓZ′/H)TSM=MZ′/2 = 1 is a convenient

criterion to separate the long- and short-lived regimes.

We illustrate these two regimes with two representative parameter points in figure 5.6. Here in both panels

the black line shows the comoving energy density of νR, while the red dashed line indicates the energy density

of νR after setting TνR = TSM (similarly to the red line in figure 5.2). The νR do not thermalize with the SM

for either the parameter points shown, and correspondingly the black line remains below the red line in both

panels. The blue dot-dashed line shows the evolution of MZ′ΓZ′→νRnZ′a4/H, which indicates the amount of

comoving energy injected into νR in a Hubble time from the decay of on-shell Z ′ bosons. The energy injected

by SM fermions annihilating to νR through off-shell Z ′ bosons, given by Coff
ff→νRνR

a4/H, is below the range

covered in figure 5.6 and is not shown. The vertical orange dashed line marks when TSM = MZ′/8, after

which temperature we find empirically that the production of Z ′ bosons from the SM plasma is negligible.

The left panel in figure 5.6 corresponds to a parameter point where ΓZ′ exceeds the Hubble rate at some

TSM > MZ′/2. The Z ′ bosons produced after ΓZ′ = H are short-lived and decay within a Hubble time. The

SM plasma keeps producing Z ′ bosons until TSM ∼MZ′/8, and thus the energy injection into νR ends once

TSM < MZ′/8. The right panel of figure 5.6 corresponds to a parameter point where (ΓZ′/H)TSM=MZ′/2 ≪ 1.

In this scenario, the SM plasma first produces Z ′ bosons via inverse decays. The production of Z ′ bosons

ends once TSM < MZ′/8. Subsequently, nZ′ evolves adiabatically until ΓZ′ becomes of the order of H, after

which Z ′ decays into SM particles as well as νR.

We now develop analytic approximations to the final value of ρνR for the short- and long-lived Z ′ cases

separately.

Dark radiation production for short-lived Z ′ bosons: In the regime where the Z ′s are cosmologically

short-lived, (ΓZ′/H)TSM=MZ′/2 > 1, the Boltzmann equations can be simplified by noticing that after ΓZ′ = H

the abundance of Z ′ bosons follows a quasi-static equilibrium where the production rate of Z ′ bosons balances

its decay rate. Setting the RHS of eq. (5.23) to zero and replacing Cff→Z′ and CZ′→νRνR using eq. (??) gives

the quasi-static equilibrium abundance of Z ′ bosons,

nqsZ′ =
ΓZ′→SM

ΓZ′
ñζ(TSM) +

ΓZ′→νR

ΓZ′
ñζ(TνR), (5.26)

where ñζ is defined in eq. (??). Substituting this quasi-static abundance nqsZ′ into eq. (5.24), we obtain an

effective collision term describing energy injection into νR given by

Cff→νRνR=
3M3

Z′

2π2

[
Γ(Z ′ → νR)Γ(Z

′ → SM)

ΓZ′

](
TSMG1

(
MZ′

TSM

)
− TνRG1

(
MZ′

TνR

))
+ Coff

ff→νRνR , (5.27)
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Figure 5.6: Evolution of comoving νR energy density (black line) and comoving Z ′ energy density (light green
line) as a function of SM temperature for {MZ′ , g′} = {10 GeV, 10−8} and {MZ′ , g′} = {2× GeV, 2× 10−11}
in the left and right panels, respectively. The red line shows the evolution of (π2/30)gνRT

4
SMa

4, and the blue
dot-dashed line isMZ′ΓZ′→νRnZ′a4/H. The vertical orange dashed line marks the point where TSM =MZ′/8.
The vertical purple dashed line marks the point where the Z ′ decay rate equals the Hubble rate. The gray
dashed line shows the analytical estimate of the asymptotic value of ρνRa

4, which is calculated using eq. (5.28)
in the left panel and eq. (5.33) in the right panel.

where G1 is a dimensionless function given by eq. (A.18). In this regime, the collision term in eq. (5.27)

reproduces the collision term calculated using the complete ff → νRνR cross-section, including the on-shell

Z ′ bosons, as we show explicitly in appendix A.6. As this collision term no longer depends on ρZ′ , we need

only solve for ρνR and ρSM to find the contribution of νR to ∆Neff. Thus, in the short-lived Z ′ limit, the

resulting system of Boltzmann equations is similar to that for the MCP model, eq. (5.5).

We can determine the asymptotic value of ρνR by following steps similar to those in section 5.2.3 to

obtain eq. (5.13). We can neglect the contribution from Coff
ff→νRνR

because the net energy transferred to

out-of-equilibrium νR through contact interactions is much smaller than the resonantly-enhanced contribution

from the on-shell collision term. The fraction of SM energy transferred into νR is then given by(
ρνR
ρSM

)
leak

=
15

√
3

64π3[g∗(4Λ)π2/30]3/2
MPl

Λ
× L, (5.28)

where Λ =MZ′/8, and

L = 6π2κ1

[
ΓZ′→νRΓZ′→SM

ΓZ′

]
=

3πκ1
4

g′2
[
ΓZ′→SM

ΓZ′

]
. (5.29)

This limiting result for the comoving density of νR, ρνRa
4 = (ρνR/ρSM)leak (a

4ρSM)TSM=MZ′/8, is shown by

the gray dashed line in the left panel of figure 5.6, which demonstrates its agreement with the numerically

evaluated asymptote of ρνRa
4. Eq. (5.28) is only valid as long as the νR do not thermalize with the SM

plasma. Numerically we find that for (ΓZ′/H)TSM=MZ′/2 ≳ 30, the νR thermalize with the SM plasma and

the final density ratio is simply given by (ρνR/ρSM)f = gνR/g∗.
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Out-of-equilibrium dark radiation production from long-lived Z ′ bosons: To solve for the dark

radiation density in νR in the case where the Z ′ bosons are long-lived, we first need to calculate the freeze-in

abundance of Z ′. To proceed, we make two simplifications. First, since the Z ′ bosons are long-lived and,

until they decay, the νR abundance is negligible, we can neglect the decays of Z ′ as well as the inverse decays

of νR into Z ′ when calculating the freeze-in Z ′ abundance. Second, because ρSM ≫ ρZ′ , ρνR we neglect the

contributions of the Z ′ and νR in determining the Hubble rate. Assuming the SM degrees of freedom remain

constant until the production of Z ′ ends at TSM ≲MZ′/8, we can then simply integrate eq. (5.23) for ρZ′ .

With ρZ′ =MZ′nZ′ and Cff→Z′ given by eq. (??), the frozen-in abundance of Z ′ bosons is then

a3nfz−in
Z′ = (aTSM)3TSM=MZ′/8 ×

3λ

8π2

[
ΓZ′→SM

H(TSM =MZ′/2)

]
, (5.30)

where λ =
∫
G1(1/x)x

−5dx ≈ 5.93.

The frozen-in population of Z ′ boson eventually decays, and accordingly the comoving number density

evolves as

nZ′ = nfz−in
Z′ e−ΓZ′ t. (5.31)

Note that the final number density of νR is not affected by whether the Z ′ bosons decay before or after

achieving their freeze-in abundance. This is because the number density of νR is set by the branching ratio of

Z ′ decays into νR and the number of Z ′ bosons produced by the SM plasma, neither of which depend on

when the Z ′ bosons decay. In contrast, the energy density of the νR does depend on the timing of the Z ′

boson decay because the νR are produced with a fixed energy of MZ′/2, which subsequently redshifts as 1/a.

Consequently, Z ′ bosons that decay later result in more energetic νR at recombination, and thus a larger

contribution to Neff .

The asymptotic value of ρνR is found by substituting the evolution of the massive Z ′s, eq. (5.31), into

the Boltzmann equation for νR, eq. (5.24). Once again, both inverse decays of νR into Z ′ and off-shell

contributions to SM fermion annihilation can be ignored in comparison to the contribution from Z ′ decays.

The resulting ρνR is given by(
ρνR
ρSM

)
decay

=
MZ′ΓZ′→νR

a4ρSM

∫ a

0

ã3nfz−in
Z′ e−ΓZ′ t

H
dã (5.32)

≈ 2
√
2λ

15
√
πκ1

(
ρνR
ρSM

)
leak

[
H(TSM =MZ′/2)

ΓZ′

]1/2 [
g3∗(MZ′/2)g∗(Tdecay)

g4∗(MZ′/8)

]1/4
, (5.33)

where Tdecay is the SM temperature at which H(Tdecay) = ΓZ′ and (ρνR/ρSM)leak is defined in eq. (5.28). In

the second line we approximated g∗ to be constant around Tdecay and set g∗s = g∗. The numerical coefficient

in eq. (5.33) and the ratio of g∗ factors in the square brackets are both O(1). Consequently, ρνR is enhanced

by a factor of (
√
H/ΓZ′)TSM=MZ′/2 if the Z ′ bosons are long-lived compared to the cases where the Z ′ bosons

decay instantaneously. The right panel of figure 5.6, shows the analytical estimate of the comoving density of

νR, given by ρνRa
4 = (ρνR/ρSM)decay (a

4ρSM)TSM=Tdecay
, as the gray dashed line. At late times, this analytical

estimate is in close agreement with the numerically evaluated ρνRa
4, as shown by the black solid line.
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5.3.4 Dark radiation production and analytical approximations to the Neff con-

straint

In this section we provide analytical expressions for the curves of constant ∆Neff in the B − L parameter

space. We consider the out-of-equilibrium and equilibrated regions of parameter space separately.

Out-of-equilibrium dark radiation production In the case when νR remains out-of-equilibrium with

the SM plasma, the dependence of the final dark radiation density, ρνR , on the B − L coupling, g′, depends

on whether ΓZ′ is larger or smaller than the Hubble rate at TSM = MZ′/2. We find that the g′ and MZ′

values on the ∆Neff = 0.3 constraint contour typically satisfy (ΓZ′/H)TSM=MZ′/2 ≳ 1. Consequently, we use

eq. (5.28) to evaluate the constraint on g′ and MZ′ for ∆Neff < 0.3. In particular, we adiabatically evolve ρνR
given in eq. (5.28) from the end of energy injection at TSM =MZ′/8 to recombination and restrict the ∆Neff

shift given in eq. (5.21) to remain below the (∆Neff)max upper bound set by CMB measurements. Doing so

yields

g′2 < 5.8 × 10−19

(
g∗(MZ′/2)

10

)3/2(
g∗(MZ′/8)

10

)1/3(
ΓZ′

ΓZ′→SM

)(
(∆Neff)max

0.3

)(
MZ′

GeV

)
. (5.34)

The ratio of decay widths here is typically an O(1) number depending on the value of MZ′ .

For the ∆Neff = 0.06 and ∆Neff = 0.027 constraint contours, the condition

(ΓZ′/H)TSM=MZ′/2 > 1 is satisfied above and to the right of the red dot in figure 5.5. Consequently, the

analytical result for short-lived Z ′s in eq. (5.34) also applies to the ∆Neff = 0.06 and ∆Neff = 0.027 contours

in this region. To find an analytical result applicable below and to the left of the red dot, we start from the

expression for ρνR given in eq. (5.33). We then evolve ρνR adiabatically from the end of Z ′ decays at Tdecay

to recombination. The corresponding constraint on g′ is then given by

g′2 < 8.1× 10−21

(
g∗(MZ′/2)

10

)(
g∗(MZ′/8)

10

)2(
g∗(Tdecay)

10

)1/6(
ΓZ′

ΓZ′→νR

)(
ΓZ′

ΓZ′→SM

)2

×
(
(∆Neff)max

0.06

)2(
MZ′

GeV

)
. (5.35)

Note that the constraint on g′ for short-lived Z ′s, given in eq. (5.34), is proportional to (∆Neff)max while the

long-lived Z ′ result in eq. (5.35) is proportional to (∆Neff)
2
max. The delayed Z

′ decays parametrically enhance

the ultimate dark radiation density and hence the sensitivity of Neff measurements to the model parameters.

Dark radiation production in the equilibrium regime: If the right-handed neutrinos thermalize with

the SM, then the final comoving energy density in νR depends on the decoupling temperature, Td, which is

only logarithmically sensitive to g′. The thermalization threshold for the B − L model can be calculated

in a similar manner to the MCP model in section 5.2.3 above, see eq. (5.19). Since the ratio of the energy

injection rate to the Hubble rate, ΓE/H = Cf/(ρνR,eqH), is negligible for temperatures below TSM ∼MZ′/8

in the B − L model (as compared to to TSM ∼ m/4 in the MCP model), the thermalization threshold in

eq. (5.19) is for the B − L model

MZ′,th = 8Td[(∆Neff)max, gνR ], (5.36)
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where Td is defined through eq. (5.17). In figure 5.5, this thermalization threshold for ∆Neff = 0.3 occurs

around MZ′,th ∼ 1.7 × 103. For ∆Neff < 0.14, the thermalization threshold is pushed to arbitrarily large

values of MZ′,th because restricting ∆Neff < 0.14 rules out ever having three right-handed neutrinos in

thermal equilibrium with the SM plasma, assuming no new degrees of freedom in the SM.

The exponential weakening of the ∆Neff = 0.3 curve in figure 5.5 stops around MZ′ ∼ 15 GeV, after

which the constraint follows g′ ≲ MZ′/(16 TeV) (see also Ref. [156, 193]). At these large masses the

contact-operator-mediated annihilations, described by Coff
ff→νRνR

, dominate over on-shell Z ′ production,

MZ′ΓZ′→νRnZ , in determining decoupling temperatures that are much smaller than MZ′ .

Note that, unlike the MCP model, the B − L model does not have an excluded strip in parameter space

extending up to high masses. For such a strip to exist, the mediator between the SM particles and the BSM

relativistic particles must have stronger couplings to the BSM relativistic particles than it does to the SM. In

the B − L model, the decay width of Z ′ into SM particles is larger than its decay width into νR, in contrast

to the MCP model, where the mediating MCP has much stronger interactions with the dark photons than

with the SM photon.

5.4 Dark radiation constraints on classes of hidden sectors

We have so far considered dark radiation constraints on specific, minimal BSM models where a particle ϕ

with mass mϕ ≳ MeV has renormalizable couplings to both the SM and new relativistic particles. While in

general the heavy particle could be the SM Higgs boson (or indeed the Z boson), in this work we focus on

the case where the heavy particle is a new SM gauge singlet particle. Additionally we focus on mass scales

mϕ ≳ MeV because for lighter masses the constraints from stellar cooling observations generically become

important. We have seen in two specific examples that such models will be stringently tested by upcoming

CMB experiments that promise to measure Neff to an accuracy of (∆Neff)max = 0.06 at 95% confidence. In

particular, we have demonstrated that, while detailed constraints on the parameter space require numerical

evaluation of a coupled system of Boltzmann equations, a conservative, semi-analytic estimate of the allowed

parameter space can be made by making a number of simplifying assumptions.

In this section we highlight the general methodology and assumptions required to estimate this conservative

constraint and argue that the constraint holds even when the new relativistic particles are part of a much

larger hidden sector (HS). We then explore the restrictions on HS model building that will be placed by

upcoming CMB measurements of Neff.

5.4.1 Hidden sector models

We consider classes of HS models that contain light degrees of freedom that are relativistic during recombination.

These degrees of freedom may be required by symmetries (as the νR were above), or they may be required

to sequester entropy to facilitate the freezeout of HS dark matter. Stellar cooling observations strongly

constrain direct renormalizable couplings of these light degrees of freedom to stable SM particles, and we

assume they couple to the SM through new, heavy, SM gauge-singlet particles, ϕ, with masses which we take

to be mϕ > MeV. The existence of this portal coupling enables the production of the mediator ϕ particles

in the early universe via annihilation or decay of SM particles. These mediator particles then lead to the

production of the light degrees of freedom in the HS, whose energy density is constrained by measurements of

Neff. These Neff constraints are applicable as long as these light degrees of freedom remain relativistic during
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recombination. For masses larger than 0.1 eV, the combined constraints from the large scale structure and

the CMB measurements are more stringent [195].

We seek to derive conservative constraints on the couplings of such sectors to the SM by estimating the

production of dark radiation. The precise computation of the dark radiation density depends on the details

of the HS, such as the number of degrees of freedom, masses of the particles, and interactions between them.

However, we argue that a lower bound on the dark radiation density can be estimated from the production

of mediator particles by the SM plasma, provided the energy in the mediator is preferentially transferred

to the HS degrees of freedom. This amounts to assuming that the mediator interacts more strongly with

the HS than with the SM. Any HS energy density that subsequently becomes freestreaming dark radiation

at the decoupling of the CMB is minimized if all the energy dilutes as radiation as soon as it is produced.

Therefore, assuming that all the energy that is transferred to the mediator particles by the SM plasma

is rapidly deposited into light degrees of freedom in the HS provides a lower bound on the resulting dark

radiation density. This lower bound provides a conservative estimate on the shift in ∆Neff. Below we quantify

this conservative estimate for different types of couplings between the mediator and the Standard Model. As

above, we separate the estimates into the regions where the HS thermalizes, and those where it remains out

of equilibrium.

Out-of-equilibrium dark radiation production

Practically, in the out-of-equilibrium regime, our conservative estimate of ∆Neff is obtained by assuming a

hidden sector consisting of a single massless particle together with a massive mediator ϕ that couples to the

SM. The HS equation of state is taken to be that of radiation, wHS = 1/3. The dark radiation density is

determined by solving the Boltzmann equation given by eq. (5.5), where the collision term is determined by

all the energy transfer processes from the SM plasma into the HS bath enabled by the portal coupling. While

taking into account all the energy transfer process depends on the specifics of a particular HS model under

consideration, energy transfer through the production of ϕ is common in the vast majority of HS models.

Consequently, to obtain a conservative estimate of the asymptotic energy density in dark radiation, we evaluate

the collision term only for processes involving on-shell production of ϕ. For renormalizable interactions with

the SM, these processes are annihilations of SM particles, aa→ ϕϕ; decays of SM particles a→ ϕϕ; or inverse

decays of SM particles aa→ ϕ. In all cases a denotes a SM particle coupled to ϕ via a renormalizable portal

coupling. We further restrict our attention to s-channel processes, which are independent of the properties of

the HS radiation bath as long as the interaction proceeds well out of equilibrium.

In the out-of-equilibrium regime, we can analytically find the energy transferred into the HS by taking the

SM temperature to evolve as T ∝ 1/a (a good approximation away from mass thresholds). The calculation is

analogous to that in section 5.2.3 leading to eq. (5.10), and we obtain(
ρHS

ρSM

)
TSM=Λ

≈
√
3MPl

[g∗(4Λ)π2/30]3/2

∫ ∞

0

dTSM
T 7
SM

Cf , (5.37)

where Λ is the energy injection decoupling temperature, below which the production of ϕ ends and Cf is the
forward energy transfer collision term for production of ϕ.

The integral over the forward collision term can be carried out given a specific model for the cross-section,

allowing us to express the energy density injected during out-of-equilibrium scattering in terms of a leak
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factor L,

L =
64π3

15
Λ

∫ ∞

0

dTSM
T 7
SM

Cf . (5.38)

Annihilation of SM particles into the HS. For annihilations of SM particles into the HS, aa→ ϕϕ,

the forward collision term is

Cf =
∑
f

1

32π4

∫ ∞

4max(ma,mϕ)2
ds(s− 4m2

a)sσaa→ϕϕ(s)TSMGζf (
√
s/TSM). (5.39)

This production process occurs in the millicharged particle model when the SM fermions annihilate into

millicharged particles. The corresponding energy injection decoupling temperature and the leak factor are

given by

Λ =
1

4
max(ma,mϕ), L = κζaΛ

∫ ∞

64Λ2

ds
(s− 4m2

a)

s
√
s

σaa→ϕϕ(s). (5.40)

Here σaa→ϕϕ(s) is the spin-summed CM frame cross-section and κζa is determined by the quantum statistical

distribution of a, as described below eq. (5.12).

Inverse decay of SM particles into the HS. For the inverse decay process, aa→ ϕ, the collision term

is of the form

Cf = mϕΓϕ→añζa(TSM), (5.41)

where Γϕ→a is the decay width of ϕ to a, and ñζa is given by eq. (??). We encountered this production

process for the gauged B − L model in section 5.3.2. After integrating the RHS of eq. (5.37) for the process

aa→ ϕ, the final result can can be written in the form of eq. (5.38) with

Λ =
mϕ

8
, L = 2π2gϕκζa

Γϕ→a

mϕ
, (5.42)

where gϕ is the number of spin degrees of ϕ.

The final HS energy density calculated using eq. (5.42) is different from the one we obtained in the case

of the gauged B − L model for two reasons. First, the decay width of Z ′ into νR is smaller than its total

decay width into SM particles for MZ′ > 2me. Thus most of the energy transferred into Z ′ bosons does

not end up in νR but is rather returned to the SM plasma. If we consider the Z ′ bosons to couple much

more strongly with additional HS particles, then the above calculation would accurately reflect the minimum

energy transferred into the HS. Second, the final energy density in νR is enhanced when the Z ′ bosons are

long lived.

Decays of SM particles into the HS. Finally for decays of SM particles into the HS, a → ϕϕ, the

collision term is of the form

Cf = maΓa→ϕneq,a(TSM), (5.43)
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where

neq,a = ga

∫
d3p

(2π)3
1

[eE/TSM + ζa]
(5.44)

is the equilibrium number density of particle a. This production process occurs in the millicharged particle

model when the Z bosons decay into millicharged particles.11 Again the energy transferred into the HS can

be expressed by eq. (5.38) with

Λ =
ma

8
, L = π2gaκ̃ζa

Γa→ϕ

ma
, (5.45)

where κ̃1 = 31π6/30240, κ̃0 = 1, and κ̃−1 = π6/945.

When the HS remains out of equilibrium with the SM plasma, we can find the contribution to ∆Neff by

starting from eq. (5.38) and then adiabatically evolving ρHS as radiation from the end of energy injection

until recombination. Requiring ∆Neff to be less than the CMB sensitivity, (∆Neff)max, yields

L < g
3/2
∗ (4Λ)g

1/3
∗ (Λ)(∆Neff)max

Λ

MPl
. (5.46)

The above calculations assume that all produced ϕ particles decay rapidly into relativistic HS particles. This

assumption holds if ϕ has sufficiently strong couplings with HS particles. This is a conservative assumption

because a long-lived ϕ would result in a larger density in the HS, and a larger shift in ∆Neff.

Equilibrium dark radiation production

If the HS thermalizes with the SM plasma, then the final energy density in the HS depends on the decoupling

temperature, Td, which is only logarithmically sensitive to the strength of the portal coupling. Consequently,

the Neff constraint on the portal coupling become exponentially weak once the HS thermalizes. Similar to

the case of the B − L and millicharged particle models, the weakening of constraints occur for values of the

energy injection decoupling temperature, Λ, larger than

Λth ≡ Td[(∆Neff)max, gHS], (5.47)

where Td is given by eq. (5.17). Thus, the Neff constraint given by eq. (5.46) is only valid for Λ < Λth. Note

that a larger gHS would push the thermalization threshold given in eq. (5.47) to larger Λth. Thus, eq. (5.46)

together with a thermalization threshold scale Λth calculated assuming gHS = 1 provides a conservative

constraint on the portal coupling that is independent of details within the hidden sector.

5.4.2 Implications for HS model building

In this section, we have argued that under fairly generic conditions, a conservative lower bound on the energy

density in dark radiation in a generic HS may be estimated. This lower bound can in turn be used to place

bounds on the couplings between a mediator that couples the dark sector to the SM. As future measurements

of Neff become more and more precise, increasing pressure will be placed on models of BSM physics that

contain light states contributing to dark radiation.

11This production process can also be realized in the case of a SM singlet scalar coupling through the Higgs portal, in which
case the Higgs boson can decay into pairs of scalar fields; for a specific recent application producing dark radiation through this
coupling, see [148].
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From a different perspective, this analysis also points at ways such models may be brought into agreement

with future data. There are a number of possibilities. In particular, one may simply be able to arrange the

couplings so that the mediator interacts more strongly with the SM than the HS, and thereby energy is

transferred back into the SM from the mediator. Another possibility is to have new degrees of freedom in

equilibrium with the SM plasma that become non-relativistic after TSM < Λ. Consequently, the annihilation

of the new degrees of freedom heat the SM plasma relative to the HS, diluting the dark radiation today.

Similarly, if a massive field comes to dominate the universe and subsequently decays predominantly into

the SM at some temperature Trh < Λ, the resulting reheating of the SM relaxes constraints from Neff; this

mechanism was invoked, for instance, to ameliorate dark radiation constraints on Twin Higgs models [196,

197]. The entropy of the SM plasma can also increase if the SM comes into equilibrium with a new light

species at a temperature Teq < Λ that later becomes nonrelativistic and deposits its entropy into the SM.

This mechanism generally requires a light BSM field with couplings to the SM that become cosmologically

important at late times. While stellar cooling constraints are typically prohibitive for models that realize

equilibration after SM neutrino decoupling [198], the BSM dark radiation considered here has a thermal

decoupling scale Λ > MeV and thus suppressing Neff using this mechanism can be much simpler. Finally,

Neff also decreases if one or more of the states contributing to the dark radiation at T ∼ Λ can decay back

into the SM prior to recombination; in this case the decay can produce visible signatures in light element

abundances and/or CMB spectral distortions, depending on the details of the decay.

If one considers a minimal extension of the SM, where the SM has renormalizable interactions with a

single massive particle in the HS and the cosmological evolution of the SM plasma is not otherwise altered,

then one cannot completely evade the bounds set by Neff measurements. However, the constraints can be

somewhat ameliorated if the relic energy density in the HS does not always evolve as free-streaming dark

radiation. For instance, if the relativistic HS particles have strong self-interactions, such that they behave as

an ideal fluid during recombination, then they would instead contribute to Nfluid, the constraints on which

are are weaker by factors of 2-3 compared to Neff [177]. Examples of this scenario include interacting neutrino

models, recently surveyed in [199]. Alternatively, while a single hot HS relic that subsequently becomes

nonrelativistic is more stringently constrained than if it remains relativistic [195], the combination of Neff

and large-scale structure constraints may be mitigated in a system with more than one hot relic if one HS

species becomes non-relativistic before recombination while at least one other species remains relativistic. In

principle, one can obtain a conservative constraint on portal interactions between the SM and a HS containing

light degrees of freedom that can accommodate such variations in the spectrum of the HS by combining both

CMB and large-scale structure measurements. We leave this to future work.

5.5 Summary and discussion

In this work, we have studied the production of dark radiation in scenarios where the SM has renormalizable

interactions with a heavy (mϕ > MeV) gauge singlet mediator that annihilates or decays into dark radiation

prior to BBN. We have focused on two specific minimal models: (i) a MCP model with a massless dark

photon, and (ii) a gauged B − L model with light right-handed neutrinos. By numerically solving the

relevant Boltzmann equations, we have computed the resulting dark radiation abundance and determined

the corresponding shifts in Neff in the regions of parameter space relevant for upcoming CMB experiments.

We present updated CMB constraints for the MCP model, and have shown that future CMB measurements

will be sensitive enough to either rule out or discover the extended MCP model invoked to explain the
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EDGES anomaly [155]. In the case of the gauged B − L model, our computations extend and improve

previous analyses by taking into account all relevant out-of-equilibrium processes, including the potentially

out-of-equilibrium decays of the B − L gauge boson. As a result, our projected constraints on the allowed

parameter space of the B − L model are stronger than previous studies. In both models we take into account

the quantum statistical phase space distribution for Standard Model particles, which was not done in previous

studies. We find that quantum statistics provide a correction of about 10% to the predicted shift in Neff.

The relation between dark radiation production and the model parameters depends crucially on whether

or not the HS comes into thermal equilibrium with the SM. We have provided simple semi-analytical recipes

to obtain the predicted shift in Neff in both cases. When the HS remains out of equilibrium with the SM,

we have demonstrated that the resulting dark radiation density is determined by the energy transfer rate

from the SM into the HS at temperatures of order the mediator mass, (ΓE/H)TSM∼mϕ
. The energy transfer

rate typically goes like ΓE(TSM ∼ mϕ) ∝ g2ϕmϕ, where gϕ is the Standard Model coupling with the heavy

mediator particle with mass mϕ. Consequently, the contour of constant ∆Neff relates gϕ ∝
√
mϕ/MPl,

which accounts approximately for the shape of the contours in the regions where the sectors are out-of

equilibrium in figures 5.1 and 5.5. We provide a simple formula for evaluating the resulting Neff constraint,

given an input cross-section. CMB ∆Neff constraints are already the leading limit on both models in most

of the out-of-equilibrium parameter space, along with constraints from SN1987A; these astrophysical and

cosmological constraints far exceed terrestrial accelerator constraints in the sub-GeV regime.

As one increases mϕ at a fixed value of the dark radiation density, the coupling gϕ can increase to a point

where the HS comes into thermal equilibrium with the SM. When the HS thermalizes with the SM, the

resulting dark radiation density is determined by the temperature at which the HS and SM decouple. This

decoupling temperature is primarily determined by Boltzmann suppression of the collision term. Consequently,

the decoupling temperature is mainly set by the mass of the mediator, mϕ, and only depends logarithmically

on the coupling gϕ; once the sectors are in thermal equilibrium, increasing the coupling only marginally

decreases the resulting decoupling temperature, and thus marginally increases the resulting dark radiation

density. Because of the weak sensitivity to gϕ, the constraint imposed by Neff measurements on gϕ is

exponentially weakened if the HS thermalizes with the SM. This effect gives rise to a thermalization mass

threshold, mth, beyond which the constraint curves in figures 5.1 and 5.5 are exponentially weakened.

The example models discussed above consider a minimal hidden sector that is coupled to the SM via

a heavy mediator. More generally, one can consider the mediator to communicate with a hidden sector

that may have a nonminimal internal spectrum. While the exact evaluation of dark radiation production in

extended models would require a numerical computation of the Boltzmann equations that take into account

all internal hidden sector interactions, we have shown how to obtain a simple analytical lower bound on

the relic dark radiation that depends only on the mass and coupling of the mediator, and is independent of

the number of particles in the hidden sector or their internal interactions. This minimum dark radiation

abundance is obtained by considering that energy transfer into the HS occurs through the production of

heavy mediators by the SM plasma, and assuming that any energy transferred to the mediator is promptly

deposited in the relativistic HS degrees of freedom. This amounts to assuming that the mediator is more

strongly coupled to the HS than to the SM. In the regime where CMB constrains the HS to remain out of

equilibrium with the SM in the early universe, this is a very mild requirement on the mediator coupling. This

model-insensitive lower bound on ∆Neff assumes there are no BSM contributions to the entropy of the SM

plasma, and that the relic dark radiation remains a free-streaming relativistic relic throughout the formation

of the CMB. Relaxing these assumptions can evade our lower bound.
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We have shown that future CMB measurements of Neff have the potential to constrain portal couplings

to values which typically are orders of magnitude weaker than those probed by collider experiments, and

provided simple semi-analytic recipes to evaluate their reach. If future CMB observations do not find any

deviation from the Standard Model prediction for Neff, hidden sector models with light species will also be

out of reach for accelerator experiments, unless there are departures from the standard cosmology. This work

highlights the potential of future CMB missions to significantly narrow down the space of observationally

relevant BSM theories.
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Chapter 6

BBN constraints on dark radiation

isocurvature

6.1 Introduction

Upcoming stage 4 cosmic microwave background (CMB) experiments will make exquisite measurements of

the energy content of the Universe [200]. These measurements will improve the constraint on the contribution

of free-streaming radiation (through the effective number of relativistic species Neff) by an order of magnitude

over current constraints. A measurement of Neff consistent with the standard model (SM) prediction of

Neff = 3.044 [31–35] will place extremely strong constraints on particle content beyond the SM [201].

Alternatively, these measurement could reveal the existence of additional light-particles (dark radiation)

beyond the SM by measuring Neff ̸= 3.044 at high significance. If these additional particles were ever in

thermal equilibrium with the standard model, they will exhibit the usual adiabatic fluctuations in their

density (see, e.g. [202]), and their effects on cosmology would be indistinguishable from additional neutrinos.

However, this dark radiation may be completely decoupled from the standard model sector. In this decoupled

scenario, fluctuations in the dark radiation density may be independent of the density fluctuations in the

visible sector—there may be a dark-radiation isocurvature mode. Isocurvature modes are generically predicted

by cosmological theories that have a second clock beyond the SM temperature field [203]. In this work we

remain agnostic to the exact origin of such an initial condition and leave detailed model-building to future

work.

The presence of dark radiation isocurvature affects the cosmic microwave background (CMB). Earlier

work [204] constrained neutrino + dark radiation isocurvature to be less than ∼ 10−5 at scales around 500

Mpc using data from WMAP and ACT (see also Ref. [205] for non-Gaussian dark radiation isocurvature

constraints). Planck is sensitive to dark-radiation isocurvature for scales ≥ 10 Mpc [16]. However, the

inability to observe CMB fluctuations on angular sizes smaller than ∼ 5 arcmins prohibits the estimation of

isocurvature constraints on smaller scales [206]. In this work we probe dark radiation isocurvature down to

∼ 1 Mpc scales through its impact on Big Bang nucleosynthesis (BBN).

BBN is a period in the early universe when the SM plasma became cold enough for the free protons

and neutrons to combine and form the first nuclei. This process primarily produces Helium and deuterium

(along with trace amounts of tritium and Lithium). Adiabatic fluctuations during BBN do not lead to spatial

variations in the outcome of BBN. This result follows directly from the separate universe picture—different
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patches of the Universe with differing density fluctuations simply appear to be a little older or younger as

viewed by local observers. Since the local physics is identical, the outcome is identical. The presence of

isocurvature during BBN can change the story by changing the physical conditions locally in a way that

is distinguishable from a local shift in the clock. In this way, isocurvature leads to spatial variation in

primordial elemental yields. Spatial variations in the yields of 4He/H and D/H during BBN would then lead

to corresponding differences in abundances in widely separated locations. To date, baryon isocurvature modes

as a source of inhomogeneous BBN have been extensively studied in the literature [207–211]. In this work we

consider the effect of dark radiation isocurvature on the primordial elemental abundances from BBN.

Our results can be summarized as follows. We demonstrate that the presence of dark-radiation isocurvature

leads to spatially varying elemental abundances. As a result, galactic 4He/H and D/H ratios are sensitive to

dark-radiation isocurvature on galactic scales, ∼ 1 Mpc. We use data on Helium abundances in nearby galaxies

[212] and deuterium abundances in high-redshift Lyman-α absorption systems [213] to place constraints on

the existence of dark radiation isocurvature. We constrain the variance of average isocurvature fluctuations

in galaxies, to be less than 0.13/∆N̄eff at 2σ confidence for scales around ∼ 1 Mpc. Here ∆N̄eff is the

spatially averaged increase in Neff due to the additional dark radiation component. In the absence of any

dark-radiation, i.e. ∆N̄eff = 0, our constraints are relaxed as expected.

This chapter is organized as follows. In section 6.2, we show how dark-radiation isocurvature leads to

spatially varying BBN yields and demonstrate that this leads to differences in the primordial abundances of

light elements in different galaxies. In section 6.3, we use excess variance in existing 4He/H and D/H data to

place constraints on dark-radiation isocurvature. We conclude in section 6.4. Finally, in appendix D we use

the separate universe approach to demonstrate how dark-radiation isocurvature leads to spatially varying

∆Neff .

6.2 Inhomogenous Big Bang Nucleosynthesis through dark radia-

tion isocurvature

In this section we demonstrate the impact of dark-radiation isocurvature on BBN. We first show how the

effect of dark-radiation isocurvature on BBN is distinct from the more studied baryon-isocurvature case

[207–211]. We then demonstrate that dark-radiation isocurvature leads to spatially varying Neff that in turn

causes spatial variation in primordial abundances of hydrogen and helium.

The elemental abundances produced by BBN are primarily determined by two processes: the weak

processes which convert neutrons to protons, and by the deuterium formation process that forms deuterium

from all the remaining neutrons. The temperature at which deuterium formation begins, Tnuc, is insensitive to

the Hubble rate and is primarily determined by the baryon-to-photon ratio. Baryon-isocurvature modes cause

the baryon-to-photon ratio to vary spatially. This in turn leads to a spatially varying Tnuc, and to spatial

variations of the resulting elemental abundances. In contrast, a dark-radiation isocurvature mode leads to a

spatially varying Neff , as we show below. The abundance of neutrons at Tnuc is sensitive to the Hubble rate

at Tnuc, and since Neff affects the Hubble rate through the Friedmann equation, an inhomogeneous Neff leads

to an inhomogeneous abundance of neutrons at Tnuc.

To show how dark-radiation isocurvature leads to spatial variation in Neff , we first highlight the relation

between dark-radiation energy density and Neff . At T ∼ 1 MeV, before BBN begins, neutrinos have chemically

decoupled from SM plasma and thus evolve adiabatically like dark radiation. We can therefore absorb the

density of dark radiation, ρDR, into an extra neutrino component [3],
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∆Neff =

[
8

7

(
11

4

)4/3
ρDR
ργ

]
today

. (6.1)

Thus ∆Neff depends on the ratio of homogeneous densities of dark-radiation to SM.

Now consider a spherical volume of radius r = λgal/2, the matter within which later collapses to form a

galaxy. In appendix D we show that an isocurvature fluctuation, δρ′i(k), of a superhorizon-sized mode can

be absorbed into the homogeneous density. For the spherical patch we are considering, using the separate

universe principle, we can absorb the net δρ′i(x⃗) inside the volume into the homogeneous density (using

eq. (D.17) and eq. (D.14)),

ρ̃SM = ρSM +∆ρ′DR ρ̃DR = ρDR −∆ρ′DR, (6.2)

where ∆ρ′DR = −∆ρ′SM is the average isocurvature fluctuation in the dark radiation inside a spherical volume

of radius r,

∆ρ′DR =

∫ ∞

0

d3x

Vr
δρ′DR(x⃗)Wr(x⃗). (6.3)

Here Wr is a window function which weights the integral to be within r radius from origin and Vr is the

volume swept by the window function, Vr =
∫
d3xWr(x⃗). The spherical volume effectively has ρ̃i as its

homogeneous density. Note that while ∆ρ′2 involves contributions from all Fourier modes, the contribution

from modes k−1 ≪ r is suppressed. The suppression is because the small wavelength modes have around

the same number of over-densities and under-densities in a patch much larger than the mode’s wavelength.

Consequently, the super-horizon assumption in eq. (6.2) approximately holds as long as r is super-horizon

sized.

Due to the presence of isocurvature, Neff inside the spherical volume is also modified

∆Neff ∝ ρ̃DR
ρ̃SM

=
ρDR +∆ρ′DR
ρSM −∆ρ′DR

, (6.4)

where we have used the fact that ρSM ∝ ργ .

Isocurvature between the dark-radiation and the SM plasma is defined as

SDR =
3

4

(δρDR
ρDR

− δρSM
ρSM

)
=

3

4

ρSM + ρDR
ρSMρDR

δρ′DR, (6.5)

where in the second equality we have expressed SDR in the uniform density gauge where δρ′DR = −δρ′SM .

Consequently, the average isocurvature in the spherical volume is given by

∆SDR =

∫ ∞

0

d3x

Vr
SDR(x⃗)Wr(x⃗) =

3

4

ρSM + ρDR
ρSMρDR

∆ρ′DR. (6.6)

Replacing above back in eq. (6.4), we can rewrite ∆Neff as

∆Neff ∝ ρDR
ρSM

1 + 4
3

1
1+ρDR/ρSM

∆SDR

1− 4
3

ρDR/ρSM

1+ρDR/ρSM
∆SDR

(ρDR/ρSM )∆SDR≪1−−−−−−−−−−−−−−→ ρDR
ρSM

(
1 +

4

3
∆SDR

)
. (6.7)
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Because ∆SDR takes different values in different regions, dark-radiation isocurvature leads to spatial variations

in ∆Neff .

While we have derived Eq. (6.7) in uniform-density slicing, this equation is gauge invariant. Uniform

density slicing makes transparent the relation between ∆Neff in a super-horizon patch and SDR, both of

which are gauge-invariant. Although the Hubble rate has the same value everywhere in uniform density

slicing, the presence of dark-radiation isocurvature causes the individual SM and dark radiation densities to

be inhomogeneous. Consequently, in this slicing, the photon temperature is inhomogeneous. Because the

photon temperature is the relevant clock during BBN, the effect of dark radiation isocurvature on BBN is

most easily understood in the slicing where the temperature is uniform. In uniform SM temperature (density)

slicing, the presence of dark radiation isocurvature causes the Hubble rate to be inhomogeneous.

In the presence of a dark-radiation isocurvature mode, regions of the Universe that were causally

disconnected during BBN have different primordial abundances of light elements due to their different values

of ∆Neff. For example, the D/H ratio, D, is primarily a function of ∆Neff and the baryon fraction Ωbh
2.

Assuming small fluctuations in ∆Neff, the fluctuation in D is given by

D ≈ D̄ +
∂D

∂∆Neff

∣∣∣∣
∆N̄eff

(∆Neff −∆N̄eff), (6.8)

where D̄ = D(∆N̄eff ,Ωbh
2). This gives us a direct relation between the variance in D, given by σd, and the

variance in ∆Neff fluctuations

σd =
∂D

∂∆Neff

∣∣∣∣
∆N̄eff

σNeff
. (6.9)

In practice, the derivatives, ∂D/∂∆Neff, can be obtained numerically from publicly available codes. In this

work, we use Parthenope [214].

Immediately following BBN, the primordial abundances in the patches are conserved. As the Universe

expands, and overdensities collapse to form galaxies, variations on scales smaller than those scales that collapse

to form galaxies get mixed.1 Measurements from different galaxies are therefore sensitive to isocurvature

fluctuations down to galactic scales. Consequently, the scale r entering in eq. (6.6) is the comoving size of a

patch, λgal/2, which collapses to form the galaxies we observe

λgal = 3.7

(
Mgal

1012M⊙

)1/3(
Ωmh

2

0.14

)−1/3

Mpc, (6.10)

where Mgal is the mass of the galaxy. The scale λgal is larger than the horizon during BBN, ∼kpc, which

implies that our analysis built on eq. (6.2) is self-consistent.

The value of ∆Neff experienced by a galaxy is sampled from a distribution with mean ∆N̄eff and variance

σNeff
. Moreover, σNeff

is related to the power spectrum of isocurvature fluctuation, PS , as

σ2
Neff

=
16

9
∆N̄2

eff⟨∆S2
DR⟩ =

16

9

∆N̄2
eff[∫

d3xWλgal/2(x⃗)
]2 ∫ ∞

0

dk

k
|Wλgal/2(k)|

2 k
3PS(k)

2π2
. (6.11)

1The ratio of BBN yields to hydrogen can increase slightly during the collapse of structures [215]. However, we ignore this
effect as the increase is well below the current sensitivities of measurements. Moreover, a post-BBN diffusion of elements [216]
will erase differences in 4He/H or D/H ratios inside the diffusion volume. Our analysis is unaffected by this post-BBN diffusion
as long as the diffusion length scales are smaller than the galactic-scales.
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where Wr(k) and PS(k) are the Fourier transforms of Wr(x⃗) and ⟨SDR(x⃗)SDR(x⃗ ′)⟩ respectively. Since the

details of galaxies providing 4He/H or D/H are usually not observable, the accurate estimation of Wλgal/2 is

not feasible. Consequently, we cannot exactly relate the variance in the average isocurvature experienced by

a galaxy, ⟨∆S2
DR⟩, to the isocurvature power spectrum. However, we can obtain an approximate relation

between ⟨∆S2
DR⟩ and PS . Assuming a blue-tilted isocurvature power spectrum

∆2
S ≡ k3PS(k)

(2π2)
∝ kn, (6.12)

with n > 0, and assuming a spherical Gaussian window function, Wλ/2(k) = exp(−k2λ2/8), eq. (6.11) yields

⟨∆S2
DR⟩ =

Γ(n/2)

2
∆2
S(2λ

−1
gal). (6.13)

Here Γ(x) is the Euler Gamma function. As ⟨∆S2
DR⟩ determines σNeff

which in turn informs the variance in

D/H (or 4He/H) ratios, the intrinsic variance in the D/H (or 4He/H) ratio in a given galaxy is determined by

dark-radiation isocurvature at scales ∼ λgal/2.

6.3 Constraints from 4He/H and D/H data

In this section we use data from observations of the ratios of 4He/H and D/H to place constraints on

dark-radiation isocurvature. We first describe the datasets which we use for our analysis and then describe

our methodology for D/H and 4He/H data separately.

6.3.1 Datasets

D/H measurements are taken from gas clouds that are seen in absorption against the light of an unrelated

background quasar [217]. Correspondingly, by looking at the frequency distribution of the light from the

quasar, one can estimate the redshift of the gas cloud as well as the column densities of neutral hydrogen and

deuterium atoms.

For our analysis we use the D/H measurements provided in Ref. [212]. The data uses measurements

from seven damped Lyman-α systems2 around redshifts z ∼ 2− 3, that satisfy the strict selection criteria of

precision stated in Ref. [219]. To estimate the comoving scale in the early universe from which the gas cloud

formed, we require the mass of the gas cloud. While the masses of individual damped Lyman-α systems are

not known, their masses have been estimated to be in the range 1011 − 1012M⊙ [220, 221].

The 4He abundance is derived from observations of the helium and hydrogen emission lines from H

II regions in low-metallicity blue compact dwarf galaxies that have undergone little chemical evolution

[222]. Regions with minimal chemical evolution are selected so as to minimize 4He enrichment by stellar

processes. However, there still remains some contamination that leads to an increase in the 4He/H ratio over

its primordial value.

In this study we use 4He/H data provided in Ref. [213]. The data consists of 15 measurements of He

II regions from 14 different galaxies. For our analysis, we assume that each galaxy has a uniform value of

the primordial 4He/H ratio. Correspondingly, we combine the two measurements of the same galaxy into

2The damped Lyman-α systems are distinct from the Lyman-α forest systems which provide matter structure constraints
around ≳ 1 Mpc. They are differentiated on the basis of the amount of neutral hydrogen column densities, N(H I). Lyman-α
forest systems are those with N(H I) < 1017cm−1 and damped Lyman-α systems are those with 2× 1020cm−1 < N(H I) [218].
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a single data point using a weighted average. Unlike in the case of deuterium measurements, the galaxies

providing Helium measurements have low redshifts z < 0.05. Out of the 14 galaxies used in measuring 4He/H

abundance we find the masses of three3 of them in the SPARC database [223]. Their masses are in the range

1010.2 − 1010.6M⊙.

6.3.2 Constraints from D/H data

The gas in damped Lyman-α systems is assumed not to have produced or destroyed significant amounts of

deuterium. Correspondingly, the measurement from a gas cloud samples the primordial value of D which

is assumed to be drawn from a distribution with mean and variance given by {D̄, σd}. The probability of

getting a measurement of Di from gas cloud i is then given by

P (Di|{D̄, σd}) =
1√

2π(σ2
n,i + σ2

d)
exp

(
− (Di − D̄)2

2(σ2
n,i + σ2

d)

)
, (6.14)

where σn,i is the estimated noise in the measurement of D. We have assumed that each measurement has the

same intrinsic variance in D. We do so because the damped Lyman-α systems typically have masses in the

relatively narrow range 1011 − 1012M⊙ [220, 221]. Correspondingly, the gas clouds in our data have roughly

the same λgal (see eq. (6.10)) and thus the same variance in D (see eqs. (6.13) and (6.9)). Moreover, we have

neglected covariance between different measurements. This approximation is valid because isocurvature on

the scales of separation between different galaxies in our data (usually > 100 Mpc) is constrained by CMB

measurements [16] to be much smaller than the variance to which our analysis is sensitive.

The constraints from Di measurements are degenerate in ∆Neff and Ωbh
2. To remove this degeneracy

we fix the value of Ωbh
2 using the Planck data,4 Ωbh

2 = 0.02239± 0.00018 ≡ Ω̄bh
2 ± σΩb

[3], where σΩb
is

the uncertainty on the baryon density, which is assumed to be spatially homogeneous. The corresponding

likelihood function is then given by

L0(∆Neff, σ∆Neff
) =

∫ ∞

0

[∏
i

P (Di|{D̄, σd})

]
∆Neff,Ωbh2,σNeff

exp
(
− (Ωbh

2−Ω̄bh
2)2

2σ2
Ωb

)
√

2πσ2
Ωb

d(Ωbh
2). (6.15)

We numerically marginalize over Ωbh
2 to obtain our likelihood estimate.

Using Parthenope [214] to estimate D(∆Neff,Ωbh
2) and ∂D

∂∆Neff
, we find the 1σ and 2σ limits on

{∆N̄eff , σNeff
} shown as orange contours in left panel of figure 6.1.

6.3.3 Constraints from 4He/H data

The methodology used in analysing D/H data is also applicable for 4He/H data after accounting for the
4He produced by stellar processes. To estimate the amount of primordial 4He/H ratio, Yp, in a given galaxy

we assume a linear relation between the oxygen to hydrogen ratio (O/H) and the 4He/H ratio produced by

3The galaxies of whose masses we found are aliased as Mrk 209, Mrk 71 and SBS 1415+437 in [213]. While their aliases used
in SPARC database are UGCA 281, NGA 2366, and PGC51017, respectively.

4The Planck constraints on Ωbh
2 are slightly degenerate with Neff . Correspondingly we take Planck constraints on Ωbh

2

values marignalised over Neff from TT+TE+EE+lowl+lowlE+BAO data.
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Figure 6.1: Left : 1σ and 2σ constraints on {∆N̄eff , σ∆Neff
} from 4He/H data (blue contours), D/H data

(orange contours) and from combined data (red contours). The vertical dashed line denotes the upper limit
on ∆Neff from Planck data with 95% confidence [3]. Right : Constraints on {∆N̄eff , ⟨∆S2

DR⟩} from combined
data. Here ∆SDR is the average dark radiation in a galaxy. For blue-tilted isocurvature mode ⟨∆S2

DR⟩ is
approximately same as the normalized isocurvature power spectrum at 1 Mpc, ∆2

S(1Mpc−1) (see eq. (6.13)).
The red-dashed line marks the parameters space at which ∆N̄eff∆SDR = 0.1. Correspondingly, the small
∆N̄eff∆SDR approximation made in eq. (6.7) holds for most of our parameter space.

stellar processes. Thus the net 4He/H ratio, Y , found in a galaxy is given by

Y = Yp +m× (O/H), (6.16)

where m is the proportionality between O/H production and 4He/H production through stellar processes.

Above, Yp fluctuates with ∆Neff in a similar manner as in eq. (6.8), except with D replaced by Yp. Similarly,

the variance in Yp, given by σy, and the variance in ∆Neff fluctuations are related by eq. (6.9), except with

D replaced by Yp.

Taking into account the linear relation between O/H and Y , the probability of getting a measurement of

Yi from galaxy i is given by

P̃ (Yi|{Ȳp, σy,m}) = 1√
2π(σ2

n,i + σ2
y +m2σ2

On,i)
exp

(
− (Yi − (Ȳp +m(O/H)i))

2

2(σ2
n,i + σ2

y +m2σ2
On,i)

)
, (6.17)

where σOn,i is the noise in O/H measurement. Just like in the case of deuterium, we have considered

all galaxies to have the same variance in ∆Neff and neglected covariance between different galaxies. We

marginalize over Ωbh
2 as we did for deuterium in eq. (6.15). Additionally, as the precise value of m is

unknown, we explicitly marginalize over m assuming a uniform prior,

L(∆Neff, σNeff
) =

∫ ∞

0

∫ ∞

0

[∏
i

P̃ (Yi|{Ȳ , σy,m})

]
∆Neff,Ωbh2,σNeff

×
exp

(
− (Ωbh

2−Ω̄bh
2)2

2σ2
Ωb

)
√

2πσ2
Ωb

dm d(Ωbh
2). (6.18)

Since the 4He/H and O/H data prefers values of m ∼ O(102) [213], we have mσOn,i ∼ 10−2σn,i. Thus we

neglect the contribution from m2σ2
On,i terms in our likelihood function. Consequently, using the definition of
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L0 in eq. (6.15) but with D replaced by Y , the above integral simplifies to,

L(∆Neff, σNeff
) ≈L0(∆Neff, σNeff

)

×
∫ ∞

0

exp

(
−1

2

[∑
i

(O/H)2i
(σ2
n,i + σ2

y)

]
m2 +

[∑
i

(Yi − Ȳ )(O/H)i
(σ2
n,i + σ2

y)

]
m

)
dm

=L0(∆Neff, σNeff
)

√
πeb

2/(2a)
(
erf
(

b√
2a

)
+ 1
)

√
a

, (6.19)

where a and b are the inverse variance weighted sum of (O/H)2i and (Yi − Ȳ )(O/H)i respectively (terms in

the square bracket in the first line). Using Parthenope [214] to estimate Y (∆Neff,Ωbh
2) and ∂Y

∂∆Neff
we find

the 1σ and 2σ limits on {∆N̄eff , σNeff
}, shown as blue contours in left panel of figure 6.1.

The red contours in the left panel of figure 6.1 show the combined constraints from Helium and deuterium

data, which restricts the variance in ∆Neff to be σNeff
≤ 0.17 at 95% confidence. In the right panel of figure 6.1

we convert the constraints on σNeff
to constraints on ⟨∆S2

DR⟩ using eq. (6.11). Since the masses of the galaxies

used in our measurements lie in the range 1010 − 1012M⊙, we consider all our measurements to have λgal ∼ 2

Mpc (see eq. (6.10)). Correspondingly, the variance in average dark radiation isocurvature in a galaxy, ⟨∆S2
DR⟩

approximately measures isocurvature on scales around λgal/2 ∼ 1 Mpc, i.e. ⟨∆S2
DR⟩ ∼ ∆2

S(k ∼ 1Mpc−1) (see

eq. (6.13)). The constraints on isocurvature become significantly weaker for smaller values of ∆N̄eff . This is

indicative of the fact that smaller dark radiation densities make it harder for the isocurvature component to

gravitationally affect BBN.

6.4 Discussion and conclusions

In a universe with a dark radiation field that is populated independently of the SM sector following inflation,

an isocurvature mode can naturally occur between the two sectors. In this work, we have demonstrated

that such an isocurvature mode leads to spatially varying BBN yields. Correspondingly, we have derived

constraints on the existence of an isocurvature mode between SM plasma and putative dark radiation by

looking at spatial variations in 4He/H and D/H abundances.

A lack of excess variance in observed 4He/H and D/H data limits the amount of isocurvature present

during BBN. Assuming each galaxy has internally uniform 4He/H and D/H ratios, a single galaxy probes

dark radiation isocurvature at scales ∼ λgal/2. Here λgal corresponds to the comoving size of the overdensity

which eventually collapses to form the galaxy in question. Since the structures which provide 4He/H or D/H

measurements typically have masses around 1011 M⊙, our analysis is sensitive to dark radiation isocurvature

at scales ∼ 1 Mpc. Subsequently, using 4He/H data from measurements of nearby galaxies [212] and D/H

data from measurements of high-redshift Lyman-α absorption systems [213], we constrained the variance of

average dark radiation isocurvature fluctuations, to be
√

⟨∆S2
DR⟩ < 0.13/∆N̄eff (see right panel of figure 6.1)

at 95% confidence. The quantity ⟨∆S2
DR⟩ is approximately the same as the normalized isocurvature power

spectrum at 1 Mpc. The exact relation between ⟨∆S2
DR⟩ and the isocurvature power spectrum requires an

accurate estimation of the primordial overdensities that collapse to form the galaxies in our data. Finally, we

also constrain the variance in ∆Neff to be σNeff
< 0.17 at 95% confidence.

By translating the neutrino isocurvature constraints by Planck [16] to dark radiation isocurvature,5 we

5CMB measurements cannot distinguish between the effects from dark-radiation and neutrinos. Consequently the isocurvature,

S constrained by CMB would have contributions from both dark-radiation and neutrinos, S = 3
4

(
δρDR+δρν
ρDR+ρν

− δργ
ργ

)
=
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find that dark radiation isocurvature fluctuations are constrained to be less than ∼ 10−5 ×Neff/∆N̄eff on

scales larger than ∼ 10 Mpc. Although the CMB is much more sensitive probe than the 4He/H and D/H

data, the latter is able to probe isocurvature at scales that are inaccessible to CMB measurements.

If dark radiation and dark matter fluctuations are correlated—which could occur, for example, in theories

of dark freeze-out in the presence of isocurvature—then constraints from measurements of clustering in the

Lyman-α forest on dark matter isocurvature can be translated to dark radiation. The Lyman-α forest data

constraints DM isocurvature to be less than 10−4 at 1 Mpc [224], by putting limits on the excess power over

the adiabatic matter power spectrum extrapolated from CMB measurements. In contrast, the analysis in

this study is sensitive directly to the isocurvature mode between dark radiation and the SM sector, and is

unaffected by the adiabatic fluctuations.

The extension of constraints from Lyman-α forest data to smaller scales is limited by solving non-linear

structure formation—a complication that does not affect our analysis. In contrast, the techniques used in

this study can theoretically be used to extend the constraints down to scales ∼ 0.01 Mpc, i.e. scales slightly

larger than the comoving horizon during BBN. To achieve the constraints at such small scales one would

require measurements of 4He/H or D/H from structures with masses of order ∼ 106 − 107M⊙. Potential

future measurements of 4He/H in halos of masses ∼ 109.5M⊙ [225] would extend the constraints down to

∼ 0.3 Mpc.

ρDR
ρDR+ρν

SDR + ρν
ρDR+ρν

Sν . The subscript ν refer to quantities for neutrinos.
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Chapter 7

Summary and conclusion

This thesis explores various novel early universe cosmologies that are possible with hidden sectors and that can

potentially lead to observable signatures in the cosmic microwave background spectrum or in the distribution

of matter today.

The thesis particularly focuses on hidden sectors that are out-of equilibrium with the Standard Model

plasma. A simple mechanism to populate such hidden sectors is by making the inflaton to couple with both

Standard Model and hidden sector particles with different couplings. Consequently, after the end of inflation,

inflaton decays can populate the two sectors at different temperatures. However, inflaton mediated interaction

between the hidden sector and the Standard Model can alter the temperature ratio between the two sectors

from the naive expectation of the temperature ratio being determined by the ratio of inflaton couplings to the

two sectors. Chapter 3 highlights a simple criteria that determined when the naive expectation is violated:

when the inflaton decays occur at temperatures larger than quarter of inflaton mass, Trh > Mϕ/4. The simple

criteria is a consequence of the fact that the temperature ratio is primarily determined by processes that

occur later in time. As the energy transfer via inflaton mediated interactions dominantly occur at T ∼Mϕ/4

because of on-shell resonance, these interactions determine the final temperature ratio for Trh > Mϕ/4.

A hidden sector that is out-of-equilibrium with the Standard Model plasma can alter the early universe

cosmology in a variety of ways. Chapter 4 discusses one such way where the hidden sector causes an early

cannibal dominated era (ECDE) prior to Big Bang nucleosynthesis (BBN). If the lightest particle in the

hidden sector has strong number changing interactions, then as the particle becomes non-relativistic its

interactions can maintain chemical equilibrium via self-annihilations. When such a cannibal particle comes to

dominate the universe, it can lead to a growth in dark matter perturbations with the peak enhancement in the

perturbations being determined by the thermal pressure in the cannibal fluid due to cannibal annihilations.

These enhanced perturbations collapse to form dark matter microhalos long before the collapse that occurs

in standard cosmology. As the mass and central density of the microhalos are determined by the peak

enhancement in the dark matter perturbations, we show a direct map between the observable properties of

the microhalos and the properties of the cannibal particle.

If the lightest particle in the hidden sector is massless, then the hidden sector can leave imprints on the

cosmic microwave background (CMB) spectrum because the CMB spectrum is sensitive to dark radiation.

Conventionally, the energy density in dark radiation is parameterized by its contribution to the effective

number of neutrino species, Neff. As upcoming CMB measurement of Neff become more precise, they will

constraint the lightest hidden sector particle to always be out-of-equilibrium with the Standard Model plasma
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in the early universe if no deviation is observed from the Standard Model value of Neff. In chapter 5 we show

that the Neff measurements can directly constrain the energy transfer rate between an out-of-equilibrium

hidden sector and the Standard Model without being dependent on the number of particles in the hidden

sector or internal hidden sector interactions. As the energy transfer rate in the early universe is determined by

beyond Standard Model interactions, Neff measurements can be used to directly constrain beyond Standard

Model interactions at energies E > MeV. The Neff constraints on beyond Standard Model interactions are

found to be orders of magnitude stronger than the sensitivity of collider experiments.

Apart from populating the hidden sector via inflaton decays or directly from interactions with Standard

Model particles, another natural possibility is that the hidden sector was populated by a curvaton field. In

such scenarios, if the hidden sector remains thermally decoupled from the Standard Model plasma, then the

density perturbations of the two sectors are out of sync, i.e. they have an isocurvature mode between them.

In chapter 6, we show that such an isocurvature causes a variation in the Hubble rate in different patches of

the universe during BBN. This inhomogeneous Hubble rate in turn leads to an inhomogeneous production of

the Helium to hydrogen ratio (He/H) as well as the deuterium to hydrogen ratio (D/H). Consequently, by

looking at the variation in D/H data collected from different Lyman-alpha clouds and the He/H data collected

from different galaxies, the variance of average dark radiation isocurvature fluctuations was constrained to√
⟨∆S2

DR⟩ < 0.13/∆N̄eff at 95% confidence, where ∆N̄eff is the shift in Neff due to the dark radiation.

Taken together, the analyses in this thesis points towards interesting implications for hidden sector model

building relevant for upcoming experiments. For instance, we have argued that if future CMB experiments

do not detect dark radiation then portal couplings between Standard Model and hidden sectors containing

relativistic particles will typically be restricted to values that are orders of magnitude smaller than the

sensitivities of collider experiments. Then to have a chance of detecting hidden sectors in future collider

experiments, one would either have to consider the Standard Model plasma to be reheated at temperatures

below the mass scale of the portal interaction or consider hidden sectors without dark radiation. On one hand,

reheating at low temperatures implies an early matter dominated era (EMDE) and thus a possibly enhanced

abundance of dark matter microhalos today. On the other hand, hidden sector with a massive lightest particle

typically overclose the universe if the lightest particle is also stable. And if the lightest massive hidden sector

particle is unstable, then we open the possibility of hidden sector causing an early matter dominated era

(EMDE) or an early cannibal dominated era (ECDE), which would also enhance the abundance of dark

matter microhalos today. Thus, for hidden sectors theories that can be observed in colliders, we argue that

one should either expect a detection of dark radiation in future CMB experiments or an increased possibility

of large abundance of dark matter microhalos.
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Appendix A

Energy transfer collision term with

quantum statistics

In this section we calculate the collision term describing energy transfer between two baths at different

temperatures via annihilation, decays, and scattering. Instead of approximating the thermal distribution

of all involved particles as Maxwell-Boltzmann distribution, which is the norm, we take into account the

quantum statistical thermal distributions (Bose-Einstein or Fermi-Dirac) in our calculations.

We then calculate these collision terms for the specific models used in the main body. In particular,

in appendix A.4 we calculate the collision term for energy transfer mediated by inflaton, in appendix A.5

we calculate the collision terms for various energy transfer processes from Standard Model plasma into

millicharged particle, and finally in appendix A.6 we calculate the collision term for energy transfer from

Standard Model plasma into right handed neutrinos via massive B − L gauge boson.

A.1 Annihilation

In this section we simplify the forward energy transfer collision term for particle a annihilating into particle b,

1(a) + 2(ā) → 3(b) + 4(b̄). (A.1)

We start the forward collision term given by

Cf =
∫ [ 4∏

i=1

d4pi
(2π)3

δ(p2i −m2
i )Θ(p0i )

]
(2π)4δ4(p1 + p2 − p3 − p4)S|Mf |2(p01 + p02)

× [fa(p1)fa(p2)(1± fb(p3))(1± fb(p4))] , (A.2)

where Θ is the Heaviside function. Above |Mf |2 is the spin-summed matrix element and S is the symmetry

factor.

In the limit density of b is more dilute compared to density of a, the final state effects (Bose-enhancement/Pauli-

blocking) can be neglected regardless of the exact distribution of b, fb. For instance, if b has large enough

self-interactions to thermalize then fb will be peaked at momentas p ∼ Tb ≪ Ta, where T is the temperature.

As the b particles produced by annihilation of a will typically be at momenta p ∼ Ta, the values of fb probed
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by the collision integral will be much smaller than one even if fb ∼ O(1) at its peak. In the case particle b

does not thermalize, f will be peaked at p ∼ Ta but its value will be much less than one because density of b

is more dilute compared to density of a.

By neglecting the final state effects, the phase space integration can be significantly simplified because

one can directly integrate the matrix element over the phase space of outgoing particles, particles 3 and 4, as

we show in section. If on the other hand we want to incorporate the contribution from final state effect, then

we need to consider that the matrix element is only a function of energy in center of mass frame to simplify

the integral, as we show in section.

A.1.1 Negligible final state effects

By neglecting the final state effect, the phase-space integration over p3 and p4 can simply be absorbed into

the definition of Lorentz invariant cross-section, σ (see [175]),

4Fσaa→bb ≡
∫

d3p3
(2π)32E3

d3p4
(2π)32E4

(2π)4δ4(p1 + p2 − p3 − p4)S|Mf |2, (A.3)

where F =
√
(p1 · p2)2 −m2

1m
2
2. If the mass of particles 1 and 2 are the same, which is typically true for the

processes we consider in this chapter, one can show that [(2E1)(2E2)|v⃗3 − v⃗4|] calculated in the CM frame is

equal to F . Thus for m1 = m2, σ is identical to the spin-summed center-of-mass (CM) frame cross-section.

With the above mentioned simplifications, the collision term becomes

Cf =
∫ [ 2∏

i=1

d4pi
(2π)3

δ(p2i −m2
a)Θ(p0i )

]
4F (p01 + p02)σaa→bb,CMfa(p1)fa(p2). (A.4)

The integral can be further simplified if we make the following change of variables

p = p1 + p2, q = p1 − p2. (A.5)

Note that in this basis the Mandelstam parameter s is simply s = p2. Performing the above change of

variables in the collision term integral yields

Cf(Tf ) =
∫

1

24
d4p

(2π)2

[
d4q

(2π)4
δ((p+ q)2/4−m2

a)δ((p− q)2/4−m2
a)Θ(p0 − |q0|)

]
× 4Fp0σaa→bb,CMfa((p

0 + q0)/2)fa((p
0 − q0)/2) (A.6)

≡
∫

1

24
d4p

(2π)2
dIq × 4Fp0σaa→bb,CMfa((p

0 + q0)/2)fa((p
0 − q0)/2), (A.7)

where the phase space element dIq is given by the square brackets in the first line.

Next we simplify dIq. The delta functions in dIq together impose the following constraints:

q3 =
q0p0

|p⃗|
|q⃗12|2 = p2

(
1− (q0)2

|p⃗|2

)
− 4m2

a, (A.8)

where q3 is the component of q⃗ along p⃗, while q⃗12 is the component of q⃗ perpendicular to p⃗. Consequently, we
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can perform the integral over q3 and |q⃗12| in dIq to integrate over the delta functions, yielding

dIq =

[
δ((p+ q)2/4−m2

a)δ((q − p)2/4−m2
a)Θ(p0 − |q0|)dq3 |q⃗12|d|q⃗12|

]
dθ12

dq0

(2π)4
(A.9)

=
2

|p⃗|
Θ(p0 − |q0|)Θ

(
p2
[
1− (q0)2

|p⃗|2

]
− 4m2

a

)
dθ12

dq0

(2π)4
, (A.10)

where θ12 is the Azimuthal angle made by q⃗12 in the plane perpendicular to p⃗. The second Θ function in the

last line imposes the requirement that |q⃗12| > 0. The two Θ function together rule out the possibility of p2 to

be less than 4m2
a, which is expected. Thus the arguments of the Θ functions can be rewritten as

dIq =
2

|p⃗|
Θ(p2 − 4m2

a)Θ(|p⃗|βa − |q0|)dθ12
dq0

(2π)4
, (A.11)

where

βa =

√
1− 4m2

a

s
. (A.12)

Substituting the simplified dIq back in the collision term, we obtain

Cf =
∫

2π

24
d4p

(2π)6
2

|p⃗|
Θ(p2 − 4m2

a)× 4Fp0σaa→bb,CM

∫ |p⃗|βa

−|p⃗|βa

dq0fa((p
0 + q0)/2)fa((p

0 − q0)/2). (A.13)

To integrate over the phase-space distribution, we consider the particles a to be in thermal equilibrium such

that

fa(p) =
1

ep/Ta + ζa
, (A.14)

where Ta is the temperature of particles a and ζa = 1 (-1) if a is a fermion (boson).

For a thermal phase-space distribution, the integral over q0 can be analytically performed to yield

Cf =
∫

2π

24
d4p

(2π)6
2

|p⃗|
Θ(p2 − 4m2

a)× 4Fp0σaa→bb,CM × 4Ta
ep0/Ta − ζ2a

ln

 exp p0+|p⃗|βa

2Ta
+ ζa

exp p0

2Ta
+ ζa exp

|p⃗|βa

2Ta

 . (A.15)

Rewriting the integration variable pµ = (p0, p⃗) in terms of Mandelstam s and y = |p⃗|/
√
s, and using

F =
√
s(s− 4m2

a)/2, we obtain

Cf =
Ta
32π4

∫ ∞

4max(m2
a,m

2
b)

dss
√
s(s− 4m2

a)σaa→bb,CM

×

2∫ ∞

0

dyy
1[

exp

(√
y2+1

Ta/
√
s

)
− ζ2a

] ln( exp
(√

y2+1+βay

2Ta/
√
s

)
+ ζa

exp
(√

y2+1

2Ta/
√
s

)
+ ζa exp

(
βay

2Ta/
√
s

))
 . (A.16)

In the limit the thermal distribution of particle a can be approximated as Maxwell-Boltzmann, i.e. ζa → 0,

the integral in the square brackets simplifies to βaK2(
√
s/Ta), where Kn is the modified Bessel function of
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second kind. Correspondingly, the collision term becomes

Cf(Ta) =
Ta
32π4

∫ ∞

4max(m2
a,m

2
b)

dss(s− 4m2
a)σaa→bbK2(

√
s/Ta), (A.17)

which agrees with the result in Ref. [175].

In the case where ma < mb, the energy injection into b particles is mostly dominated by annihilations of

a particles when a is relativistic. In the relativistic limit, we can approximate βa = 1 making the integral in

square brackets in eq. (A.16) only a function of
√
s/Ta. Defining

Gζ(x) = 2

∫ ∞

0

dtt
1

ex
√
t2+1 − ζ2

ln

(
ex(

√
t2+1+t)/2 + ζ

ex
√
t2+1/2 + ζext/2

)
, (A.18)

and approximating the term in square brackets in eq. (A.16) as βaGζa(
√
s/Ta) we obtain

Cf(Ta) =
Ta
32π4

∫ ∞

4max(m2
a,m

2
b)

dss(s− 4m2
a)σaa→bbGζa(

√
s/Ta). (A.19)

The above collision term matches with eq. (A.16) in the limit Ta ≫ ma. We use this simplified form of

collision term while calculating the energy injection from particles a into particles b in chapter 5. The error

induced from using the simplified collision term in the calculation of energy injection is maximum when

ma ≫ mb. This maximum error is about 2% if particle a is a fermion and 8% if it is a boson. Even this error

is typically inconsequential because energy injection into b is dominated by annihilations of particles lighter

than b.

The function Gζ can be computed analytically in the limit x ≫ 1 and x ≪ 1. In the large x limit, Gζ

asymptotes to K2 as expected. In the small x limit, we find that

Gζ(x)
x≪1−−−→


π2

6x2 ln(2) ζ = 1,

2
x2 ζ = 0,

π2

3x2 ln(
8πeA−12

x2 ) ζ = −1,

(A.20)

where A is the Glaisher-Kinkelin constant. At high temperatures, Ta ≫ ma and mb, most of the integral in

eq. (A.19) is weighted at
√
s≪ Ta. Thus the collision term computed with ζa = 1 (Fermi-Dirac statistics) is

suppressed by a factor of ∼ 2 compared to the collision term calculated using ζa = 0 (Maxwell-Boltzmann

statistics). While the collision term for ζ = −1 (Bose-Einstein statistics) gets a non-trivial logarithmic

enhancement compared to ζ = 0 case.

The total collision term is well approximated by Cf as long as particles b remain more dilute than particle

a. However, close to thermalization, the phase-space distribution of particle b can no longer be neglected in

the computation of the total collision term. In scenarios where we are only interested in computing the final

energy density of particle b, we can approximate the total collision term using

C = Cf(Ta)− Cf(Tb), (A.21)

where Tb is the temperature of particle b if it is in internal thermal equilibrium. The above collision term

is not accurate close to thermalization because we have ignored the contribution of final state effects while

calculating Cf . However, the exact value of C is not important for the evaluation of energy density of particle
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b once b and a have thermalized. Consequently, the approximation will deviate from the true answer only in

the narrow parameter space where b is slightly away from thermalization with a.

One can include the contribution from final state effects if one makes some simplifying assumptions about

the matrix element, as we do in the next section.

A.1.2 With final state effects

If we want to include the contribution from final state effects, then we find that the computation of the

collision term is simplified if we shift to the following variables

p =p1 + p2, p′ = p3 + p4,

q =p1 − p2, q′ = p3 − p4. (A.22)

In terms of these variables, the Mandelstam variables are s = p2, t = (q − q′)2/4 and u = (q + q′)2/4. In the

CM frame, p = (
√
s, 0, 0, 0) and consequently U = 1√

s
(
√

|p⃗|2 + s, 0, 0, |p⃗|), where |p⃗| is the spatial component

of p in the frame U = (1, 0, 0, 0). Reference [226] shows that the 12-dimensional phase-space integral of

eq. (A.2) can be reduced to

CfE =
1

256(2π)8

∫
4π|p⃗|2d|p⃗|

∫
ds

4rr′

s
S

×
∫ [ ∫

|M|2(1± f3(U · p3))(1± f4(U · p4))dθ′dy′
]
f1(U · p1)f2(U · p2)dθdy, (A.23)

where r is the magnitude of q⃗ and y = cosϕ, θ give the direction of q⃗ with respect to p⃗, while r′, y′, and θ′

denote the corresponding quantities for q′. The spatial and temporal magnitudes of q and q′ are given by

r =
1√
s

√
(s− (m1 +m2)2)(s− (m1 −m2)2), q0 =

m2
1 −m2

2√
s

, (A.24)

r′ =
1√
s

√
(s− (m3 +m4)2)(s− (m3 −m4)2), q′0 =

m2
3 −m2

4√
s

. (A.25)

For scenarios where the scattering amplitude is a function only of s, eq. (A.23) further simplifies to

CfE =
S

64(2π)5

∫ ∞

0

d|p⃗||p⃗|2
∫ ∞

s0

ds|M(s)|2 rr
′

s

[ ∫ 1

−1

(1± f3(U · p3))(1± f4(U · p4))dy′
]

×
[ ∫ 1

−1

f1(U · p1)f2(U · p2)dy
]

(A.26)

where s0 = max((m1+m2)
2, (m3+m4)

2). To evaluate these final integrals, we need to specify the distribution

functions. We take particles 1 and 2 to be of species a at a temperature Ta and particles 3 and 4 of species b
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at temperature Tb. Inserting the corresponding equilibrium distribution functions, we obtain

CfE =
TaTbS

4(2π)5

∫ ∞

0

∫ ∞

s0

d|p⃗| ds |M(s)|2
exp

(√
|p⃗|2 + s

Tb

)
[
exp

(√
|p⃗|2 + s

Ta

)
− 1

][
exp

(√
|p⃗|2 + s

Tb

)
− 1

]

× log

( exp
(√|p⃗|2 + s+ βa|p⃗|

2Ta

)
+ ζa

exp
(√|p⃗|2 + s

2Ta

)
+ ζa exp

(βa|p⃗|
2Ta

)
)
log

( exp
(√|p⃗|2 + s+ βb|p⃗|

2Tb

)
+ ζb

exp
(√|p⃗|2 + s

2Tb

)
+ ζb exp

(βb|p⃗|
2Tb

)
)
. (A.27)

Here ζa,b = ±1 depending on whether the respective particles are fermions/bosons and

βa,b =

√
1−

4m2
a,b

s
. (A.28)

Next, we scale out the temperature of the hotter sector, Ta, by defining

s̃ =
s

T 2
a

, p̃ =
|p⃗|
Ta
, m̃a,b =

ma,b

Ta
, and x =

Tb
Ta

≤ 1. (A.29)

This isolates the temperature dependence in the integral, which becomes

CfE =
S

4(2π)5
xT 5

a

∫ ∞

0

∫ ∞

s0/T 2
a

dp̃ ds̃ |M(s̃)|2
exp( 1x

√
p̃2 + s̃)[

exp( 1x
√
p̃2 + s̃)− 1

][
exp(

√
p̃2 + s̃)− 1

]

× log

(
exp

(
1
2 (
√
p̃2 + s̃+ βap̃)

)
+ ζa

exp
(

1
2

√
p̃2 + s̃

)
+ ζa exp

(
1
2βap̃

)) log

(
exp

(
1
2x (
√
p̃2 + s̃+ βbp̃)

)
+ ζb

exp
(

1
2x

√
p̃2 + s̃

)
+ ζb exp

(
1
2xβbp̃

)). (A.30)

The temperature Ta enters the integrand only through M(T 2
a s̃) and m̃a,b.

The total collision term describing net energy transfer is

CE = S′xT 5
a

∫ ∞

0

∫ ∞

s0/T 2
a

dp̃ ds̃ |M(s̃)|2
exp( 1x

√
p̃2 + s̃)− exp(

√
p̃2 + s̃)[

exp( 1x
√
p̃2 + s̃)− 1

][
exp(

√
p̃2 + s̃)− 1

] (A.31)

× log

(
exp

(
1
2 (
√
p̃2 + s̃+ βap̃)

)
+ ζa

exp
(

1
2

√
p̃2 + s̃

)
+ ζa exp

(
1
2βap̃

)) log

(
exp

(
1
2x (
√
p̃2 + s̃+ βbp̃)

)
+ ζb

exp
(

1
2x

√
p̃2 + s̃

)
+ ζb exp

(
1
2xβbp̃

))

≡ S′xT 5
a

∫ ∞

0

∫ ∞

s0/T 2
a

dp̃ ds̃ |M(s̃)|2D(s̃, p̃, x, m̃a,b), (A.32)

where S′ = S/(4(2π)5).

Even if we are interested in the regime where all external particles are relativistic, m̃a,b ≪ 1, retaining

finite masses can be important for regulating collision terms with bosons because Bose-Einstein distribution

diverges when p → 0. This divergence for bosons (ζ = −1) causes the integrand in the above equation to

diverges as s̃, p̃→ 0 when m̃ = 0. However, if |M(s̃)|2 is finite at s̃→ 0 then the divergence vanishes after
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integration over s̃, p̃ and the collision term remains finite as m̃a,b → 0.1 Thus, for our calculations we can

freely work in the limit m̃a,b → 0.

A.2 Decays

In this section we simplify the collision term describing energy transfer via particle a decaying into particle b,

a→ b+ b.

The collision term describing the forward energy transferred from a to b is given by

Cfa→b+b =

∫
dΠdΠ1dΠ2 (2π)

4δ4(p− p1 − p2)S|MΓ|2fa(p)(1± fb(p1))(1± fb(p2))E, (A.33)

where fa is the distribution function for a, dΠk = d3pk/[(2π)
32Ek], |MΓ|2 is the spin-summed matrix element

corresponding to the decay process, S is the symmetry factor, and variables with subscripts 1 and 2 correspond

to the daughter particles while those with no subscripts correspond to a.

In the following calculation we neglect the final state effects (Bose-enhancement/Pauli-blocking) from

particle b. As discussed in the previous subsection, this approximation is valid as long as density of particle b

is much more dilute than the density of particle a.

By neglecting fb, we can perform the phase space integration of the daughter particles in the rest frame

of particle a by using the definition of the rest frame decay width,

Γ ≡ 1

2mga

∫
dΠ1dΠ2 (2π)

4δ4(p− p1 − p2)S|MΓ|2 =
S|MΓ|2

4π
β̃b

1

2mga
, (A.34)

where m is the mass of particle a, ga are the spin degrees of freedom of a, β̃b =
√
1− 4m2/m2

b and mb is the

mass of particle b. Doing so simplifies the collision term to

Cfa→b+b = mΓga

∫
d3p

(2π)3
fa(p) = mnaΓ. (A.35)

Next, we simplify the collision term describing energy transferred by inverse decays of particle b into

particle a. We start with,

Cfb+b→a =

∫
dΠdΠ1dΠ2(2π)

4δ4(p1 + p2 − p)E |MΓ|2Sfb(E1)fb(E2). (A.36)

Again we have neglected the final state effect from particle a by assuming particle a is much more dilute than

particle b.

For simplicity, we perform the calculation in the rest frame of particle a. Considering U = (1, 0, 0, 0) to

denote the original isotropic frame, after changing frames such that, (
√
p⃗2 +m2, p⃗) → (m, 0⃗) , we obtain

1In the collision term for rate of annihilations, i.e. when the collision term is not weighted with E1 + E2, the cancellation of
the divergence depends on summing both forward and backward processes; the forward collision term alone retains a logarithmic
dependence on m̃. In general one expects thermal self-energies to regulate this behavior when Ta,b ≫ ma,b; see also [66].
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U = 1
m (
√
m2 + p⃗2,−p⃗). Consequently, the above collision term becomes

Cfb+b→a =

∫
d3p

2(2π)3

[ ∫
dΠ1dΠ2(2π)

4δ3(p1 + p2)δ(2|p⃗1| −mβ̃b) |MΓ|2Sfb(p1 · U)fb(p2 · U)

]
. (A.37)

Note that after shifting the frame, p⃗ no longer stands for momentum of a particle but instead is the label of

boosted frame. Integrating over p⃗2 and |p⃗1|, yields

Cfb+b→a =
β̃2
b

8(2π)5

∫
d3p

∫
dΩp1 |MΓ|2Sfb(p1 · U)fb(p2 · U). (A.38)

Now note that the spin-summed matrix element of a decay process is isotropic as well as independent of

the momentum of a. Consequently, we can pull |MΓ|2 outside of the integral. Considering b particles to have

a thermal distribution of form

fb(p) =
1

ep/Tb + ζb
, (A.39)

we can perform the angular integral over the distribution functions to yield,

Cfb+b→a =Tbm
2β̃b

|MΓ|2Ŝ
8π3

∫ ∞

0

dt
t

exp(x
√
t2 + 1)− ζ2b

log

(
exp(x2 (

√
1 + t2 + tβ̃b)) + ζb

exp(x
√
1+t2

2 ) + ζb exp(
txβ̃b

2 )

)
, (A.40)

where x = m/Tb and t = |p⃗|/m. In the limit mb ≪ m, we can approximate β̃b = 1 inside the integral, yielding

Cfb+b→a ≈mΓ×
[
m2 gZ′

2π2
TbGζb(m/Tb)

]
≡ mΓ× ñζb(Tb), (A.41)

where G is as defined in eq. (A.18). In the limit ζb = 0, we have Gζb = K2, where Kn is the modified

Bessel function of the second kind. Consequently, ñ0(Tb) is the equilibrium number density of particles with

Maxwell-Boltzmann distribution as expected.

A.3 Scattering

In this section we simplify the phase space integral for the collision term which describes the energy transfer

from species a to b via t-channel process:

1(a) + 2(b) → 3(a) + 4(b). (A.42)

We consider both particles to be at different temperatures and additionally do not approximate their

distribution as Maxwell-Boltzmann.

The relevant energy transfer collision term for the process given in eq. (A.42) is

C =

∫ [
2
∏
i

(
d4pi
(2π)3

δ(p2i −m2
i )Θ(p0i )

)
(2π)4δ4(p1 + p2 − p3 + p4)

]
S|M|2(p01 − p03)

× [fa(p1)fb(p2)(1± fa(p3))(1± fb(p4))] (A.43)

≡
∫
dP S|M|2(p01 − p03)[fa(p1)fb(p2)(1± fa(p3))(1± fb(p4))], (A.44)
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where fi are the distributions for the ith particle, M is the amplitude of the process, a and b correspond to

two species and Ŝ includes the symmetry factors from the process along with each particles degree of freedom.

The first factor of two inside the integral is because the contribution from the backward scattering is the

same as the forward process and we have summed over both backward and forward process above. The phase

space element dP is given by the square bracket in the first line.

Because of the energy transfer term (p01 − p03) in the integrand, we find that the computation of the

collision term is simplified if we shift to the following variables

p = p1 − p3 p′ = p2 − p4 (A.45)

q = p1 + p3 q′ = p2 + p4 (A.46)

Correspondingly the Mandelstam variables are given by s = (q + q′)2/4, t = p2 and u = (q − q′)2/4.

After performing the above shift in variables and integrating out p′ using the momentum conserving dirac

delta, we obtain

dP =
(2π)4

27
d4p

(2π)4

[
d4q

(2π)4
δ((p+ q)2/4−m2

a)δ((q − p)2/4−m2
a)Θ(q0 − |p0|)

]
×
[
d4q′

(2π)4
δ((−p+ q′)2/4−m2

b)δ((q
′ + p)2/4−m2

b)Θ(q′0 − |p0|)
]

(A.47)

dP ≡d
4p

27
dIq dIq′ , (A.48)

where dIq and dIq′ are given by the first and second square brackets, respectively. Note that dIq and dIq′ are

identical integral elements except for the masses. Moreover, except for the argument in the Θ function, dIq

defined above has the same form as dIq defined in eq. (A.7). Thus by performing the same steps as we did

before to obtain eq. (A.10), we find

dIq =
2

|p⃗|
Θ(q0 − |p0|)Θ

(
p2
[
1− (q0)2

|p⃗|2

]
− 4m2

a

)
dθ12

dq0

(2π)4
, (A.49)

where θ12 is the Azimuthal angle made by q⃗ in the plane perpendicular to p⃗. The second Θ function in the

last line imposes the requirement that |q⃗12| > 0. The two Θ function together rule out the possibility of

p2 > 0, which is expected as t = p2 < 0. Thus the arguments of the Θ functions can be rewritten as

dIq =
2

|p⃗|
Θ(−p2)Θ(q0 − |p⃗|βa)dθ12

dq0

(2π)4
, (A.50)

where

βa =

√
1− 4m2

a

t
. (A.51)

The phase space element dIq′ has the exact same form as dIq with just ma interchanged with mb. Thus

the phase space element dP simplifies to

dP =
16π

27(2π)8
Θ(−p2)

[
Θ(q0 − |p⃗|βa)dθ12dq0

][
Θ(q′0 − |p⃗|βb)dθ′12dq′0

]
d|p⃗|dp0 dΩp

4π
. (A.52)

Replacing the above phase space element back in the collision term, and using the fact that the integrand is
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independent of the orientation of p⃗ as well as the overall phase θ12 + θ′12, we obtain

C =
32π2

27(2π)8

∫ [
Θ(q0 − |p⃗|βa)fa(p1)(1± fa(p3))dq

0

][
Θ(q′0 − |p⃗|βb)fb(p2)(1± fb(p4))dq

′0
]

×
(∫

|M|2dθ
)
p0d|p⃗|dp0Θ(−p2), (A.53)

where θ = θ12 − θ′12. Note that none of the square brackets depend on θ because the Boltzmann distributions

are only functions of p0 and q0. Thus only the matrix element can have possible θ dependence.

Now the matrix element is a function of both t = p2 = (p0)2 − |p⃗|2 and s = (q + q′)2/4. So its dependence

on q, q′ forbids an independent integration of the square brackets in eq. (A.53). A t-channel matrix element

can generically be written as

|M|2 =

∑
vw cvws

vtw

(t−m2
ϕ)

2
, (A.54)

where the mϕ is the mediator mass. The Mandelstam t is simply equal to p2 while s has a complicated

dependence on q, q′, and θ given by

s =
1

4
(q2 + q′2 + 2q0q′0 − 2q3q

′
3 − 2q12q

′
12 cos θ) (A.55)

=
1

4

[
4m2

a + 4m2
b − 2p2 − 2q0q′0

p2

|p⃗|2

− 2

(
p2
(
1− (q0)2

|p⃗|2

)
− 4m2

a

)0.5(
p2
(
1− (q′0)2

|p⃗|2

)
− 4m2

b

)0.5

cos θ

]
. (A.56)

Note that after integration of matrix element over θ, all terms with odd powers of cos θ vanish. Hence the

integrated matrix element is simply given by a polynomial of form∫
|M|2dθ = 1

(p2 −m2
ϕ)

2

∑
nmλ

cnmλ(q
0)n(q′0)m

p2λ

|p⃗|n+m
. (A.57)

The values of of exponents above are restricted to n,m, λ ∈ {0, 1, 2} because we require v+w ≤ 2 in eq. (A.54)

for the matrix element to be unitary. Furthermore, since
∫
dθsv only depends on even combinations of q0

and q′0, n+m is always even.

Substituting the above matrix element in the collision term we obtain

C =
∑
nmλ

32π2cnmλ
27(2π)8

∫
p0

(p2 −m2
ϕ)

2
p2λ
[ ∫

Θ(q0 − |p⃗|βa)fa(p1)(1± fa(p3))
(q0)n

|p⃗|n
dq0
]

×
[ ∫

Θ(q′0 − |p⃗|βb)fb(p2)(1± fb(p4))
(q′0)m

|p⃗|m
dq′0

]
d|p⃗|dp0Θ(−p2) (A.58)

≡
∑
nmλ

32π2cnmλ
27(2π)8

∫
p0

(p2 −m2
ϕ)

2
p2λ × In,ζaI

′
m,ζb

d|p⃗|dp0Θ(−p2), (A.59)

where the terms In,ζa and I ′n,ζb are given by the first and second square brackets in the first equation above.

Considering a thermal distribution for particle a as given in eq. (A.14), the term I can be analytically
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computed to yield

In,ζa =
2Ta

ep0/Ta − 1

(
2Ta
|p⃗|

)n
Ln,ζa

(
|p⃗|βa
2Ta

,
p0

2Ta

)
, (A.60)

where

Ln,ζ(a, b) =

n∑
r=0

n!

(n− r)!
an−r[−ζLir+1(−ζe−a+b) + ζLir+1(−ζe−a−b)], (A.61)

and Li is the Polylogarithmic function. Recall that ζ = 1 if particle a is fermion and ζ = −1 if particle a is

boson. In the Maxwell-Boltzmann limit, the square brackets in L simplify to e−a+b for all r.

I ′m is same as In except with p0 replaced by −p0 and subscript a replaced by subscript b. Putting the

simplified In and I ′m back in the collision term yields

C =
32π2

27(2π)8
4TaTb

∑
nmλ

cnmλ

∫ ∞

−∞
dp0p0

∫ ∞

|p0|
d|p⃗| p2λ

(p2 −m2
ϕ)

2

(
2Ta
|p⃗|

)n(
2Tb
|p⃗|

)m

×
Ln,ζa

(
|p⃗|βa

2Ta
, p

0

2Ta

)
ep0/Ta − 1

Lm,ζb

(
|p⃗|βb

2Tb
,− p0

2Tb

)
e−p0/Tb − 1

. (A.62)

Note that p0 > 0 indicates forward energy transfer from a to b, while p0 < 0 indicates backward energy

transfer. Consequently, the forward energy transfer collision term is given by the above integral, except with

integral limits of p0 changed to 0 to ∞.

Using the fact that Lm,ζ(a,−b) = −Lm,ζ(a, b) we convert the integral over negative values of p0 to positive

values, yielding

C =
32π2

27(2π)8
4TaTb

∫ ∞

0

dp0p0
[

1

(ep0/Ta − 1)(1− e−p0/Tb)
− 1

(ep0/Tb − 1)(1− e−p0/Ta)

]
×
∑
nmλ

cnmλ

∫ ∞

|p0|
d|p⃗| p2λ

(p2 −m2
ϕ)

2

(
2Ta
|p⃗|

)n(
2Tb
|p⃗|

)m
Ln,ζa

(
|p⃗|βa
2Ta

,
p0

2Ta

)
Lm,ζb

(
|p⃗|βb
2Tb

,
p0

2Tb

)
. (A.63)

Notice that the first square-bracket vanishes in the limit Ta = Tb as expected.

In the limit both particles have Maxwell-Boltzmann distribution, the collision term simplifies to

C =
32π2

27(2π)8
4TaTb

∫ ∞

0

dp0p0
[
e−p

0/2Taep
0/2Tb − ep

0/2Tae−p
0/2Tb

]
×
∑
nmλ

cnmλ

∫ ∞

p0
d|p⃗| p2λ

(p2 −m2
ϕ)

2

(
2Ta
|p⃗|

)n(
2Tb
|p⃗|

)m( n∑
r=0

n!

(n− r)!

(
|p⃗|βa
2Ta

)n−r)

×

(
m∑
r=0

m!

(m− r)!

(
|p⃗|βb
2Tb

)n−r)
e−

βa|p⃗|
2Ta e

− βb|p⃗|
2Tb . (A.64)

A.4 Collision terms for inflaton mediated annihilations

In this section we calculate the collision terms that are used in chapter 3 using the results from appendix A.1.2.
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A.4.1 Trilinear scalar couplings

We consider two scalar species, χa and χb, interacting via

Lint =
1

2
µaϕχ

2
a +

1

2
µbϕχ

2
b . (A.65)

Here ϕ is a massive scalar (inflaton) mediator with mass Mϕ. As both the coupled fields are scalars (and

hence bosons), we take ζa,b = −1 and S′ = 1/(16(2π)5).

The scattering amplitude for the s-channel process in this theory, for ma,b ≪Mϕ, is given by

|M(s̃)|2 =
µ2
aµ

2
b

(s−M2
ϕ)

2 +
(
Γ0a + Γ0b

)2 , Γ0a,b =
µ2
a,b

32πMϕ
. (A.66)

For µa,b ≪Mϕ we can approximate the scattering amplitude as [42]

|M(s̃)|2 ≈ 32π2 wµ
2
a

w + 1

1

T 2
a

δ(s̃− M̃2
ϕ) + Θ(M̃2

ϕ − s̃)
µ4
aw

M4
ϕ

. (A.67)

where w = Γ0b/Γ0a = µ2
b/µ

2
a. To analytically estimate the behavior of CE , we combine the simplified form of

the scattering amplitude given in eq. (A.67) along with approximations M̃ϕ ≪ 1 and M̃ϕ ≫ 1 at high and

low temperatures respectively.

High temperature limit, Ta ≫ Mϕ. In the high-temperature limit M̃ϕ → 0, the contribution to the

integral in eq. (A.32) from the Θ function term in eq. A.67 is dwarfed by the contribution from the Dirac

delta term. Subsequently, in the high temperature limit we can to good approximation retain only the Dirac

delta portion, giving

Chigh-T = S′xT 5
a

∫ ∞

0

dp̃ 32π2 wµ
2
a

w + 1

1

T 2
a

D(M̃2
ϕ, p̃, x, 0). (A.68)

To evaluate the above integral we separate it into two domains: p̃ < 0.1 and p̃ > 0.1. In the latter region we

approximate p̃≫ M̃ϕ to give∫ ∞

0.1

dp̃ D(M̃2
ϕ, p̃, x, 0)

∣∣∣∣
p̃≫M̃ϕ

≈
∫ ∞

0.1

dp̃
exp(p̃/x)− exp(p̃)

[exp(p̃)− 1][exp(p̃/x)− 1]

[
log2

(
1/M̃2

ϕ

)
+ log

(
64p̃2 sinh(p̃/2) sinh(p̃/(2x))x

)
log
(
1/M̃2

ϕ

)
+ log

(
8p̃ sinh(p̃/2)

)
log
(
8p̃ sinh(p̃/(2x))x

)]
=

1

x

(
Y1(x) log

2
( Ta
Mϕ

)
+ Y2(x) log

( Ta
Mϕ

)
+ Y3(x)

)
(A.69)

162



where

Y1(x) = 4x

∫ ∞

0.1

dp̃
exp(p̃/x)− exp(p̃)

[exp(p̃)− 1][exp(p̃/x)− 1]
= 9.01x+ 4x2 log(e0.1/x − 1)

x<0.1−−−−→ ≈ 9.4x (A.70)

Y2(x) = 2x

∫ ∞

0.1

dp̃
exp(p̃/x)− exp(p̃)

[exp(p̃)− 1][exp(p̃/x)− 1]
log
(
64p̃2 sinh(p̃/2) sinh(p̃/(2x))x

)
x<0.1−−−−→ ≈ 0.71x+ 1.6 + 4.7x log(x) (A.71)

Y3(x) = x

∫ ∞

0.1

dp̃
exp(p̃/x)− exp(p̃)

[exp(p̃)− 1][exp(p̃/x)− 1]
log
(
8p̃ sinh(p̃/2)

)
log
(
8p̃ sinh(p̃/(2x))x

)
x<0.1−−−−→ ≈ 3.2x− 0.82x log(x) + 1.3. (A.72)

To evaluate the integral in the region p̃ < 0.1 we first consider the case where Ta, Tb ≫Mϕ, allowing us

to approximate M̃ϕ ≪ x≪ 1. Next, note that the integrand D(M̃2
ϕ, p̃, x, 0, 0) is peaked near p̃ ∼ M̃ϕ. Near

this peak we can use the approximation p̃ ≪ x. Assuming the contribution from the peak dominates the

integral, we extend the approximation p̃≪ x to the entire integration range p̃ ∈ (0, 0.1), yielding

∫ 0.1

0

dp̃ D(M̃2
ϕ, p̃, x, 0)

∣∣∣∣
p̃,M̃ϕ≪x

≈
∫ 0.1

0

dp̃
(1− x)√
p̃2 + M̃2

ϕ

log2

(√
p̃2 + M̃2

ϕ + p̃√
p̃2 + M̃2

ϕ − p̃

)

≈ 4

3
(1− x) log3

(
0.2

Ta
Mϕ

)
. (A.73)

In the case Tb ≪ Mϕ ≪ Ta the assumptions we used above no longer hold. One can instead use the

approximations p̃, M̃ϕ ≪ 1 along with eM̃ϕ/x ≫ 1 to simplify the integral and show that its contribution is

always dwarfed by the contribution from p̃ > 0.1. For brevity we do not show the calculations here. Thus

we can neglect contributions from p̃ < 0.1 in eq. (A.68) when Tb < Mϕ
2. We find empirically that using

eq. (A.73) for all Tb helps improve the agreement between the analytic estimate and the full numerical

calculation for Ta as low as Ta ∼Mϕ. Thus we approximate the full collision term at high temperatures as

Chigh-T ≈S′32π2 µ
2
aw

w + 1
T 3
a

[
4

3
(1− x)x log3

(
0.2

Ta
Mϕ

)
+ Y1(x) log

2
( Ta
Mϕ

)
+ Y2(x) log

( Ta
Mϕ

)
+ Y3(x)

]
. (A.74)

From the asymptotic behavior at small x we see that Chigh-T is largely insensitive to Tb. At extremely small x,

the logarithmic term is dominant. However, at large temperatures T ≳ 102Mϕ, as x increases to x ∼ 0.5, the

higher powers of the logarithm take over and enhance the collision term by roughly two orders of magnitude.

This enhancement is due to the Bose enhancement of the forward energy transfer. As x further increases

towards unity, the backward collision term starts catching up to forward collision term, eventually completely

cancelling it at x = 1.

In the left panel of figure A.1, we compare our high temperature estimate with the numerically evaluated

collision term. The Bose-Einstein enhancement over the classical Maxwell-Boltzmann result is clearly visible

at high temperatures.

2In fact, even when M̃ϕ ≪ x, the contributions from the p < 0.1 integral remains sub-dominant until extremely large
temperatures, Ta ≥ 105Mϕ.
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Intermediate temperatures, Ta ≤ Mϕ. As M̃ϕ begins to exceed unity, the Dirac delta contribution to

the matrix element ensures that the integral of eq. (A.32) has support dominantly at s̃ = M̃ϕ > 1. However,

here the phase space distribution functions, contributing through the factor D, are exponentially suppressed.

This Boltzmann suppression causes the collision term to fall sharply. In other words, in the intermediate

temperature regime the integral receives its dominant contribution from an energy scale much larger than

either temperature, which means that to excellent approximation the scattering here can be described using

classical statistics.

Using classical statistics, the overall integral over p̃ (eq. (A.68)) can be performed exactly,

CMB = S′32π2M2
ϕ

µ2
aw

(w + 1)

Ta
4

(
K2

(Mϕ

Ta

)
− xK2

(Mϕ

xTa

))
, (A.75)

where K2 is the modified Bessel function of second kind. Again, we can see that at small x the collision term

becomes insensitive to variations in the colder sector. As the temperatures fall further below the inflaton

mass, the collision term becomes Boltzmann-suppressed.

Low temperature limit, ma,b ≪ T ≪ Mϕ. In the low-temperature regime, the integral is dominated

by off-shell inflaton scattering, described by the Heaviside term in eq. (A.67). Thus at low temperatures we

need to evaluate

Clow-T ≈ S′xT
5
a

M4
ϕ

µ4
aw

∫ ∞

0

∫ M̃2
ϕ

0

dp̃ ds̃D(s̃, p̃, x, 0). (A.76)

As D is exponentially suppressed at large values of s̃, we can take the upper limit of the s̃ integral to

infinity with negligible errors. Both the integrand and the limits of integration thus become independent of

temperature, giving

Clow-T ≈ S′ T
5
a

M4
ϕ

µ4
aw

[
x

∫ ∞

0

∫ ∞

0

dp̃ ds̃D(s̃, p̃, x, 0)

]
,

≡ S′ T
5
a

M4
ϕ

µ4
awf(x)

x<0.1−−−−→ 7.9S′ T
5
a

M4
ϕ

µ4
aw. (A.77)

Again, as required, we find that the energy transfer function becomes insensitive to the colder sector as x→ 0.

Total collision term. To get a complete analytic estimate of CE over all temperature ranges we combine

the analytic estimates as

CE(Ta) = Clow-TΘ(Mϕ − Ta) + Chigh-TΘ(Ta −Mϕ) + CMBΘ(0.2Mϕ − Ta)

+ max(CMB, Chigh-T)Θ(Mϕ − Ta)Θ(Ta − 0.2Mϕ), (A.78)

where Chigh-T, CMB and Clow-T are given in eq. (A.74), (A.75) and (A.77). The Heaviside functions ensure

that each function contributes only in its region of validity. This function describes the collision term for all

temperature ranges as long as the scattering particles remain relativistic (Ta,b ≫ ma,b).

In the left panel of figure A.1, we compare the analytic approximations to the energy transfer collision

term derived in high-, low-, and intermediate temperature regions with the exact numerical value. For

illustrative purposes, each approximation is shown over a range larger than that taken in eq. (A.78). Together
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Figure A.1: Left Panel: Total energy transfer collision term C̄E = CE/M5
ϕ as a function of Ta/Mϕ at fixed

temperature ratio x = Tb/Ta = 0.5. The black solid line corresponds to CE numerically evaluated using
eq. (A.32) with matrix element given in eq. (A.66), red dashed line corresponds to Chigh-T (eq. (A.74)), purple
dashed line corresponds to CMB (eq. (A.75)) and the blue dashed line corresponds to Clow-T (eq. (A.77)). Right
Panel: The ratio of the analytic approximation to CE (eq. (A.78)) with the full numerical value as a function
of Ta/Mϕ for x = 0.99, 0.5, 0.001. Results are shown for µa = 0.01Mϕ, µb/µa = 0.5, and ma,b = 10−8Mϕ.

these approximations accuratelly describe the behavior of C in their respective regions. In the right panel

of figure A.1, we compare the ratio of our analytic approximation, eq. (A.78), to the numerically evaluated

collision term using the full matrix element of eq. (A.66). The largest deviation occurs during the transition

from Chigh-T to CMB between Mϕ/4 < Ta < Mϕ and is of the order ∼ 50%.

A.4.2 Yukawa couplings

We next consider two Dirac fermions, ψa and ψb, interacting with a scalar inflaton ϕ via

Lint = yaϕψ̄aψa + ybϕψ̄bψb. (A.79)

In this case we have ζa,b = 1 and S′ = 1/(4(2π)5).

The s-channel scattering amplitude in this theory, for ma,b ≪Mϕ, is given by

|M(s)|2 = 4y2ay
2
b

(
1− 4m2

a

s

)(
1− 4m2

b

s

)
s2

(s−M2
ϕ)

2 +
(
Γ0a + Γ0b

)2 , (A.80)

where

Γ0a,b =
y2a,bMϕ

8π
. (A.81)

For small ya,b the scattering amplitude can be approximated as [42]

|M(s̃)|2 ≈ 8π2 4y
2
aw

w + 1
M̃2
ϕδ(s̃− M̃2

ϕ) + Θ(M̃2
ϕ − s̃)

(
1− 4m̃2

a

s̃

)(
1− 4m̃2

b

s̃

)
4y4aw

s̃2

M̃4
ϕ

+Θ(s̃− M̃2
ϕ)4y

4
aw. (A.82)

165



where w = Γ0,b/Γ0,a = y2b/y
2
a.

To estimate CE analytically, we combine the simplified form of the scattering amplitude given in eq. (A.82)

along with the approximations M̃ϕ ≪ 1 and M̃ϕ ≫ 1 at high and low temperatures respectively. Moreover,

since for fermions the contribution of the distribution functions to the integrand, D, is regular at s̃, p̃ = 0,

the limit ma,b = 0 does not need any special attention.

High temperature limit, Ta ≫ Mϕ. In the high temperature limit only the Dirac delta term and the

second Heaviside theta term in eq. (A.82) contribute to the integral. The collision term then becomes

Chigh-T ≈ S′xT 5
a

[
8π2 4y

2
aw

w + 1
M̃2
ϕ

∫ ∞

0

dp̃ D(M̃2
ϕ, p̃, x, 0) + 4y4aw

∫ ∞

0

dp̃

∫ ∞

M̃2
ϕ

ds̃D(s̃, p̃, x, 0)

]
. (A.83)

Note that as s̃ → 0 the integrand D(s̃, p̃, x, 0) asymptotes to a finite value over all p̃. Thus, we can safely

approximate M̃ϕ = 0 in the integrand, making the integrals independent of Ta,

Chigh-T = S′
[
8π2M2

ϕ

4y2aw

w + 1
V1(x)T

3
a + 4y4awV2(x)T

5
a

]
. (A.84)

where,

V1(x) = x

∫ ∞

0

dp̃ D(0, p̃, x, 0)
x<0.1−−−−→ 0.29 (A.85)

V2(x) = x

∫ ∞

0

dp̃

∫ ∞

0

ds̃D(s̃, p̃, x, 0)
x<0.1−−−−→ 3.0 (A.86)

We can check that at small x we see that Chigh-T is in this limit insensitive to Tb, and at x = 1 all these

functions go to zero as backward energy transfer exactly balances the forward energy transfer. The collision

term at very high temperatures in this case is not sensitive to the inflaton mass.

Intermediate regime, Ta ≲≲≲ Mϕ. For Ta ∼ Mϕ the Dirac delta part of the scattering amplitude will

dominate the collision term. As discussed in section A.4.1 above for scalars, the collision term can be well

approximated using Maxwell-Boltzmann statistics as the temperature drops below the inflaton mass scale,

Ta < Mϕ. Thus, the collision term can be simply written as

CMB = S′8π2M4
ϕ

4y2aw

w + 1

Ta
4

(
K2

(Mϕ

Ta

)
− xK2

(Mϕ

xTa

))
, (A.87)

where K2 is the modified Bessel function of the second kind.

Low temperature regime, ma,b ≪ T ≪ Mϕ. In the low temperature regime, the integral is dominated

by the Θ(M̃2
ϕ − s̃) term. Just as for scalars, we can to a good approximation replace M̃ϕ → ∞ in the limit of

integration. This yields

Clow-T ≈ S′ 4T
9
a

M4
ϕ

y4aw

[
x

∫ ∞

0

∫ ∞

0

dp̃ ds̃ s̃2D(s̃, p̃, x, 0)

]
,

x<0.1−−−−→ 1.4× 103S′y4aw4
T 9
a

M4
ϕ

. (A.88)
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Figure A.2: Left Panel: Energy transfer collision term CE/M5
ϕ as a function of Ta/Mϕ for fixed x = Tb/Ta = 0.5.

The black solid line corresponds to CE numerically evaluated using eq. (A.32) and scattering amplitude as
given in eq. (A.80), the red dashed line corresponds to Chigh-T (eq. (A.84)), the purple dashed line corresponds
to CMB (eq. (A.87)) and the blue dashed line corresponds to Clow-T (eq. (A.88)). Right Panel: Ratio of
the analytic approximation to the total collision term as given in eq. (A.89) to the numerical value as a
function of Ta/Mϕ for fixed temperature ratios Tb/Ta = x = 0.99, 0.5, 0.001. Results are shown for ya = 0.01,
yb/ya = 0.5, and ma,b = 10−8Mϕ.

Total collision term. We combine the analytic estimates derived above to approximate the collision term

for all temperatures as

CE =Clow-TΘ(Mϕ − Ta) + CMBΘ(0.2Mϕ − Ta) + min(CMB, Chigh-T)Θ(Mϕ − Ta)Θ(Ta − 0.2Mϕ)

+ Chigh-TΘ(Ta −Mϕ). (A.89)

where Chigh-T, CMB, and Clow-T are as described in eq. (A.84),(A.87) and (A.88). Eq. (A.89) predicts the

collision term for all temperature ranges as long as the particles remain relativistic (Ta,b ≫ ma,b).

In left panel of figure A.2, we compare our analytic estimate of the energy transfer collision term with the

exact numerical value. Together these approximations accurately model the behavior of CE in their respective

regions. In the right panel of figure A.2, we compare the ratio of our analytic approximation, eq. (A.89), to

the collision term numerically evaluated (eq. (A.32)) with the scattering amplitude in eq. (A.80). The largest

deviation occurs during the transition from Chigh-T to CMB between Mϕ/4 < Ta < Mϕ and is of the order

∼ 50%.

A.4.3 Axionic couplings to gauge bosons

Next, we consider two (Abelian) gauge bosons interacting with a (pseudoscalar) inflaton ϕ via

Lint = − 1

4Λa
ϕFµνa F̃a,µν −

1

4Λb
ϕFµνb F̃b,µν . (A.90)

In this case we have ζa,b = −1 and S′ = 1/(16(2π)5).
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The s-channel scattering amplitude in this theory, for ma,b ≪Mϕ, is given by

|M(s)|2 =
4

128Λ2
aΛ

2
b

s4

(s−M2
ϕ)

2 +
(
Γ0a + Γ0b

)2 , (A.91)

where

Γ0a,b =
M3
ϕ

256πΛ2
a,b

. (A.92)

For Λa,b ≫ 1, we approximate the scattering amplitude as [42]

|M(s̃)|2 ≈2π2

Λ2
a

4w

w + 1

M4
ϕ

T 2
a

δ(s̃− M̃2
ϕ) +

4wT 8
a

128Λ4
aM

4
ϕ

Θ(M̃2
ϕ − s̃)s̃4 +

4wT 4
a

128Λ4
a

Θ(s̃− M̃2
ϕ)s̃

2, (A.93)

where w = Γ0b/Γ0a = Λ2
a/Λ

2
b .

To estimate CE analytically, we combine the simplified scattering amplitude given in eq. (A.93) along

with high and low-temperature approximations in the limits M̃ϕ ≪ 1 and M̃ϕ ≫ 1 respectively.

High temperature limit, Ta ≫ Mϕ. At high temperatures both the Dirac delta contribution and the

Heaviside theta term ∝ s̃2 contribute importantly to the integral. Subsequently we approximate the scattering

amplitude as

Chigh-T = S′xT 5
a

[
2π2

Λ2
a

4w

w + 1

M4
ϕ

T 2
a

∫ ∞

0

dp̃ D(M̃2
ϕ, p̃, x, 0) +

4wT 4
a

128Λ4
a

∫ ∞

0

dp̃

∫ ∞

M̃2
ϕ

ds̃ s̃2D(s̃, p̃, x, 0)

]
. (A.94)

In the above equation we have already assumed m̃a,b = 0. The first integral on the RHS is exactly the same

as that evaluated for scalars at high temperatures. In the second integral, the integrand vanishes as s→ 0,

allowing us to freely take M̃ϕ ≈ 0. This yields

Chigh-T = S′
[
2π2M4

ϕ

Λ2
a

4w

w + 1
T 3
a

(
4

3
(1− x)x log3

( Ta
Mϕ

)
+ Y1(x) log

2
( Ta
Mϕ

)
+ Y2(x) log

( Ta
Mϕ

)
+ Y3(x)

)
+

4w

Λ4
a

Z(x)T 9
a

]
, (A.95)

where

Z(x) =
x

128

∫ ∞

0

dp̃

∫ ∞

0

ds̃ s̃2D(s̃, p̃, x, 0)
x<0.1−−−−→≈ 14. (A.96)

Here the Yi are defined in eq. (A.70), (A.71) and (A.72).

In the left panel of figure A.3 we compare this high temperature estimate with the numerically evaluated

collision term.
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Figure A.3: Left Panel: Total energy transfer collision term CE/M5
ϕ as a function of Ta/Mϕ at fixed

x = Tb/Ta = 0.5. The black solid line corresponds to CE numerically evaluated using eq. (A.32) with
scattering amplitude given by eq. (A.91), the red dashed line corresponds to Chigh-T (eq. (A.95)), the purple
dashed line corresponds to CMB (eq. (A.97)) and the blue dashed line corresponds to Clow-T (eq. (A.98)).
Right Panel: Ratio of our analytic estimate as given in eq. (A.99) to the numerically evaluated collision term
as a function of Ta/Mϕ for fixed temperature ratios Tb/Ta = x = 0.99, 0.5, 0.001. Here we fix Λa = 100Mϕ,
1/Λb

1/Λa
= 0.5 and ma,b = 10−8Mϕ.

Intermediate temperatures, Ta ≤ Mϕ. In the intermediate regime near Ta ∼Mϕ, integral can again be

well approximated with Maxwell-Boltzmann distribution. Thus the collision term can be simply written as

CMB = S′ 2π
2M6

ϕ

Λ2
a

4w

w + 1

Ta
4

(
K2

(Mϕ

Ta

)
− xK2

(Mϕ

xTa

))
, (A.97)

where K2 is the modified Bessel function of the second kind.

Low temperature limit ma,b ≪ T ≪ Mϕ In this regime, the Θ(M̃2
ϕ − s̃) term dominates in eq. (A.32).

We can again take M̃ϕ → ∞ in the limit of integration. This yields

Clow-T ≈ S′T 13
a

4w

M4
ϕΛ

4
a

[
x

128

∫ ∞

0

∫ ∞

0

dp̃ ds̃ s̃4D(s̃, p̃, x, 0)

]
,

x<0.1−−−−→ 7.1× 104S′ 4w

M4
ϕΛ

4
a

T 13
a . (A.98)

Total collision term. We combine the analytic estimates in the following manner,

CE = Clow-TΘ(Mϕ − Ta) + max(CMB, Chigh-T)Θ(Mϕ − Ta) + Chigh-TΘ(Ta −Mϕ). (A.99)

where Chigh-T, CMB, and Clow-T are as described in eq. (A.95),(A.97) and (A.98). This function describes the

collision term for all temperature ranges as long as the scattering particles remain relativistic (Ta,b ≫ ma,b).

In the left panel of figure A.3, we compare our analytic estimate derived in the three regions with the

numerical value. In the right panel of figure A.3, we compare the ratio of our analytic estimate, eq. (A.99),

to the numerically evaluated collision term (eq. (A.32)) with scattering amplitude given in eq. (A.91). The

largest deviation occurs during transition from Chigh-T to CMB between Mϕ/4 < Ta < Mϕ and is of the order
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∼ 50%.

A.4.4 Mixed Yukawa and scalar trilinear couplings

In this case we consider a Dirac fermion ψ and a scalar field χ that interact with the inflaton ϕ via

Lint =
1

2
µaϕχaχa + ybϕψ̄bψb. (A.100)

Note that sector a is not necessarily hotter in this scenario. For this theory ζa = −1, ζb = +1, and

S′ = 1/(8(2π)5).

The spin-summed s-channel scattering amplitude in this theory, for ma,b ≪Mϕ, is given by

|M(s)|2 = 2µ2
ay

2
a

(
1− 4m2

b

s

)
s

(s−M2
ϕ)

2 + (Γ0a + Γ0b)2
, (A.101)

where

Γ0a =
µ2
a

32πMϕ
, Γ0b =

y2bMϕ

8π
. (A.102)

For y, µ≪ 1 we approximate the scattering amplitude as [42]

|M(s̃)|2 ≈ 16π2µ2
a

w

w + 1

1

T 2
a

δ(s̃− M̃2
ϕ) +

1

2

(
1− 4m2

b

s

)
Θ(M̃2

ϕ − s̃)
µ4
aw

M6
ϕ

T 2
a s̃, (A.103)

where w = Γ0b/Γ0a = 4y2bM
2
ϕ/µ

2
a.

To estimate the behavior of CE analytically, we combine the simplified form of the scattering amplitude

given in eq. (A.103) along with the high- and low-temperature approximations M̃ϕ ≪ 1 and M̃ϕ ≫ 1.

High temperature limit, T ≫ Mϕ. When the temperature of the hotter sector, T = max(Ta, Tb), is

larger than the inflaton mass, the Dirac-delta term of the scattering amplitude dominates in the integral in

eq. (A.32), giving

Chigh-T = S′xT 5
a

[
16π2µ2

a

w

w + 1

1

T 2
a

∫ ∞

0

dp̃ D(M̃2
ϕ, p̃, x, 0)

]
. (A.104)

As the scalars χa follow BE distribution, D(M̃2
ϕ, p̃, x, 0) has a pole as M̃2

ϕ → 0. We cannot simply approximate

M̃ϕ = 0, and we proceed analogously to the case of section A.4.1 and split the integral as,

∫ ∞

0

dp̃ D(M̃2
ϕ, p̃, x, 0) =

∫ M̃ϕ

0

dp̃ D(M̃2
ϕ, p̃, x, 0)

∣∣∣∣
p̃,M̃ϕ≪1

+

∫ ∞

M̃ϕ

dp̃ D(M̃2
ϕ, p̃, x, 0)

∣∣∣∣
p̃≫M̃ϕ

. (A.105)
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The integrand in the first term on RHS vanishes for small p̃. Hence, for M̃ϕ ≪ 1 the first integral can be

ignored. Expanding in p̃≫ M̃ϕ limit, the second integral yields∫ ∞

0

dp̃ D(M̃2
ϕ, p̃, x, 0) ≈

∫ ∞

M̃ϕ

dp̃
exp(p̃/x)− exp(p̃)

[exp(p̃)− 1][exp(p̃/x)− 1]

[
log(8p̃ sinh(p̃/2)) log(cosh(p̃/2/x))

+ 2 log
( 1

M̃ϕ

)
log(cosh(p̃/2/x))

]
. (A.106)

As the integrand above diverges only logarithmically as p̃→ 0, the integral is insensitive to its lower limit,

which can be replaced with 0 with negligible error. The collision term at high temperatures can then be

simply written as

Chigh-T = S′16π2 µ
2
aw

w + 1
T 3
a

(
W1(x) log

( Ta
Mϕ

)
+W2(x)

)
, (A.107)

where

W1(x) = 2x

∫ ∞

0

dp̃
exp(p̃/x)− exp(p̃)

[exp(p̃)− 1][exp(p̃/x)− 1]
log(cosh(p̃/2/x)) −→

1.6 x < 0.1

−0.48x2 x > 10

W2(x) = x

∫ ∞

0

dp̃
exp(p̃/x)− exp(p̃)

[exp(p̃)− 1][exp(p̃/x)− 1]
log(8p̃ sinh(p̃/2)) log(cosh(p̃/2/x))

−→

1.1 x < 0.1

−0.30x3 x > 10
(A.108)

Note that the high temperature collision term is approximately insensitive to the colder sector in this case.

The collision term’s logarithmic sensitivity on the inflaton mass depends on whether or not the scalars are

hotter than the fermions. However, in both the cases the collision term is IR-sensitive due to the dependence

on inflaton mass.

In left panels of figure A.4 we compare our high temperature estimate with the numerically evaluated

collision term.

Intermediate temperatures, T ≤ Mϕ. For temperatures near T ∼ Mϕ the Dirac delta part of the

scattering amplitude dominates the behavior of collision term. As discussed above, in this region, the

distribution functions are well approximated by Maxwell-Boltzmann distributions as temperature drops below

the inflaton mass scale, T < Mϕ. The collision term can therefore be simply computed as,

CMB = S′16π2 µ2
aw

(w + 1)

M2
ϕ

4

(
TaK2

(Mϕ

Ta

)
− TbK2

(Mϕ

Tb

))
, (A.109)

where K2 is the modified Bessel function of second kind. Again, we can see that at small/large x the collision

term becomes insensitive to variations in the colder sector.

Low temperature limit, mχ,ψ ≪ T ≪ Mϕ. In the low-temperature regime, the contribution from the

Dirac delta part of the matrix element falls below the one from Θ(M̃2
ϕ − s̃) term in the integral in eq. (A.32).
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Just like in scalar case, to a good approximation we can replace M̃ϕ → ∞ in the integral limit. This yields

Clow-T ≈ S′ T
7
a

M6
ϕ

µ4
aw

[
x

2

∫ ∞

0

∫ ∞

0

dp̃ ds̃ s̃D(s̃, p̃, x, 0)

]
−→

31S′ µ4
aw

M6
ϕ
T 7
a x < 0.1

−21S′ µ4
aw

M6
ϕ
T 7
b x > 10.

(A.110)

Similar to our high temperature estimate, we find that the energy transfer function becomes insensitive to

the colder sector as x→ 0,∞.

Total collision term. To get an analytic estimate of CE over all temperature ranges we combine the

analytic estimates as

CE =Clow-TΘ(Mϕ − T ) + CMBΘ(0.2Mϕ − T ) + max(CMB, Chigh-T)Θ(Mϕ − T )Θ(T − 0.2Mϕ)

+ Chigh-TΘ(T −Mϕ), (A.111)

where T = max(Ta, Tb) and Chigh-T, CMB and Clow-T are as described in eq. (A.107), (A.109) and (A.110).

In the left panels of figure A.4, we compare our analytic estimate with the exact numerical value. In the

right panels of figure A.4, we compare the ratio of our analytic fit, eq. (A.111), with the numerical evaluation

of the full expression (eq. (A.32)) with scattering amplitude given in eq. (A.103). The largest deviation occurs

during the transition from Chigh-T to CMB between Mϕ/4 < T < Mϕ and is of the order ∼ 50%.

A.5 Collision terms for millicharge particle model

The Standard Model particles can inject energy into the hidden sector bath formed by millicharged particle

(MCP) and dark photon via annihilations, decays and scattering. The calculation of the collision term

for these processes involves phase space integration of the matrix element along with appropriate particle

distribution function. In appendix A, we show the how the multi-dimensional phase space integral can

be simplified for energy injection via generic annihilation or decay processes after considering a quantum

statistical thermal distribution of particles. Similarly in appendix A.3 we simplify the phase space integral

for scattering processes. In this section, we describe the particle physics processes that determine the matrix

element in the collision term for MCP model. We highlight the simplifications we employed in calculation of

these processes through electroweak and QCD phase transitions.

In what follows we first discuss energy injection via SM fermion annihilations into MCPs in section A.5.1.

In section A.5.2 and section A.5.3, we describe energy injection into HS due to Z-boson and plasmon decays

into MCPs, respectively. Finally, in section A.5.4 we describe energy transfer via Coulomb scattering between

SM fermions and MCPs. The Coulomb scattering processes has a forward singularity which is mitigated by

plasmon mass.

There are also additional processes involved in energy transfer into the HS bath, such as SM boson

annihilations into MCPs, Compton scattering of MCPs with photons and dark photons, and photon dark

photon fusion into MCPs. We have verified that energy transfer through SM boson annihilations and fusion

processes are around 2 orders of magnitude weaker than the processes we mentioned in previous paragraphs.

The Compton scattering is different because it depends on both the dark coupling constant, e′, and the

millicharge, Q, while all other processes only depend on Q. We have checked that the collision term for

Coulomb scattering is always larger than the one for Compton scattering when e′ < 0.9. Consequently in
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Figure A.4: Left Panel: Magnitude of total energy transfer collision term C̄E = abs(CE)/M5
ϕ as a function

of T = max(Ta, Tb) at fixed temperature ratio x = Tb/Ta = 0.5 (top left) and x = 2 (bottom left). The
collision term is always positive for the top left panel and always negative for the bottom left. The black
solid line corresponds to C numerically evaluated using eq. (A.32), the red dashed line corresponds to Chigh-T
(eq. (A.107)), the purple dashed line corresponds to CMB (eq. (A.109)) and the blue dashed line corresponds
to Clow-T (eq. (A.110)). Right Panel: Ratio of the analytic approximation to CE (eq. (A.111)) to the full
numerical value as a function of T = max(Ta, Tb) for fixed temperature ratios Tb/Ta = x = 0.99, 0.5, 0.001
(top right) and x = 1.01, 1, 1000 (bottom right). Results are shown for µa = 0.01Mϕ, 2ybMϕ/µa = 0.5, and
ma,b = 10−8Mϕ.
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our study we neglect the contribution of all the processes mentioned in this paragraph, and we omit their

detailed calculation here for brevity.

A.5.1 Fermion annihilations

The center-of-momentum (CM) frame spin-summed cross-section for SM fermion annihilation into MCPs is

given by

σff→ψψ =
4πQ2Nc(f)α

2

s3

√
s− 4m2√
s− 4m2

f

×
{
4

3
(2m2 + s)(2m2

f + s)

[
Q2
f −

QfCV
cos2 θW

s(s−m2
Z)

(s−m2
Z)

2 +m2
ZΓ

2
Z

]
+

1

4 cos4 θW

s2(s+ 2m2)

(s−m2
Z)

2 +m2
ZΓ

2
Z

[
4

3
(C2

V + C2
A)(s−m2

f ) + 4(C2
V − C2

A)m
2
f

]}
, (A.112)

where CV and CA are the vector and axial couplings of the SM fermion f to the Z boson, respectively, given

by CV = T 3
f − 2Qf sin

2 θW and CA = T 3
f . Here the term proportional to Q2

f comes from the photon-mediated

interaction. The terms proportional to C2
V and C2

A comes from the Z-mediated interaction while the term

proportional to CVQf comes from the interference between photon and Z-mediated terms.

The cross-section in eq. (A.112) has a pole at s =M2
Z′ , which can be seen explicitly in the narrow width

limit,

1

(s−M2
Z)

2 + Γ2
ZM

2
Z

≈ 1

M4
Z

Θ(M2
Z − s) +

πδ(s−M2
Z)

MZΓZ
+

1

s2
Θ(s−M2

Z), (A.113)

where Θ is the Heaviside function. The contribution to the collision integral from the Dirac delta term gives

an identical contribution to the collision term due to Z-boson decays (see appendix A.6 or Refs. [190, 191]),

discussed in the next subsection. To avoid double-counting we subtract the Dirac delta piece. Additionally, we

also neglect the terms proportional to Θ(M2
Z − s) as the contribution from those terms is heavily suppressed

compared to others. This yields the effective off-shell cross-section

σoff
ff→ψψ =

4πQ2Nc(f)α
2

s3

√
s− 4m2√
s− 4m2

f

×
{
4

3
(2m2 + s)(2m2

f + s)

[
Q2
f +Θ(s−M2

Z)

(
(C2

V + C2
A)

4 cos4 θW
− CVQf

cos2 θW

)]
−Θ(s−M2

Z)
(C2

V + 3C2
A)m

2
f

2 cos4 θW
(s+ 2m2)

}
. (A.114)

We find that the cross-section from photon contributions alone (i.e., retaining only terms proportional to Q2
f )

to be at least an order of magnitude larger than the contribution from the remaining terms that involve at

least one coupling to the Z. Thus, in the analytical calculation of the leak factor in eq. (5.15) we neglect the

Z-mediated contributions for simplicity.

The forward energy transfer collision term, Cf , corresponding to fermion annihilations into MCPs is

calculated by using the cross-section in eq. (A.114) inside the generic collision term derived in eq. (A.19)

and summing over all SM fermions. The total energy transfer collision term is then evaluated through

C = Cf(TSM) − Cf(THS). We include quarks, treated as free fermions, for TSM > TQCD, where we take
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Figure A.5: Collision terms from the three s-channel processes (fermion annihilations, Z decays, and plasmon
decays) for Q = 10−9 and m = 10 MeV (left), m = 10 GeV (center), and m = 1 TeV (right). We plot C/T 6

SM,
the maximum value of which provides the dominant contribution to the energy injected into the hidden sector.
The black line corresponds to the collision term from SM fermion annihilations, the green line to Z decays
(eq. (A.115)), and the orange line to plasmon decays (eq. (A.123)). Vertical red dashed and purple dashed
lines mark the temperatures used for the QCD and electroweak phase transitions, respectively. Fermion
annihilations into MCPs provide the dominant s-channel energy transfer process except in the mass range
0.3 GeV ≲ m ≲ 40 GeV where Z-boson decays dominate.

TQCD = 200 MeV; for TSM < TQCD we neglect hadronic contributions, as they are generally Boltzmann-

suppressed.

In section 5.2.2, we found that the maximum of Cfa4/H roughly determines the final comoving energy

density of dark radiation, where Cf is the forward collision term andH is the Hubble rate. As Cfa4/H ∝ Cf/T 6
SM,

in figure A.5 we plot Cf/T 6
SM for fermion annihilation into MCPs (black line) for different values of m. The

collision term Cf/T 6
SM reaches its maximum around TSM ∼ m/2 below which it becomes Boltzmann suppressed.

(We focus on the regime with m > me.)

Above the electroweak phase transition, the dark photon mixes with the hypercharge gauge boson. In the

s≫M2
Z limit, the cross-section in eq. (A.112) reduces to the cross-section describing annihilation through a

hypercharge boson. For simplicity, we neglect the temperature dependence of the Higgs vev, and thus the

(tree-level) Z mass, through the electroweak phase transition, as Z contributions are subleading below the

transition and negligible above it.

A.5.2 Z-boson decay

Next, we discuss energy transfer from Z decays into MCPs. The collision term due to Z decays is given by

CZ→ψψ = ΓZ→ψψmZ(nZ − neq,Z(THS)), (A.115)

where

ΓZ→ψψ =
Q2α tan2 θW

3
mZ

√
1− 4m2

m2
Z

(
1 +

2m2

m2
Z

)
Θ(mZ −m/2), (A.116)

nZ is the Z number density, nZ,eq is the equilibrium number density of bosons with three degrees of freedom,

and Θ is the Heaviside function. As Z bosons are always in equilibrium with the SM plasma, we have
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nZ = nZ,eq(TSM).

At temperatures above TEW = 160 GeV [30], electroweak symmetry is unbroken and thus the contribution

from Z decays is absent. We use a simple model of the electroweak phase transition, where we set CZ→ψψ = 0

for T > TEW but neglect any temperature variation in the Z mass for T < TEW. As the main contribution

from Z decays arises at temperatures significantly smaller than TEW, this is a sufficient approximation

for our purposes. In figure A.5, we plot the resulting collision term, normalized by T 6
SM, as the green

line. The net energy injected into the HS is dominated by the peak values of C/T 6
SM, which occurs around

TSM ∼MZ/4 ≪ TEW.

The contribution from Z decays to the total energy injected into the HS can dominate over the contribution

from photon-mediated fermion annihilation when 0.3 GeV ≲ m ≲ 40 GeV. Elsewhere, Z decays provide a

sub-leading contribution.

A.5.3 Plasmon decay

Below the electroweak phase transition, TSM < TEW, the thermal effects in the plasma cause photons to

acquire an in-medium plasma mass. The corresponding plasmons can decay into MCPs with the collision

term given by [153, 227, 228]

Cγ→ψψ =
∑
pol

∫
d3k

(2π)3

(
1

eω/TSM − 1
− 1

eω/THS − 1

)
ωΓγ→ψψ, (A.117)

where

Γγ→ψψ =
αQ2

3ω
Z(m2

γ + 2m2)

√
1− 4m2

m2
γ

. (A.118)

Here Z is a wave-function renormalization factor and mγ is the plasmon mass, both of which differ for

transverse and longitudinal polarizations. For a relativistic photon, where ω(k) ≡
√
m2
γ + k2 ≫ mγ ,

the decays from the longitudinal polarization are negligible compared to the decays from the transverse

polarizations [227, 228]. Moreover, for the transverse polarization at relativistic energies we have Z ≈ 1 and

m2
γ =

∑
f

gfQ
2
f

4α

π

∫ ∞

0

dp p ff (p), (A.119)

where ff is the phase space distribution of the SM fermion f and the summation runs over all fermions; gf

counts the spin degrees of freedom of each fermion. Since mγ ≪ TSM, approximating ω ≫ mγ in eq. (A.117)

is valid as the integrand is dominated by momenta with ω ∼ TSM. Thus the collision term simplifies to

Cγ→ψψ =
2αQ2

3
(m2

γ + 2m2)

√
1− 4m2

m2
γ

× (nγ(TSM)− nγ(THS)) , (A.120)

where nγ is the equilibrium number density of photons. Energy transfer from plasmon decay is prohibited

when mγ < 2m. Since mγ ∼ 0.1TSM, energy injection via plasmon is only efficient at high temperatures

where TSM > 10m.

Above the electroweak phase transition, TSM > TEW, we need to evaluate the decay of hypercharge bosons

into MCPs. The collision term for this process is similar to that for photon decay, up to the replacement
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of the electric charge e by the hypercharge coupling e/ cos θW and the fermion electric charges Qf by their

hypercharges QY . Consequently, we obtain

CB→ψψ =
2αQ2

3 cos4 θW
(m2

B + 2m2)

√
1− 4m2

m2
B

× (nB(TSM)− nB(THS)) , (A.121)

where nB is the equilibrium number density of hypercharge gauge bosons and mB is the thermal mass, given

by

m2
B =

11απ

3 cos2 θW
T 2
SM, (A.122)

for large temperatures. We take the plasmon decay contribution to be given by

Cplasmon =

Cγ→ψψ TSM < TEW

CB→ψψ TSM > TEW.
(A.123)

In figure A.5 we compare the resulting collision term Cf/T 6
SM (orange line) to the collision term describing

photon-mediated SM fermion annihilations. The collision term Cf/T 6
SM from fermion annihilation is maximized

around TSM = m/4, while that from plasmon decay is maximized around TSM = m/10. Since the maximum

value of C/T 6
SM controls the final energy injected into the HS, the energy injected into the HS via plasmon

decay is subdominant to the energy injected via fermion annihilations, even though at high temperatures

the collision term for plasmon decay is larger than the collision term for fermion annihilation. Thus, the

approximations used in Cplasmon near the electroweak and QCD phase transitions are of marginal consequence

in evaluating the resulting dark radiation density.

A.5.4 Coulomb scattering

SM particles can also inject energy into the HS through the Coulomb scattering of MCPs with SM particles,

ψ + f → ψ + f . The cross-section for Coulomb scattering has a forward singularity, which we regulate by

adding a plasmon mass in the propagator [153].

Below the electroweak scale, the Coulomb scattering is mediated by photons, with the plasmon mass given

by eq. (A.119). The relevant spin-summed matrix element for SM fermion scattering with MCPs is given by

|M|2fψ→fψ =
8Q2Nc(f)Q

2
fe

4

(t−m2
γ)

2

(
2(s−m2

f −m2)2 + 2st+ t2
)
, (A.124)

where Q, Qf , m and mf are the charge and mass of the MCP and the SM fermion, respectively, Nc(f) is the

color factor of the SM fermion, mγ is the plasmon mass given by eq. (A.119), and s and t are the Mandelstam

variables. The collision term for the above process, including quantum statistics, is given by eq. (A.63) with
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mϕ → mγ and the coefficients of non-zero cnmλ, defined in eq. (A.57), given by

c222
16πQ2Q2

fe
4
=

3

4
,

c202
16πQ2Q2

fe
4
= −1

4
,

c022
16πQ2Q2

fe
4
= −1

4
,

c002
16πQ2Q2

fe
4
=

3

4
,

c001
16πQ2Q2

fe
4
= (m2

f +m2),
c201

16πQ2Q2
fe

4
= m2,

c021
16πQ2Q2

fe
4
= m2

f ,

c000
16πQ2Q2

fe
4
= 4m2

fm
2. (A.125)

Additionally, we multiply the resulting collision term by a factor of four to account for all combinations of

particles and antiparticles. While solving the Boltzmann equations in section 5.2, we sum over the contribution

from all SM fermions. Again, we include quarks for TSM > TQCD, and neglect hadron contributions for

TSM < TQCD.

Above the electroweak scale the Coulomb scattering is mediated by the hypercharge boson. For a (Weyl)

SM fermion scattering with MCPs, the spin-summed matrix element is

|M|2fψ→fψ =
4Q2Nc(f)QY (f)

2e4

cos4 θW (t−m2
B)

2

(
2(s−m2

f −m2)2 + 2st+ t2
)
, (A.126)

where θW is the weak mixing angle, QY (f) is the hypercharge of the fermion, and mB is the thermal mass of

hypercharge gauge boson (eq. (A.122)). The coefficients cnmλ for the above matrix element are the same as

those given in eq. (A.125) up to an overall rescaling by the factor Q2
Y /(2Q

2
f cos

4 θW ). Additionally, the Higgs

doublet can also scatter with MCPs, with the corresponding matrix element being

|M|2Hψ→Hψ =2
Q2e4

4 cos4 θW

1

(t−m2
B)

2
× 8[s2 + st−m2(t+ 2s) +m4]. (A.127)

The corresponding coefficients cnmλ are

c222
4πQ2e4/ cos4 θW

=
3

4
,

c202
4πQ2e4/ cos4 θW

= −1

4
,

c022
4πQ2e4/ cos4 θW

= −1

4
,

c002
4πQ2e4/ cos4 θW

= −1

4
,

c201
4πQ2e4/ cos4 θW

= m2,
c001

4πQ2e4/ cos4 θW
= −m2. (A.128)

Unlike the s-channel processes, for Coulomb scattering the forward collision term describing energy

transfer into the HS is sensitive to the distributions of both HS and SM particles. Moreover, the backward

collision term for Coulomb scattering is of the same order of magnitude as the forward collision term for

THS > 0.1TSM, while the backward term for s-channel processes is almost negligible compared to the forward

term for THS < 0.9TSM.

In figure A.6 we compare the total collision term for Coulomb scattering between MCPs and SM particles

with the forward collision term for SM fermion annihilation into MCPs. The collision term for Coulomb

scattering decreases for smaller THS as the number density of HS particles in the initial state drops. The

Coulomb scattering collision becomes the dominant process for THS/TSM > 0.35.

A.6 Collision terms in B − L model

The dominant energy injection from the Standard Model plasma into right-handed neutrinos occurs through

the annihilations of the Standard Model fermions into right-handed neutrinos: f + f̄ → Z ′ → ν̄R + νR. In
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Figure A.6: Comparison between Coulomb scattering and fermion annihilation for Q = 10−9 and MCP
masses m = 10 MeV (left) and m = 10 GeV (right). Green, blue and orange lines show the collision term
from Coulomb scattering, normalized by T 6

SM, at different values of THS/TSM as indicated in the legend, while
the black line shows the forward collision term due to SM fermion annihilation. The energy transferred via
Coulomb scatterings dominates over that via annihilation for THS > 0.35TSM.

appendix A we compute the collision term describing the forward energy transfer for the above process and

include the quantum statistical phase space distribution for SM fermions. The corresponding collision term

for the forward reaction is given by

Cf =
1

32π4

∫ ∞

4m2
f

ds(s− 4m2
f )sσff̄→νRν̄R(s)TSMGζf (

√
s/TSM), (A.129)

where σff̄→νRν̄R is the spin-summed center-of-mass (CM) frame cross-section, and Gζ is a dimensionless

function given by eq. (A.18) and is determined by the quantum statistical distribution f(p) = [e−E/T + ζ]−1,

where ζ = 1 for fermions and ζ = −1 for bosons. Since the f particles are fermions, we take ζf = 1. In the

limit fermion f can be approximated to have a Maxwell-Boltzmann distribution (ζf → 0), G asymptotes

to the second order modified Bessel function of second kind, K2, and eq. (A.129) then matches with the

well-known result in Ref. [175].

The formula for the cross-section is

σff̄→νRν̄R =
1

2π
Q2
fg

′4Nc(f)S(f)
s

(s−M2
Z′)2 + Γ2

Z′M2
Z′

√
s

s− 4m2
f

(
1 +

2m2
f

s

)
, (A.130)

where Qf is the B − L charge, Nc(f) is color factor that is equal to 3 for quarks and 1 for leptons, mf is the

mass of the fermion, and ΓZ′ is the total decay width of the Z ′ boson,

ΓZ′ =
g′2

12π
MZ′

3 + 2mf<MZ′∑
f

Q2
fNc(f)

(
1 +

2m2
f

M2
Z′

)√
1−

4m2
f

M2
Z′

 . (A.131)

Above the first factor of 3 comes from decays into νL and νR and the summation is over all SM fermions,

except νL, with mass mf < MZ′/2.
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In the narrow width limit, ΓZ′ ≪MZ′ , we can approximate

s

(s−M2
Z′)2 + Γ2

Z′M2
Z′

≈ s

M4
Z′

Θ(M2
Z′ − s) +

πMZ′δ(s−M2
Z′)

ΓZ′
+

1

s
Θ(s−M2

Z′), (A.132)

where Θ is the Heaviside function. The resonant part of the cross-section, which correspond to the term with

Dirac delta, is proportional to g′2 due to the division by the total decay width, while the cross-section due to

contact interactions, which correspond to terms with Heaviside functions, are proportional to g′4. As g′ is

typically expected to be much smaller than 1, the energy injection is primarily determined by the resonant

cross-section.

The contact interactions have off-shell Z ′ bosons. Consequently, the mediator Z ′ boson is a virtual

particle and is unaffected by the expanding universe. The collision term corresponding to contact interaction,

Coff
ff→νRνR

, is then simply given by eq. (A.129) with the following cross-section,

σoff
ff̄→νRν̄R

=
1

2π
Q2
fg

′4Nc(f)S(f)

√
s

s− 4m2
f

(
1 +

2m2
f

s

)[
s

M4
Z′

Θ(M2
Z′ − s) +

1

s
Θ(s−M2

Z′)

]
. (A.133)

In the limit ΓZ′ is much larger than the Hubble rate, the on-shell Z ′ bosons do not experience any

significant evolution in the expanding universe. Consequently, we can calculate the forward collision term

due to the contribution from the Dirac-delta term, Con
ff→νRνR

, using eq. (A.129). After summing over the

annihilations from all SM fermions, we obtain

Con
ff→νRνR =

3M3
Z′

2π2

[
Γ(Z ′ → νR)Γ(Z

′ → SM)

ΓZ′

]
TSMGζf (MZ′/TSM), (A.134)

where Γ(Z ′ → νR) and Γ(Z ′ → SM) are decay widths into right-handed neutrinos and SM fermions,

respectively. Note that the above collision matches with the effective collision term we derived using

Boltzmann equations in eq. (5.27).

In the limit ΓZ′ is much smaller than the Hubble rate, the on-shell Z ′ bosons experience significant evolution

in an expanding universe and hence we can no longer use eq. (A.134). Instead, we need to independently

solve for the evolution of abundance of Z ′ using Boltzmann equations given in eqs. (5.22)-(5.24).
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Appendix B

Collision operators relevant for

cannibals

In this appendix we derive the various collision terms that are used in chapter 4. We first calculate the

rate of 3 → 2 interactions that drive the cannibalistic evolution. We then calculate the 2 → 2 scattering

rate between cannibals that are required to maintain internal kinetic equilibrium. Finally, we derive the

perturbation equations for cannibal decaying into relativistic particles.

B.1 Three to two cannibal interaction

We begin by considering a number changing process of form

1 + 2 + 3 → 4 + 5.

The corresponding scattering collision term is given by

C =

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3
d3p5

2E5(2π)3
(2π)4δ4(p1 + p2 + p3 − p4 − p5)S|M|2 (B.1)

[f1(p1)f2(p2)f3(p3)(1± f4(p4))(1± f5(p5))− f4(p4)f5(p5)(1± f1(p1))(1± f2(p2))(1± f3(p3))].

Here |M|2 is the spin and polarizaition summed matrix element and S include the identical particle factors

of initial and final states. Define Lorentz invariant phase space volume element as,

dΠk =

k∏
i=1

d3pi
2Ei(2π)3

. (B.2)

We can neglect the contribution from final state effects because we are in interested in regimes where T ≪ m,

where Maxwell-Boltzmann distribution is appropriate. Consequently, the collision term simplifies to

C =

∫
dΠ5(2π)

4δ4(p1 + p2 + p3 − p4 − p5)S|M|2[f1(p1)f2(p2)f3(p3)− f4(p4)f5(p5)]. (B.3)
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For such a collision term, principle of detailed balance tells us that the equilibrium distribution f is of the

form:

feq(p) = e−p
0/T . (B.4)

In the absence of chemical equilibrium but assuming kinetic equilibrium ( due to some strong 2 → 2 scattering

process), the distribution function will attain a chemical potential,

f(p) = eµ/T e−p
0/T =

n

neq
e−p

0/T , (B.5)

where n = 2m
∫
dΠ1f(p) is the number density and neq is the equilibrium number density. Substituting this

in the collision term we get,

C =

∫
dΠ5(2π)

4δ4(p1 + p2 + p3 − p4 − p5)S|M|2[e3µ/T e−(p01+p
0
2+p

0
3)/T − e2µ/T e−(p04+p

0
5)/T ]

=[e3µ/T − e2µ/T ]

∫
dΠ5(2π)

4δ4(p1 + p2 + p3 − p4 − p5)S|M|2e−(p01+p
0
2+p

0
3)/T

=n2[n− neq]

[
1

n3eq

∫
dΠ5(2π)

4δ4(p1 + p2 + p3 − p4 − p5)S|M|2e−(p01+p
0
2+p

0
3)/T

]
≡⟨σv2⟩n2[n− neq]. (B.6)

Here in the second equality we made use of energy conservation to pull out the factor e−(p01+p
0
2+p

0
3)/T .

Now let us concentrate on the form of ⟨σv2⟩:

⟨σv2⟩ = 1

n3eq

∫
dΠ5(2π)

4δ4(p1 + p2 + p3 − p4 − p5)S|M|2e−(p01+p
0
2+p

0
3)/T . (B.7)

In the limit the ingoing particles are non-relativistic, the s-wave component of the matrix element dominates

over other component and consequently the matrix element can be approximated to be momentum independent.

The remaining integral only has dependence on m (mass of the interacting particles) and T . We would like

to disentangle dependence on them so that we just have an integral over dimensionless number.

We are primarily interested in the scenario with T ≪ m where the cannibal dominated era begins. In this

limit, we can assume that particles 1, 2 and 3 are non-relativistic,

p0i ≈ m+
p⃗2i
2m

i = 1, 2, 3.

However, particles 4 and 5 produced from such 3 → 2 process will necessarily be relativistic due to energy

conservation,

p0j = m

√
1 +

p⃗2j
m2

|p⃗j | ≫ |p⃗i| i = 1, 2, 3 j = 4, 5.
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With the above approximations we can rewrite ⟨σv2⟩ as,

⟨σv2⟩ ≈S|M|2 1

n3eq

∫
d3p1

2m(2π)3
d3p2

2m(2π)3
d3p3

2m(2π)3
d3p4

2
√
m2 + p⃗24(2π)

3

d3p5

2
√
m2 + p⃗25(2π)

3
e−3m/T e−(p⃗21+p⃗

2
2+p⃗

2
3)/(2mT )

× (2π)4δ3(−p⃗4 − p⃗5)δ(3m−
√
m2 + p⃗24 −

√
m2 + p⃗25). (B.8)

Looking at above equation, we get obvious choice of making p⃗i dimensionless with

x⃗i =
p⃗i√
mT

x⃗j =
p⃗j
m

i = 1, 2, 3 j = 4, 5.

This yields,

⟨σv2⟩ ≈S|M|2 1

n3eq

∫
(
√
mT )3d3x1
2m(2π)3

(
√
mT )3d3x2
2m(2π)3

(
√
mT )3d3x3
2m(2π)3

m3d3x4

2m
√
1 + x⃗24(2π)

3

m3d3x5

2m
√

1 + x⃗25(2π)
3

× e−3m/T e−(x⃗2
1+x⃗

2
2+x⃗

2
3)/2(2π)4

1

m3
δ3(−x⃗4 − x⃗5)

1

m
δ(3−

√
1 + x⃗24 −

√
1 + x⃗25). (B.9)

=S|M|2 1

n3eq
(
√
mT )9

1

m3
e−3m/T

[∫
d3x1
2(2π)3

d3x2
2(2π)3

d3x3
2(2π)3

d3x4

2
√

1 + x⃗24(2π)
3

d3x5

2
√

1 + x⃗25(2π)
3
e−(x⃗2

1+x⃗
2
2+x⃗

2
3)/2

× (2π)4δ3(−x⃗4 − x⃗5)δ(3−
√

1 + x⃗24 −
√
1 + x⃗25)

]
. (B.10)

≡S|M|2 1

n3eq
(
√
mT )9

1

m3
e−3m/T × ξ (B.11)

where ξ is some dimensionless number. Using equilibrium number density formula neq(T ) = (mT2π )3/2e−m/T ,

the above becomes

⟨σv2⟩ = ξS|M|2 (2π)9/2

(
√
mT )9

e3m/T (
√
mT )9

1

m3
e−3m/T

=
ξ′

m3
S|M|2 (B.12)

where ξ′ = (2π)9/2ξ.

The quantity ξ′ can be evaluated analytically,

ξ′ =(2π)9/2

(∫
d3x

2(2π)3
e−x⃗

2/2

)3 ∫
d3x4

2
√
1 + x⃗24(2π)

3

d3x5

2
√
1 + x⃗25(2π)

3
(2π)4δ3(−x⃗4 − x⃗5)δ(3−

√
1 + x⃗24 −

√
1 + x⃗25)

=(2π)9/2
1

25(2π)15
(2π)4

(∫
dxe−x

2/2

)9 ∫
d3x5

1

1 + x25
δ(2
√

1 + x⃗25 − 3) (B.13)

=

√
5

192π
. (B.14)

B.1.1 Calculating matrix element for real scalar field

Consider theory with

V (ϕ) =
λ

4!
ϕ4 +

A

3!
ϕ3 +

m2

2
ϕ2 =

λ

4!
ϕ4 +

am

3!
ϕ3 +

m2

2
ϕ2.
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The topologically distinct diagrams which contribute to 3 to 2 process are

1
(p1+p2+p3)2−m2

1
(p1+p2−p4)2−m2

1
(p1−p5−p4)2−m2

p1

p3

p2

p4

p5

p1

p2

p3 p5

p4

p4

p1

p3

p2

p5

1
(p1+p2)2−m2

1
(p1+p2+p3)2−m2

1
(p1+p2)2−m2

1
(p1+p2−p4)2−m2

1
(p1−p4)2−m2

1
(p1+p2−p4)2−m2

p1

p2

p4

p5

p3

p1

p2

p3
p5

p4

p1 p4

p3 p5

p2

The third and the fourth diagrams each have two more arrangements with different permutations of p1, p2

and p3. The second, fifth and the sixth diagram has 5 more terms similarly. Thus we can write the matrix

element as

iM =Aλ
( 1

(p1 + p2 + p3)2 −m2
+

6

(p1 + p2 − p4)2 −m2
+

3

(p1 − p4 − p5)2 −m2

)
−A3

( 3

(p1 + p2)2 −m2

1

(p1 + p2 + p3)2 −m2
+

6

(p1 + p2)2 −m2

1

(p1 + p2 − p4)2 −m2

+
6

(p1 − p4)2 −m2

1

(p1 + p2 − p4)2 −m2

)
(B.15)

Assuming p1, p2, p3 as non-relativistic and p4, p5 as semi relativistic; the momentum energy conservation gives

|p⃗4| = |p⃗5| =
√
5

2
m p⃗4 = −p⃗5. (B.16)

The above approximations simplifies the matrix element to

iM =
5a

8m
(−3λ+ a2)

S|M|2 =
1

3!× 2!

25a2

64m2
(3λ− a2)2 (B.17)
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The 3-to-2 cross section is then

⟨σv2⟩ = ξ′

m3
S|M|2 =

25
√
5a2

147456πm5
(3λ− a2)2 (B.18)

B.2 Cannibal 2-to-2 scattering rate

The 2-to-2 scattering rate can be computed from the forward piece of the collision term, Γsc = Ĉ/ncan, where

Ĉ is given by

Ĉ =

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3
(2π)4δ4(p1 + p2 − p3 − p4)S|M|2f(p1)f(p2). (B.19)

Here |M|2 is the matrix element, S = 1/4 includes the identical particle factors of initial and final states

and f is the phase-space distribution. Since we are primarily concerned with the scattering rate when the

cannibal particles are non-relativistic, we have dropped the final state phase space distributions.

When the cannibal fluid is in kinetic equilibrium, f is given by the Maxwell-Boltzmann distribution,

f(p) = e(µ−E)/Tc . (B.20)

In equilibrium, the collision term can be written as

Ĉ =e2µ/Tc
Tc

64π4

1

2

∫ ∞

4m2

dsA(s)
√
s− 4m2K1(

√
s/Tc) (B.21)

where K1 is the modified Bessel function of the second kind, s is the Mandelstam variable, and A(s) is the

integral of the squared matrix element over final state phase space,

A(s) =
1

2

1

8π

√
s− 4m2

√
s

∫
dΩ

4π
|M|2. (B.22)

We have included factors of 1/2 in both eq. (B.21) and eq. (B.22) to account for identical particles appearing

in both the final and initial states.

For the cannibal Lagrangian given in eq. (4.1), we find the matrix element describing scattering is, in the

non-relativistic limit,

|M|2 =

(
λ− 5

3

g2

m2

)2

. (B.23)

Inserting the above matrix element in eq. (B.21) and expanding the integrand in T/m gives the leading

contribution to the collision term in the non-relativistic limit:

Ĉ ≈e2(µ−m)/Tc

(
mTc
2π

)3
√
Tc
m

(
λ− 5

3
g2

m2

)2
64π3/2m2

. (B.24)

Expressing the chemical potential in terms of number density and the temperature of the cannibal fluid
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using the relation

ncan = eµ/Tcncan,eq = e(µ−m)/Tc

(
mTc
2π

)3/2

(B.25)

yields our desired result

Γsc =
Ĉ

ncan
=ncan⟨σcvc⟩, (B.26)

where

⟨σcvc⟩ =
1

64π3/2m2

(
λ− 5

3

g2

m2

)2√
Tc
m
. (B.27)

B.3 Perturbed collision operators for a decaying semi-relativistic

particle

In this section we derive the contribution from cannibal decays to the cosmological perturbation equations.

We include the decay terms up to first order in wc and c
2
s, or equivalently up to first order in Tc/m.

We begin by writing the Boltzmann equations for a generic particle in a perturbed FRW universe, whose

metric given by

ds2 = −[1 + 2ψ]dt2 + a2(t)[1− 2ϕ](dx2 + dy2 + dz2). (B.28)

Expressing the particle’s phase space distribution in the form, f(p⃗, x⃗, t) = f̄(p, t) + δf(p⃗, x⃗, t), where f̄ and δf

are unperturbed homogeneous and perturbed inhomogeneous pieces, respectively, the Fourier transform of

the Boltzmann equation is given, to first order in perturbations, by

df

dt
=
∂f

∂t
+ i

k⃗ · p⃗
aE

δf −
[
H − dϕ

dt

]
p2

E

∂f

∂E
− i

k⃗ · p⃗
a
ψ
∂f̄

∂E
=

1 + ψ

E
Ĉ[f ]. (B.29)

Here k⃗ is the comoving Fourier wavenumber and Ĉ is the collision operator.

We are interested in the collision operator that describes the cannibal particle decaying into pairs of

relativistic SM particles. The corresponding collision operators for the cannibal and radiation distributions

are then given by

ĈΓ[fc(p)] = −1

2

∫
dΠ1dΠ2(2π)

4δ(E − E1 − E2)δ
3(p⃗− p⃗1 − p⃗2)S|MΓ|2fc(p) (B.30)

ĈΓ[fr(p1)] =

∫
dΠdΠ2(2π)

4δ(E − E1 − E2)δ
3(p⃗− p⃗1 − p⃗2)|MΓ|2fc(p), (B.31)

where fc and fr are distribution functions for the cannibals and relativistic SM particles, respectively,

dΠk = d3k/[(2π)32Ek], |MΓ|2 is the matrix element corresponding to cannibal decays into radiation, and S

is the identical particle factor. The collision term for SM radiation does not include a factor of 1/2 because

two SM particles are produced in the decay. We have neglected the contribution from final state effects as

well as those from inverse decays because the cannibal decays become important (Γ ∼ H) when Tc ≪ m.

To obtain the evolution equations for density and velocity perturbations we take the energy-weighted

phase space integral (
∫

d3p
(2π)3E) and the phase space integral of the first moment (

∫
d3p
(2π)3 [⃗k · p⃗]) of eq. (B.29).

186



B.3.1 Cannibal Perturbation Equations

First we use the definition of the rest-frame decay width, Γ, in eq. (A.34) to evaluate eq. (B.30) for the

cannibal collision operator:

ĈΓ[fc] = −mΓfc, (B.32)

where m is the mass of the cannibal particle. The Boltzmann equation for cannibals (eq. (B.29)) will also

include collision operators originating from cannibal self-interactions. However, these collision operators do

not contribute to the perturbation equations for energy density or velocity as the self-interactions do not

affect the energy and momentum of the fluid. Consequently, only the contribution from the decay collision

operator remains after integrating the Boltzmann equation for cannibals over
∫

d3p
(2π)3E:

∂ρcan
∂t

+
1

a
(ρ̄can + P̄can)θcan + 3

[
H − dϕ

dt

]
(ρcan + Pcan) = −mΓ(1 + ψ)ncan. (B.33)

To obtain the above result we used the definitions of energy density (ρ), number density (n), and pressure

(P) in terms of f . We also used the definition of the divergence of fluid velocity:

θ =
i

ρ̄(1 + w)

∫
d3p

(2π)3
(k⃗ · p⃗)δf. (B.34)

Writing ρ and P in terms of homogeneous and perturbed pieces,

ρ = ρ̄(1 + δ) P = wρ̄+ c2sρ̄δ, (B.35)

in eq. (B.33) and using the energy conservation equation of the cannibal fluid (eq. (4.24)) to evaluate dρ̄can/dt,

we obtain

δ̇c +
1

a
(1 + wc)θc − 3ϕ̇(1 + wc) + 3H(c2s − wc)δc = −Γ

mn̄can
ρ̄can

[
ψ +

δncan

n̄can
− δc

]
, (B.36)

where dot denotes differentiation with respect to t.

While Tc ≪ m, we can further simplify the RHS by relating ncan to ρcan and Pcan using

ρcan ≈ m

∫
d3p

(2π)3

(
1 +

p2

2m2

)
fc = mncan +

3

2
Pcan. (B.37)

It follows that

δncan

n̄can
≈ δc

1− 3
2c

2
s

1− 3
2wc

≈ δc

[
1 +

3

2
(wc − c2s) +O(w2

c )

]
. (B.38)

Using the above result to evaluate δncan/ncan in eq. (B.36), we obtain the perturbation equation for δc by

expanding the terms proportional to Γ to first order in wc and c
2
s,

δ̇c +
1

a
(1 + wc)θc − 3ϕ̇(1 + wc) + 3

(
H − Γ

2

)
(c2s − wc)δc = −Γψ

(
1− 3

2
wc

)
. (B.39)

Next we calculate the perturbation equation for the divergence of fluid velocity, θ, by evaluating the phase-
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space integration of the first moment (
∫

d3p
(2π)3

(
k⃗ · p⃗

)
) of the Boltzmann equation for cannibals (eq. (B.29)).

Note that all integrals that are odd in p̂ will be proportional to δf , so any products of such integrals with

metric perturbations can be neglected. Most of the remaining integrals can be evaluated using the definitions

of ρ, n, P , and θ. The only integral not covered by these definitions contains (k̂ · p̂)2 in the integrand, which

is contained in the definition of anisotropic stress:

σ ≡ − 1

ρ̄(1 + w)

∫
d3p

(2π)3
p2

E

[(
k̂ · p̂

)2
− 1

3

]
δf. (B.40)

Finally, we use ˙̄P = c2s ˙̄ρcan and evaluate ˙̄ρcan using the energy conservation equation (eq. (4.24)) to obtain

θ̇c +H(1− 3c2s)θc −
k2

a
ψ +

k2

a
σcan − c2sk

2

a(1 + wc)
δc

= mΓ

[
n̄can(1 + c2s)

ρ̄can(1 + wc)
θc −

i

ρ̄can(1 + wc)

∫
d3p

(2π)3

(
k⃗ · p⃗

) δf
E

]
. (B.41)

We further simplify the square bracket on the RHS by approximating E ≈ m+ p2/(2m) and using eq. (B.37).

Simplifying the resulting expression by keeping only leading order terms in wc and c
2
s and then using the

definition of θ, we obtain

θ̇c +H(1− 3c2s)θc −
k2

a
ψ +

k2

a
σcan − c2sk

2

a(1 + wc)
δc

= Γ

[(
−5

2
wc + c2s

)
θc +

i

ρ̄can(1 + wc)

∫
d3p

(2π)3
p2

2m2

(
k⃗ · p⃗

)
δf

]
. (B.42)

To simplify the integral on the RHS, we note that the distribution function for a non-relativistic perfect

fluid can be written as

f = e(µ+δµ)/T e−(E−p⃗·v⃗)/T ≈ f̄(E)− f̄ ′(E)(δµ+ p⃗ · v⃗), (B.43)

where δµ and v⃗ encode the density and velocity perturbations in the fluid. Using the above expression of

f in the θ definition (eq. (B.34)) we obtain θ = ik⃗ · v⃗. Consequently, the integral on the RHS of eq. (B.42)

simplifies to yield∫
d3p

(2π)3
p2

2m2

(
k⃗ · p⃗

)
δf ≈ −

∫
d3p

(2π)3
p2

2m2

(
k⃗ · p⃗

)
f̄ ′(E)(p⃗ · v⃗) = −iρ̄canθc

[
5

2
wc +O(w2

c )

]
. (B.44)

Therefore, the perturbation equation for θc is given by

θ̇c +H(1− 3c2s)θc −
k2

a
ψ +

k2

a
σcan − c2sk

2

a(1 + wc)
δc = Γc2sθc (B.45)

to leading order in wc and c
2
s for terms proportional to Γ.

B.3.2 Radiation Perturbation Equations

We find the equation for radiation density perturbations by taking the energy-weighted phase space integral

(
∫

d3p
(2π)3E) of the Boltzmann equation for radiation (eq. (B.29)). The resulting integral of the collision term
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on the RHS is same as that encountered for the cannibal except with an opposite sign,

(1 + ψ)

∫
d3p1

(2π)3E1
SE1ĈΓ[fr(p1)] = −(1 + ψ)

∫
d3p

(2π)3E
EĈΓ[fc(p)] = (1 + ψ)mncanΓ, (B.46)

where ĈΓ[fc(p)] and ĈΓ[fr(p1)] are given in eq. (B.30) and eq. (B.31). The above equality is a direct

consequence of energy conservation, which sets the energy of the daughter particle equal to half of the energy

of the cannibal particle, E1 = E/2. Since the expression on the LHS now features integration over the phase

space of both radiation particles, the symmetry factor S appears.

Similar to the cannibal case, we simplify the LHS of the energy-weighted phase space integral of the

Boltzmann equation by using the definitions in eq. (B.35) and using the energy conservation equation for ρr

(eq. (4.25)) to yield

δ̇r +
4

3

θr
a

− 4ϕ̇ =
mΓn̄can
ρ̄r

[
ψ +

δncan

n̄can
− δr

]
. (B.47)

Above we have made use of the fact that w = c2s = 1/3 for radiation. The δncan in the RHS can be further

simplified using eq. (B.38) to give

δ̇r +
4

3

θr
a

− 4ϕ̇ =
mΓn̄can
ρ̄r

[
ψ + δc − δr +

3

2
δc(wc − c2s)

]
. (B.48)

Next, we find the perturbation equations for the divergence of the radiation fluid velocity by evaluating

the phase-space integration of the first moment (
∫

d3p
(2π)3 [⃗k · p⃗]) of the Boltzmann equation for radiation

(eq. (B.29)). The RHS of the resulting equation is of the form

(1 + ψ)

∫
d3p1

(2π)3E1
(p⃗1 · k⃗)ĈΓ[fr(p1)]

= 2(1 + ψ)

∫
dΠdΠ1dΠ2(2π)

4(p⃗1 · k⃗)δ(E − E1 − E2)δ
3(p⃗− p⃗1 − p⃗2)S|MΓ|2fc(p). (B.49)

In the above integral we replace p⃗1 · k⃗ → (p⃗1 + p⃗2) · k⃗/2 as the labels 1 and 2 are interchangeable. Moreover,

by momentum conservation we have p⃗1 + p⃗2 = p⃗, which yields

(1 + ψ)

∫
d3p1

(2π)3E1
(p⃗1 · k⃗)ĈΓ[fr(p1)]

=(1 + ψ)

∫
dΠ

[∫
dΠ1dΠ2(2π)

4δ4(p− p1 − p2)S|MΓ|2
]
(p⃗ · k⃗)fc(p) (B.50)

=Γ

∫
d3p

(2π)3

(
k⃗ · p⃗

) δf√
1 + p2/m2

≈ −iΓρ̄canθc
[
1− 3

2
wc

]
. (B.51)

Here in the second line we first expanded the denominator to first order in p2/m2 and then used the definition

of θ (eq. (B.34)) along with the result given in eq. (B.44) to obtain the final answer.

We simplify the phase space integration of the first moment of the LHS of Boltzmann equation in the same

way as we did for cannibal perturbations. Expressing the cannibal energy density in terms of the cannibal
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number density using eq. (B.37) gives

θ̇r −
k2

4a
δr −

k2

a
ψ +

k2

a
σr = Γ

mn̄can
ρ̄r

[
3

4
θc − θr

]
. (B.52)
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Appendix C

Steady-state solutions in cosmological

perturbations

In this section we show the procedure to analytically calculate the evolution of amplitude for cosmological

perturbations that are coupled to an external source, using WKB approximation deep inside the horizon. In

particular we explain the behaviour of cannibal and radiation perturbation amplitudes as seen in figures 4.5

and 4.7. We also explain why the feedback of radiation perturbation on other density perturbations can be

neglected deep inside the horizon.

We first simplify the system of perturbation equations for cannibal and radiation, eqs. (4.46)-(4.52), for

modes deep inside the horizon. For k ≫ aH, the equation for metric perturbation, eq. (4.52), simplifies to

give

ϕ = −3

2

(
aH

k

)2
ρcanδc + ρrδr
ρcan + ρr

. (C.1)

We can see that ϕ≪ δc, δr because k ≫ aH. Using the smallness of ϕ we can then simplify radiation and

cannibal density perturbation. In particular, we can ignore ϕ′ and ϕ terms in δc (eq. (4.46)) and δr (eq. (4.50))

equations. Moreover for cannibal perturbation we also neglect the terms c2s − wc, w
′
c(a) and d(c

2
s(a))/da as

wc is slowly varying before afz and rapidly become negligible after afz. Next we replace ϕ in the θ equations

for both species (eq. (4.51) and in eq. (4.47)) using eq. (C.1). Finally, we combine the θ and δ equations:

eq. (4.51) with eq. (4.50) for radiation and eq. (4.47) with eq. (4.46) for cannibal. While combining eq. (4.51)

with eq. (4.50) we neglect derivatives of

ζ = Γρcan/(Hρr). (C.2)

This is because ζ ′ is at order ∼ 1 values only for a very short while when decays just become important in SM

radiation. Before the decays become important, ζ ′ is much less than one and afterwards ζ = 5/2 (see eq. 3.4
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and section 2.5) and so ζ ′ = 0. The simplified cannibal and radiation perturbation equations are of form,

δ′′c (a) +
( (a2H)′

a2H
+

1

a
(1− 3wc)

)
δ′c +

(1 + wc)

a2

( c2s
1 + wc

k2

(aH)2
− 3

2

ρcan
ρcan + ρr

)
δc =

3

2

(1 + wc)

a2
ρrδr

ρcan + ρr
(C.3)

δ′′r (a) +
( (a2H)′

a2H
+
2ζ

a

)
δ′r(a) +

1

3

k̃2

(a2H)2
δr =( (a2H)′

a2H

ζ

a
+
ζ2

a2
− ζ

a2
+

2

a2
ρcan

ρcan + ρr

)
δc +

2 + wc
1 + wc

ζ

a
δ′c(a). (C.4)

We checked numerically that above equations accurately describe the evolution of cannibal and radiation

perturbations for modes deep inside the horizon.

The terms with ρcan + ρr in denominator come from the contribution of metric perturbation and causes

the density perturbation to grow. For radiation perturbation, the decays from cannibal act both like a

damping term (ζ term in the coefficient of δ′r) as well as provide an external source to radiation perturbation

(ζ terms in the RHS). When the decays from cannibal have not become dominant for SM radiation bath,

ζ ≪ 1, cannibal density affects radiation density only gravitationally.

We are primarily interested in understanding cannibal perturbations when the mode is within Jeans

length scale, and radiation perturbations when mode is within comoving horizon. Both these scenarios are

well described by the generic equation of form,

δ′′(a) +

(
(a2H)′

a2H
+
n

a

)
δ′(a) +

ω2(a)

(a2H)2
δ = S(a)ei

∫
Ωs(a)da, (C.5)

where n/a and ω2 represents damping term and oscillation frequency and S represents a source which is

oscillating with frequency Ωs. The source function, S, we shall find to be independent of δ in the scenarios of

our interest (see discussion in section C.4). Consequently the equation described above has two forms of

solutions: a transient (homogeneous) solution that describes the evolution of perturbations in the absence of

external source, and a steady-state (inhomogeneous) solution that is driven purely by S.

In the following subsections we shall first apply WKB approximation to find the transient and steady-state

solution for the generic equation given in eq. (C.5). The application of WKB approximation varies significantly

for the steady-state solution depending on whether S is oscillating or evolving slowly (Ωs = 0). Consequently,

we solve for the inhomogeneous solution separately depending on evolution of S. Finally, we describe the

behaviour of cannibal and radiation perturbation amplitudes as seen in figures 4.5 and 4.7 using the transient

and steady-state solution.

C.1 Transient (homogeneous) solution

In this sub-section we solve for the transient solution of eq. (C.5) using WKB approximation.

The transient solution will be of form

δt = Dt(a)e
i
∫
Ω(a)da, (C.6)
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where Dt and Ω are the amplitude and frequency of oscillations respectively. Substituting this solution back

in eq. (C.5) and setting S = 0 gives,[
D′′
t +

(
(a2H)′

a2H
+
n

a

)
D′
t +Dt

(
ω2(a)

(a2H)2
− Ω2

)]
+i

[
2D′

tΩ+DtΩ
′ +

(
(a2H)′

a2H
+
n

a

)
DtΩ

]
= 0. (C.7)

Both imaginary part and the real part above have to be zero identically. The imaginary part can be solved

exactly to give

D2
t Ω(a2H)e

∫ a
a∗
n(ã)d ln(ã) = constant, (C.8)

where a∗ is some scale factor which provides the initial condition. To solve for the real part we use the WKB

approximation, ω2/(a2H)2 ≫ D′′
t /Dt, D

′
t/(aDt), i.e. the oscillations are happening much faster than the rate

at which amplitude is changing. With this approximation the real part of the equation effectively gives us

the condition

Ω(a) =
ω(a)

a2H
. (C.9)

The amplitude Dt can be solved by substituting the above relation back in eq. (C.8) to give the full transient

solution as

δt(a) = δt(a∗)

√
ω(a∗)

ω(a)
e−

∫ a
a∗
n(ã)d ln(ã)/2ei

∫ a
a∗
ω(ã)/(ã2H)dã. (C.10)

Note that the damping due to the Hubble term present in the coefficient of δ′ in eq. (C.5) is exactly

compensated by the Hubble term appearing in the frequency. Hence expanding universe does not lead to

damping of perturbations as one might naively think by looking at eq. (C.5). In fact by rewriting eq. (C.5) in

terms of conformal time, dη = da/(a2H), one can see that the Hubble damping term completely disappears.

C.2 Steady-state (inhomogeneous) solution for slowly evolving

source

In this sub-section we solve for the steady-state solution of eq. (C.5) for a slowly varying S(a) with ΩS = 0,

using WKB approximation.

Since the source is slowly varying, we can expect the steady-state solution, δst(a), sourced by S will also

be slowly varying compared to ω. Consequently assuming ω2/(a2H)2 ≫ aδ′st/δst, a
2δ′′st/δst in eq. (C.5) we

obtain

δst =
S(a)

ω2(a)
(a2H)2. (C.11)

The condition on S for the above solution to hold is simply aS′/S ≪ ω2/(a2H)2.
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C.3 Steady-state (inhomogeneous) solution for rapidly oscillating

source

In this sub-section we solve for the steady-state solution of eq. (C.5) for a rapidly oscillating source using

WKB approximation.

The steady-state solution, δst, being driven by external source, should primarily oscillate with frequency

Ωs. Correspondingly we assume δst of form

δst = Dst(a)e
i(ϕ(a)+

∫
Ωs(a)da), (C.12)

where ϕ is some phase difference which is varying slowly compared to oscillation frequency1, ϕ′ ≪ Ωs.

Replacing the above form of δst back in eq. (C.5), assuming

Ωs ≫ D′′
st/Dst, D

′
st/(aDst), ϕ

′ and separating out the real and imaginary parts of the equation we obtain,

Dst

(
ω2(a)

(a2H)2
− Ω2

s

)
= S(a) cos(ϕ) (C.13)

1

Dst(a2H)2e
∫
n(a)d ln(a)

(D2
stΩs(a

2H)2e
∫
n(a)d ln(a))′ = −S(a) sin(ϕ). (C.14)

The above two equations can further be simplified if ϕ≪ 1. We can check that indeed ϕ≪ 1 by dividing

the two equations,

tan(ϕ) = − Ω2
s

ω2/(a2H)2 − Ω2
s


{
D2
st(a

2H)2e
∫
n(a)d ln(a)

}′
/
{
D2
st(a

2H)2e
∫
n(a)d ln(a)

}
Ωs

+
Ω′
s/Ωs
Ωs

 . (C.15)

The quantities in the square bracket on LHS are very small under WKB approximation. Thus we have ϕ≪ 1

as long as Ωs ̸= ω/(a2H).Using the above equation one can also verify our earlier assumption of ϕ′ ≪ Ωs is

consistent.

Consequently, setting ϕ = 0 in eq. (C.13) and eq. (C.12), we obtain

δst(a) =
S(a)

ω2/(a2H)2 − Ω2
s

ei
∫
Ωs(a)da. (C.16)

In the limit of Ωs ≪ ω/(a2H), we recover the steady-state solution obtained for slowly varying S in eq. (C.11).

Since we do not have two species with same oscillating frequency, we do not solve the steady-state solution

for the resonant case (Ωs = ω/(a2H)).

C.4 Application to cannibal and radiation perturbations

In this section we apply the formalism of steady-state and transient solutions developed in previous subsections,

to explain the evolution of cannibal and radiation density perturbations.

The cannibal and radiation perturbations, described by eq. (C.3) and eq. (C.4) respectively, do not

simultaneously feedback onto each other. For instance, when universe is SM radiation-dominated, terms with

both ζ and ρcan/(ρcan + ρr) are much smaller than one in eq. (C.4). Consequently, the feedback of δc on δr

1In reality the condition is ϕ′/ϕ≪ Ωs but since ϕ < 2π, the slowly varying condition is equivalent to ϕ′ ≪ Ωs.
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is suppressed. However, the feedback of δr to δc cannot be naively neglected (although we shall later prove it

is negligible). Thus, in SM radiation-dominated universe, δr acts as an external source for δc. Similarly, in

cannibal-dominated universe, δc acts as an external source for δr. Hence, we can describe the evolution of

both cannibal and radiation perturbation using the generic equation given in eq. (C.5). During radiation

(cannibal) domination we shall take S = 0 in radiation (cannibal) perturbation equation.

Given an equation of form eq. (C.5), the final solution will be determined by the steady-state solution

only if the transient solution falls below the steady-state solution and if transient solution is more damped

than steady-state solution. The latter condition is because at every moment of evolution of δ(a), a transient

solution is generated with a∗ = a in eq. (C.10). For δ to follow steady-state solution, the transient solution

must be suppressed compared to steady-state solution. In the scenarios where δ follows the steady-state

solution, the evolution of δ is insensitive to the initial conditions. This insensitivity is because the steady-state

solution only depends on the value of S at that instant and thus acts like an attractor solution.

We shall first focus on the transient solutions of δc and δr as they are independent of whether the universe

is cannibal or radiation dominated. For radiation perturbations, comparing eq. (C.4) with eq. (C.5), we

have n = 2ζ and ω = k/(3a2H). Using eq. (C.10), we obtain the evolution of the amplitude of the transient

solution of the radiation perturbation as

Dr,t = Dr,t(a∗)e
−

∫ a
a∗
ζ(a)d ln(ã). (C.17)

When universe is radiation-dominated and subsequently ζ = Γρcan/Hρr ≪ 1, we recover the constant

amplitude of oscillations of δr.

For cannibal perturbations we are primarily interested in the period when the mode is inside the Jeans

scale where δc (eq. (C.3)) is well described by eq. (C.5) with ω = csk and n = 1 − 3wc. Substituting this

back in eq. (C.10), we find amplitude of the transient solution of cannibal perturbations as

Dc,t = Dc,t(a∗)

√
cs(a∗)

cs(a)
e−

∫ a
a∗

(1−3wc(ã))d ln(ã)/2. (C.18)

For slowly varying wc, the above relation can be approximated as Dc,t ∝ c
−1/2
s a(1−3wc)/2. Additionally,

putting ω = csk in eq. (C.10), we can see that the phase of oscillation is given by krs, where rs is the cannibal

sound horizon (see eq. (4.67)). We use eq. (C.18) along with the phase being krs to describe the evolution of

δc during SM radiation domination in eq. (4.68).

When analyzing δr in cannibal-dominated universe and vice-versa for δc, the source in the RHS of (C.3)

(or eq. (C.4)) becomes important. Consequently, the final solution is determined either by transient or

steady-state solution depending on which is larger and less damped.

In the case of δc in SM-radiation-dominated universe, radiation perturbation acts as an external source

to the cannibal perturbations with S = 1.5(1 + wc)Dr,t/a
2 and Ωs = k/(3a2H) in eq. (C.5). Consequently,

using eq. (C.16) we find the amplitude of the steady-state solution of δc as

Dc,st =
3

2

(1 + wc)Dr,t(a)

c2s − 1/3

(aH)2

k2
∝ a−2. (C.19)

Above we obtain the proportionality relation by approximating wc, c
2
s ≪ 1 and using the fact that Dr,t and

a2H are constant during radiation domination. One can easily see that the steady-state solution sourced

by the radiation perturbations is suppressed by (aH/k)2 and also more damped than the transient solution
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Figure C.1: Comparing the transient (black-dashed lines) and steady-state solutions (dot-dashed lines)
obtained using WKB approximation with the numerical (solid lines) δc (top panels) and δr (bottom panels)
evolution. The left (right) panels are for scenario shown in figure 4.5 (figure 4.7) where the universe is always
cannibal-dominated (initially SM radiation-dominated). The amplitude of the transient solution are described
by eq. (C.18) for cannibal and eq. (C.17) for radiation. The steady-state solution for cannibal is only valid
when universe is radiation-dominated, a < adom, and its amplitude is described by eq. (C.19). Similarly
the steady-state solution for radiation is only valid when universe is cannibal-dominated. The steady-state
solution is broken into two parts: inside Jeans scale we plot its amplitude as described by eq. (C.20) (blue
dot-dashed line) and outside Jeans scale we plot δr as described by eq. (C.21) (red dot-dashed line). The
steady-state solution describes the density perturbation only when steady-state solution is larger than the
transient solution and when the transient solution decays faster than the steady-state one.
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in eq. (C.18). Thus deep inside the horizon, δr can never appreciably affect δc, irrespective of whether the

universe is radiation or cannibal dominated. This is seen explicitly in the top panels of figure. C.1 where δc

always follows the transient solution. In the top right panel, the steady-state solution (blue dot-dashed)—

determined by δr during SM-radiation domination— is heavily damped and thus cannot overcome transient

solution.

We break down the steady-state solution of δr into two components. The first one corresponds to the

steady-state solution sourced by oscillating δc when the mode is inside the Jeans length, and the second one

corresponds to the steady-state solution sourced by monotonically evolving δc when the mode escapes the Jeans

length. For the first case, since δc is oscillating rapidly frequency csk/a
2H), we have aδ′c ≈ (csk/aH)δc ≫ δc.

Consequently the δ′c term in the RHS of eq. (C.4) is the dominant source for δr. Correspondingly, the

amplitude of δr can be described using eq. (C.16) with S = (2 +wc)ζΩsDc,t/[(1 +wc)a] and Ωs = csk/(a
2H)

giving,

Dr,st =
1

1/3− c2s

(aH)

k

2 + wc
1 + wc

ζcsDc,t ∝ ζ
csDc,t

a1/2
k > kJ . (C.20)

Above we obtain the proportionality relation by approximating wc, c
2
s ≪ 1 and H ∝ a−3/2. In the bottom

panels of figure C.1 we compare the numerical δr with Dr,st (blue dot-dashed line) described above. For the

case in left panel, ζ is small initially and correspondingly Dr,t has constant amplitude. Once the decays in

SM radiation bath become important, ζ becomes 5/2 and correspondingly Dr,t decays. After Dr,t falls below

Dr,st, Dr,st accurately describes the behaviour of δr while δc is oscillating. In the right panel, ζ is initially

very small but a growing quantity. Due to this, Dr,st is orders of magnitude smaller than the transient

solution but is growing. Thus the evolution of δr is given by Dr,t even after cannibal domination. The

transient solution gets damped once cannibal decays in SM-radiation bath become important. The fact that

escape from Jeans scale matches with the point where cannibal decays become important in SM-radiation

bath (in the right plot) is due to pure coincidence of parameters. In both the panels we stop plotting Dr,st

once the mode exits the Jeans scale.

Next we analyse the steady-state solution of δr once the mode escapes the Jeans scale. In this case

aδ′c = δc ∝ a. Correspondingly the source is determined by both δ′c and δc terms in the RHS of eq. (C.4). We

estimate S in eq. (C.11) by neglecting wc and setting aδ′c = δc in RHS term of eq. (C.4). Doing so results in

δr,st =
(aH)2

k2/3

[d ln(a2H)

d ln(a)
ζ + ζ2 + ζ +

2ρcan
ρcan + ρr

]
δc k < kJ . (C.21)

Note that δr,st is not an oscillating solution unlike the solutions we discussed earlier. Using the fact that

H ∝ a−3/2, δc ∝ a and ζ = 5/2 before reheating, we can see that δr,st remains constant. Interestingly, δc

sources δr via both the decays (ζ terms) and the metric (ρcan/(ρcan + ρr) term). In the bottom left panel of

figure C.1 we see that the behaviour of δr outside of Jeans scale is accurately explained by δr,st described

above (red dot-dashed line). After reheating both ζ and ρcan drop exponentially thereby leading to the decay

of δr,st just after reheating. Once the decay of δr,st becomes larger than the decay of Dr,t, the transient

solution takes over. Correspondingly δr oscillates with constant amplitude after reheating. In the bottom

right panel, we find the δr,st to be orders of magnitude smaller than the homogeneous solution. However, had

there been sufficient time between the decays becoming important in radiation bath and reheating, then Dr,t

would have eventually decayed below δr,st. After which the steady-state solution would have governed the

evolution of δr.
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Finally, note that the effects of oscillating density perturbations on any other density perturbations,

through gravitational coupling, can always be ignored deep inside the horizon. In the above discussion, we

showed the negligible feedback of δr for cannibal perturbations using eq. (C.20). One can show that the

steady-state solution imposed by oscillating δc on δDM will also be given by eq. (C.20), except with wc and c
2
s

set to 0, the factor of 1/3 replaced with c2s, and Dr,t replaced by Dc,t. Again we can see that the steady-state

solution imposed by cannibal on DM is suppressed by factors of (aH)/k2. Had there been no cannibal decays

into SM-radiation, ζ = 0, the feedback of oscillating δc on δr would have also been negligible.
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Appendix D

Separate universe principle and total

density fluctuations

The separate universe principle (see, e.g., Refs. [229, 230]) posits that each super-horizon sized patch can be

treated as an isolated, independent, Friedman-Robertson-Walker (FRW) universe. Any fluctuations on scales

larger than the horizon simply become a part of the background variables of that island universe.

We begin by demonstrating that zero-mode fluctuations (Fourier mode k = 0) can be absorbed into the

background quantities (density, pressure, etc.). The reason is straightforward. After fixing our coordinate

system (fixing the gauge), there remains a residual coordinate transformation which can be used to absorb

the fluctuations into a redefinition of the background. This can be seen explicitly as follows. We write the

perturbed FRW metric as

[gµν ] =

[
−(1 + 2ψ) −a∂iβ
−a∂iβ a2[(1 + 2ϕ)δij + 2∂i∂jγ]

]
. (D.1)

Under an infinitesimal coordinate transformation (gauge transformation) xµ′ = xµ + ξµ, with ξi = ∂iξ, the

scalar parts of the metric perturbations transform as

ψ′ = ψ − ξ̇0, β′ = β − 1

a
ξ0 + aξ̇,

ϕ′ = ϕ−Hξ0, γ′ = γ − ξ. (D.2)

The two scalar parts of the coordinate transformation, ξ0 and ξ, can be used to set two of the four scalar

perturbations in eq. (D.1) to zero. In conformal Newton gauge, ξ0 and ξ are chosen to set β = γ = 0 and

make the metric diagonal. However, because only gradients of β and γ appear in the metric, spatially uniform

changes of coordinates leave the metric diagonal. Specifically, consider a transformation of the conformal

Newton metric given by

ξ0 = ϵ(t) ξ = ωxixjδij , (D.3)
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where ω is a constant. The metric perturbations transform as

ψ′ = ψ − ϵ̇ β′ = −1

a
ϵ(t), (D.4)

ϕ′ = ϕ−Hϵ(t) γ′ = −ωxixjδij . (D.5)

Because only spatial derivatives of β and γ appear in the metric, the transformation in eq. (D.3) leaves the

metric diagonal. The diagonal term from γ′ can be absorbed into ϕ to give

ψ′ = ψ − ϵ̇, (D.6)

ϕ′ = ϕ−Hϵ(t) + ∂i∂iγ
′/3 = ϕ−Hϵ(t)− 2ω. (D.7)

The transformation as described in eq. (D.3) keeps the metric diagonal and is a residual gauge freedom for

conformal Newton gauge. This residual gauge freedom in eqs. (D.6) and (D.7) can be used to remove the

spatially homogeneous fluctuations in ϕ and ψ, and set the k = 0 fourier mode to zero, ϕ′k=0 = ψ′
k=0 = 0,

giving the relations

Hϵ+ 2ω = ϕk=0, ϵ̇ = ψk=0. (D.8)

In the absence of metric perturbations, the Einstein equations imply that the total density perturbation

vanishes. We can demonstrate this explicitly by noting that, under the residual gauge transformation,

eq. (D.3), the density perturbation transforms as

δρ′ = δρ− ρ̇ϵ =
1

4πG
(4πGδρ− 3HḢϵ), (D.9)

where in the second equality we used Friedmann equation for the background, H2 = 8πGρ/3. Further,

because ω = const., eq. (D.8) gives us the relation

Ḣϵ = ϕ̇k=0 −Hψk=0. (D.10)

Substituting this result into the gauge transformation given in eq. (D.9) for k = 0 mode, we obtain

δρ′k=0 =
1

4πG
(4πGδρk=0 − 3Hϕ̇k=0 + 3H2ψk=0). (D.11)

The above vanishes identically after using the Einstein equation for δρk=0. The residual gauge transformation

in eq. (D.3) self-consistently removes all zero mode perturbations in the total density. The shift ϵ that is

required to gauge away the perturbations is simply a uniform shift in coordinate time.

While the above analysis holds exactly for k = 0 mode, it can be extended to superhorizon modes up

to corrections of order O(k2/(aH)2). To see this, consider a Universe with a single superhorizon mode

fluctuation, ϕk with k ≪ aH. On a patch of the Universe with a scale sufficiently small compared to k−1,

but still large compared to the horizon, the fluctuation ϕk appears almost constant. If we consider two such

patches separated by a distance comparable to k−1, each patch samples a different approximately uniform

value of ϕk. Consequently, in each patch, we may use the residual gauge freedom to remove this approximately

constant ϕk. The approximately uniform shift in coordinate needed to make each patch uniform is different

in each patch. Due to the equivalence principle, the only observable effects of such a shift enter at order
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O(k2/(aH)2).

D.1 Adiabatic vs isocurvature perturbations and residual gauge

shifts

Above we showed that the total density fluctuations can be removed on super-horizon scales. However, if the

Universe is filled with a multi-component fluid, the perturbations in each fluid species need not necessarily

vanish after this procedure. In fact, only adiabatic perturbations in each species necessarily vanish, as we

now demonstrate. Adiabatic perturbations between different species are related by

δρ1
ρ̇1

=
δρ2
ρ̇2

=
δρ3
ρ̇3

= . . . = ϵ (D.12)

where ϵ is the quantity obtained by solving eq. (D.8). We also show that isocurvature perturbations do

not in general vanish, but can be absorbed into the background quantites within each patch. In a Universe

with isocurvature perturbations, separate Universes evolve with both shifted clocks due to the background

adiabatic fluctuations, but also spatially varying background densities, as we now demonstrate.

Consider now a universe comprised of two non-interacting perfect fluids, with densities ρ1 and ρ2. We

suppose that on large scales k−1 ≫ (aH)−1, there exists density fluctuations in both species. We then

consider a patch of the Universe small compared to k−1 but large compared to the horizon. In this patch,

after the residual gauge shift with magnitude specified by eq. (D.8), the total density perturbation in this

patch vanishes giving

δρ′tot = δρ′1 + δρ′2 = 0. (D.13)

However, note that this only constrains the total density to vanish; it is not necessary for individual δρ′i to

also vanish. When they do, then using eq. (D.9), we see that the species satisfy eq. (D.12).

For an isocurvature mode, the density perturbations in individual species do not vanish after the gauge

shift

δρ′1 = −δρ′2 ̸= 0. (D.14)

However, these isocurvature perturbations can be absorbed into the background variables. To see this

explicitly we consider the zero-mode density-perturbation equation,

δρ̇i + 3H(1 + wi)δρi + 3ρiϕ̇ = 0, (D.15)

where i = 1, 2 and wi is the equation of state of the i-th perfect fluid. After gauge shift this becomes

δρ̇′i + 3H(1 + wi)δρ
′
i = 0, (D.16)

which can be trivially absorbed into the a redefinition of the background density

ρ̃i = ρi + δρ′i. (D.17)
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This redefinition will not affect the metric or other Einstein variables as they only depend on total density in

the universe, which remains unchanged after the absorption of isocurvature perturbations.
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