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“Yes, there is happiness to be found in the mere contemplation of the deepest mysteries.”

John Archibald Wheeler

“Nobody ever figures out what life is all about, and it doesn’t matter. Explore the world.
Nearly everything is really interesting if you go into it deeply enough.”

Richard P. Feynman
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Resumo

Nessa tese revisaremos o conteúdo de part́ıculas do nosso Universo e sua evolução cósmica
e mostraremos algumas buscas de nova f́ısica nessas áreas. Na Parte I apresentamos limites
na escala de energia de nova f́ısica e acoplamentos de um posśıvel novo bóson de calibre
usando experimentos em baixas energias que envolvem a teoria electrofraca. Na Parte II nós
revisamos teoria quântica de campos em espaço-tempo curvos e aplicamos alguns resultados
em cosmologia na Parte III. Nessa última parte também mostramos limites na massa da
matéria escura morna que podem ser obtidos a partir de catálogos de galáxias fotométricos.

Palavras Chaves: Nova f́ısica, violação de paridade, experimentos de baixas energias, cos-
mologia, inflação, matéria escura

Áreas do conhecimento: F́ısica de Part́ıculas e Cosmologia
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Abstract

In this thesis we review the particle content of our Universe and its cosmic evolution and
show some new physics searches in these two areas. In Part I we present bounds on the
energy scale of new physics and couplings of a possible new neutral gauge boson using low
energy experiments in the electroweak sector. In Part II we review quantum field theory in
curved spacetime and apply some results in cosmology in Part III. In this last part we also
show bounds on warm dark matter mass from photometric galaxy surveys.

Key Words: New physics, Parity Violation, low energy experiments, Cosmology, inflation,
dark matter

Areas of Knowledge: Particle Physics, Cosmology
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1
Introduction

In this thesis we will review some aspects of fundamental physics and present results of
the search for new physics in three different areas. For this reason the thesis is divided in
three parts, respectively, particle physics, semiclassical gravity and cosmology, and they are
all connected by fundamental physics.

The first part is about particle physics. All the matter we know in the Universe is made of
quanta of fundamental fields and their bound states. These fundamental building block are
the fermions leptons and quarks. The matter particles can interact with each other in four
different ways, three of them are the weak force, strong force and electromagnetism. These
forces are also mediated by fundamental particles: the weak interaction is mediated by three
gauge bosons W+,W− and Z; the strong interactions by the gluons, which are exchanged
only by quarks; and electromagnetism by the photons. We also have another particle, called
Higgs boson, which gives mass to the massive particles. This matter content is bound together
in the Standard Model of Particle Physics.

The Standard Model fermions are chiral, and only their left-handed counterparts take
place in electroweak interactions, the unified version of electromagnetism and weak force. This
end up by causing parity, the spatial coordinates inversion transformation, to be violated in
the electroweak sector. Parity violating low energy experiments are a good probe to search for
physics beyond the Standard Model, in particular, we can compare measurements of the weak
angle θW to the Standard Model predictions. We used Atomic Parity Violation, polarized
electron scattering and neutrino-nucleus coherent scattering experiments to put bounds on
the existence of a new neutral boson Z ′. The motivation for searching for such extra boson lies
within several Standard Model extensions that contains a new U(1) gauge group and attempt
to solve some issues within the Standard Model, as neutrino masses and baryogenesis.
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The last chapter of Part I is strongly based on the work: New Physics Probes: Atomic
Parity Violation, Polarized Electron Scattering and Neutrino-Nucleus Coherent Scattering,
Jéssica Martins, Farinaldo S. Queiroz, Giorgio Arcadi, Manfred Lindner, arXiv:1906.04755,
(in process of publication) [18].

There is another way particles can interact that is not contained in the Standard Model,
which is through gravity. The attempts to treat gravity as a quantum fundamental field like
the other forces still don’t give reasonable results at high energies, and the best description
we have of gravity is classical General Relativity, in which gravity is not a force but an effect
of the spacetime geometry. However, we do know that at least matter should be made of
quantum fields, which takes us to second part of the thesis.

In the second part we show general results of quantizing scalars, fermions and vector
bosons in curved spacetime. To get a renormalizable theory of such fields in four-dimensions
the classical, bare action should contain a non-minimal coupling between the scalar field
and curvature Ricci scalar. Furthermore, the vacuum energy receives contributions from
divergent quantum corrections of the matter fields that can be ignored in flat, but not in
curved spacetime, as this energy interacts with the gravitational background. In order to
deal with such divergences, the classical action must also contain higher-derivatives terms
in the metric, besides the GR Einstein-Hilbert term. In the end of Part II we show the
induced gravitational action that is generated by an sterile scalar coupled to massive fermions.
These massive fermions could be beyond the Standard Model particles, like the right-handed
neutrinos, and the main motivation for introducing a sterile scalar comes from cosmological
inflation, and that leads us to the third and last part of the thesis.

In Part III we review the Standard Cosmological model at early and late times. In order
to cure fine-tuning problems in the Universe initial conditions we can use an early inflationary
era of accelerated expansion, driven by a scalar field, the inflaton. There are several models
of inflation that agree with observations, one of the most natural and successful of them being
Starobinsky inflation. In Section 6.6 we show that the model of a sterile scalar coupled to
massive fermions in curved spacetime can drive a Starobinsky inflation with a perturbation
coming from non-polynomial terms in the curvature. This section is a preliminar result of the
work of Jéssica Martins, Ana Romero, Flávia Sobreira, Ilya Shapiro and Alexei Starobinsky,
to appear [19].

The quantum fluctuations of the inflaton field generate the initial perturbations on the
matter density fields that at late times grow and form the structure we observe in the Universe.
But this structure cannot be explained with Standard Model particles only. In order to match
the observations that go from the comic microwave background radiation power spectrum to
galaxies velocity rotation curves, we need much more matter. In fact, it seems that ∼ 80%
of the matter of the Universe is not made of the Standard Model content. This new matter
can only interact very weakly with the known particles, and its effect has been seen until
now only through gravitational interaction. It is also non-relativistic, and by all this “known”
characteristics we named it cold dark matter.

However, despite of fitting great well the cosmological observations at large scales, the
cold dark matter paradigm still faces some issues at smaller scales. When we compare cold
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dark matter simulations with observational data at few Mpc, the cold dark matter scenario
in general predicts more structure than we actually observe. This mismatching could be
ameliorated if, instead of cold, we consider dark matter to be warm. In the last chapter of
the Part III we show constraints on the warm dark matter particle mass that can be obtained
using the photometric galaxy surveys DES and LSST.

This last chapter is strongly based on the work: Forecasts for warm dark matter from
photometric galaxy surveys, Jéssica Martins, Flávia Sobreira, Rogério Rosenfeld, MNRAS,
Volume 481, Issue 1, November 2018, Pages 1290− 1299 [20].

Then, we conclude by stating some general remarks of each work.
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Part I

The Standard Model of Particle
Physics
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2
A Standard Model Overview

The question of what is matter had intrigued philosophers and physicists for millennia.
The idea that everything we see around us is made of fundamental indivisible building blocks
named atoms date from Democritus 400 BC. However, the discovery of the electron in 1897 by
Thomson [21] and of the nucleus in 1911 by Rutherford [22] started to show that atoms, that
were believed to be the fundamental blocks of matter, are actually made of other particles.
At that time, electromagnetism and gravity were the known ways that matter could interact
and electromagnetic theory was already developed consistently with special relativity. During
the 20’s it became clear that Nature is quantum, and all matter particles and interactions
should also play by quantum mechanics rules.

The first proposal for the existence of weak interactions was in 1933 by Fermi to explain
the beta decay [23], which also gave a hint on the existence of neutrinos, and a few years
later it was applied to the recent discovered muon decay [24,25]. In 1935, Yukawa developed
the first theory of strong interactions [26] as a proposal for explaining the force that keeps
the protons and neutrons together inside the nucleus. In the late 40’s the four fundamental
interactions and a bunch of particles were known, but a theory was lacking in order to combine
everything in a consistent way.

Paul Dirac, in 1927, built a quantum theory for electrons using as fundamental objects,
not particles, but quantum fields that live in a Minkowski spacetime [27]. It was a starting
path for what later became known as quantum electrodynamics (QED), in which the electro-
magnetic field is also quantum. After that it became widely accepted that the fundamental
constituents of matter and interactions are fields and the particles are their excitations. An-
other important feature of QED is that the electromagnetic interaction arises in the theory
due to the invariance under local gauge transformations of the U(1) group. Therefore, we
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start with the electron, and the photon emerge due to gauge symmetry as a gauge boson.
This became a general guiding principle to build theories: one starts with the matter content,
chooses the underlying symmetries and compare the resulting interactions with Nature. Yang
and Mills in 1954 [28] applied this procedure to build a gauge theory based on the non-Abelian
gauge group SU(2) and the result was used later in the 60’s by Weinberg, Glashow, Salam and
Ward [29–31] to unify the electromagnetic and weak forces into the electroweak (EW) theory,
which gauge group is SU(2) × U(1). Therefore, EW theory predicted the existence of three
gauge bosons related to weak forces (named Z, W+ and W−) and the photon. It was only in
1983 that the existence of the heavy Z and W bosons was experimentally confirmed [32,33].

It was in 1973 that Fritzsch, Leutwyler and Gell-Mann used the SU(3) gauge group to
finish developing the theory of strong interactions [34] that describes quarks, which form
protons, neutrons and other bound states known at the time, and have a strong charge called
color. Because of that, the theory of strong interactions, which gauge bosons are called gluons,
was named quantum chromodynamics (QCD), and it was greatly confirmed experimentally
afterwards.

The predictions from QED and QCD (at high energies) were always calculated using
perturbation theory. However, Oppenheimer pointed out in 1930 [35] that higher-order per-
turbative calculations in QED always resulted in infinite quantities, which suggested that
the computational methods at the time could not deal with interactions involving photons
with high momenta. It was only around 50’s that a method for eliminating infinities was
developed by Schwinger, Feynman, Dyson, and Tomonaga [36–42]. The main idea was to
replace the initial parameters in the Lagrangian such as mass and coupling constants, which
have no physical meaning, by their finite measured values. To cancel the apparently infinite
parameters, one has to introduce additional, infinite, counterterms into the Lagrangian. This
procedure is known as renormalization and can be applied to arbitrary order in perturbation
theory. Renormalization also became a guiding principle for building theories, and a general
Lagrangian should in principle contain all renormalizable operators in the given number of
spacetime dimensions. Using renormalization techniques, Gross, Wilczek and Politzer showed,
in 1973 [43,44], that non-Abelian gauge theories are asymptotically free, which means that the
coupling strength between quarks and gluons decreases with increasing energy. This helped
to enlighten why free quarks are not seen in Nature, and it is said that QCD is confining, as
it confines quarks inside bound states [45].

The last piece of the puzzle was how to give mass to the weak force mediators gauge
bosons. Before detecting the weak bosons, the short-rangeness of the weak interactions were
an indication that the mediators were very heavy particles. But invariance on gauge transfor-
mations forbids the inclusion of quadratic mass terms for the gauge bosons. In 1964, Higgs,
Brout and Englert proposed that the gauge symmetry SU(2) could be broken by a mechanism
called spontaneous symmetry breaking, through which massless gauge bosons could acquire
mass [46, 47]. This became known as the Higgs mechanism. Then, in 1967, Weinberg and
Salam combined the electroweak theory with the Higgs mechanism [48, 49], and this theory
was later proved to be renormalizable by t’Hooft [50]. The EW theory was then combined
with the QCD to what is know today as the Standard Model of Particle Physics, and it is
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the best description we have of what the Universe is made of and how its constituents inter-
act. It does not contain gravity, as the gravitational force mediator, the graviton, leads to a
perturbatively non-renomalizable theory [51–57]. One of the Standard Model predictions was
the scalar field Higgs boson, which was observed experimentally in 2012 at the Large Hadron
Collider [58,59].

We shall now go through a quick review of the Standard Model construction in the next
sections, where we show the particle content and interactions. For a more detailed view
see [60–65] and references therein.

Throughout the thesis we use natural units (MP = 1 = ~) and the Minkowski spacetime
metric as ηµν =diag(-1,1,1,1), unless stated otherwise.

2.1 Lorentz group and Spinors

In order to build a covariant physical theory we need Lorentz invariant quantities, that
is, objects that live in a Minkowski spacetime and that do not transform under the Lorentz
group.

The Lorentz group is a group which transformations leave the quantity ds2 = −dt2+dx2+
dy2 + dz2 unchanged. Its proper subgroup consists of rotations in space and time directions
and boosts in space directions, and it is denoted by SO(1, 3). The Lorentz group is completely
determined in terms of its generators and commutation relations:

[Ji, Jj ] = iεijkJk,

[Ji,Kj ] = iεijkKk, (2.1)
[Ki,Kj ] = −iεijkJk,

where Ji, i = {0, 1, 2, 3}, are the generators of rotations and Ki of boosts. A general Lorentz
transformation with boost parameter φ (that depends on the velocity β of the frame) and
rotation parameter θ is written as

Λ = eiJ·θ+iK·φ. (2.2)

Now, let’s consider the following linear combination of the generators:

N±i = 1
2(Ji ± iKi). (2.3)

In terms of this generators the commutation relations become

[N+
i , N

+
j ] = iεijkN

+
k ,

[N−i , N
−
j ] = iεijkN

−
k , (2.4)

[N−i , N
+
j ] = 0.

This choice of generators revealed that the Lorentz group is made of two copies of SU(2).
Representations of SU(2) are specified by a value j that can be an integer or a half-integer.
Therefore, representations of the Lorentz group will be specified by the doublet (j, j′), where
j corresponds to the SU(2) generated by the N+

i and j′ to the one generated by N−i .
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2.1.1 The (0,0) representation

The smallest representation of the Lorentz group is given by (j, j′) = (0, 0). These are
just 1× 1 matrices, or scalars, and don’t change under Lorentz transformations.

2.1.2 The (1
2 , 0) representation

In the representation (1
2 , 0) only the N+

i generators are used, therefore

N−i = 1
2(Ji − iKi) = 0⇒ Ji = iKi. (2.5)

This leads to

N+
i = iKi = 1

2σi, (2.6)

where σi are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.7)

So, the rotations and boosts generators are

Ki = −i 12σi, Ji = 1
2σi. (2.8)

Therefore, an object in the (1
2 , 0) representation will transform under rotations R and boosts

B as,

R(θ) = eiθ·J = e
i
2 θ·σ, (2.9)

B(φ) = eiφ·K = e
1
2φ·σ. (2.10)

This representation will be called left-handed spinor representation.

2.1.3 The (0, 1
2) representation

Now, in the (0, 1
2) representation only the N−i part is used, so

N+
i = 1

2(Ji + iKi) = 0⇒ Ji = −iKi. (2.11)

Then,

N−i = −iKi = 1
2σi. (2.12)

So,

Ki = i
1
2σi, Ji = 1

2σi. (2.13)
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Therefore, the general transformations in this representation are

R(θ) = eiθ·J = e
i
2 θ·σ, (2.14)

B(φ) = eiφ·K = e−
1
2φ·σ. (2.15)

This representation is named right-handed spinor representation. We see that the left and
right-handed representations transform identically under rotations but with a different sign
under boosts.

2.1.4 The (1
2 ,

1
2) representation

The (1
2 ,

1
2) representation is nothing but the familiar vectors, that now will be written as

2 × 2 matrices. If we denote the left-handed indices transforming under N+
i without a dot

and the right-handed indices that transform under N−i with a dot, we can define a object in
the (1

2 ,
1
2) representation as ν ȧb. As both N+

i and N−i generators are Hermitian, we can write
ν ȧb as

ν ȧb = νµσȧbµ , (2.16)

where σ0 is the identity matrix and σȧbi for i = 1, 2, 3 are just the Pauli matrices. The
dotted and undotted indices transform separately under boosts and rotations as the right
and left-handed representations

ν ȧb → ν ′ċd = (e
i
2 θ·σ−

1
2φ·σ)ċȧ(e

i
2 θ·σ+ 1

2φ·σ)dbν ȧb. (2.17)

2.1.5 Dirac and Majorana spinors

We can group the two left-handed and two right-handed spinors into a 4-component
object. One way of doing that is through the Dirac spinor, where the two upper components
transforms as left-handed spinors and the last two components as right-handed spinors:

ψ =


ψL1
ψL2
ψR1

ψR2

 . (2.18)

The Dirac spinor ψ transforms under Lorentz transformations as,

ψ → ψe
1
2ωµνS

µν
, (2.19)

where ωµν are the parameters of the transformation and Sµν is

Sµν = 1
4[γµ, γν ], (2.20)

where the γµ matrices satisfy the Clifford algebra

{γµ, γν} = 2ηµν . (2.21)
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In components they read,

γ0 =
(

0 −i
−i 0

)
≡ −iβ, γk =

(
0 −iσk
iσk 0

)
. (2.22)

It is useful to define the matrix

γ5 =
(
−I 0
0 I

)
≡ iγ0γ1γ2γ3, (2.23)

and we also have that

(γ0)2 = −1 = −(γi)2, γ0γ5 = −γ5γ
0. (2.24)

Then, we can project the left-handed or right-handed components of the Dirac spinor using
the following projectors:

ψL = 1
2(1− γ5)ψ ≡ PLψ =

(
ψL
0

)
, (2.25)

ψR = 1
2(1 + γ5)ψ ≡ PRψ =

(
0
ψR

)
. (2.26)

It is also convenient to define the Dirac conjugate of a spinor,

ψ̄ ≡ ψ†β, (2.27)

so that we can form Lorentz invariant objects like ψ̄ψ.
There is also another 4-component spinor we can work with called Majorana spinor. Its

upper and lower two components are not independent

ψM =
(
ξ

εξ∗

)
, (2.28)

where the matrix ε is defined as

ε ≡ iσ2 =
(

0 1
−1 0

)
. (2.29)

Note that, as εσ∗i = −σiε, the quantity εξ∗ transforms as a right-handed spinor if ξ is left-
handed.

Now we are ready to write the Standard Model Lagrangian and analyse the interactions
of the particles in nature.

2.2 The particle content

The Standard Model of Particle Physics (SM) describes three of the four fundamental
interactions. The electromagnetic, weak and strong forces are mediated by spin-one gauge
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bosons, which are exchanged by the spin-half particles we use to describe matter. The sym-
metry gauge group of the Standard Model is SU(3)c × SU(2)L × U(1)Y and its generators
are associated with the observed gauge bosons. The subscript “c” is to indicate that fields
that transform under the SU(3)c group are charged by the quantum number called color.
The Standard Model fermions particles are chiral, that is their right-handed and left-handed
counterparts couples differently with the other SM fields, and the subscript “L” of SU(2)L
is to indicate that only the left-handed fermions transforms under this gauge group. Finally,
the subscript “Y ” is meant to distinguish the weak hypercharge Y under the gauge group
U(1)Y from the most commonly used electric charge Q from electromagnetism U(1)em.

The gauge group SU(3)c has eight generators and the associated gauge boson are denoted
as Gαµ(x), α = 1, . . . , 8, and they are called gluons. These are the mediators of the strong
force and are massless. The gauge group SU(2)L has three generators W a

µ , a = 1, 2, 3 and
the group U(1)Y has only one generator Bµ. Together, the four give rise to the three massive
bosons mediators of the weak force, W+, W− and Z, and the massless photon, Aµ.

The known matter content of our Universe is made of fundamental spin-half fermions and
their interactions are characterized by the way these fermions transform under the SU(3)c ×
SU(2)L × U(1)Y gauge group.

The quarks take part on all interactions and form several bound states called hadrons, as
the proton and the neutron. Up to date there are six known quarks, up (u), down (d), top
(t), bottom (b), charm (c), strange (s), all denoted collectively as q, and they can be grouped
into three generations of up-type quarks and down-type quarks that are ordered with respect
to increasing particle mass:

um, u1 = u, u2 = c, u3 = t, (2.30)
dm, d1 = d, d2 = s, d3 = b.

The left-handed counterpart of each generation of up-type quark and down-type form a
doublet under the SU(2)L gauge group:

Qm =
(
PLum
PLdm

)
. (2.31)

The leptons are the fundamental matter particles that don’t take part in the strong
interactions. There are six known leptons, the electron (e), the muon (µ) and the tau (τ),
and their respective neutrinos, νe, νµ and ντ . They can also be grouped into three generations
with increasing mass,

em, e1 = e, e2 = µ, e3 = τ, (2.32)
νm, ν1 = νe, ν2 = νµ, ν3 = ντ .

The left-handed part of each generation of lepton with their respective neutrino also form
a SU(2)L doublet:

Lm =
(
PLνm
PLem

)
. (2.33)
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There hasn’t been an observation of a right-handed neutrino so far, so the right-handed
leptons PRe, PRµ and PRτ are singlets under SU(2)L.

For the sake of notation, the lower case letters (e, µ, τ, u, c, t, d, s, b) are Dirac spinors.
For example, the electron field is denoted as e(x), which has left-handed and right-handed
counterparts:

e =
(
eL
eR

)
. (2.34)

On the other hand, capital letters (L,E,D,U,Q) or script letters (E ,U ,D) are Majorana
spinors. For example, in the Stardard Model lagrangian the electron is represented by two
Majorana fields, E(x) and E(x), defined as:

E =
(
eL
εe∗L

)
, E =

(
−εe∗R
eR

)
. (2.35)

Such that,

e = PLE + PRE. (2.36)

The same applies to the other leptons and the quarks, so that we can write the doublets,

Lm =
(
PLνm
PLE

)
, Qm =

(
PLU
PLD

)
(2.37)

in terms of Majorana fermions.
The standard model also contains a boson scalar field, called Higgs (φ), which is a dou-

blet under the SU(2)L gauge group and has a non-trivial ground state under the symmetry
SU(2)L × U(1)Y . This happens to spontaneously break the symmetry, which allows the
fermions and bosons to acquire mass in a gauge invariant way, as we will see in following
sections. For sake of completeness, the Higgs field and its complex conjugate are written as:

φ =
(
φ+

φ0

)
, φ̃ ≡

(
φ0∗

−φ+∗

)
= εφ∗. (2.38)

2.3 The Lagrangian

We are now in position to write the Lagrangian for the Standard Model of Particle Physics.
The Lagrangian has to be invariant under Lorentz transformations and renormalizable in four
dimensions. We also require it to be invariant under the gauge transformations of the group
SU(3)c × SU(2)L × U(1)Y . The most general Lagrangian density we can write to describe
our observed matter fields, with such conditions is:

LSM = Lfg + LHiggs, (2.39)
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where,

Lfg =− 1
4G

α
µνG

αµν − 1
4W

a
µνW

aµν − 1
4BµνB

µν − g2
3Θ3

64π2 εµνλρG
α
µνG

αλρ

− g2
2Θ2

64π2 εµνλρW
a
µνW

aλρ − g2
1Θ1

64π2 εµνλρBµνB
λρ − 1

2 L̄m
/DLm −

1
2Ēm

/DEm

− 1
2Q̄m

/DQm −
1
2 Ūm

/DUm −
1
2D̄m /DDm, (2.40)

in which the field-strenghts of the gauge fields are given by:

Gαµν = ∂µG
α
ν − ∂νGαµ + g3f

α
βγG

β
µG

γ
ν , (2.41)

W a
µν = ∂µG

a
ν − ∂νGaµ + g2εabcW

b
µG

c
ν , (2.42)

Bµν = ∂µBν − ∂νBµ. (2.43)

We used that /D = γµDµ, fαβγ are the structure constants of the su(3) algebra and the
covariant derivatives are,

DµLm = ∂µLm +
[
i

2g1Bµ −
i

2g2W
a
µτa

]
PLLm +

[
− i2g1Bµ + i

2g2W
a
µτ
∗
a

]
PRLm, (2.44)

DµEm = ∂µEm + ig1Bµ (PREm)− ig1Bµ (PLEm) , (2.45)

DµQm = ∂µQm +
[
− i2g3G

α
µλα −

i

2g2W
a
µτa −

i

6g1Bµ

]
PLQm

+
[
i

2g3G
α
µλ
∗
α + i

2g2W
a
µτ
∗
a + i

6g1Bµ

]
PRQm, (2.46)

DµUm = ∂µUm +
[
− i2g3G

α
µλα −

2i
3 g1Bµ

]
PRUm +

[
i

2g3G
α
µλ
∗
α + 2i

3 g1Bµ

]
PLUm, (2.47)

DµDm = ∂µDm +
[
− i2g3G

α
µλα + i

3g1Bµ

]
PRDm +

[
i

2g3G
α
µλ
∗
α −

i

3g1Bµ

]
PLDm. (2.48)

In these equations, gi, i = 1, 2, 3 are the gauge couplings, the λα, α = 1, . . . , 8 are the 3 × 3
Gell-Mann matrices related to the SU(3)c generators Tα as Tα = 1

2λα [66], and τa are the
Pauli matrices when acting on SU(2)L indices.

Finally, the Higgs Lagrangian is given by,

LHiggs =− (Dµφ)† (Dµφ)− V (φ†φ)

−
(
fmnL̄mPREnφ+ hmnQ̄mPRDnφ+ gmnQ̄mPRUnφ̃+ h.c.

)
, (2.49)

where f, h, g are Yukawa couplings and,

V (φ†φ) = λ

[
φ†φ− µ2

2λ

]2

. (2.50)

is the Higgs potential allowed by renormalizability and invariance under SU(2)L×U(1)Y . To
guarantee stability of the potential λ has to be positive1. The covariant derivative is given

1In fact, loop quantum corrections can make the self coupling λ to run to negative values [67–71], making
the electroweak minimum of the potential to become a local one. From the measured values of the top quark
and Higgs mass we have today (which impact the most the running of λ) we can conclude that the Higgs
potential is meta-stable, though the local minimum life-time before decaying to the unbounded region is much
larger than the age of the Universe.
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by,

Dµφ = ∂µφ−
i

2g2W
a
µτaφ−

i

2g1Bµφ. (2.51)

We see that the Standard Model Lagrangian written so far has only massless particles,
which is a consequence of the SU(3)c × SU(2)L × U(1)Y required invariance. However, the
leptons, quarks and weak interactions mediators we observe in nature are massive. As men-
tioned before, the Higgs field allows mass terms for the fermions and bosons by spontaneously
breaking the SU(2)L × U(1)Y symmetry. We shall look into that in more detail in the next
section.

2.4 The Higgs Mechanism

Let’s go back to the Higgs Lagrangian (2.49):

LHiggs = − (Dµφ)† (Dµφ)− V (φ†φ) + Yukawa,

V (φ†φ) = λ

[
φ†φ− µ2

2λ

]2

. (2.52)

If µ2 < 0 the minimum of the potential is |φ|2 = 0 and we have a SU(2)L × U(1)Y invariant
vacuum. However, if µ2 > 0 the potential is minimized by the field configuration |φ|2 = µ2

2λ
and the theory has an infinite number of vacuums, one for each point in the circle |φ|2 = µ2

2λ .
So, the vacuum of the theory is not gauge invariant anymore and we say the symmetry is
spontaneously broken. We can use the freedom of the local gauge groups to choose a vacuum
by hand and make not only this vacuum, but also the field φ to be real. This is called unitary
gauge and with this choice we can expand the field φ around its true vacuum:

φ =
(

0
1√
2(v +H(x))

)
, (2.53)

where the field H(x) is the real scalar field representing fluctuations around the vacuum
expectation value we chose as

v2 ≡ µ2

λ
. (2.54)

The Higgs potential then becomes:

V = λ

4

[
(v +H)2 − µ2

λ

]2

= λv2H2 + λvH3 + λ

4H
4. (2.55)

Writing the pauli matrices explicitly we can express the covariant derivative as,

Dµφ = 1√
2

(
0

∂µH

)
− i

2
√

2

(
g2W

3
µ + g1Bµ g2W

1
µ − ig2W

2
µ

g2W
1
µ + ig2W

2
µ −g2W

3
µ + g1Bµ

)(
0

v +H

)
, (2.56)
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so that the scalar field kinect term becomes:

−(Dµφ)†(Dµφ) =− 1
2∂µH∂

µH − 1
8(v +H)2g2

2(W 1
µ − iW 2

µ)(W 1µ + iW 2µ)

− 1
8(v +H)2(−g2W

3µ + g1B
µ)(−g2W3µ + g1Bµ). (2.57)

The Yukawa couplings can be expanded in the same way:

L̄mPREnφ = 1√
2

(
ν̄m
Ēm

)T
PREn

(
0

v +H

)

= 1√
2

(v +H)ĒmPREn, (2.58)

and in a similar way for Q and D, and

Q̄mPRUnφ̃ = 1√
2

(
Ūm
D̄m

)T
PRUn

(
v +H

0

)

= 1√
2

(v +H)ŪmPRUn. (2.59)

Putting everything together gives the final expression for the Higgs Lagrangian:

LHiggs =− 1
2∂µH∂

µH − λv2H2 − λvH3 − λ

4H
4

− 1
8g

2
2(v +H)2|W 1

µ − iW 2
µ |2 −

1
8(v +H)2(−g2W

3
µ + g1Bµ)2

− 1√
2

(v +H)[fmnĒmPREn + h.c.]− 1√
2

(v +H)[gmnŪmPRUn + h.c.]

− 1√
2

(v +H)[hmnD̄mPRDn + h.c.]. (2.60)

2.4.1 Fermions masses

The fermion masses can be read off quite easily from the quadratic terms in the fermion
fields of the Yukawa interaction part of the Lagrangian (2.60):

L = − 1√
2
v(fmnĒmPREn + gmnŪmPRUn + hmnD̄mPRDn + h.c.). (2.61)

In terms of Dirac spinors em, dm and um

em ≡ PLEm + PREm,

dm ≡ PLDm + PRDm,

um ≡ PLUm + PRUm, (2.62)

it has a simple form, as

ĒmPREn + h.c. = ĒmPREn + ĒmPLEn = ēmen, (2.63)
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and similar for the up-type quarks and down-type quarks. Then, the quadratic terms become:

L = − 1√
2
v(fmnēmen + gmnūmun + hmnd̄mdn). (2.64)

The mass terms induced by the Yukawa coupling between the Higgs and the fermions need
not to be diagonal in the generation indices m, n in general. But they can be diagonalized if
we do redefinitions of the fermions fields:

em = U (e)
mne

′
n, um = U (u)

mnu
′
n, dm = U (d)

mnd
′
n, (2.65)

and then choose U (e), U (u), U (d) to ensure we have diagonal mass matrices in the end:

U
(e)†
mj fjkU

(e)
kn = diag(fe, fµ, fτ ),

U
(u)†
mj gjkU

(u)
kn = diag(gu, gc, gt), (2.66)

U
(d)†
mj hjkU

(d)
kn = diag(hd, hs, hb).

The resulting mass terms then become

L = − 1√
2
v(fmēmem + gmūmum + hmd̄mdm). (2.67)

If we compare it to standard mass terms, −mψ̄ψ, we find the fermion masses to be:

m(e)
n = 1√

2
fnv, m(u)

n = 1√
2
gnv, m(d)

n = 1√
2
hnv. (2.68)

It is worth emphasizing that all Yukawa couplings fn, gn and hn are different for each fermion
generation.

2.4.2 Bosons masses

The mass of the Higgs boson can be read off from the quadratic term in H of (2.60) when
compared to a standard scalar field mass term of the form −1

2m
2
HH

2, which gives

m2
H = 2λv2 = 2µ2. (2.69)

Recent measurements of the Higgs mass give MH = 125.10± 0.14 GeV [65].
For the gauge bosons the relevant terms are:

L(2)b
Higgs = −1

8g
2
2v

2|W 1
µ − iW 2

µ |2 −
1
8v

2(−g2W
3
µ + g1Bµ)2. (2.70)

The first term gives:

−1
8g

2
2v

2(W 1
µW

1µ +W 2
µW

2µ), (2.71)
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so that the bosonsW 1
µ andW 2

µ appear only in this combination and don’t mix with other fields.
Therefore, their masses can be immediately found by comparing this terms to−1

2M
2
1W

1
µW

1µ−
1
2M

2
2W

2
µW

2µ:

M2
1 = g2

2v
2

4 = M2
2 . (2.72)

It’s useful to write W1 and W2 as the real and imaginary parts of a complex, charged field:

W±µ ≡
1√
2

(W 1
µ ∓ iW 2

µ). (2.73)

The mass term for such a field is

−M2
WW

+
µ W

−µ, (2.74)

where,

MW = M1 = M2 = g2v

2 . (2.75)

The mass of the W bosons is measured to be MW = 80.363± 0.020 GeV [65].
The remaining fields appearing in Eq. (2.70), Bµ and W 3

µ appear only in the combination

g1Bµ − g2W
3
µ . (2.76)

Then, we can normalize this combination to write another boson field:

Zµ ≡
−g1Bµ + g2W

3
µ√

g2
1 + g2

2

(2.77)

≡W 3
µ cos θW −Bµ sin θW. (2.78)

The last equation introduces the weak-mixing angle, or Weinberg angle, θW, which is defined
as,

cos θW = g2√
g2

1 + g2
2

, (2.79)

sin θW = g1√
g2

1 + g2
2

. (2.80)

The mass term with respect to this field then becomes:

−1
8v

2(g2
1 + g2

2)ZµZµ, (2.81)

from which the mass can be read to be:

M2
Z = 1

4(g2
1 + g2

2)v2, (2.82)

and its measured value is MZ = 91.1876± 0.0021 GeV [65].

19



The last mass eigenstate is the combination of Bµ and W 3
µ that is orthogonal to Zµ, which

we call Aµ

Aµ ≡W 3
µ sin θW +Bµ cos θW =

g1W
3
µ + g2Bµ√
g2

1 + g2
2

. (2.83)

This term doesn’t appear in the Lagrangian (2.70) and therefore is a massless eigenstate.
The masslessness of Aµ is related to the fact that we still have a remaining symmetry in the
theory. For instance, the combination T3 + Y annihilates the vacuum:

(T3 + 1
2Y )〈φ〉0 = 1

2

[(
1 0
0 −1

)
+
(

1 0
0 1

)](
0
v√
2

)
= 0 (2.84)

where we have used that T3 = τ3
2 , the Higgs charge under U(1)Y is 1/2 (as can be read off

from Eq. (2.51)) and we denoted as 〈φ〉0 the Higgs vacuum expectation value.
The combination Q ≡ T3 + Y is what we call electric charge and its associated symmetry

is unbroken even if v 6= 0. Thus, we started with the gauge symmetry SU(2)L × U(1)Y that
got spontaneously broken by the Higgs vev, and we are left with the electromagnetic gauge
invariance, U(1)em. As Q is the electric charge, the field Aµ is expected to have the same
couplings as the usual photon.

The gluons remain massless as the Higgs field does not transform under the SU(3)c gauge
group, and thus it left this symmetry intact.

The neutrinos masses in the Standard Model are also identically zero, as we cannot intro-
duce their masses in the same way we did for the other leptons because this would require a
right-handed neutrino, which has not been observed so far. But, we observe neutrino oscilla-
tions (change of flavor during propagation) [72–74], and the most simple explanation for this
phenomena would be that neutrinos have mass. The simplest way to include neutrino masses
would be to extend the Standard Model to include right-handed neutrinos, Nm, singlet under
SU(3)c × SU(2)L × U(1)Y . This would allow another Yukawa coupling between L and N

like jmnL̄mPRNnφ. As not forbidden, we could also include a mass term for the right-handed
neutrinos of the form mmN̄mNm. In principle, such right-handed neutrinos could exist and
be very heavy [75].
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3
Electroweak Theory

The Standard Model Lagrangian contains several interactions between the particle spec-
trum. For the Higgs field we have cubic and quartic self interatctions; couplings of the form
HWW, HHWW, HZZ, HHZZ with the W+, W− and Z bosons; and Yukawa interactions
with all the twelve Standard Model fermions. Concerning strong interactions, we have gluons
self-coupling and interactions between the gluons and all the quarks. We also have self in-
teractions between the electroweak bosons, like WWγ, WWZ, WWWW, WWZZ, WWγγ

and WWZγ. We won’t discuss in more detail these interactions and for the rest of the work
we turn our attention only to the electroweak sector with fermions interactions.

3.1 Charged-current of fermions interactions

The couplings between the gauge fields W a
µ and Bµ and the fermions arise from the

fermions kinetic terms in Eq. (2.40):

L = −1
2 L̄m

/DLm −
1
2Ēm

/DEm −
1
2Q̄m

/DQm −
1
2 Ūm

/DUm −
1
2D̄m /DDm. (3.1)

As these interactions always involve the projection operators PL and PR, we can replace the
Majorana fermions by the Dirac fermions. After writing the explicit form of each covariant
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derivative, the Lagrangian takes the form:

Lew = i

4
(
ν̄m ēm

)
γµPL

(
−g1Bµ + g2W

3
µ g2(W 1

µ − iW 2
µ)

g2(W 1
µ + iW 2

µ) −g1Bµ − g2W
3
µ

)(
νm
em

)

+ i

4
(
ūm d̄m

)
γµPL

(
1
3g1Bµ + g2W

3
µ g2(W 1

µ − iW 2
µ)

g2(W 1
µ + iW 2

µ) 1
3g1Bµ − g2W

3
µ

)(
um
dm

)

+ i

3g1Bµūmγ
µPRum −

i

6g1Bµd̄mγ
µPRdm −

i

2g1Bµēmγ
µPRem + h.c. (3.2)

Remembering that we definedW±µ ≡ 1√
2(W 1

µ∓iW 2
µ), we can easily see from the Lagrangian

the couplings between the fermions and the charged bosons W+ and W−. This couplings are
called charged-current interactions and are given by:

Lcc = ig2

2
√

2

[
W+
µ (ν̄mγµPLem + ūmγ

µPLdm) +W−µ (ēmγµPLνm + d̄mγ
µPLum)

]
. (3.3)

Notice, however, that this Lagrangian is diagonal in the generation indices the way we had
in Eq. (2.40) before doing the field redefinitions in Eq. (2.65) to get a diagonal mass term.
To see how the charged-current are in the mass basis we have to do the field redefinitions
(2.65) here as well:

Lcc = ig2

2
√

2
[W+

µ (ν̄ ′mγµPLe
′
m + ū′mU

(u)†
mk γ

µPLU
(d)
kn d

′
m) (3.4)

+W−µ (ē′mγµPLν
′
m + d̄′mU

(d)†
mk γ

µPLU
(u)†
kn u′m)]. (3.5)

Defining,

Vmn = (U (u)†U (d))mn, (3.6)

introducing the parameter eW,

eW ≡
g2

2
√

2
, (3.7)

and dropping the primes on the fields, we find the charged-current interaction in the mass
basis:

Lcc = ieW[W+
µ (ν̄mγµ(1− γ5)em + Vmnūmγ

µ(1− γ5)dm) (3.8)
+W−µ (ēmγµ(1− γ5)νm + V †mnd̄mγ

µ(1− γ5)um)]. (3.9)

The matrix Vmn is a 3×3 unitary matrix called Cabbibo-Kobayashi-Maskawa (CKM)-matrix.
Its arguments depend on physical parameters that have to be measured experimentally [65].

It is useful to define:

J+
µ = iν̄mγ

µ(1− γ5)em + iVmnūmγ
µ(1− γ5)dn, (3.10)

J−µ = iēmγ
µ(1− γ5)νm + iV †mnd̄mγ

µ(1− γ5)un, (3.11)

so that,

Lcc = eW[W+
µ J

+
µ +W−µ J

−
µ ]. (3.12)
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3.2 Neutral-current of fermions interactions

To analyse the couplings of the fermions to the Bµ and W 3
µ bosons is useful to rewrite Eq.

(3.2) as

Lew = 1
2
(
ν̄m ēm

)
γµPL

(
ig1BµYL + ig2W

3
µT3

1
2 ig2(W 1

µ − iW 2
µ)

1
2 ig2(W 1

µ + iW 2
µ) ig1BµYL + ig2W

3
µT3

)(
νm
em

)

+ 1
2
(
ūm d̄m

)
γµPL

(
ig1BµYL + 1

2 ig2W
3
µT3

1
2 ig2(W 1

µ − iW 2
µ)

1
2 ig2(W 1

µ + iW 2
µ) ig1BµYL + ig2W

3
µT3

)(
um
dm

)

+ i

2g1BµYRūmγ
µPRum + i

2g1BµYRd̄mγ
µPRdm + i

2g1BµYRēmγ
µPRem + h.c.. (3.13)

where T3 is the charge under the SU(2)L generator T3 = τ3/2 and YL is the hypercharge of the
left-handed fermion and YR of the right-handed one. For the right-handed fermions the electric
charge is the same as the hypercharge, as T3 = 0 for this particles. So, T3 + YL = Q = YR.
We see that the interactions of the fermions with the Bµ and W 3

µ bosons is flavor-diagonal
and can be rewritten more simply as,

Lnc =
∑
f

[f̄γµPL(ig2W
3
µT3 + ig1BµYL)f + f̄γµPR(ig1BµYR)f ]. (3.14)

We can use that, (
W 3
µ

Bµ

)
=
(

cos θW sin θW
− sin θW cos θW

)(
Zµ
Aµ

)
, (3.15)

to work out the expression in Eq. (3.14) we shall define Jµ:

Jµ ≡PLg2W
3
µT3 + PLg1BµYL + PRg1BµYR

=PLg2W
3
µT3 + PLg1Bµ(Q− T3) + PRg1BµQ

=T3PL[g2(Zµ cos θW +Aµ sin θW)− g1(Aµ cos θW − Zµ sin θW)]
+ g1(Aµ cos θW − Zµ sin θW)Q. (3.16)

We can simplify this expression using relations among the coupling constants:

g2 = cos θW

√
g2

1 + g2
2, g1 = sin θW

√
g2

1 + g2
2, (3.17)

so that

g1 cos θW = g2 sin θW ≡ e, (3.18)

and

g2 cos θW + g1 sin θW =
√
g2

1 + g2
2 = e

sin θW cos θW
. (3.19)

Using this relations in Jµ we have,

Jµ = e

sin θW cos θW
[T3PL −Q sin2 θW]Zµ + eQAµ. (3.20)
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Plugging it back on Eq. (3.14) gives,

Lnc =
∑
f

if̄γµ
(

e

sin θW cos θW
[T3PL −Q sin2 θW]Zµ + eQAµ

)
f. (3.21)

We can read off from this Lagrangian the photon-fermion coupling as being,

Lem = eJµemAµ, Jµem = iQ
∑
f

f̄γµf. (3.22)

where the sum is taken over all fermion types but the neutrino, which is electrically neutral.
We see that e indeed plays the role of electromagnetic coupling constant.

The remaining coupling, with the Zµ boson, is given by

Lnc = ie

sin θW cos θW

∑
f

Zµf̄γ
µ
[
T3PL −Q sin2 θW

]
f, (3.23)

and is called neutral-current of fermions interactions. We can write it also as

Lnc = ie

sin θW cos θW

∑
f

Zµf̄γ
µ[gV − γ5gA]f, (3.24)

where we defined

gV = 1
2T3 −Q sin2 θW, gA = 1

2T3. (3.25)

Introducing,

J3
µ = i

∑
f

f̄γµT3

(1− γ5
2

)
f, (3.26)

so that,

JZµ = J3
µ − sin2 θWJ

em
µ , (3.27)

we get for all weak interactions Lagrangian:

Lin = eW
[
W+
µ J

+
µ +W−µ J

−
µ

]
+ e

sin θW cos θW
ZµJ

Z
µ + eAµJ

µ
em. (3.28)

3.3 Four fermions interaction and effective theories

Several years before having an electroweak theory, physicists could already give very
accurate predictions of the weak interactions phenomena. Low energy measurements gave
indications that the bosons W and Z should be very heavy, and also indicated that the theory
of weak interactions should involve vector currents like ψ̄γµψ and axial vector currents such
as ψ̄γµγ5ψ. The description of low energy interactions between leptons was achieved with
the non-renormalizable 4-fermion theory. To find the 4-fermion theory we will do a top-down
approach and compute the leptons weak interactions at three level:
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ν

l

W±

l

ν

∼ e2
W(ēmγµ(1− γ5)νm)

×
−i
(
ηµν − pµpν

m2
W

)
p2 −m2

W
(ν̄mγν(1− γ5)em) (3.29)

At the low energy regime p2 � m2
W, so we can approximate the exchange of a boson by

a local four fermions interaction:

ν

l

l

ν

∼ − e2
W

m2
W

[(ēmγµ(1− γ5)νm)× (ν̄mγµ(1− γ5)em)] (3.30)

We can also define the quantity

GF√
2

= e2
W

m2
W

= g2
2

8m2
W

= 1
2v2 . (3.31)

GF can be inferred by experiments to be GF = 1.166 × 10−5 GeV−2 [65] and from its value
we find the electroweak vev to be

v = 247 GeV. (3.32)

We could have done the same analysis for a Z boson exchange between leptons and quarks
in the low energy limit and we would find the same GF . Therefore, GF works as a low energy
universal coupling strength between leptons and quarks. Hence, the full 4-Fermi theory can
be written as

L4F = −GF√
2

[
J+
µ J
−µ + 8(JZµ )2

]
. (3.33)

This is a complete description of the electroweak interactions when the interacting particles
have energies much smaller than the boson masses. It is an example of an effective field theory
(EFT) and it is valid up to ≈ 80 GeV (W± mass). Beyond this energy scale contributions
coming from the boson propagator start becoming important and we have to correct our
Lagrangian. Formally, to build an EFT we have to integrate out all heavy degrees of freedom
of the theory and in the end we will be left with the low energy ones and free parameters
that have to be fixed by experimental measurements. In this way we are able to explore and
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make predictions about low energy physics without having to worry about what happens in
the UV. This is a very useful tool in physics, and in fact all theories we have to describe
nature are effective theories, as we still don’t have a complete consistent description of all
fundamental interactions and matter that is valid in all energy scales.

3.4 Discrete symmetries

The Standard Model is built with the continuous gauge symmetries SU(3)c, SU(2)L and
U(1)Y and is important to keep track of continuous global symmetries, as they are associated
with conserved quantities. But there are also three important discrete transformations that
arise in a general relativistic quantum mechanical system. They are the space and time inver-
sions, that are improper Lorentz transformations, and charge conjugation, that transforms a
particle into its antiparticle. These are presented in the following subsections. For a more
detailed discussion, see [76–78].

3.4.1 Parity

The unitary parity transformation, P, inverts all spatial coordinates, and consequently
the momenta, by reflecting through the origin:

Pψ(~r) = ψ(−~r). (3.34)

Applying parity operation twice makes you go back to the original state, so P2 = 1.
We say that a wavefunction is even if Pψ(~r) = ψ(~r), and it is odd if Pψ(~r) = −ψ(~r).

In spherical polar coordinates, (r, θ, φ) → (r, π − θ, π + φ) under a parity transformation,
and for a wavefunction that depends on a product of a radial function f(r) and the spherical
harmonics Y m

l (θ, φ) we have,

Pψ(r, θ, φ) = (−1)lψ(r, θ, φ), (3.35)

where l is the orbital angular momentum. Then, a parity of some state will depend on the
parity of its constituents.

It is interesting to see how parity is greatly connected to handedness. For instance, let us
consider the two sets of transformation laws for the left and right-handed spinors under the
Lorentz group Eqs. (2.10),(2.15). We saw that these transformations are different only for
the boosts equation. Let’s take first the left-handed boosts transformations:

B(φ) = e
1
2φ·σ (3.36)

The angles of the Lorentz boosts are related to the frame speed, and under parity they all
change by a minus sign. Then, we have

PB(φ) = Pe
1
2φxσx+ 1

2φyσy+ 1
2φzσz = e−

1
2φxσx−

1
2φyσy−

1
2φzσz = e−

1
2φ·σ. (3.37)
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Comparing these with the boosts transformations for the right-handed spinors in Eq. (2.15)
we see that they are exactly the same. Therefore, parity transforms left-handed into right-

handed spinors. For a Dirac fermion with left and right-handed components ψ =
(
ψL
ψR

)
is

easy to see that the same transformation can be achieved by multiplying the fermion by the
matrix:

P ≡
(

0 I

I 0

)
, Pψ =

(
ψR
ψL

)
. (3.38)

Notice that this matrix is exactly the same we defined before as β = iγ0.
Now we can see that some interactions we have found before in the Standard Model violate

parity, more precisely the electroweak interactions. For instance, let’s consider the quantities
jµV ≡ ψ̄γµψ and jµA ≡ ψ̄γµγ5ψ and see how they transform under parity. We know that,
Pψ ≡ ψ′ = iγ0ψ, and therefore,

ψ̄′ = iγ0ψ = (ψ†γ0†(−i))iγ0 = ψ†. (3.39)

Then, we have

ψ̄′γµψ′ = ψ†γµiγ0ψ =

ψ̄γ0ψ, µ = 0
−ψ̄γiψ, µ = i

(3.40)

where we have used that γiγ0 = −γ0γi. Thus, jµV behaves as a normal vector as only its
spatial part changes under parity. Now, for ψ̄γµγ5γ, since γ5γ

0 = −γ0γ5 , we have

ψ̄′γµγ5ψ
′ = −ψ†iγµγ0γ5ψ =

−ψ̄γ0γ5ψ, µ = 0
+ψ̄γiγ5ψ, µ = i

(3.41)

which changes is the opposite way of a vector, and the spatial components don’t change
sign under a parity transformation. This structure is called pseudo-vector, or axial-vector.
A term of this type appears in the charged and neutral-currents (3.24), which causes the
electroweak interactions to violate parity. More precisely, it is the mixture of vector and
axial-vector terms that causes parity violation. When calculating the amplitude of weak
interaction processes like Eq. (3.29) or the 4-fermion interaction Eq. (3.30) one roughly gets
∼ jµV jµV + jµAjµA − 2jµV jµA, and under parity this transforms to ∼ jµV jµV + jµAjµA + 2jµV jµA,
so the amplitude is not invariant under parity.

The parity violation effect was observed in nature for the first time by Wu et al. in 1957
in the beta decay of Co60 [79], in which almost all electrons are emitted with the same angle
with respect to the nucleus angular momentum.

3.4.2 Charge conjugation

Charge conjugation is the discrete symmetry that changes a particle by its anti-particle.
It reverses the sign of the particle’s charge, not only electric, but magnetic moment, color,
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hypercharge, baryon and lepton number. If a particle has no quantum number, then it is its
own anti-particle. Like the parity operator, the charge operator obeys C2 = 1 and can be
represented by the charge conjugation matrix.

C =
(
−ε 0
0 ε

)
= γ2β. (3.42)

Then,

C† = −C, Cβ = −βC, Cγ5 = γ5C. (3.43)

3.4.3 Time reversal

Time reversal is the act of reversing the time coordinate t→ −t. This leaves the positions
of all particles unchanged but reverses their motions and spins p→ −p, J → −J

In general these discrete symmetries may be individually violated by Standard Model
interactions, but the CPT theorem [80–82] states that all quantum field theories must be
invariant under the three combined. It also enables us to relate combinations of two discrete
symmetries in terms of the others:

CP ↔ T, CT ↔ P, PT ↔ C. (3.44)
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4
Low energy experiments

In general when comes to the subject of getting precision measurements of particle physics
predictions and its parameters one usually thinks that the higher the energy we can probe
(the energy we use to smash poor particles against each other in huge colliders) the better,
but this is not always the case.

Low energy experiments can lead to very precise values of some of the Standard Model pa-
rameters, like the sin θW. Comparison of these precise measurements with what the Standard
Model predicts allows us to say something about physics beyond the Standard Model. In the
next sections we will review examples of such low energy experiments, namely atomic par-
ity violation, neutrino-nucleus scattering and polarized electron scattering, and then present
bounds on the existence of a new neutral boson by using measurements of the sin θW. For
extense reviews on the low energy experiments, see [83–88].

This chapter is based on the work [18].

4.1 Atomic Parity Violation

For decades it was assumed that the laws of nature preserved parity, but the seminal
paper of Lee and Yang in 1956 gave rise to a different perspective [89]. This was indeed
confirmed in 1957 in the realm of weak interactions, via the beta decay in Cobalt [79] and
muon decay [90]. In 1959 the possibility of observing parity violation in atomic physics,
which involves a Z boson exchange as the atom stays stable with the same particles, was
contemplated by Zeldovich [91] for the Hydrogen atom, but he concluded that the effect
was too small to be of experimental significance. To see why, let’s consider the left-right
asymmetry ALR that arises from the interference between an odd contribution under space
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reflections coming from the amplitude of processes with a Z exchange, AW , and an amplitude
from electromagnetic processes, Aem, in electric dipole transitions in the atom, defined as:

ALR = PL − PR
PL + PR

, (4.1)

where, for PL,R = |Aem ±AW |2 we have,

ALR = 2Re
(
AoddW

Aem

)
, (4.2)

where Aodd denotes an odd parity amplitude. If q is the four-momentum transfer between
the lepton and the hadron, Aem and AW are given, respectively, by

Aem ∝
e2

q2 , AW ∝
g2

q2 +M2
Z

. (4.3)

For atoms, we expect q to be of the order of the Bohr radius q ∼ ~/meα, so we arrive in an
estimate for the left-right asymmetry:

ALR ∼ α2 m
2
e

m2
Z

∼ 10−15. (4.4)

This estimation, though naive, seemed to give no hope for the observation of such an effect.
But further investigations in the late 70’s by the Bouchiat and others [92–95] showed that
there is in fact an enhancement on the atomic parity violation (APV) on heavy atoms, of order
Z3 [96]. Since then, the APV has been successfully observed in Pb, Tl, Yb and Cs, where the
parity violating effects are enhanced by a factor of 105 − 106 over those of hydrogen atoms,
by detection of radiation emitted by these atoms in frequencies associated to transitions
forbidden by electromagnetic interactions only.

To write down the interaction Hamiltonian for APV processes, let’s first write the parity
violating terms of the effective Lagrangian (3.33), with a Z boson interaction,

−LPV
eff = 8GF√

2

[1
2 ēγ

µT3ee

(
−1

2 q̄γµγ5T3qq

)
− 1

2 ēγ
µγ5T3ee

(1
2 q̄γµT3qq

)
− 1

2 ēγ
µγ5T3ee(−q̄γµQq sin2 θW q) + 1

2 ēγ
µQe sin2 θW eq̄γµγ5T3qq

]
, (4.5)

which simplifies to,

−LPV
eff = 8GF√

2

[
−1

2 ēγ
µe

(
T3e
2 −Qe sin2 θW

)
q̄γµγ5qT3q

− 1
2 ēγ

µγ5e T3e

(
T3q
2 −Qq sin2 θW

)
q̄γµq

]
.

(4.6)

Taking T3e = −1/2, Qe = −1, T3u = 1/2, Qu = 2/3, T3d = −1/2, Qd = −1/3, as the
values of the charges of the electron, up and down quarks, we find,
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−LPV
eff = 8GF√

2

[
−1

2 ēγ
µe

(
−1

4 + sin2 θW

)
ūγµγ5u

(1
2

)
− 1

2 ēγ
µγ5e

(
−1

2

)(1
4 −

2
3 sin2 θW

)
ūγµu

− 1
2 ēγ

µe

(
−1

4 + sin2 θW

)
d̄γµγ5d

(
−1

2

)
− 1

2 ēγ
µγ5e

(
−1

2

) (
−1

4 + 1
3 sin2 θW

)
d̄γµd

]
. (4.7)

As the quantity sin2 θW ' 1/4, we see that the second and fourth terms are dominating,
i.e. Z boson exchange between the electron axial-vector and nucleon vector currents. Using
this expression we can write the interaction Hamiltonian as

HPV
eff

∣∣∣
int

= 2GF√
2
∑
q

(C(1)
q ēγµγ5q̄γ

µq + C(2)
q ēγµeq̄γ

µγ5q), (4.8)

where the interactions and constants can be further combined into couplings to protons and
neutrons inside the nucleus:

C(1,2)
p = 2C(1,2)

u + C
(1,2)
d , (4.9)

C(1,2)
n = C(1,2)

u + 2C(1,2)
d . (4.10)

In terms of the Weinberg angle θW the couplings are written as

C(1)
u = 1

4 −
2
3 sin2 θW, C(2)

u = 1
4 − sin2 θW, (4.11)

C
(1)
d = −1

4 + 1
3 sin2 θW, C

(2)
d = −1

4 + sin2 θW. (4.12)

Therefore,

C(1)
p = 1

4(1− 4 sin2 θW), (4.13)

C(1)
n = −1

4 , (4.14)

C(2)
p = −C(2)

n = 1
4 − sin2 θW. (4.15)

To work out the dominant term of the Hamiltonian (4.8) we need to define the weak
charge, QSM

W , which is an analogous of the electromagnetic charge, but with the Z boson
playing the role of mediator between the atomic electron and nucleus interactions instead.
QSM

W is the sum of the weak charges of all constituents of the atomic nucleus, QSM
W = (2Z +

N)QW(u)+(Z+2N)QW(d), where N is the number of neutrons and Z the number of protons
(not to be confused with the Z boson) inside the nucleus. Therefore,

ZC(1)
p +NC(1)

n = 1
4(Z(1− 4 sin2 θW)−N) ≡ 1

4Q
SM
W . (4.16)
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up to radiative corrections. Then, we see that a precise measurement of the weak charge
(sin2 θW) and a comparison to theoretical predictions can be used to constrain new physics
using APV.

We want to write down a Hamiltonian that describes electrons subject to a potential
sourced by a heavy nucleus. To do that let’s step back and remember that in the non-
relativistic regime, after a Fourier transform the propagator of the Z boson becomes,

1
m2
Z − q2 →

e−mZ |~r|

4π|~r| = 1
m2
Z

m2
Ze−mZ |~r|

4π|~r| , (4.17)

and when m2
Z →∞ we get,

1
m2
Z

m2
Ze−mZ |~r|

4π|~r| → δ(~r)
m2
Z

. (4.18)

Therefore, the Hamiltonian for the dominant electron axial-vector nucleus vector current
interaction is

HPVdom
eff

∣∣∣
int

= GF

2
√

2
QSM
W e†γ5eδ(r). (4.19)

The sub-leading contributions to the parity violation Hamiltonian depend on the nucleus
spin and can be parametrized as [97]

HPVsub
eff

∣∣∣
int

= GF√
2

(ηaxial + ηNAM + ηhf)(α.I)ρ(r), (4.20)

where ηaxial comes from the axial-vector nucleus and electron vector current interaction; ηNAM
parametrizes the nuclear anapole moment, that is, the exchange of a Z boson between quarks
inside the nucleus; ηhf comes from the hyperfine interaction; α = γ0γ

i, I is the nuclear spin
and ρ(r) the nuclear density.

All the parity violating interactions for an atom are illustrated by the diagrams in Fig-
ure (4.1).

4.2 Polarized Electron Scattering

Another parity violation observable that also constitutes an important laboratory to new
physics searches is the polarized electron scattering (PeS) [98]. In these experiments a beam
of polarized electrons is scattered by a steady target like a hadron and, as the electrons in
a polarized beam have their spin aligned with the direction of motion, part of the electrons
behave as left-handed and part as right-handed fermions. Again, the left-right asymmetry
due to the weak interactions is the key observable. It describes the relative difference between
scattering cross sections with right-handed electrons σR and left-handed electrons σL. The
cross sections, in turn, can be calculated using the effective 4-Fermi Lagrangian Eq. (3.33) and
the parity violating terms will be the same as in the APV case. For deep inelastic scattering
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Figure 4.1: Diagrams of major contributions to parity violation in atoms. N labels the
nucleus and e− the atomic electrons. Ae,N stands for an axial-vector current and Ve,N for
a vector current. (a) Z boson exchange between electron axial-vector and nucleon vector
currents, the leading contribution to APV; (b) Z boson exchange between nucleon axial-
vector and electron vector currents; (c) Electromagnetic interaction of atomic electrons with
nucleus anapole moment, shown as a dark circle; (d) Combined effect of (a) with the hyperfine
interaction.

processes of the type eL,RN → eX, the left-right asymmetry can be expressed, in the quark
model and in the limit of zero nucleon mass, in a relatively simple form1

ALR = σL − σR
σL + σR

≈ − GFQ
2

4
√

2πα
[a1(x)Y1(x) + a2(x)Y2(x)], (4.21)

where Q is the four-momentum of the mediator particle, the coefficients a1, a2 depends on
the axial-vector coupling between the electron and quarks, which depend on sin2 θW, Y1,2(x)
are kinematic functions of the fraction energy transfer x from the electron to the hadrons
and α is the fine-structure constant. Detailed expressions for a1, a2 and Y1,2 can be found,
for example, in [99,100].

Thus, a measurement of ALR translates into a measurement of sin2 θW at a given mo-
mentum Q. It is well-known that photon exchange diagrams conserve parity but processes
mediated by the Z do not, since the latter does not interact with left-handed and right-handed
fermions in the same way. In a similar vein, eventual additional massive vector bosons from
new physics models might also contribute to the left-right asymmetry. Therefore, if the mea-
surement of ALR, in other words, sin2 θW, agrees with the Standard Model prediction one can
use this information to constrain new physics effects that induce parity violation and hence
contribute to the left-right asymmetry. We can parametrize the new physics contributions to
ALR by a shift on sin2 θW and consequently constrain new physics effects (see e.g. [1,2,101,102]
for a previous analysis along this line).

1In the case of electron positron scattering or the so-called Moeller scattering (scattering of electrons), the
Q2 dependence of the asymmetry is more complicated and is parametrized by a form factor.
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4.3 Neutrino-Nucleus coherent scattering

The aforementioned observables depend on the interactions between electrons and quarks.
Hence they lead to relevant bounds on the corresponding couplings. That has been the
whole story up to now, but with the observation of neutrino-nucleus coherent scattering new
information came into light [103]. Strictly speaking, neutrino-nucleus coherent scattering
(νNCS) and parity violation probes are sensitive to different interactions, the former between
electron and quarks, the latter between neutrinos and quarks. Nevertheless, using SU(2)
invariance, one can potentially correlate the signal in neutrino-nucleus coherent scattering to
the one appearing in parity violation observables. In other words, they are complementary
to one another.

The νNCS is the process by which a neutrino interacts with a nucleus and the nucleus
recoils as a whole. The initial and final states are identical, tough the process happens through
the exchange of a Z boson. Such scattering can be calculated from the Lagrangian (3.33) for
neutrino-quarks interaction through the neutral-current:

Lν−q = −8GF√
2

[ν̄γµ(gνV − γ5g
ν
A)ν][ūγµ(guV − γ5g

u
A)u+ d̄γµ(gdV − γ5g

d
A)d]. (4.22)

We show in Figure 4.2 an illustration of the expected energy scale dependence of sin2 θW
(see e.g. [1, 2] for details) together with different measurements of sin2 θW see also [102].

In the next section we will present new physics bounds from APV, electron scattering and
neutrino-nucleus scattering. We will carry out this study using effective field theory and later
concentrate on vector mediators. We highlight that this work adds to the previous ones done
in the literature because instead of focusing on one observable we explore the complementarity
between νNCS, APV and polarized electron scattering. Moreover, we apply our findings to
existing models in the literature.

4.4 New Physics probes from Atomic Parity Violation, Polar-
ized Electron Scattering and Neutrino-Nucleus coherent
scattering

New physics parity violation effects can be described through effective field theory, with
the Lagrangian discussed before for the Standard Model, plus a possible new effect [104,105],

−LPV
eff = 2GF√

2
ēγµγ5e

[(1
4 −

2
3 sin2 θW

)
ūγµu+

(
−1

4 + 1
3 sin2 θW

)
d̄γµd

]
+ 1

Λ2 ēγ
µγ5e

[
fV uūγµu+ fV dd̄γµd

]
, (4.23)

where we encode the new physics effects with three parameters namely, Λ which represents a
new energy scale, and the couplings fVu and fVd that quantify how new physics interact with
electrons and quarks.
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Figure 4.2: Scale dependence (gray curve) of sin2 θW [1, 2] compared with measurements
(colored points) from APV [3] and E158 [4] as well as the future experiments, Qweak [5, 6],
P2 [7], Mesa [8], Moller [9], Solid [10], where the error bars are projected sensitivity and the
points are on arbitrary positions.

Now we can link effective field theory approach to new physics to atomic parity violation.

4.4.1 New physics with APV

In order to relate parity violation to APV, we need to define the weak charge of a nucleus
which enters into the Hamiltonian of the electron field [105]. This weak charge, Qeff

W is the
sum of both Standard Model and new physics contributions. The former was defined in Eq.
(4.16):

QSM
W = (Z(1− 4 sin2 θW )−N). (4.24)

In analogy we can define a new physics contribution by combining the couplings of the
vector currents:

QNP
W = Z

(
2fV uΛ2 + fV d

Λ2

)
+N

(
fV u
Λ2 + 2fV dΛ2

)
= 3

Λ2 f
eff
V q(Z +N), (4.25)

where the effective coupling is defined as,

f eff
V q = fV u (2Z +N) + fV d (Z + 2N)

3(Z +N) . (4.26)
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Hence, we can write an effective Hamiltonian in terms of the new effective charge. By
doing an analogous calculation as we did in Eqs. (4.17 - 4.19) we arrive that the effective
Hamiltonian describing Atomic Parity Violation can be written in terms of the weak charge
of the nucleus as:

HPV
eff

∣∣∣
int

= − LPVeff

∣∣∣
int

= e†γ5e

[
GF

2
√

2
QSM
W + 3

Λ2 f
eff
V q(Z +N)

]
δ(r)

= e†γ5e
GF

2
√

2

[
QSMW + 2

√
2

GF
QNP
W

]
δ(r)

= e†γ5e
GF

2
√

2
Qeff
W (Z,N)δ(r). (4.27)

We can define the variation of the effective charge, with respect to the SM expectation,
as:

∆QW = Qeff
W −QSM

W = 2
√

2
GF

3
Λ2 f

eff
V q(Z +N). (4.28)

This should be compatible with experimental observation. But to compare the observations
with a prediction one has to do very precise theoretical calculations of the atomic structure.
As the effect of APV is larger in heavier atoms this can be quite challenging. That is why the
Cesium atom is a perfect candidate for measuring APV, as it has a heavy Xe-like core with
only one valence electron, which makes the calculations easier. At the moment, by transitions
on stable isotope 133

78 Cs, we can determine the following bound, at 90% confidence level:

|∆QW | <
∣∣∣Qexp

W −Qth
W

∣∣∣ = 0.23. (4.29)

Inserting GF = 1.17 × 10−5 GeV−2, Z = 55, N = 78, we constrain the ratio effective
coupling over the energy scale,

f eff
V q

Λ2 < 2.38× 10−9 GeV−2. (4.30)

The EFT description illustrated above is valid as long as the new degrees of freedom
associated to the New Physics scale Λ are heavy with respect to the typical energy/momentum
transfer of parity violation experiments, the simplest option being Λ ≡ mZ′ with Z ′ being a
new spin-1 boson (we will briefly illustrate some concrete models in section (4.4.4)). If this is
not the case, namely mZ′ . 100 MeV [105], atomic parity violation effects are damped by a
form factorK(m′Z) < 1, which should be included in Eq. (4.28), accounting for the propagator
of the new boson. We will not consider explicitly this case here. An effective complementary
probe for light bosons is represented by polarized electron scattering. Before discussing this
we will compare bounds from APV with the ones stemming from neutrino-nucleus coherent
scattering.
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4.4.2 New physics with νNCS

The Lagrangian that dictates the APV discussion, Eq. (4.23), has the form ēγµγ5eq̄γµq

with q = u, d. From SU(2) invariance, whatever new physics that interacts with electrons
should also interact with neutrinos. Therefore we can write the effective Lagrangian:

− Leff = f
′
V u

Λ2 (ν̄LγµνL)(ūγµu) + f
′
V d

Λ2 (ν̄LγµνL)(d̄γµd), (4.31)

which can provide a microscopic description of neutrino-nucleus scattering processes. The
latter can be probed, for example, by the COHERENT experiment [106–108]. Given the
agreement with the Standard Model prediction we can use the COHERENT data to con-
strain new physics effects. In the EFT framework under consideration this constraint can be
expressed through the following relation [109,110]:

Z
(
gVp + 2εV u + εV d

)
+N

(
gVn + εV u + 2 εV d

)
= ±

(
ZgVp +NgVn

)
, (4.32)

where gVp,n are the couplings of the SM Z-boson with the proton and the neutron:

gVp =
(1

2 − 2 sin2 θW

)
, gVn = −1

2 , (4.33)

while:
εV u =

√
2

GF

f
′
V u

Λ2 , εV d =
√

2
GF

f
′
V d

Λ2 . (4.34)

This equation is solved for:
εV u = −A+N

A+ Z
εV d, (4.35)

or

εV u = −A+N

A+ Z
εV d −

2
(
ZgVp +NgVn

)
A+ Z

. (4.36)

Consequently, the allowed regions from the COHERENT data would appear as linear band
in the bidimensional plane

(
f
′
V d
Λ2 ,

f
′
V u
Λ2

)
. Assuming, for simplicity, f ′V u = fV u, f

′
V d = fV d, we

can compare the sensitivity of the coherent experiments with APV. This kind of comparison
is shown in Figure (4.3). The green area is the allowed region in the fV u vs fV d plane [110].

We remark again that the solution illustrated above is valid as long as the new physics scale
Λ is sensitively above the typical momentum transfer q in the neutrino scattering processes.
If this is not the case one should explicitly consider the new BSM mediator of the interactions
between neutrinos and SM quarks and hence consider the following redefinition:

√
2

GF

f
′
V q

Λ2 →
√

2
GF

f
′
V q

m2
Z′ + q2 , (4.37)

where f ′V q should be now interpreted as the product of the couplings of the mediator with
neutrinos and up/down quarks.

In order to compare the sensitivity of νNCS and APV, we need to compute feffVq
, as

defined in Eq. (4.26) with N = 78 and Z = 55. The APV observable is related to the coupling
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between electrons and quarks. Assuming, for simplicity, that the couplings in Eq. (4.31) are
equal to the ones responsible for APV, we can pick the pairs fV u, fV d inside the overlapping
region in Fig. (4.3) . The green band is the delimits the region allowed by the COHERENT
data, whereas the blue one comes from the CHARM experiment based on the observation
of νe − N inelastic scattering [11]. The LHC bound results from missing energy searches
[12]. Collectively these different data sets restrict new physics to live inside the overlapping
region, which roughly implies that |feffVq

/Λ2| < 10−6. Therefore, if couplings involved in APV
and neutrino-nucleus coherent scattering processes for some reason are similar, APV clearly
constitutes a more promising probe. Be that as it may, we emphasize that the couplings
involved in these processes can be quite different depending on the model.

Figure 4.3: Bound on the couplings between the electron neutrino and up-quark (fV u/Λ2)
and electron neutrino and down quark (fVd/Λ2) as defined in Eq. (4.31). The green area is the
region allowed by the COHERENT data. The CHARM constraint stems from νe−N inelastic
scattering data [11]. The LHC bound results from missing energy searches [12]. Collectively
these different data sets restrict new physics to live inside the overlapping region, which
roughly implies that |feffVq

/Λ2| < 10−6. See the text for details. For comparison we show with
a red circle the region which is consistent with APV, which is clearly more restrictive.

Anyway, it is exciting to see that COHERENT, a 14 kg detector, can already place
important bounds on new physics. This fact has triggered several new physics sensitivity
studies using COHERENT data and other nuclei [111–113, 113–122]. There are upcoming
experiments that aim at probing νNCS at different energies and precision which will be
certainly important to improve the overall sensitivity to new physics [123–125].
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We have parametrized the new physics effect in terms of the effective couplings and the
energy scale Λ. This parametrization is valid in the regime which the new physics scale is
much heavier than the typical energy scale involved. However, new physics can also appear
as light mediators (Z ′) with masses much below the Z mass and light mediators alter the
Standard Model prediction for sin θW at low energies. The deviation can be observed using
polarized electron scattering as we explore below.

4.4.3 New physics with PeS

Atomic Parity Violation is an important probe to test new physics, but if new physics
surface at low energy polarized electron scattering becomes an ideal laboratory, specially in
the presence of kinetic and mass mixing terms between the Z and Z ′ gauge boson. Indeed,
low energy scattering of polarized electrons on electrons and other targets are very sensitive
to parity violation effects at low energy, and consequently to the presence of light mediators.
In other words, they are very sensitive to the parity violation effects that are proportional to
1− 4 sin2 θW, and in this way constrain sin θW. Generally, additional parity violation sources
rise from both kinetic and mass Z − Z ′ mixings. The former originates from a Lagrangian
term of the form:

L ⊃ ε

2 cos θW
BµνZ ′µν . (4.38)

For what concern mass mixing we will adopt a generic parametrization of the form:

M2 =
(

m2
Z −δmZmZ′

−δmZmZ′ m2
Z′

)
, (4.39)

where 0 ≤ δ < 1, if the Z ′ is light compared to Z we can write,

M2 =

 1 −εZ
−εZ

m2
Z′

m2
Z

m2
Z , (4.40)

with
εZ = δ

mZ′

mZ
. (4.41)

The cross-term (4.38) can be rotated away leading to the following redefinition of the Z and
photon fields:

Aµ → Aµ + εZ ′µ,

Zµ → Zµ − ε tan θWZ
′
µ, (4.42)

inducing, in turn, the following interactions for the Z ′ boson:

L = −
(
eεJem

µ −
g

2 cos θW
εZJ

Z
µ

)
Zµ ′. (4.43)

These terms induce weak currents that can accounted for by redefining the sin θW as [126,127],

sin2 θW → κd sin2 θW, κd = 1− ε

εZ
δ2 cos θW

sin θW
f(Q2/m2

Z′), (4.44)
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where f(Q2/m2
Z′) is the propagator effect given by [128–131],

f(Q2/m2
Z′) = 1

1 +Q2/m2
Z′
. (4.45)

Using equations (4.44) and (4.45) we can write the change of the weak angle due to the
mixing between Z and Z ′ as,

∆ sin2 θW ' −0.42εδ mZ

mZ′
f(Q2/m2

Z′), (4.46)

and so we can put bounds on the mixing ε given the difference between measurements and
prediction of the weak angle,

ε2 ' 5.67
δ2 (∆ sin2 θW)2

(
mZ′

mZ

)2
(1 +Q2/m2

Z′)2

' 5.67
δ2 (∆ sin2 θW)2

(
m2
Z′ +Q2

mZmZ′

)2

. (4.47)

The bounds obtained using the existing and expected precision in the measurement of
sin2(θW) by some future experiments are written in the Table 4.1. From Table 4.1 we notice
that the bounds on ε become stronger for large values of δ which accounts for the mass mixing.
We exhibited these bounds for several values of δ in Figure (4.4). Since the experiments run
at different energies they are sensitive to different Z ′ masses. In particular, SoLID is very
sensitive to Z ′ masses around 1 GeV. It is remarkable the precision aimed by Moller at JLab
planning to measure sin2(θW ) to ±0.00029 at 〈Q〉 = 75 MeV, followed by the P2 experiment
with precision of ±0.00033 in sin2(θW) for 〈Q〉 = 67 MeV. Looking either at the Table 4.1 or
Figure (4.4) one can see that if the mass mixing parameter δ is of the order of 10−2 precise
measurements on sin2 θW give rise to stringent bounds on ε, namely ε2 < 10−4.

Notice that in the regime m2
Z′ � Q2 bounds from atomic parity violation are also effective

in our framework. These can be straightforwardly accounted by the following rescaling in the
parameters of the weak interaction lagrangian:

GF → ρdGF ,

sin2 θW → κd sin2 θW, (4.48)

where:

ρd = 1 + δ2 m2
Z′

m2
Z′ +Q2 ,

κd = 1− ε

εZ
δ2 1

tan θW

m2
Z′

m2
Z′ +Q2 . (4.49)

Similarly to what was done for atomic parity violation we would like to compare the
limits stemming from sin2 θW to those from neutrino-nucleus coherent scattering. This task
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Lab 〈Q〉 sin2 θW (mZ) Light Mediator (90% CL)

E158 160 MeV 0.2329(13) ε2 < 1.54×10−5

δ2

(
m2
Z′+1602

mZmZ′

)2

Qweak 170 MeV ± 0.0007 ε2 < 2.78×10−6

δ2

(
m2
Z′+1702

mZmZ′

)2

Moller 75 MeV ± 0.00029 ε2 < 4.77×10−7

δ2

(
m2
Z′+752

mZmZ′

)2

P2 67 MeV ± 0.00033 ε2 < 6.17×10−7

δ2

(
m2
Z′+672

mZmZ′

)2

SoLID 2.5 GeV ± 0.0006 ε2 < 2.04×10−6

δ2

(
m2
Z′+25002

mZmZ′

)2

Table 4.1: 90% confidence level bounds on the kinetic mixing parameter for light mediators
for different experiments that aim at measuring sin2 θW at low energies. All masses are in
MeV units.

is, however, not trivial because in the generic description we are considering of the different,
in principle independent parameters, namely ε, εZ , δ. We will then compare bounds from
polarized electron scattering and neutrino-nucleus coherent scattering for some specific mod-
els, illustrated in the next section, where it is possible to establish relations between these
parameters.

4.4.4 Models

In this section we will interpret the bounds from parity and atomic parity violation,
expressed until now, in terms of generic parameters, within a collection of anomaly free
models proposed in the literature.

Dark Z

One of the simplest models which can be probed by parity violation phenomena and
neutrino elastic scattering is dark Z model proposed in [127, 132, 133]. It is an extension of
the photon model which includes a free parameter, δ, to account for the existence of a mass
mixing term between the Z and Z ′ gauge bosons as we have done in Eq. (4.41). Such Z ′

field arises from the presence of a new abelian gauge group. If the Standard Model fermions
are uncharged under this new U(1) gauge group, the Z ′ interactions with fermions appear
through the presence of kinetic and mass mixing [134]. On top of that, the scalar sector is not
specified, thus δ is a free parameter. Looking at Table 4.1 we get ε2 < 10−7 for m′Z ∼ 100 MeV
and δ ∼ 10−2, using the P2 projected sensitivity. Notice this limit is slightly stronger than
the one achieved using BaBar data [135] which is the relevant experiment at this mass range.
One can notoriously find stronger bounds from larger values of δ. A study of COHERENT
data on neutrino-nucleus coherent scattering yields ε2 < 10−6 [112]. Therefore, we conclude
that our bounds are stronger. Our bounds are also applicable to the U(1)N model discussed
in [134,136].
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Two Higgs Doublet Model

A UV complete version of the dark photon model has been discussed in the context of
a Two Higgs Doublet Models (2HDM) augmented by an Abelian symmetry, U(1)X , [134].
In this case, the Z ′ mass depends on the scalar sector of the model and consequently the
parameter δ is no longer a free parameter. Many U(1)X extensions where discussed in the
context 2HDM, in any case we find mZ′ = gXv cosβ2/δ, where tan β = v2/v1, v2(v1) being
the vacuum expectation value of the scalar doublets in the model, and gX the gauge coupling.
The parameter δ is a function of the U(1)X charges of the scalars fields and their vacuum
expectation values (See Eq.C3 in [134]). For most U(1)X models we find δ ∼ 10−2 assuming
tan β ∼ 50. Taking δ ' 10−2 we find the bound ε2 < 10−7 for mZ′ ' 100 MeV using the P2
experiment. One can easily recast this limit using the Table 4.1.

In the heavy mediator regime, we can apply our effective field theory approach taking
fVu ∼ fVd we get g2

X/m
2
Z′ ≤ 4.38× 10−9 GeV. Consequently, mZ′ ≥ 1.5gX × 104 GeV. This

bound is applicable under the assumption that axial-vector couplings between the electrons
are present as occurs for many models discussed in [134]. Having in mind that LEP bound on
vector mediators roughly reads, mZ′ > 7gX × 103 GeV [137], we conclude that APV provides
a stronger bound. This limit from LEP was derived for the B-L model where only vectorial
interactions are present but it is roughly applicable to other models [138, 139]. Anyway,
our conclusion stands, APV gives rise to a more restrictive bound on the Z ′ mass. One may
wonder about LHC lower mass bounds on such vector bosons. It has been shown that many of
these models predict a large Z ′ width. This feature weakens LHC sensitivity. Analyzing LHC
data it has been found that mZ′ > 1− 2 TeV for many models taking gX = 0.1 [140], which
is again weaker than APV. In summary, APV seems to be the most promising laboratory for
such models as far as the Z ′ mass is concerned.

3-3-1 Model

3-3-1 models are based on the SU(3)c ⊗ SU(3)L ⊗ U(1)N gauge group [141, 142]. They
explain the number of replication of fermion generations in the Standard Model and are able
to address neutrino masses and dark matter. The presence of the U(1)N group gives rise to
heavy Z ′ whose mass is set the energy scale at which the 3-3-1 symmetry is broken down to
the Standard Model gauge group. The Z ′ does have axial-vector couplings to electrons and
therefore might leave imprints on APV, although the Z ′ couplings to fermions are suppressed,
of the order of 10−2. Using Table V of [143] where the vector and axial-vector couplings are
provided, we can compute f eff

Vq
and consequently find a lower mass bound on the Z ′ that reads

mZ′ > 1.7 TeV for the model A with β =
√

3. We point out that the parameter β defines the
vector and axial-vector couplings in the model according to Table V in [143]. However, this
limit is sub-dominant when compared to existing bounds stemming from dijet and dilepton
searches at the LHC which impose mZ′ > 4 TeV [144–147]. There are other bounds rising
from other observables such as from flavor physics but they are not as relevant [148–153]. We
highlight that there are possible extensions of this model via the inclusion of right-handed
neutrinos which can weaken the LHC bounds by decreasing the Z ′ branching ratio into charged
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leptons and quarks [154]. In that case our bounds could become competitive.

Light Z ′ Models

It has been recently proposed a model which successfully accommodates neutrino masses
within the type II seesaw while hosting a light Z ′ gauge boson [155]. The mass of the Z ′ comes
from the vacuum expectation value of the scalar doublets and therefore the Z ′ must be light,
for this reason we will focus on polarized electron scattering which constitutes a great probe
for light species. Again the mass mixing parameter δ depends on the scalar spectrum which
is set by anomaly cancellation requirements. For the U(1)Y ′ presented in Table 1 of [155] we
get δ ∼ 10−1. For such a large value of delta we find ε2 < 10−10 for mZ′ ' 100 MeV using the
P2 experiment, and ε2 < 10−7 for mZ′ ' 1 GeV using SoLID projection. These bounds are
much stronger than those derived using The Heavy Photon (HPS) Search Experiment and
Belle projections shown in [155].

Models based on the Lµ−Lτ gauge symmetry have recently brought a lot of attention due
to some flavor anomaly [156–162]. The Z ′ boson can be quite light and has no interactions
with quarks at tree-level. At loop level, one could nevertheless generate the neutrino-nucleus
coherent scattering and the parity-violating observables discussed here. Albeit, there are al-
ready stringent bounds rising from neutrino-trident production and meson mixings [163,164],
making our assessment of 1-loop induced parity violation effects not relevant, in agreement
with [112].

4.5 Conclusions

We have reviewed the theoretical aspects of parity violation and put it in context with
other relevant observables. We treated Atomic Parity Violation using effective field theory
and showed how one can constrain new physics via precise measurements of the Cesium
weak charge. Moreover, we have discussed neutrino-nucleus coherent scattering and shown
that Atomic Parity Violation leads to a more restrictive bound on the new physics scale
under the assumption that the new physics particle couples to electrons and neutrinos with
similar strength. This conclusion is also valid to heavy vector mediators with masses at
the TeV scale, for instance. Shifting the discussion to light mediators we have parametrized
new physics effects in polarized electron scatterings in terms of the sin θW and explored the
sensitivity of new measurements on sin θW to derive bounds on the kinetic mixing between
the Z and Z ′ gauge bosons as a function of the Z ′ mass. Lastly, we applied our constraints
to models previously proposed in the literature and showed that our findings constitute, in
some cases, the strongest limits on the kinetic mixing parameter, highlighting the importance
of our reasoning.
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Figure 4.4: Bounds of the experiments E158, Qweak, Moller, P2 and SoLID on the mixing
between Z and Z ′ with respect to the mass of the new light neutral gauge boson following
the relations on the table. In each plot the mixing parameter δ is changing logarithmically
from δ = 10−4 to δ = 1, so we can also visualize the dependence of ε with this parameter.
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Part II

Semiclassical Gravity
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5
Quantization of Field Theories in Curved Spacetime

In Part I we saw briefly the Standard Model of Particle Physics that describes quarks
and leptons and their interactions through the strong, weak and electromagnetic interactions.
But that is another way matter can interact, which is through gravity.

The best description we have of gravity was formulated in 1915 by Einstein [165] and it
is known as General Relativity. In the theory of General Relativity gravity is not a force
mediated by some particle in Minkowski spacetime as the other fundamental interactions are,
but instead it is a consequence of the curvature of spacetime itself. Anything that carries
energy bends and deforms the spacetime continuum and in turn things will move along the
geodesics of this curved spacetime. In the words of Wheeler, “Spacetime tells matter how
to move; matter tells spacetime how to curve” [166]. It is an elegant way to describe an
interaction which intensity depends only on the source mass and that couples with the same
strength to everything. The latter is called equivalence principle and it also states that every
uniformly accelerated reference frame is locally equivalent to a homogeneous gravitational
field.

At low energies or small scales as the ones of typical particles interactions the spacetime
curvature is usually very small and assymptotically flat (unless when the background geometry
is already non-trivial) and practical calculations can be performed treating spacetime as
Minskowskian. However, at cosmological scales or very high energies gravity can easily become
the most important interaction. It dictates the formation of stars, black holes, galaxies and
the evolution of the entire universe.

But at extremely high energies, on the order of the Planck scale MP ≡ 1/
√

8πG, where
G is the Newton’s constant, the General Relativity theory breaks on singularities and infinite
curvature. This was sufficient to start a new quest of a more complete theory of gravity,
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focused in formulating a quantum description of it, putting gravity in an equal foot with all the
other fundamental interactions. It turns out that a theory of a massless spin-2 quantum field
satisfies the equivalence principle, general covariance and gives Einstein’s field equations in the
classical limit [167], and the corresponding particle became known as the graviton. However,
a theory with gravitons is non-renormalizable beyond the Planck scale and is predictive only
as an effective field theory below MP . A lot of effort has been made towards a full consistent
and predictive theory of gravity valid in all energy scales, but we still have no definitive
answer.

Although we still don’t have a final theory of quantum gravity there is still a lot that can
be learned from a semiclassical theory of quantum matter fields in a classical gravitational
background. For instance, interesting phenomena like the Hawking radiation [168,169], which
is the thermal emission of particles from black holes that causes it to evaporate, and the Unruh
effect [170–172], which arises in non-inertial frames and predicts that accelerating observer
in vacuum Minkowski spacetime see a thermal bath with temperature proportional to their
acceleration, are found just from consistency of quantum field theory of matter in a classical
spacetime background, which should be an accurate description of Nature at energies below
the Planck scale. On the cosmological side, one can also apply the semiclassical theory to the
inflationary epoch, which is going to be discussed in the Part III, when quantum fluctuations
of the inflaton field give rise to the initial conditions of the Universe evolution.

In this chapter it is given only a taste of semiclassical gravity, by showing some main results
of the effective field theory of matter in curved spacetime. For a detailed view see [173–178].

5.1 Einstein’s gravity

In Einstein’s theory of gravity, General Relativity, the effect of gravity is seen as a change
of the spacetime geometry and therefore it is constructed using geometrical objects only. The
field equations that describe spacetime and the objects that deform and gravitate on it can
be obtained from the Einstein-Hilbert action (in this chapter we use the metric signature to
be -2):

SEH = −
∫
d4x
√
−g

[ 1
16πG(R− 2Λ)

]
, (5.1)

where g is the determinant of the spacetime metric gµν , G is the Newton gravitational con-
stant, R is the scalar curvature of spacetime, Lm is the matter Lagrangian and Λ is a cosmo-
logical constant.

The scalar curvature is defined as:

R = gµνRµν = gµαgνβRµναβ , (5.2)

where Rµν is the Ricci tensor and Rµναβ is a rank-4 tensor called Riemann tensor, which
quantifies the 4-dimensional spacetime curvature, and can be written as [166]:

Rσαβγ =
∂Γσαγ
∂xβ

−
∂Γσαβ
∂xγ

+ ΓσλβΓλαγ − ΓσλγΓλαβ, (5.3)
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where the quantities Γγαβ are known as the Christoffel symbols and are given in terms of the
metric as,

Γµαβ = 1
2g

µσ
(
∂gσβ
∂xα

+ ∂gσα
∂xβ

− ∂gαβ
∂xσ

)
. (5.4)

The energy-momentum tensor can be written in terms of the matter action using the
definition

Tµν ≡
−2√
−g

δSm
δgµν

. (5.5)

The equations of motion of the Einstein-Hilbert action with respect to the metric can be
found to be [179]:

Rµν −
1
2gµνR = 8πGTµν + Λgµν . (5.6)

which are the Einstein’s field equations for gravity. General Relativity is greatly confirmed
experimentally. Among its solutions there are black holes, and one was recently imaged [180],
gravitational waves, which existence was confirmed in 2017 [181], wormholes and different
possible behaviors for the Universe evolution.

Up to now, we have a classical description of gravity plus matter. However, we know
that at least the matter fields are quantum, so a natural next step would be to explore what
happens when we quantize matter in a curved classical background. In the next sections
we show some general results for the effective action in curved spacetime and some of its
consequences.

5.2 Matter fields in curved spacetime

The first step we should take to write a semiclassical theory is to correctly incorporate mat-
ter fields into a curved background in a way that preserves general covariance. We also want
to maintain any symmetries present in the flat spacetime case, locality and renormalizability
and it is also reasonable to forbid the introduction of new parameters with the inverse-mass
dimension. A first approach would be to consider that matter couples minimally to gravity.
In this case, going from flat to curved spacetime requires:

ηµν → gµν , ∂µ → ∇µ, d4x→ d4x
√
−g, (5.7)

where ∇µ is the covariant derivative in terms of Christoffel symbols,

∇µAν = ∂µAν − ΓαµνAα. (5.8)

Therefore, the action for a scalar field minimally coupled to gravity becomes:

S0 =
∫
d4x
√
−g

[1
2g

µν∂µϕ∂νϕ−
1
2m

2ϕ2 − λ

4!ϕ
4
]
. (5.9)
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Now, for a Dirac spinor field we have:

S1/2 = i

∫
d4x
√
−g

[
ψ̄γα∇αψ − imψ̄ψ

]
, (5.10)

where the γα are the γ-matrices in curved spacetime. To define them, we need to introduce
the tetrad base eµa , such that

eµaeνa = gµν , eaµeµb = ηab, (5.11)

so that we can write,

γµ = eµaγa, (5.12)

where the γa are the usual γ-matrices in flat spacetime and the γµ satisfy the Clifford algebra
in curved spacetime:

{γµ, γν} = 2gµν . (5.13)

The covariant derivative of a Dirac spinor field is given in terms of the spin-connection ωabµ :

∇µψ = ∂µψ + i

2ω
ab
µ σabψ, (5.14)

where

σab = i

2[γa, γb], ωabµ = 1
2(ebα∂µeαa + Γανµebαeνa) = −ωbaµ . (5.15)

For a massless non-Abelian gauge vector field we have,

S1 = 1
4

∫
d4x
√
−gGaµνGaµν , (5.16)

where

Gaµν = ∇µAaν −∇νAaµ − gfabcAbµAcν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν , (5.17)

so the gauge symmetry is maintained.
In the case when matter couples non-minimally to gravity through geometrical objects,

we have that for spinors and vectors non-minimal terms always requires the introduction of
inverse-mass dimension parameters, but for a scalar field we can have the coupling

ξϕ2R, (5.18)

where the dimensionless parameter ξ is named non-minimal parameter, and in fact such term
in needed to guarantee renormalizability of the theory already at one-loop level.

For the vacuum, or pure gravity, sector besides the Einstein-Hilbert we could also have
higher derivatives terms for the metric in the action without violating our conditions:

Svac = SEH + SHD (5.19)
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SHD =
∫
d4x
√
−g

[
a1RµναβR

µναβ + a2RµνR
µν + a3R

2 + a4�R
]

(5.20)

where the constants a1,...,4 are all dimensionless parameters.
Before showing the quantitative results of loop quantum correction of matter fields in a

curved background maybe it is useful to see qualitatively what we should expect. Thinking
in terms of Feynman diagrams, we can see that each divergent loop diagram in flat space will
give rise to infinitely many diagrams in curved space, as

√
−g becomes an infinite expansion

if we write the metric as a background plus perturbation, gµν = g̃µν + hµν . Thus, in each
vertex we can add an infinite number of gravitational external legs. So, keeping in mind that
as gravity is not being quantized, the internal propagators in the loops are from matter fields
only, for scalars we have:

Figure 5.1: One-loop corrections to the mass of a scalar field in curved spacetime. Figure
from [13].

We also note that adding vertices with external legs from gravity introduces more prop-
agators in the loop and thus the degree of divergence always decreases. For example, the
second diagram in the first line of Figure 5.1 has quadratic divergence, but the divergence de-
gree of the third diagram is logarithmic. This new logarithmic divergence has to be cancelled
by introducing counterterms into the action. These counterterms cannot involve derivatives
of the scalar field, so it has to be of the form ∼ ϕ2∂∂h. The only covariant quantity that
can be constructed from this is ϕ2R, which is precisely the non-minimal coupling. The other
divergent diagrams like the first on the second line of Figure 5.1 has divergences similar to
the flat spacetime case, and don’t require the introduction of additional counterterms.

The matter contribution to the vacuum energy can be ignored in flat spacetime as this
vacuum energy is non-interacting, but in curved spacetime this situation changes as we can
have gravity interacting with it. Therefore, we have again infinitely many new diagrams,
Figure 5.2
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Figure 5.2: One-loop corrections to the vacuum energy from a scalar field in curved spacetime.
Figure from [13].

Hence, in order to cancel the new quadratic and logarithmic divergences we need to add
new counterterms. They should be constructed with the metric only, and by dimensionality
and covariance we see that we need to add higher derivative terms like the ones in Eq. (5.20).

Therefore, we see that the non-minimal coupling and higher derivative terms are indeed
necessary to have a renormalizable theory of a scalar field in curved spacetime. We shall see
next the quantitative results from calculating the one-loop divergences of the effective action.

5.3 Effective action in curved spacetime

The quantum effective action is defined as [76],

eiΓ[gµν ] =
∫
DΦeiS[Φ;gµν ], (5.21)

where the Φ are the matter fields fluctuations and we set the vacuum expectation value of
the matter fields to zero. As gravity is not being quantized, we can write:

eiΓ[gµν ] = eiSvac[gµν ]
∫
DΦeiSm[Φ;gµν ]. (5.22)

This gives the quantum effective action of vacuum.
The effective action can be expanded in loop-order contributions, Γ = Γ(1) + Γ(2) + . . .,

and here we will be interested in the one-loop, leading order, contribution. We start with a
general action of a massive scalar and spinor fields that have a Yukawa interaction and are
charged under the SU(2) gauge group. As we are going to use dimensional regularization
later, we write the action in n dimensions:

S0m =
∫
dnx
√
−g

[
−1

4G
a
0µνG

aµν
0 + 1

2g
µν(Dµϕ0)a(Dνϕ0)a − 1

2(m2
0 − ξ0R)ϕa0ϕa0

− 1
4!λ(ϕa0ϕa0)2 + ψ̄a0(iγµ(x)Dab

µ −M0δ
ab − ih0ε

acbϕc0)ψb0
]
. (5.23)
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We will omit the SU(2) adjoint index from now on. The renormalized matter action should
have the form:

Sm = µn−4
∫
dnx
√
−g

[
−1

4Z
′′
1GµνG

µν + 1
2Z1g

µν(Dµϕ)(Dνϕ)− 1
2Z1Z2(m2 − ξR)ϕ2

− 1
4!Z

2
1Z4λϕ

4 + Z ′1ψ̄iγ
µ(x)Dµψ − Z ′1Z ′2Mψ̄ψ − ZhZ ′1Z

1/2
1 ihψ̄ϕψ

]
,

(5.24)

where µ is parameter with mass dimension and Zk depend on the couplings λ, g and h and
can be written as:

Zk = 1 + δk. (5.25)

The δk are called counterterms and are introduced to cancel the divergences coming from
quantum loop corrections for the matter fields. We call a theory that can be written as
Eq. (5.24) as multiplicative renormalizable, and multiplicative renormalizable theories in flat
spacetime should remain so in curved spacetime [174]. In particular, due to covariance, the
Z1, Z

′
1 and Z ′′1 should be the same as in flat spacetime.

In order to find the one-loop counterterms one has to calculate the one-loop contribution
to the effective action, which is given by

Γ(1) = − i2Tr ln ĤAB. (5.26)

The operator HAB is the bilinear part of the action Eq. (5.23) in the quantum fields, and can
usually be written as [174]

ĤAB = 1̂ABg
µν∇µ∇ν + 2ĥµAB∇µ + Π̂AB, (5.27)

where the indices A, B run on the space of fields, where the operators ĥµAB and Π̂AB act on.
To calculate the divergent part of Eq. (5.26) we will make use of Schwinger-de Witt

technique and expand ĤAB using heat kernel method [182, 183]. This consists in writting
ĤAB as,

i

2Tr ln ĤAB = − i2Tr
∫ ∞

0

ds

s
e−isĤAB , (5.28)

where

e−isĤAB = Û(x, x′; s) = Û0(x, x′; s)
∞∑
k=0

(is)kâk(x, x′). (5.29)

The âk are the Schwinger-de Witt, or heat kernel, coefficients while Û0(x, x′; s) has the form

Û0(x, x′; s) = 1
(4πis)n/2

D1/2(x, x′) exp
(
−σ(x, x′)

2is − im2s

)
, (5.30)

where σ(x, x′) is the geodesic distance between x and x′ and

D(x, x′) = det[−∂µ∂νσ(x, x′)], (5.31)
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is the Van Vleck-Morett determinant. The regularization of the integral in Eq. (5.28) can
be done in several ways, and we will choose dimensional regularization. Only the first few
heat kernel coefficients are necessary to find the divergences as, in the four-dimensional case,
the â0-coefficient corresponds to the quartic divergence, the â1 to the quadratic divergence
and â2 to the most important logarithmic divergences. They are all known and can be found
in [175,184,185]. For more details, see [186–188] and references therein. Then, the divergent
part of the one-loop effective action can be expressed as,

Γ(1)
div = − µn−4

(4π)2(n− 4)

∫
dnx
√
−gTr

[ 1
2 P̂ · P̂ + 1

12 Ŝµν Ŝ
µν + 1

6�P̂

+ 1̂
180(RµναβRµναβ −RµνRµν +�R)

]
, (5.32)

where

P̂AB = Π̂AB + 1̂AB
R

6 −∇µĥAB − ĥµAC ĥ
µ
CB, (5.33)

ŜABµν = (∇ν∇µ −∇µ∇ν)1̂AB +∇ν ĥµAB −∇µĥµAB + ĥνAC ĥµCB − ĥµAC ĥνCB. (5.34)

Thus, we see that the Schwinger-de Witt technique is a powerful tool to calculate divergences
of the effective action in curved spacetime, as it preserves general covariance and reduces the
problem of finding divergences to multiplication and commutation of matrices.

In order to find ĥ and Π̂ we first follow the background field method to split all the matter
fields into its background and quantum fluctuation:

ϕ→ ϕ+ σ, Aµ → Aµ +Bµ, ψ → ψ + χ. (5.35)

Then, the bilinear in the quantum fluctuations part of the action Eq. (5.23), plus the gauge
fixing term, where we have chosen the diffeomorfism invariant gauge ∇µBµ

ν , is

S(2) + SGF =
∫
dnx
√
−g

[
− 1

2σ�σ + 1
2B

µ
(
δνµ�−Rνµ + g2ϕ2δνµ

)
Bν + gBµ (∂µσϕ+ ∂µϕσ)

− 1
4λσ

2ϕ2 − 1
2σ(m2 − ξR)σ + iχ̄γµ∇µχ− ihχ̄φχ− ihχ̄σψ

− ihψ̄σχ−Mχ̄χ

]
. (5.36)

With the change of variables,

σ = iσ̃, χ = −1
2(γν∇ν − iM)η, (5.37)

we can write the Eq. (5.36) as,

S(2) + SGF = 1
2

∫
dnx
√
−g

(
σ̃ Bµ η̄

)
(Ĥ)

 σ̃

Bν
η

 . (5.38)
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The differential operator Ĥ has the form of Eq. (5.27), where

ĥα =

 0 1
2gδ

α
µϕ −1

2hψ̄γ
α

i
2gδ

α
µϕ 0 1

2gψ̄γµγ
α

0 0 −1
2hϕγ

α

 , (5.39)

and

Π̂ =

m
2 − ξR+ 1

2λϕ
4 2iggνα∂αϕ −hψ̄M

−igδαµ∂αϕ −Rνµ + g2δνµϕ
2 igψ̄γµM

2hψ 2igγνψ M2 − 1
4R+ ihϕM

 . (5.40)

The result of the calculations gives:

Γ(1)
div = Γ(1)

m,div + Γ(1)
vac,div, (5.41)

with [174],

Γ(1)
m,div = −µ

n−4

ε

∫
dnx
√
−g

[ 1
2(8h2 − 8g2)gµν∂µϕ∂νϕ+ 1

2Rϕ
2
((1

6 − ξ
)(5

3λ− 4g2
)

− 4
3g

2 + 4
3h

2
)

+ 1
4!

(11
3 λ

2 − 8g2λ+ 72g4 − 96h4
)
ϕ4

+ 1
2ϕ

2
(
−48h2M2 +

(5
3λ− 4g2

)
m2
)

+ iψ̄
(
2(h2 + 2g2)γα∇α + 2h(h2 − 6g2)ϕ

− 4i(h2 − 4g2)M
)
ψ

]
, (5.42)

and

Γ(1)
vac,div = −µ

n−4

ε

∫
dnx
√
−g

[( 1
120Ns + 1

20Nf + 1
10Nv

)
C2 + Ns

2

(
ξ − 1

6

)2
R2

+
(
Nsm

2
(
ξ − 1

6

)
+ NfM

2

3

)
R+

(
− 1

360Ns −
11
360Nf

− 31
180Nv

)
E +

( 1
180Ns + 1

30Nf −
1
10Nv

)
�R

+ 1
2Nsm

4 − 2NfM
4
]
. (5.43)

In these expression, we defined ε ≡ (4π)2(n − 4). We wrote for the vacuum divergence a
generalized expression for any number of scalars, Ns, fermions, Nf , and vector bosons, Nv,
(N counts the fields, not multiplets) and we presented the result in the Weyl basis {C2, R2, E},
with the Weyl tensor, C, and Euler density in n = 4, or topological Gauss-Bonnet term, E:

C2 = E + 2R2
µν −

2
3R

2, E = R2
αβµν − 4R2

µν +R2, (5.44)
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which is related to the Riemann basis {R2
αβµν , R

2
µν , R

2} as,

R2
αβµν = −E + 2C2 + 1

3R
2, R2

µν = 1
2C

2 − 1
2E + 1

3R
2. (5.45)

From Eqs. (5.42) and (5.43) we note that, even if we started without a non-minimal
coupling, ξ = 0, a non-minimal term ϕ2R will still appear as a one-loop divergence, as was
already expected, and we must introduce this term in the bare action in order to cancel these
divergences. In the vacuum sector we see an emergence of curvature squared divergent terms
due to pure matter one-loop corrections, hence we must also start with a bare vacuum action
with curvature squared terms to cancel these divergences:

S0vac =
∫
dnx
√
−g

[
Λ0 −

1
κ2

0
R+ a01R

2 + a02C
2 + a03E + a04�R

]
. (5.46)

Therefore, this higher-derivatives terms should be present already in the classical theory, but
their effect is tiny compared to the Einstein-Hilbert term, which is enhanced by a factorM2

P . It
is worth mentioning that, besides granting renormalizability and consistency of the quantum
theory, the Weyl tensor (or analogously the Riemann tensor) introduces a ghost degree of
freedom into the theory, a massive graviton with opposite sign of the propagator [189]. In
fact, it is a general theorem that higher derivatives theories (theories that contain derivatives
higher than two) have instabilities and unbounded Hamiltonian [190, 191]. There has been
some work in understanding the role of such C2 ghost and if it can indeed lead to serious
problems in quantum field theory, even below the Planck scale1 [193–202].

Another noteworthy point is that the massless theory of Eq. (5.23) plus Eq. (5.46) with
vanishing mass-dimension parameters and ξ = 1/6 is invariant under local conformal trans-
formations in four dimensions, with the fields transforming as,

g′µν = gµνe
2σ(x), ϕ′ = ϕe−σ(x), A′µ = Aµ, ψ′ = ψe−

3
2σ(x). (5.47)

However, the conformal symmetry is broken at one-loop order due to trace anomaly. For
more details see [203] and references therein.

1In fact, the action in Eq. (5.46) is also renormalizable in four dimensions when quantizing the graviton [192],
which gives another motivation for studying these ghosts.
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5.3.1 Renormalization group equations

From Eqs. (5.42) and (5.43) one can write down the relation between the bare parameters
and fields, and the renormalized ones:

ϕ0 = µ(n−4)/2Z
1/2
1 ϕ, Z1 = 1 + 8

ε
(h2 − g2),

ξ0 = Z2ξ + Z3, Z2 = 1 + 1
ε

(
−5

3λ+ 12g2 − 8h2
)
, Z3 = − 1

6ε

(
−5

3λ+ 12g2 − 8h2
)
,

ψ0 = µ(n−4)/2Z̄
1/2
1 ψ, Z̄1 = 1 + 1

ε
(2h2 + 24g2),

h0 = µ(n−4)/2Zhh, Zh = 1 + 1
ε

(12g2 + 8h2), (5.48)

λ0 = µ(n−4)Zλλ, Zλλ = λ− 1
ε

(11
3 λ

2 − 24λg2 + 72g4 + 16λh2 − 96h4
)
,

M0 = Z̃2M, Z̃2 = 1 + 1
ε

(12g2 − 6h2),

m2
0 = Z2m

2 + Z̃3M
2, Z̃3 = 1

ε
48h2.

The β and γ-functions can be calculated as well.

βP = lim
n→4

µ
dP

dµ
, γΦΦ = lim

n→4
µ
dΦ
dµ
, (5.49)

where P = {m,M, ξ, h, λ, g} and Φ = {ϕ,ψ,Aµ}. The general procedure in curved spacetime
can be found in [174, 204], here we only present the results. Using relations in Eq. (5.48) we
can write

γϕ = − 8
(4π)2 (h2 − g2),

γψ = − 1
(4π)2 (2h2 + 24g2),

βξ = 1
(4π)2

(5
3λ− 12h2 + 8g2

)(
ξ − 1

6

)
,

βh = − 1
(4π)2 (12hg2 + 8h3), (5.50)

βλ = + 1
(4π)2

(11
3 λ

2 − 24λg2 + 72g4 + 16λh2 − 96h4
)
,

βM = − 1
(4π)2 (12g2 − 6h2)M,

βm2 = − 1
(4π)2

((
−5

3λ+ 12g2 − 8h2
)
m2 + 48h2M

)
.
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for the matter sector, and

βa1 = 1
(4π)2

Ns

2

(
ξ − 1

6

)
,

βa2 = 1
(4π)2

( 1
120Ns + 1

20Nf + 1
10Nv

)
,

βa3 = 1
(4π)2

(
− 1

360Ns −
11
360Nf −

31
180Nv

)
,

βa4 = 1
(4π)2

( 1
180Ns + 1

30Nf −
1
10Nv

)
, (5.51)

βΛ = 1
(4π)2

(1
2Nsm

4 − 2NfM
4
)
,

βκ = 1
(4π)2

(
Nsm

2
(
ξ − 1

6

)
+ NfM

2

3

)
,

for the vacuum sector. The β-functions for the coupling and masses of the matter fields
are exactly the same as in flat spacetime [205], the new features being the equations for the
non-minimal ξ and the vacuum action parameters Λ, κ, βa1...4 .

The renormalization group equations in curved spacetime follow also the overall µ-dependence
of the effective action:

µ
d

dµ
Γ[gµν ,Φ, P, n, µ] = 0, (5.52)

which gives, in four dimensions and MS renormalization scheme [174],[
µ
∂

∂µ
+ βP

∂

∂P
+
∫
d4xγΦΦ δ

δΦ(x)

]
Γ[gµν ,Φ, P, µ] = 0. (5.53)

The RG equations can be used to find the one-loop effective potential, as we comment in
the next section.

5.4 Effective potential

The effective potential is defined as the zero-order approximation in the derivative expan-
sion for the scalar sector of the effective action [76]:

Γ[gµν ,Φ, P, µ] =
∫
d4x
√
−g

[
−Veff(ϕ, gµν) + 1

2Z(ϕ, gµν)gαβ∂µϕ∂νϕ+ . . .

]
. (5.54)

Therefore, we can write[
µ
∂

∂µ
+ βP

∂

∂P
+
∫
d4xγΦΦ δ

δΦ(x)

]
Veff(ϕ, gµν) = 0. (5.55)

At one-loop order the dependence on µ will be only through logarithms like lnX/µ2, where the
exact form of the mass two dimension parameter X can be found by imposing renormalization
conditions.
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The effective potential can be expanded in scalar curvature dependence,

Veff = V0 +RV1 +R2V2 + . . . , (5.56)

where V0 is the flat-space effective potential, RV1 the first curvature-dependent correction
and so on, and we are interested only in the first correction. We can see that both functions
separately satisfy Eq. (5.55). We can also use the fact that, in one-loop order, degrees of
freedom with different spins give additive contributions to the effective action, and we can
further split V0 = V

(0)
0 + V

(1/2)
0 + V

(1)
0 and the same for V1. Hence, each contribution to the

effective potential can be calculated separately and summed in the end.
General expressions for the effective potential for different models were found in [206].

Another way of calculating the effective potential in curved spacetime is by using local mo-
mentum representation and Riemann normal coordinates [207, 208]. Despite of having more
cumbersome calculations, this method gives the same results from Schwinger-de Witt tech-
nique, with the advantage that the dependence on the mass dimension parameters in the
logarithmic corrections is explicit.

5.4.1 Sterile scalar and massive fermions with Yukawa interaction

The effective potential allows us to estimate observable effects of the quantum corrections,
and maybe constrain new physics. As an example, consider the action of a sterile scalar, that
is, a scalar which is a singlet under any gauge group, coupled with N copies of a massive
fermion field. Barra et. al [209] and Toms [210] have shown that such theory requires odd
terms in the potential in order to be renormalizable in four dimensions:

S =
∫
d4x
√
−g

[
iψ̄i(γµ∇µ + iM + ihϕ)δijψj + 1

2(gµν∂µϕ∂νϕ−m2ϕ2 + ξRϕ2)

− λ

4!ϕ
4 − g

3!ϕ
3 − τϕ− fRϕ

]
. (5.57)

It is troublesome to couple such sterile scalar with Standard Model fermions, but ψi could
be in principle right-handed neutrinos or any beyond the Standard Model massive fermions,
while ϕ could be the inflaton field (see Part III). The one-loop effective potential for this
action is

Veff(gµν , ϕ) = ρΛ + 1
2(m2 − ξR)ϕ2 + V + ~

2(4π)2

[(1
2(V ′′ +m2)2 −

(
ξ − 1

6

)
R(V ′′ +m2)

)
×

ln
(
V ′′ +m2

µ2

)
− 2N(M + hϕ)4 ln

(
(M + hϕ)2

µ2

)

+ N

3 R(M + hϕ)2 ln
(

(M + hϕ)2

µ2

)]
, (5.58)

where ρΛ is the vacuum energy density, and V is

V (ϕ) = 1
2m

2ϕ2 + λ

4!ϕ
4 + g

3!ϕ
3 + τϕ+ fRϕ. (5.59)
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The scalar field has no symmetries that forbids the appearance of the odd terms, and so they
are present. In principle one could get rid of one of the terms gϕ3 or τϕ by field redefinitions,
but not both.

It is interesting to analyse the induced gravity, i.e the contribution to the vacuum sector,
due to solutions of the ϕ with the odd terms in the potential within some approximations. One
particularly interesting analysis is to see how this odd terms could influence in an inflationary
scenario (more details will be given in the Part III). In order to do that, let’s consider that
the non-minimal coupling ξRϕ2 and the quartic self-coupling λϕ4 of the scalar field are
dominating, while the mass, classical odd terms and leading order quantum corrections in the
effective potential are small and can be consider as perturbations. In a first approximation,
the kinetic term can also be consider small, as long as R is almost constant, which happens
during inflation [209]. In this case, the equation of motion for the scalar field becomes,

ξRϕ− 1
6λϕ

3 −m2ϕ− 1
2gϕ

2 − τ − fR = 0. (5.60)

As m2

M2
P
, | τ
M3
P
|, | fMP

|, | gMP
| � ξ, λ, we can write ϕ = ϕ0 + ϕ1, and at zero-order approximation

we have,

ϕ2
0 = 6ξR

λ
. (5.61)

And in first order approximation,

ϕ1 = −m2
√

3
2λξR −

3g
2λ −

τ

2ξR −
f

2ξ . (5.62)

Then, substituting ϕ = ϕ0 + ϕ1 back into the action and keeping only O1(m2, g, τ, f) we
arrive at the following induced Lagrangian for gravity:

Lind = −3m2ξ

λ
R+ 3ξ2

2λ R
2 +

√
6ξR
λ

[
τ −

(
f + gξ

λ

)
R

]
. (5.63)

Therefore, the induced gravity is a non-polynomial function of the scalar curvature R, and it
is a consequence of just requiring a renormalized theory of coupled sterile scalar and massive
fermions.

We will analyse the inflationary scenario with this correction in the next part, after a brief
review of early cosmology and inflation.
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Part III

The Standard Model of Cosmology
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6
Early Universe

Until the sixties mankind had no idea if the Universe seen around us had a beginning or
existed since ever, as the two scenarios would be equally supported by Einstein’s theory of
gravity, General Relativity. In 1929 Hubble had measured a universe expansion [211], but
the results were quite controverse. But in 1964 the picture changed completely. The radio-
astronomers Wilson and Penzias detected by chance what is now known as Cosmic Microwave
Background Radiation (CMB) [212], a 2.7 K background noise that comes equally from every
direction of the sky. This radiation had been already predicted by Gamow and Dicke [213,214]
as a primordial radiation resulting from the Universe undergoing an extremely hot and dense
phase. This favoured the Big Bang theory, which claimed that the Universe indeed had
a beginning, when all its content was once collapsed in a single point, and afterwards it
expanded to the cosmological scales. One of the main predictions of the Big Bang theory
is that this cosmic background radiation would have a black-body spectrum, what was only
verified, with astonishing agreement, by the COBE satellite measurements in 1990 [215].

When we work out General Relativity with the big bang cosmology we arrive at a sin-
gularity (infinite curvature) at time t = 0. This could mean that the big bang is in fact
the beginning of space and time, but it could also mean that General Relativity is just a
low-energy description of gravity, and to get trustful results at extremely high energies, such
as in the big bang (∼ MP ), we need a new theory of gravity that is valid up to this regimes
i.e. quantum gravity. In fact, the current most accepted scenario of early universe is that the
time immediately before the radiation dominated era is not the beginning of everything, but
the end of an inflationary era.

In order to have a consistent cosmological evolution that doesn’t evoke fine-tuning of
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initial conditions we need our Universe to undergo an epoch of accelerated expansion1, called
inflation, driven by a scalar field, named inflaton. The idea of inflation was envisioned by
Guth, Linde, Steinhardt and Starobinsky in the 80’s [216–219] and further developed later on.
In the inflationary scenario, after inflation ends, the inflaton field decays into the Standard
Model particles, in what is called reheating2, and the inflaton’s quantum fluctuations during
inflation generate the initial seeds of perturbations on the matter density field and background
metric that later on will grow to form all the structure we see in the Universe. We still don’t
have a definitive picture of what happened before inflation, or if there was anything at all
before (or even if inflation really happened!), but we believe that a quantum gravity theory
could shed some light on this dark period.

However, if we only take into account the Standard Model content and gravity, plus an
inflationary epoch, we don’t get a perfect agreement with the behavior of the Universe at
large scales. In 1933, Zwicky [220] calculated the gravitational mass of galaxies within the
Coma cluster, through their rotation velocity, and obtained a value around 400 times greater
than expected from their luminosity. He then proposed that most of the galaxy matter was
dark and gave it the name of dark matter. Today we know that we need more matter than
the luminous one, not only to fix the rotation curves of galaxies, but to explain the very
structure of the Universe the way we see it. It seems that dark matter is a new particle that
interacts mostly through gravity, and maybe extremely weakly through the other forces, and
it is also non-relativistic since very early times, so it is usually called cold dark matter. We
still don’t know what dark matter really is, its quantum numbers, mass and how it couples
with the Standard Model. We only know that it makes around ∼ 80% of the matter density
of the Universe although its true nature remains a mystery.

When dark matter is taken into account we are able to have an amazingly accurate
description of our Universe evolution [221–225]. After reheating, the observable Universe was
a dense plasma of fundamental particles in thermal equilibrium and the temperature was
so high that all particles were massless. As the Universe expanded, it cooled down to the
electroweak phase transition temperature, ∼ 120 GeV, and the particles gained mass through
the Higgs mechanism. The quarks are asymptotically free at high energies, but at the QCD
phase transition, around 150 MeV, the strong interactions between quarks and gluons became
important. After that, quark bound states were able to form and the baryons and mesons
became the relevant degrees of freedom.

If the production rate of a given species is smaller than the expansion rate of the Universe
this species departs from thermal equilibrium and decouples from the primordial plasma.
As the dark matter, if ever in thermal equilibrium, interacts very little with other particles
it decoupled relatively early, around 1 MeV3. After that, it started to form gravitational
potential wells where later on the baryonic matter were attracted to, cooled down and formed

1There are other ways to avoid the fine-tuning problems in big bang cosmology, but inflation is the most
popular one.

2The name reheating is because during inflation the universe expands so fast that all the other content get
negligible energy density and the Universe has to be re-heated after inflation ends.

3The exact value will depend on the dark matter model.
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Figure 6.1: Cosmic Microwave Background Radiation measured by Planck satellite. It depicts
the temperature variation across the background. Figure of ESA/Planck Collaboration [14]

.

galaxies and clusters. The neutrinos also decoupled early, at 0.8 MeV, as they only interact
through weak force. At energies around 1 eV the reaction e−+p+ ↔ H+γ became inefficient to
destroy Hydrogen atoms and more atoms started to form. This epoch is called recombination.
After recombination, most of the electrons were in bound states with protons and neutrons,
and the Thomson scattering, e− + γ → e− + γ, that kept the photons strongly coupled
to the plasma becomes inefficient. Thus the photons decoupled, and their last scattering
surface traveled freely through the Universe to become what we observe today as the Cosmic
Microwave Background Radiation. Figure 6.1 is an image of the CMB measured by the
Planck satellite, a picture of the Universe when it was ∼ 400, 000 years old. The red color
represent hotter regions. The temperature variations of the CMB are around δT/T̄ ∼ 10−5

which reflects the thermal equilibrium state the photons were before decoupling.
After the photons decoupling, light elements began to form, more precisely Hydrogen,

Helium, Deuterium, Beryllium and Lithium. Their abundances can be calculated and they
match accurately with observations4. Afterwards, gravitational instability took place, and
baryonic matter fell into dark matter potential wells, collapsed into the first stars, then
galaxies and clusters of galaxies.

If there were only dark and baryonic matter in the Universe it would be experiencing a
decelerating expansion today. But in 1998 two independent groups measured, using super-
novae data, that the Universe expansion is actually accelerating [228, 229]. The fluid that
drives this accelerated expansion behaves like a vacuum density, and we usually model it as

4Actually, the abundance of primordial Lithium predicted by ΛCDM model is on the order of three times
higher when compared to observations, a puzzle there is still lacking an explanation [226,227]
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a cosmological constant in Einstein’s equation, which value is extremely small (4× 10−66 eV
in natural units). The attempts to reproduce this value from vacuum contributions of SM
particles result in a complete failure, around 100 orders of magnitude higher, and introducing
a bare cosmological constant that cancels all this contribution to leave only the observed
value requires a huge fine-tuning [230, 231]. There is not yet a fundamental description or
explanation for the current accelerated expansion of the Universe, and dark energy is now
one of the biggest problems in theoretical physics.

The energy density of our universe today is made of ∼ 4% of baryonic matter, ∼ 25%
of dark matter and ∼ 70% of dark energy, so around 95% of the Universe content is still a
puzzle in modern Physics [232]. It is embarrassing to see how much we know that we don’t
know.

In this last part we shall look into early and late times cosmology to see how initial seeds
of perturbation can form large scale structure and then show how the cold dark matter model
can be modified to better fit the observational data.

6.1 The Friedmann-Lemâıtre-Robertson-Walker Universe

We are in the era of precision cosmology. It is possible to make large and accurate
cosmological observations as never before in our history through cataloging a huge number
of galaxies, clusters and supernovae. Such galaxies surveys suggest that our Universe is
homogeneous and isotropic at scales above 100 Mpc. Figure 6.2 is a map of the Sloan Digital
Sky Survey (SDSS), where we can observe how the galaxy distribution is very similar even
in opposite regions of the sky. Furthermore, the homogeneity and isotropy of the Universe at
its young age (≈ 400, 000 years after the Big Bang) can be seen through observations of the
Cosmic Microwave Background Radiation (CMB).

Even though this does not mean that our Universe as a whole is homogeneous and
isotropic, it does imply that at least a region as large as our present Hubble volume5 is.
Therefore, we can a priori consider all observable universe to be homogeneous and isotropic
at large scales. This is called the cosmological principle.

The spacetime metric that satisfies the cosmological principle and describes an homoge-
neous and isotropic universe is known as the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
metric, and it is given by (in comoving spherical coordinates):

ds2 = −dt2 + a2(t)
(

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
)
. (6.1)

It can only depend on a time-dependent function that scales all the three spatial directions,
otherwise it would destroy homogeneity and isotropy. This function a(t) is called scale factor
and it governs the evolution of the spatial part of the metric through time. The constant k6

5Hubble volume, or Hubble sphere, is defined through the characteristic scale H(t)−1. The expansion rate
of the Universe today is parametrized by H0 and the radius of the Hubble sphere today is defined as c/H0.

6k is in units which the spatial curvature radius equals one.
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Figure 6.2: SDSS map of the Universe. The Earth is in the middle of the image and each
point is a galaxy. Figure from [15].

that appears in the FLRW metric can be 0,+1,−1, where each of this values determines a
different spatial curvature i.e. zero, positive and negative, respectively.

The non-vanishing components of the Ricci tensor for the FLRW metric are

R00 = −3 ä
a
,

Rij =
[
ä

a
+ 2 ȧ

2

a2 + 2k
a2

]
gij . (6.2)

and therefore the scalar curvature is

R = 6
[
ä

a
+ ȧ2

a2 + k

a2

]
. (6.3)

6.1.1 Friedmann equations

To proceed with the study of the Universe with the FLRW metric we need also to talk
about the matter content. We choose to model matter as a perfect fluid7 to assure consistency
with the diagonal form of the metric and spatial isotropy. Hence, it follows that the energy-
momentum tensor, in comoving coordinates, has the form

Tµν = diag(−ρ, p, p, p, ) (6.4)
7Perfect fluids, or ideal fluids, are completely described by the their density and pressure, which are constant

throughout space.
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where ρ = ρ(t) is the energy density and p = p(t) is the pressure. From the energy-momentum
conservation it follows that, for ν = 0:

∇µTµ0 = 0 = ∂µT
µ
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ

= ∂ρ

∂t
+ 3 ȧ

a
(ρ+ p) . (6.5)

We can choose a simple equation of state that relates the energy density and pressure of
the fluid. In general, perfect fluids types which are interesting in cosmology obey the following
equation of state [221]:

p = ωρ, (6.6)

where ω is known as the equation of state parameter.
Then, the Eq. (6.5) becomes,

ρ̇

ρ
= −3 (1 + ω) ȧ

a
. (6.7)

Assuming that ω is constant we can integrate this last equation, which gives

ρ ∝ a−3(1+ω). (6.8)

Different values of ω determine different types of ideal fluids. The dust is any agglomerate
of collisionless non-relativistic particles, so it has a negligible internal pressure when compared
to its energy density, pM = 0. The particles can be baryonic8 or dark matter, and a Universe
composed mostly of dust is called a matter dominated universe. The energy density for this
case follows the relation:

ρM ∝ a−3, ω = 0. (6.9)

Hence, we see that the matter density decreases as the Universe expands.
Radiation is the name given for the type of fluid used to describe photons and massive

relativistic particles, such as the neutrinos. As we know that the trace of the electromagnetic
energy-momentum tensor vanishes [179], ω = 1/3 for radiation and the equation of state
becomes pR = 1

3ρR. In this case, the energy density goes with the scale factor as

ρR ∝ a−4. (6.10)

We call radiation dominated a universe in which most of its content is radiation.
Another interesting type of fluid is the vacuum energy. In this case, ω = −1, pΛ = −ρΛ

which gives the same energy-momentum tensor of a cosmological constant. For this case the
energy density remains constant through the Universe expansion,

ρΛ ∝ a0. (6.11)
8In cosmology baryonic matter stands for all Standard Model particles that compose atoms and so all visible

matter in the Universe.
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Therefore, as the energy densities of dust and radiation decrease as the Universe expands,
if there is initially a non-vanishing quantity of vacuum energy, it will eventually predominates
the Universe after a long time. If that happens, we say that the Universe is vacuum dominated.

In order to find the dynamical equations that describe the evolution of the scale factor
a(t) we need to solve the Einstein’s equation Rµν − 1

2gµνR = 8πGTµν . The 00-component
gives the Friedmann equation: (

ȧ

a

)2
+ k

a2 = 8πG
3 ρ. (6.12)

On the other hand, the ii-components, which are all equal due to isotropy, give

2 ä
a

+
(
ȧ

a

)2
+ k

a2 = −8πGp. (6.13)

The substitution of Eq. (6.12) in Eq. (6.13) results in a equation for the acceleration of
the scale factor

ä

a
= −4πG

3 (ρ+ 3p) . (6.14)

We know that today ȧ(t) > 0, and if ρ + 3p was always positive in the past, then ä was
always negative. So, at some past time a must have been zero. This event, called Big Bang,
is generally defined as the zero time and in a = 0 the FLRW cosmology has a singularity i.e.
the curvature becomes infinite.

The expansion rate of the Universe is determined by the Hubble parameter H ≡ ȧ/a. As
we can see, the Hubble parameter is not a constant and in general goes with time as t−1. The
Hubble time, or Hubble radius, H−1, defines the time scale of the expansion and the Hubble
constant H0 is the value of the expansion rate today, measured as H0 = 67.8±0.9 km.s−1/Mpc
from CMB data9 [235].

The Friedmann equation can be rewritten as

H2 + k

a2 = 8πG
3 ρ⇒ k

H2a2 = 8πG
3H2 ρ− 1 ≡ Ω− 1, (6.15)

where Ω is called the density parameter and is the ratio between the energy density and the
critical density,

Ω ≡ ρ

ρc
, ρc ≡

3H2

8πG. (6.16)

As H2a2 ≥ 0, there is a correspondence between the signal of k and the signal of Ω − 1,
given by [221]:

k = +1 =⇒ Ω > 1, ρ > ρc, Closed
k = 0 =⇒ Ω = 1, ρ = ρc, Flat

k = −1 =⇒ Ω < 1, ρ < ρc, Open
9Actually, we have currently a tension in the measured value of the expansion rate today inferred from the

CMB and from local measurements i.e. supernovae, galaxy clusters, weak lensing. The local measurements
give H0 = 74.03±1.42 km.s−1/Mpc which results in a 4.4σ difference between the two measurements [233,234].
To the present date there is no clear explanation for such a tension, but it could be an indication of new physics.
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Hence, the density parameter tell us which of the three FLRW geometries describe our
Universe, so it is of great importance to measure it with precision. Recent observations of
the Cosmic Microwave Background Radiation lead to Ω = 1.0005 ± 0.0033 [235], therefore
the spatial slice of our Universe is very flat.

Finally, we can see that the scale factor evolution for a universe dominated by different
types of energies (different ω’s) is found from the solution of Friedmann equations. Con-
sidering ρ = ρia

−3(1+ω), where ρi is a constant, we have that Eq. (6.12) for k = 0 results
in:

(
ȧ

a

)2
= 8πG

3 ρia
−3(1+ω) ⇒ ȧ =

(8πG
3 ρi

)1/2
a1− 3

2 (1+ω). (6.17)

The solution for such equation is

a = C1t
2

3(1+ω) , C1 = constant. (6.18)

Therefore, for a matter-dominated universe when ω = 0, a ∝ t2/3, and for a radiation-
dominated universe ω = 1/3 and the scale factor evolves as a ∝ t1/2. For the case when
ω = −1 we go back in Eq. (6.17), that becomes ȧ =

(
8πG

3 ρi
)1/2

a, which implies a ∝ eHt.
So, in a vacuum-dominated universe the scale factor grows exponentially. An universe with
exponential acceleration is also known as de Sitter universe.

Right after the Big Bang, the Universe was an extremely hot plasma of relativistic fun-
damental particles, so it behaved as a radiation-dominated universe [221]. As the Universe
expanded and cooled down bound states started to form as protons, neutron and eventu-
ally the first light atoms. As we saw earlier, the radiation energy density decreases faster
with the expansion than the matter energy density, and consequently the Universe became
matter-dominated with the scale factor evolving like a ∝ t2/3. Today the Universe is not
matter-dominated anymore, but vacuum-dominated. We call the source of such observed
accelerated expansion as dark energy and its true nature is one of the major mysteries in
modern Physics. This picture is named the ΛCDM model of cosmology.

The ΛCDM model gives several predictions of how the Universe evolved from its early
stages to what we see today, and the agreement with observations is astonishing. For example,
the temperature at different stages can be calculated, and combined with our knowledge of
particle physics and thermodynamics we get predictions on the formation of light atoms
like Hydrogen, Helium, Deuterium and Lithium. The abundance of such primordial atoms
predicted by big bang nucleosynthesis (BBN) agrees perfectly with the observed abundance,
something that is hardly accomplished by other models or easily destroyed with modifications
of ΛCDM.

But despite of its success, the ΛCDM model indeed contains some fine-tuning problems,
related to its flatness and CMB homogeneity. Next, we shall see this problems and how the
ΛCDM model can be extended in order to solve them.
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6.2 Flatness and horizon problems

In Eq. (6.15) we defined the density parameter Ω in terms of the curvature k and Hubble
parameter:

|Ω− 1| = |k|
a2H2 . (6.19)

If the Universe is completely flat, Ω ≡ 1, then it remains flat for all time, but otherwise
it evolves. For a matter and radiation-dominated universe the expansion is decelerating (ȧ
decreases with time) and therefore (aH)−1 increases with time. Consequently, the density
parameter evolves away from flatness, |Ω− 1| > 0.

The current observed spatial curvature is, however, very small, which implies that at much
earlier time it must have been extremely small. For example, to match the present value of
|Ω− 1| it is required that, at the time of BBN, |Ω(tBBN )− 1| . 10−16. This is known as the
flatness problem because such fine-tuning on the initial conditions seems extremely unlikely.

In order to talk about the second fine-tuning problem let’s define the particle horizon as
the maximum physical distance a light signal can travel between two times ti and tf :

dh =
∫ tf

ti

dt′

a(t′) . (6.20)

This defines the past light cone of a particle at tf since ti.
Everything we observe in the Universe today was on our past light cone, in particular

the last scattering surface of photons by electrons at recombination time, the CMB. But if
we calculate the past light cone in a radiation-dominated universe of particles from the last
scattering surface until the singularity we find that this is much smaller than our past light
cone: ∫ trec

0

dt′

a(t′) �
∫ t0

trec

dt′

a(t′) . (6.21)

This implies that opposite regions we observe in the CMB (actually, this happens already for
separations of & 2◦) didn’t have enough time to be in causal contact, e.g. see Figure (6.3) [16].
However, even opposite regions of the CMB have very similar temperature and density distri-
butions. Therefore, the homogeneity we observe in the CMB radiation can only be explained
within the ΛCDM model if the Universe was already like this from the very beginning, but
this again requires a huge fine-tuning on the initial conditions.

To rescue the ΛCDM model we can use the aid of a period of extremely fast expansion
before the radiation era. Such period is called inflation and we shall look into it in more detail
in the next section.

6.3 Inflation

Inflation is by definition any epoch during which the scale factor is accelerating:

ä > 0. (6.22)
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Figure 6.3: The horizon problem in ΛCDM model. All events that we currently observe
are on our past light cone. The intersection of our past light cone with the spacelike slice
labelled recombination corresponds to two opposite points in the observed CMB. Their past
light cones don’t overlap before they hit the singularity, ai = 0, so the points appear never to
have been in causal contact. Figure from [16].

We can write an equivalent condition for inflation in terms of the Hubble length, or more
precisely the comoving Hubble length:

d

dt

( 1
aH

)
< 0 ⇒ − Ḣ

H2 < 1. (6.23)

Therefore, the comoving Hubble length decreases with time and so the observable universe
becomes smaller during inflation.

It is easy to see that the first condition of Eq. (6.23) makes the density parameter Eq. (6.15)
to evolve towards flatness during an inflationary epoch. Therefore, even if the initial con-
ditions of the Universe favour a non-trivial spatial curvature, eventually it will become flat
after a sufficient time of inflation.

An inflationary epoch also solves the horizon problem due to the reduction of the comoving
Hubble length during this period. The integral in Eq. (6.20),

dh =
∫

da

a2H
, (6.24)

is larger at early times, as (aH)−1 is decreasing, and therefore the particle horizon can become
very large in the past. This allows our present observable Universe to have origin from a region
well inside the Hubble radius. This makes all the observable universe to be in causal contact at
some time during inflation. In particular, comoving scales (and physical as well), aλ ∝ ak−1,
get out of the horizon during inflation and enter back in only at late times, during radiation,
matter or vacuum-dominated eras. This whole picture of early inflationary epoch plus ΛCDM
model is known as the Standard Model of Cosmology.

An interesting question now would be, if we assume that the inflationary epoch is driven
also by a perfect fluid, what type of ideal fluid it should be? From the dynamical equation
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for the scale factor acceleration Eq. (6.14), in order to have ä > 0 we need that

ρ+ 3p < 0. (6.25)

Hence, inflation is driven by a material with negative pressure. The relation implies the
equation of state parameter to be:

ω < −1
3 . (6.26)

In fact, a fluid with negative pressure can be modeled by a scalar field, which in this case
is usually referred to as inflaton,

L = −1
2∂µφ∂

µφ− V (φ). (6.27)

Then, the energy-momentum tensor is given by

Tµν = − 2√
−g

∂
√
−gL

∂gµν
= ∂µφ∂µφ− gµν

(1
2g

αβ∂αφ∂βφ− V (φ)
)
. (6.28)

Consistency with FLRW metric implies φ = φ(t), hence we have for the energy density
ρφ = −T 0

0 and pressure pφδji = T ji :

ρφ = 1
2 φ̇

2 + V (φ), (6.29)

pφ = 1
2 φ̇

2 − V (φ). (6.30)

Therefore, we can write the Friedmann equation (6.12) for this content in a flat space as:

H2 = 8πG
3

(1
2 φ̇

2 + V (φ)
)
, (6.31)

and the continuity equation (6.5) becomes:

φ̈+ 3Hφ̇ = −dV
dφ

. (6.32)

Using ρφ and pφ we see that the condition for inflation is satisfied as long as

φ̇2 � V (φ). (6.33)

The potential of the scalar field is treated here as an arbitrary function, but the hope is to
someday obtain it from more fundamental physics. At present time, inflation is just a model
and different potentials correspond to different types of inflation.

Due to relation in Eq. (6.33) there is a standard approach to inflation which is to consider
an almost flat potential so that the kinetic term of the scalar field is negligible. This is
called slow-roll approximation because the field rolls slowly down the potential. Within this
approximation, Eqs. (6.31) and (6.32) become:

H2 ' 8πG
3 V (φ), (6.34)

3Hφ̇ ' −V ′(φ). (6.35)
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where we have assumed also that

φ̈ < 3Hφ̇. (6.36)

We can define the dimensionless parameters, called slow-roll parameters

ε(φ) ≡ 4πG
(
φ̇

H

)2

, (6.37)

η(φ) ≡ φ̈

Hφ
, (6.38)

and using Eqs. (6.32)-(6.36) we get

ε(φ) ' 1
16πG

(
V ′(φ)
V (φ)

)
= − Ḣ

H2 , (6.39)

η(φ) ' 1
8πG

(
V ′′(φ)
V (φ)

)
= V ′′(φ)

3H2 . (6.40)

In term of this parameters the slow-roll conditions are:

|ε| � 1, |η(φ)| � 1, (6.41)

and inflation ends when ε ≈ 1.
Another important quantity we need to introduce is the amount of inflation that occurs.

This is defined as the number of e-foldings N

dN ≡ −Hdt. (6.42)

So, the amount of inflation from a time t to its end is given by

N = −
∫ tend

t
Hdt = −

∫ φend

φ

H

φ̇
dφ = −

√
4πG

∫ φend

φ

1√
ε(φ)

dφ. (6.43)

Within the slow-roll approximation we have

N ' 8πG
∫ φ

φend

V (φ)
V ′(φ)dφ. (6.44)

In order to solve the flatness and horizon problems we need around N ' 60 e-folds. The
precise value depends on the energy scale of inflation (in which in general H ∼ 1011 − 1013
GeV) and on the details of reheating phase after inflation, when the inflaton field decays in
Standard Model particles.

6.3.1 Inflationary observables

We can write correlation functions and power spectra for the perturbations in the matter
and metric at the early universe. From these statistical quantities we can build cosmological
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observables, and the most important ones that can be related to inflation are the scalar
spectral index, ns, tensor spectral index , nT and tensor-to-scalar ratio, r:

ns − 1 ≡ d lnPζ
d ln k , (6.45)

nT ≡
d lnPh
d ln k , (6.46)

r ≡ AT
Aζ

. (6.47)

In these expressions Pζ and Ph are the power spectrum of scalar curvature and tensor per-
turbations, respectively, and Aζ and AT are their amplitudes. This quantities can be related
to the inflaton’s perturbations by doing general relativistic perturbations.

A general perturbed metric can be written at linear order, using conformal time dτ = dt/a,
as:

ds2 = a2(τ)[−(1 + 2φ)dτ2 + 2(∂iB +Bi)dxidτ + ((1 + 2ψ)δij + 2∂i∂jE + hij)dxidxj ],
(6.48)

where φ, ψ, B and E represent the scalar perturbations of the metric, hij the tensor sector,
responsible for gravitational waves and the vector perturbations decay in a expanding uni-
verse, as we show in the next chapter [236]. This perturbed metric is related to a perturbed
energy-momentum tensor, δTµν , by the Einstein’s equation:

δGµν = 8πGδTµν , (6.49)

where Gµν = Rµν − 1
2gµνR. This metric has gauge redundancies, which could lead to coor-

dinate (gauge) transformations to be confused with physical perturbations. In order to solve
this issue one can either fix a gauge or work with gauge independent variables such as:

Φ ≡ φ+ 1
a

[a(B − E′)]′, (6.50)

Ψ ≡ −ψ − aH(B − E′) + 1
3∇

2E, (6.51)

for the metric, and the uniform density curvature perturbation:

ζ ≡ ψ − 1
3∇

2E − aH δρ

ρ′
, (6.52)

for the matter field described as a perfect fluid, which is going to be the inflaton for the
inflationary case, and the primes denote derivation with respect to the the conformal time.
The tensor perturbations are gauge-invariant by definition. The density curvature perturba-
tion is specially interesting as it doesn’t evolve on super-horizon scales, k � H, for adiabatic
perturbations [223]. Therefore, the value of ζ that is computed at horizon crossing during
inflation survives unaltered until it enters the horizon again at later times.

The scalar perturbations of the metric are sourced by the perturbations on the inflaton
field and the perturbations of the inflaton field, in turn, at very short scales are fundamentally
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quantum fluctuations. By quantizing the perturbations ϕ of inflaton field φ̄ in a de Sitter
background one finds that the variance of the inflaton perturbations receives non-zero quan-
tum fluctuations. Hence, one can define the power spectrum Pϕ(k) of quantum fluctuations,
and it turns out to be scale-invariant [223]

Pϕ(k) ≡
(
k3

2π2

)
|ϕk|2 =

(
H

2π

)2
. (6.53)

In a flat hypersurface, ψ = 0 = E and

ζ = −aH δρ

ρ′
= −Hϕ

˙̄φ
, (6.54)

so that the inflaton quantum fluctuations power spectrum is related to the curvature pertur-
bation power spectrum as

Pζ =
(
H
˙̄φ

)2 (
H

2π

)2
. (6.55)

If the inflationary background is not exactly de Sitter, as in the case of almost flat inflaton
potentials, then Pϕ will depart from scale-invariance. Hence, the spectral index ns measures
the deviation of the power spectrum from scale-invariance, and Pζ(k) can be parametrized
as:

Pζ = Aζ

(
k

k∗

)ns−1
, (6.56)

where k∗ is a reference scale and Aζ is the scalar power spectrum amplitude evaluated at such
scale.

The power spectrum from tensor perturbations in de Sitter space is also scale invariant
and written as:

Ph(k) = 2
M2
P

(
H

2π

)2
= AT

(
k

k∗

)nT
. (6.57)

In slow-roll approximation we can write these quantities as [223],

Pζ(k) ' V

24π2M4
P ε
, (6.58)

ns − 1 = −6ε+ 2η, (6.59)
nT = −2ε, (6.60)
r = 16ε. (6.61)

The temperature fluctuations in the cosmic microwave background radiation are sourced
mostly by density scalar perturbations. Therefore, by looking at the CMB power spectrum
we can infer the values of Aζ and ns, as its shape depends strongly on this initial conditions
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and cosmological parameters. The values for ns and Aζ (at k∗ = 0.05 Mpc−1) measured by
Planck in 2018 are [17]:

ns = 0.9649± 0.0042, (6.62)
Aζ ' 2.01× 10−9. (6.63)

We haven’t observed the primordial tensor perturbations yet. Most searches focus on the
imprint that tensor modes leave in the polarisation of the CMB. The presence of a gravi-
tational wave background creates an anisotropic stretching of the spacetime which induces
a special type of polarisation pattern named B-modes. Such a pattern cannot be created
by scalar fluctuations and is therefore a unique signature of primordial gravitational waves.
To-date we only have an upper bound on r [17]:

r < 0.11. (6.64)

These three observables are used to constrain different inflationary models. We shall see now
two natural models of inflation and their predicted observables.

6.4 Higgs inflation

We saw earlier that general models of inflation require the introduction of a new scalar
field called inflaton to drive the inflationary epoch. However, we do have a scalar field in
the Standard Model of Particle Physics, the Higgs field, so it may be interesting to see if the
Higgs can generate an inflation at early times [237].

In Part II we saw that for a scalar field in curved spacetime to be renormalized it has to
couple non-minimally to gravity. Therefore, the action for the Higgs field, in unitary gauge,
plus gravity is10:

S =
∫
d4x
√
−g

[
M2
P

2 R+ ξH2R− 1
2∂µH∂

µH − λ

4

(
(v +H)2 − µ2

λ

)]
, (6.65)

where ξ is the non-minimal coupling. MP here is actually slightly corrected by the Higgs vev,
but as v �MP we just neglected this correction.

In order to write the action with a canonical curvature term (in Einstein frame) we do a
Weyl transformation on the metric:

gµν(x) = Ω−2(x)g̃µν(x),
√
−g = Ω−4√−g̃. (6.66)

With this transformation, the Ricci scalar becomes:

R = Ω2(R̃+ 6(�̃ ln Ω)− 6g̃µν(∂µ ln Ω)(∂ν ln Ω)), (6.67)

10It was also shown in Part II that the vacuum action induced by scalar field quantum correction includes
curvature square terms, but this induced term is small and we shall neglect it for now.
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where,

(�̃ ln Ω) = 1√
−g̃

∂µ(
√
−g̃g̃µν(∂ν ln Ω)). (6.68)

Hence, the action becomes:

S =
∫
d4x

√
−g̃Ω−4

[
M2
P

2

(
1 + ξH2

M2
P

)
Ω2(R̃+ 6(�̃ ln Ω)− 6g̃µν(∂µ ln Ω)(∂ν ln Ω))

−1
2Ω2 g̃µν∂µH∂νH − U(H)

]
. (6.69)

Therefore, to get a canonical Ricci scalar we need:

Ω2 = 1 + ξH2

M2
P

, (6.70)

which implies that,

(∂µ ln Ω)(∂ν ln Ω) = Ω−4
(
ξh

M2
P

)2

∂µH∂νH. (6.71)

Putting it back in the action and neglecting the total derivative we get:

S =
∫
d4x

√
−g̃

[
M2
P

2 R̃−
(

Ω−2 + 6Ω−4ξ2H2

M2
P

)
1
2 g̃

µν∂µH∂νH − Ω−4U(H)
]
. (6.72)

In order to obtain a canonical kinetic term for the scalar part of the action we introduce the
field χ that satisfies:

∂χ

∂H
=

√
Ω2 + 6ξ2H2/M2

P

Ω4 . (6.73)

Finally, the action for the Higgs plus gravity in Einstein frame is:

S =
∫
d4x

√
−g̃

[
M2
P

2 R̃− ∂µχ∂µχ− V (χ)
]
, (6.74)

where,

V (χ) = Ω−4(χ)λ4

[
(v +H(χ))2 − µ2

λ

]
. (6.75)

For small field values H ' χ, but for large H �MP /
√
ξ, or χ�

√
6MP , we have

H ' MP√
ξ
e

χ√
6MP , (6.76)

so that the potential is, as v �Mp/
√
ξ,

V (χ) = λM4
P

4ξ2

(
1− e−

√
2
3

χ
MP

)2
. (6.77)
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This potential is exponentially flat, and it produces a successful inflationary scenario.
The slow-roll parameters are

ε ' 4M4
P

3ξ2H4 , η ' − 4M2
P

3ξH2 . (6.78)

and the number of e-folds before the end of inflation is

N = 1
MP

∫ H

Hend

1√
2ε(H ′)

(
dχ

dH ′

)2
dH ′ ' 3

4
H2 −H2

end
M2
P /ξ

. (6.79)

The slow-roll inflation regime ends when ε ' 1. This implies that at the end of inflation
the field value is approximately:

Hend '
(4

3

)1/4 MP√
ξ
. (6.80)

Now, as H � Hend, H can be written in terms of the number of e-folds as

H2(N) = 4M2
P

3ξ N. (6.81)

Using the normalized scalar power spectrum amplitude in Eq. (6.58) and its measured value
Eq. (6.63) we can put a constraint on the value of the non-minimal coupling. For N = 60,11

ξ ' 50000
√
λ. (6.82)

One interesting feature of Higgs inflation is that as the Higgs coupling to Standard Model
is known, in principle it is possible to calculate details of the reheating phase, when the Higgs
would decay into SM particles, which is rather arbitrary in other inflationary models [241,242].
It is also worth mentioning that Higgs inflation scenario is full of subtleties, most related to
Higgs potential instability. As inflation happens at very large energies and the Higgs self-
coupling λ runs, at such high energies λ can become so small that an inflationary regime
would not be possible (as we need ξ � 1) or even negative, leading to instabilities. For a
complete discussion see [243–245] and references therein.

6.5 Starobinsky inflation

Another natural model of inflation was realized in 1980 by Starobinsky [218], and it was
one of the first inflationary models. It consists of a R2 term together with the Einstein-Hilbert
action:

S =
∫
d4x
√
−g

( 1
16πGR+ αR2

)
. (6.83)

11Such high value for the non-minimal coupling results on the so called unitarity problem or the naturalness
problem of the Higgs inflation scenario, as perturbation theory breaks at the same energy scale of inflationary
epoch. For more details see [238–240].
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We can treat the integrand as a general f(R) function of the Ricci scalar R:

S = M2
P

2

∫
d4x
√
−gf(R), (6.84)

where

f(R) = R+ 2α
M2
P

R2. (6.85)

Now let’s introduce a field ϕ and write the dynamically equivalent action:

S = M2
P

2

∫
d4x
√
−g

[
f(ϕ) + f ′(ϕ)(R− ϕ)

]
. (6.86)

The equation of motion of ϕ gives:

f ′′(ϕ)(R− ϕ) = 0. (6.87)

Therefore, ϕ = R if f ′′(ϕ) 6= 0 and we recover Eq. (6.84). Now, defining φ = f ′(ϕ) and setting

U(φ) = ϕ(φ)φ− f(ϕ(φ)), (6.88)

we get

S = M2
P

2

∫
d4x
√
−g [φR− U(φ)] . (6.89)

Now we can do the same thing as in the previous section in order to write the action in
Einstein frame, but choosing the parameter Ω to be Ω(x) = eω(x). Hence, the action becomes:

S = M2
P

2

∫
d4x

√
−g̃Ω−4

[
φΩ2(R̃− 6g̃µν∂µω∂νω)− U(φ)

]
. (6.90)

We can choose Ω2 = φ, and Ω2 = e2ω implies ω = 1
2 lnφ, which gives

S =
∫
d4x

√
−g̃

[
M2
P

2 R̃− M2
P

2
6
4 g̃

µν∂µ(lnφ)∂ν(lnφ)− M2
P

2 Ω−4U(φ)
]
. (6.91)

Now, we rewrite the action in terms of the scalar field χ that canonically normalizes the
kinetic term:

S =
∫
d4x

√
−g̃

[
M2
P

2 R̃− 1
2 g̃

µν∂µχ∂νχ− V (χ)
]
. (6.92)

In order to find how χ depends on φ we solve

3
2
M2
P

φ2 ∂µφ∂νφ = ∂µχ∂νχ ⇒
(
∂χ

∂φ

)2
= 3

2
M2
P

φ2 , (6.93)

which gives,

χ =
√

3
2MP lnφ ⇒ φ = e

√
2
3

χ
MP , (6.94)
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and the potential V (χ) is given by

V (χ) = M2
P

2φ2(χ)U(φ(χ)). (6.95)

This is a generic mapping of a f(R) theory to scalar-metric action, and the prescription
is valid for any analytic f(R) theory. For the case we had in Eq. (6.85), remembering that
we can rewrite Eq. (6.88) as

U(φ) = R(φ)φ− f(R(φ)), (6.96)

we have

φ = f ′(R) = 1 + 4α
M2
P

R ⇒ R = M2
P

4α (φ− 1), (6.97)

and therefore,

U(φ) = M2
P

8α (φ− 1)2. (6.98)

Then, the potential V (χ) is

V (χ) = M4
P

16α

(
1− e−

√
2
3

χ
MP

)2
. (6.99)

This is the same potential as found before that drives Higgs inflation, and now the normal-
ization of the power spectrum gives α ≈ 2 × 108. Therefore, we have the same slow-roll
parameters and observables:

ε = 3
4N2 , η = − 1

N
, ns − 1 = − 2

N

(
1 + 9

4N

)
, r = 12

N2 . (6.100)

For N = 60,

ns = 0.9654, r = 0.0033, (6.101)

which is in agreement with Planck measurements. In Figure 6.4 is shown the 68% and 95%
confidence level measurements of ns and r by Planck, together with several models of inflation
evaluated at N = 50 and N = 60. Starobinsky inflation is the green mark, and we can see
how well it fits observation.

The Higgs and Starobinsky inflation gives the same expressions for the observables, but
they are certainly not the same model. For instance, the reheating phase is completely
different in the two cases. The Starobinsky inflation modifies gravity and introduces a new
scalar degree of freedom whose coupling to all fields is Planck scale suppressed. Then, the
reheating occurs mainly due its decay into the Higgs bosons [246], which afterwards decays
in SM particles. In Higgs inflation, however, the Higgs-inflaton field energy is transferred
directly to all SM degrees of freedom. This changes the reheating temperature predicted in
the two scenarios, which therefore changes the precise number of e-folds that happens after
a given mode leaves the horizon until the end of inflation. Therefore, the two models can
predict slightly different observables. For more details see [247] and references therein.
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Figure 6.4: The spectral index and tensor-to-scalar ratio measured by Planck using CMB
data. The figure also shows several models of inflation, with ns and r calculated with N = 50
and N = 60. TT stands for temperature power spectrum from CMB, EE the polarization
spectrum and TE the temperature-polarization spectrum, BAO for baryonic acoustic oscilla-
tions and BK15 are B-mode polarization data. Figure from [17].

6.6 Starobinsky inflation with sterile scalar coupled to massive
fermions

We saw in Part II that for a theory of a sterile scalar field coupled to massive fermions
through a Yukawa interaction to be renormalizable, odd term are required in the scalar field
potential:

V (ϕ) = 1
2m

2ϕ2 + λ

4!ϕ
4 + g

3!ϕ
3 + τϕ+ fRϕ− ξϕ2R. (6.102)

This potential, within a inflationary approximation where ϕ is the inflaton field, induces
contributions to the vacuum action that are non-polynomial in the scalar curvature:

S =
∫
d4x
√
−g

 1
16πGR−

3m2ξ

λ
R+ 3ξ2

2λ R
2 +

√
6ξR
λ

(
τ −

(
f + gξ

λ

))
R

 , (6.103)

where [f + gξ/λ] = [M ], [τ ] = [M ]3, and m2

M2
P
, | τ
M3
P
|, | fMP

|, | gMP
| � 1. During inflation, R > 0

and we need λ > 0 for stability of the scalar potential, therefore ξ > 0. Now, we shall look
what this small non-polynomial terms do in Starobinksy inflation. This section is based on
preliminary results of [19].

82



The curvature squared term,

3ξ2

2λ R
2, (6.104)

can actually drive Starobinsky inflation as long as 3ξ2

2λ ∼ 2× 108 (see last section).
As,

1
16πGR−

3m2ξ

λ
R ≈ 1

16πGR, (6.105)

we can write just,

S = M2
P

2

∫
d4x
√
−g

R+ α

M2
P

R2 + 2
M2
P

√
6ξR
λ

(τ − β)R

 , (6.106)

where we defined,

α ≡ 3ξ2

λ
, β ≡

(
f + gξ

λ

)
. (6.107)

Hence,

S = M2
P

2

∫
d4x
√
−gf(R). (6.108)

Mapping to a scalar-metric action in the same way we did for Starobinsky inflation,

S = M2
P

2

∫
d4x
√
−g [φR− V (φ)] , (6.109)

where now,

φ = f ′(R) = 1 + 2α
M2
P

R+ τ

M2
P

√
6ξ
λ
R−1/2 − 3β

M2
P

√
6ξ
λ
R1/2. (6.110)

We can write R as:

R = R0 + ∆R1, (6.111)

where R0 ∼ O0(τ, β) and ∆R1 ∼ O1(τ, β)� R0. With this approximation we have,

R1/2 ≈ R1/2
0

(
1 + ∆R1

2R0

)
, R−1/2 ≈ R−1/2

0

(
1− ∆R1

2R0

)
. (6.112)

In zero order of the expansion we get,

φ = 1 + 2α
M2
P

R0, (6.113)

and in first order, defining γ ≡
√

6ξ
λ , we find

∆R1 = 3βγR1/2
0 − τγR−1/2

0

2α− τγ
2 R
−3/2
0 − −3βγ

2 R
−1/2
0

≈ 3βγR1/2
0 − τγR−1/2

0
2α , (6.114)
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as τ/α, β/α� α, and this gives, from the scalar equation of motion,

R(φ) = V ′(φ) = M2
P

2α (φ− 1) + 3
√

2
4

βγMP

α3/2 (φ− 1)1/2 − τγ√
2αMP

(φ− 1)−1/2. (6.115)

The integration with respect to φ results in the potential:

V (φ) = M2
P

4α (φ− 1)2 +
√

2
2
βγMP

α3/2 (φ− 1)3/2 − 2τγ√
2αMP

(φ− 1)1/2. (6.116)

Recalling that we want a action of the form,

S =
∫
d4x
√
−g

[
M2
P

2 R− ∂µχ∂µχ− U(χ)
]
, (6.117)

we can see that, as the new terms only contribute to the potential, after the Weyl transfor-
mation we get the same relation between the field χ with canonically normalized kinetic term
and φ of the R2 case:

U(χ) = M2
P

2φ2 V (φ(χ)), φ = e

√
2
3

χ
MP . (6.118)

Therefore the potential becomes,

U(χ) = M4
P

8α

(
1− e−

√
2
3

χ
MP

)2
+
√

2
4
βγM3

P

α3/2 e
−2
√

2
3

χ
MP

(
e

√
2
3

χ
MP − 1

)3/2

− τγMP√
2α

e
−2
√

2
3

χ
MP

(
e

√
2
3

χ
MP − 1

)1/2
, (6.119)

or, in terms of the original parameters,
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To get the observables we need:

ε = M2
P

2
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P

U ′′(χ)
U(χ) . (6.121)

where when dividing by U we should pick only the leading term, the same from R2 potential:
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and in the squared we also keep only to O1(τ, β) terms. Thus,
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For large χ values we can take only the leading term in each expression, which gives:
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Defining,
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√

2
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we can rewrite ε and η as,
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As ε can be written as ε = ε0 + δε, where ε0 ∼ O0(τ, β) and δε ∼ O1(τ, β), to calculate the
number of e-folds,

Nχ = 1
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dχ′, (6.130)

we can expand in ε:
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Explicitly, we have
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where
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σdχ. (6.133)
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After integrating and using that χend � χ, where χ is deep in inflationary era, we get a result
that does not depend on χend, similar to the pure R2 case:
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In order to find the field χ in terms of the number of e-fold N we can expand on σ in
Eq. (6.135), which gives:
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Then, by plugging this result in Eq. (6.128) and Eq. (6.129), and keeping only to O1(τ, β)
terms, we find:
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The observables are:

ns − 1 = −6ε+ 2η, r = 16ε, (6.139)

Therefore,
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and in terms of the original parameters:
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In order to estimate the values of ns and r let’s recall that τ has mass-dimension three
and f, g have mass-dimension one, and the mass scale that dominates in the correction of
these parameters is the fermions masses M (see Eq. (5.58)). We should expect that the effect
of the non-polynomial terms is larger for heavier fermions, and if we consider this fermions
as right-handed neutrinos or some supersymmetric particle we could in principle go to very
high values. Considering λ ≈ 1, we have ξ ≈ 1× 104, and we can choose M = 1 TeV, so that

τ ∼ m3
f ≈ 1× 109 GeV, f = 103 GeV = g. (6.144)

Using that MP = 1019 GeV, with N = 60 we find:

ns = 0.9654, r = 0.0033, (6.145)

and for N = 50:

ns = 0.9582, r = 0.0048, (6.146)

which are exactly the same, to this precision, to the R2 case. The non-polynomial terms start
to become non-negligible for M ∼ 1015 GeV, where for N = 60,

ns = 0.9650, r = 0.0031, (6.147)

but the effect is still small. The Figure 6.5 shows the potential, Eq. (6.120) for fermions
with mass 1015 GeV and 1016 GeV, compared with Starobinsky inflation. We see that the
potential changes, however the perturbation does not destroy the plateau or the minimum.
In principle, the non-polynomial terms could change the details of the end of inflation, when
ε ≈ 1, as we can see from the curves that this is the region of major difference. Therefore, we
can see that the perturbations of the R2 inflation are stable against odd terms corrections to
the potential, even if induced by very heavy fermions.
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Figure 6.5: The potential U(χ) of Starobinsky inflation perturbed by non-polynomial terms,
induced by scalars coupled to fermions of mass 1015 GeV (green, dashed) and 1016 GeV (blue
dotted), together with the pure R2 term (black).
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7
Large scale structure formation

The universe was very homogeneous and isotropic at the recombination time as obser-
vations of the cosmic microwave background indicate. However, we can see clearly inhomo-
geneities in the Universe today in the form of galaxies and clusters that combine in a structure.
The explanation for highly non-linear structure to form from such small initial perturbations
lies within gravitational instability: matter is attracted to denser regions, amplifying the al-
ready existing inhomogeneities. Even small overdensities of order 10−5, as the one seen in
CMB, eventually attract enough matter to form structure.

But to really assure these small perturbations, originated from quantum fluctuations at
the inflation era, clustered to the structure we see today one has to study how fast such
overdensities grow in an expanding universe. The general way to calculate this evolution is
through perturbing the Einstein’s equation. But the gravitational instability in the Newtonian
limit produces fair results when applied to non-relativistic matter at scales that don’t exceed
the Hubble horizon, which is sufficient for our purposes.

7.1 Linear perturbation theory

We can approximate matter to behave as a perfect fluid at large scales. This means that
at any time t matter will be characterized by its density ρ(x, t), its entropy per mass unit
S(x, t), the gravitational potential φ(x, t) and the 3-velocities vector field V(x, t). The set of
equations that governs the evolution of such quantities are called hydrodynamical equations:

• Continuity equation

∂ρ

∂t
+∇.(ρV) = 0; (7.1)
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• Euler equation
∂V
∂t

+ (V.∇)V + ∇p
ρ

+∇φ = 0; (7.2)

• Entropy conservation
dS(x, t)
dt

= ∂S

∂t
+ (V.∇)S = 0; (7.3)

• Poisson equation

∆φ = 4πGρ, (7.4)

which together with the equation of state p = p(ρ, S) form a set of seven equations for the
seven unknown functions described previously.

In an expanding homogeneous and isotropic universe the matter energy density is a func-
tion of time only and the velocities obey Hubble’s law

ρ = ρ̄(t), V = V0 = H(t)x. (7.5)

Plugging this expressions in the continuity equation results in the familiar equation,
Eq. (6.5), ˙̄ρ + 3Hρ̄ = 0. To study the evolution of matter perturbations we add a little
perturbation to the matter distribution [236]:

ρ = ρ̄+ δρ(x, t), V = V0 + δv, φ = φ̄+ δφ, (7.6)
p = p̄+ δp = p̄+ c2

sδρ.

where we have ignored entropic perturbations and cs is propagation velocity of a perturbation
in a certain medium, usually called sound speed. The linear hydrodynamical equations for
small perturbations are

∂δρ(x, t)
∂t

+ ρ̄∇δv(x, t) +∇(δρ(x, t).V0) = 0, (7.7)

∂δv(x, t)
∂t

+ (V0.∇)δv(x, t)+(δv(x, t).∇)V0 + c2
s

ρ̄
∇δρ(x, t) +∇δφ(x, t) = 0, (7.8)

∆δφ(x, t) = 4πGδρ(x, t). (7.9)

It is easier to solve this equations in Fourier space, but in order to do a Fourier transform
of the quantities we have to remove the explicit dependence on the coordinate x of V0. To
do so it is convenient to use Lagrangian coordinates q, which are comoving to Hubble flow,
instead of the Eulerian coordinates, which are related in the following way:

x = a(t)q. (7.10)

In this new coordinates the time derivative and the gradient become(
∂

∂t

)
x

=
(
∂

∂t

)
q
− (V0.∇x),

∇x = 1
a
∇q. (7.11)
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Substituting this relations in eqs. (7.7)-(7.9) and introducing the density contrast of pertur-
bations δ ≡ δρ/ρ̄, we obtain

∂δ(q, t)
∂t

+ 1
a
∇δv(q, t) = 0, (7.12)

∂δv(q, t)
∂t

+Hδv(q, t) + c2
s

a
∇δ(q, t) + 1

a
∇δφ(q, t) = 0, (7.13)

∆δφ(q, t) = 4πGa2ρ̄δ(q, t). (7.14)

The derivatives are all with respect to q and from now on we omit its dependence in the
equations. It is also possible to combine these three equations into one second order equation
for δ:

δ̈ + 2Hδ̇ − c2
s

a2∇
2δ − 4πGρ̄δ = 0. (7.15)

This equation describes the matter inhomogeneities in an expanding universe on sub-horizon
scales.

7.1.1 Adiabatic perturbations

After a Fourier transformation in δ:

δ(x, t) =
∫
δke

(ikx) d
3k

(2π)3 , (7.16)

the Eq. (7.15), for each Fourier mode, becomes:

δ̈k + 2Hδ̇k +
(
c2
sk

2

a2 − 4πGρ̄
)
δk = 0. (7.17)

The evolution of each perturbation mode depends strongly on the spatial scale, where the
critical wavelength that determines the form of the evolution is named Jeans length,

λph
J = 2πa

kJ
= cs

√
π

Gρ̄
. (7.18)

At scales much smaller than the Jeans length (λ � λJ) the pressure gradient dominates
the effect of gravity. If cs changes adiabaticaly

(
ċs
cs
� H

)
, then the solution of Eq. (7.17) has

the form

δk ∝
1
√
csa

e±ik
∫
csdt
a . (7.19)

So the perturbations oscillate like sound-waves.
At scales much larger than the Jeans length (λ � λJ) gravity dominates, and perturba-

tions experience a power-law growth. To see that, let’s consider the case of dark matter. For
dark matter cs = 0 at linear level, and we can analyse its evolution at different epochs:
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• In a matter-dominated universe we have

δ̈mk + 2Hδ̇mk − 4πGρ0mδmk = 0. (7.20)

As a ∝ t2/3, then H ∝ t−1 and

δ̈mk + 4
3t δ̇mk −

2
3t2 δmk = 0. (7.21)

Plugging the ansatz δmk = tp we find a growing and a decaying solution, and δmk gives:

δmk(t) = C1(k)t2/3 + C2(k)t−1. (7.22)

Therefore, the growing modes of dark matter perturbations grow with a in a matter-
dominated universe.

• In a radiation-dominated universe the mean density is the sum of the radiation and
matter densities:

δ̈mk + 2Hδ̇mk − 4πG
∑
i

ρ0iδik = 0. (7.23)

Radiation fluctuations on scales smaller than the horizon oscillate as sound waves due
to the large radiation pressure and it also doesn’t cluster, so δrk = 0 [236]. Hence,

δ̈mk + 2Hδ̇mk − 4πGρ0mδmk = 0. (7.24)

This is the Meszaros equation and can be solved analytically, in principle. But qualita-
tively, since δmk evolves only on cosmological time scales, δ̈mk ∼ H2δmk ∼ 8πG

3 ρ0rδmk �
4πGρ0mδmk, then we can neglect the last term of Eq. (7.24), and solving the resulting
equation we find

δmk(t) = B1(k) +B2(k) ln t. (7.25)

Hence, the dark matter perturbations grow only logarithmically in a radiation-domina-
ted universe.

Only the growing mode of the perturbations is important at late times because it is due
to this mode that the Universe has structure. The evolution of the growing mode can be split
into a k independent term δc(t) ≡ D(z), called growth factor, and a redshift independent
term δ(k, 0), δ(k, z) = D(z)δ(k, 0), where we can write in general that [248,249]

D(z) = H(z)
H0

∫ ∞
z

dz′(1 + z′)
(

H0
H(z′)

)3
. (7.26)
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7.1.2 Vector perturbations

Trivial solutions with δ = 0 and δS = 0 can correspond to non-trivial solutions to the
hydrodanymical equations. In this case Eqs. (7.12)-(7.14) reduce to

∇δv = 0, ∂δv
∂t

+Hδv = 0. (7.27)

From the first equation it follows that, for plane waves perturbations, δv ∝ δvk(t)eikq, the
velocity δv is perpendicular to the wavenumber k. The solution of the second equation has
the form δvk ∝ 1/a. Hence, we see that the vector perturbations decrease with the Universe
expansion. Therefore, such perturbations could only have significant amplitudes today if they
were huge back in the past, so large that they would destroy the isotropy on the observed early
universe. There is no place for such high vector perturbations in an inflationary universe, so
they don’t play a role in the structure formation of the Universe.

7.2 The matter power spectrum

We can characterize the amplitude of density perturbations by its Fourier transform

δ(x, t) =
∫

d3k

(2π)3 δ(k, t)e
ikx, δ(k, t) =

∫
d3xδ(x, t)e−ikx. (7.28)

As δ(x) is real and has zero average (homogeneous universe), we have that 〈δ(k, t)〉 = 0
and δ(−k, t) = δ∗(k, t). The matter power spectrum is defined as:

〈
δ(k, t)δ∗(k′, t)

〉
≡ (2π)3δ3(k− k′)P (k). (7.29)

The statistical properties of the density contrast are encoded in the set of correlation
functions [250]

ξ2(x1,x2) = 〈δ(x1)δ(x2)〉 , ξ3(x1,x2,x3) = 〈δ(x1)δ(x2)δ(x3)〉 , ... (7.30)

where the average is taken over ensembles.
The homogeneity of space implies that the two-point correlation function, ξ2, for example,

to be invariant under translations. Therefore, it can only be a function of the separation
between the points, ξ2(x1,x2) = ξ2(x1 − x2). On the other hand, isotropy requires ξ(x) to
be invariant under rotations as well, so the two-point correlation function must be a function
of the modulus of the distance between the two points only, ξ2(x1,x2) = ξ2(|x1 − x2|).

One can compute the two-point correlation function

ξ2(r) = 〈δ(x)δ(x + r)〉 , (7.31)
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Figure 7.1: Linear matter power spectrum at z = 0 inferred from different cosmological
probes, together with the ΛCDM prediction in black. We can see how well the ΛCDM model
fits observations. Figure from [14].

in terms of the Fourier coefficients as follows:

ξ2(r) =
∫

d3k

(2π)3

∫
d3k′

(2π)3
〈
δ(k)δ∗(k′)

〉
e−ikxeik

′(x+r)

= 1
(2π)6

∫ ∫
d3kd3k′(2π)3δ3(k− k′)P (k)e−ix(k−k′)eik

′r

= 1
(2π)3

∫
d3kP (k)eikr

= 1
2π2

∫
dkk2P (k)sin(kr)

kr
. (7.32)

Hence, it follows that the two-point correlation function is the Fourier transform of the
power spectrum. Roughly speaking, the two-point correlation function measures the proba-
bility of finding an object, e.g. a star, galaxy, cluster, from a distance r of another object, or
the spatial distribution of pairs with a giving separation distance.

The power spectrum has dimension of volume but sometimes it is useful to work with a
dimensionless quantity defined as

∆2(k) = k3P (k)
2π2 . (7.33)

When studying the large scale structure of the Universe we are interested in measuring
the matter power spectrum today and understand how it originated from a primordial power
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spectrum, established at the time of inflation. As the potential φ(k) and the density contrast
δ(k) are related by the Poisson equation we can work with the potential instead of the density,
and relate the potential today with the primordial one φp. Schematically, we have that [222]

φ(k, a) = φp(k)× T (k)× D(a)
a

, (7.34)

where T (k) is the transfer function. It encodes the evolution of perturbations crossing the
horizon and through the transition from radiation-dominated to matter dominated universe.
By definition, the transfer function is given by

T (k) ≡ φ(k, a�1)
φLS(k, a�1) , (7.35)

where φLS is the large scale potential.
It is also the transfer function that carries the characteristic form of the matter power

spectrum. It is possible to calculate the transfer function numerically through evolving Boltz-
mann equations, and there are open codes like CAMB or CLASS that do the job, but here
only a qualitative analysis will be made in order to construct an intuition for the matter
power spectrum shape as seen in Figure (7.1). A more complete description can be found
on [251].

First, let’s consider modes k < keq, where keq is the wavenumber of the mode which
enters the horizon at the radiation-matter equality (transition epoch between a radiation-
dominated to a matter-dominated universe). Therefore, these modes enter the horizon only
at late times, when the dominant content of the Universe is non-relativistic matter. At this
stage the perturbations grow like the scale factor, as gravity dominates at these scales and
this favors the growing of perturbations.

The power spectrum at small wavelengths, k > keq, presents more subtleties. Perturba-
tion modes that enter the horizon at the radiation era have their amplitude reduced due to
radiation pressure. As the baryons and radiation plasma was tightly coupled before recom-
bination the radiation and baryons perturbations only oscillated instead of growing. This
oscillations gave rise to the so called baryonic acoustic oscillations (BAO), whose peak ap-
pears as the little wiggles in the power spectrum around 0.1 Mpc−1 [222]. As dark matter
doesn’t couple to radiation it doesn’t feel the radiation perturbations, and so we a have a
logarithmic grow of matter perturbations, as we saw in section (7.1.1). After this logarithmic
grow the perturbations start growing with the scale factor δcdm ∝ a after the era of radiation-
matter equality. Larger modes enter the horizon even earlier in the radiation-dominated era,
and its corresponding perturbations experience more logarithmic growth when compared to
smaller modes. The transfer function has the form T (k) ∝ ln(k/keq) and the power spec-
trum P (k) ∝ knT 2(k) ∝ k−3 ln2(k/keq)1. Then, we see that the matter power spectrum, for
k > keq, decreases the larger is the mode.

The region in which the matter power spectrum curve stops growing and start decreasing
corresponds to modes that enter the horizon at the radiation-matter transition epoch, which
happens approximately at k ∼ 10−2Mpc−1.

1We chose n = −3 to consider, for simplicity, a scale-invariant primordial power spectrum, as we saw on
last chapter.
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7.3 Halo Model

In the previous section we saw how to describe the evolution of perturbations on the
dark matter initial density field. These perturbations grow with time and end up forming
even denser regions, highly non-linear and no more correctly described by linear perturbation
theory. Such regions then stabilize forming objects we call halos.

It is on these dark matter halos that the baryonic matter cools down and forms galaxies.
Therefore, understanding the formation of such halos, their properties and how they are
distributed in space is of extreme importance, as it is a first step for a larger comprehension
of galaxies properties and the structure of the Universe.

In this section we shall review the spherical collapse model of matter, how halos are
distributed in the Universe with relation to their mass, and how matter is allocated inside
the halos.

7.3.1 Spherical Collapse

As the Universe evolves some regions become denser than the average and therefore start
expanding slower than the rest. Consequently, the overdensity δ(x) in these regions grows
until they stop expanding and start collapsing. One simplified way to study the formation
of such non-linear objects is to assume that matter collapses spherically. This approximated
model was first studied in 1972, by Gunn and Gott [252].

First, let’s consider a spherical region with matter in the newtonian regime:

d2r

dt2
= −GM

r2 , (7.36)

where r is the sphere radius and M its mass. Integrating this equation gives a relation for
the energy E of the system

1
2

(
dr

dt

)2
− GM

r
= E. (7.37)

The first term of the equation is the sphere kinetic energy K and the second one its potential
energy U . If we remember that the sphere mass in conserved and given by

Mi = Viρi = 4
3πr

3
i ρ̄i(1 + δi), (7.38)

where the i label means an initial time and ρ̄i = ρ̄(ti) '
3H2

i
8πG , we can rewrite the potential

energy as:

U = −(Hiri)2

2 (1 + δi) . (7.39)

We also know that the sphere velocity expansion initially follows the Hubble law, that is,
it is the radius of the sphere times the expansion rate of the Universe ṙi = riHi so that the
kinetic energy is given by

Ki = (riHi)2

2 . (7.40)
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So, we see that the potential energy can be written in terms of the kinetic energy using the
relation Ui = −Ki (1 + δi), so that the total energy is

E = Ki −Ki (1 + δi) = Kiδi. (7.41)

As long as the gravitational potential energy is greater than the kinetic one (E < 0, δi > 0),
the sphere will expand until a maximum radius rmax and then collapse. The maximum radius
can be found if we remember that on this moment, ṙ = 0 and K = 0, that is, E = U in
Eq. (7.37)

E = − G

rmax

4
3πr

3
i ρ̄i (1 + δi) = −r

3
iH

2
i (1 + δi)
2rmax

. (7.42)

But we have that Ki = r2
iH

2
i /2, therefore

E = ri
rmax

Ki (1 + δi) . (7.43)

It follows from energy conservation that the Eq. (7.41) and Eq. (7.43) imply that,

rmax
ri

= (1 + δi)
δi

. (7.44)

One can see that the larger the initial density, the smaller will be the maximum radius of the
sphere before collapsing.

Consider now the radius R of the region at some time after ti. The region density is
(ri/r)3 ≡ (1 + δ). In the spherical collapse model there is a relation between the initial radius
ri and a posterior comoving radius r. In a Einstein-de Sitter universe (Ωm = 1) we can
write a parametric solution of Eq. (7.37) as a cycloid of the form r(θ) = A(1− cos θ); t(θ) =
B(θ − sin θ), which results in the relation [253,254]:

r(z)
ri

= (1 + z)
(5/3)δ(z)

(1− cos θ)
2 ; 1

1 + z
=
(3

4

)2/3 (θ − sin θ)2/3

(5/3)δ(z) , (7.45)

⇒ ri
r(z) = 62/3

2
(θ − sin θ)2/3

(1− cos θ) . (7.46)

The evolution of a spherical region which has an initial overdensity δi > 0 parametrized like
this starts at θ = 0. At θ = π the region reaches its maximum size r = rmax and at θ = 2π
the collapse ceases. At θ = π we have that

ri
r(z) ≡

ri
rmax

= 62/3

2
π2/3

(1− cosπ) ⇒
(

ri
rmax

)3
=
(3π

4

)2
≈ 5.55 = ρmax

ρ̄max
, (7.47)

therefore, when the spherical region expands to its maximum size it has an average density
around 5.55 times the average density of the Universe at the same epoch.

In principle one could conclude that by Eq. (7.46) the matter sphere collapses into a radius
r = 0, but in fact it reaches virial equilibrium for a r > 0 into a object we call halo. We
can estimate average density of such virialized object as follows: first we know that in virial
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equilibrium, by the virial theorem, that K = −U/2. From the conservation of energy when
the sphere is in its maximum size and in its equilibrium we get

Evir = Uvir +Kvir = 1
2Uvir = Umax = Emax ⇒ rvir = 1

2rmax, (7.48)

where rvir is the virial radius of the halo.
Between the maximum size of the sphere and its collapse the Universe has its density

modified by a factor (1 + zmax)3/(1 + zvir)3, as in a EdS universe we have that ρ̄ = ρ̄ia
−3.

Such factor by Eq. (7.46) is (1 + zmax)3/(1 + zvir)3 = 22/3.3, and therefore the average density
of the Universe by the time of the sphere collapse is 1/4 of the Universe density by the
maximum sphere size. We also have that the virialized object is eight times denser than it
was when it had maximum radius (rvir = rmax/2 ⇒ (ri/rvir)3 = 23 (ri/rmax)3). Hence, the
average density of the sphere in virial equilibrium is:

∆vir ≡ 8× ρmax
ρ̄max

× 4× ρ̄vir = 9π2

16 × 32× ρ̄vir ≈ 178ρ̄vir, (7.49)

that is, the density of the halo is approximately 178 times the average density of the Universe
at the time of the collapse.

It is also possible to obtain an initial critical density δsc that a region must have in order
to collapse into a halo. The second equation of Eq. (7.45) tell us that for a region to collapse
at a redshift z it must have had a density of

1
1 + z

=
(3

4

)2/3 (2π − 0)2/3

(5/3)δsc
⇒ δsc

1 + z
= 3

5

(3π
2

)2/3
≈ 1.686. (7.50)

Even though it is a simple model, the spherical collapse offers useful results that agree
with the observable universe, as for example the minimum density of a region to collapse or,
as we shall see in following, to be considered a halo.

7.3.2 Dark matter halos properties

The approach to the problem of structure formation in the Universe by means of the Halo
Model begins by assuming that all the matter of the Universe is distributed inside structures
called halos. At small scales, the statistics for the mass distribution is given in terms of
the spatial distribution of matter inside a halo only, and it is not important how this halos
are located throughout space. On the other hand, at larger scales the matter distribution
statistics is governed by the spatial distribution of halos, and the inner structure details of
each halo can be neglected. This fact, that the matter distribution can be studied in two
separate regimes, is the very core of the Halo Model.

Just like we can think about the matter statistical distribution in two separate steps, in
the Halo Model we can also separate the physics into two different sectors. In particular, the
regime that cannot be described precisely using linear perturbation theory, the small scales,
is confined inside halos that can be treated as the virialized objects we saw on last section.
Let’s now turn to the three ingredients that completely determines the Halo Model.
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The average number density of halos

The most important result obtained by the spherical collapse model was the critical density
amplitude δsc, Eq. (7.50) that some region must have in order to gravitationally collapse. Such
result does not depend on the details of the region, so we can use it to obtain an approximation
for the number density of collapsed objects as a function of the mass and redshift, known as
mass function.

Press and Schechter in 1974 modeled the mass function, n(M, z), assuming that it is
given by the function, F (M ; z), of the fraction of collapsed objects at redshift z and with
mass larger than M through the relation [255]:

n(M, z)dM = − ρ̄

M

dF

dM
dM. (7.51)

To determine the fraction of collapsed objects F (M ; z) we first consider an overdensity
δ(r, t) smoothed by a window function W (r), which is used to do a mean over the fluctuations
inside a scale R. Here we will use a top-hat window function, defined as

W (r) =

(4π
3 R

3)−1 |r| ≤ R,
0 |r| > R

∫
d3rW (r) = 1.

so that

δ̃(r, t) = δ̃(r)D(t) =
∫
d3r′δ(r′)W (r′ + r)D(t). (7.52)

and the mass dependence is through the relation M = 4π
3 ρ̄(bR)3.

If a region with overdensity δ(r, z) > δsc ≈ 1.686(1 + z) collapses into a halo of mass M ,
the fraction of objects with mass larger than M is [253]

F (M) ≡
∫ ∞
δsc

p(δ̃(r))dδ = 1√
2πσR

∫ ∞
δsc

exp
(
− δ̃2

2σ2
R

)
dδ̃, (7.53)

where p(δ) is the probability of some point in space to have an overdensity δ which we
will assume to be a Gaussian probability distribution. Therefore, σR is the variance in the
smoothed density field given by

σ2
R = 1

2π2

∫
P (k)W 2

F (kR)k2dk. (7.54)

WF (kR) is the Fourier transform of the top-hat function,

WF (x) = 3(sin(x)− x cos(x))
x3 . (7.55)

Substituting Eq. (7.53) in Eq. (7.51) we get,

n(M)dM = − ρ̄

M

dσR
dM

d

dσR

[
(−1)√
2πσR

∫ δsc/2σR

∞
exp

(
− δ̃2

2σ2
R

)
dδ̃

]
. (7.56)
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Using that

d

dx

∫ b(x)

a
f(z)dz = f(b(x)) d

dx
b(x), if f(a) = 0, (7.57)

we arrive at the following expression for the Press-Schechter mass function:

n(M)dM = − ρ̄

M

( 2
π

)1/2
(

δsc
σ2
R(M)

dσR(M)
dM

)
exp

(
− δ2

sc

2σ2
R

)
dM. (7.58)

Is useful to rewrite the last equation in terms of the variable ν, such that,

ν ≡ δ2
sc

σ2
R

; dν

dM
= − 2ν

σR

dσR
dM

. (7.59)

Hence, Eq. (7.58) becomes,

Mn(M)
ρ

dM = νf(ν)dν
ν

; νf(ν) =
(
ν

2π

)1/2
e−

ν
2 . (7.60)

Despite of being obtained from simple considerations and analitically, the Press-Schechter
mass function agrees reasonably with N-body simulations [256]. Inspired by the Press &
Schechter formalism, many mass functions [257,258] were obtained later from numerical sim-
ulations of cold dark matter, such as the Jenkins mass function [256], which will be used
later

νf(ν) = a1 exp
(
−
∣∣∣∣∣log

(√
ν

δsc

)
+ a2

∣∣∣∣∣
a3)

, (7.61)

where a1 ≈ 0.315, a2 ≈ 0.61 and a3 ≈ 3.8. We should also impose the normalization condition,∫
f(ν)dν = 1. (7.62)

Halo density profile

Another important ingredient we need in the Halo Model is how the dark matter is
distributed inside the halos. Assuming spherical halos, functions of the form:

ρ(r,M) = ρs

(r/rs)α (1 + r/rs)β
and ρ(r,M) = ρs

(r/rs)α
[
1 + (r/rs)β

] , (7.63)

have been widely studied in simulations of elliptical galaxies, where ρs is the amplitude
of the density profile and rs defines a scale for the halo radius. Choosing (α, β) = (1, 3)
and (1, 2) in the expression on the left we obtain the Hernquist [259] and Navarro-Frenk-
White (NFW) [260, 261] profiles, respectively, while for (α, β) = (3/2, 3/2) in the expression
of the right gives the M99 [262] density profile.

The NFW density profile is one of the most successful in the description of the density of
virialized halos in numerical simulations. In this profile, the average density inside a halo ρh
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can be estimated as 180 times the average density of the Universe. The expression for the
avarege density in halos then reads [263]:

ρh = 180ρ̄(z) = 3
4πr3

vir

∫ rvir

0
4πr2drρ(r) = 3ρs

∫ 1

0

x2dx

cx (1 + cx2) , (7.64)

where x = r/rvir, c ≡ rvir/rs, is known as the concentration parameter and rvir is the virial
radius. Integrating the last equation gives,

ρs = 180
3 ρ̄

c3

ln(1 + c)− c/(1 + c) . (7.65)

In the NFW profile [264],

c = 9
1 + z

(
M

M∗

)−0.13
, (7.66)

where M∗ is a characteristic mass scale chosen such that ν(M∗, z) = 1. Here M∗ ≈ 2 ×
1013M� [250].

It is also useful to introduce the normalized halo density profile,

u(r|M) = ρ(r,M)
M

,

∫
u(r|M)d3r = 1, (7.67)

and also its Fourier transform

u(k|M) =
∫
ρ(r,M)e−ik.rd3r∫
ρ(r,M)d3r

. (7.68)

For spherically symmetric profiles truncated at the virial radius (which is the halo radius),
we have:

u(k|M) =
∫ rvir

0
dr4πr2 sin(kr)

kr

ρ(r,M)
M

, and note that lim
k→0

u(k|M) = 1. (7.69)

Figure (7.2) shows the Fourier transform of the Navarro-Frenk-White normalized density
profile for some different mass values and z = 0. We see that, as expected, the larger the
mass scale is, the greater will be the suppression on the density profile, as can be verified
from Eq. (7.69).

Halo bias

Dark matter halos are biased tracers of the real dark matter distribution as the probability
for a halo to form depends a lot on the initial density field. This effect is mostly important at
large scales as it directly affects the galaxy distribution. For this reason the halo bias, b(M),
is generally modeled from the mass function.

For the Press-Schechter mass function the bias has the form

b(M) = 1 + ν − 1
δsc

, ν = δ2
sc

σ2
R

. (7.70)
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Figure 7.2: Fourier transform of the normalized Navarro-Frenk-White density profile, shown
for some different mass values.

Such halo bias was improved by Sheth and Tormen [257] through its own mass function,
and later on Tinker et al. using simulations came out with one of the most accurate halo
bias, the Tinker bias [265],

b(ν) = 1 + 1
δsc

[
qν + s (qν)1−t − 1

√
q

1
1 + s(1− t)(1− t/2)(qν)−t

]
, (7.71)

where q = 0.707, s = 0.35 and t = 0.8 results in a better agreement with simulations.
Hence, the correlation function between halos can be written in terms of the dark matter

correlation function:

ξhh(r′1, r′2,M1,M2) = b(M1)b(M2)ξdm(r′1, r′2). (7.72)

7.3.3 Structure formation with halos

In the Halo Model all matter of the Universe is within halos which in turn can be described
by its mass and density profile. Therefore, the density at some point r is obtained by summing
up the contributions from each halo [250]:

ρ(r) =
∑
i

ρ(r− xi|M), (7.73)
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where xi is the position of the center of the i-th halo of mass Mi. We can rewrite this equation
using the normalized density profile u(k|M):

ρ(r) =
∑
i

Miu(r− xi|M)

=
∑
i

∫
dM

∫
d3r′δ(M −Mi)δ3(r′ − xi)Mu(r− r′), (7.74)

where the last equality follows from the relation
∫
δ(x− y)f(x)dx = f(y), and δ(x− y) is the

Dirac delta function.
The density of halos with mass M is:

n(M) ≡
〈∑

i

δ(M −Mi)δ3(r′ − xi)
〉
, (7.75)

where 〈...〉 stands for an average over ensembles. Hence, the average density on the point r
is,

ρ̄ = 〈ρ(r)〉 =
〈∑

i

∫
dM

∫
d3r′δ(M −Mi)δ3(r′ − xi)Mu(r− r′)

〉

=
∫
dMn(M)M

∫
d3r′u(r− r′)

=
∫
dMn(M)M. (7.76)

The two-point correlation function can be obtained directly:

ξ(r1, r2) = 〈δ(r1)δ(r2)〉

=
〈(

ρ(r1)
ρ̄
− 1

)(
ρ(r2)
ρ̄
− 1

)〉
=
〈
ρ(r1)ρ(r2)

ρ̄2

〉
− 1

= 1
ρ̄2

〈∑
i

Miu(ri − r1)
∑
i

Mju(rj − r2)
〉
− 1

= 1
ρ̄2

〈∑
i=j

M2
i u(ri − r1)u(ri − r2)

〉
+

+ 1
ρ̄2

〈∑
i 6=j

MiMju(ri − r1)u(rj − r2) (1 + ξhh(ri, rj))
〉
− 1

= 1
ρ̄2

〈∑
i

∫
dMM2δ(M −Mi)

∫
d3r′δ3(ri − r′)u(r′ − r1)u(r′ − r2)

〉

+ 1
ρ̄2

∫
dM1M1

∫
dM2M2

∫
d3r′1u(r′1 − r1)

∫
d3r′2u(r′2 − r2)×

×
∑
i

∑
j

〈
δ(M1 −Mi)δ3(ri − r′1)δ(M2 −Mj)δ3(rj − r′2)

〉
− 1.

The second term of this equation contains the average of the product of two number
densities per halo mass unity:〈∑

i

δ(M1 −Mi)δ3(ri − r′1)
∑
j

δ(M2 −Mj)δ3(rj − r′2)
〉

=
〈
n(r′1,M1)n(r′2,M2)

〉
. (7.77)
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Written in terms of the mass function n(M), the equation becomes

δn(r,M) = n(r,M)− n(M)
n(M) ⇒ n(r,M) = n(M)δn(M) + n(M), (7.78)

and, as 〈δn(M)〉 = 0:〈
n(r′1,M1)n(r′2,M2)

〉
=
〈
δn(r′1,M1)δn(r′2,M2)

〉
n(M1)n(M2) + n(M1)n(M2). (7.79)

Therefore,

ξ(r1, r2) = 1
ρ̄2

∫
dMM2n(M)

∫
d3r′u(r′ − r1)u(r′ − r2)+

+ 1
ρ̄2

∫
dM1M1

∫
dM2M2

∫
d3r′1u(r′1 − r1)

∫
d3r′2u(r′2 − r2)×

×
(〈
δn(r′1,M1)δn(r′2,M2)

〉
n(M1)n(M2) + n(M1)n(M2)

)
− 1.

But the average 〈δn(r′1,M1)δn(r′2,M2)〉 is exactly the correlation function between two dark
matter halos on the positions r′1 and r′2, and of masses M1 e M2, respectively. We shall denote
this correlation function as ξhh(r′1, r′2|M1,M2). For the last term we have (

∫
dMn(M)M)2 =

ρ̄2, as
∫
u(r|M)d3r = 1, such that,

ξ(r1, r2) = 1
ρ̄2

∫
dMM2n(M)

∫
d3r′u(r′ − r1)u(r′ − r2)+

+ 1
ρ̄2

∫
dM1M1n(M1)

∫
dM2M2n(M2)×

×
∫
d3r′1

∫
d3r′2u(r′1 − r1)u(r′2 − r2)ξhh(r′1, r′2|M1,M2).

The two points of the correlation function can be in the same halo or in two different
ones, so we can split the correlation function into two terms: one that takes into account
the contribution of only one halo (i = j), ξ1h(r1, r2), and other in which two different halos
contribute (i 6= j), ξ2h(r1, r2). Using this, the total two-point correlation function can be
written as

ξ(r1, r2) = ξ1h(r1, r2) + ξ2h(r1, r2), (7.80)

where

ξ1h(r1 − r2) =
∫
dM

M2

ρ̄2 n(M)
∫
d3r′u(r′ − r1)u(r′ − r2) (7.81)

ξ2h(r1 − r2) =
∫
dM1

M1
ρ̄
n(M1)

∫
dM2

M2
ρ̄
n(M2)×

×
∫
d3r′1

∫
d3r′2u(r′1 − r1)u(r′2 − r2)ξhh(r′1, r′2|M1,M2), (7.82)

As the power spectrum is the Fourier transform of the correlation function, we can also
split P (k) into two parts:

Ph(k) = P1h(k) + P2h(k), (7.83)

104



where

P1h(k) = 1
ρ̄2

∫
dMM2n(M)|u(k|M)|2 (7.84)

P2h(k) = 1
ρ̄2

∫
dM1M1n(M1)u(k|M1)

∫
dM2M2n(M2)u(k|M2)Phh(k|M1,M2), (7.85)

and Phh(k|M1,M2) is the power spectrum of the dark matter halos. At the linear regime,
Phh(k|M1,M2) ≈ b1(M1)b2(M2)Plin(k), where Plin(k) is the linear power spectrum. The
integrals are calculated for typical mass values of observed halos. In general one can consider
106M� .M . 1015M� [250].

Therefore, we obtained a non-linear dark matter power spectrum which depends only on
the linear power spectrum, halo mass function, density profile and halo bias, as dictates the
Halo Model. That’s why the Halo Model is such a useful semi-analytical tool to explore the
Universe structure at the non-linear regime: the linear power spectrum can be easily dealt
with linear perturbation theory and the three Halo Model ingredients can be improved with
dark matter simulations.
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8
Forecasts for Warm Dark Matter from photometric

galaxy surveys

The ΛCDM model, with a cosmological constant (Λ) and cold dark matter (CDM) con-
tributing approximately 70% and 25% respectively to the energy density budget, is the best
cosmological description of our universe we have to-date. This conclusion comes from a vari-
ety of observations from different probes at different epochs. A recent example is the analysis
of the first year of data of the Dark Energy Survey using probes from galaxy clustering and
weak lensing simultaneously to show the consistency of this model even when combined with
data from the cosmic microwave background [266].

However, it is fair to say that the nature of dark matter is still not settled. In fact, some
tensions have been found when comparing small scales (few Mpc down to kpc) observations
with CDM-only numerical simulations. These tensions can be described by three “problems”:
the core-cusp problem, where the inner density profile of a CDM halo in a simulation with
dark matter only has a cuspy density profile close to the centre of the halo whereas the
measured density of galaxies has a core profile for small radii [267–271]; the missing satellite
problem, which arises because one observes less satellite galaxies of our galaxy and M31 than
subhalos predicted in CDM simulations [272–274]; and the ‘too-big-to-fail’ problem, where
halos that are massive enough to form dwarf galaxies in simulations are not actually found in
observations, that is, the observed dwarf galaxies are less massive then predicted [275–277].
Hence, in general we observe less structure at small scales than predicted by pure CDM
simulations.

While several groups try to explain these tensions through astrophysical processes such
as adding baryons in simulations [278], there is also the possibility of changing the nature
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of dark matter to obtain a better agreement with observations. For instance, assuming that
dark matter is warm instead of cold could in principle ameliorate these tensions. A recent
comparison between the warm dark matter (WDM) and baryonic effects in the context of the
too-big-to-fail problem can be found in [279].

Regardless of these issues with simulations, the nature of the dark matter is a fundamental
question for particle physics and should be investigated using any available probe. The aim
of this chapter is to study the possibility of using the angular power spectrum of photometric
galaxy surveys to answer the question of whether dark matter is cold or warm.

Warm dark matter behaves very similarly to CDM at large scales but in the early universe
it decouples while still mildly relativistic. This gives a thermal velocity to the dark matter
particles and consequently a non-negligible free-streaming scale below which perturbations
are smoothed out. The tightest constraint on the warm dark matter particle mass comes from
Lyman α (Ly α) forest from absorption lines of distant quasars in the intergalactic medium
at high redshifts and it reaches a lower bound of mwdm ≥ 5.3 keV (at 2σ CL) if warm dark
matter is assumed to be a thermal relic [280].

In this chapter we study the sensitivity to the mass of a thermal warm dark matter
particle using a Fisher matrix approach considering the galaxy angular power spectrum in
photometric surveys as an observable. We will use as examples the Dark Energy Survey (DES)
and a Large Synoptic Survey Telescope (LSST)-like surveys. The ongoing DES1 project is a
wide area (∼ 5, 000 deg2) and relatively deep (z ∼ 1.4) photometric map of the southern sky
and among its goals is the determination of the cosmological parameters using the distribution
of galaxies, weak gravitational lensing, cluster number counts and type Ia supernovae. The
LSST2 is intended to be the largest galaxy survey ever made mapping 30,000 deg2 of the visible
sky for z ≤ 3 and will be able to perform a variety of studies, including the investigation on
the nature of dark energy and dark matter.

One particular challenge we face comes from the fact that the modifications due to warm
dark matter in the power spectrum arise at small, nonlinear scales. We adopt a halo model
prescription to estimate the power spectrum at these scales. The halo model provides a
flexible tool to model nonlinear effects for a given input cosmology. It may be used as a
less computationally intensive, albeit less accurate, alternative to full-fledged simulations in
exploratory studies such as the present one. However, we will also show results using a
numerical fit to warm dark matter simulations.

We find our forecasts to be less restrictive than the Ly α constraints, but these bounds
should be pursued anyways in combination with other probes. This chapter is based on [20].

1www.darkenergysurvey.org
2www.lsst.org
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8.1 Warm dark matter and structure formation

8.1.1 Linear regime

Warm dark matter, being lighter than its CDM counterpart, remains relativistic for a
longer period during the radiation dominated era and also retains some thermal velocity at
decoupling (which gives warm dark matter its name). This gives enough time for warm dark
matter particles to diffuse out of perturbations after their decoupling. The effect of this
scenario at late times is a suppression on structure formation below a certain scale related to
the free-streaming length of the particles, which depends on their mass.

A simple way to estimate the free-streaming length is by computing the comoving length
scale that a particle can travel until matter-radiation equality (teq), as in radiation era matter
perturbations don’t grow [221]:

λfs =
∫ teq

0

v(t)dt
a(t) ≈

∫ tNR

0

cdt

a(t) +
∫ teq

tNR

v(t)dt
a(t) , (8.1)

where tNR is the time when WDM particles become non-relativistic.
For WDM made of a two-component fermion, the free-streaming length can be written

as [221]:

λfs ≈ 0.4
(
mwdm
keV

)−4/3
(

Ωwdmh
2

0.135

)1/3

[h−1Mpc], (8.2)

where mwdm and Ωwdm are the mass and density parameter of the warm dark matter par-
ticle, respectively. Here we will assume that all dark matter in the universe is warm, when
calculating constraints on its mass.

The free-streaming scale can be qualitatively illuminating but to obtain a more accurate
scenario of the WDM physics first we need the transfer function for this type of dark matter.
We work here with the [281] fitting formula from Boltzmann code calculations, with revisited
parameters [282]:

Twdm(k) =
[
P lin

wdm(k)
P lin

cdm(k)

]1/2

=
[
1 + (αk)2µ

]−5/µ
, (8.3)

where µ = 1.12 and,

α = 0.049
(
mwdm
keV

)−1.11 (Ωwdm
0.25

)0.11 ( h

0.7

)1.22
[h−1Mpc]. (8.4)

In Figure 8.1 we show the linear power spectrum for warm dark matter. We see that,
as expected, the lighter the WDM particle is, the more it will suppress the formation of
structure, since it stays relativistic for a longer time.

The characteristic length-scale α in the parametrization of the transfer function is closely
related to the free-streaming scale λfs, and we will define λeff

fs ≡ α as an effective free-streaming
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Figure 8.1: Linear matter power spectrum at z = 0 for WDM particle masses of mwdm =
2.0 keV (dashed) and mwdm = 0.5 keV (dot-dashed), together with the linear power spectrum
for CDM. The vertical lines indicate the half-mode scale for each mass.

scale. This scale can be used to define a free-streaming mass scale given by:

Mfs(z) = 4π
3 ρ̄(z)

(
λeff

fs
2

)3

, (8.5)

where ρ̄(z) is the mean density of the universe at a given redshift. This free-streaming mass
defines the mass scale where the suppression of structure formation occurs. Below this scale
the initial density perturbation are mostly erased.

Another useful length scale introduced in the literature is the half-mode scale λhm, which
corresponds to the length scale at which the amplitude of the WDM transfer function is
suppressed to 1/2 relative to CDM. From Eq. (8.3) we get for the half-mode scale:

λhm = 2πλeff
fs

(
2µ/5 − 1

)−1/2µ
≈ 14λeff

fs . (8.6)

This scale is shown as the vertical lines (khm = 2π/λhm) of Figure 8.1 for WDM particles
of masses mwdm = 2.0 keV and mwdm = 0.5 keV. As expected this scale is larger for smaller
masses.

The half-mode length scale leads to another mass scale, called the half-mode mass scale:

Mhm(z) = 4π
3 ρ̄(z)

(
λhm

2

)3
≈ 2.7× 103Mfs(z). (8.7)

The half-mode mass scale was found from numerical simulations to be the relevant one
where WDM physics first affect the properties of structure formation [283,284].
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8.1.2 Non-linear regime: Halo Model modifications for WDM

At low redshifts, or scales of few kpc, the non-linear effects of gravity become relevant
and modify the predictions of the linear theory. In fact, non-linearities tend to increase the
power spectrum at small scales due to gravitational clumping. Unfortunately, it was found
from numerical simulations that not much information is retained from the the linear power
spectrum with a small-scale suppression after the nonlinear growth of structure [285]. This
effect obviously reduces the sensitivity to the mass of the WDM particle which causes the
suppression in the linear power spectrum in the first place.

Therefore, in order to get meaningful results, we have to take into account the non-linear
effects of gravity. One approach is by running simulations such as N-body or hydrodynamical
simulations, but these are very costly and time-consuming as they require large computers
and need to be repeated for each different cosmology. Another strategy available is to make
use of semi-analytical models such as the halo model, which gives somewhat accurate results
when compared to simulations [286, 287] and enables qualitative insights about structure
formation at non-linear scales. However, the Halo Model was constructed and calibrated
for cold dark matter, as the halo mass function, density profile and halo bias all come from
N-body simulation of CDM. In order to use the halo model for warm dark matter one needs
to make some modifications.

There are several proposals to modify the halo model for WDM in the literature, e.g. [288],
[289], [290], [291] and [292]. Here we are going to adopt a recent proposal by Schneider [292].

First, one assumes the window function to be a 3D spherical top-hat in Fourier space
(so-called sharp-k window function) instead of a top-hat in real space. The motivation to do
so comes from Eq. (7.54). If we have a linear power spectrum that decreases more rapidly
than k−3 for large k, which is the case for warm dark matter, we loose the sensitivity of the
variance over the power spectrum at non-linear scales with a top-hat window function. As
a consequence, the halo model would not account for the suppression of the power at small
scales. But with a sharp-k window function Wsk(kr) = Θ(1− kR) Eq. (7.54) becomes,

σsk(R)2 = 1
2π2

∫ 1/R

0
P lin

wdm(k)k2dk, (8.8)

and now we have a variance that fully captures the WDM suppression. As the relation
between radius and mass is not well defined for a sharp-k window function it is useful to
impose:

M = 4π
3 ρ̄(bR)3, (8.9)

where b = 2.5 is fitted from simulations [293].
The NFW profile functional form remains the same:

ρ(r,M) = ρs

(r/rs) (1 + r/rs)2 , ρs = 180ρ̄z
3

c3

ln(1 + c)− c/(1 + c) , (8.10)

but the concentration parameter is modified using a generalization of the CDM case:

cwdm(M) = ccdm(M)
(

1 + γ1
Mhm(z)
M

)−γ2

, (8.11)
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Figure 8.2: Jenkins mass function (first), concentration-mass parameter (second), NFW den-
sity profile (third) and Tinker halo bias (fourth) for CDM (solid lines), mwdm = 2.0 keV
(dashed) and mwdm = 0.5 keV (dot-dashed).

where the parameters γ1 = 15 and γ2 = 0.3 are adjusted from N-body simulations [291] and
Mhm(z) is defined in Eq. (8.7).

We used the same functional form of the Tinker halo bias b(ν) in Eq. (7.71) and of the
Jenkins mass function in Eq. (7.61), but as ν is different for different mwdm through the
variance, these quantities will also depend on the mass of WDM.

For illustration we show the mass function, Eq. (7.61), concentration parameter, Eq. (8.11),
NFW profile, Eq. (8.10), and halo bias, Eq. (7.71) with these modifications for different WDM
masses in Figure 8.2. As expected, there is a suppression in the number of halos with small
masses and it is stronger for lighter WDM particles, and the turnover region is close to the
half-mode mass. The concentration inside small halos also gets smoothed in the WDM case,
and the inner density of low-mass halos decreases faster for smaller WDM particle masses.
This effect is actually the reason for the explanation of the core-cusp problem in WDM.

8.1.3 Non-linear fitting formula for WDM

Another possible way to deal with non-linear effects is to use fitting formulas. A fitting
formula for the non-linear power spectrum of WDM was obtained from simulations. Inspired
by the linear fit from (Bode et al. 2001), Viel et al [294] suggested a formula for the non-
linear suppression with an accuracy compared to simulations of 2% at z < 3 and masses
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Figure 8.3: Left: Power spectrum from Viel (dotted) and from modified Halo model (dashed)
for mwdm = 0.5 keV, together with CDM halofit (solid line) at z=0.5. Right: Difference
between non-linear power spectrum from modified halo model for WDM particle masses of
mwdm = 0.5 keV (dashed) and mwdm = 2.0 keV (dotted) and CDM at z=0.5.

mwdm ≥ 0.5 keV:

P nonlin
wdm (k, z) = P halofit

cdm (k)
{

1 + [β(z)k]νl
}−s/ν

, (8.12)

β(z) = 0.0476
(
mwdm
1keV

)−1.85 (1 + z

2

)1.3
, (8.13)

where ν = 3, l = 0.6 and s = 0.4.
In the Figure 8.3 we show the 3D power spectrum for the modified halo model and the

non-linear fitting formula, together with the halofit [295] for cold dark matter. Comparing
with Figure 8.1 one sees that the suppression effect of warm dark matter is much smaller in
the non-linear power spectrum than in the linear one. This happens because the linear power
spectrum enters in the halo model directly only in the 2-halo term and non-linear effects,
which increase the power at small scales, end up by diminishing the WDM imprint. In the
right panel of same figure we see the suppression of the non-linear power spectrum within the
modified halo model for two different values of the WDM mass.

The halo model predicts a higher suppression of structure at small scales than the non-
linear fitting formula from Viel. We opted for an optimistic analysis of the WDM structure
and we used the halo model with sharp-k window function to obtain the general constraints
for DES and LSST. As we will show in the following section, the use of the Viel non-linear
fitting formula results in much weaker constraints for WDM mass.

8.2 Forecasting constraints for WDM particle mass from pho-
tometric surveys

We want to estimate constraints on the sensitivity to the warm dark matter particle mass
in a DES-like and a LSST-like surveys, which are wide area photometric surveys. This class
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of surveys maps galaxies at high redshifts (z ∼ 1–3) but with poor radial distances resolution,
and hence one measures a 2D projection of the galaxy power spectra at different redshift bins.

8.2.1 Angular power spectrum

In order to write down the angular power spectrum we need first to project the dark
matter density field δ(x, z) along a given direction of the sky using a radial selection function
φ(z), and then expand it in Fourier modes followed by a spherical harmonics decomposition
of the plane waves. This leads to the definition of the angular power spectrum C` [222]:

〈a`ma`′m〉 ≡ δ``′δmm′C`, (8.14)

with

a`m = 4πi`
∫
dzφ(z)

∫
d3k

(2π)3 δ(k, z)j`(kr(z))Y
∗
`m(k̂), (8.15)

where j` are the spherical Bessel functions of order `, φ(z) is the normalised selection function
and r(z) is the comoving distance to redshift z given by,

r(z) =
∫ z

0

c

H(z′)dz
′,

H(z)
H0

=
√

Ωm(1 + z)3 + ΩΛ. (8.16)

If the survey is sliced into n redshift bins i the selection function will be given by a sum
in each bin:

φ(z) =
∑
i

φi(z) =
∑
i

n(z)Wi(z), (8.17)

where each φi(z) is written in terms of the number density of galaxies per unit solid angle
and per unit redshift n(z) and a window function

Wi(z) = Θ(z − zimin)Θ(zimax − z), (8.18)

that selects the i-th redshift bin. However, in the case of photometric surveys, where there are
large uncertainties in redshift measurement, we need to include the probability P (zph|z) of
assigning a true redshift z given a measured photometric redshift zph. The probability function
for spectroscopic calibrated galaxies is usually written as a Gaussian distribution [296]:

P (zph|z) = 1√
2πσ(z)

exp
[
−(z − zph)2

2σ(z)2

]
, (8.19)

and the selection function for a photometric redshift bin i is given by

φi(z) = n(z)
∫ zimax

zimin

dzphP (zph|z). (8.20)

For DES [297, 298] the uncertainty in the photometric redshift is described as σ(z) =
0.03(1 + z) and the galaxy redshift distribution is parametrized as

nDES(z) = A

(
z

0.5

)2
exp

(
− z

0.5

)1.5
. (8.21)
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For LSST σ(z) = 0.05(1 + z) and n(z) is given by [299]

nLSST(z) = Bz2 exp
(
− z

0.5

)
, (8.22)

where A and B are normalization constants chosen to guarantee that∫ ∞
0

dzφ(z) = N, (8.23)

where N is the total number of objects per unit solid angle of the survey. For DES we use
N = 15 arcmin−2 [300] and for LSST we take N = 50 arcmin−2 [299].

Since we want to analyse highly non-linear scales we are allowed to use Limber approxi-
mation [301] to write the angular power spectrum as:

C` =
∫
dz
φ(z)2

r(z)2 Pg

(
k = `+ 1/2

r(z) , z

)
, (8.24)

where we have introduced the galaxy power spectrum

Pg(k, z) = b2g PHM(k, z), (8.25)

where PHM is the halo model 3D matter power spectrum and bg is the galaxy bias. As we
want to give forecasts for a galaxy survey we need to account for the relation between the
dark matter and the galaxy distributions, which can be encoded in the galaxy bias. In general
this relation can be very complex, but we assume here for simplicity a linear bias model with
a redshift-dependent bias.3

In Figure 8.4 the angular power spectra with LSST selection function at z = 0.5 for
different WDM masses and CDM are shown. In practice we used for the CDM case a mwdm =
100 MeV. The difference between the C`s for CDM and a mwdm = 1 keV WDM is about 0.3%
at ` = 2000 at z = 0. This difference increases for smaller masses and at higher redshifts where
the non-linear effects are less important. In this analysis we will examine both `max = 1000
and 2000.

In Figure 8.5 we show for illustration the resulting angular power spectrum for a LSST-
like survey for 4 redshift bins for mwdm = 0.1 KeV compared to the ΛCDM case. In this case
one can see large differences of around 20% even at ` = 500 for z = 1.55.

8.2.2 Fisher matrix analysis

The precision that can be achieved in measurements of cosmological parameters from
a given observable is encoded in the Fisher information matrix [306]. In the case of the
observable being the angular power spectrum the Fisher matrix can be written as [307]

Fαβ =
∑
`,`′

∑
i,j

∂Ci(`)
∂pα

[〈
Ci(`), Cj(`′)

〉]−1 ∂Cj(`′)
∂pβ

, (8.26)

3The systematic effects of baryonic feedback such as supernova explosions and radiative cooling have been
shown to be at the percent level for the weak lensing C` even at large values of ` [302–305] and we expect it
to be of the same order for the angular matter power spectrum.

115



mwdm = 0.1KeV

mwdm = 1.0KeV

CDM

5 10 50 100 500 1000
0.01

0.05

0.10

0.50

1

l

C
l

0 500 1000 1500 2000
-0.4

-0.3

-0.2

-0.1

0.0

l

(C
l 1
ke
v
-
C
l c
d
m
)

C
l c
d
m

x1
00

Figure 8.4: Left: C`s computed for different WDM particle masses at z=0.5. Right: percent-
age difference between C`s for mwdm = 1 keV and CDM = mwdm = 100 MeV.
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where pα are the parameters of our analysis and 〈Ci(`), Cj(`′)〉 is the covariance matrix of the
angular power spectrum for redshift bins i and j. The estimated 1-σ marginalised uncertainty
on a parameter p is then:

σp =
√

(F−1)pp. (8.27)

The parameter set chosen is pα =
{
m−1

wdm,Ωm, bg
}

. From the recent DES results [308] we
know that the parameters that are most constrained by the 2-point statistics of galaxies and
weak lensing are Ωm and σ8. Therefore we choose to show our constraints on mwdm against
one of these parameters.

We used four redshift bins for DES forecast between 0.6 ≤ z ≤ 1 equally spaced with
∆z = 0.1. For LSST we used eight bins also equally spaced with ∆z = 0.2 between 0.4 ≤ z ≤
2. In the following we will marginalize over the galaxy bias in each redshift bin directly in the
Fisher matrix framework assuming a fiducial value of bg(z) = 1 + 0.84 z, which is estimated
from simulations in [309].

We assumed that different bins are uncorrelated and that measurements of C`s are inde-
pendent, which results in the following covariance matrix for each redshift bin i [310],

〈
Ci(`), Cj(`′)

〉
= 1
fsky

2
2l + 1Ci(`)

2δ``′δij , (8.28)

where the effect of only observing a fraction of the sky, fsky, is well approximated by simply
dividing by fsky [311]. For DES we adopt fsky = 1/8 and for LSST fsky = 0.485, according
to the area intended to be mapped by the surveys.

The parameters which we aim to constrain are Ωm and m−1
wdm. We chose to work with

m−1
wdm instead of mwdm to recover our fiducial ΛCDM model in the limit where the parameter

related to the mass of dark matter particle goes to zero rather than infinity. This leads to
numerical complications when calculating derivatives over m−1

wdm (as well for mwdm) as the
C`s become insensitive to small variations close to the fiducial value for the warm dark matter
mass. This insensitivity implies that small variations in the mass parameter induce variations
in the C`s that are smaller than numerical noise. We handled this subtlety by calculating the
numerical derivative around the fiducial model of an interpolation function constructed with
C`s for various different WDM particle masses at each redshift bin.

For our fiducial ΛCDM model we used Ωm = 0.307, Ωb = 0.048, ΩΛ = 0.693, ns =
0.968, w = −1, h = 0.679 following Planck results [232] and mcdm = 100 MeV. The parame-
ters constraints are shown in Figure 8.6 (for DES-like surveys) and in Figure 8.7 (for LSST-like
surveys).

For DES, at 1σ confidence level we found a precision of 0.49% in the measurement of Ωm
(σ (Ωm) = 0.0015). One obtains a sensitivity to an upper limit on the inverse of the WDM
mass, which translates into a lower limit in mwdm. In this case we obtain mwdm > 126 eV at
1σ.

For LSST, at 1σ confidence level we found a precision of 0.09% in the measurement of Ωm
(σ (Ωm) = 0.0003). For the WDM particle mass the lower limit found was mwdm > 647 eV
also at 1σ. Figure 8.8 shows the 1σ error ellipse for DES and LSST for comparison.
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Figure 8.6: Top left: normalized likelihoods of m−1
wdm marginalized over Ωm and bg. The

dashed line shows the probability function for calculations done with l until 1000. We see that
decreasing the non-linear regime in the computations has a great impact in error estimation
(see Section 8.3). Top right: likelihood of Ωm with m−1

wdm and bg marginalized. Bottom: the
expected error ellipsis for Ωm and m−1

wdm with bg marginalized. The light blue and dark blue
curves represent a 2σ and 1σ confidence region, respectively. All plots are DES forecasts.
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Figure 8.8: Left: Comparison between DES (blue line) and LSST (green dashed) 1σ error
ellipse. Right: 1σ error ellipse for LSST (green line) and combined result with shear power
spectra from EUCLID (blue dashed).
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Figure 8.9: 1σ (dark red) and 2σ (light red) error ellipse for LSST using Viel non-linear fitting
formula.

As pointed out in the end of Section 8.1 and can be seen from Figure 8.9, we get poor
constraints for WDM particle mass when using the non-linear dark matter power spectrum
of Viel et al. (2012). At 1σ we could place a lower limit of mwdm > 7.8 eV for the LSST. This
justifies why we called the use of the Halo Model an optimistic approach, as otherwise using
a best fit from simulations gives barely no constraints on the mass.

8.2.3 Combined result with weak lensing

It is interesting to compare our results with a Fisher matrix forecast for WDM from cos-
mic shear power spectrum [312]. The effect of deflection of light rays by matter is called
gravitational lensing, and when these deflections only cause small modifications on the ob-
served properties of the objects, e.g position, size, shape, we have weak lensing. The observed
properties of light sources close to each other in the sky are correlated, and the correlation
function of galaxies shapes is called cosmic shear [313, 314]. An estimated lower bound of
mwdm > 935 eV is obtained from an Euclid-like weak lensing survey where they use multipoles
as large as ` = 104. This is comparable to our estimate from a LSST-like survey. We should
also notice that there is no dependence on the galaxy bias in this case and we assumed a
diagonal covariance matrix from weak lensing for simplicity.

The results for the combined 1σ error ellipse for LSST and EUCLID are shown in
the right panel of Figure 8.8. For the combined analysis we could place a lower limit of
mwdm > 1.14 keV at 1σ and a precision of 0.07% in the measurement of Ωm (σ (Ωm) =
0.0002).
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8.3 Discussion

In this work we made the first estimate of constraints on the WDM particle mass using
the galaxy angular power spectrum for a DES and a LSST-like photometric surveys. We
used a well-know parametrization of the modified linear power spectrum and a modified Halo
Model with a sharp-k window function and a new concentration-mass parameter based on
N-body simulations of warm dark matter for the non-linear power spectrum.

We estimated a lower bound of mwdm > 126 eV for DES and mwdm > 647 eV for LSST
at 1σ confidence level on the particle mass using the angular power spectrum.

It is interesting to compare our results with a Fisher matrix forecast for WDM from cosmic
shear power spectrum [312]. An estimated lower bound of mwdm > 645 eV is obtained from
an Euclid-like weak lensing survey where they use multipoles as large as ` = 104. This is
comparable to our estimate from a LSST-like survey. We should also notice that there is no
dependence on the galaxy bias in this case. For the combined probe we found a lower limit
of mwdm > 1.14 keV.

Our results degrade rapidly if we leave out very small scales from the analysis. This is
expected, since as we showed above the main differences in the power spectrum appear at
small scales or large redshifts. We also have results for ` < 1000 shown in the upper left
panel of Figure 8.6 and Figure 8.7. In this case the bounds on the mass are reduced to
mwdm > 33 eV for DES and mwdm > 113 eV for LSST.

We should recall that there are other ways to modify the halo model to account for
WDM. One method worth mentioning is (Schneider et al. 2012), where instead of imposing
the normalization condition in Eq. (7.62), one could add another term in the statistics to
represent the fraction of dark matter that didn’t collapse into halos due to the free-streaming
of WDM particles. Then, there would be a correlation function between the dark matter
inside and outside halos, which has to be taken into account.

In addition to modifying the halo model, it would also be interesting to consider the halo
occupation distribution model (HOD). As in practice we observe galaxies of baryonic matter
instead of dark matter, it is relevant to work with a model for the occupation of objects
inside halos. This would improve on our naive linear bias model. It would be as well of great
importance to correctly include baryonic effects on structure formation, once this scenario is
fully understood with the help of simulations.

Our estimated bounds are not competitive with bounds from Ly-α mentioned in the
introduction but we think they should be explored anyways with real data and afterwards
used in combinations of different probes, including CMB.
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9
Conclusions

We have reviewed the theoretical aspects of particle physics, quantum field theory in
curved spacetime and cosmology, and showed some new physics searches in these areas.

In Part I we reviewed the parity violation in electroweak theory and treated Atomic Parity
Violation using effective field theory to show the possibility to constrain new physics using
low energy precision measurements of the Cesium weak charge. We also compared the results
with neutrino-nucleus coherent scattering and found that Atomic Parity Violation presented
more restrictive bounds on the physics scale, assuming that this new particle, maybe a new
heavy neutral mediator, couples with electrons and neutrinos with very similar strength.
Concerning light new gauge boson mediator, we parametrized new physics effects in terms of
the weak angle, sin θW, using polarized electron scattering experiments. Then, we explored
the sensitivity on new measurements of the weak angle by these experiments to find bounds
on the kinetic mixing between the Z and Z ′ as a function of the Z ′ mass. In the end, we
applied the constraints found to models previously proposed in the literature and showed that
our findings, in some cases, constitute the strongest limits on the kinetic mixing parameter.

In Part III we applied the results of a renormalizable theory of a sterile scalar coupled
to massive fermions through Yukawa interaction to inflation. We found an analogous of
the Starobinsky inflation, with perturbations coming from non-polynomial terms induced in
the vacuum action by odd terms in the scalar effective potential. We concluded that such
perturbations don’t change much the Starobinsky scenario unless the fermions have mass
close to MP . Therefore, if very heavy BSM fermions exist and couple with a singlet scalar,
they don’t harm Starobinsky inflation.

We also have shown, in Part III, the first estimate of constraints on the warm dark matter
particle mass using the galaxy angular power spectrum for a DES and a LSST-like photometric
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surveys. We treated dark matter through a parametrization of the non-linear matter power
spectrum from simulations, and a modified Halo Model with a sharp-k window function and
concentration-mass parameter more suited for WDM. The more stringent bound obtained was
from the LSST-like survey, where we could place a limit of mwdm > 647 eV at 1σ confidence
level for the WDM mass using the angular power spectrum. This limit is comparable to the
results from Fisher matrix forecast for WDM from cosmic shear power spectrum from an
Euclid-like weak lensing survey. Lastly, we combined the results from the two forecasts, and
found the lower limit of mwdm > 1.14 keV.
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cosmological structures in warm dark matter models,” Monthly Notices of the Royal
Astronomical Society 424 (2012) no. 1, 684–698.

[292] A. Schneider, “Structure formation with suppressed small-scale perturbations,” arXiv
preprint arXiv:1412.2133 (2014) .

[293] A. J. Benson, A. Farahi, S. Cole, L. A. Moustakas, A. Jenkins, M. Lovell, R. Kennedy,
J. Helly, and C. Frenk, “Dark matter halo merger histories beyond cold dark matter–i.
methods and application to warm dark matter,” Monthly Notices of the Royal
Astronomical Society 428 (2012) no. 2, 1774–1789.
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