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1 Introduction

In the last years, there has been a tremendous progress in studying four-point correlators
of half-BPS operators in four dimensional Superconformal Field Theories (SCFTs) with
conformal bootstrap techniques, in particular in the context of N = 4 supersymmetry,
with the seminal papers [1, 2].1 The half-BPS superconformal primaries Op are scalar
operators, of protected dimension ∆ = p, transforming under the (0, p, 0) representation

1Several results have been obtained also in the context of N = 2 supersymmetry, started in [3].
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of the SU(4) R-symmetry group. They are single trace operators made by the six scalar
fields of N = 4 super Yang-Mills. The reason for these extensive studies is mainly twofold.
These operators preserve the highest amount of supersymmetry, their conformal dimension
as well as three-point correlators involving all such operators are protected, meaning that
they are fixed by symmetries and do not contain dynamical information. Moreover, higher-
point correlators are strongly constrained by supersymmetry, both in their space-time and
R-symmetry dependence. Remarkably, the existence of a chiral algebra, essentially linked
to the N = 2 superconformal invariance, has been shown to emerge when studying the
meromorphic part of four-point correlators, thus this piece of information can be completely
fixed by the free-field values for Super Yang-Mills (SYM) theories. These properties have
been crucial in applying conformal bootstrap techniques to these correlators, numerically
and analytically, see the recent reviews [4, 5]. From a different perspective, the study of
these correlators is linked to amplitudes in the dual superstring theory description. In
particular, the half-BPS operator with the lowest conformal dimension, ∆ = 2, is the
scalar component of the stress-energy supermultiplet, which is dual to the super-graviton
multiplet. The entire tower of Kaluza-Klein modes of the graviton are instead dual to the
∆ = p with p > 2 half-BPS operators. Thus the study of these correlators using conformal
bootstrap techniques, gives an operative method to explore super-graviton amplitudes on
AdS background, which have been inaccessible for several years, due to the increasing
complications intrinsic to perturbative methods in this setup [6–8].

Driven by the conceptual advancements and the plethora of results obtained by study-
ing this class of correlators, mostly in providing information on dynamical, coupling depen-
dent quantities, in this paper we would like to revive the study of quarter-BPS operators
in the context of N = 4 Super Yang-Mills theories in four dimensions, with SU(N) gauge
group. These operators have protected conformal dimension, they transform in the (q, p, q)
representation of the SU(4) R-symmetry group and are a combination of a double trace and
a single trace term, the latter being sub-leading in the large N expansion. These operators
appear in all the context mentioned above, in particular they are present in the operator
product expansion of half-BPS operators.

In this paper, we start the study of four-point correlators involving at least one quarter-
BPS operator. We focus in particular on operators transforming under the representation
(2, 0, 2), since they are the first non-trivial ones and they appear in the operator product
expansion of O2×O2, making it possible to consider mixed correlator with such operators.
We exploit the power of the symmetries, using together the superconformal Ward identities
and the underlying chiral algebra, to constrain, at least partially, the protected structure
of such correlators. We computed free theory results and, by requiring the absence of
higher-spin currents and other mild assumptions, we managed to partially resolve the
ambiguities. In addition, using the inversion formula, we compute the sub-leading large-N
correction to the CFT data, in the supergravity regime. We make contact with the recently
computed five-point function of half-BPS operators of protected dimension two [9], by
taking the OPE limit and projecting in the R-symmetry structure that we are interested
in, and we found perfect agreement with all the checks that we made.
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The paper is structured as follows. In section 2 we introduce the quarter-BPS op-
erators, first from a representation theoretic point of view and then we specialize to the
kinematics of their correlators. In section 3 we briefly review the chiral algebra construc-
tion in order to subsequently apply it to our correlators of interest. Then in section 4
we consider mixed correlators involving the (2, 0, 2) quarter-BPS operator O02, while in
section 6 we present large-N results for the averaged anomalous dimensions of unprotected
operators appearing in their OPE, after a review of the method presented in section 5. In
section 7 we prove that the correlator with one O02 and three O2 is protected at large N .
Finally, section 8 contains some discussions and future directions. Several technical details
are left to six appendices.

1.1 General idea

In this paper we focus on quarter-BPS operators Opq transforming in the (q, p, q) represen-
tation of the SU(4) R-symmetry and which satisfy a shortening condition of the B type —
also known as BB type.

When considering operators transforming in these representations, it is important to
deal efficiently with all the R-symmetry indices that start appearing. To this aim, we
introduce auxiliary null vectors, satisfying precise properties, contracting SO(6) and SU(4)
(anti)fundamental indices

Opq(S, S, y) ≡ (Opq)m1···mq
n1···nq ,M1···Mp

Sm1 · · ·Smq Sn1 · · ·Snq yM1 · · · yMp . (1.1)

This allows us to define all the tensor structures, now functions of products or combinations
of these vectors. This is necessary in order to construct correlators of these operators as
well as to analyze the different representations exchanged in the OPE.

When expanded in N = 2 supermultiplets, the operators Opq contain half-BPS oper-
ators, which, according to the chiral algebra construction of [10], are of the Schur type.
It is essentially this fact that allows us to identify a protected subsector in their correla-
tion functions. More precisely, we are able to derive superconformal Ward identities for
the four-point functions under analysis by imposing that the correlator should be mero-
morphic when computed in a special, space-time dependent, configuration of the SU(4)
polarizations, with the operator positions restricted to a plane. This configuration simul-
taneously selects the specific N = 2 half-BPS operator inside Opq and performs the chiral
algebra twist

〈Op1q1Op2q2Op3q3Op4q4〉 −−−−−−−−−−−−−−−−−→
yi·yj = 1

2 η̃iη̃j (z̄i−z̄j) ,
Si·Sj = z̄i−z̄j+η̃iη̃j

T(η̃1, . . . , η̃4) f(z) + · · · (1.2)

In the above schematic equation the η̃i are some newly introduced SU(2) polarizations
that contract the flavor indices of the Schur operator inside Opq, T(η̃1, . . . , η̃4) is a tensor
structure2 that scales as λpi when η̃i → λη̃i and zi, z̄i are the positions on the chiral
algebra plane of the four operators. The ellipsis denotes terms that scale differently in the

2In principle, there could be more than one structure, but in our cases there will always be only one.
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η̃i polarizations. The function f(z) is meromorphic in z and is coupling independent, so it
can be computed from the free theory.

The basic idea behind these identities is that they provide a way to separate a correlator
in a protected part, encoding the information deriving from the chiral algebra, from a set
of unprotected and dynamical functions Hm. Unfortunately this splitting is not unique:
there exists always an ambiguity, namely a function that vanishes under the chiral algebra
map, but it is not responsible for the exchange of unprotected multiplets. In this paper we
fix this ambiguity as much as possible by imposing simple consistency requirements on the
conformal block expansion of the correlator.

1.2 Summary of results

In order to illustrate the construction outlined above, we first apply it to the well-studied
example of the correlator of four O2 operators, reproducing the well-known results [1, 2].

Then we focus on four-point functions containing respectively one, two or four O02
operators. Given the presence of Schur-type operators in the N = 2 decomposition of O02,
one could think of using N = 2 superconformal blocks [3, 11] to study these correlators.
Unfortunately, the N = 2 half-BPS operator in O02 comes together with long multiplets,
for whose correlators an expansion in superconformal blocks is not known yet.

In analysing the various four-point functions, we start by fixing the protected part as
much as possible, then we extract corrections at large N to the OPE data of operators in the
OPE O2×O02 and O02×O02 by means of the Lorentzian inversion formula. We cannot yet
compute the anomalous dimensions of the single eigenstates due to the inevitable mixing of
degenerate operators that will take place even at tree level. For this reason we only quote
the results for the averaged quantities

〈a(0) γ(1)〉 =
∑
I

a
(0)
OI γ

(1)
OI , 〈a(1)〉 =

∑
I

a
(1)
OI , (1.3)

where γ(1) is the first correction to the conformal dimension, a(i) is the i-th order OPE
coefficient squared and the sum is over all operators with same bare dimension.

By taking the OPE limit of the supergravity five-point function of all O2 in [9], we
prove that 〈O02O2O2O2〉 is protected. This result was not known in the literature as far
as we are aware.3 In doing this analysis, we develop a machinery to deal with five-point
tensor structures and to project them to four-point ones that can be easily generalized to
higher-points.

2 Generalities of quarter-BPS operators

2.1 Superconformal representation theory

Studying correlators of quarter-BPS scalar primaries involves various technical challenges,
mainly due to the rapid growth of R-symmetry tensor structures. In this section, however,
we would like to introduce the operators of interest from a purely representation theoretic

3Although [9] argued for some OPE coefficient in their block expansion to be protected.
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point of view, keeping the technical details to a minimum. The quarter-BPS operator Opq,
for q > 0, is defined to be the superconformal primary of the following multiplet

BB[0; 0](q,p,q)2q+p , or B[q,p,q](0,0) , (2.1)

where in the left we use the notation of [12] and in the right that of [13]. We will use
the former for the rest of the paper. When q > 0 the operator satisfies a quarter-BPS
shortening condition because it is annihilated by four supercharges, namely

Q
(1,0,0)
+ , Q

(0,0,1)
+̇ , Q

(1,0,0)
− , Q

(0,0,1)
−̇ , (2.2)

where the superscript denotes the SU(4) representation and the subscript the SU(2) spin.4
Naively, the simplest such multiplet would be O01, which transforms in the (1, 0, 1) of

SU(4) and has dimension two. However this operator only appears in free theories because
it has a higher spin conserved current at level six

Q3Q3O01 ∼ [3;3](0,0,0)
5 . (2.3)

Moreover, given its conformal dimension, it must be built out of two fundamental fields
ϕMI (x) with the gauge index contracted and the SU(4) index antisymmetrized.5 This
contraction, without any additional indices, is vanishing. The next simplest operators are
O11 and O21, which have dimensions 3 and 4 respectively. In this case, it can be shown that
the trace over SU(N) vanishes and therefore no such operators can be constructed [14].6
Thus, the first non trivial operator that one can consider is O02, which has dimension four
and transforms in the (2, 0, 2) representation of SU(4).

The superprimary of each of these multiplets can be built out of the six scalars ϕMI (x).
As it is well known, the representations of the type (0, p, 0) are obtained by taking a
symmetric traceless combination of the SO(6) indices Mi, as follows

Op = tr(T I1 · · ·T Ip)ϕ(M1
I1
· · ·ϕMp)

Ip
− traces . (2.4)

While the representations (q, 0, q) are built by antisymmetrizing the indices in pairs. More
precisely, we can make use of the six-dimensional rotation matrices (ΣMN ) n

m , (ΣMN )mn,
defined in appendix A. These operators normally are a linear combination of single and
double traces [14, 15]. The coefficients of the linear combination are fixed by imposing
that the two-point function is unit-normalized and the operator is a short superconformal
primary. If, for the moment, we leave aside the SU(N) part, we can write

O0q = tr(T I1 · · · ) tr(· · ·T I2q)ϕM1
I1
· · ·ϕM2q

I2q
(ΣM1M2) n1

m1 · · · (ΣM2q−1M2q) nq
mq . (2.5)

The detailed expression will be given only for the operator under study, O02. General
operators Opq with both labels nonzero are obtained with a combination of the two index
contractions presented above.

4If instead q = 0 the superconformal primary is annihilated by two additional supercharges, namely
Q

(−1,1,0)
+ and Q(0,1,−1)

+̇ , consequently, the shortening condition becomes half-BPS and indeed it yields the
familiar multiplet Op.

5Refer to table 9 in appendix A for the naming of the indices.
6This is proven in detail in appendix C for the interested reader.
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In section 3 we will make use of the chiral algebra of [10] for finding the superconformal
Ward identities satisfied by the four-point functions of Opq. It is therefore beneficial to
learn how to expand these multiplets into N = 2 submultiplets, since the chiral algebra
is an N = 2 construction. In particular, we want to look for operators which satisfy two
equalities between the conformal dimension ∆, the spin j, ̄, the U(1)R R-charge r and the
SU(2)R R-charge7 R

r = j − ̄ , 2∆ = j + ̄+ 2R . (2.6)

These are termed Schur operators. The quantum numbers r and R arise from the familiar
breaking of the SU(4)R R-symmetry group into

SU(4)R −→ SU(2)R ×U(1)R × SU(2)F . (2.7)

The equalities (2.6) define a superconformal primary only if r = j = 0. In this case the
operator belongs to an N = 2 half-BPS multiplet. At level zero of Opq we find precisely
these multiplets, with a multiplicity of p+ 1

BB̄[0;0](q,p,q)2q+p ⊃ (p+ 1)BB̄[0;0](2q+p;0)
2q+p . (2.8)

The multiplicity implies that the Schur operator extracted from Opq is also transforming
in the charge-p representation of the flavor group SU(2)F which appears in (2.7). So, to
summarize, the quarter-BPS operator Opq contains, at level zero, an N = 2 half-BPS
primary operator which has SU(2)R R-charge equal to 2q + p and flavor charge equal
to p. This is the operator that we will exploit in order to derive the superconformal Ward
identities.

2.2 Protected three-point functions

In this section, we collect known facts about three-point functions involving quarter-BPS
operators. In [16], the authors analyze three-point functions including quarter-BPS oper-
ators in a weak coupling expansions and they find that certain classes of correlators are
protected at order g2 for any value of N based on SU(4), SU(N) arguments and explicit
space-time computations. These are

1. 〈OpOqO〉, where O is a 1
2 -,

1
4 - or

1
8 -BPS operator.

2. 〈OpqOrsO2〉 either vanish because (q, p, q) 6∈ (s, r, s)⊗ (0, 2, 0) or can be related to

〈OpqO(p−2)qO2〉 , 〈OpqO(p+2)(q−2)O2〉 , 〈OpqOp(q−2)O2〉 , (2.9a)
〈OpqO(p+2)(q−1)O2〉 , 〈OpqOpqO2〉 . (2.9b)

The three-point functions (2.9a) turn out to be protected since they are extremal,
namely that the dimension of one operator is equal to the sum of the remaining ones.
Then, the first one in (2.9b) can be proved to vanish based on a SU(N) and SU(4)
reasoning. Finally the last three-point function can be shown to be protected through
more complicated arguments.

7Note that our convention is to denote representations by their Dynkin labels, so spin- 1
2 would be R = 1.
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3. Generic 〈OpqOrsOk〉 are protected at order g2 if one of the following conditions is
satisfied

2s+ r = 2q + p+ k

2q + p = 2s+ r + k

2q + p+ 2s+ r = k

 extremality condition , (2.10a)

2s+ r ≤ k + p

2q + p ≤ k + r

}
“three flavours” condition , (2.10b)

k ≤ p+ r “two flavours” condition . (2.10c)

Specializing to operators with scaling dimension ∆ ≤ 7, the only three-point function
not included in the previous cases is 〈O13O13O4〉, with O13 as defined in [15]. This
is proved to be protected as well.

4. 〈OpqOrsOlk〉 with 2k+ l ≤ 2q+p ≤ 2s+r are guaranteed to not receive g2 corrections
if they satisfy either the extremality condition

2s+ r = 2q + p+ 2k + l (2.11)

or all of the “three flavours” conditions

2s+ r ≤ 2k + l + p ,

2s+ r ≤ 2q + p+ l ,

2q + p ≤ 2k + l + s .

(2.12)

Notice that these conditions are for instance satisfied by 〈O02O02O02〉. Then among
quarter-BPS operators with dimension less than seven, the only three-point functions
left are

〈O02O02O22〉 , 〈O02O12O32〉 , 〈O02O12O13〉 , (2.13)
〈O02O13O32〉 , 〈O02O13O14〉 , (2.14)

which are shown to be protected.

Similar analyses can be found in [17, 18].
A parallel and complementary study of three-point functions can be done resorting

to the underlying chiral algebra.8 The idea is that if, in a given three-point function, it
appears only one structure that survives to the chiral algebra map, this directly implies
that the correlator is protected in the full N = 4 theory. We have performed this analysis
for the mixed three-point functions of O2 and O02 and for 〈O02O02O02〉. Proceeding in this
way, we confirmed the protected nature of 〈O02O2O2〉. Unfortunately, for the remaining
two three-point functions the chiral algebra argument is not that constraining. We find
that in 〈O02O02O2〉, the chiral map kills the only SU(4) structure not giving us any new

8We thank Xinan Zhou for suggesting this approach to us.
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insight. The case of all O02 operators is even different. Here, it turns out that a particular
linear combination of the appearing tensor structures is indeed protected, but this is not
enough to conclude that the entire function does not get renormalized as the weak-coupling
analysis is suggesting. It seems that the conditions imposed by the chiral algebra are weaker
than the ones outlined above. One of the reason can hinge on the fact that, differently
from the Op case, when decomposed in N = 2 supermultiplets, O02 does not contain only a
Schur operator but other non protected ones. The presence of this additional operators can
possibly justify why the chiral algebra is insufficient or less powerful in studying correlators
containing this quarter-BPS operators.

2.3 R-symmetry structures

2.3.1 Polarizations for N = 4

Due to the high proliferation of indices and the complicated symmetrizations and subtrac-
tions that one needs to do in order to construct quarter-BPS operators, it is convenient to
introduce an index-free formalism for SU(4) structures.

The same idea was used in [19] to greatly simplify the computation of tensor struc-
tures, and has also been applied in the context of spinning operators [20–22]. In fact,
the embedding formalism in four dimensions differs from our setup simply by a signature:
SU(2, 2) versus SU(4).9

We contract all SO(6) fundamental indices with a six-dimensional complex vector yM
and all SU(4) (anti)fundamental indices with a four-vector Sm (Sm). One can trade an
SO(6) index with an antisymmetrized pair of SU(4) indices using the Dirac matrices defined
in appendix A, thus we can also define

ymn ≡ yMΣM
mn , ȳmn ≡ yMΣMmn .

These polarizations must satisfy some constraints following from the irreducibility of the
representation to which they are attached. The list of constraints reads

y · y = 0 , S · S = 0 , yS = 0 , ȳS = 0 . (2.15)

An operator in the (q, p, q) will be a field with homogeneity p in y and q in S, S

Opq(λS, λ̄S, µy) = (λλ̄)qµpOpq(S, S, y) . (2.16)

In order to recover the tensor form of this operator we must differentiate with respect to
the polarizations. However, we need to be careful because the polarizations are constrained
and so their derivatives are not free. This problem can be solved by defining differential
operators which are interior to the constraints (2.15). With the aid of those operators we
can recover

(Opq)m1···mq
n1···nq ,M1···Mp

= ∂n1 · · · ∂nq ∂̄m1 · · · ∂̄mq DM1 · · · DMpOpq(S, S, y) . (2.17)

9Another obvious difference with the spinning structure formalism is that the six-dimensional vectors
there are positions, so they can appear in the denominator. Here they are polarizations so they cannot.
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In (A.7) we show an explicit definition of DM , ∂m and ∂̄m, which previously appeared
in [19, 20, 22, 23]. This definition solves only the first two constraints and therefore can
be used only when either p or q is zero, which is enough for our cases.10

The various polarizations can be contracted into index-free expressions which then
combine to give the n-point tensor structures. A complete basis of such building blocks is11

yij = yi · yj , Sij = Si · Sj ,
Yi1i2i3··· = tr(yi1 ȳi2yi3 · · · ) , Jikj1···j2p = Siyj1 · · · ȳj2pSk ,

Kikj1···j2p+1 = Siyj1 · · · yj2p+1Sk , Kikj1···j2p+1 = Si ȳj1 · · · ȳj2p+1Sk ,

Eijkl = εmnpqS
m
i S

n
j S

p
kS

q
l , E ijkl = εmnpqSimSjnSkpSlq ,

(2.18)

With this notation, the most general two-point function of an operator O(q,p,q̄)
∆ of dimension

∆ transforming in the (q, p, q̄) of SU(4) and its conjugate can be written as follows:

〈O(q,p,q̄)
∆ (x1)O(q̄,p,q)

∆ (x2)〉 = (y12)p(S12)q(S21)q̄
(x2

12)∆ . (2.19)

2.3.2 Polarizations for N = 2

We also need a formalism for dealing with R-symmetry and flavor indices of N = 2 tensor
structures. This is again analogous to four dimensions, but in position space. Indeed, we
have su(2)⊕ su(2) which differs from so(3, 1) by the signature.

We contract all R-symmetry indices with a complex two-vector ηa and all flavor indices
with another two-vector η̃a′ . Indices are raised and lowered with the Levi-Civita tensors
εab and εa′b′ . The only possible building blocks are

ηij = ηai ηj a , η̃ij = η̃ia′ η̃
a′
j . (2.20)

Clearly, due to the antisymmetry of ε, the above expressions are nonzero for i 6= j. For
this reason, we do not need to put further constraints on these vectors and there are no
issues in taking derivatives. The two-point functions are also easy to write down. Given
an N = 2 primary OR,F with R-charge R, flavor charge F and dimension ∆ one has

〈OR,F (x1)OR,F (x2)〉 = (η12)R (η̃12)F
(x2

12)∆ . (2.21)

2.3.3 Tensor structures as Casimir eigenvectors

Let us consider a four-point function of four quarter-BPS operators

G(p1, q1; . . . ; p4, q4) = 〈Op1q1(x1,S1)Op2q2(x2,S2)Op3q3(x3,S3)Op4q4(x4,S4)〉 , (2.22)

where Si collectively denotes Si, Si and yi. This correlator can be expanded into a certain
number Nstr of functions. Each of these functions is multiplied by a combination of the

10In principle there are also unconstrained parametrizations of y and S, S [24]. Since this is not strictly
necessary for our goals we have chosen not to pursue this direction.

11For six or more points, one also has to consider the Levi-Civita tensor εMNPQRS y
M
i y

N
j y

P
k y

Q
l y

R
my

S
n .
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polarizations defined previously, which we call Tk, where each k is associated to a given
representation exchanged. The allowed representations are contained in the following tensor
product

R ∈ (q1, p1, q1)⊗ (q2, p2, q2) ∩ (q3, p3, q3)⊗ (q4, p4, q4) . (2.23)

We can therefore write the correlator as

G(p1, q1; . . . ; p4, q4) = K2q1+p1, ..., 2q4+p4

Nstr∑
k=1

Tk gk(z, z̄) . (2.24)

Above we defined the four-point prefactor K and the cross-ratios z, z̄, as follows

K∆1∆2∆3∆4 =

(
x2

24
x2

14

) 1
2 ∆12 (x2

14
x2

13

) 1
2 ∆34

(x2
12) 1

2 (∆1+∆2)(x2
34) 1

2 (∆3+∆4)
, ∆i = 2qi + pi , ∆ij = ∆i −∆j ,

x2
12x

2
34

x2
13x

2
24

= u = zz̄ ,
x2

14x
2
23

x2
13x

2
24

= v = (1− z)(1− z̄) .

(2.25)

One way to find the tensor structures Tk is to first write down a basis using all possible
products of the monomials in (2.18), while making sure that they satisfy the scaling (2.16)
for all four operators, and then to rotate this basis to one that diagonalizes the SU(4)
Casimir operators. The eigenvalues associated to each tensor structure will tell us the
representation to which they correspond. In our cases of interest, the quadratic Casimir is
not enough because different representations can have the same eigenvalue. It is therefore
necessary to consider one higher order Casimir as well and for simplicity we use the quartic
one instead of the cubic.12

Any operator in the SU(4) universal enveloping algebra can be represented in terms
of differential operators acting on the polarizations Si, Si and yi. Concretely, the three
Casimirs of SU(4) can be represented as [25]

C2(∂S) = 1
2LMN L

NM ,

C3(∂S) = 1
24i ε

MNPQRSLMN LPQLRS ,

C4(∂S) = 1
2LMN L

NP LPQL
QM ,

(2.26)

where LMN are the generators of SU(4). Since we want to act on the first two points, their
expression is

LMN = L1,MN + L2,MN ,

Li,MN = −
(
yiM

∂

∂yNi
− yiN

∂

∂yMi

)
− Smi ΣMN

n
m

∂

∂Sni
− SimΣMN

m
n

∂

∂Sin
.

(2.27)

If Tk exchanges the representation (q, p, q̄) then it must satisfy the following eigenvalue
equations

Cr(∂S1 , ∂S2)Tk(S1, . . . ,S4) = Cr Tk(S1, . . . ,S4) , r = 2, 4 , (2.28)
12The reason is that the cubic Casimir contains an ε tensor which makes the index contractions more

involved.
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with the eigenvalues given by [26]

C2 = p (q̄ + q + 4) + 1
4
(
3q̄2 + 2(q + 6)q̄ + 3q(q + 4)

)
+ p2 ,

C4 = 1
16
(

(q̄ + 2p+ q)2 (q̄ + 2p+ q + 8)2 + 24 (q̄ + 2p+ q) (q̄ + 2p+ q + 8)

− 2 (q − q̄)2 (q̄ + q + 2)2 + 4 (q̄ (q̄ + 2) + q(q + 2))2 ) .
(2.29)

For this work, we implemented the Casimir differential operators in a Mathematica note-
book which can be made available upon request.

2.4 Relation with older superspace formulations

Quarter-BPS operators in N = 4 Super Yang-Mills have been studied in detail since the
early 2000s [14, 15]. In this subsection we will show how to connect our formalism to the
approach adopted in the past which made use of superspace.

There are various families of superspaces for N = 4. Any given superspace formulation
is designed to make the shortening conditions appear “simple.” This means that imposing
that a certain operator is short simply amounts to declaring that it depends on only a
subset of the superspace coordinates. The most familiar example is a chiral multiplet
in a four-dimensional N = 1 theory. Without a formulation of chiral superspace one
would have to introduce a field O(x, θ, θ̄) and require DαO(x, θ, θ̄) = 0. But if we define
y = x + iθσθ̄ then it suffices to take an arbitrary (unconstrained) field O(y, θ) and it is
going to be automatically chiral. Generalizing this idea to extended supersymmetry is the
main challenge that has been undertaken in the early nineties and that we wish to briefly
review now.

The family of superspaces that we wish to review was introduced in [27] and it takes
the name of (N , p, q) superspace. The construction roughly goes as follows: we start with
complexified super Minkowski space C4|4N on which we require that the xµ coordinates are
real and θ̄mα̇ = (θmα )∗. Let us call this space MN . Next we enlarge this space by a “flag
manifold” Fp,q defined as the coset space

Fp,q ≡
SU(N )

S(U(p)×U(N − p− q)×U(q)) . (2.30)

This coset is parametrized by a special unitary matrix u m
R such that the index m is acted

upon by the full SU(N ) group and the index R by the isotropy group — i.e. the group at
the denominator of (2.30). All in all, this means that the coordinates of our superspace
are (xµ, θmα , θ̄mα̇, u m

R ).
Superfields carry a representation of the so-called Levi subalgebra13

l = sl(2|p)⊕ sl(2|q)⊕ sl(N − p− q)⊕ C2 . (2.31)

The bosonic parts of the first two summands and the last are the spin labels j, ̄. The
two complex dimensions are ∆ and the r-charge — which for N = 4 disappears and C2 is

13The origin of this comes from interpreting the full superspace as a coset. This in turn follows from
interpreting MN as a coset of SU(2, 2|N ).
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replaced by C — and the remaining parts are R-symmetry quantum numbers. Let us call
this representation R with carrier space VR. Then superfields are defined as sections of a
VR bundle over MN ≡ MN × Fp,q. Equivalently, they are functions from MN to VR that
satisfy an equivariance property

f : MN → VR ,

f(gx) = R(g)f(x) ∀ g ∈ exp(l) .
(2.32)

In order to impose shortening conditions it is necessary to require that certain covariant
derivatives annihilate the superfield. The whole point of this construction is that, for the
fields of interest, requiring Df = 0 amounts to an holomorphicity constraint. So we do
not need to deal with constrained superfields but we simply have superfields that depend
on a subset of variables. There are two notions of holomorphicity: G-analiticity and
H-analiticity. A superfield which is both G-analytic and H-analytic is called CR-analytic
or simply analytic. A field is G-analytic if it satisfies14

u m
r Dαm f = D

m
α̇ (u†) r′

m f = 0 , (2.33)

where Dαi and D
i
α̇ are the covariant derivatives on MN , the index r is on SU(p) and the

index r′ is on SU(q). Next one defines left-invariant vector fields of SU(N ), D S
R , and splits

the indices R = (r, r′′, r′) with r, r′ as before and r′′ being on SU(N − p − q). With this
definition a field is H-analytic if it satisfies

D s′
r f = D s′′

r f = D s′
r′′ f = 0 . (2.34)

The operator of B1B1 type, namely half-BPS (0, p, 0) or quarter-BPS (q, p, q), are realized
as CR-analytic superfields.

Let us fix N = 4 and take p and q as in [14], namely p = q = 1. By looking at (2.31) we
see that, other than the usual conformal quantum numbers, we have an extra su(2) index
(recall that for N = 4 the last factor is just C). So fields are functions of the superspace
variables of the form

Vr1···rn(x, θmα , θ̄mα̇, u m
R ) . (2.35)

The vector multiplet, in particular, has a single index and is CR-analytic

Wr(x, θ2,3,4
α , θ̄α 1,2,3, u) , with (D s

1 , D
4

1 , D
4
r )Wr = 0 . (2.36)

Observe that this superspace is not optimal for considering the vector multiplet as we
still have 12 supercharges instead of the expected 8. Indeed we still need to impose the
H-analyticity on W . Actually the H-analyticity follows automatically here as it will be
easy to check from the next paragraph. One could argue that there are more convenient
ways to study this operator, such as (N , 2, 2) superspace [27] or the SU(N )/U(1)3 coset
superspace [28]. We will however stick with p = q = 1 in order to keep pursuing the
comparison with [14].

14See e.g. [27] for the explicit definitions of the derivatives.
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The explicit form of the bottom component of the analytic superfield can be given in
terms of the more familiar ϕM scalars

Wr(x, u) ≡ u m
1 u n

r+1 ΣMmn ϕ
M , r = 1, 2 . (2.37)

As we can see, it is not so different from the principle of contracting indices with polariza-
tions. In this case only part of the SU(4) indices are “transferred” to the u dependence.
Consistently with the rest of our formalism, let us introduce a new SU(2) polarization χr
and contract the r index of Wr with it

W (x, u, χ) ≡Wr(x, u)χr . (2.38)

In order to translate from these variables to the polarizations we are used to, we can
consider the two simplest cases: the (0, 2, 0) and the (2, 0, 2). For the former we have a
totally symmetric trace

Tr(W W ) = χru m
1 u n

r+1 ΣMmn χ
su p

1 u
q

s+1 ΣN pq Tr(ϕMϕN )
= yM yN Tr(ϕMϕN ) .

(2.39)

It follows simply
yM = χru m

1 u n
r+1 ΣM

mn . (2.40)

The case (2, 0, 2) instead requires a small computation

Tr(WrWs) Tr(W rW s) = u m
1 u n

r ΣMmn u
4
pu
r
q Σpq

P

× u m′
1 u n′

r ΣN m′n′ u
4
p′u

r
q′ Σ

p′q′

Q

× Tr(ϕMϕN ) Tr(ϕPϕQ)
= (4.1a) .

(2.41)

The matrices u j
i and uij are one the inverse of the other, so they yield a δ of the external

indices which in turn contract a pair Σ,Σ together. Then we use the definition (A.2) to
exactly match the right hand side, provided we identify

Sm = 4u m
1 , Sm = 4u4

m . (2.42)

We should check that (2.40) and (2.42) are compatible with the constraints (A.5). This
can be done very simply

y · y ∝ χrχsu m
1 u n

r+1 u p
1 u

q
s+1 εmnpq ∝ εmnpqu m

1 u p
1 = 0 , (2.43a)

S · S ∝ u m
1 u4

m = δ1
4 = 0 . (2.43b)

Sy ∝ u m
1 χru n

1 u p
r+1 εmnpq ∝ εmnpqu

m
1 u n

1 = 0 , (2.43c)
Sȳ ∝ u4

m χ
ru m

1 u n
r+1 ∝ δ

4
1 = 0 . (2.43d)

So, to summarize, for our purposes going to (N , 1, 1) superspace is equivalent to choosing
a specific parametrization of the polarizations S, S, y given by (2.40) and (2.42).
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3 Chiral algebra and Ward identities

3.1 Chiral algebra review

Every four-dimensional N = 2 superconformal field theory admits a protected subsector
which is described by a vertex operator algebra or chiral algebra. This was discovered
in [10] and from that seminal paper there were many developments aimed at finding simi-
lar constructions in other dimensions [29–31] and also at better understanding the structure
of the chiral algebra and what it can teach us about the original superconformal field the-
ory [32, 33]. While this story has now taken on a somewhat formal route, its source of
inspiration came from a very concrete observation stemming from the results of [19]. The
seminal work [19] provided a solution to the superconformal Ward identities for four-point
functions of N = 2, 4 superconformal field theories. This solution is expressed in terms of
a meromorphic function of a single cross-ratio f(z), which can be obtained by evaluating
the four-point function with the R-symmetry polarizations in a specific z̄-dependent con-
figuration. The function f(z) was later interpreted in [10] as the four-point function in the
two-dimensional chiral algebra.

We plan to apply the same idea to our correlators of interest. However, let us first
quickly introduce the chiral algebra construction so that all subsequent steps in deriving
the Ward identities will be clear.

The first step is to choose a two-dimensional plane R2 ∼= C in R4 along with a nilpotent
supercharge Q. The supercharge is chosen in such a way that holomorphic transformations
in the two-dimensional plane C are Q-closed and the anti-holomorphic transformations are
Q-exact. A concrete choice that satisfies these requirements is

Q = Q1
− + S2−̇ , (3.1)

with the plane C being x1 = x2 = 0, z = x3 + ix4 and z̄ = x3 − ix4. Then, once an
operator O is restricted to such plane, its z̄ dependence can be dropped by passing to the
Q-cohomology. The operators surviving this cohomology are precisely the Schur operators
mentioned around (2.6), located at the origin.

The key aspect of this construction is that, in order to keep the operator holomorphic
when leaving the origin of the C plane, one has to move the position in lockstep with the
R-symmetry indices. This operation is known as twisted translation. In our notation it
simply means that the polarization η must become z̄-dependent in the following way

χ
[
OSchur

]
(z) ≡ ηa1(z̄) · · · ηaR(z̄)Oa1···aR

Schur (z, z̄) , η(z̄) ≡ (1, z̄) . (3.2)

The equality is understood to hold inside correlation functions, in the sense that the z̄
dependence on the right hand side will drop out. The resulting correlator is necessarily
coupling independent because the chiral algebra is rigid under marginal deformations, thus
it can be computed from the free theory.15 In particular, we can apply the map χ on

15In our examples we compute the protected function f by means of Wick contractions, made possible by
the Lagrangian formulation of our theory. An alternative approach can be found in [34, 35].
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four-point functions to obtain a meromorphic and protected function of a single cross ratio

χ
[
〈OSchur(x1, η1)OSchur(x2, η2)OSchur(x3, η3)OSchur(x4, η4)〉

]
≡ 〈OSchur(x1, η1)OSchur(x2, η2)OSchur(x3, η3)OSchur(x4, η4)〉

∣∣∣
xµ
k
→(0,0, zk+z̄k

2 ,
zk−z̄k

2i )
ηk→(1, z̄k)

= KR1R2R3R4 f(z) .

(3.3)

The prefactor K and the cross ratio z are defined as

Kh1h2h3h4 =

(
z14
z13

) 1
2 (h3−h4)(

z24
z14

) 1
2 (h1−h2)

z
1
2 (h1+h2)
12 z

1
2 (h3+h4)
34

, z = z12z34
z13z24

= 1− z14z23
z13z24

, (3.4)

where zij = zi − zj .
This construction holds for all N = 2 four dimensional superconformal field theory.

Therefore, in particular, it holds for N = 4 super Yang-Mills. The chiral algebra of N = 4
super Yang-Mills contains a Virasoro subalgebra with central charge c2d = −12c where c
is the four-dimensional central charge

c = N2 − 1
4 . (3.5)

The Schur operators we are interested in are the superconformal primaries of the multiplets
BB[0;0](R;0)

R , as we previously mentioned. Furthermore, these primaries can transform in
a representation F of the flavor group SU(2). We denote them as OR,F . Under the chiral
map χ, the operators OR,F are mapped to single traces of free symplectic bosons, each
being in a flavor doublet

χ
[
OR,F

]
= tr(qa′1 · · · qa′R) Πb1···bF

a1···aR η̃b′1 · · · η̃b′F , qIa′(z) qJb′(0) ∼ εa′b′ δ
IJ

z
, (3.6)

where Πb1···bF
a1···aR is a tensor responsible for contracting R − F indices so that the end result

has R fields and transforms in the charge-F flavor representation.16 Thanks to this map,
computing f(z) simply requires taking all Wick contractions among the q’s by using the
singular OPE shown above. In order to obtain the Ward identities one has to consider
different variants of the chiral algebra construction considered so far. One is obtained by
exchanging the roles of z and z̄ and one is obtained by exchanging the roles of the flavor
and the R-symmetry SU(2). Let us denote these four variants as

χz,η̃ ≡ χ , χz̄,η̃ , χz,η , χz̄,η . (3.7)

The Ward identities then read

χz,η̃
[
〈O1 · · · O4〉

]
= K P̃4 f(z, η̃) , χz̄,η̃

[
〈O1 · · · O4〉

]
= K P̃4 f(z̄, η̃) ,

χz,η
[
〈O1 · · · O4〉

]
= K P4 f(z, η) , χz̄,η

[
〈O1 · · · O4〉

]
= K P4 f(z̄, η) ,

(3.8)

16Note that when OR,F is taken as an N = 2 sub-multiplet of an N = 4 multiplet Op, one always has
R = F . Thus, the tensor Πb1···bF

a1···aR
is just a product of Kronecker δ’s. In the O0q instead F = 0 so the tensor

is a combination of Levi-Civita tensors that contracts all the indices.
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where the function f(z, η) is the same for all equations, K is the same as K in (3.4) with zi →
z̄i and, finally, P4 and P̃4 are kinematic prefactors defined as follows, for non-increasing
Fi [36]

P4 =

η
1
2 (F1+F2−F3+F4)
12 η

1
2 (F1−F2+F3−F4)
13 η

1
2 (−F1+F2+F3−F4)
23 ηF4

34 if F2 + F3 ≥ F1 + F4

ηF2
12 η

1
2 (F1−F2+F3−F4)
13 η

1
2 (F1−F2−F3+F4)
14 η

1
2 (−F1+F2+F3+F4)
34 if F2 + F3 ≤ F1 + F4

,

P̃4 = P4
∣∣
ηi→η̃i

.

(3.9)
Often two out of four of these identities are redundant.

3.2 Action on tensor structures

Now that we understand the construction of the chiral algebra in N = 2 we can work out
the concrete action of the map χ directly in the N = 4 tensor structures. The break-
ing (2.7) can be seen explicitly at the level of the polarizations yM , Sm, Sm. Let us start
from the six-dimensional vector: we can study the breaking in its matrix form ymn. The
decomposition amounts to subdivide this matrix in 2×2 blocks. The diagonal blocks corre-
spond to U(1)r polarizations, which we do not need, while the off-diagonal ones correspond
to the two SU(2)s. More precisely, we can write

ymn =
(

0 ηa ⊗ η̃b
′

−η̃a′ ⊗ ηb 0

)
. (3.10)

Another way to state the same equation is to take the first four components of yM and
impose

yA σ
A
aa′ = ηaη̃a′ . (3.11)

One can easily check that this identification respects the constraint y · y = 0.17 Similarly,
we can write mappings between the SU(4) fundamental polarizations and the η, η̃. This is
done by splitting the components in two halves

Sm =

ηa m = 1, 2
η̃a′ m = 3, 4

, Sm =

ηa m = 1, 2
η̃a
′
m = 3, 4

.

As before, this is compatible with S · S = 0. Based on the decomposition (2.8) we must
single out the charge-p flavor component. This is equivalent to selecting terms proportional
to λpi under the rescaling

η̃i → λi η̃i . (3.12)

In particular, if the operator under study transforms in the (q, 0, q), then one has to simply
set η̃ to zero for that operator. To give a few examples, the simplest building blocks are
decomposed as follows

yij = 1
2 ηij η̃ij , Sij = ηij + η̃ij . (3.13)

17Use σaa′ · σbb′ ∝ εabεa′b′ together with ηaηa = ηaηbε
ab = 0.
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Assuming that there are only Op and O0q operators, meaning that we can throw away the
η̃ inside Sm and Sm, the other tensor structures can be decomposed as

Kikj1···j2n+1 = O(η̃i, η̃k) = Kikj1···j2n+1 , (3.14a)
Jikj1···j2n = (−1)n ηiηj1 η̃j1 η̃j2 ηj2ηj3 · · · η̃j2n−1η̃j2n ηj2nηk +O(η̃i, η̃k) . (3.14b)

When all operators have a nonzero p Dynkin label, it is possible to form cross ratios in the
yM vectors

σ = y13 y24
y12 y34

= αᾱ , τ = y14 y23
y12 y34

= (1− α)(1− ᾱ) . (3.15)

The decomposition of these cross ratios is remarkably simple as it suffices to send α and ᾱ
to the following ratios18

α = ν ≡ η13η24
η12η34

= 1 + η14η23
η12η34

, ᾱ = ν̃ ≡ η̃13 η̃24
η̃12 η̃34

= 1 + η̃14 η̃23
η̃12 η̃34

. (3.16)

When the map χ is applied to the above cross ratios we get the familiar result of [19],
namely

χ[ν] = 1
z̄
. (3.17)

This follows trivially from χ[ηij ] = z̄ij .
When considering half-BPS operators one has a further Ward identity f(z, ν̃ = 1/z) = k

with k a constant. This is equivalent to the topological twist of [37]. With correlators of
quarter-BPS operators this property is no longer true — in our specific cases trivially so
because f does not even depend on ν̃.

3.3 Ambiguity and Ward identitites

With the methods discussed so far we are able to obtain the Ward Identities. Note that
we have not proved that this represents a complete set, although for half-BPS it happens
to be the case by inspection. Let us start with any four-point function of quarter-BPS or
half-BPS operators G

〈O1O2O3O4〉 = K G(z, z̄; S1, . . . , S4) , (3.18)

withK being the kinematic prefactor defined in (2.25). We can expand G in the R-symmetry
tensor structures obtaining Nstr functions of the cross ratios

G(z, z̄,S1, . . . , S4) =
Nstr∑
k=1

gk(z, z̄) Tk(S1, . . . , S4) . (3.19)

The map χ acting on the correlator will produce a function of z and the flavor polariza-
tions η̃

χ
[
〈O1O2O3O4〉

]
= K f(z, η̃) , (3.20)

18The equalities of the form η12 η34 + η14 η23 = η13 η24 follow from ε[ab εc]d = 0.
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with the kinematic prefactor K4 defined in (3.4). Similarly, the three other variants (3.7)
will produce their own Ward identity. This allows us to separate the functions gk(z, z̄) into
a contribution from f(z, η̃) and an unprotected piece

gk(z, z̄) = wk(z, z̄) +
Nu∑
m=1
Hm(z, z̄) v(m)

k (z, z̄) , (3.21)

In the above decomposition, the vector ~w contains the contribution of the chiral algebra
result while the vectors ~v (m) = (v(m)

k ) span the kernel of the map χ in the space of tensor
structures. This means that only the functions Hm will contain unprotected contributions
and Nu denotes both the dimension of the kernel of χ and the number of such unprotected
functions. By definition, the above vectors must satisfy these conditions19

χ

[
Nstr∑
k=1

Tkwk

]
= f (z, η̃) , (3.22a)

χ

[
Nstr∑
k=1

Tkv
(m)
k

]
= 0 , for m = 1, . . . , dim(kerχ) ≡ Nu . (3.22b)

Clearly this decomposition immediately leads to an arbitrariness given by

wk(z, z̄) ∼ wk(z, z̄) +
Nu∑
m=1
Am(z, z̄) v(m)

k (z, z̄) . (3.23)

Our goal is to fix the functions Am(z, z̄) as much as possible. For convenience let us
introduce this terminology: the vector ~w is called an “uplift” of the chiral algebra and the
functions Am(z, z̄) are called “ambiguities.” There are a few criteria that one can use to
partially fix the functional form of Am(z, z̄).

1. When there are degeneracies in the tensor structures, meaning that there are more
Tk associated to a given R, it could be that unitarity and Bose symmetry force some
of these structures to be zero.

2. The operator of dimension two transforming in the (0, 2, 0) must be the superconfor-
mal primary O2 and therefore it must appear in ~w(z, z̄) with the same coefficient as
it appears in the free theory.20

3. The identity, if present, must contribute with OPE coefficient 1 as a normalization
condition.

4. The disconnected O(N0) part has to match the free theory computation.
19Here it is understood that also the equations for the other variants hold. Here for brevity we indicate

only the equations for χz,η̃.
20This is because it belongs to the same multiplet as the stress tensor, whose OPE coefficient and

conformal dimensions are protected. One cannot make the same reasoning for the stress tensor or the
R-current: see remark before equation (4.25).

– 18 –



J
H
E
P
0
4
(
2
0
2
2
)
0
1
6

5. The correlator cannot exchange operators of twist two with spin higher than two due
to the Maldacena-Zhiboedov theorem later extended to four dimension by Alba and
Diab [38, 39].

In particular the last condition is very strong because the solutions to the Ward identities
~w(z, z̄) will typically exchange operators of twist two that must disappear. Removing such
contributions requires adding towers of operators in other R-symmetry structures in order
to keep the full ambiguity within the kernel of χ.

Let us end with a few additional comments about these criteria: first of all, these re-
quirements solve any possible issue related to multiplet recombination involving the Konishi
operator. However for twist greater than two, these are no longer enough to achieve such
a recombination.

A second important remark regards whether or not these criteria fully incorporate all
the conditions dictated by unitarity of superconformal representations. As a general rule,
the answer is not: since we are expanding in usual conformal blocks, all the exchanged
primary operators manifestly satisfy the unitarity constraints just for the conformal group.
Exploiting the full power of superconformal symmetry would require using superconformal
blocks, which are known only for correlators of all half-BPS operators. Superblocks organize
the expansion in term of superprimaries, this allows really to tell if a given operator is below
unitarity, in the full superconformal sense, and hence must be canceled. Quite surprisingly,
it turns out that for 〈O2O2O2O2〉 criteria 1–5 are equivalent to the one imposed by the
full superconformal symmetry since they completely fix the ambiguity.

3.4 A familiar example revisited

In order to get acquainted with this slightly more general point of view for imposing Ward
identities, let us revisit a familiar example: the four-point function of the half-BPS operator
O2. In this case the chiral algebra result f is given by

f(z, ν̃) = f̂(z, ν̃) + f̂

(
z

z − 1 , 1− ν̃
)
, f̂(z, ν̃) ≡ 1

32 + ν̃2z2

16 + ν̃(2− ν̃)z
4(N2 − 1) .

(3.24)

There are six tensor structures given by the first six polynomials in equation (B.14) of [19],
to give a few:

T1 = 1 , . . . , T6 = σ2 + τ2 + 4στ − 4
5(σ + τ) + 1

10 . (3.25)

If we try to uplift the function f to the full correlator we find that there is just one ambiguity
degree of freedom, consistent with the fact that we expect only one H(z, z̄) function. The
ambiguity A in this case is obvious: it is just a redefinition of H → H−A.

In the well known derivation of the partial wave decomposition [40], the function
A(z, z̄) appears as a consequence of the fact that the chiral algebra result needs to be
properly uplifted in order to get the protected contribution to the four-point function. In
other words: the correlator always admits a splitting as a constant, a one-variable degree of
freedom and a two-variables degree of freedom. The chiral algebra twist fixes the constant
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and the one-variable function. However, the protected spectrum contributes to the two-
variable function as well. The precise way in which this happens can be derived from the
knowledge of the superconformal blocks of short multiplets. Since we will not have this
knowledge for the cases of quarter-BPS operators, our goal for the rest of this section is to
obtain the same result as Dolan and Osborn without using the form of the superconformal
blocks. We will indeed see that criteria 1–5 of section 3.3 are sufficient for this.

Following the definitions above, the vectors ~w and ~v (1) can be chosen as

~w =
{
∗, . . . , ∗, 0

}
,

~v (1) =
{

3z2z̄2−12z2z̄+10z2−12zz̄2+64zz̄−60z+10z̄2−60z̄+60
60z2z̄2 ,

(z−2)(z̄−2)(zz̄−z−z̄)
4z2z̄2 , 6z2z̄2−15z2z̄+10z2−15zz̄2+10zz̄+10z̄2

60z2z̄2 ,

2zz̄−3z−3z̄+6
6zz̄ , zz̄−z−z̄2zz̄ , 1

6

}
,

(3.26)

where in place of the ∗’s there are some functions of f(z, ν̃), f(z, ν), f(z̄, ν̃) and f(z̄, ν) that
we will not specify here for brevity. For concreteness, one can check that the four-point
function comes out as expected, namely

6∑
k=1

Tk
(
wk(z, z̄) +H(z, z̄) v(1)

k

)
= (αz − 1)(ᾱz̄ − 1) f(z, ᾱ) + (α↔ ᾱ or z ↔ z̄)

(z − z̄)(ᾱ− α)

+ (αz − 1)(αz̄ − 1)(ᾱz − 1)(ᾱz̄ − 1)
z2z̄2 H(z, z̄) .

(3.27)

The fact that this choice satisfies (3.22) is readily verified by noticing that here χ is simply
the replacement α→ 1/z̄, ᾱ→ ν̃.21

Now, the vector ~w defined as in (3.26) contains higher spin twist twos and twist zeros
in all nonzero five entries. We can cancel them by adding various higher twist contributions
in the ambiguity A(z, z̄), which will contribute to the correlator as in (3.23) with Nu = 1.
These will appear in the other entries with lower twist thanks to the recursion relations
written in appendix E.1. For example, a single block g6,2 in A(z, z̄) will contribute to the
representation (1, 2, 1) — structure T5 — as follows

A(z, z̄) = g6,2(z, z̄) =⇒ 〈O2O2O2O2〉
∣∣
(1,2,1) = 3

2 g5,1 + 6g5,3 + 1
8 g7,1 + 8

21 g7,3 . (3.28)

The other entries are more involved but they can be obtained with repeated applications of
the relations in appendix E.1. Notice that in the above example a twist-four contribution
was able to generate a twist-two contribution in a different representation, as advertised.
In order to do this more systematically we can take an ansatz for A(z, z̄) made of an infinite
sum of conformal blocks22 of twist four and six with arbitrary coefficients

A(z, z̄) =
∑
τ=4,6

∞∑
`=0

aτ+`,` gτ+`,`(z, z̄) . (3.29)

21We obviously need to match also all other chiral algebra limits, i.e. ᾱ → 1/z, α → 1/z and ᾱ → 1/z̄.
Here for simplicity of notation we indicated only one of them.

22The convention that we use for conformal blocks is given in appendix A.2.
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Then we truncate this sum up to a maximal spin `max and impose that the twist two and
zero up to `max cancel. Remarkably, the solution is unique for each `max. This will not be
true for quarter-BPS operators or for higher half-BPS operators Op. We can then easily
spot a pattern and extend this solution to the non-truncated equation. The coefficients
that enter in A(z, z̄) are the ones found in (3.11) of [40], modulo some factors due to the
conventions. For convenience we report them here

a`+4,` =
2`((`+ 1)!)2

(
(`+ 1)(`+ 2) + 1

c

)
3(2`+ 2)! , (3.30a)

a`+6,` =
2`((`+ 2)!)2

(
(`+ 1)(`+ 4)− 3

c

)
6(2`+ 4)! . (3.30b)

After resumming these coefficients with their blocks, which can be done following the steps
described in appendix E.2, we reproduce exactly the known result

A(z, z̄) = 1
6 z

2z̄2 (equation (2.31) of [2]
)
. (3.31)

The overall factor with respect to [2] is due to a different choice of normalization and
conventions. By explicit inspection we see that

6∑
k=1

Tk
(
wk(z, z̄) +A(z, z̄) v(1)

k

)
(3.32)

is free of twist zero and twist two operators. We can therefore take H(z, z̄) as having only
unprotected contributions with anomalous dimensions. Note that in this computation we
did not use at all the form of the superconformal blocks. In fact, it was not even needed.
In the subsequent cases having the superconformal blocks would instead be very beneficial
but, unfortunately, the blocks for external quarter-BPS operators are not known yet. We
therefore have no choice but using this method, which, as we will see, is still able to produce
some useful results.

4 Cases of interest

In this section we introduce the quarter-BPS operator transforming in the (2,0,2) SU(4)
representation, which will be at the center of our investigation. We proceed by discussing
in details various four-point functions including this operator. We report the results for
correlator with one, two or four O02’s. The case 〈O02O02O02O2〉 is not very illuminating:
there are no constraints coming from the ambiguity resolution discussed in subsection 3.3
and it does not provide new information about unknown OPE data. Thus, although we
analyzed it, we decided not to include this example in the main discussion.

4.1 The (2, 0, 2) quarter-BPS operator

Let us define in detail the quarter-BPS operator transforming in the (2, 0, 2) in terms of
free fields. It turns out that we need to take a specific linear combination if we want to
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end up with a quarter-BPS operator in the interacting theory as well. As before, we can
write both a single trace and a double trace version

O(st,1)
02 (x,S) = tr

(
ϕM1ϕM2ϕM3ϕM4

)
S · ΣM1M2 · S S · ΣM3M4 · S , (4.1a)

O(st,2)
02 (x,S) = tr

(
ϕM1ϕM2ϕM3ϕM4

)
S · ΣM1M3 · S S · ΣM2M4 · S . (4.1b)

In the single trace case there are, a priori, two possibilities. Whereas for double trace
we find

O(dt)
02 (x,S) = tr

(
ϕM1ϕM2

)
tr
(
ϕM3ϕM4

)
S · ΣM1M3 · S S · ΣM2M4 · S . (4.2)

If we compute the two-point function of O(st,2)
02 we notice that it vanishes so the operator

must be identically zero, as explicitly shown in appendix C. Then [14, 15] teach us that
the correct linear combination that remains protected is23

O(dt)
02 (x,S) + 2

N
O(st,1)

02 (x,S) . (4.3)

This is also consistent with the fact that at large N the single trace operators disappear.
The orthogonal combination to this one, namely O(st,1)

02 , is actually not a superconformal
primary. It is the Q2Q2 superdescendant of the free Konishi operator as we will show in
subsection 7.3. As it is well known, this operator will be lifted by quantum corrections in
the interacting theory.

We want to define our operator such that its two-point function is given by (2.19),
with p = 0 and q = q̄ = 2. A simple computation shows that the correct normalization is
the following

O02(x,S) =
√

2√
3
√

(N2 − 4)(N2 − 1)

(
O(dt)

02 (x,S) + 2
N
O(st,1)

02 (x,S)
)
. (4.4)

For completeness, let us also give the normalized O2 operator

O2(x, y) =
√

2√
N2 − 1

tr(ϕ · y)2 . (4.5)

4.2 Correlator 〈O02O2O2O2〉

4.2.1 Tensor structures

As a warm up, let us consider a four-point function with a single insertion of O02. The
correlator 〈O02O2O2O2〉 exchanges three different representations. The label assignment
we chose is summarized in table 1 and the associated tensor structures are given below

TI
1 = 1

2J11
34 (J11

32 y24 − J11
24 y23) ,

TI
2 = 1

4(2J11
32 J11

34 y24 + J11
24 (2J11

34 y23 − J11
32 y34)) ,

TI
3 = 1

4J11
24 J11

32 y34 .

(4.6)

23Note that this and the following expressions in the present section are exact in N .
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k 1 2 3
(q, p, q̄) (121) (202) (020)

Table 1. Dictionary between the tensor structure TI
k and the representation exchanged in the

(12)(34) OPE of 〈O02O2O2O2〉.

k 1 2 3
τ 4 4 2 4
` odd even ` = 0 even

Table 2. Conformal primaries exchanged in the various structures gk(z, z̄) of the correlator
〈O02O2O2O2〉 in the free theory. We define τ = ∆− `.

4.2.2 Free theory

With the definitions in (4.4) and (4.5) we can compute the free theory four-point function
by taking Wick contraction and performing the traces over the various indices. The result
can be written as follows

〈O02(x1,S1)O2(x2, y2)O2(x3, y3)O2(x4, y4)〉 = K4222

3∑
k=1

gk(z, z̄)TI
k , (4.7)

We will not give the explicit expression of the functions gk(z, z̄) here. However, in table 2 we
provide a summary of the operators exchanged in each tensor structure. Let us emphasize
that the operators that we show are conformal primaries, not superconformal primaries.
To know the expansion in the latter one would have to use the superconformal blocks which
are not yet known. Note however that, unlike the following cases, no operators of twist
higher than four are exchanged. The reason for this is that the entire correlation function
is actually protected. Thus there are no long operators at threshold that are expected
to gain anomalous dimensions when the coupling is turned on. A detailed proof of the
protected nature of this correlator is given in section 7 and it follows from the study of the
OPE limit of the O2 five-point function.

The chiral algebra contribution to this four-point function can be obtained by applying
the chiral algebra map defined in section 3. The result is quite simple and it reads24

χ
[
〈O02O2O2O2〉

]
K4222

≡ fO02O2O2O2(z) = −
√
N2 − 4

2
√

3(N2 − 1)

(
z2 + z

z − 1

)
. (4.8)

The contribution of f to the full correlator can be written as follows — we omit the subscript
for brevity

〈O02O2O2O2〉
K4222

∣∣∣∣
f

= TI
1

2zz̄
(
z f(z̄)− z̄ f(z)

)
z − z̄

+ TI
3

4
(
z2(z̄ − 2)f(z̄)− z̄2(z − 2)f(z)

)
z − z̄

. (4.9)

24As a consistency check, here and in all the following examples, we have computed f(z) by applying the
chiral algebra map to the free-theory result in 4d as well as by direct computation of the 2d correlator by
means of (3.6).
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In a way, this is the same as making a choice of the vector ~w introduced in subsection 3.3.
It can be checked that the action of χ and all of its variants — see (3.7) — acting on the
expression above yield f.

4.2.3 Ward identity and ambiguity

Since the entire correlator is protected, the analysis that follows here is inessential. We
will however show the steps in preparation to the subsequent cases where they become
substantially more computationally involved. The Ward identities follow from requiring
that the chiral algebra map χ applied on the interacting correlator gives the same result
as (4.8). This forces a generic unprotected contribution to gk(z, z̄), let us call it δgk(z, z̄),
to satisfy

δg1(z, z̄) = 0 , δg3(z, z̄) = −δg2(z, z̄) . (4.10)

Following the notation introduced in subsection 3.3, this fact can be encoded by defining
the vectors ~v (m) and ~w as follows:

~v (1) = {0, 1,−1} ,

~w =
√
N2 − 4√

3(N2 − 1)

{
z2z̄2(zz̄ − z − z̄)

(z − 1)(z̄ − 1) , 0, 2zz̄
(
z2z̄2 − z2z̄ − zz̄2 + 2z + 2z̄ − 2

)
(z − 1)(z̄ − 1)

}
.
(4.11)

There is only one ambiguity A1(z, z̄). In this case, since the correlator is protected, we
know that

A1 =
√
N2 − 4√

3(N2 − 1)
z2z̄2(zz̄ − z − z̄ + 2)

(z − 1)(z̄ − 1) . (4.12)

and H1 = 0. However, the criteria described in subsection 3.3 would not have allowed us
to conclude this because there are no twist-two operators that need to be cancelled.

By expanding ~w in conformal blocks we see that in the (1, 2, 1) we exchange only twist
four while in the (0, 2, 0) we exchange O2 and other operators of twist four. In detail
we have

w1(z, z̄) =
√
N2 − 4√

3(N2 − 1)

∞∑
`=1, odd

2` `!(`+ 2)!
(2`+ 1)! g2,0

`+4,` ,

w3(z, z̄) =
√
N2 − 4√

3(N2 − 1)

(
− 4g2,0

2,0 +
∞∑

`=0, even

2`+1 `!(`+ 2)!
(2`+ 1)! g2,0

`+4,`

)
.

(4.13)

4.3 Correlator 〈O02O02O2O2〉

4.3.1 Tensor structures

Now we repeat the same analysis for all the other four-point functions. Let us proceed
with the correlator 〈O02O02O2O2〉. It has ten different structures exchanging six distinct
representations. The label assignment we chose is summarized in table 3 and the associated
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k 1 2 3 4 5 6 7 8 9 10
(q, p, q̄) (040) (121) (202) (020) (101) (000)

Table 3. Dictionary between the tensor structure TII
k and the representation exchanged in the

(12)(34) OPE of 〈O02O02O2O2〉.

tensor structures are given below

TII
1 = 1

30
(
30K12

3 S12 K12
4 J21

34 + 30K12
3 S21 K12

4 J12
34 − 56K12

3 S21 S12 K12
4 y34 + 30(K12

3 )2 (K12
4 )2

− 8S21 (S12)2 J21
34 y34 − 8(S21)2 S12 J12

34 y34 + 5(S12)2 (J21
34)2 + 10S21 S12 J11

34 J22
34

+ 5(S21)2 (J12
34)2 − 2(S21)2 (S12)2 (y34)2) ,

TII
2 = 1

4
(
2K12

3 S12 K12
4 J21

34 + 2K12
3 S21 K12

4 J12
34 − S21 (S12)2 J21

34 y34 − (S21)2 S12 J12
34 y34

+ (S12)2 (J21
34)2 + 2S21 S12 J11

34 J22
34 + (S21)2 (J12

34)2 − 2(S21)2 (S12)2 (y34)2) ,
TII

3 = −1
8 (S21 J12

34 − S12 J21
34)(4K12

3 K12
4 + 2S21 J12

34 + 2S12 J21
34 − 5S12 S21 y34) ,

TII
4 = − 1

60 S12 S21
(
−10K12

3 K12
4 y34 − 5S21 J12

34 y34 − 5S12 J21
34 y34 + 16S12 S21 (y34)2

− 10J11
34 J22

34
)
,

TII
5 = 1

30 (S12)2(−10S21 J21
34 y34 + 4(S21)2 (y34)2 + 5(J21

34)2) ,
TII

6 = 1
30 (S21)2(−10S12 J12

34 y34 + 4(S12)2 (y34)2 + 5(J12
34)2) ,

TII
7 = − 1

60 S12 S21 y34 (−6K12
3 K12

4 − 3S21 J12
34 − 3S12 J21

34 + 8S12 S21 y34) ,

TII
8 = − 1

16 S12 S21 y34 (−S21 J12
34 − S12 J21

34 + 2S12 S21 y34) ,

TII
9 = 1

16 S12 S21 y34 (S12 J21
34 − S21 J12

34) ,

TII
10 = (S12)2 (S21)2 (y34)2 . (4.14)

4.3.2 Free theory

The free theory result can be written as follows

〈O02(x1,S1)O02(x2,S2)O2(x3, y3)O2(x4, y4)〉 = K4422

10∑
k=1

gk(z, z̄)TII
k , (4.15)

Again, we will are not providing the explicit expression of the functions gk(z, z̄). In table 4
we show the summary of the operators exchanged in each tensor structure.

The result of acting with the chiral algebra map χ reads

χ
[
〈O02O02O2O2〉

]
K4422

≡ fO02O02O2O2(z) = 3
12 + N2 − 4

6(N2 − 1)

(
z2 + z2

(z − 1)2

)
. (4.16)
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k 1 3 4 5 6 7 9 10
τ = 2h h ≥ 2 h ≥ 2 h ≥ 2 h ≥ 2 h ≥ 2 h ≥ 1 h ≥ 1 h = 0 h ≥ 1
` even odd even even even even odd ` = 0 even

Table 4. Conformal primaries exchanged in the various structures gk(z, z̄) of the correlator
〈O02O02O2O2〉 in the free theory. Structures 2 and 8 are zero.

4.3.3 Ward identity and ambiguity

The Ward identities are specified by an uplift vector ~w and eight ambiguity vectors ~v (m).
The nonzero entries of the vector ~w read

w9(z, z̄) = −N
2 − 4

N2 − 1

(
ŵ9(z, z̄) + ŵ9

(
z

z − 1 ,
z̄

z̄ − 1

))
,

w10(z, z̄) = 1 + N2 − 4
N2 − 1

(
ŵ10(z, z̄)− ŵ10

(
z

z − 1 ,
z̄

z̄ − 1

))
,

(4.17)

where we have defined
ŵ9(z, z̄) = 8

3
(
z2z̄ + zz̄2) ,

ŵ10(z, z̄) = 1
3
(
z2z̄ + zz̄2 − 2zz̄

)
.

(4.18)

The expressions for the ambiguity vectors instead are given by

v
(m)
k (z, z̄) = δmk + v̂

(m)
k (z, z̄) , m = 1, . . . , 8 , (4.19)

with the nonzero entries of v̂(m)
k (z, z̄) being

−2v̂(1)
10 = v̂

(7)
10 = 1

30 ,

v̂
(3)
9 = 2 ,

−v̂(4)
9 = v̂

(5)
9 = v̂

(6)
9 = 8(z + z̄ − zz̄)

3zz̄ ,

− 1
30 − v̂

(4)
10 = v̂

(5)
10 = v̂

(6)
10 = 3zz̄ − 5z − 5z̄ + 10

15zz̄ .

(4.20)

As before, we can expand the uplift vector in conformal blocks to see what are the contri-
butions coming from the chiral algebra. We obtain the following result

w9(z, z̄) = N2 − 4
3(N2 − 1)

∞∑
`=1, odd

2`+3 `!(`+ 1)!
(2`− 1)! g`+2,` ,

w10(z, z̄) = g0,0 −
N2 − 4

3(N2 − 1)

∞∑
`=0, even

2` `(`2 + `+ 2)
(
(`− 1)!

)2
(2`− 1)! g`+2,` .

(4.21)

The above expressions show the presence of a tower of higher spin conserved currents in
both protected structures. As we remarked in section 3.3, these should disappear in the
interacting theory. We therefore have to tweak the ambiguity such that all the twist-two
contributions vanish with the exception of spin zero, one and two, which all belong to the
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O2 multiplet. Furthermore we also have to make sure that the OPE coefficient of g2,0 in
the (0, 2, 0) is not modified. As before, in order to achieve this in practice we make an
ansatz with a finite number of blocks for the ambiguities Am, we impose that the twist-two
contributions vanish up to a certain maximal spin `max, and then we extrapolate our results
for infinite `max.

The conjugation properties of the structures TII
k allow us to set to zero A8 and also

to set A5 = A6. Furthermore, since A4 and A5 exchange the same representation, we
can assume that they will be proportional to each other. After these remarks we can fix
the twist-four contributions of A4, A5 and A6 up to a single constant κ and the twist-two
contribution of A7. On the other hand, we cannot say anything about A1, A2 and A3.
Presumably the knowledge of the superconformal blocks would allow us to fix their twist-
four sector as well, but at the moment we do not have access to this information. All in
all, the ambiguities that could be fixed read

A5 = A6 = 1
κ
A4 = − 2(N2 − 3)

(κ− 2)(N2 − 1)g4,0 −
N2 − 4
N2 − 1

∞∑
`=2, even

2` (`+ 1)!(`+ 2)!
(2`+ 1)!(κ− 2) g`+4,` ,

A7 = − 40
N2 − 1 g2,0 .

(4.22)
The sum over spins can be performed with the methods described in appendix E.2. The
result is

A5(z, z̄) = N2 − 4
(N2 − 1)(κ− 2)

[
a(z, z̄) log(1− z̄) + a(z̄, z) log(1− z)

− 24 log(1− z) log(1− z̄)
]
− 2(N2 − 3)

(κ− 2)(N2 − 1)g4,0 ,

(4.23)

with
a(z, z̄) = zz̄

z − z̄

(
â(z) + â

(
z

z − 1

))
, â(z) = 12 + z2 . (4.24)

Notice that, while we chose A7 such that the OPE coefficient of tr(y · ϕ)2 matches
the free theory value, we did not do that for the other twist-two operators, namely the
R-current Jµ and the stress-tensor Tµν . Indeed their free theory values extracted naively
are incorrect as they are contaminated by superdescentants of the free Konishi operator
trϕ2 = A2Ā2[0; 0](0,0,0) which are lifted in the interacting theory. More precisely, at levels
2l = 2 and 2l = 4 the Konishi operator has a “fake” R-current and stress tensor descendant,
respectively: QlQl trϕ2. The true values differ from the free theory ones by a simple
multiplicative factor

λO02O02JµλO2O2Jµ = 1
3 λ

free
O02O02Jµλ

free
O2O2Jµ = − 32

3(N2 − 1) , (4.25a)

λO02O02TµνλO2O2Tµν = 1
5 λ

free
O02O02Tµνλ

free
O2O2Tµν = 16

45(N2 − 1) , (4.25b)

where the OPE coefficient of the current is taken from the structure TII
9 , the other struc-

ture in the (1, 0, 1) being zero. Getting the correct OPE coefficient for the twist-two
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k 1 2 3 4 5 6 7 8 9 10
(q, p, q̄) (222) (311) (400) (121) (202) (210) (020)

Table 5. Dictionary between the tensor structure TIII
k and the representation exchanged in the

(12)(34) OPE of 〈O2O02O02O2〉. The representations (311), (400), (210) are meant in combination
with their complex conjugate.

contributions will be crucial for the results of section 6 because they give the only singu-
lar contribution to the crossed correlator, which is consequently the only one picked up
the dDisc.

4.4 Correlator 〈O2O02O02O2〉

4.4.1 Tensor structures

The correlator 〈O2O02O02O2〉 is a permutation of the previous one, therefore it also has
ten different structures. The label assignment we chose is summarized in table 5 and the
associated tensor structures are given below. Unfortunately, the expressions look quite
involved so we will write down only a few structures.25

TIII
1 = 1

2800

(
−45K23

1 S23 K23
4 J32

14 + 63K23
1 S32 K23

4 J23
14 − 736K23

1 S32 S23 K23
4 y14 + 9(K23

1 )2 (K23
4 )2

+ 230S32 (S23)2 J32
14 y14 − 1120(S32)2 S23 J23

14 y14 + 16(S23)2 (J32
14)2 − 133S32 S23 J22

14 J33
14

+ 70(S32)2 (J23
14)2 + 2276(S32)2 (S23)2 (y14)2

)
,

TIII
6 = 1

144
(
−K23

1 S23 K23
4 J32

14 + 3K23
1 S32 K23

4 J23
14 − 16K23

1 S32 S23 K23
4 y14 + (K23

1 )2 (K23
4 )2

− 10S32 (S23)2 J32
14 y14 − 2(S23)2 (J32

14)2 + 15S32 S23 J22
14 J33

14 + 28(S32)2 (S23)2 (y14)2) ,
TIII

7 = 1
400

(
2K23

1 S32 K23
4 J23

14 − 4K23
1 S23 S32 K23

4 y14 + (K23
1 )2 (K23

4 )2 − (S23)2 (J32
14)2

− 2S23 S32 J22
14 J33

14 + 4(S23)2 (S32)2 (y14)2) ,
TIII

10 = 1
1008

(
K23

1 K23
4 + S23 J32

14 − 2S23 S32 y14
)2
. (4.26)

4.4.2 Free theory

The free theory result can be written as follows

〈O2(x1, y1)O02(x2,S2)O02(x3,S3)O2(x4, y4)〉 = K2442

10∑
k=1

gk(z, z̄)TIII
k , (4.27)

This is just like the previous correlator but in a different ordering. Since our convention
is to always consider the OPE (12)(34), here we are doing the conformal block expansion
in a different channel. Of course, crossing will relate the following results with those of
the previous subsection, but in a nontrivial way that will be explored in subsection 6.1. In
table 6 we show the summary of the operators exchanged in each tensor structure.

25The remaining ones will be provided in an ancillary file attached to the arXiv version of the paper.
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structure 1 2 4 6 7 8 10
τ = 2n+ 2 n ≥ 2 n ≥ 2 n ≥ 2 n ≥ 1 n ≥ 1 n ≥ 1 n = 0 n > 0

` all all all all all all 0 all
excluded (∆, `) (4, 0) (5, 1) (4, 0)

Table 6. Conformal primaries exchanged in the various structures gk(z, z̄) of the correlator
〈O2O02O02O2〉 in the free theory. Structures 3, 5 and 9 are zero.

The result of acting with the chiral algebra map χ reads

χ
[
〈O2O02O02O2〉

]
K2442

≡ fO2O02O02O2(z) = 1
24

(
f̂(z) + z2 f̂

(
1
z

))
, (4.28)

with
f̂(z) = N2 − 4

N2 − 1
4z

(z − 1)2 + 3z3

(z − 1)4 . (4.29)

4.4.3 Ward identity and ambiguity

The Ward identities are specified by an uplift vector ~w and eight ambiguity vectors ~v (m).
The nonzero entries of the vector ~w read

w6(z, z̄) = z2z̄2

(z − 1)2(z̄ − 1)2

(
3 (2zz̄ − z − z̄)

2 (z − 1)2(z̄ − 1)2 −
N2 − 4
N2 − 1(z + z̄)

)
,

w10(z, z̄) = 7zz̄
(z − 1)2(z̄ − 1)2

(3zz̄ (10zz̄ + 7z + 7z̄ − 24)
2 (z − 1)2(z̄ − 1)2

+ N2 − 4
N2 − 1(7z2z̄ + 7zz̄2 − 24zz̄ + 24)

)
.

(4.30)

The ambiguity vectors instead can be expressed as follows

v
(m)
k (z, z̄) = δmk + v̂

(m)
k (z, z̄) , m = 1, . . . , 5 ,

v
(m)
k (z, z̄) = δmk+1 + v̂

(m)
k (z, z̄) , m = 6, 7, 8 ,

(4.31)

with the nonzero entries of v̂(m)
k (z, z̄) being

v̂
(1)
6 = −3(4zz̄ − 5z − 5z̄)

10zz̄ , v̂
(1)
10 = 3(506zz̄ − 1225z − 1225z̄ + 4200)

50zz̄ ,

v̂
(2)
6 = −2

5 , v̂
(2)
10 = −214

25 ,

v̂
(3)
6 = −3

5 , v̂
(3)
10 = −321

25 ,

v̂
(4)
10 = −14 ,

v̂
(6)
10 = −63

25 ,

v̂
(7)
10 = −9 ,

v̂
(8)
10 = 54 . (4.32)
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i 1 2 3 4 5 6 7 8 9–12 13
(q, p, q̄) (404) (412) (420) (222) (230) (303) (040)

i 14–21 22–25 26–34 35 36 37 38–41 42
(q, p, q̄) (311) (121) (202) (210) (020) (101) (000)

Table 7. Dictionary between the tensor structure TIV
k and the representation exchanged in the

(12)(34) OPE of 〈O02O02O02O02〉. The representations (412), (420), (230), (311), (210) are meant
in combination with their complex conjugate.

From the vector ~w we can obtain the conformal blocks expansion of the protected sector.
Here is the result

w6(z, z̄) =
∞∑
`=0

(
N2 − 4
N2 − 1c6 + d6

)
g−2,2
`+4,` ,

w10(z, z̄) = 168(N2 − 4)
N2 − 1 g−2,2

2,0 +
∞∑
`=0

(
N2 − 4
N2 − 1c10 + d10

)
g−2,2
`+4,` .

(4.33)

with

c6 = 2`−1 ` `!(`+ 3)!
(`+ 1)(2`+ 1)! ,

d6 = (−1)`+12`−3 `(`+ 2) `!(`+ 3)!
(2`+ 1)! ,

c10 = −
7 · 2`−1(`+ 2)

(
7`(`+ 3) + 24

)
(`!)2

(2`+ 1)! ,

d10 =
7 · 2`−3(−1)`+1(`+ 1)(`+ 2)2(17`(`+ 3) + 72

)
(`!)2

(2`+ 1)! .

(4.34)

The only twist-two operator exchanged is precisely O2 since the representation ex-
changed in the structure TIII

10 is the (0, 2, 0). One can check that the coefficient is the same
as in the free theory so we do not have to modify anything. The other contributions are of
twist four and therefore we cannot say anything about the ambiguities Am.

4.5 Correlator 〈O02O02O02O02〉

4.5.1 Tensor structures

The correlator 〈O02O02O02O02〉 has 42 different structures exchanging 19 distinct repre-
sentations. The label assignment we chose is summarized in table 7 and the associated
tensor structures are given below. Here we introduce a shorthand notation

Si1j1k1l1
i2j2k2l2

≡
∏
n=1,2

S1inS2jnS3knS4ln . (4.35)
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For example S2143
2143 = (S12)2(S21)2(S34)2(S43)2. Unfortunately, the expressions look quite

involved so we will write down only a few structures.26

TIV
1 = 1

22680

(
224S2112

3443 + 224S2112
4343 − 21S2113

2443 + 112S2113
4423 + 224S2121

3443 + 224S2121
4343 − 21S2123

4143

− 21S2141
2343 + 112S2141

3342 − 21S2142
3143 + 3S2143

2143 + 112S2311
2443 − 1008S2311

3442 − 504S2311
4342 − 1008S2311

4423

− 504S2312
4413 − 504S2321

3441 − 252S2321
4341 + 14S2341

2341 − 504S2411
3423 − 252S2412

3413 + 14S2413
2413 − 252S3112

3442

− 504S3112
4342 − 1008S3112

4423 − 504S3121
3442 − 1008S3121

4342 − 504S3121
4423 + 112S3122

4143 + 14S3142
3142

+ 10080S3311
4422 + 2520S3312

4412 + 2520S3321
4421 + 2520S3411

3422 + 630S3412
3412 + 630S3421

3421 − 504S4112
4323

− 252S4121
4323 + 14S4123

4123 + 2520S4311
4322 + 630S4312

4312 + 630S4321
4321

)
,

TIV
37 = 1

5040

(
6S2112

3443 − 6S2112
4343 − 3S2113

2443 − 6S2121
3443 + 6S2121

4343 − 3S2123
4143 − 3S2141

2343 − 3S2142
3143 + 2S2143

2143

)
,

TIV
40 = 1

1344

(
S2113

2443 + S2123
4143 + S2141

2343 + S2142
3143 − S2143

2143

)
,

TIV
41 = 1

1344

(
S2113

2443 − S2123
4143 − S2141

2343 + S2142
3143

)
,

TIV
42 = S2143

2143 . (4.36)

4.5.2 Free theory

The free theory result can be written as follows

〈O02(x1,S1)O02(x2,S2)O02(x3,S3)O02(x4,S4)〉 = K4444

42∑
k=1

gk(z, z̄)TIV
k , (4.37)

Computing the free theory value of this correlator is somewhat challenging because each
operator is a sum of two terms each being a product of four fields (4.4). The number of
Wick contractions grows factorially and furthermore one has to take the traces over SU(N)
and SO(6) indices. In practice we computed the correlators with n O(dt)

02 and 4−n O(st,1)
02 ,

in some ordering, and then found the full correlator by permuting the points in the results.
In table 8 we show the summary of the operators exchanged in each tensor structure.
The result of acting with the chiral algebra map χ reads

χ
[
〈O02O02O02O02〉

]
K4444

≡ fO02O02O02O02(z) = 1 + f̂(z) + f̂

(
z

z − 1

)
, (4.38)

with
f̂(z) = z4 + 8(N4 − 7N2 + 13)

3(N2 − 4)(N2 − 1)
(
z + z2) . (4.39)

The rational function of N above will appear in the next subsection as well, so let us define
a shorthand for it

RN ≡
N4 − 7N2 + 13

(N2 − 4)(N2 − 1) . (4.40)

26The remaining ones will be provided in an ancillary file attached to the arXiv version of the paper.
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structure 1 2 4 6 7 11 12 13 18
τ = 2n n ≥ 4 n ≥ 4 n ≥ 4 n ≥ 3 n ≥ 3 n ≥ 4 n ≥ 3 n ≥ 2 n ≥ 3
` even odd even even odd even odd even even

structure 20 24 25 30 32 33 34 35 37
τ = 2n n ≥ 3 n ≥ 3 n ≥ 2 n ≥ 2 n ≥ 2 n ≥ 2 n ≥ 3 n ≥ 2 n ≥ 1
` odd even odd even even even odd odd even

structure 40 41 42
τ = 2n n = 2 n ≥ 3 n ≥ 1 n ≥ 1 n = 0
` ` ≥ 2, even even odd ` even ` = 0

Table 8. Conformal primaries exchanged in the various structures gk(z, z̄) of the correlator
〈O02O02O02O02〉 in the free theory. Structures 3, 5, 8–10, 14–17, 19, 21–23, 26–29, 31, 36 and
38–39 are zero.

4.5.3 Ward identity and ambiguity

The Ward identities are specified by an uplift vector ~w and 40 ambiguity vectors ~v (m). The
nonzero entries of the vector ~w read

w41(z, z̄) = 336
(
ŵ41(z, z̄)− ŵ41

(
z

z − 1 ,
z̄

z̄ − 1

))
,

w42(z, z̄) = 1 + ŵ42(z, z̄)− ŵ42

(
z

z − 1 ,
z̄

z̄ − 1

)
,

(4.41)

where we have introduced two functions which, calling ẑ ≡ z+ z̄ and using RN from (4.40),
read

ŵ41(z, z̄) = zz̄ẑ
(
z2 + z̄2)+ 8

3RN zz̄ (ẑ + 1) ,

ŵ42(z, z̄) = 1
2 zz̄

(
ẑ3 − 2 ẑ2 − 2zz̄ (ẑ − 1)

)
+ 4

3RN zz̄ (ẑ − 1) .
(4.42)

The ambiguity vectors instead can be expressed as follows

v
(m)
k (z, z̄) = δmk + v̂

(m)
k (z, z̄) . (4.43)

The expressions of the nonzero entries of v̂(m)
k (z, z̄) are quite lengthy so we report them

in appendix B. From the vector ~w we can obtain the conformal blocks expansion of the
protected sector. Here is the result27

w41(z, z̄) =
∞∑

`=1, odd

7
3

2`+2 `!(`− 1)!
(2`− 1)!

(
(`− 2)6 + 96RN

(
`2 + `− 1

))
g`+2,` ,

w42(z, z̄) = g0,0 −
∞∑

`=0, even

2` (`!)2

3(2`)!

(
(`− 1)4 (`2 + `+ 12)

12 + 8RN
(
`2 + `+ 1

))
g`+2,` ,

(4.44)
with RN defined in (4.40).

27(`− 1)n = (`− 1)`(`+ 1) · · · (`+ n− 2) is the Pochhammer symbol.

– 32 –



J
H
E
P
0
4
(
2
0
2
2
)
0
1
6

Here, as in the 〈O02O02O2O2〉 case, we have to resolve an ambiguity. Indeed there is
a tower of twist-two operators coming from the protected function f. In order to resolve
this ambiguity we impose that the twist-two contributions completely vanish and also that
the OPE coefficient of g2,0 in the (0, 2, 0) is the same as the free theory one. Furthermore,
we can make an assumption similar to the one made before. Namely, since structures
26–34 are associated to the same representation, we can assume their contributions to the
ambiguity to be proportional to each other. Actually, structures 28 and 31 can be set
to zero altogether since their tensor structures TIV

28 and TIV
31 are purely imaginary under

complex conjugation. Furthermore, if we assume also structure 34 to be proportional to
the others, the resolution of the ambiguity requires it to be set to zero, so we will directly
omit A34 from the ansatz below.28 This does not fix all the structures and leaves us with
a large ambiguity. We will however see in subsection 6.2 that some OPE data can still be
fixed unambiguously.

After the above remarks, we find that a minimal ansatz for the ambiguity reads as
follows

A33(z, z̄) = a
(33)
4,0 g4,0 +

∞∑
`=2, even

a
(33)
`+4,` g`+4,` ,

Am(z, z̄) = λm a
(33)
4,0 g4,0 + κm

∞∑
`=2, even

a
(33)
`+4,` g`+4,` , m = 26, 27, 29, 30, 32,

A37(z, z̄) = 4
3

7!
N2 − 1 g2,0 .

(4.45)

for some constants κm and λm — we have defined two independent sets of constants for the
spin zero and spin ` ≥ 2 part since the former does not follow the same pattern of the latter.
The coefficients a(m)

∆,` that follow from imposing the points discussed in subsection 3.3 are
given by

a
(33)
4,0 = − 143 · (5!)2 (N2 − 3)2

D({λm})(N2 − 4)(N2 − 1) ,

a
(33)
4+`,` = − 21450

D({κm})
2` `!(`+ 1)!

(2`+ 1)!
(
3 · 25(`2 + 3`+ 1

)
RN + (`− 1)6

)
, ` ≥ 2 ,

(4.46)

with

D({κm}) = 1662− 19305κ26 + 77220κ27 + 77220κ29 − 64922κ30 − 3198κ32 . (4.47)

As before, this expression can be resummed using the methods of appendix E.2, leading to

A33(z, z̄) = a
(33)
4,0 g4,0 + 1

D({κm})

[
zz̄

z − z̄

(
a(z, z̄) +RN b(z, z̄)− a(z̄, z)−RN b(z̄, z)

)
− 1716 · (5!)2RN log(1− z) log(1− z̄)

]
, (4.48)

28One can see from table 8 that this structure is different as it exchanges operators from twist six onward.
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with

a(z, z̄) = −21450 · (3!)2
(
â(z̄) + â

(
z̄

z̄ − 1

))
log(1− z) ,

b(z, z̄) = −143 · (5!)2
(

12 + b̂(z̄) + b̂

(
z̄

z̄ − 1

))
log(1− z) ,

â(z) = z4 ,

b̂(z) =
(
z + z2) .

(4.49)

The requirements discussed in subsection 3.3 also impose that A40 exchanges no twist-two
operators at all. The other components remain in principle arbitrary, including possibly
contributions to A26, . . . ,A34 that have twist higher than four and thus not proportional
to A33 found above.

Just like the discussion before equation (4.25), also here the OPE coefficients of the
stress tensor and R-current get a simple multiplicative factor with respect to their free
theory naive value

(λO02O02Jµ)2 = 1
3 (λfree

O02O02Jµ)2 = 7 · 28

N2 − 1 , (4.50a)

(λO02O02Tµν )2 = 1
5 (λfree

O02O02Tµν )2 = 32
45(N2 − 1) , (4.50b)

where the OPE coefficient of the current is taken from the structure TIV
41 , while the other

structures in the (1, 0, 1) do not have any twist-two contribution. As before, this is a
consequence of carefully studying the constraints stemming from the ambiguity resolution.
In this case the twist-two operators are not the only ones giving a singular contribution
in the crossed channel, and therefore the anomalous dimensions may depend on other
unknown terms. It is still true, however, that the large spin asymptotics is fixed and it
depends on these factors of 1/3 and 1/5.

5 Lorentzian inversion formula

5.1 Review of the Lorentzian inversion formula

Let us consider again a generic four-point function of quarter-BPS and/or half-BPS oper-
ators as in (3.18)

G(z, z̄,S1, . . . , S4) =
Nstr∑
k=1

gk(z, z̄) Tk(S1, . . . , S4)

gk(z, z̄) =
∑
∆,`

ak,∆,`g
∆12∆34
∆,` (z, z̄) .

(5.1)

The Lorentzian inversion formula [41] allows us to extract the s-channel OPE data directly
from the double discontinuity of the correlator in terms of the sum of two functions, analytic
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in the spin, depending on the two other channels contributions

ck(∆, `) = ctk(∆, `) + (−1)`cuk(∆, `) , (5.2a)

ctk(∆, `) =
κ̃

(∆12,∆34)
∆+` (−2)`

2

∫ 1

0

dz

z2
dz̄

z̄2 [(1− z)(1− z̄)]
∆34−∆12

2 ×

× κ∆12,∆34
4−2h (z)κ∆12,∆34

2h+2` (z̄) dDisc
[
z̄ − z
zz̄

gk(z, z̄)
]
,

(5.2b)

where we have introduced h = ∆−`
2 , κ̃(r,s)

β = Γ(β+r
2 ) Γ(β−r2 ) Γ(β+s

2 ) Γ(β−s2 )
2π2Γ(β−1)Γ(β) and

κ
(r,s)
β (z) = zβ/2 2F1

(
β − r

2 ,
β + s

2 ;β; z
)
. (5.3)

The function cuk(∆, `) can be easily obtained by its t-channel counterpart by replacing
∆1 ↔ ∆2 and gk(z, z̄) with

((1− z)(1− z̄))−
∆34

2 (MT
1↔2)kk′

[
gk′

(
z

z − 1 ,
z̄

z̄ − 1

)]
∆1↔∆2

, (5.4)

where Mi↔j is the change of basis matrix between the original tensor structures and the
one with the indices i and j exchanged

Ti↔jk′ = (Mi↔j)k′k Tk . (5.5)

The function ck(∆, `) encodes the OPE data: it is constructed in such a way that for
fixed integer spins it develops poles in correspondence of the dimensions of the exchanged
operators, whose residues represent the OPE coefficients according to

ck(∆, `) ∼
∆→∆ex

ak,∆,`
∆ex −∆ . (5.6)

Notice that the reconstruction of the OPE data through the inversion formula can be in
general trusted only for spin ` ≥ 2 [41]. However, in a large N expansion, higher orders can
suffer of worse ambiguities thus invalidating the results for a larger though finite number
of low spins [42]. The double discontinuity appearing in (5.2b) is defined as the difference
between the Euclidean correlators and its two possible analytic continuations around z̄ = 1,
namely

dDisc [gk(z, z̄)] = cos (πα) gk(z, z̄)− 1
2e

iπαg	k (z, z̄)− 1
2e
−iπαg�k (z, z̄) ,

α = ∆34 −∆12
2 .

(5.7)

Similarly to what was done in [42, 43], in order to reconstruct the s-channel OPE
we would like to employ only the information coming from the protected contributions in
the cross-channels and in our case encoded in wk of (3.21) together with the associated
ambiguity (3.23). To do so, we will not consider directly the dDisc of the correlator as it
is in (5.2b), but we will use crossing symmetry to re-express gk(z, z̄) as

gk(z, z̄) = (zz̄)
∆1+∆2

2

((1− z)(1− z̄))
∆2+∆3

2

(MT
1↔3)kk′ [gk′(1− z, 1− z̄)]∆1↔∆3

. (5.8)
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The same transformation has to be performed in cuk . At this stage, it is important to
mention that differently from the all half-BPS case, we might not be able to construct the
full tree-level correlator in this way. This is due to the fact that the only contribution
we can completely fix is the one coming from twist-two operators and the identity, when
present. Nonetheless we will try to draw some interesting conclusions about the anomalous
dimensions and OPE coefficients of non-protected operators appearing in the OPE involving
our quarter-BPS operators.

Let us now briefly review how the inversion formula is applied to our cases of interest.
First of all, the only terms with non vanishing dDisc that we are going to encounter are

dDisc
[(1− z̄

z̄

)λ]
= dDisc[eλ log( 1−z̄

z̄ )] =
(1− z̄

z̄

)λ
2 sin(πλ) sin(π(λ+ α)) . (5.9)

Also log(1 − z̄) appears in our expressions, but it is straightforward to see that its dDisc
vanishes. All the relevant integrals appearing in ctk(∆, `) then are going to be of the form∫ 1

0

dz̄

z̄2 (1− z̄)
∆34−∆12

2 κ∆12,∆34
2h+2` (z̄) z̄−

∆34
2 dDisc

[(1− z̄
z̄

)λ]
×∫ 1

0

dz

z2 (1− z)
∆34−∆12

2 κ∆12,∆34
4−2h (z)f(x(λ̃), z(λ̃), log z) ,

(5.10)

for some generic function f depending on the variables x(λ̃) = z−
∆34

2
(

z
1−z

)λ̃, z(λ̃) =
z−

∆34
2 zλ̃ and possible log z. Explicit computations of these integrals can be found in ap-

pendix D. We will further consider a large central charge c expansion for our correlators. At
c→∞ the dimensions and OPE coefficients of non-protected operators acquire corrections
with the respect to their bare values of the form29

∆k = ∆(0)
k +

γ
(1)
k,∆,`
c

+O(c−2) , (5.11a)

ak,∆,` = a
(0)
k,∆,` +

a
(1)
k,∆,`
c

+O(c−2) , (5.11b)

where we have defined the anomalous dimension γ(1)
k,∆,`. Accordingly, (5.6) gets expanded as

ck(∆, `) ∼ −
1
2

〈 a
(0)
k,∆,`

h− ∆(0)−`
2

〉
− 1
c

(
1
4

〈 a
(0)
k,∆,`γ

(1)
k,∆,`(

h− ∆(0)−`
2

)2〉+ 1
2

〈 a
(1)
k,∆,`

h− ∆(0)−`
2

〉)
+O(c−2) , (5.12)

where the brackets stand for averages over all the possible degenerate operators with the
same twist. From this formula it is clear that at order c0 we expect simple poles for
the h of the exchanged operators, whose OPE coefficients should recover the free theory
results computed at c → ∞. At the next order, double poles arise in correspondence
of those operators developing an anomalous dimension. Notice that the information one
can extract for this type of poles are not exactly the anomalous dimensions, but rather the
products 〈a(0)

k,∆,`γ
(1)
k,∆,`〉. Determining the γ(1)

k,∆,`’s by themselves would indeed require solving
a mixing problem at order c0 able to distinguish all the possible degeneracies. Finally the
simple poles at order c−1 take into account the corrections to the OPE coefficients.

29Notice that we have slightly changed notation, from a
(k)
∆,` to ak,∆,`.
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5.2 Half-BPS case

In the same spirit of subsection 3.4, let us first review the well-known example of four
half-BPS O2 operators and let us apply the inversion formula to this correlator without
relying on its expansion in superconformal blocks.

The way to proceed is the following: we start by considering the large c expansion
of (3.32) and then we plug this in (5.2b) after passing to the crossed channel as explained
before. The u-contribution can be obtained similarly. At order c0 we should be able to
recover the free theory coefficients and indeed we find that the exchanged operators have
twist four and higher and the corresponding a(0)

k,∆,` are exactly the expected ones. After
this preliminary check, we can try to extract corrections at order c−1. The anomalous
dimensions arise from those terms in the correlator proportional to log z once passed to the
t-channel. These are in fact the only contributions in (5.10) that can develop double poles.
Let us denote Γkh,` = 〈a(0)

k,∆,`γ
(1)
k,∆,`〉, with ∆ = 2h + `, for each tensor structure k in (3.25)

and let us define

Ξ(∆12,∆34)
t =

Γ
(
t− ∆12

2

)
Γ
(
t+ ∆34

2

)
4Γ (2t− 1) , Ξt ≡ Ξ(0,0)

t . (5.13)

Then our results read

Γ1
h,` = −4

5 Ξh+`Ξh−12`(1 + (−1)`)
(
h4 − 6h3 + 27h2 − 54h+ 136

3

)
for h ≥ 2 , ` ≥ 4 ,

Γ2
h,` = −4Ξh+`Ξh−12`(1− (−1)`)

(
h4 − 6h3 + 23h2 − 42h+ 32

)
for h ≥ 2 , ` ≥ 3 ,

Γ3
h,` = −8

5 Ξh,+`Ξh−12`(1 + (−1)`)
(
h4 − 6h3 + 21h2 − 36h+ 80

3

)
for h ≥ 2 , ` ≥ 2 ,

Γ4
h,` = −16

3 Ξh+`Ξh−12`(1 + (−1)`)(h− 2)(h− 1)
(
h2 − 3h+ 6

)
for h ≥ 3 , ` ≥ 2 ,

Γ5
h,` = −8Ξh+`Ξh−12`(1− (−1)`)(h− 2)(h− 1)

(
h2 − 3h+ 4

)
for h ≥ 3 , ` ≥ 0 ,

Γ6
h,` = −8

3 Ξh+`Ξh−12`(1 + (−1)`)(h− 3)(h− 2)(h− 1)h for h ≥ 4 , ` ≥ 0 .

(5.14)

For all the other values of the twist the anomalous dimensions simply vanish, while for the
remaining values of the spin our results do not agree with the ones of [11].30 Notice that
the exchange of either spin even or spin odd operators depends on the symmetry property
of the corresponding tensor Tk under the exchange 1↔ 2. To conclude, let us comment on
the anomalous dimensions of the operators transforming in the (0, 4, 0) representation of
SU(4), also known as 105, for which we do expect to recover the well known results — see
for example [42, 43]. In this case we can write

〈a(0)
6,∆,`γ

(1)
6,∆,`〉

〈a(0)
6,∆,`〉

= −(h− 3)(h− 2)(h− 1)h
(`+ 1)(2h+ `− 2) , (5.15)

30This is not an inconsistency since we recall that the inversion formula can fail for low spins.
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which does agree with (2.13) of [42] modulo shifting h → h + 2 and renaming h = n + 2.
At this same order the inversion formula also predicts corrections to the OPE coefficients.
According to (5.12) these are encoded in the residue associated to the simple poles. Quite
remarkably, they take a very simple form

〈a(1)
k,∆,`〉 = 1

2∂hΓkh,` , (5.16)

with the exception of

〈a(1)
4,∆,`〉 = −8

3 Ξ2+`(1 + (−1)`) for h = 2 , ` ≥ 2 ,

〈a(1)
5,∆,`〉 = −2Ξ2+`(1− (−1)`) for h = 2 , ` ≥ 0 ,

〈a(1)
6,∆,`〉 =


2
3 Ξ2+`(1 + (−1)`)
−Ξ3+`(1 + (−1)`)

for h = 2 , ` ≥ 0 ,
for h = 3 , ` ≥ 0 .

(5.17)

6 Results

6.1 OPE data in the O2 ×O02 OPE

The OPE data in the O2×O02 can be extracted by studying the correlator 〈O2O02O02O2〉.
However, the method of the inversion formula outlined above requires the knowledge of
the protected parts of its u- and t-crossed version. Therefore also 〈O02O02O2O2〉 will be
needed. Explicitly, we have to consider

ctk(∆, `) =
κ̃

(−2,2)
2h+2`(−2)`

2

∫ 1

0

dz

z2
dz̄

z̄2 [(1− z)(1− z̄)]2 κ−2,2
4−2h(z)κ−2,2

2h+2`(z̄)×

× dDisc
[
z̄ − z
zz̄

(zz̄)3

((1− z)(1− z̄))4

(
MT

III↔II

)
kk′
Wt
k′(1− z, 1− z̄)

]
,

Wt
k′(z, z̄) = w

〈O02O02O2O2〉
k′ (z, z̄) +A〈O02O02O2O2〉

k′ (z, z̄) ,

(6.1)

where MIII↔II allows to pass from the TIII
k to the TII

k basis. Similarly

cuk(∆, `) =
κ̃

(2,2)
2h+2`(−2)`

2

∫ 1

0

dz

z2
dz̄

z̄2 [(1− z)(1− z̄)]2 κ2,2
4−2h(z)κ2,2

2h+2`(z̄)×

× dDisc
[
z̄ − z
zz̄

(zz̄)3

((1− z)(1− z̄))3

(
MT

1↔3

)
kk′
Wu
k′(1− z, 1− z̄)

]
,

Wu
k′(z, z̄) = (1− z)(1− z̄)w〈O2O02O02O2〉

k′

(
z

z − 1 ,
z̄

z̄ − 1

)
,

(6.2)

where in the third line we have used (5.4) with M1↔2 = 1. Interestingly, by tracing back
the contributions to ct,uk (∆, `) from Wt,u

k (z, z̄), one discovers that the only operators that
contribute are the twist-two terms and the identity in 〈O02O02O2O2〉, which we were able to
completely fix. This consequently implies that there is no dependence on the undetermined
constant κ.
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Retracing the same steps of the all O2 case, we have first of all checked that we were
able to recover the disconnected OPE coefficients as given in the free theory.31 Then we
can pass to the study of anomalous dimensions. These can arise only from (6.1) since it
is the only piece containing log z terms once passed to the crossed channel. Excluding the
structures 3,5 and 9, which simply vanish (see table 6), we find

Γ1
h,` = −4

3(−2)`Ξ(−2,2)
h+` Ξ(−2,−2)

h−1 (h− 3)2h2 for h ≥ 4 ,

Γ2
h,` = −8

3(−2)`Ξ(−2,2)
h+` Ξ(−2,−2)

h−1 (h− 3)h
(
h2 − 3h+ 5

)
for h ≥ 4 ,

Γ4
h,` = −4

3(−2)`Ξ(−2,2)
h+` Ξ(−2,−2)

h−1 (h− 3)h
(
h2 − 3h+ 8

)
for h ≥ 4 ,

Γ6
h,` = −4

3(−2)`Ξ(−2,2)
h+` Ξ(−2,−2)

h−1

(
h2 − 4h+ 6

) (
h2 − 2h+ 3

)
for h ≥ 3 ,

Γ7
h,` = −8(−2)`Ξ(−2,2)

h+` Ξ(−2,−2)
h−1 (2h4 − 12h3 + 38h2 − 60h+ 25) for h ≥ 3 ,

Γ8
h,` = −8(−2)`Ξ(−2,2)

h+` Ξ(−2,−2)
h−1 (h4 − 6h3 + 21h2 − 36h+ 21) for h ≥ 3 ,

Γ10
h,` = −40

3 (−2)`Ξ(−2,2)
h+` Ξ(−2,−2)

h−1 (2h4 − 12h3 + 46h2 − 84h+ 63) for h ≥ 3 . (6.3)

Among all the possible representations exchanged in the OPE, the (1, 2, 1) seems rather
special. Indeed cu6(∆, `) vanishes at any order in the 1/c expansion and as a consequence
all the OPE data we can extract from the inversion formula will depend only on the
〈O02O02O2O2〉 correlator and thus take a very simple form

〈a(0)
6,∆,`γ

(1)
6,∆,`〉

〈a(0)
6,∆,`〉

= −
(
h2 − 4h+ 6

) (
h2 − 2h+ 3

)
(`+ 1)(2h+ `− 2) , h ≥ 3 . (6.4)

This observation suggests that this representation might be interpreted as the analogous of
the (0, 4, 0) in the all O2 case. Namely a representation where the superconformal block32

can be written as a single conformal block, possibly with shifted quantum numbers.
Let us now analyze the correction to the OPE coefficients

〈a(1)
1,∆,`〉 = (−2)`Ξ(−2,2)

h+` Ξ(−2,2)
h−1



−4(−1)`(`+1)(`+4)
(`+2)(`+3)

−4(−1)`(`+1)(`+6)
3(`+3)(`+4) − 64

3 + 1
2∂hΓ1

h,`

−2(−1)`(`+1)(`+8)
3(`+4)(`+5) − 136

3 + 1
2∂hΓ1

h,`

8(−1)`
(

1
(h+`−1)(h+`) −

1
(h−2)(h−1)

)
+ 1

2∂hΓ1
h,`

h = 3
h = 4
h = 5
h ≥ 6

31As discussed in appendix D, the inversion integrals contributing to cuk are not well defined for h = 1, 2,
in these cases we have resorted to the standard conformal block expansion to fix the a(0)

k,∆,`.
32By superconformal block in this context one usually means the familiar u−2g∆+4,` that appears in

the unprotected part of the O2 correlator. Here we are talking about the same object but expanded
in the full four-point function. In the all O2 case, all representations but the (0, 4, 0) have superblocks
consisting of sums of conformal blocks, each associated to a different superdescedant. The (0, 4, 0) is the
only representation where there is only a single superdescendant contribution, namely Q4Q4O, which has
the same spin as the superprimary and the dimension is increased by four.
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〈a(1)
2,∆,`〉 = (−2)`Ξ(−2,2)

h+` Ξ(−2,2)
h−1



12(−1)`(`+1)(`+4)
(`+2)(`+3) − 20

4(−1)`(`+1)(`+6)
(`+3)(`+4) − 188

3 + 1
2∂hΓ1

h,`
2(−1)`(`+1)(`+8)

(`+4)(`+5) − 272
3 + 1

2∂hΓ1
h,`

−24(−1)`
(

1
(h+`−1)(h+`) −

1
(h−2)(h−1)

)
+ 1

2∂hΓ1
h,`

h = 3
h = 4
h = 5
h ≥ 6

〈a(1)
4,∆,`〉 = (−2)`Ξ(−2,2)

h+` Ξ(−2,2)
h−1



−12(−1)`(`+1)(`+4)
(`+2)(`+3) − 16

−4(−1)`(`+1)(`+6)
(`+3)(`+4) − 112

3 + 1
2∂hΓ1

h,`

−2(−1)`(`+1)(`+8)
(`+4)(`+5) − 136

3 + 1
2∂hΓ1

h,`

24(−1)`
(

1
(h+`−1)(h+`) −

1
(h−2)(h−1)

)
+ 1

2∂hΓ1
h,`

h = 3
h = 4
h = 5
h ≥ 6

〈a(1)
6,∆,`〉 = (−2)`Ξ(−2,2)

h+` Ξ(−2,2)
h−1



−16 + 1
2∂hΓ1

h,`

−112
3 + 1

2∂hΓ1
h,`

−136
3 + 1

2∂hΓ1
h,`

+1
2∂hΓ1

h,`

h = 3
h = 4
h = 5
h ≥ 6

〈a(1)
7,∆,`〉 = (−2)`Ξ(−2,2)

h+` Ξ(−2,2)
h−1



−108(−1)`(`+1)(`+4)
(`+2)(`+3) − 240 + 1

2∂hΓ1
h,`

−36(−1)`(`+1)(`+6)
(`+3)(`+4) − 496 + 1

2∂hΓ1
h,`

−18(−1)`(`+1)(`+8)
(`+4)(`+5) − 544 + 1

2∂hΓ1
h,`

216(−1)`
(

1
(h+`−1)(h+`) −

1
(h−2)(h−1)

)
+ 1

2∂hΓ1
h,`

h = 3
h = 4
h = 5
h ≥ 6

〈a(1)
8,∆,`〉 = (−2)`Ξ(−2,2)

h+` Ξ(−2,2)
h−1



36(−1)`(`+1)(`+4)
(`+2)(`+3) − 144 + 1

2∂hΓ1
h,`

12(−1)`(`+1)(`+6)
(`+3)(`+4) − 272 + 1

2∂hΓ1
h,`

6(−1)`(`+1)(`+8)
(`+4)(`+5) − 272 + 1

2∂hΓ1
h,`

−72(−1)`
(

1
(h+`−1)(h+`) −

1
(h−2)(h−1)

)
+ 1

2∂hΓ1
h,`

h = 3
h = 4
h = 5
h ≥ 6

〈a(1)
10,∆,`〉 = (−2)`Ξ(−2,2)

h+` Ξ(−2,2)
h−1



−108(−1)`(`+1)(`+4)
(`+2)(`+3) − 560 + 1

2∂hΓ1
h,`

−36(−1)`(`+1)(`+6)
(`+3)(`+4) − 2960

3 + 1
2∂hΓ1

h,`

−18(−1)`(`+1)(`+8)
(`+4)(`+5) − 2720

3 + 1
2∂hΓ1

h,`

216(−1)`
(

1
(h+`−1)(h+`) −

1
(h−2)(h−1)

)
+ 1

2∂hΓ1
h,`

h = 3
h = 4
h = 5
h ≥ 6

(6.5)

Notice again the simplicity of the OPE coefficient associated to the (1, 2, 1) representation.

6.2 OPE data in the O02 ×O02 OPE

The analysis for the OPE data contained in the O02 × O02 OPE proceeds analogously,
with the difference that in this case we will consider only 〈O02O02O02O02〉. The relevant
ingredients are given in subsection 4.5.3. Another important difference with respect to
the previous case is that the twist-two operators and the identity are not the only ones
contributing to the dDisc, at order c−1. This makes the answer not completely fixed
and it introduces a dependence on the unknown coefficients κm, λm of equation (4.45).
Remarkably, these constants do not appear in c1(∆, `): the function corresponding to
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the structure (4, 0, 4). For this reason and to avoid clutter, we will report explicitly the
anomalous dimension and a(1)

k,∆,` just for this interesting case.33 We find that, starting at
twist τ = 10 (h ≥ 5) the operators exchanged in O02 × O02 transforming in the (4, 0, 4)
acquire an anomalous dimension

〈a(0)
1,∆,`γ

(1)
1,∆,`〉=−

1
9(−2)`

(
1 + (−1)`

)
Ξh+`Ξh−1(h− 4)6

(
(h+ `− 2)4(h2 − 3h− 2)

− 2
3(16(h+ `−1)(h+ `) + (h− 5)(h+ 2)(3(h+ `−1)(h+ `)− 2)− 8)

)
.

(6.6)
The first term corresponds to the contributions coming from the identity and the twist-two
operators and it is the leading one at large spin. The second term, on the other hand, may
receive corrections from twist-four operators that we could not fix in the ambiguity — for
instance the scalar of dimension four in the (0, 4, 0), or TIV

13 . For this reason we quote the
large spin asymptotic of the above result after having factorized away the free theory OPE
coefficient

〈a(0)
1,∆,`γ

(1)
1,∆,`〉

〈a(0)
1,∆,`〉

`→∞−−−→ −(h− 4)(h+ 1)
(
h2 − 3h− 2

)
`2

for h ≥ 5 . (6.7)

6.3 A note about the MRV limit

The simplicity of the result (6.7), and the fact that it does not depend on the κm, λm
constants, suggests that the representation (4, 0, 4) is the analog of the (0, 4, 0) in the
all O2 case, in the sense explained around footnote 32. Also note that the anomalous
dimensions start from twist ten, contrary to the ones in the other structures that start
from twist eight, which is the twist that one expects for a [O02O02]0,` operator. This is
indicative of a shift in the dimension of the conformal block. Roughly speaking, this means
that we expect the superconformal block in the structure TIV

1 to be proportional to g∆+2,`.
The analogy with the all half-BPS case can be made even more precise here. Indeed

we can devise an analog of the Maximally R-symmetry Violating (MRV) limit introduced
in [44]. In the s-channel this limit consists in sending y1 → y2. In our more general case
we have

y1 → y2 , S1 → S2 , S1 → S2 . (6.8)

Taking this limit on the tensor structures TIV
k yields

lim
1→2

TIV
k = δk1 (S23)2(S32)2(S24)2(S42)2 , (6.9)

namely it sends all structures to zero but the first, which is the one we are considering
here. Even though we did not study these correlators in Mellin space, analogously to the
findings of [44] we expect a zero in u at twist eight when taking the u-channel limit (which
is 1→ 3 instead of 1→ 2). Note that here we expect only one zero instead of two zeros.

33The results for all the other structures can be found in an ancillary Mathematica file attached to the
arXiv version of this paper.
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We further note that the same reasoning will not work for the 〈O2O02O02O2〉 because
no particular structure is isolated by taking the MRV limit. In that case however — as we
have seen in section 6.1 — the anomalous dimensions start from twist six anyway, so we
do not expect any additional zeros in Mellin space. Finally, taking the MRV limit (6.8) on
〈O02O02O2O2〉 precisely isolates the (0, 4, 0) representation. This is consistent with one’s
expectations since the long multiplets in that OPE will be the same as those exchanged in
the all half-BPS case.

7 Double trace correlators from higher-point Witten diagrams

7.1 Five-point function and the OPE

In this section we want to prove that the correlator 〈O02O2O2O2〉 is protected at lowest
nontrivial order in the 1/N expansion. This is not surprising since this correlator is “next-
to-extremal” but there is no available proof of it yet because the usual arguments only
apply to the half-BPS case [45–47]. In order to achieve that, we will look at the five-point
function 〈O2O2O2O2O2〉. The procedure will involve two steps: first we need to decompose
the five-point function into tensor structures that correspond to the exchange of a given
representation between the first two operators and secondly we need to take the OPE limit
and extract the most singular piece. Since, in the interacting theory, O02 is the lightest
operator in the (2, 0, 2) sector of the O2 × O2 OPE, the leading singularity as x1 → x2 is
guaranteed to give us the correlator that we need.

The five-point function was studied up to order 1/N3 in the supergravity limit in a
recent paper [9]. Let us report here their results for convenience. The free theory value at
finite N reads

〈O2(x1, y1) . . .O2(x5, y5)〉
∣∣
free ≡ G

(5)
free(x1, . . . , x5; y1, . . . , y5) =

= 2
√

2
N2 − 1

[ ∑
perm

Aijk,lm
x2
ijx

2
jkx

2
ki(x2

lm)2 + 2
N2 − 1

∑
perm

Aijklm
x2
ijx

2
jkx

2
klx

2
lmx

2
mi

]
,

(7.1)

where we defined

Aijk,lm = yij yjk ykiy2
lm , Aijklm = yij yjk ykl ylmymi , (7.2)

and the sums ∑perm are over all inequivalent permutations of five elements, each counted
once. The large N result in the supergravity approximation (namely the ’t Hooft coupling
λ being sent to infinity) instead is given by

〈O2(x1, y1) · · · O2(x5, y5)〉
∣∣
sugra = G(5)

free
∣∣ 1
N

+ 1
N3G

(5)
sugra , (7.3)

where G(5)
sugra is given in an auxiliary file of [9] and is a linear combination of the following

D-functions

G(5)
sugra ⊃

{
D11123 , D11233 , D11112 , D11222 , permutations

}
. (7.4)
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The D-functions with n labels represent an n-point contact Witten diagram or, in other
words, the integral of n bulk-to-boundary propagators

D∆1···∆n(x1, . . . , xn) =
∫ ∞

0

dz
z5

∫
R4

d4x
n∏
i=1

(
z

z2 + (~x− ~xi)2

)∆i

. (7.5)

The four-point function we want to match is shown at zero coupling in equation (4.7).
Since we only need to extract the most singular piece in the OPE we need only the follow-
ing term

O2(x1, y1)×O2(x2, y2)
∣∣
(2,0,2) = λO2O2O02

(
J∂3∂3

12
)2O02(x2, S3, S3) +O

(
x2

12
)
. (7.6)

Here we introduced a new notation: whenever a symbol ∂i replaces a label i in a tensor
structure — defined in (2.18) — we need to replace the polarization attached to that point
with a covariant derivative — defined in (A.7)

i→ ∂i ≡ yiM → DiM , Smi → ∂̄mi , Sim → ∂im . (7.7)

As we remarked before, the differential operators defined in (A.7) can only be applied to
(q, 0, q̄) or (0, p, 0) tensors. As we will explain in the next subsection, it is unnecessary to
know their explicit expressions anyway because we can always adopt the Casimir method
as in subsection 2.3.3.

7.2 Projecting on R-symmetry representations

In order to find our operators of interest we need to decompose the tensor structures Aijklm
and Aijk,lm into a basis of projectors associated to the representations exchanged in the
O2 × O2 OPE. Here it follows a systematic way to do it. In general the OPE can be
written as

O2(x1, y1)×O2(x2, y2) =
∑
OL

λO2O2OL
tOPE
OL (y1, y2,∂S0)
(x2

12) 1
2 (4−∆L)

OL(x2,S0) +O(x2
12) , (7.8)

with tOPE
OL being a differential operator in the polarizations S0 and the sum ranging over all

lightest operators of dimension ∆L within a given representation. If we use this equation
inside a five-point function we obtain

lim
x1→x2

(x2
12)

1
2 (4−∆L)〈O2(x1, y1)O2(x2, y2)O2O2O2〉

=
∑
OL

λO2O2OL t
OPE
OL (y1, y2,∂S0)〈OL(x2,S0)O2O2O2〉 .

(7.9)

Since tOPE
OL are essentially three-point functions, they satisfy the Casimir equation in the

first two points

C2(∂S1 , ∂S2) tOPE
OL (y1, y2; ∂S0) = C2 t

OPE
OL (y1, y2; ∂S0) . (7.10)

Therefore we can expand the five-point function 〈O2O2O2O2O2〉 into an arbitrary basis
of monomials in yij and then separate the various contributions by rotating into a basis
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which diagonalizes C2. In this particular case the quadratic Casimir is sufficient to fix all
the structures. For the representations in which pq = 0 we can alternatively apply the
differential operator directly on the four-point tensor structures. For example, considering
(2, 0, 2) one has34

tOPE
(2,0,2)(y1, y2, ∂S0 , ∂S0

) = 1
2932

(
J∂0∂0

12
)2
, (7.11)

which should act on the three different four-point structures of 〈O02O2O2O2〉. Here we
pick a simpler linear combination of the TI

k of (4.6) since we do not care about the rep-
resentations exchanged in the rest of the four-point function — note that we shifted the
point labels by one to the right

T̃I
1 = J00

34 J00
35 y45 , T̃I

2 = J00
34 J00

45 y35 , T̃I
3 = J00

35 J00
45 y34 . (7.12)

Calling E(2,0,2)
i the resulting five-point structures, we have

E(2,0,2)
1 ≡ tOPE

(2,0,2)T̃
I
1 = 10A123,45 + 20A145,23 + 20A245,13 + 2A345,12 − 5A12345

− 5A12354 − 5A12453 − 5A12543 − 20A13245 − 20A13254 ,

E(2,0,2)
2 ≡ tOPE

(2,0,2)T̃
I
2 = −10A124,35 − 20A135,24 − 20A235,14 − 2A345,12 + 5A12354

+ 5A12435 + 5A12453 + 5A12534 + 20A13524 + 20A14235 ,

E(2,0,2)
3 ≡ tOPE

(2,0,2)T̃
I
3 = 10A125,34 + 20A134,25 + 20A234,15 + 2A345,12 − 5A12345

− 5A12435 − 5A12534 − 5A12543 − 20A13425 − 20A14325 .

(7.13)

Similar computations can be done for the other representations. Once we have all of them,
we can expand the free correlator as follows

G(5)
free =

∑
2q+p≤4,
p even

∑
k

g
(q,p,q)
k (x1, . . . , x5)E(q,p,q)

k (y1, . . . , y5) . (7.14)

7.3 Remarks for finite N

Before showing the computation for 〈O02O2O2O2〉 at large N , let us make a few remarks
about the free theory at finite N . At zero coupling, the operator O02 is not the only one
appearing in the leading OPE singularity: there is also the Q2Q2 descendant of the free
Konishi K = tr ϕ2.35 This superdescendant, in terms of free fields, is precisely the pure sin-
gle trace contraction that we ignored when constructing the operator O02 in subsection 4.1.
Among the operators exchanged in the O2 × O2 OPE there are no other supermultiplets
that can have a dimension-four scalar transforming in the (2, 0, 2).

34The numerical factor in front is arbitrary. It was chosen to factor an overall constant multiplying (7.13).
35Note that this problem would also arise in perturbation theory at weak coupling, but not at large N

because the Konishi operator becomes heavy in the supergravity approximation.
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It follows that we should expect to find some (numerical) coefficients α1, α2 and α3
such that the following limit holds36

lim
x1→x2

3∑
k=1

αk T̃I
k(y1, . . . , y5)g(2,0,2)

i (x1, . . . , x5) =

= λO2O2O02 〈O02(x2,S2)O2(x3, y3)O2(x4, y4)O2(x5, y5)〉
+ λO2O2(Q2Q2K) 〈(Q

2Q2K)(x2,S2)O2(x3, y3)O2(x4, y4)O2(x5, y5)〉 ,

(7.15)

where the four-point functions on the right hand side are computed by Wick contractions.
The first one is given explicitly in (4.7). The OPE coefficient of O02 is known from [40] and
the one of the Konishi can also be inferred from the Â00,10 of [40], although we recomputed
it by using O(st,1)

02 of subsection 4.1 for self-consistency. They read37

λO2O2O02 = 1
2
√

6

(
1− 3

N2 − 1

)1/2
, (7.16a)

λO2O2(Q2Q2K) = 1
2
√

3
1√

N2 − 1
, (7.16b)

A simple computation shows that

α1 = α2 = α3 = 5
4 . (7.17)

The specific value of these coefficients depends on how we normalize the tensor structures
E(q,p,q)
i , therefore it is not meaningful. The important thing is that they do not depend on

xij nor on N .
Another possible pitfall, that we report just as a side note, has to do with the (0, 4, 0)

scalar. It contributes to the OPE via the following differential operator

tOPE
(0,4,0)(y1, y2, ∂y0) = 1

2732 y2
1∂0 y2

2∂0 , (7.18)

Unlike the previous case, there are no superdescendants that can contribute to this repre-
sentation at dimension four. Thus the exchanged operator must be the superprimary of
a half-BPS multiplet transforming in the (0, 4, 0). However, there are two distinct such
operators: one is an admixture of a single trace and a double trace operator and the other
is a pure double trace

O4 = 2
√
N2 + 1√

(N2 − 9)(N2 − 4)(N2 − 1)

(
tr(ϕ · y)4 − 2N2 − 3

N(N2 + 1)
(

tr(ϕ · y)2)2) , (7.19a)

O(dt)
4 =

√
2√

N4 − 1
(

tr(ϕ · y)2)2 . (7.19b)

The relative coefficient in (7.19a) is obtained by requiring that the two combinations are
orthogonal [48, 49] and the overall coefficients simply normalize the two-point functions

36Since ∆L = 4 the power of x2
12 vanishes.

37The first differs from [40] by a factor of 3/4 due to the normalization of the four-point tensor structures
of 〈O2O2O2O2〉. The latter was instead recomputed by Wick contractions directly.
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to one. As argued in [48], the three-point function 〈O4O2O2〉 should vanish. On the
other hand, from the conformal block expansion in [40] we see a nonzero OPE coefficient,
there called C2. By doing Wick contractions explicitly we see that the operator with
vanishing OPE coefficient is O4 and the one with coefficient C2 is O(dt)

4 . Therefore we
conclude that the operator exchanged in the O2 × O2 OPE is the pure double trace one.
If we match the OPE limit as explained earlier we again find simple numerical coefficients
α1 = α2 = α3 = 60.

7.4 OPE limit of the supergravity result

Now we are ready to take the OPE x1 → x2 limit of the supergravity result of [9]. From
the representation in (7.5) it is easy to take the limit at coincident points. Indeed, when
the right hand side converges, we have

lim
x1→x2

D∆1∆2∆3···∆n(x1, x2, . . . , xn) = D∆1+∆2 ∆3···∆n(x2, . . . , xn) . (7.20)

When the external dimensions are integers one can often compute the D-functions by
using some differential recursion relations. For example, the D-functions appearing in the
supergravity result of the five-point function can all be obtained by applying the following
recursion relations

D∆1···∆i+1···∆j+1···∆n = 2− Σ
∆i∆j

∂

∂x2
ij

D∆1···∆n , (7.21)

on the seed function D11112, where we defined Σ ≡ 1
2(∆1 + ∆2 + ∆3 + ∆4). The integral

D11112 is a one-loop pentagon diagram, known from [50, 51]. The same strategy works
also for four points. In that case, however, the seed function is taken to be D1111, which is
divergent. This obstacle is overcome by removing a divergent prefactor and applying the
recursion relations on the reduced function D1111, defined in appendix F.

Now we project onto the representation (2, 0, 2) using the tensors E(2,0,2)
k defined

in (7.13) and we add up the first two labels of the D-functions appearing in (7.4). It
is easy to see that most functions obtained this way can be written as derivatives acting
on D1111, using the relations in (7.21). In the (2, 0, 2) sector there are only two exceptions
up to permutations:

D3111(z, z̄) and D4112(z, z̄) . (7.22)

These functions are indeed divergent. We can see this using the representation found in [40]

D∆1∆2∆3∆4(z, z̄) = Γ(∆1 − s)Γ(∆2 − s)
(zz̄)s E∆1∆2∆3∆4(z, z̄) +D∆1∆2∆3∆4(z, z̄)reg. , (7.23)

where we introduced

s = 1
2(∆1 + ∆2 −∆3 −∆4) , s ∈ N ,

E∆1∆2∆3∆4(z, z̄) = Γ(∆3)Γ(∆4)
Γ(∆3 + ∆4)

s−1∑
m=0

(−1)m(s−m− 1)!(∆1 − s)m(∆2 − s)m(∆3)m(∆4)m
m!(∆3 + ∆4)2m

× um 2F1(∆2 − s+m,∆3 +m; ∆3 + ∆4 + 2m; z + z̄ − zz̄) ,
(7.24)
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and D∆1∆2∆3∆4(z, z̄)reg. is finite. In order to regularize the divergent D-functions we can
shift all dimensions by ε. The Γ(∆2 − s) function at the numerator is responsible for the
divergence. If we denote for convenience nε ≡ n+ ε, the regularized D functions read

D3ε 1ε 1ε 1ε(z, z̄) = 1
uε
− 2γE

u
+ v log v
u(1− v) +D3111(z, z̄)reg. ,

D4ε 1ε 1ε 2ε(z, z̄) = 1
uε
− 2γE

u
− v(1− v + v log v)

u(1− v)2 +D4112(z, z̄)reg. ,

D4ε 1ε 2ε 1ε(z, z̄) = 1
uε
− 2γE

u
+ 1
u(1− v) −

v (v − 2) log v
u(1− v)2 +D4121(z, z̄)reg. ,

D4ε 2ε 1ε 1ε(z, z̄) = 1
u2 ε
− 2γE

u2 −
1 + v

u(1−v)2 + v
(
(1−v)2−2u

)
log v

u2(1−v)3 +D4211(z, z̄)reg..

(7.25)

Notice that, unlike the regular part, the singular part of D4121 does not satisfy the
identities in (F.4) and to compute it we have to resort to the explicit formulas in [40]. Quite
nicely, the divergences cancel in the end result because the above D-functions appear only
through the following combination

aD4112 + bD4121 + cuD4211 + dD3111 ∼
a+ b+ c+ d

uε
+O(1) , (7.26)

with a+ b+ c+ d = 0.38,39 For the regular part of these D-functions we find

D3111(z, z̄)reg.= R1(z, z̄)
(

2Li2(z)− 2Li2(z̄) + log
(1− z

1− z̄

)
log(zz̄)

)
+

R2(z, z̄) log(zz̄) +R3(z, z̄) log ((1− z)(1− z̄)) ,

R1(z, z̄)= 2(z − 1)(z̄ − 1)
(z − z̄)3 ,

R2(z, z̄)= −z + z̄ − 2
(z − z̄)2 ,

R3(z, z̄)= (z − 1)(z̄ − 1)
zz̄

(
z + z̄

(z − z̄)2 −
1

z + z̄ − zz̄

)
,

(7.27a)

D4112(z, z̄)reg.= R̃1(z, z̄)
(

2Li2(z)− 2Li2(z̄) + log
(1− z

1− z̄

)
log(zz̄)

)
+

R̃2(z, z̄) log(zz̄) + R̃3(z, z̄) log ((1− z)(1− z̄)) + R̃4(z, z̄) ,

R̃1(z, z̄)= −6(z − 1)2(z̄ − 1)2(z + z̄)
(z − z̄)5 ,

R̃2(z, z̄)= 1
(z − z̄)4

(
z
(
z2(z̄ − 2) + z

(
5z̄2 − 16z̄ + 9

)
+ 9z̄ − 6

)
+ z ↔ z̄

)
,

R̃3(z, z̄)= (z − 1)2(z̄ − 1)2

zz̄

(
1

(z + z̄ − zz̄)2 −
z2 + 10zz̄ + z̄2

(z − z̄)4

)
,

R̃4(z, z̄)= (z − 1)(z̄ − 1)(z + z̄ − 4)
(z − z̄)2(z + z̄ − zz̄) .

(7.27b)

38As a side remark, one could do the same computation for the (0, 4, 0) and in that case the divergences
cancel in the same way but D3111 never appears, namely we have d = a+ b+ c = 0.

39Note that the cancellation of these divergences can be seen manifestly by using the representation of
the five-point Witten diagram in terms of box integrals [50]. We thank Xinan Zhou for point this out to us.
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The regular part of D4121(z, z̄)reg. and D4211(z, z̄)reg. can be obtained from the identities
in (F.4).

After having regularized all the D-function we can finally take the OPE limit and
explicitly see that the free theory result is perfectly matched at order 1/N3 and the non-
rational pieces in the D-functions all cancel each other. This observation supports con-
jectured claims that the three-point functions of all the exchanged short multiplets are
protected [9, 17]. The very same situation occurs when we select O(dt)

4 in the OPE of
O2 × O2, namely the supergravity result perfectly reproduces 〈O(dt)

4 O2O2O2〉free up to
order 1/N3.

8 Outlook

In this paper we have revived the study of quarter-BPS operators in the context of four di-
mensional N = 4 SYM. In particular we have found constraints imposed by the underlying
chiral algebra on the structure of the protected part of the four-point correlators, involving
one or more quarter-BPS operators. There are several directions that would be interesting
to pursue. We list some below.

Superconformal blocks: in order to fully exploit the power of superconformal symme-
try, it would be very useful and interesting to find the form of the superconformal
blocks. Differently from the half-BPS case [11], they are not known. Being them
eigenfunctions of the quartic and quadratic Casimir of the superconformal group, it
could be possible to explore the superspace approach to solve the eigenvalue problem.

Numerical bootstrap: it would be nice to explore the mixed correlator system using
numerical bootstrap techniques. Despite the fact that we do not use the full super-
conformal symmetry, it can still be possible to obtain information on the dimensions
and OPE coefficients of the intermediate non protected operators. In particular, this
method can be helpful to see if there are some OPE coefficients which are protected.

Basis of function: it would be interesting to understand if the basis of D̄ functions is
enough to compute the correlators involving double trace operators. It has been
observed, in a holographic computation, that such a basis is not enough and needs
to be supplemented with more general functions [52]. We hope to be able to clarify
this point in the future.

Higher point functions: in this paper we have made a comparison with a five-point
correlator computation [9]. It would be very interesting to be able to use our results
together with supersymmetry constraints and more generally the results of [53], to
find some structures of the six-point correlators of half-BPS operators.

Triple trace operators: in the context of holographic computations to get the correc-
tions in the large central charge limit of the four-point correlators of O2 as in [54, 55],
the anomalous dimensions and the OPE coefficients of triple trace operators are
needed. It would be interesting to use the results of this paper for the leading twist,
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non protected, triple trace operator appearing in the OPE of O2×O02 and study the
constraints imposed by crossing symmetry given by its presence, at the level of the
four-point function.
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A Notation and conventions

A.1 Notation for R-symmetry structures

In this appendix we will show in detail the conventions used for tensor structures and
polarizations. In table 9 we summarize our naming convention for the various labels and
indices that appear throughout the manuscript.

The tensor structures in four dimensions are a function of a six-dimensional complex
vector y and two four-dimensional complex twistors S and S. The tensor structures in the
chiral algebra are instead functions of two spinors η and η̃ associated to the R-symmetry
and flavor SU(2) respectively. Since y has to contract symmetric traceless tensors, it is
subject to the constraints y · y = 0. Similarly, if we want to describe tensors of SU(4) with
Sm and Sm, we need to remove the traces by imposing S · S = 0. The polarizations η, η̃
do not need other constraints because they automatically square to zero.40

Let us first discuss the R-symmetry structures in four dimensions. Here follows our
convention for the six dimensional Clifford algebra

ΣA
mn =

(
0 −σA ε̂
σ̄A ε̌ 0

)
, Σ5

mn =
(
−iε̂ 0
0 iε̂

)
, Σ6

mn =
(
ε̂ 0
0 ε̂

)
. (A.1a)

Σmn
A =

(
0 −ε̂σA

ε̌ σ̄A 0

)
, Σmn

5 =
(
−iε̂ 0
0 iε̂

)
, Σmn

6 =
(
−ε̂ 0
0 −ε̂

)
, (A.1b)

where σA=1,2,3
aa′ are Pauli matrices, σ4

aa′ = iδaa′ , σ̄A = −(ε̂σAε̂)T , ε̂ = εab = −εab = ε̌ with
ε12 = 1. With this definition we can build the generators of SO(6)

(
ΣMN) n

m
= 1

4
(
ΣM
mp ΣN pn − ΣN

mp ΣMpn
)
,(

ΣMN)m
n

= 1
4
(
ΣMmp ΣN

pn − ΣNmp ΣM
pn

)
.

(A.2)

40See footnote 17.
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indices range polarization group representation
M,N 1, . . . , 6 yM SO(6)R
m,n 1, . . . , 4 Sm, Sm, ymn, ȳmn SU(4)R , ,
µ, ν 1, . . . , 4 SO(4)
A,B 1, . . . , 4 SU(2)R × SU(2)F ( ; )
a, b 1, 2 ηa, ηa SU(2)R ∼=
a′, b′ 1, 2 η̃a

′
, η̃a′ SU(2)F ∼=

I, J 1, . . . , N2 − 1 SU(N)gauge adj
i, j 1, . . . , 4 operator label
k 1, . . . , Nstr tensor structure label

Table 9. Conventions for the polarizations, indices of the various symmetry groups and other
labels.

These matrices can also be used to relate tensors in the adjoint of SU(4) with tensors in
the rank-two antisymmetric of SO(6). We can also map SO(6) fundamental indices to
antisymmetric SU(4) indices as follows

ymn ≡ yMΣM
mn , ȳmn ≡ yMΣMmn . (A.3)

Some useful identities of the Σ matrices are

ΣM
mnΣN np + ΣN

mnΣM np = δpmδ
MN , εmnpq ΣM

pq = −2ΣMmn (A.4a)
ΣP
mnΣP pq = 2εmnpq , ΣP

mnΣpq
P = 2

(
δqmδ

p
n − δpmδqn

)
. (A.4b)

If we have operators in the (q, p, q) where all Dynkin labels are nonzero the conditions
on the polarizations stated at the beginning are not enough and we need to impose further
constraints. The complete list is the following

y · y = 0 , S · S = 0 , yS = 0 , ȳS = 0 . (A.5)

As explained around (2.16), operators in the (q, p, q) will be fields with homogeneity p in
y and q in S, S

Opq(λS, λ̄S, κy) = (λλ̄)qκpOpq(S, S, y) . (A.6)

In order to recover the tensor form of this operator we must differentiate with respect to
the polarizations. However, we need to be careful because the polarizations are constrained
and so their derivatives are not free. The following differential operators can be used to
avoid this problem [19, 20, 22, 23]

DM =
(

2 + y · ∂
∂y

)
∂

∂yM
− 1

2yM
∂2

∂y · ∂y
,

∂m =
(

3 + S · ∂
∂S

+ S · ∂
∂S

)
∂

∂Sm
− Sm

∂2

∂S · ∂S
,

∂̄m =
(

3 + S · ∂
∂S

+ S · ∂
∂S

)
∂

∂Sm
− Sm ∂2

∂S · ∂S
.

(A.7)
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With the aid of the above operators we would like to write

(Opq)m1···mq
n1···nq ,M1···Mp

= ∂n1 · · · ∂nq ∂̄m1 · · · ∂̄mq DM1 · · · DMpOpq(S, S, y) . (A.8)

However, unfortunately, the operators do not implement the constraints yS = Sȳ = 0 and
so the derivatives are not free and the above expression does not hold unless either p or q
is zero.

The conventions for SU(2)R × SU(2)F are analogous to the usual spinor notation in
four dimensions [56] with the substitutions a → α, a′ → α̇, A → µ and the Euclidean
signature. An operator in the (R ;F ) will be a field with homogeneity R in η and F in η̃

OR,F (λη, λ̃η̃) = λRλ̃F OR,F (η, η̃) . (A.9)

Since there are no constraints on η and η̃, in order to recover the indices one simply needs
to take derivatives

(OR,F )a1···aR , a′1···a
′
F

= ∂

∂ηa1
· · · ∂

∂ηaR
∂

∂η̃a
′
1
· · · ∂

∂η̃a
′
F

OR,F (η, η̃) .

A.2 Convention for the conformal blocks

The OPE coefficients that we show in the text are meaningful only if we specify the nor-
malization of the conformal blocks. The definition that we use is the following

g∆,`(z, z̄) = g0,0
∆,`(z, z̄) , (A.10)

g∆12,∆34
∆,` (z, z̄) = zz̄

z − z̄
1

(−2)`
(
κ∆12,∆34

∆+` (z)κ∆12,∆34
∆−`−2 (z̄)− (z ↔ z̄)

)
, (A.11)

with

κa,bβ (z) = zβ/2 2F1

(
β − a

2 ,
β + b

2 ;β; z
)
. (A.12)

B Ward identities for the (2, 0, 2) four-point function

Here we show the nonzero entries of the vector v̂(m)
k (z, z̄) introduced in (4.43) in terms of

seven polynomials P1, . . ., P7 which we will define below

v̂
(1)
41 = 112P6P1[1]

15z3z̄3 , v̂
(1)
42 = P5

7560z3z̄3 ,

v̂
(2)
41 = −112P2

9z2z̄2 , v̂
(2)
42 = −P7P1[1]

6z2z̄2 ,

v̂
(3)
41 = − 56P2

9z2z̄2 , v̂
(3)
42 = −P7P1[1]

12z2z̄2 ,
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v̂
(4)
41 = 16P1[1]

zz̄
, v̂

(4)
42 =

P1
[2

3
]

+ 2
42zz̄ ,

v̂
(5)
41 = 8P1[1]

zz̄
, v̂

(5)
42 =

P1
[2

3
]

+ 2
84zz̄ ,

v̂
(6)
41 = 1008P1[1]

25zz̄ , v̂
(6)
42 =

3
(
P1
[17

28
]

+ 2
)

50zz̄ ,

v̂
(7)
41 = −112

15 ,

v̂
(8)
41 = 56

15 ,

v̂
(9)
41 = 2P3

z2z̄2 , v̂
(9)
42 = P4

336z2z̄2 ,

v̂
(11)
41 = 28P1[1]

15zz̄ , v̂
(11)
42 =

P1
[4

7
]

+ 2
360zz̄ ,

v̂
(12)
41 = 4 (7P1[1]zz̄ − P3)

15z2z̄2 , v̂
(12)
42 = −P7P1[1]

30z2z̄2 ,

v̂
(13)
42 = − 1

720 ,

v̂
(14)
41 = −

448P1
[8

7
]

5zz̄ , v̂
(14)
42 = −

2
(
P1
[2

3
]

+ 2
)

15zz̄ ,

v̂
(15)
41 =

224P1
[8

7
]

5zz̄ , v̂
(15)
42 =

P1
[2

3
]

+ 2
15zz̄ ,

v̂
(17)
41 =

56P1
[6

7
]

5zz̄ , v̂
(17)
42 =

P1
[2

3
]

+ 2
60zz̄ ,

v̂
(18)
41 = 128P1[1]

225zz̄ , v̂
(18)
42 =

4
(
P1
[2

3
]

+ 2
)

4725zz̄ ,

v̂
(19)
41 =

56P1
[6

7
]

5zz̄ , v̂
(19)
42 =

P1
[2

3
]

+ 2
60zz̄ ,

v̂
(20)
41 = − 128

1575 ,

v̂
(21)
41 =

16P1
[10

9
]

5zz̄ , v̂
(21)
42 =

P1
[2

3
]

+ 2
210zz̄ ,

v̂
(22)
41 = 7 , v̂

(22)
42 = − 1

144 ,

v̂
(24)
42 = − 1

432 ,

v̂
(25)
41 = −7

3 ,

v̂
(26)
41 =

42P1
[4

3
]

5zz̄ , v̂
(26)
42 =

P1
[ 8

15
]

+ 2
80zz̄ ,

v̂
(27)
41 = −168P1[1]

5zz̄ , v̂
(27)
42 = −

P1
[11

15
]

+ 2
20zz̄ ,

v̂
(29)
41 = −168P1[1]

5zz̄ , v̂
(29)
42 = −

P1
[11

15
]

+ 2
20zz̄ ,

v̂
(30)
41 = 6356P1[1]

225zz̄ , v̂
(30)
42 =

227
(
P1
[497

681
]

+ 2
)

5400zz̄ ,
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v̂
(32)
41 = 1148P1[1]

825zz̄ , v̂
(32)
42 =

41
(
P1
[ 68

123
]

+ 2
)

19800zz̄ ,

v̂
(33)
41 = −7756P1[1]

10725zz̄ , v̂
(33)
42 = −

277
(
P1
[574

831
]

+ 2
)

257400zz̄ ,

v̂
(34)
41 = −14

75 ,

v̂
(35)
41 = −6

5 , v̂
(37)
42 = − 1

2520 ,

v̂
(38)
41 = 2 , v̂

(38)
42 = − 1

672 ,

v̂
(40)
42 = − 1

1344 . (B.1)

The polynomials appearing in the above expressions are given by

P1[a](z, z̄) = azz̄ − z − z̄ ,
P2(z, z̄) = 11z2z̄2 − 27z2z̄ + 18z2 − 27zz̄2 + 18zz̄ + 18z̄2 ,

P3(z, z̄) = 108z2z̄2 − 259z2z̄ + 168z2 − 259zz̄2 + 168zz̄ + 168z̄2 ,

P4(z, z̄) = 88z2z̄2 − 259z2z̄ + 168z2 − 259zz̄2 + 686zz̄ − 336z + 168z̄2 − 336z̄ ,
P5(z, z̄) = 979z3z̄3 − 4872z3z̄2 + 7560z3z̄ − 3780z3 − 4872z2z̄3 + 17304z2z̄2 − 18900z2z̄

+ 7560z2 + 7560zz̄3 − 18900zz̄2 + 7560zz̄ − 3780z̄3 + 7560z̄2 ,

P6(z, z̄) = 13z2z̄2 − 45z2z̄ + 45z2 − 45zz̄2 + 45z̄2 ,

P7(z, z̄) = (z − 2)(z̄ − 2) .
(B.2)

C Proof of vanishing of low-lying operators

In section 2 we argued that the simplest quarter-BPS operator of BB type is O02. In this
appendix we show why it is impossible to construct O11 and O21 and why O(st,2)

02 in (4.1b)
vanishes as well.

Let us start from the first two. Both of these operators must be written solely out of
the six scalars in ϕM . The latter case has potentially two options: it could be of single
trace type

O(st)
21 (S, S, y) = tr

(
ϕM1ϕM2ϕM3ϕM4

)
S · ΣM1M4 · S yM2yM3 , (C.1)

or the analogous one with (M1M3)(M2M4) pairing. Or it could be of double trace type

O(dt)
21 (S, S, y) = tr

(
ϕM1ϕM2) tr(ϕM3ϕM4

)
S · ΣM1M4 · S yM2yM3 . (C.2)

The second trivially vanishes as can be shown by a (14)(23) permutation, recalling that
the ΣM1M4 are antisymmetric. The first also vanishes in SU(N) due to the fact that the
generators are Hermitian and the trace of four of them is real, which implies

tr(T I1T I2T I3T I4) = tr(T I4T I3T I2T I1) . (C.3)
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The former case instead can only be single trace since it has three fields

O11 = tr
(
ϕM1ϕM2ϕM3

)
S · ΣM1M3 · S yM2 . (C.4)

This operator would seem allowed, however a quick computation shows that its two-point
function identically vanishes and thus the operator must be absent in a unitary theory.

We will now show why the single trace operator in (4.1b) actually vanishes. For
simplicity let us rewrite here is explicit form

O(st,2)
02 = ϕM1

a ϕM2
b ϕM3

c ϕM4
d tr(T aT bT cT d)S · ΣM1M3 · S̄S · ΣM2M4 · S̄ . (C.5)

The SU(N) generators satisfy two important identities

fabef cde = 2
N

(δacδbd − δadδbc) + dacedbde − dadedbce , (C.6)

fabedcde + f cbeddae + fdbedace = 0 , (C.7)

where dabc is a totally symmetric tensor and fabc is the completely antisymmetric structure
constant. By using these relations one can write

tr(T aT bT cT d) = δabδcd

4N + 1
8(dabedcde + i dcdefabe + i dabef cde − fabef cde︸ ︷︷ ︸

using (C.6)

)

= δabδcd − δacδbd + δadδbc

4N + 1
8(dabedcde − daceddbe + dadedbce) + i

8(dabef cde + dcdefabe︸ ︷︷ ︸
using (C.7)

)

= δabδcd − δacδbd + δadδbc

4N + 1
8(dabedcde − daceddbe + dadedbce)

+ i

8(dabef cde − dacefdbe + dadef bce) (C.8)

Now that we have rewritten the trace appearing in O(st,2)
02 in this way, it is straightforward

to argue that given the antisymmetry under M2 ↔ M4 (or equivalently for M1 ↔ M3)
the first two terms in (C.8), being symmetric, they vanish. The last piece, instead, is
antisymmetric, so the same argument can not be applied. By using (C.7) it is possible to
rewrite this term of the trace as

dbaefdce − dbdef cae + dbcefade = −dabef cde − dbdef cae + dbcefade

= −dabef cde − (f bceddae + fdcedabe)− (f cdedbae + f bdedace)
= −dabef cde + dacefdbe − dadef bce ,

(C.9)

which is clearly antisymmetric under a ↔ b together with c ↔ d. However under the
corresponding simultaneous exchange of (1, 2)(3, 4) the SO(6) part is symmetric, so finally
their product vanishes.
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D Useful integrals for computing the inversion formula

In this appendix we collect all the relevant computations necessary to obtain the OPE
coefficients and anomalous dimensions in section 6.

Let us start from the z̄ integral in (5.2b). Since in the studied examples we have at
most log(1− z̄), which has vanishing double discontinuity, we will only focus on

I∆12,∆34(λ) =
∫ 1

0

dz̄

z̄2 (1− z̄)
∆34−∆12

2 κ∆12,∆34
2h+2` (z̄) z̄−

∆34
2 dDisc

[(1− z̄
z̄

)λ]
, (D.1)

where we recall that we have defined h as half the twist 2h = τ = ∆ − `. This integral
can be performed by replacing the hypergeometric function in κ∆12,∆34

2h+2` (z̄) with its integral
transform by introducing a fictitious integration variable V and then by performing the
change of variables z̄ → T

(T−1)V+1 . The result is

I∆12,∆34
λ =

2Γ(2(h+ `))Γ
(
h+ `− ∆34

2 − λ− 1
)

Γ
(
h+ `− ∆12

2

)
Γ
(
h+ `− ∆34

2

)
Γ
(
h+ `+ ∆34

2 + λ+ 1
)×

× sin(πλ)Γ(λ+ 1) sin
(
π

∆34 −∆12
2 + πλ

)
Γ
(
−∆12

2 + ∆34
2 + λ+ 1

)
(D.2)

=
2π2Γ(2h+ 2`)Γ

(
h+ `− ∆34

2 − λ− 1
)

Γ(−λ)Γ
(

∆12
2 −

∆34
2 −λ

)
Γ
(
h+`− ∆12

2

)
Γ
(
h+`− ∆34

2

)
Γ
(
h+`+ ∆34

2 +λ+1
) ,

where in the second line we have assumed λ < 0 and we have used Euler’s reflection formula
Γ(1− x)Γ(x) = π/ sin(πx). Notice that the Γ functions that appear are regular for all the
relevant values of λ and ∆i. Translated to ck(∆, `) this means that the z̄ integral just
provides the spin dependence of the OPE data that we want to extract and does not give
us any information about the twist of the possible exchange operators.

The information we are after is instead encoded in the z integrals. These can be
distinguished in three different types

I∆12,∆34
1 (λ) =

∫ 1

0

dz

z2 (1− z)
∆34−∆12

2 κ∆12,∆34
4−2h (z)

[(
z

1− z

)λ
z−

∆34
2

]
, (D.3a)

I∆12,∆34
2 (λ) =

∫ 1

0

dz

z2 (1− z)
∆34−∆12

2 κ∆12,∆34
4−2h (z)

[
zλz−

∆34
2

]
, (D.3b)

I∆12,∆34
3 (λ) =

∫ 1

0

dz

z2 (1− z)
∆34−∆12

2 κ∆12,∆34
4−2h (z)

[
log z

(
z

1− z

)λ
z−

∆34
2

]
. (D.3c)

In all these cases λ has to be considered positive and we are assuming h ∈ N, h ≥ 1.41 The
first integral can be computed similarly to the z̄ one and gives

I∆12,∆34
1 (λ) = −

πr∆12,∆34
h,λ sin

(
π
(

∆12
2 + h

))
sin
(
π
(

∆34
2 + h

))
sin
(
π
(
−∆34

2 + h+ λ
))

sin(2πh) sin(πλ) sin
(
π
(

∆12−∆34
2 + λ

))
sin
(
π
(

∆34
2 + h− λ

)) ,

(D.4)
41When solving these integrals spurious poles can appear at half integer values of h. We will ignore them

having in mind that they can be cancelled by adding a reflected block with h→ 1− h [41, 42].
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where we have collected ratios of Γ functions appearing throughout these computations in
a single function

r∆12,∆34
h,λ =

Γ
(
h+ ∆12

2 − 1
)

Γ
(
h+ ∆34

2 − 1
)

Γ
(
h− ∆34

2 + λ− 2
)

Γ(2h− 3)Γ(λ)Γ
(

∆12
2 −

∆34
2 + λ

)
Γ
(
h+ ∆34

2 − λ
) . (D.5)

We are now going to analyze in detail the poles that I∆12,∆34
1 (λ) develops and the corre-

sponding residues for all the values of the external dimensions appearing in the main text.

• ∆12 = ∆34 = 0: we have simple poles for h = λ+ 1 + n, n ∈ N with residues

Resh=λ+1+nI0,0
1 (λ) = −r0,0

λ+n+1,λ . (D.6)

• ∆12 = −∆34 = −2: we have simple poles for h = λ+ n, n ∈ N with residues

Resh=λ+nI−2,2
1 (λ) = −r−2,2

λ+n,λ . (D.7)

• ∆12 = ∆34 = 2: we have simple poles for h = λ+ 1 + n, n ∈ N with residues

Resh=λ+nI2,2
1 (λ) = −r2,2

λ+n,λ . (D.8)

There is a small caveat in this case: the function r2,2
h,λ is not well defined for λ = 1

at h = 1, 2. More generally it is not possible to properly define the residue of the
corresponding integral for these specific values. To overcome this problem, in the
main text, when computing the contributions from 〈O02O2O02O2〉 to 〈a(0)

k,∆,`〉, we
have used the usual expansion in conformal blocks. These results seem to suggest
that Resh=1,2I2,2

1 (1) = 0, as well as Resh=2I2,2
1 (2) = 0.

Moving to the second kind of integral, the integration can now be performed by replac-
ing the hypergeoemetric function contained in κ∆12,∆34

4−2h with its series representation. By
resumming the results after integration we get

I∆12,∆34
2 (λ) =

Γ
(

1
2(−∆12 + ∆34 + 2)

)
Γ
(
−∆34

2 − h+ λ+ 1
)

Γ
(
−∆12

2 − h+ λ+ 2
) ×

× 3F2

(
−∆12

2 − h+ 2 , ∆34
2 − h+ 2 , −∆34

2 − h+ λ+ 1
4− 2h , −∆12

2 − h+ λ+ 2 ; 1
)
.

(D.9)

By using some identities for the generalized hypergeometric function it is easy to study the
residues associated to this integral for the interesting values of the external dimensions.

• ∆12 = ∆34 = 0: we have simple poles for h = λ+ n+ 1, n ∈ N with residues

Resh=λ+n+1I0,0
2 (λ) = (−1)n+1r0,0

λ+n+1,λ . (D.10)

• ∆12 = ∆34 = 2: we have simple poles for h = λ+ nn ∈ N with residues

Resh=λ+nI2,2
2 (λ) = (λ− 2)(λ− 1)(−1)n+1

(λ+ n− 2)(λ+ n− 1)r
2,2
λ+n,λ . (D.11)

Notice that the residue vanishes for λ = 1, 2 for any twist.
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The last integral, the one containing log z, is the hardest one and it was not possible to
find a closed formula valid for any value of ∆12 and ∆34. Thus we will report only the
results necessary to reproduce the computations of the main discussion.

• ∆12 = ∆34 = 0: for λ > 0 and h ≥ 1

I0,0
3 (λ) = −

π2r0,0
h,λ

sin2(π(λ− h)) + π tan(πh) sin(π(h+ λ)))rh,λ
2 sin2(πλ) sin(π(λ− h)

(
Hh−λ +Hλ+h

− 2Hh −
1

λ+ h− 2 −
1

λ+ h− 1 −
1

λ+ h
+ 1
λ− h

+ 2
h− 1 + 2

h

)
,

(D.12)

where Hn = ∑n
k=1 1/k is the n-th harmonic number, or rather its analytic continua-

tion to the complex plane.

• −∆12 = ∆34 ∈ N > 0: for λ > 0 and h ≥ 1

I−∆34,∆34
3 (λ) =

−π2r−∆34,∆34
h,λ

sin2
(
π
(

∆34
2 − λ+ h

)) + Π(∆34)
h,λ r−∆34,∆34

h,λ

(
− 2

∆34 − 2λ+ 2h

+
∑
α=±1

( 2
2h+ α∆34 − 2 + 2

2h− α∆34

)
+

2∑
k=0

2
∆34 − 2(−k + λ+ h)

+H∆34
2 −λ+h +H−∆34

2 +λ+h −Hh−∆34
2
−H∆34

2 +h

)
,

(D.13)
where we have defined

Π(∆34)
h,λ =

π sin
(

1
2π(∆34 − 2h)

)
sin
(

1
2π(∆34 + 2h)

)
sin
(

1
2π(∆34 − 2(λ+ h))

)
sin(πλ) sin(2πh) sin(π(∆34 − λ)) sin

(
π
(

∆34
2 − λ+ h

)) .

(D.14)

In both cases notice the appearance of double poles: these are the signs of anomalous
dimensions.

E Useful tools for resolving the ambiguity

E.1 Recursion relations for conformal blocks

In subsection 3.3 we explained how to fix part of the ambiguity by imposing that some
twist-two operators vanish. The way in which this happens in practice is that a twist-
four addition to the ambiguity functions Am(z, z̄) can result into twist-two and higher
contributions to the correlator. This is a consequence of the entries of v(m)

k (z, z̄) which can
multiply the blocks and shift their dimension. An explicit example that shows how this
comes about was given in equation (3.28).

All these contributions with shifted twist can be obtained thanks to the recursion
relations satisfied by the conformal blocks. The special case with equal external dimensions
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was given in [11]. For a general scalar conformal block in four dimensions one has the
following recursion relations

1 + v

u
g

(a,b)
∆,` = − 1

2 g
(a,b)
∆−1,`−1 − 2g(a,b)

∆−1,`+1 −
(
J2 − a2)(J2 − b2

)
8(J − 1)J2(J + 1) g

(a,b)
∆+1,`+1

−
(
(τ − 2)2 − a2)((τ − 2)2 − b2

)
32(τ − 1)(τ − 2)2(τ − 3) g

(a,b)
∆+1,`−1+

+ ab
(
(∆− 2)2 + `(`+ 2)

)
(τ − 2)(τ − 4)(J − 2)J g

(a,b)
∆,`

(E.1a)

1− v
u

g
(a,b)
∆,` = 2g(a,b)

∆−2,` −
ab
(
a2 − J2) (J2 − b2

)
8(J − 1)J2(J + 1)(2− τ)(4− τ) g

(a,b)
∆+1,`+1+

+
(
J2 − a2) (J2 − b2

)
2(J − 1)J2(J + 1) g

(a,b)
∆,`+2+

+ 1
2

(
a2b2

(J − 2)J(τ − 2)(τ − 4) + 1
)
g

(a,b)
∆,` +

− ab
(
(τ − 2)2 − a2) ((τ − 2)2 − b2

)
32(J − 2)J(τ − 1)(τ − 2)2(τ − 3) g

(a,b)
∆+1,`−1+

+
(
(τ − 2)2 − a2) ((τ − 2)2 − b2

)
32(τ − 1)(τ − 2)2(τ − 3) g

(a,b)
∆,`−2+

+
(
(τ − 2)2 − a2) ((τ − 2)2 − b2

)
(J2 − b2)(J2 − a2)

128(J − 1)J2(J + 1)(τ − 1)(τ − 2)2(τ − 3) g
(a,b)
∆+2,`+

− 2ab
(J − 2)J g

(a,b)
∆−1,`+1 −

ab

2(τ − 2)(τ − 4) g
(a,b)
∆−1,`−1

(E.1b)

where a = ∆12, b = ∆34, τ = ∆− `, J = ∆ + ` and u = zz̄, v = (1− z)(1− z̄). These two
relations are sufficient for all cases considered here.

E.2 Resumming blocks with coefficients

The ambiguity resolution for the correlators 〈O02O02O2O2〉 and 〈O02O02O02O02〉 involves
an infinite family of conformal blocks of fixed twist

Am(z, z̄) =
∞∑
`=`0

aτ+`,` gτ+`,`(z, z̄) , (E.2)

with some given coefficients aτ+`,` and fixed integer τ . The goal of this appendix is to show
how to perform this type of sums. First we separate the z and the z̄ dependent parts by
multiplying the sum by z − z̄

(z − z̄)Am(z, z̄) = zz̄ κτ−2(z̄)
∞∑
`=`0

aτ+`,`
(−2)` κ2`+τ (z)− (z ↔ z̄) , (E.3)

Next we use the integral representation for the hypergeometric function inside κ2`+τ (z).
Under the assumption that the coefficients are suppressed enough to make the series con-
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vergent, we can swap the sum and the integral signs to obtain

S(z, t) = t
τ+b−1

2 (1− t) τ−b−1
2

(1− tz) τ−a2

∞∑
`=`0

aτ+`,`
(−2)`

Γ(2`+ τ)
Γ
(
`+ τ+b

2

)
Γ
(
`+ τ−b

2

) ( t(1− t)
1− tz

)`
, (E.4)

with a = ∆12 and b = ∆34. If the coefficients aτ+`,` come from a free theory OPE, we expect
their expressions to involve ratios of Γ functions and polynomials in `, possibly with some
(−1)`. If that is the case, the sum S(z, t) can be performed in terms of hypergeometric
functions. When τ is an integer, such hypergeometric functions will reduce to rational
functions. Then we only need to perform the final integration in dt over the interval [0, 1].

Am(z, z̄) = zz̄

z − z̄
κτ−2(z̄)

∫ 1

0
dt S(z, t) + (z ↔ z̄) . (E.5)

For this purpose, it is convenient to make the change of variables t = s−z
(s−1)z which makes

the integral somewhat easier to perform.

F D-functions

It is possible to strip a kinematic prefactor from the D-functions defined in (7.5) so as to
obtain a function of the cross ratios z, z̄ only. Furthermore we can also remove the pole in
Σ = 2 that renders D1111 ill defined. This leads to a “reduced” D-function denoted as D.
The standard definition is the following

D∆1∆2∆3∆4(z, z̄) = (x2
13)Σ−∆4(x2

24)∆2

(x2
14)Σ−∆1−∆4(x2

34)Σ−∆3−∆4

2 ∏4
i=1 Γ(∆i)

π2 Γ(Σ− 2) D∆1∆2∆3∆4(x1, . . . , x4) .

(F.1)
The recursion relations (7.21) can be written as derivatives with respect to z and z̄ of this
reduced function as follows [57, 58]

D∆1+1 ∆2+1 ∆3 ∆4 = (1− z)∂z − (1− z̄)∂z̄
z − z̄

D∆1∆2∆3∆4 ,

D∆1 ∆2 ∆3+1 ∆4+1 =
(
zz̄

(1− z)∂z − (1− z̄)∂z̄
z − z̄

+ Σ−∆1 −∆2

)
D∆1∆2∆3∆4 ,

D∆1 ∆2+1 ∆3+1 ∆4 = z∂z − z̄∂z̄
z − z̄

D∆1∆2∆3∆4 ,

D∆1+1 ∆2 ∆3 ∆4+1 =
(

(1− z)(1− z̄) z∂z − z̄∂z̄
z − z̄

+ Σ−∆2 −∆3

)
D∆1∆2∆3∆4 ,

D∆1 ∆2+1 ∆3 ∆4+1 =
(
z(z − 1)∂z − z̄(z̄ − 1)∂z̄

z − z̄
+ ∆2

)
D∆1∆2∆3∆4 ,

D∆1+1 ∆2 ∆3+1 ∆4 =
(
z(z − 1)∂z − z̄(z̄ − 1)∂z̄

z − z̄
+ Σ−∆4

)
D∆1∆2∆3∆4 . (F.2)

with Σ = 1
2(∆1 + ∆2 + ∆3 + ∆4). The seed D1111 is known in closed form and it reads

D1111(z, z̄) = 1
z − z̄

(
2Li2(z)− 2Li2(z̄) + log(zz̄) log

(
1− z
1− z̄

))
. (F.3)
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The D-functions satisfy the same permutation identities as conformal four-point functions.
Namely

D∆1∆2∆3∆4(z, z̄) =
(
(1− z)(1− z̄)

)−∆2D∆1∆2∆4∆3

(
z

z − 1 ,
z̄

z̄ − 1

)
,

=
(
(1− z)(1− z̄)

)∆4−Σ
D∆2∆1∆3∆4

(
z

z − 1 ,
z̄

z̄ − 1

)
,

=
(
(1− z)(1− z̄)

)∆1+∆4−Σ
D∆2∆1∆4∆3(z, z̄) ,

= D∆3∆2∆1∆4(1− z, 1− z̄) ,
= (zz̄)∆3+∆4−ΣD∆4∆3∆2∆1(z, z̄) .

(F.4)

They also satisfy the following identity [40]

D∆1∆2∆3∆4(zz̄) = DΣ−∆3 Σ−∆4 Σ−∆1 Σ−∆2(zz̄) . (F.5)

G Some comments on 〈O0qO0qO2O2〉

In section 4.3 we have discussed the correlator 〈O02O02O2O2〉 and we have enumerated all
the possible representations exchanged, as reported in table 3, and the corresponding tensor
structures TII

k . If now one considers a similar four-point function but with a generic quarter-
BPS operator O0q, as expected there is a proliferation of exchanged representations42

(q, 0, q)⊗ (q, 0, q) =
q⊕

δ=−q

2q−2|δ|⊕
n=0

2q−n−|δ|⊕
m=|δ|

m≡δ mod 2

µ(δ)
n,m (n+ δ + |δ|,m, n− δ + |δ|) ,

µ(δ)
n,m = min(n+ 1, 2q − |δ| − n−m+ 1) .

(G.1)

However, when considering the representations appearing in the intersection with (0, 2, 0)⊗
(0, 2, 0), (G.1) reduces to the ones in table 3 with the exact same multiplicities. This
observation tells us that the tensor structures in 〈O0qO0qO2O2〉 should be related to the
ones found for the q = 2 case and indeed we obtain43

T〈O0qO0qO2O2〉
k = (S12S21)q−2TII

k . (G.2)

Given the simplicity of the tensor structures a similar analysis as the one for the O02
case can be performed in this channel and we leave this to future works. Extending our
results to 〈O2O0qO0qO2〉 and eventually to 〈O0qO0qO0qO0q〉 seems instead way harder to
achieve and would require a more efficient way of dealing with the increasing number of
representations exchanged.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

42In order to find this expression we did explicitly the cases for q = 1, . . . 7 with LieART and tried to
extrapolate a reasonable pattern. We also checked that the dimensions agree for many values of q.

43Notice that this is not true for 〈O2O0qO0qO2〉.
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