. symmetry 22

Article

Geometric Linearization for
Constraint Hamiltonian Systems

Andronikos Paliathanasis

Special Issue
Symmetry in Hamiltonian Dynamical Systems

Edited by
Prof. Dr. Fernando Haas



https://www.mdpi.com/journal/symmetry
https://www.scopus.com/sourceid/21100201542
https://www.mdpi.com/journal/symmetry/stats
https://www.mdpi.com/journal/symmetry/special_issues/Symmetry_Hamiltonian_Dynamical_Systems
https://www.mdpi.com
https://doi.org/10.3390/sym16080988

symmetry

Article

Geometric Linearization for Constraint Hamiltonian Systems

Andronikos Paliathanasis

check for
updates

Citation: Paliathanasis, A. Geometric
Linearization for Constraint
Hamiltonian Systems. Symmetry 2024,
16,988. https://doi.org/10.3390/
sym16080988

Academic Editors: Fernando Haas

and Stefano Profumo

Received: 1 July 2024
Revised: 25 July 2024
Accepted: 2 August 2024
Published: 4 August 2024

Copyright: © 2024 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1,2,3

Institute of Systems Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
anpaliat@phys.uoa.gr

School for Data Science and Computational Thinking, Stellenbosch University, 44 Banghoek Rd,
Stellenbosch 7600, South Africa

Departamento de Matemaéticas, Universidad Catdlica del Norte, Avda. Angamos 0610, Casilla,
Antofagasta 1280, Chile

Abstract: This study investigates the geometric linearization of constraint Hamiltonian systems
using the Jacobi metric and the Eisenhart lift. We establish a connection between linearization and
maximally symmetric spacetimes, focusing on the Noether symmetries admitted by the constraint
Hamiltonian systems. Specifically, for systems derived from the singular Lagrangian L (N L5, qk) =

ﬁ gi]-qiq'f — NV(g*), where N and ¢’ are dependent variables and dim gij = n, the existence of @

Noether symmetries is shown to be equivalent to the linearization of the equations of motion. The
application of these results is demonstrated through various examples of special interest. This
approach opens new directions in the study of differential equation linearization.

Keywords: constraint Hamiltonian systems; linearization; exact solutions; Noether symmetries

1. Introduction

The theory of invariant infinitesimal transformations, known as Lie symmetry analy-
sis [1-3], is a powerful tool for the analytic treatment of nonlinear differential equations.
The concept of symmetry is based on the existence of invariant functions in the solution
space of the differential equations [4]. These invariant functions are mainly used to simplify
differential equations and to derive solutions [5-7]. Lie symmetry analysis systemati-
cally treats dynamical systems and has been widely explored in various areas of applied
mathematics; see, for instance, Refs. [8-19] and the references therein.

Symmetry in physics is crucial because it is related to conservation laws [20-22].
The conservation laws of momentum for free particles, energy for conservative systems,
Kepler’s laws of motion, and many others are connected to the infinitesimal transformations
that keep the differential equations invariant [5]. The existence of a sufficiently large number
of Lie symmetries for a given differential equation allows for the solution of the equation
by repeated-order reduction using similarity transformations or by determining a sufficient
number of first integrals [6]. Additionally, Lie symmetries can be used to classify dynamical
systems through their admitted invariant functions [7].

This latter characteristic is important for the concept of the global linearization of dif-
ferential equations via point transformations. Specifically, nonlinear differential equations
can be linearized if they admit a specific number of Lie symmetries [4], as will be detailed
in the following sections. In this study, we focus on the global linearization of a family of
constraint Hamiltonian systems. We derive a set of geometric criteria that allow us, for the
first time, to express nonlinear dynamical systems with fewer symmetries in a linear form.

We employ two different methods for the geometrization of non-relativistic dynamical
systems with conservative forces: the Einsenhart-Duval lift and the Jacobi metric. In the
Jacobi metric approach, the conservative force is absorbed in the kinetic terms, such that
the dynamical effects of the force are part of the new geometry that describes the dynamical
system. This is achieved by the reparametrization of the independent variables. There are
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various applications of the Jacobi metric for the study of dynamical systems [23-25], while
the method has been generalized for the description of relativistic systems [26,27]. For a
more general discussion, we refer the reader to [28].

On the other hand, in the Eisenhart-Duval method, the conservative forces are embed-
ded into an extended geometry by introducing new independent variables and degrees
of freedom. This method was introduced by Eisenhart in the early twentieth century [29]
and it was rediscovered later by Duval et al. in [30]. The Eisenhart-Duval method is the
nonrelativistic case of the Kaluza—Klein framework [31,32]. Due to the simplicity of the
method, it has been widely applied for the study of nonlinear dynamical systems. The
Eisenhart lift of two-dimensional mechanical systems with or without varying mass terms is
discussed in [33]. The superintegrability property of three-dimensional Newtonian systems
was investigated by using the Eisenhart lift in [34]. In [35], the Eisenhart lift is applied for
the study of the Toda chain in nearest-neighbor interacting particles on a line. The geodesic
description of the two fixed centers problem using the Eisenhart lift was studied in [36].

Nevertheless, the Eisenhart lift has been applied not only in classical mechanics but
also for the analysis of the Schrédinger [37,38] and the Dirac [39] equations of quantum
mechanics. There is a plethora of applications of the Eisenhart lift in relativistic physics
and cosmology; see, for instance, Refs. [40-42] and the references therein. The extended
minisuperspace via the Eisenhart lift for the study of quantum cosmology was introduced
in [43]. Recently, in [44], the Eisenhart lift was employed for the derivation of the analytic
solutions of the field equations in scalar field cosmology. It was found that the field
equations can be linearized in the framework of minimally coupled scalar field cosmological
theory for a Friedmann-Lemaitre-Robertson-Walker background geometry and for an
exponential potential for the description of the mass of the scalar field. Moreover, in [45], it
was found that the cosmological constant in the Friedmann-Lemaitre-Robertson-Walker
geometry can be recovered by means of the application of the hidden symmetries for the
extended minisuperspace in quantum cosmology.

Furthermore, in [46], the Eisenhart lift was employed to write the equation of mo-
tion for the oscillator in terms of a free particle. This is a well-known result provided
by symmetry analysis, which relates the two dynamical systems by sharing a common
symmetry group [47]. We remark that by geometrizing a given dynamical system, it is
feasible to employ important results from the differential geometry in a systematic way.
This property is considered in the following in order to perform geometric linearization for
a class of constraint Hamiltonian systems. We shall see that there exists a relation between
the geometric properties of the extended geometry in the Eisenhart lift and the admitted
symmetries of the original system. The structure of the paper is as follows.

In Section 2, we discuss the mathematical tools primarily applied in this study. In
particular, we discuss the Lie symmetry analysis for differential equations and we focus
on the case of a second-order differential. We also present Noether’s theorems, which
play an important role in the main analysis of this study. Furthermore, in Section 3, we
provide a literature review on the global linearization of differential equations through Lie
symmetry analysis.

The family of dynamical systems considered in this work is introduced in Section 4.
Specifically, we examine a family of dynamical systems described by a singular Lagrangian
function, leading to equations of motion where the Hamiltonian function is constrained.
Additionally, we discuss in detail two geometrization approaches for dynamical systems
within this family. Section 5 includes the main results of this study, where we derive a
new set of geometric conditions and criteria under which constraint Hamiltonian systems
can be transformed into an equivalent system of a free particles in a flat space, thereby
becoming linearizable.

We demonstrate the application of this geometric approach in Section 6, where we
explore the linearization of nonlinear dynamical systems of special interest in gravita-
tional physics. The geometric linearization of the Szekeres system with or without the
cosmological constant is discussed. Furthermore, we investigate the linearization of the
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minisuperspace for the gravitational model in a static spherically symmetric spacetime
with a charge, i.e., the exact solution for the Reissner—Nordstrom black hole metric can be
constructed via the solution of the free particle. Lastly, dynamical systems of interest in
Newtonian mechanics are discussed. Finally, in Section 7, we summarize our results.

2. Preliminaries

In this section, we briefly discuss the basic mathematical elements necessary for
this study.

2.1. Lie Symmetries of Differential Equations

In the following lines, we review the basic definitions for the Lie symmetry analysis of
ordinary differential equations.

Let us assume the n-dimensional dynamical system of pth-order differential equations
of the form

g1 =@ (Lt gt dt, q DT (1)

in which ¢ is the independent variable and 4’ denotes the dependent variables, ' = (¢%,4?,...,

gN). Moreover, a dot represents the total derivative with respect to the independent variable
t, ie.,
. dql B qui ( dyq
it M —
T T T a1 dti” @)
Consider the infinitesimal transformation
Fo= t+e(tg) 3)
7= q+er(td) 4)

with the generator vector field X = ¢ (t, qk> o+ 1 (t, qk> 9.
The vector field " is the uth-prolongation of g in the jet space Jy = {t, 4,4, id,...,q" }
defined as
XM =X+ qfl]aq.i + qu]aq.i +- 4 Ufﬂ]aq(”)i’ (5)
in which ’7f1]' ’7f2] ooy 17@1] are given by the following expressions:

my = i -4, 6)
My = iy~ ?)

®
My = ey — 9" ©)

Then, we say that the system of differential equations (1) will be invariant under the
application of the infinitesimal transformations (3), (4) if and only if there exists a function
A such that the following condition holds [4]:

[X[u],A] — A, (10)
where
{X[M],A} =xa_— axlH, (11)
and operator A is Hamilton’s vector
I L I NP Y i S e A AT
A—at+qaqi+qaqi+ +w(t,q,q,q,-..,q )aq(mi' (12)
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Condition (10) is known as the Lie symmetry condition, and X is a Lie point symmetry
for the dynamical system (1). ‘
Assume that f’ is a solution vector for the dynamical system (1), which is Af' = 0;

then, the Lie symmetry condition (10) becomes [X [u], A} f=AAf,ie, [4]
x(af') =o, (13)

or equivalently | | |
ﬂfﬂ} - X[V_l]a)l (t’ qk/ qk/ ‘7k, s q(H—l)l) . (14)

The solution of the latter linear system defines the functional form of the generator vector
X for the infinitesimal transformation (3) and (4).

2.2. Second-Order Differential Equations

In this study, we focus on second-order differential equations of the form [5]
éji =o' (t, qk, q’k). (15)
Therefore, the components 51, 2/ of the second prolongation read [5]

W =+ ' (g — ) — 4" (16)

My = e +2 (e — & )a + (Wl — 2800 ) 40" — 464 + (1 — 284 — 30" ) (17)

Thus, the symmetry conditions (14) become [5]

0 = niy+ 2<77,itk - C,tt)ﬂk + (Wfkr - 2C,tq)qqu
— 40 e+ (1 — 260 =380 ) (1.45,0)
oy — Wit — oty (i + 0l (a0 — &) — 1) (18)

Lie symmetries have numerous applications. They are used to derive invariant func-
tions and conservation laws. Furthermore, they are applied to categorize differential
equations and establish criteria for when differential equations are equivalent to a linear
differential equation under a point transformation. In the following lines, we discuss
Noether’s theorems for the construction of conservation laws and geometric linearization
through symmetries.

2.3. Noether’s Theorems

Let us turn our attention to the case where the second-order dynamical system (15)
arises from the variation of the action integral

S— / L(t,q,4)dt, (19)

where L(f,q,4) is the so-called Lagrangian function.

In 1918 [48], Emmy Noether published two groundbreaking theorems that relate the
symmetries of the variation principle to conservation laws in dynamical systems.

The first theorem states that if, under the application of the infinitesimal transforma-
tions (3), (4), there exists a function f such that the following condition holds

g _df

1] _
XWL+ L2 == (20)
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then X is called a Noether symmetry. It is evident that Noether symmetries are Lie sym-
metries for the dynamical system (15), but the converse is not necessarily true; in other
words, Noether symmetries form a subalgebra of Lie symmetries for the dynamical system.
The function f in (20) represents a boundary term introduced to account for infinitesimal
changes in the action integral due to infinitesimal changes in the boundary of the domain,
caused by infinitesimal transformations of the variables in the action integral.

Noether’s second theorem provides a systematic way to derive conservation laws.
In particular, if X = ¢d; + 10, is a Noether symmetry for the dynamical system (15), then
the function

, oL ;oL
<I>(t,q",qk)=é‘<qaof—L>—ﬂaqi+f, (1)

is a conservation law, i.e., A(®) = 0; consequently, X(®) = 0.
For a recent extended discussion of Noether’s theorems, we refer the reader to [49].

3. Linearization through Symmetries

One of the significant findings of Lie symmetry analysis is the linearization criterion for
a second-order ordinary differential equation. The linearization process is crucial because
it provides a method to express the analytic solution in terms of simple functions, thereby
offering a better understanding of the dynamics of the dynamical system.

Sophus Lie’s theorem states that if a second-order ordinary differential equation
4 = w(t,q,q) admits eight Lie symmetries forming the s/(3, R) Lie algebra, then there exists
a transformation that can bring the equation to the form of the free particle equation §” = 0.
For further discussion, see [50] and the references therein.

For third-order ordinary differential equations, various approaches have been de-
veloped to address their linearization. Criteria for linearization through the point and
contact symmetries of third-order differential equations have been established in [51,52].
Additionally, the Sundman transformation as a method for linearization has been studied
in [53,54]. More recently, the Cartan equivalency method was considered in [55], where a
straightforward procedure was established for the linearization of third-order differential
equations using a four-dimensional Lie algebra [55].

The linearization of higher-order ordinary differential equations through Lie sym-
metries has been extensively discussed in [47,56,57] and related references. However, the
linearization of partial differential equations holds special interest and has yielded many
important results, as seen in [58].

In the context of systems of nonlinear differential equations, the existence of trans-
formations that linearize these equations is highly significant, as it offers an alternative
approach to studying the integrability of dynamical systems. Due to the complexity of
the problem, various criteria have been proposed in the literature for the linearization
of higher-dimensional dynamical systems. For example, in [59], it was demonstrated
that a system of second-order differential equations admitting four Lie point symmetries
forming the A4 or Ay Lie algebra [60] can be transformed into a linear form through a
point transformation. Furthermore, the introduction of complex Lie symmetries has led to
new linearization criteria for systems of second-order ordinary differential equations, as
discussed in the series of studies [61-63].

Nevertheless, the linearization process is inherently a geometric approach. Therefore,
studies in the literature have shown that a system of differential equations is lineariz-
able based on specific geometric properties [64]. For systems of second-order ordinary
differential equations of the form

i+al, (t, qk)qsq-rqj I 5ij(t, q")qrqj + 9t (t, qk)qr + 0 (t, qk) =0,

the coefficients Déér i ‘Bij, 'ﬂ, 5% can be related to the connection coefficient of an extended
manifold [13], where, if the connection has zero curvature, i.e., the geometry is flat, then
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there exists a point transformation that linearizes the latter system. For some applications
of this method, we refer the reader to [65].

Recently, in [66], a novel approach to geometric linearization for a family of second-
order differential equations was discovered. It was found that this new family of dynamical
systems can be linearized by introducing new dependent variables. The solution of the
extended system can then be expressed in terms of solutions to linear equations. In a similar
vein, it was discovered that solutions to Einstein’s field equations for certain gravitational
models can also be represented in terms of linear equations [67].

In the following section, we establish a new geometric criterion for the global lineariza-
tion of a family of constraint Hamiltonian systems.

4. Constraint Hamiltonian Systems

We introduce the Lagrangian function
1 .
k k) — Y k
L(N, ¢ d") i 7 — NV(g), (22)

where g;; (qk> is a second-rank tensor with inverse ¢/, and N(t), ¢'(t) are the (1+ n)
degrees of freedom.

For the Lagrangian (22), it follows det’ agfiaLQB ’ =0, where Q% = (N(t),4'(t)). Hence,
the dynamical system described by the Lagrangian (22) is singular.
Variation with respect to the variable N(t) leads to the constraint equation g—k, =0,
ie.,
1 L
ngquq] + V(g =o0. (23)

We introduce the momentum p; = % gl-jqf ; thus, the latter constraint reads

1 ..
H(q,p) = 58"pipj + V(4" = 0. (24)

Function H(g, p) represents the Hamiltonian of (22), which is a constraint due to the
existence of expression (24). Dynamical systems described by Lagrangians of the form (22)
are of special interest in gravitational physics [68] and in other physical theories (see the
discussion in [69]). Nevertheless, any regular Hamiltonian system of the form

1 ..
Hr(q,p.h) = 58" pipj + U(d") = b, (25)

can be written in the singular form by absorbing the integration constant / inside the
potential, i.e., U(qk) =V(g*) —h.

An important characteristic of this family of constrained dynamical systems is their
invariance under time reparametrization. Below, we demonstrate this property.

The action integral related to the Lagrangian function (22) is

1 o
5= [ (ggei's =NV ) )

and the corresponding equations of motion are

|
L

i+ r;,kq/qk + V' —=2(InN)* <2gijq"q'] + V(qk)> 27)

|
L

1 e
TNzgiquq] +V(q") (28)
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or, due to the constraint equation, the second-order differential equation reads
i +Thd §* + V' =0, (29)
where F;'.k is the Levi-Civita connection related to the tensor g;;.
Under the change in the independent variable M(7)dt = dt, it follows that
~ ~ k qu ~
5= /L N, L )ar, N = N(@M(a), (30)
where
= < dgk 1 dgdg .
i kaq ) _ L eqaq 1
is the conformally related Lagrangian. The corresponding equations of motion are derived as
dq | gt
— + I ————4+V'=0. 2
a2 ke ar TV =0 2)
1 dq' dg/ X

It is evident that the equations of motion remain invariant under a time reparametrization
where the parameter N(t) does not affect the dynamical behavior of the constrained system.

Specifically, the conformally related Lagrangians L (N 45, qk) ,L (N 45, Z—f) have common
equations of motion.

4.1. Symmetry Analysis

The Lie and Noether symmetries for the constraint Hamiltonian systems with La-
grangians of the form (22) have been investigated in detail before in [70]. Owing to the
constraint (23), the symmetry analysis differs from that of regular systems; see, for exam-
ple, [71]. Indeed, for regular dynamical systems and for the equations of motion of the
form (29), the Lie symmetries are constructed by the elements of the projective algebra of
the connection l"jk. Additionally, Noether symmetries are linked to homothetic symmetries

of the metric tensor g;; [71].

Indeed, if ® (t, 7, ) is a conservation law for the dynamical system with Hamilto-
nian (24), it holds that
dd 09
E:§+{CD,H}—O, (34)
where {, } is the Poisson bracket.
Nevertheless in order to make use of the Hamiltonian constraint, the latter condition
can be relaxed such that
dd 0P

E:y—k{@,H}sz%O, (35)

in which y is a conformal factor.
Thus, from (35), it follows that the symmetries of constraint Hamiltonian systems are
determined by the conformal symmetries of the metric tensor g;; [70] .

4.2. Geodesic Description

The process of geometrizing dynamical systems of the form (22) involves formulating
the dynamical system as a set of geodesic equations, where the potential term can be
interpreted as part of the geometry. Two different approaches for this are the Jacobi metric
and the Eisenhart lift, both of which incorporate the potential, i.e., conservative forces, into
the geometry.
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In the Jacobi metric approach (for a recent discussion, see [28]), we introduce N = %,
such that the Lagrangian is
- 1 .
k -k .. —
L(q 4 ) = 5847 —1, &j = V()i (36)
Thus, the constraint Equation (23) becomes
1
Egijq ¢ +1=0 (37)

which means that Lagrangian (36) describes the time/space-like geodesic equations for the
conformal metric ;. It is well known that the geodesic equations of the metric §;;, which
can be linearized, are those of the flat space, i.e., Sij should be flat.

The Jacobi metric is obtained through a conformal transformation where §;; is con-
formally related to the metric tensor g;;. Conformally related spacetimes share the same
conformal symmetries, implying that the symmetries and conservation laws of the original
dynamical system also exist for the Jacobi metric. Notably, conformal symmetries in this
context transform into isometries. On the other hand, the Eisenhart lift approach involves
augmenting the dimensionality of the system [29,72].

Geometrization is achieved by introducing additional dimensions through new de-
pendent variables. The potential term becomes integrated into the newly extended metric
tensor. These extended spaces possess isometries that correspond to Noetherian conserva-
tion laws for the geodesic equations. When these conservation laws are applied within the
extended system, the original dynamics are recovered.

In the Eisenhart approach, we write the extended Lagrangian function

1 P 1
k -k D\ ey %)
Llift<N/q q ,Z,Z) = m(gl]qlq]—i_‘/(qk)z >, (38)
with the constraint equation and conservation law

1 ., 1
8iid'd + 2" =0,
/ V(4¥) V(q*)

z = Iy. (39)

Thus, by replacing the z = [y V (qk> in the equations of motion and the constraint equation,

. . 2
the original system is recovered when (Ip)” = 1.

The Lagrangian functions (38) describe a set of null geodesic equations in the extended
manifold with metric

1

A k k Z §Z

,z) = ;i ———0%0%, 40
8AB (q Z) 8ij (q ) + V(qk) A9B (40)
where A,B =1i,j...,z, are the indices of the extended geometry.

5. Geometric Linearization

In this section, we will establish new geometric criteria for the global linearization of
the equations of motion described by the Lagrangian (22).

We will utilize the two geometrization approaches described previously. Specifically,
for the equivalent Lagrangian (36) obtained through the Jacobi metric approach, we will
employ the Eisenhart lift. This allows us to describe the dynamical system using the
equivalent/extended Lagrangian function

- 1 1,
Lipt = 580 ¢ + 52° (41)

with constraints o
gid'd +22 =0, z=+1. (42)
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The Lagrangian (41) describes the equations of motion for the null geodesics of the
extended metric tensor §4p (qk, z) = gij (qk) + 6% 0%.
Consequently, if the metric tensor §4p is conformally flat, then there exists a point

transformation (qA,z) = Q4 such that SaB = 62u17 A, Where 145 is the flat space in
diagonal coordinates. Thus, the Lagrangian (41) and the constraint (42) become

Lise = U402 QF, (43)

14pQ4QF = 0. (44)

Therefore, after the change in the independent variable dt = e~2Udt, we obtain the equiva-
lent geodesic equations
0% =o, (45)

which are the equations of motion for the free particle in the flat space.
Thus, regarding the linearization of a dynamical system described by the singular
Lagrangian function (22), the following theorem can be stated.

Theorem 1. The n-dimensional, with n > 2, constraint Hamiltonian system described by the
Lagrangian function (22) is globally linearizable if one of the following equivalent statements is true.

(A) The admitted (non-trivial) Noether symmetries of the constraint Hamiltonian system
are "FY.

(B) The Jacobi metric g;; is maximally symmetric.

(C) The extended 1 + n decomposable space with metric §ap is conformally flat.

Proof. All statements of Theorem 1 are equivalent. As discussed before, if the extended
1+ n decomposable space with metric § 45 is conformally flat, then the equations of motion
are linearizable through point transformations in the space {q%,z}.

Nevertheless, § 4p is conformally flat if and only if the n-dimensional space with metric
ij is maximally symmetric (see Proposition 2 in [73]).

However, when §;; is maximally symmetric, it means that g;; admits @ isometries,

as many as the Noether symmetries for the original Lagrangian (22).
The inverse proof is straightforward. O

It is important to note that two-dimensional spaces are maximally symmetric when
they have a constant curvature. Conversely, three-dimensional spaces are conformally flat
when the Cotton—York tensor vanishes. Therefore, for the case of two-dimensional systems,
from Theorem 1, we derive the following corollary.

Corollary 1. The two-dimensional constraint Hamiltonian systems described by the Lagrangian
function (22) are globally linearizable if one of the following equivalent statements is true.

(A) The admitted Noether symmetries of the constraint Hamiltonian system total three.

(B) There exists a point transformation where the two-dimensional Jacobi metric can be written

as gij = diag (eZU(x,y),eZU(x,y)>, and U(x,y) is a solution of the equation Uxx + U, + 2xe* =0,

in which x is the curvature of the two-dimensional space and V (x,y) = e~ 2U(xy),

(C) The Cotton—York tensor Cpyx = Ryvx — Rygvu + %(R;Vgim — R;ng) for the three-
dimensional extended metric § o has zero components.

Corollary 2. The one-dimensional constraint Hamiltonian system described by the Lagrangian
function (22) is always globally linearizable for an arbitrary potential function.

Proof. Consider the one-dimensional constraint Hamiltonian system with Lagrangian func-
tion L(N, q,4) = 54> — NV(q). After the application of Jacobi and Eisenhart’s methods,
we find the equivalent dynamical system of null geodesics for the two-dimensional space.
All two-dimensional spaces are conformally flat, which means that the null geodesics can
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be globally linearizable. In particular, the extended two-dimensional space is described by

the decomposable line element ds*> = +~dq? + dz?. Thus, under the change in variable

Vi(g)
\ /ﬁdq = dY, it follows that ds?> = dY? + dz2, which is a flat space.

On the other hand, the Jacobi metric approach leads to the equivalent system of

time/space-like geodesic equations for the one-dimensional line element d3?> = —1-dg>.

V()
Because the one-dimensional space is the flat space, the point transformation , / %dq =dY

leads to the linearization of the dynamical system. [

6. Applications

In the following lines, we demonstrate the application of Theorem 1 for the geometric
linearization of Hamiltonian systems of special interest.

6.1. Exponential Interaction

Consider two particles that interact with an exponential law, similarly to that of the
Toda lattice. The Lagrangian that describes the dynamical system is

1
L1, 92,d2) = 5 (3 + ) — Voe2 T2, (46)

where the Hamiltonian function is H = h.
We introduce the equivalent singular Lagrangian

- . . 1, _
LN, q1,41,92.92) = 555 (tﬁ + q%) = N(Voe" ™ —h), (47)
with constraint equation
H= %(p% + p%) + Vet ™12 —h =0, (48)

in which p1 = Lh, p2 = 1/72.
We employ the Eisenhart lift and we write the equivalent Lagrangian of the form (38), i.e.,

- . . 1 2 1 .
Liist(N, 91,41, 92,42) = N ((cﬁ + q%) + (Voe‘ilbh—h)zz)' (49)

where the extended three-dimensional metric reads

1

2
—(Voe“ﬁ*% — h)dz . (50)

dsi g, = de; +dgs +
We calculate the Cotton—York tensor and we find that it is zero when & = 0. Thus, from
Corollary 1, it follows that the dynamical system can be written in the equivalent form of
the three-dimensional free particle of the flat geometry.
Under the conformal transformation d5%; £t = <y ds? fi and the change in variables

ix = —i(1+i)1nY+i(1—i)lnX, (51)

—_

iy = Z(l—i)(ilnX—lnY), (52)

the extended space d5%, 74 becomes

dslzift = %dXdY + dz22. (53)
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where the null geodesics read
X=0,Y=0,2=0, (54)
and the constraint equation is
1.
S XY +22=0. (55)

6.2. Two-Dimensional Oscillator with Corrections

We assume the following singular Lagrangian, which describes a two-dimensional
oscillator with correction terms:

L(N,x,%,v,1) = %(x%ry'z) +N(1+Z<x2+y2)>2. (56)

We calculate the Jacobi metric, i.e., the corresponding line element is of the form

1
14§02 +y2)7

ds%ﬂcobi = ( (de + d]/2> (57)

from which we observe that it is a space of constant x non-zero curvature, i.e., it is a
maximally symmetric space.
We employ Eisenhart’s lift and we write the equivalent extended Lagrangian

-2 -2
- L AR— %zz, (58)
(14 5(x2+y2))

. 1
Liist(N, x,%,y,y) = 5
with constraint
1 X2+ 12 1
2 K(y2 1 1,2))2 + 2
(T+5(2+y?)

For the three-dimensional extended space with line element

#? =0. (59)

dst ;g = dsTyeop; + d2° (60)

we calculate the Cotton—York tensor components, which are zero. Hence, the line element
(60) is conformally flat.
Under the change in variables

X(Z+ VZ2+16:(X +77)) Y(Z+ 72+ 16x(X2+Y7) )
e 26(X2+Y?) Y= 26(X2 1 Y?) o (6D
2 2 2 2
eVKz = o (X +¥7) B+ YY) +Z], (62)
Z+ 22 +16x(X2 +Y?) (Z—l— \/Z2+16K(X2+Y2)>

the three-dimensional space (60) reads
483 = VXD (aX2 4 ay? 4 dz?), (63)
with null geodesic equations
X=0,Y=0,Z=0, (64)

and constraint X2 + Y2 + Z2 = 0.
This two-dimensional linearizable example can be generalized to an n-dimensional
system in a similar way.
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Corollary 3. The n-dimensional dynamical system with Lagrangian

1 .. K .o\ 2
k sk) — ey A y..q0tq)
L(N,q,q) 2N<Ul]qq>+N(1+4<ﬂl]qq>) ’ (65)
can be linearized though the Jacobi metric and the Eisenhart lift.

6.3. The Szekeres System

Consider the two-dimensional dynamical system described by the regular Lagrangian
function [74,75]

. . .. [
Lg(u,1,0,0) = 10 — "y (66)
and equations of motion
ii+u2=0,9—20u3=0. (67)
Furthermore, the Hamiltonian function is
.. (4
H=uo+ 5 =h (68)
u

where & is a constant.

The system described above corresponds to the dynamics governed by the Einstein
field equations for Szekeres spacetimes, commonly referred to as the Szekeres system [76].
Szekeres spacetimes represent exact inhomogeneous solutions with a dust fluid and find
various applications in gravitational physics. For more detailed information, the interested
reader is referred to [77].

We introduce the equivalent singular Lagrangian function

L 0o v
L(N,u1t,0,0) = 37 = N( =5 —h), (69)
such that we write the original system in the form of a constraint Hamiltonian dynami-
cal system.

The latter singular Lagrangian for arbitrary parameter /# has no Noetherian symmetry.
In particular, it admits a hidden symmetry related to a quadratic conservation law [74].
However, for h = 0, Lagrangian (69) admits three Noether symmetries:

1
Xl = Eav ’ XZ = leau ’ X3 = Ua‘() + zuau' (70)

Thus, according to the first statement of Theorem 1, on the surface with h = 0, the equations
of motion can be linearized. Moreover, the solution space with initial conditions & = 0 is
equivalent to the equations of motion for the two-dimensional flat space.
Indeed, we employ Jacobi’s approach and, from (69), we define the equivalent geodesic
Lagrangian
L(u,1i,0,0) = %uv ~1L (71)

Hence, under the change in variables

d—bzl =dU, vdv =4V, (72)
u
it follows that
LUV, V) = UV —1, (73)

with the equations of motion
U=0 V=0 (74)

and the constraint equation
Uv+1=0. (75)
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6.4. The Cosmological Constant in the Szekeres Model

The introduction of the cosmological constant in the Szekeres model [78] leads to the
modification of the regular Lagrangian (66).
Specifically, the new dynamics follows from the Lagrangian function [79]

LR (u,1,v,9) = 10 — (% - Auv), (76)

in which A is the cosmological constant term.
In a similar approach as before, we introduce the singular Lagrangian function

LAN, u, 11,0,9) = 10 — (% — Auv — h) 77)

Thus, the Jacobi metric is defined as
1

ds? opi = < dudo. (78)
Jacobi <u% — Auv — h)

We calculate the Ricci scalar for the two-dimensional space, and it is

R _ 4(2+ Au®)h
Jacobi = 4 (0(Au® — 1) + hu?)’

(79)

Hence, for I = 0, the two-dimensional Jacobi metric (78) describes the flat space, i.e., the
equations of motion can be linearized though a point transformation.
Indeed, under the point transformation

I %” —dv, (80)

the Jacobi metric reads
d87 se0pi = AUV, (81)

which leads to the geodesic equations of the flat space, i.e.,

U=0,V=0. (82)

6.5. Static Spherical Symmetric Spacetime with Charge

Einstein’s gravitational field equations for a static spherical symmetric spacetime with
a charge are described by the variation of the singular Lagrangian [80]

2
LEN(N,a,d',b,,,{') = % <8ba’b’ + dab”? + 4Zg/z> +2Na, (83)
where N, a, b are the scale factors of the background geometry with line element
ds? = —a(r)2dt? + N(r)2dr® + b(r) (d92 + sin? 9d¢2), (84)

and a prime means a total derivative with respect to the independent parameter 7, i.e.,
a = %. Function { is related to the charge. The solution of the field equations is known as
the Reissner-Nordstrom black hole [81,82]

The kinetic term of the singular Lagrangian (83) is defined by a three-dimensional
space. The admitted Noether symmetries of Lagrangian (83) are calculated to be six [80];
they are [67]

X! = albaa, X? = —ad, + bdy — 207,



Symmetry 2024, 16, 988

14 of 18

a  z? 4
X3:—<2b+ab>aa+ab—ba€/

4 a2 ZZ

20 1
5 6 _

Therefore, case A of Theorem 1 states that the field equations can be written in the
equivalent form of the free particle. This transformation is derived before in [67], where the
common solution space for a large family of gravitational models is investigated.

We employ the Eisenhart lift and we write the extended line element

d2’”—1 8b da db + 4a db? 4b2d2 dy? 85
Slift = N adb+4adb” +4—dl" — = - (85)

and, under the point transformation

O X+Y z2 B z
”_\/X—Y+<X—Y>2’ o o

the latter line element becomes

s e (40 - Y 4 4 - ) <87>

where the corresponding null geodesics are written in the linear form
X'"=0,Y"=0,72"=0,¢" =0 (88)
and the Hamiltonian constraint is

X2 Y2422 - %/;2 =0. (89)

7. Conclusions

In this study, by using the Jacobi metric and the Eisenhart lift, we establish a new
criterion for the global linearization of constrained Hamiltonian systems. The requirements
for the dynamical system are to be in the form of (22) with the constraint expression (23).
The n-dimensional dynamical system must admit w Noether point symmetries, which
correspond to a number of M independent conservation laws. This property indicates
that the given dynamical system, constrained by Equation (23), posseses the property of
superintegrability.

The linearization of the dynamical system is achieved through geometry and is based
on the linearization of the equivalent system that describes the geodesic equations for an
extended geometry. The main result of this analysis is summarized in Theorem 1, where
three equivalent statements describe the number of admitted symmetries and the geometric
characteristics of the Jacobi metric and of the extended Eisenhart metric.

Two immediate results are given in Corollaries 1 and 2. Corollary 1 specifies the
statements of Theorem 1 for the case of two-dimensional dynamical systems, while Corol-
lary 2 states that all one-dimensional constraint Hamiltonian systems can be globally
linearized. This geometric linearization for one-dimensional systems is possible because
the two-dimensional extended Eisenhart space is always conformally flat.

To demonstrate the application of this new geometric approach, we present a series of
applications of special interest. We focus on two dynamical systems of analytic mechanics
and on some gravitational models. Specifically, we consider the Szekeres system, which
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describes inhomogeneous cosmological models with or without the cosmological constant
term, and the Reissner—-Nordstrom black hole.

A criticism that can be made is that this specific algorithm fails in the case of the sim-
plest maximally symmetric system, which is that of the n-dimensional harmonic oscillator
with Lagrangian

LN bk = Lpigi @R i
( f‘lfQ)—Zﬂz]qq 5 M- (90)

We should clarify that the geometric linearization discussed in this study is based
on the existence of symmetries generated by conformal symmetries of the metric tensor
gij, which defines the kinetic term in (22). As far as the symmetries of the oscillator (90)
are concerned, they are related to the projective algebra [83] and not to the conformal
algebra. Nevertheless, only the isometries are the common subalgebra for the projective
and conformal algebras. An alternative Eisenhart lift has been proposed in [66], where
the oscillator is reduced to the free particle. This is possible with the introduction of an
extended space that belongs to the pp-wave geometries. In this case, the dimension of the
extended space is increased by two and the resulting Eisenhart metric is conformally flat.

Thus, any dynamical system of the form (22), where an extended Eisenhart metric can
be constructed to be conformally flat, can be linearized. This means that Theorem 1 can be
generalized for other families of Eisenhart lifts.

This work opens new directions in the study of nonlinear differential equations and
demonstrates that geometry is a powerful tool for the study of dynamical systems.

A natural extension of this geometric consideration is to the study of the Klein-Gordon
equation, which describes the quantum limit of the constraint Hamiltonian system with
Lagrangian (22).

Specifically, the quantization of the constraint Hamiltonian (24) leads to the Yamabe
equation [84]

AY + V(qk)‘l’ —0, 91)
where
A—at "2 R 92)
N 4(n—1)

and A = ﬁ a%i <\/§g’7 %) is the usual Laplace operator, and R is the Ricci scalar for the

metric tensor g;; that defines the kinetic term and n = dim g;;. The introduction of the
second term in (92) is necessary in order for the equation to be invariant under conformal
transformations.

We demonstrate the application of the geometric approach in Equation (91). Let us
study the Yamabe equation for the Szekeres system (69) with i = 0. The equation that
describes the quantum system is

2

u (%

= (‘If,m, - ?‘I’) =0, ¥ = ®(u,0) (93)
Assume now the following equation:

2
%@M LD =0, D=D(u0,z). (94)

The vector field d; — i®dg, is a Lie symmetry for Equation (94). The corresponding invari-
ants are {u,v,® = Ye'*}. Thus, by replacing (94), we end with Equation (93).
Under the change in variables (72),and U = X + Y, V = X — Y, Equation (94) reads

q),XX - q),YY + q),zz =0, (95)

which is the wave equation for the three-dimensional flat space. Equation (95) is maximally
symmetric and admits ten Lie point symmetries plus the infinity symmetries related to
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the infinite number of solutions of the linear equation (for more details, we refer to [85]).
On the other hand, Equation (93) admits only three Lie point symmetries (plus the infinity
symmetries). Therefore, the symmetries of the maximally symmetric Equation (94), which
does not survive under the reduction with the invariants {u, v, d = Yeiz }, become nonlocal
symmetries, which can be used for the construction of new solutions for the inhomogeneous
Equation (93) related to solutions for the homogeneous Equation (95).

In a future work, we plan to investigate further this geometric consideration for the
analysis of other dynamical systems and of partial differential equations.
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