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Abstract

We consider oscillations of the dark energy effective equation of state wDE around
the phantom divide line wDE = −1 in the future evolution of viable cosmological
models in f(R) gravity. We present an analytical condition for the existence of an
infinite number of such oscillations and numerically determine the region of model
parameters where it is satisfied. It is shown that the amplitude of the oscillations
decreases very fast with the increase of the present mass of scalaron, which is the
scalar particle appearing in f(R) gravity. As a result, the effect quickly becomes very
small and its beginning is shifted to the remote future.

1 Introduction

f(R) gravity is a natural generalization of the Einstein gravity which can provide a self-consistent and
nontrivial alternative to the ΛCDM model of the present Universe [1–3], as well as a viable model of
inflation in the early Universe [4]. This theory adopts a new phenomenological function of the Ricci scalar
R, f(R). As compared to the Einstein gravity, it contains a new scalar degree of freedom, in quantum
language – a new scalar particle dubbed “scalaron” in [4]. Thus, this generalization is nonperturbative.
Scalaron is a massive particle which mass depends on R.

To distinguish f(R) gravity as the model for ”present Dark Energy (DE)” which is responsible for the
current cosmic acceleration (as opposed to ”primordial DE” which drove inflation in the early Universe)
from the standard ΛCDM model, it is useful to focus on two parameters, the effective equation-of-state
(EoS) parameter for dark energy wDE and the gravitational growth index γ. The latter is defined as
d ln δ/d ln a ≡ Ωm(z)γ(z) where δ ≡ δρm/ρm and Ωm ≡ 8πGρm/3H2 are matter density fluctuation and
density parameter for matter, respectively. In f(R) gravity, wDE is time dependent and γ is time and
scale dependent, whilst wDE ≡ −1 and γ ' 6/11 in the ΛCDM model. Viable f(R) models generically
exhibit crossing of the phantom divide wDE = −1, similar to a more general case of scalar-tensor gravity.
Time and scale dependency of γ generates an additional transfer function for matter density fluctuations
that constraints the region of viable model parameters [5–7].

It was noted recently that the EoS parameter wDE oscillates around the de Sitter solution in the
future evolution of viable f(R) models of dark energy[8]. However, it has not been clarified yet whether
the phantom crossing occurs infinitely many times or not, and under which condition. Although this
property is not observable since it refers to the remote future, it is very interesting from the theoretical
point of view. Here we derive this conditions for a general f(R) gravity, and present results of numerical
calculations for a specific viable model.
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2 Conditions

f(R) gravity is defined by the following action:

S =
1

16πG

∫
d4x

√
−gf(R) + Sm, (1)

where f(R) is a function of Ricci scalar and Sm denotes the matter action. Field equations are derived
as

Rµν − 1
2
gµνR = 8πG(Tµν + TDE

µν ), (2)

8πGTDE
µν = (1 − F )Rµν − 1

2
(R − f)gµν + (∇µ∇ν − gµν�)F, (3)

where F = df/dR and TDE
µν is the energy-momentum tensor for effective DE. The trace equation is

RF − 2f + 3�F = 8πGT. (4)

In de Sitter regime, matter density decreases rapidly as ρ ∝ e−3H1t. It follows from Eq. (4), that a
constant value of the Ricci scalar R = R1 = const. characterizing the de Sitter regime should be a root
of the algebraic equation

2f1 = R1F1, (5)

where f1 ≡ f(R1) and F1 ≡ F (R1). Effective dark energy at de Sitter regime is characterized by
8πGρDE,1 = −8πGPDE,1 = R1

4 , thus wDE,1 = −1.
To investigate stability of the de Sitter solution and to find the condition for the existence of oscillations

around it, we use the first order of perturbation theory with respect to δR ≡ R − R1. The evolution
equation for δR is derived from Eq. (4),

δR′′ + 3δR′ +
1

3H2
1

(
F1

FR1
− R1

)
δR =

8πGρm

3FR1H2
1

. (6)

where prime denotes the derivative with respect to number of e-folding N ≡ ln a = − ln(1 + z) and
FR1 ≡ FR(R1) ≡ dF (R1)/dR. We include the matter density term ρm = ρm0e

−3N into the right-hand
side since δRdec is much smaller than background quantities at the de Sitter stage.

The solution for Eq. (6) takes the form δR = δRdec + δRosc, where δRosc is the homogeneous solution
with an integration constant and δRdec = 8πGρm0

F1−R1FR1
e−3N is the special solution for the full equation.

Whilst δRdec is a monotonically decaying mode, δRosc may have oscillatory behaviour. The de Sitter
solution is future stable, dRosc → 0 for t → ∞, if the following stability condition is satisfied:

F1

FR1
> R1. (7)

Further, the criterion for the existence of an infinite number of oscillations around the de Sitter asymptote
for t → ∞ is obtained by setting negative the discriminant of the second order algebraic equation for
characteristic exponents of homogeneous solutions of Eq. (6):

F1

FR1
>

25
16

R1. (8)

If this condition is satisfied, δRosc = Ae−3N/2 sin(ωN + φ), where ω ≡ 2
√

F1
R1FR1

− 25
16 , and A and φ are

integration constants.
The perturbation of EoS parameter δwDE = (δPDE+δρDE)/ρDE,1 is calculated from 8πG(ρDE+PDE) =

−2Ḣ − 8πGρm. We decompose δwDE ≡ δwdec + δwosc as

δwdec =
4

R1

(
1

F1 − R1FR1
− 1

)
8πGρm0(1 + z)3 (9)

δwosc = A(1 + z)3/2 4
R1

[
−R1FR1

3F1
ω cos(ωN + φ) +

1
3

(
5R1FR1

2F1
− 1

)
sin(ωN + φ)

]
. (10)
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Figure 1: The parameter region γ(rb) < 0 < β(rb) corresponds to stable de Sitter solution without the
oscillatory behaviour.

3 The specific model

Hereafter, we consider the following viable cosmological model of present DE in f(R) gravity [3]:

f(R) = R + λRs

[(
1 +

R2

R2
s

)−n

− 1

]
, (11)

where n and λ are model parameters, and Rs is determined by the present observational data, namely, the
ratio Rs/H2

0 is well fit by a simple power-law Rs/H2
0 = cnλ−pn with (n, cn, pn) = (2, 4.16, 0.953), (3, 4.12, 0.837),

and (4, 4.74, 0.702), respectively[5].
From Eq. (5), the de Sitter curvature is given by

α(r) ≡ r + 2λ

[
1 + (n + 1)r2

(1 + r2)n+1
− 1

]
= 0, (12)

where r ≡ R1/Rs. It is obvious that the Minkowski space, r = 0, is one of the solutions. We denote
the other positive solutions for α(r) = 0 as ra ≡ R1a/Rs and rb ≡ R1b/Rs. We can estimate ra and rb

by considering limiting cases. For r � 1, α(r) ' r[1 − 2λ(n + 1)2r3], and for r � 1, α(r) ' r − 2λ.
Therefore, for large n and λ the de Sitter solutions are given by r = ra ' [2λ(n+1)2]−1/3 and r = rb ' 2λ.
Numerical analysis shows that this approximation is enough close to the exact answer even for n = 2 and
λ = 3.

Once one obtained the de Sitter solutions, one can check their stability and oscillatory behaviour
around them by using the stability condition and the oscillation condition derived in Eq. (7) and (8),

β(r) ≡ (1 + r2)[(1 + r2)n+1 − 2nλr]
2nλ[(2n + 1)r2 − 1]

− r > 0, (13)

γ(r) ≡ (1 + r2)[(1 + r2)n+1 − 2nλr]
2nλ[(2n + 1)r2 − 1]

− 25
16

r > 0. (14)

Since γ(r) = β(r) − 9r/16, there is no oscillation for the unstable de Sitter state, as it should be. From
these criteria, we note that r = ra and rb are unstable and stable, respectively.

For fixed n and various values of λ, we obtain λβ and λγ as roots of β(rb) = 0 and γ(rb) = 0
respectively. Now the whole range of λ can be divided into 3 regions λ < λβ , λβ < λ < λγ , and
λ > λγ , in which the de Sitter solution r = rb is stable with oscillations, stable without oscillations, and
unstable correspondingly. Although for the most of the parameters values the stable de Sitter solution
with oscillations is realized, there exists a parameter region corresponding to the stable de Sitter solution
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Figure 2: Numerical results for (1 + w) − δwdec using the analytic solution for δwosc.

without oscillations. Fig. 1 suggests that such parameter regions are 0.944 < λ < 0.970, 0.726 < λ < 0.744
and 0.608 < λ < 0.622 for n = 2, 3 and 4 respectively.

We integrate the evolution equation numerically. The initial condition is taken to be the same as in
the ΛCDM model at z = 10. The present time is identified as the moment when Ωm = 0.27. Fig. 2
depicts oscillations of the EoS parameter for n = 2 and λ = 1, 3. We subtract δwdec and present δwosc

using the analytic solution for it.

4 Conclusion

We have considered future oscillations of the effective EoS parameter wDE for dark energy in f(R) gravity
around the phantom divide wDE = −1. They occur due to scalaron oscillations around the future stable
de Sitter solution in the first order of perturbations theory. We have derived the analytical expression,
Eq. (8), for the existence of an infinite number of such oscillations. There are two types of models
which correspond to stable de Sitter solutions with and without oscillations. An analytic solution for the
EoS perturbation δwDE is obtained which contains a monotonically decaying part δwdec and a damped
oscillatory part δwosc. This is confirmed by numerical calculations for a specific viable cosmological f(R)
model.
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