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The gravitational wave detectors LIGO and Virgo have so far discovered gravitational wave
signals from 90 compact binary coalescences including two neutron star binary coalescences.
Those discoveries are revolutionizing our understanding of the universe. This ongoing revolution
will be accelerated by more accurate localizations of the gravitational wave sources and by longer
coincident observation by multi-detectors, which will be made possible using as many detectors
as possible. KAGRA is a gravitational wave detector built at Kamioka in Gifu prefecture, Japan,
well away from the LIGO and Virgo detectors, with unique features of having cryogenic mirrors
and being built underground. KAGRA can be a prototype for next-generation gravitational wave
detectors that would have those features to achieve further sensitivity to gravitational waves. In
this presentation, the status of KAGRA is given.
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1. Introduction

The Laser Interferometer Gravitational-wave Observatory (LIGO) [1] which comprises two
detectors at Hanford and Livingston in the US discovered gravitational waves (GWs) from a black
hole binary merger in 2015, and this epoch-making detection has opened up a new field in astronomy
by means of gravitational wave observation. In August 2017, the Virgo gravitational wave detector
[2] joined the second observing run conducted by LIGO and three detectors soon discovered GWs
from a black hole binary on August 14. It was just three days later that the two LIGO detectors
and Virgo discovered GWs from a binary neutron star (BNS) merger named GW170817, where
associated gamma-ray emission was observed 1.7 seconds later from GWs. The worldwide follow-
up campaign was conducted with electromagnetic telescopes for years, giving us a clue into the
long-standing mystery of the origin of gamma-ray bursts. This event then was the beginning of
multimessenger astronomy.

It is noteworthy that the signal-to-noise ratio for GW170817 of the Virgo was just 2, yet
that smallness allows for better localization of the GW source than that could be achieved by two
LIGO detectors. In fact, observing GW signals with multi-detectors is essential to localize GW
sources, thereby making multi-messenger astronomy possible [3]. Also interesting to note is that
finding the number of the polarization states of GWs, as a test of general relativity, is possible with
multi-detector observation [4].

As such, the fourth GW detector KAGRA [5, 6] is long-awaited in the GW and multimessenger
astronomy communities. KAGRA has two key features as a GW detector: it has cryogenic mirrors
and is built underground to mitigate two of the most troublesome obstacles against GW detections.
LIGO, Virgo, and KAGRA are all laser interferometers. As typical GW amplitudes are extremely
small, efforts to detect GWs have mostly been those to mitigate noise from various origins. Those
include the seismic motion of the ground, thermal fluctuations of the mirrors and their suspensions
in the interferometer, radiation pressure and shot noise of the laser, interference by scattering and
stray light, frequency and intensity fluctuation of the laser, acoustic vibration, and so on. In fact,
even LIGO took 13 years for its first detection since its first observing run in 2002 with its BNS
range of∼ 200kpc, which tells how far on average over the sky the detector can see if a source is BNS
and is a figure of merit of the detector sensitivity. Being built underground, we see the reduction of
the noise due to the seismic motion in the KAGRA data, while we mitigate thermal noise by using
cryogenic mirrors. A lower seismic noise level is also important for a stable operation. These two
features would be adopted to some extent in designs of next-generation GW detectors like Einstein
Telescope [7]. KAGRA provides valuable information on the pros and cons of those features as a
prototype for advanced detector plans [8].

The KAGRA project was approved in 2010. The tunnel excavation started in 2012 and finished
in 2014. In 2019, KAGRA finished all installations with the designed configuration, which we call
the baseline KAGRA. We conducted the test operations using room temperature mirrors in 2016
(the iKAGRA operation) and with the cryogenic mirrors in 2018 (the bKAGRA phase-I operation),
and finally conducted the joint observing run with the GEO600 GW detector [9] in Germany in
2020 April, called O3GK [10]. At that time the BNS range was approximately 500kpc on average.
Since then, we have been working on improving both sensitivity and stability of the detector [11].
While Virgo was still under commissioning, the two LIGO detectors and KAGRA started the fourth
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observation run called O4 on May 24, 2023. The BNS ranges are 150Mpc for the LIGO detectors
and 1.3Mpc for KAGRA. The observing run will last 20 calendar months but KAGRA stopped the
observation as previously planned, and we work for further improvements in sensitivity and plan to
rejoin the run in 2024 spring. This contribution reviews our efforts before O4 starts and the recent
detector status.

2. KAGRA and its O4a run

The O4 run is split into at least two segments, O4a and O4b. We have realized a power-
recycling Fabry-Pérot Michelson interferometer (PRFPMI) with a DC-readout configuration in
O4a. We dedicated a week to calibration and detector characterization work from May 17 to 24.
The calibration and detector characterization in KAGRA are described in [12, 13]. Our observation
started on May 24 and ended on June 21, while LIGO continues its observation. The duty cycle
(the ratio of the time the detector is capable of taking observing data to the total calendar days) is
80% compared with 53% in O3GK. It was found that the main sources of lock-loss events, that is,
out of operation were earthquakes. With the BNS range of 1.3 Mpc on average, no GW candidate
has so far been detected by KAGRA. The sensitivity curve during the O3GK run and various noise
contributions are shown in Fig. 1.

Figure 1: The KAGRA sensitivity curve during O3GK and various noise sources. The Type-A control noise
had a large impact at lower frequencies and thereby the BNS range. In the KAGRA O4a run, we succeeded
in reducing the Type-A control noise in lower frequencies and laser noises in higher frequencies.

We plan to adopt the resonant-sideband-extraction (RSE) technique to achieve the design
sensitivity. Fig. 2 shows the optical configuration of the interferometer. We plan to cool the four
sapphire mirrors at ETMX(Y) and ITMX(Y) to cryogenic temperature in an observation run in the
near future but at this moment only ETMX has been cooled down to around 87K while ITMX,
ETMY, and ITMY are at 250K by radiation cooling. In fact, we have succeeded in a continuous
cryogenic operation of over a year at the cryogenic x-arm end test mass tank (EXC). The finesse
values are 1420 and 1350 for the X-arm and Y-arm FP cavities, respectively.
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Figure 2: KAGRA schematic optical layout. KAGRA is a resonant sideband extraction (RSE) detector
with the Fabry-Pérot, power-recycling, and signal-recycling cavities. All mirrors with labels are suspended
inside the vacuum tanks with four types of vibration isolation systems, e.g., test masses (TMs) by the Type-A
suspension system. TMX (Y): input test mass X(Y), ETMX (Y): end test mass X (Y), BS: beam splitter,
PRM: power recycling mirror, SRM: signal recycling mirror, IMMT (OMMT): input (output) mode-matching
telescope, IFI (OFI): input (output) Faraday isolator

3. Recent efforts and achievements for sensitivity improvements and better stability

We worked on various things and have achieved improved performance of the detector toward
our participation in the O4a run and after. Here we briefly explain some of the major improvements
and achievements. Parts of the efforts and achievements described here and other notable works
shall be presented in more detail by other contributions at this conference.

3.1 Cryogenic system

We had seen frosting on sapphire mirrors when those were cooled down, resulting in unac-
ceptably low finesse. For a resolution, we have taken the following measures. We have set a new
regulation on acceptable vacuum leak level from 10−9 [Pa m3/sec] to 10−10 [Pa m3/sec]. Mass
spectrometers were introduced in each cryostat for monitoring N2, O2, and H2O molecules. We
have established a sophisticated multi-step cooling procedure to reduce the amount of frost. We
also installed heaters at the intermediate mass to enhance the speed of the heating, preparing for
emergencies where we may have to heat the mirrors to room temperature quickly. As a result of all
the measures above, we see no serious reduction in finesse until now.

Frosting on the windows of the cryo-chambers where the optical lever light passes through
was also a problem, giving us unreliable information on mirror alignment. This in turn resulted in
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unreliable pitch and yaw damping control for mirrors. We thus have installed heaters at the inner
and outer radiation shields, seeing no serious frosting now, although we need to watch the shields
carefully when those will be cooled down at and below 40K.

When the cryo-payload was cooled down, the physical stiffness of the suspensions was enhanced
and the suspended mirrors were lifted up, troubling the interferometer alignment control. We have
implemented a new system to measure the heights of the mirrors using already installed cameras
called TCam.

The birefringence of the sapphire mirrors is one of the biggest and long-standing problems in
KAGRA. We have developed an optical simulator for the interferometer that enables us to study the
effects of the sapphire birefringence

See also [14, 15] for the sapphire mirrors and [16, 17] for vibrations of the cooling system.

3.2 High-power laser

We have installed a new high-power laser (HPL) in the pre-stabilized laser (PSL) room with
the maximum power being 60W (40W at the time of O3GK). Locks of the input mode cleaner
(IMC) with this HPL were realized. The laser intensity stabilization system has been improved
and we have achieved relative intensity noise (RIN) of 10−8, which was required for the O4 run.
Indeed, this is 1-1.5 orders of magnitude better RIN compared with the system during the O3GK
run. Further stability shall be aimed for future runs.

3.3 Ailgnment sensing and control

We have successfully implemented the alignment sensing and control (ASC) system including
the wave form sensing (WFS) and the beam position control (BPC), except for the power-recycling
mirror 3 (PR3) tank and input test masses (ITMs). Drastic enhancement of the intra-cavity power
and its stability has been observed. The resulting smaller contrast fluctuation at the anti-symmetric
port allows for injecting more laser power into the interferometer. We expect a noticeable reduction
of shot noise in the O4b run.

3.4 Vibration Isolation System, Baffles, and others

Other notable improvements for the vibration isolation system (VIS), baffles, and some others
are described below.

We found some faults in all the type-A suspensions almost 2 years ago after the O3GK run.
The repair works and health checks on the type-A suspensions were completed before pumping
the vacuum tanks. The checks were on sensor spectra, transfer functions, actuator performance
and balance, low actuator coupling, securing proper positions of the instruments and sensors, and
resonance damping systems among others. We verified that there were no unintentional contacts
among the instruments and no disorders inside the suspensions, except for one geometric-anti-spring
(GAS) filter. In addition, we installed ribbon heaters and introduced a temperature control system to
stabilize the GAS filters in the suspensions. For VIS control, low-noise linear variable differential
transformers (LVDT) have been introduced for IX, EX, IY, and EY. The control scheme will be
refined with these new LVDTs. With all the efforts above, we have successfully reduced the control
noise to a quite low level in the type-A/B/Bp suspensions except for the type-A suspension for the
ETMX. See [18–21] for pre-O4a works in more details.
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Mid-size baffles have been installed in the MICH area and optical dumpers have been installed
in the tanks housing the input Faraday isolator (IFI), input mode matching telescope (IMMT), output
mode cleaner (OMC), output mode matching telescope (OMMT) to mitigate the scattered or stray
light. In fact, stray light causes non-stationary noise, and mitigation of it is key to cleaning the
sensitivity and enhancing the data quality. We will make a quantitative study on the effects of these
baffles for sensitivity improvements. As for OMC, repair work was completed and lower loss was
realized.

We have installed gate valves (GV) to separate the MICH area from the housings for the signal
recycling mirrors and the power recycling mirrors. Ion pumps are operated for all the vacuum
systems. These additional GVs saved time for the repair works for the IFI and OMC vacuum tanks.
We have now realized the leak level of 10−10 [Pa m3/sec], although serious leaks at the hermetic
pins at the beam splitter and around the Y-end are found.

3.5 Outlook

Approved two decades later than the LIGO and Virgo projects, the KAGRA project has been
showing remarkably rapid progress. Being built underground and the use of the cryogenic mirrors
are two key features that would be adopted by next-generation GW detectors. After the successful
participation in the early O4a run, KAGRA is now in commissioning. We plan to rejoin the O4
run with improved sensitivity with the BNS range of 3∼10 Mpc hopefully. In the meantime,
investigation of the effects of the environmental disturbances on the detector performance and
post-data-taking noise reduction techniques have been studied [22–25].

After the O4 run, the international GW detector network would conduct O5 run [26] 1. Toward
future runs, we are working on the possibilities of introducing a frequency-dependent squeezing
technique to tackle the standard quantum noise [27, 28], obtaining larger sapphire mirrors, a higher
power laser, and so on. KAGRA will contribute to the international GW detector network in the
near future. KAGRA is expected to provide invaluable information about cryogenic interferometer
construction and operation for future GW detector plans such as the Einstein Telescope.
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