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Abstract
Many decades ago Patrick Suppes argued rather convincingly that theoretical
hypotheses are not confronted with the direct, raw results of an experiment, rather,
they are typically compared with models of data. What exactly is a data model how-
ever? And how do the interactions of particles at the subatomic scale give rise to
the huge volumes of data that are then moulded into a polished data model? The
aim of this paper is to answer these questions by presenting a detailed case study of
the construction of data models at the LHCb for testing Lepton Flavour Universality
in rare decays of B-mesons. The close examination of the scientific practice at the
LHCb leads to the following four main conclusions: (i) raw data in their pure form
are practically useless for the comparison of experimental results with theory, and
processed data are in some cases epistemically more reliable, (ii) real and simulated
data are involved in the co-production of the final data model and cannot be easily
distinguished, (iii) theory-ladenness emerges at three different levels depending on
the scope and the purpose for which background theory guides the overall experi-
mental process and (iv) the overall process of acquiring and analysing data in high
energy physics is too complicated to be fully captured by a generic methodological
description of the experimental practice.

Keywords Data · Models · Data models · Lepton Flavour Universality tests · LHC ·
Philosophy of Science in Practice

1 Introduction

The constantly growing integration of science and technology during the last decades
has brought science in the new ‘era of big data’. Modern experimental setups and
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other advanced methods of data collection often result in enormous datasets calling
for more and more sophisticated methods of data analysis in order to enable the
comparison of the experimental results with theoretical hypotheses. The well known
Hypothetico-Deductive method whereby theoretical hypotheses are reinforced – or,
in Popperian terms, corroborated – in the light of new data nicely captures a large
part of the scientific practice, however, at the same time it provides an oversimplified
and unrealistic picture in which important details are left aside. How exactly are
theoretical hypotheses eventually confronted and tested by experimental results given
that the latter are often produced in the form of large datasets and in a language that
is not accessible to the theory?

Suppes (1962) answered this question by pointing out that theoretical hypotheses
are not directly confronted with the raw unprocessed data from experiments, rather,
they are only confronted with models of data. What exactly is a model of data how-
ever? Suppes explains in an earlier work: ‘The maddeningly diverse and complex
experience which constitutes an experiment is not the entity which is directly com-
pared with a model of a theory. Drastic assumptions of all sorts are made in reducing
the experimental experience [...] to a simple entity ready for comparison with a model
of the theory’ (1960, p.297, emphasis added). In Suppes’ mind, a data model is a
simple entity that incorporates what is often a very complicated and sophisticated
experimental process, into a simple result which is eventually compared with the
theoretical predictions of a theory or a model.

While Suppes’ remarks on data models sowed the seeds for further significant
work on the philosophy of data, the interest of philosophers of science in data was
mainly revived by the seminal works of Bogen and Woodward (1988) and Woodward
(1989) and van Fraassen (1980, 1989). In response to van Fraassen’s well known
view that the empirical adequacy of a theory is measured by its ability to save the
observable phenomena, Bogen and Woodward emphasized the distinction between
data and phenomena and argued that theory often saves the non-observable phenom-
ena, rather than the observed data. Within this context, a large part of the discussion
that followed on the philosophy of data (e.g. McAllister 1997; Glymour 2000; Har-
ris 2003; and Massimi 2007) has mainly focused on the relationship of data with the
physical phenomena that they are often taken to represent.

In the more recent literature on data, this tendency of philosophers to examine the
nature of data with respect to the underlying phenomena they represent, has been
replaced by a new tendency to closely examine examples of actual scientific practice,
in order to explore the methodology of data processing in various scientific fields
and the role of data models within them. This approach is most evident in the works
of Sabina Leonelli (2015, 2016, 2019) in biology and Alisa Bokulich (2018, 2020)
in paleontology which, as one might expect, are highly influenced by works of non-
philosophers on data processing, such as Edwards’ book on climate science (2010).

The present article follows this recent tendency and aims in expanding the existing
literature on the methodology of data analysis into the field of modern High-Energy
Physics (HEP). Given that modern large-scale HEP experiments rely on the produc-
tion of large volumes of data more than any other scientific field, it is surprising
that not much has been said about the methodology of data analysis in this field. As
Bokulich notes, although many philosophers have followed Suppes in highlighting
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the importance of data models in science, ‘most [of them] have largely black-boxed
how data models are produced’ (2020, p.794), and this includes the discussions on
the philosophy of HEP.1 The primary aim of this article is to fill this gap by closely
examining the methodology behind the production of data models in HEP in order to
facilitate our understanding of the nature and the role of data models in this field.

In particular, the article explores the nature of data models and their place in
HEP by providing a detailed case study of experimental tests of Lepton Flavour
Universality (LFU) at the LHCb experiment at CERN. The adopted methodology is
characterised by a systematic study of real scientific practice, and falls within the
emerging framework of Philosophy of Science in Practice which aims in producing
‘productive interactions between philosophical analyses and the study of actual sci-
entific practices’ (Ankeny et al., 2011, p.305). By taking a close look at the work of
the experimental physicists of the LHCb collaboration, the idea is to depart from the
usual theoretical approach of philosophy of science and re-examine the concept of
data models, as well as other related questions, strictly in terms of scientific practice.
The ultimate goal is to gain important insights to the question of what a data model is
by examining the process by which a data model is constructed in HEP experiments.
This thorough examination will nicely demonstrate the way in which theoretical
hypotheses are eventually connected with experimental results via data models, and
will highlight the importance of considerations regarding the selection criteria, effi-
ciency calculations, data fitting, and uncertainties in the process of constructing a
data model that can be compared to a theoretical prediction in HEP. Contrary to the
traditional understanding of data models as idealised versions of the raw data per-
ceived by our immediate observations, the proposed understanding of data models
does not rely on the problematic distinction between raw and processed data, nor
does it involve the process of immediate observation.

The philosophical lessons we can take from the exposition of the particular case
study at the LHCb are abundant and are outlined throughout the text. There are how-
ever, four main lessons that can be taken to apply in any large scale HEP experiment.
The first lesson concerns what Bokulich (ibid.) calls the folk view of data which,
amongst other things, claims that the tampering of data results in their corruption and
the decrease of their epistemic reliability. Contra to this seemingly popular concep-
tion, it will be shown that not only the epistemic reliability of data often increases via
their processing, but also that raw data – i.e. data that comes out of the detector at the
early stages of the experiment – are actually useless as they are for the comparison of
the experimental results with the theory. One of Bokulich’s central aims is ‘to make
plausible the prima facie counterintuitive claim that model-filtered data can – in some
instances – be more accurate and reliable than so called raw data, and hence bene-
ficially serve the epistemic aims of science’ (ibid. p.10, emphasis added). The close
examination of our case study in HEP shows that this view – i.e. that model-filtered

1Massimi (2007) is perhaps one of the few exceptions, since in her attempt to argue for her thesis that data
provide evidence for unobservable phenomena in HEP, she follows van Fraassen in providing a logical
reconstruction of data models as partially ordered sets. Some further work on the methodology of data
processing in HEP comes from Karaca (2018) and will be discussed in the next section.
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data are epistemically superior from the raw data obtained from the experiments – not
only is not counterintuitive when it comes to the experimental practice of HEP, but
rather, it is the norm for conducting successful experiments. As will become evident
in the following sections, the very nature of experimental HEP makes the interpreta-
tion of raw, unprocessed data impossible, and hence, the only way to achieve progress
in the field is by collecting and analysing large volumes of processed data.

This also suggests that a clear distinction between raw data and processed data
cannot be applied in the context of large-scale HEP experiments. The close exami-
nation of the case study on LFU tests illustrates that an understanding of the concept
of ‘raw data’ as data perceived directly from our experience is largely irrelevant to
the scientific practice in HEP and what is labelled as raw data and processed data is
often merely a matter of convention. Instead of placing data into two distinct cate-
gories as raw or processed, what best describes the current scientific practice in HEP
is the placement of data in a continuous spectrum in which some datasets are more
processed than others, without really worrying where to draw the line between raw
and processed data.

The second lesson concerns the further distinction between real and simulated
data. The careful scrutiny of the experimental practice at the LHCb illustrates that the
boundaries between these two types of data are not as sharp as it is often implied in
the literature and not particularly important for the completion of successful experi-
ments in HEP. As we shall see, the final datasets that reach the hands of theoretical
and experimental physicists for interpretation are essentially consisted of a mixture
of real and simulated data that cannot be distinguished, due to the fact that simulated
data are often embedded in real measurement outcomes during the various stages of
the experiment. The final data model that is eventually compared to the theoretical
hypothesis and provides the ‘window’ through which theory makes contact with the
real world, is essentially a co-production of real and simulated data.

The third lesson concerns the various levels in which theory guides the overall
construction of the experiment as well as the extraction, interpretation and the fur-
ther analysis of the acquired data. In particular, the example of the experimental tests
of LFU in rare B-decays nicely illustrates that theory-ladenness emerges at three dif-
ferent levels throughout the experiment depending on the scope and the purpose for
which background theoretical assumptions guide the experimental process. The pos-
sibility of a vicious circularity due to the theory-ladenness of observation will not be
discussed in detail here since this is a well-known problem which has already been
thoroughly examined by many authors (Franklin et al., 1989; Brown, 1993; Brewer
& Lambert, 2001; Schindler, 2013; Franklin, 2015; Beauchemin, 2017; Ritson &
Staley, 2020). The consensus in these discussions is that theory-ladenness is not nec-
essarily vicious and does not lead to a relativist account of contemporary science. In
accordance with this view, our case study shows that the various potential threats of
circularity are indeed mitigated by the practice of ‘blind analysis’ and the implemen-
tation of uncertainties in the final result. The focus here will therefore remain on the
different levels and the extend to which various theoretical assumptions affect the
physicists’ decisions in triggering data and their overall understanding of the events
at the LHC.
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Finally, the fourth and most general lesson concerns the overall process in HEP
experiments for the construction of a data model to be compared with the theory. In
his seminal paper on data models, Suppes defines models of data ‘in terms of pos-
sible realizations of the data’ (1962, p.253) in the same way that the models of the
theory are possible realizations of the theory in the logician’s sense. This formal char-
acterization of data models by Suppes closely follows his favourite semantic view
of theories which sees theoretical models as set-theoretical structures that are deduc-
tively derivable from theoretical sentences.2 However, as we shall see, the process
of building a data model in HEP via the four stages of selection criteria, efficiency
calculations, data fitting and uncertainties is way more complicated and less easily
formalised than Suppes’ discussion would lead one to believe.

Although the final data model is indeed ‘a simple entity’ as Suppes pointed out, the
process of converting the initial data from the detectors into a concise and polished
final result in the form of a statistical hypothesis based on the available data is, as we
shall see, anything but simple. The complexity of this process mainly stems from the
fact that the aforementioned stages do not follow a clear chronological order and can-
not always be easily distinguished. Rather, they describe the essential procedures of
a long and reiterative process during which data from the experiment are processed
and analysed in a number of various ways, including their fusion with data from sim-
ulations and the use of highly sophisticated techniques of statistical analysis. During
this long process, theory infiltrates the analysis of data at various levels, having clear
effects both on the nature of the collected data and their final interpretation. The fact
that different theoretical considerations and different techniques of statistical analy-
sis can, in principle, provide slightly different results makes the description of data
models as possible realizations of data in a logical sense seem somewhat unsuitable
in the context of HEP. Nevertheless, the three types of models in terms of which Sup-
pes described the connection of theory and experiments in his hierarchy of models
account – i.e. models of theory, models of experiment and models of data – are use-
ful concepts, and will be used in what follows for sculpting the overall framework of
experimental practice in HEP. At the same time, it will be shown that a less stringent
version of Suppes’ hierarchy of models account is indeed reflected at the practical
level in HEP experiments, despite the criticism that has occasionally received.

The structure of the article is as follows. Section 2 opens the discussion with a
defence of Suppes’ hierarchy of models account, which will serve as the basis for the
present account on the nature of data models and their relationship with theory. In
Section 3 the focus will be shifted to the necessary theoretical framework for under-
standing the B-anomalies in particle physics and their usage in tests of the theoretical
principle of Lepton Flavour Universality. Section 4 will follow with a presentation of
the data processing system at the LHCb experiment at CERN, illustrating how the-
ory enters the collection and analysis of data in three different levels. In Section 5 the
process of constructing the data model representing the final experimental result will
be described in four stages. Finally, Section 6 will follow with a discussion on the
distinctions between raw/processed data and real/simulated data. Section 7 concludes

2For a nice review of the syntactic-semantic debate on theories see Lutz (2017) and references therein.
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the discussion by drawing together the philosophical insights from the examination
of the case study at the LHCb.

2 Stretching the hierarchy of models account

Suppes (1962) begins his analysis of the relationship between theory and experiment
by noting that the theoretical principles to be tested do not usually have a direct
observable counterpart in the experimental data. Instead, this gap between theoretical
predictions and experimental results is filled by a number of different types of mod-
els and theoretical principles which Suppes classifies in five levels. At the top level
are the models of the theory relevant to the experiment. The main function of these
models is to narrow down the typically broad scope of the theory in question into a
simple hypothesis H0 to be tested by the experiment. At the next level one finds the
models of experiment. These are models that are ‘closer to the actual situation’ and
whose aim is to adjust the theoretical model to the specific features of the particu-
lar experimental setup by providing all the necessary details of how the experiment
must be designed and how the data can be linked to the hypothesis in question. At the
third level, models of data enter. Suppes describes these as the possible realizations
of the data that are ‘designed to incorporate all the information about the experiment
which can be used in statistical tests of the adequacy of the theory’ (ibid., p.258).
Finally, in the lowest two levels, are the theory of experimental design which deals
with various problems of the experiment that are beyond the particular theory being
tested, and what Suppes calls the ‘ceteris paribus conditions’ which concern every
other ‘intuitive consideration’ of the experimental setup that does not involve formal
applications of the theory (e.g. safety rules, control of external disturbances etc.).

Suppes’ account has been further elaborated by Deborah Mayo (1996, Ch.5).
Although significantly richer in details, Mayo’s account maintains Suppes’ main
idea: theory becomes testable through the models of the theory which provide a dis-
tinct primary question or hypothesis to be tested, and experimental results are linked
to this hypothesis as models of data. The connection between these two types of
models is mediated by the experimental model: ‘If the primary question is to test
some hypothesis H , the job of the experimental model is to say, possibly with the
aid of other auxiliary hypotheses, what is expected or entailed by the truth of H with
respect to the kind of experiment of interest’ (ibid., p.133). For Mayo, the two key
functions of the experimental model are (i) to provide an experimental analogue of
the primary theoretical model and (ii) to specify the necessary techniques for linking
the experimental data to the questions of the experimental model.

What is also common in Suppes’ and Mayo’s approach is their emphasis on the
importance of statistical and other formal methods of analysis in the construction of
data models, as a necessary tool for the successful transition from the level of the the-
ory to the level of the experiment. Suppes conclusion is that once the experimental
results are condensed into a simple data model, ‘every question of systematic evalu-
ation that arises is a formal one’ (Suppes 1962, p.260-1), implying this way that data
models are necessarily statistical models, or at least, subject to statistical and math-
ematical analysis. Drawing on Suppes’ empahsis on statistical methods, Leonelli
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(2019, p.22) has recently criticised Suppes’ account by identifying three problems.
First, Leonelli notes that Suppes’ analysis only deals with numerical data, neglecting
the fact that there are also cases where data are not quantitative objects and thus are
not amenable to statistical analysis. Second, it is hard to see how Suppes’ analysis can
be applied in situations of exploratory experiments where the research question under
investigation is not clearly stated and thus, it cannot be easily compared with the data
model. Finally, Suppes’ approach presupposes, according to Leonelli, the ability of
researchers to identify what constitutes ‘raw data’ in the experiment, and overlooks
the close connection between the activities of data acquisition and data manipulation.

Leonelli’s first observation is correct and lends further support to the claim made
earlier that the diversity and complexity of data analysis in various scientific fields
makes it impossible to come up with a universal philosophical description for the
relationship of theories and data in science. The remaining two observations how-
ever, are subject to further analysis. Leonelli’s point with respect to the application
of Suppes’ framework on exploratory experiments stems from Suppes’ dictum that
the theoretical predictions of a theory are typically expressed in the form of an initial
hypothesis and are eventually compared with data models. If there is no theoreti-
cal hypothesis to be validated via its comparison with a data model, then Suppes’
description is inadequate.

This would be true however, only in the unrealistic cases where scientists are
blindly looking for new physics in collider experiments from an Archimedean point
of view, independently of any sort of background theory. This is hardly the case in
large-scale HEP experiments. The description of the methodology of data acquisition
and data processing in Sections 4 and 5, clearly shows how the very act of collecting
and analysing data in HEP experiments is simply impossible without the presupposi-
tion of a clear theoretical hypothesis with respect to which the data models are built.
What constitutes an exploratory experiment in HEP is not the fact that the research
question is not clearly stated, rather, it is the fact that the question is not part of an
already well-formed and established theory to be tested.3 Karaca (2017) also notes
that the exploratory nature of HEP experiments concerns the ability of an experi-
ment to achieve a variety of possible outcomes, which as we shall see, can be made
possible by the systematic variation of the various experimental parameters.

The example of LFU tests to be used as a case study here, is a clear example
of a non-exploratory experiment in which the theoretical prediction of the Standard
Model for the RK ratio is put to the test by building a corresponding data model.
However, one might think of a hypothetical situation where either (i) the existing
theoretical framework does not provide a precise numerical value of the ratio, or
(ii) several competing and not-well established models offer different values of the
ratio. In this case, the research hypothesis shifts from ‘Is the experimental value of
the RK close enough to the theoretical prediction of the Standard Model?’ to the
more exploratory question ‘What is the value of the RK ratio?’. Nevertheless, in

3This approach is also compatible with Steinle’s account in which exploratory experimentation ‘is driven
by the elementary desire to obtain empirical regularities’ and ‘despite its independence from specific
theories, the experimental activity may well be highly systematic and driven by typical guidelines’ (1997,
p.70).
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both cases, the final data model is built with respect to a corresponding theoretical
question since the ultimate aim is to fit the data into an already existing or a future
theoretical framework. If the data is not in a comparable form with a theory, then this
task cannot be accomplished.4

Leonelli’s third objection is very similar to an objection raised by Karaca (2018),
regarding the lack of a modelling concept for the data acquisition process in Suppes’
account. Using the example of the ATLAS experiment at CERN, Karaca notes that
both Suppes’ and Mayo’s descriptions leave out a significant aspect of the overall
process of bringing together theory and experiment in HEP, which is the specifica-
tion and organization of the necessary experimental procedures in order to select the
required data. This is achieved, according to Karaca, via a model of data acquisition
whose key function is to specify the operational and technical details during the data
acquisition process and to determine the necessary selection criteria for the rejection
of non-interesting events in the LHC collision experiments. While Karaca is right
to point out that Suppes’ description does not explicitly address the process of data
acquisition in HEP experiments, the modified version of the hierarchy of models
account that I wish to provide here includes these and other related models within the
broad concept of experimental models.

Leonelli’s additional point to the discussion is that Suppes presupposes a prob-
lematic distinction between the ‘raw data’ that constitute the ‘simple datasets’ to be
processed and the data models that are eventually compared with the theory. Leonelli
draws on Harris’ (2003) accurate observation that very often the data that are tradi-
tionally referred to as ‘raw’ are in fact data models, and thus, it is not clear how these
models can be compared with theoretical hypotheses. However, this confusion comes
from a subtle point regarding Suppes’ claims. Suppes definition of data models with
respect to their ability to be compared with the theory only applies to the final simple
entity which eventually puts the theory to the test. However, Suppes is not saying –
or, at least, should not be understood as saying – that any data model must necessarily
be comparable with a theoretical hypothesis as Leonelli seems to imply. Rather, what
Suppes’ is saying is that, when it comes to the comparison of theory with experimen-
tal results, the entities with which theoretical hypotheses are eventually compared are
necessarily data models that are subject to statistical analysis. This is a subtle point,
but nonetheless it is important for making sense of the fact that very often the various
datasets throughout the process of data acquisition and analysis are indeed consisted
of – what I shall call – auxiliary data models, and whose function is to facilitate the
construction of the final data model to be compared with the theory. Moreover, as
we shall see in Section 6, the distinction between raw and processed data is indeed
not so clear, as Leonelli and Harris have pointed out, however, it is precisely for this
reason that it is also not necessary for describing the scientific practice in HEP.

The deeper lesson to be learned here is that the process of theory testing via exper-
iments in HEP is simply too complicated to be fully captured by a sharp tripartite

4This view is also nicely supported by Bokulich and Parker (2021) in a recent paper on what they call
the ‘pragmatic-representational view of data’. By using an example from climate science, Bokulich and
Parker highlight the fact that data and data models are representations that should be evaluated in terms of
their adequacy for a particular purpose, in which case is the specific research question.
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distinction of three types of models. The modified account I wish to present in the
following sections is partially a reconciliation of Suppes’ approach with Karaca’s
remarks, which focuses on three different types of models that constitute a research
project. There are however three important caveats to keep in mind. First, the concept
of experimental models is significantly extended in order to include every possible
model related activity which facilitates the connection between the theoretical mod-
els and the models of data. Second, although it is possible to provide a relatively
clear definition (or description) for theoretical and data models, when it comes to the
various types of experimental models the boundaries between them and the two afore-
mentioned types cannot be sharply distinguished and whether one wishes to include
a specific modelling activity (such as the models for the specification of selection
criteria) in one level or another is up to a certain extend a matter of personal choice.
Finally, for a given collision experiment in HEP, each one of these three types does
not consist of one single entity, rather it should be understood as a cluster of models
with similar features serving a common goal.

The three different types of models will thus be understood as follows:

• Models of theory: A model of a theory is a mathematical tool whose aim is to
narrow down the scope of the background theory by providing an experimentally
testable hypothesis H0 (or a number of hypotheses) concerning a specific type of
physical processes or phenomena. The background theory providing the hypoth-
esis need not be a well-established and empirically well-confirmed theory. It can
also be an isolated and preliminary theoretical framework based on a small class
of observations, which would give rise to a phenomenological model. Depending
on the nature of the background theory and the model, the hypothesis may con-
cern the exact numerical value of a theoretical parameter (e.g. the fine structure
constant at a given energy level, the electron magnetic moment etc), an estimate
of a model parameter in the form of a probability distribution corresponding to a
physical quantity (e.g. particle properties such as mass), or a specific relation (in
the form of an equation) between two or more physical quantities (e.g. the differ-
ential cross section for a given process as a function of the transverse momentum
etc).

• Models of data: A model of data is the representation of a measurement outcome
into a canonical form that allows – directly or indirectly – the comparison of
experimental data with the hypothesis under investigation. The construction of a
data model involves a variety of data analysis techniques and statistical methods,
and as we shall see, it is heavily guided by background theoretical assumptions
and other approximations. Depending on the hypothesis in question, a data model
can take several forms such as a table, a simple numerical answer with an uncer-
tainty estimate, or as it is most common in HEP, a function represented by a
graph. Finally, although the final data model which is eventually compared with
theory is typically a ‘simple entity’ as Suppes pointed out, the construction of
this entity often requires a number of auxiliary intermediate data models.

• Models of experiment: A model of an experiment is a blanket term referring to
every possible modelling activity that facilitates the completion of a measure-
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ment process in an experiment, and allows the connection between the final data
model and a theoretical hypothesis. In high energy collision experiments this
includes the physical models for calculating the interactions of particles with the
different parts of the detector, any kind of simulation modelling that provides the
basis for necessary calculations (event generators, detector simulations, pseudo-
experiments with Monte Carlo simulations etc.), models of data acquisition, and
finally, the various statistical models used for the analysis of data.

Measurement is understood in this context as the experimental activity which leads
to the quantitative attribution of the value of a targeted physical quantity, typically
represented as a theoretical parameter or variable in an idealized experimental model.
Eran Tal (2017a, p.240) describes measurement in terms of two levels: the physical
interaction between the target of the measurement and the measuring instrument, and
the model of measurement, which is an abstract and idealized representation of this
physical interaction. The attribution of values to various parameters from the sub-
detectors of the LHCb to be described in Sections 4 and 5 based on the experimental
models of the interactions between the products of the collisions and the detector,
nicely illustrates Tal’s description of measurement in terms of the concrete physi-
cal interactions in the detector and the abstract models of measurement or – as we
shall call them here – models of experiment. For the purposes of our discussion, it is
also useful to follow Tal (2017b) and distinguish between instrument indications and
measurement outcomes. The former are properties of the final states of measuring
instruments after a measurement is completed such as the numerals appearing on the
display of a measuring device, and are often understood as providing the raw data of
the experiment. The latter are knowledge claims about the value of a physical quan-
tity attributed to a physical process such as the claim that ‘the mass of the top quark
is Mtop = 172.85±0.714(stat.)±0.85(syst.) GeV/c2’. As we shall see, it is the mea-
surement outcomes and not the instrument indications that are represented by data
models.

This slightly modified version of the hierarchy of models account, even in its crud-
est form, nicely captures the relationship of theories and experiments in high-energy
physics. Background theory, be it the Standard Model, or any other new physics the-
ory or model to be put to test, such as Supersymmetry, provides its predictions via the
theoretical models in the form of empirically testable hypotheses. Large scale scatter-
ing experiments are then designed and carried out based on these theories, yielding a
huge volume of raw data which is eventually turned into a simple data model which is
comparable to the theoretical hypothesis. The acquisition of data and the construction
of the final data model is unavoidably carried out with the help of various theoretical
assumptions and other intermediate experimental models. The purpose of the fol-
lowing sections is to illustrate how this modified account of the hierarchy of models
can be applied for the description of experimental tests of the theoretical principle of
Lepton Flavour Universality in HEP via the so-called B-anomalies in the rare decays
of B-mesons.
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3 B-anomalies and Lepton Flavour Universality

The Standard Model (SM) of particle physics is by far the most empirically suc-
cessful physical theory for the fundamental building blocks of visible matter and the
interactions between them. However, despite its tremendous empirical success, the
Standard Model is also undermined by a number of experimental results that consis-
tently deviate from its theoretical predictions.5 One type of such results, which will
be the focus of the present case study, concerns the so-called B-anomalies in the rare
decays of B-mesons that are one of the main areas of study in the indirect searches
for new physics at the LHCb experiment at CERN.6

The term B-anomalies refers to a set of observed experimental results of various
observables of B-decays displaying tensions with the SM predictions at the 2-3 sigma
level. The overall consistency of these results is interpreted by many physicists as
a hint for the presence of new physics in these decays and hence, the accumulation
of further data and the precise measurement of these observables via the appropriate
data models is of ultimate importance for the development of new physics beyond
the Standard Model. A particular observable in these anomalies is the RK ratio that
features in tests of Lepton Flavour Universality (LFU) (Bifani et al., 2018; Muller,
2019). LFU is a theoretical principle of the Standard Model which stems from the fact
that, apart from their mass differences, the three charged leptons (electrons, muons
and taus) are identical copies of each other, and thus the electroweak coupling of the
gauge bosons to leptons is independent of the lepton flavour. In practice, this means
that according to the SM, electrons couple to photons, Z and W± bosons in the
same way the muons and taus do. As Suppes pointed out however, this is a general
theoretical principle that does not directly correspond to an experimental observable
and thus a theoretical model is needed in order to convert this general theoretical
principle into an empirically testable hypothesis.

The most straightforward way to do this is by constructing a theoretical model fea-
turing the ratio of the branching fractions between two different B-decay processes
with different flavours of leptons in their final products, such as B+ → Kμ+μ−
and B+ → Ke+e− (Fig. 1). Since the electroweak couplings of all three charged
leptons are the same, the ratio of branching fractions for these two decays is naively
expected to be unity, and it can indeed be calculated theoretically with high precision
in a given range of the produced dilepton mass squared q2. In the low region range
for the dilepton mass squared (1.1 < q2 < 6.0 GeV2/c4), this ratio is predicted by
the Standard Model to be unity with O(1%) precision (Bordone et al., 2016). This
theoretical prediction constitutes the theoretical hypothesis:

H0 : RK+[1.1, 6, 0]SM = 1.00 ± 0.01QED

5For more details on the limitations of the Standard Model and the searches for new physics at the LHC
see Virdee (2016) and Rappoccio (2019).
6As opposed to direct searches, which aim at the observation of hypothetical new particles via their pro-
duction in scattering experiments, indirect searches for new physics concern the performance of precise
measurements of observables in (usually rare) scattering processes, by analysing large volumes of data on
observables related to these decays.
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Fig. 1 Feynman diagram of the dominant contribution to the B-meson decay B+ → K+μ+μ− within
the Standard Model. The diagram illustrates the rare process in which a B+ meson (ub̄) decays into a K+
meson (us̄) and a pair of muons

which is eventually compared to the model of data. The QED subscript indicates
the origin of theoretical uncertainties due to QED effects and the numerical interval
corresponds to the dilepton mass squared range.

The ultimate aim of ‘the maddeningly diverse and complex experience’ which
constitutes the experimental test of LFU is to construct a data model of the RK ratio:
a simple entity in the form of a numerical result, subject to statistical and systematic
uncertainties, which is comparable to H0 in a precise and mathematical manner. The
next section provides a brief description of the data processing system of the LHCb
in order to facilitate the discussion to follow on the rather complicated process of
constructing a data model for the RK ratio. As we shall see, theory guides the obser-
vation and data acquisition process in three different levels: an all-encompassing
fundamental level independent of the specifics of the experiment, an intermediate
level concerning the physical processes in the detector, and a more restricted level
regarding the specifics of the quantities to be measured in a given experiment.7

4 Data processing at the LHCb

The LHCb experiment at CERN is currently the largest experiment in physics for
the study of rare B-decays. It is specifically designed to profit from the enormous
production rate of b quarks in proton-proton collisions at the Large Hadron Collider
(LHC) which happen at a rate of around 3 × 1011 per fb−1.8 The LHCb detector
collects about 25% of the b quarks produced in these collisions, and provides the
necessary data for making precise measurements of various observables related to
the rare B-decays.

7The content of this section was derived from Teubert (2016), Blake et al. (2017), Capdevila et al. (2018),
Lionetto (2018), Mauri (2019), Lisovskyi (2019), and Humair (2019).
8One inverse femtobarn (fb−1) corresponds to approximately 100 trillion (∼ 1014) proton-proton
collisions.
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The detailed study of these processes requires the determination of the various
properties of the final state particles and their kinematics. In order to determine these
properties and allow the full reconstruction of an interaction process, a number of
different quantities need to be measured including the charge of a particle, its flavour,
the momentum vector, and for short lived particles, the production and decay vertex.
Since no detector can simultaneously measure these quantities, large detector systems
such as the LHCb detector, are typically made of various specialised sub-detectors,
each performing a different task. The various sub-detectors of the LHCb detector can
be grouped into two complementary sub-systems: the Track Reconstruction system
and the Particle Identification system. As the name suggests, the systems involved
in track reconstruction aim in reconstructing the trajectories of charged particles in a
collision event by combining information from the ‘hits’ recorded in the various sub-
detectors. Once the tracks are reconstructed, the Particle Identification (PID) system
derives further information from its sub-detectors in order to associate the tracks with
a specific particle species. Together with the momentum information provided by the
tracking system, the PID also allows the energy of a charged track to be computed
using the relativistic energy-momentum relation E2 = p2c2 + m2c4.9

4.1 The three levels of theory-ladenness

Already one may notice here the first and most general level of the theory-ladenness
of observation. The overall design and operation of the track reconstruction and parti-
cle identification systems at the LHCb (as well as of any other large scale experiment)
is based on a number of physical principles that are considered to be fundamental
and are expected to hold in any possible new physics theory to be constructed based
on these data. These general principles enter the observational process in the form
of various implicit and explicit assumptions which lie at the core of almost every
experiment in physics and concern the most fundamental facts we know about nature,
such as the conservation of energy and Einstein’s mass-energy equivalence principle.
This type of theory-ladenness is universal across a particular field of physics and is
independent of the aims and quirks of any particular experiment.

The second level of theory-ladenness of observation in collision experiments con-
cerns the physical processes behind the production of ‘hits’ in the detectors and the
identification of particles. During a proton-proton collision event, hits are produced
in the various trackers by the energy loss of the traversing particles due to their inter-
action with matter. The two main physical processes that occur in the detectors are
inelastic collisions of the products with the atomic electrons and elastic collisions
with the nuclei of the atoms of the detectors’ material, leading to the phenomena of
ionisation and multiple Coulomb scattering respectively. Theory-ladenness appears
at this stage by offering the various physical models for calculating the effects of
these physical processes on the detector.

9For a detailed description of the LHCb detector see the official publication from the LHCb Collaboration
(2008).



  101 Page 14 of 33 European Journal for Philosophy of Science          (2021) 11:101 

As aptly noted by Beauchemin (2017, p.299), quite often there are more than one
competing models about the nuclear interactions between charged hadrons and the
material of the detector.10 However, these competing models, although empirically
equivalent, affect the simulation of the detector and the selection of data in different
ways, giving rise to different results. In other words, the extrapolation and interpre-
tation of data, and consequently the form of the final experimental result as a data
model, depends on the choice of the model for the underlying physical processes
in the detector. This fact raises the worry of a possible vicious circularity due to
the theory ladenness of data selection. If the result depends on the arbitrary choice
between several empirically equivalent models, what validates the objectivity of a
given result based on a particular model? As will be shown in Section 5.4, the solu-
tion to this problem is achieved by separately calculating the effects of each model
to the measurement and including them in the systematic uncertainties of the final
result.

The third and most specific level of theory ladenness concerns the theoretical
principles and assumptions that are specific to the aims of the particular experiment
which will be described in the following section. These assumptions basically deter-
mine (i) the selection criteria for distinguishing the data from what are considered
to be the ‘interesting events’, i.e. events related to the two decays consisting the RK

ratio and (ii) the vast majority of theoretical and mathematical calculations involved
in the derivation of the final result. The suggested tripartite distinction of theory-
ladenness presented here partially overlaps with Karaca’s (2013) two-fold distinction
between the strong and the weak sense of theory-ladenness of experimentation, albeit
with an additional intermediate layer. Karaca describes the strong sense of theory
ladenness experimentation as the continuous guidance of an experiment by some the-
oretical account with the aim of ascertaining the conclusions of the same account.
This strong sense of theory-ladenness is captured by what I call here the third and
most specific level of theory ladenness which essentially determines the collection
and further refinement of data at the LHCb trigger system, in order to construct an
appropriate data model to be compared with the theoretical hypothesis in question.
The weak sense is described by Karaca in a broader context, as the utilization of theo-
retical considerations that have no guiding power on the progress of the experimental
process.

4.2 The LHCb trigger system

Before moving to the analysis of the data modelling process for the RK ratio it is
useful to give a brief description of some technical details regarding the data process-
ing system of the LHCb. The rate of visible collisions at the LHC, i.e. the number
of recorded events per second, is currently between 10 and 20 millions (∼ 13 MHz

10The reader may notice here a similarity in the title of the present paper and Beauchemin’s paper due to
the presence of the medical terms ‘autopsy’ and ‘anatomy’. Although this is a mere coincidence, the two
papers are indeed related with respect to their close examination of the scientific practice at the LHC.
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in Run II).11 This number is simply too big to allow every single event to be stored
for further analysis and thus, a filtering system is required to select the interesting
events by filtering out the events containing various well-studied physical processes
that are unrelated to the specific aims of the experiment. For the LHCb experiment,
this amounts to the selection of the events that are most likely to contain a B-meson
or a D-meson, since, in addition to the study of the rare B-decays, LHCb is also ded-
icated to the study of D-decays (decays of heavy D-mesons consisting of at least one
charm quark/antiquark) and CP violations. The selection of these events is completed
in two levels by the LHCb Trigger system, and is based on the information from the
various subsystems of the detector.

Practically speaking, the ultimate task of the software algorithms connected to the
tracking and the particle identification system of the detector is to attach values to
several variables related to the kinematics of the interactions (momentum, energy,
mass etc), their topology (scattering angles, flight distance, impact parameter) and the
nature of the particles. Two simple examples of such variables are the binary isMuon
variable which depends on the number of hits in the muon stations associated with
a track, and the DLLx(t) variable which corresponds to the likelihood of a track t

to belong to a particle species x rather than a pion. These variables can be produced
based on information from either a single subdetector or by combining information
from several detectors. The job of the trigger system is then to take these variables as
inputs and, based on a number of selection criteria that are also known as cuts, decide
whether a given event is of interest or not.

In order to be able to distinguish the interesting events from the various processes
taking place in the LHC, the trigger system of the LHCb is programmed to search
for the characteristic signatures of hadrons containing b or c (anti)quarks, which give
rise to the heavy flavour decays in which we are interested. The three most significant
signatures of these hadrons are (i) their large lifetime, which results in long flight dis-
tances compared to the resolution of the detector, (ii) their large mass, which results
in high transverse momentum PT of the product particles,12 and (iii) the existence
of muons in the final state of several key decay modes of these hadrons, such as the
B+ → K+μ+μ− decay in which we are interested in for the measurement of the RK

ratio (Head, 2014). This is where the third – aim specific – level of theory-ladenness
becomes apparent: the specification of these signatures for the data selection process
is largely driven by various theoretical assumptions for the nature of these decays
based on the existing background theoretical knowledge. This fact is also related to
what was said earlier in Section 2 about the necessary connection of data acquisition
with a clear research question. The fact that the ultimate purpose of this particular
experiment is to test LFU via the RK ratio specifies which events are of interest for
this purpose, and eventually determines the choice of the most appropriate selection
criteria to distinguish these events.

11In the jargon of particle physics, the recording of an event amounts to the recording of all the products
from a given collision. Run I and Run II refer to the different periods of operational running for the LHC
under different conditions. Run I took place in 2009-2013 and Run II in 2015-2018. Run III is scheduled
to take place in the years 2021-2023.
12Transverse momentum is the component of momentum transverse (i.e. perpendicular) to the beam line.
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The first level of the LHCb trigger system is completed by the Low Level trig-
ger (L0). L0 is a hardware based trigger and its task is to reduce the data output
from ∼ 13 MHz to approximately 1 MHz at which the LHCb detector can be read
out. Contrary to what one might expect, the selection criteria at this first level are
not purely theory-laden, rather they are mainly determined by a number of technical
limitations. In order to achieve the goal of 1 MHz, the L0 trigger needs to take a deci-
sion for every event in a very short amount of time (4μs), and for this reason, it only
receives information from the muon system and the calorimeters, as these are the
only sub-detectors able to provide information in such a short amount of time. Once
this information is received, the trigger algorithm discards all events with too many
hits in the SPD detector since such high occupancy events would require an exces-
sive fraction of the available processing time at the next level of the data process.
After these criteria are applied, L0 proceeds to a coarse-graining of the interesting
events by selecting muons with a high transverse momentum pT and other events
with high energy deposits in the calorimeter. The thresholds for these cuts are not
fixed, rather they are constantly changing according to the data-taking conditions of
the experiment, even during the same year or Run.

The second level of the trigger system is completed in two stages by the High
Level triggers (HLT1 and HLT2) of the detector. These are software based algorithms
and their task is to further reduce the amount of data in order to be stored onto servers
at the CERN Data Centre and distributed to physicists for analysis. In Run II, HLT is
programmed to reduce the data rate from the 1MHz output of the L0 trigger to 12,5
kHz which is low enough to be permanently stored on disks. During the first stage
of the High Level triggering, HLT1 receives information from the tracking system
and proceeds to a partial event reconstruction by applying various selection criteria
based on the impact parameter of the events, the quality of the tracks and the trans-
verse momentum.13 This process reduces the data output to ∼70 kHz and passes the
selected tracks to HLT2. The HLT2 algorithm then performs a full reconstruction
of all the selected events that satisfy PT > 0.3 GeV independently of their impact
parameter or matching hits in the muon chambers. The overall process of reducing
the amount of data from the LHC collisions to a manageable dataset to be distributed
widely is illustrated schematically in Fig. 2.

This pragmatic dimension of the data acquisition process is nicely captured by
Bokulich and Parker in their discussion of the problem space in data modelling, in
which the goal is to achieve a particular purpose of interest guiding the construction
of the model (2021, p.12). As Bokulich and Parker note, the final properties of the
data model are jointly determined by the different dimensions of the problem space,
namely the representational relationship between the data and the target of the exper-
iment, the data users, the adopted methodology and the background circumstances of
the experiment. Given that the purpose of our case study is to test LFU via the RK

ratio, the final form of the data model is indeed jointly determined by a number of

13The impact parameter of a particle, typically denoted by χ2, is related to the angle of scattering, i.e.
the angle at which a particle is deflected by a another particle after collision, and is used in particle
identification to tag flavours to the particles.
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Fig. 2 Schematic representation of the various stages of the data acquisition process at the LHCb. The
numbers below the arrows indicate the size of data before and after each level

theoretical and pragmatic factors including the choice of models for the interactions
of product particles with the detector, the available computational time and power,
the storage capacity at the CERN Data Centre, the reconstruction of events so that
they are amenable to statistical analysis and so on.

The completion of the High Level triggering process marks a significant milestone
where the vast majority of the available data from the proton-proton collisions at the
LHC is discarded irretrievably, mainly due to the technical limitations of the data
processing system both in terms of the data-processing time and the store capacity of
CERN’s Data Centre. The reduction of data from 13 MHz to the final 12,5 kHz that
eventually becomes available to the users means that about 99,9% of the available
data from visible collisions never reaches the physicists’ desks for further analysis.
Add this to the fact that only about 1% of the actual collisions in the LHC provide
products that end up in the detectors, and it is not hard to see that the otherwise
huge amount of data that eventually gets stored and analysed by physicists is only a
minute fraction of the potentially available information provided by the proton-proton
collisions at the LHC. Even though extreme care is taken to make sure that the data
collected correspond to the events containing new physics, it is widely acknowledged
by the physics community that a large amount of information containing hints to new
physics is permanently lost during this process.

This brings us to the final aim of the overall experimental process which is the
acquisition and organisation of data for the construction of the data model represent-
ing the results of the experiment. Part of this process concerns the determination of
the selection criteria for the collection of data, whereas another part takes place only
once a sufficient amount of data for the study of a particular phenomenon becomes
available at the CERN Data Centre. The datasets are then widely distributed to the sci-
entific community on an international scale by the Worldwide LHC Computing Grid
(WLCG) for further statistical and mathematical analysis. Given the huge amount of
data required to produce reliable results, it should be stressed that the overall process
of deriving an experimental result from the available data is typically a non-linear
and laborious activity of constant refinement and revision, which usually takes years
of collaborative work to complete. Nevertheless, it can be characterised by four main
stages which will be the focus of the next section. Although in practice these stages
do not follow a clear chronological order and are not always clearly distinguishable,
they nicely capture the most essential procedures for the construction of a data model
in HEP.
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5 Constructing datamodels for the RK ratio

This section provides a description of the four main stages for the construction of the
data model of the RK ratio as it was recently presented by the LHCb collaboration
(2019; 2021): (i) data selection (ii) efficiency calculations (iii) data fitting and (iv)
uncertainty calculations. The analysis of these four stages illustrates the importance
of considerations for the construction of a data model with respect to the data acqui-
sition criteria, the complicated calculations of the performance and efficiency of the
detector with the help of simulation, the fitting of finite data to continuous functions
via statistical analysis, and the evaluation of possible errors during the measurement
process. As we shall see, each stage of this procedure is, in its own way, replete with
various underlying theoretical assumptions, giving further credence to the idea that
observation in HEP is highly theory-laden.

5.1 Selection criteria

The first stage in the construction of the RK data model concerns the determination
of the selection criteria to be applied to the trigger system in order to distinguish the
signal – i.e. the events of interest that contribute to the ratio – from the background –
i.e. the unrelated events in the collision with similar signatures. The involved strate-
gies during this stage are determined at each step according to the source and the
specific characteristics of each type of background based on the existing theoretical
knowledge. For instance, a particularly invasive form of background comes from the
mis-identification of pions as leptons in the B+ → K+π+π− decays, which are
30 times more frequent than the B-decays constituting the ratio. The suppression of
this background is achieved by applying a combination of cuts for the isMuon, the
DLLμ, and the DLLe variables in the particle identification algorithms. In general,
the choice of these cuts is based on a combination of both theoretical and pragmatic
criteria regarding the expected behaviour of the detector with respect to each type
of background. The underlying assumption is that there is sufficient knowledge of
the nature of different types of the background processes which produce signals that
could potentially be mis-identified by the detector as coming from the rare B-decays.

The main challenge at this stage, is what Franklin (1998, 2015) calls ‘the problem
of cuts’, which stems from the possibility that the experimental result simply reflects
the choices of the particular cuts on the triggering system. In other words, the worry
is that certain combinations of cuts will give rise to different sets of results and there
is simply no way of knowing which of these combinations provides a genuine unbi-
ased result. The situation becomes worse in cases where the effects of the cuts to the
result are known to the experimenter in advance, and hence, the idea of producing a
desired outcome may distort the objectivity of the experimental results. As Franklin
notes, the experimenter’s bias is mitigated by applying the practice of ‘blind analy-
sis’, in which the experimenters analysing the data do not know the result until the
analysis method is finalized, following an extended peer review within the collabo-
ration. Beauchemin (2017) adds that the solution to these problems also comes from
the implementation of systematic uncertainties in the result, which will be further
discussed in Section 5.4.
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Once the first stage of calculating and applying the selection criteria for distin-
guishing the relevant decays for the RK ratio is completed, the measurement of the
ratio requires the calculation of two types of quantities: the efficiencies, ε, for select-
ing each one of the decays and the yield, N , of each decay mode, which is the number
of recorded events contributing to the ratio. The calculation of these two types of
quantities constitutes the second and third stage respectively for the construction of
the RK data model.

5.2 Efficiency calculations

The second stage of the data modelling process concerns the calculation of the detec-
tor’s efficiency during the triggering, reconstruction, and identification processes.
These efficiencies are usually integrated in the total efficiency of the detector, εtot ,
which can be defined as the fraction of the events registered and correctly identified
at the detector, with respect to the actual number of events produced by the proton-
proton collision in the LHC. The knowledge of these efficiencies is essential, since
in order to know the true value of the ratio between the two yields, it is clear that we
must first be in a position to know how many of the rare B-decays that actually occur
are eventually recorded by the detector and become available for analysis. The calcu-
lation of the ‘true number’ of rare B-decays is a crucial yet challenging aspect at this
stage. Given that the only way to detect and count these decays is via the – imper-
fect – detectors, how is it possible to know how many of these decays are eventually
recorded? The answer is via simulation.

The overall process of calculating the efficiency of the detector by simulation
can be described in three steps. The first step is to provide a complete list of all
the particles that come out of a certain physical process, including the ones that are
stable enough to interact with the detector. This is made possible by various software
algorithms that are known as event generators. When combined, event generators
provide a complete description of all the particles that come out from a collision
between protons in which a B-meson is produced, providing this way the necessary
knowledge for the expected yield of rare B-decays.

Once the events are generated, the next step in this stage is to simulate the path
of the produced particles in the various parts of the detector, in order to model the
detector’s response. This process requires the construction of a detailed digital map
of the LHCb detector in a language that is readable to the software. Ideally, this map
would include every single wire and pipe of the detector ensuring that the simulation
provides accurate results, however, this would require an unrealistic amount of pro-
cessing time, and thus various approximations are used. This part of the simulation
also involves the implementation of various physics models in the software, describ-
ing the different physical processes that are expected to take place in the detector
(bremsstrahlung, ionization, multiple scattering etc.) according to the background
theory. Once again, it should be noted that it is not possible to include in the simula-
tion every single physical process that is expected to take place (this would require
the simulation to run for a tremendous amount of time) and thus, the physical models
are chosen on a pragmatic basis, taking into account limitations on time and com-
putational power. The final output of this second step in the simulation is a large
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database with information about energy deposits in the detector including their times
and locations.

The third and final step in simulation is the digitization of data. This is the pro-
cess whereby the available data from simulation is converted in the same format as
the data provided by the experiment electronics and the detector’s data acquisition
system. The idea is to convert the information about the energy deposits from the sim-
ulation into whatever it is that the detector actually reads – i.e. voltages, currents and
times. Moreover, this is the stage where various other interesting detector effects are
also taken into consideration with the help of various models, such as the difference
in light collected from a scintillator tile in the calorimeter depending on whether the
energy is deposited in the middle or in the edge of the tile. The final result is a sim-
ulated dataset that has the exact same format as the data coming out of the detector’s
data acquisition system, and for which, as opposed to the real data, there is precise
knowledge of the physical processes that generate them. This allows the calculation
of the efficiencies of the tracking and particle identification systems of the detector.
After digitization, the simulated data follow the exact same path through the trigger
system just as the real data, allowing this way the calculation of the efficiency of the
trigger system as well.

This procedure is not immune to problems either however. Even though the simu-
lation is considered to provide a good estimate of the detector’s efficiency in real data
acquisition, it is still possible to have discrepancies between the simulation-calculated
efficiency and the true efficiency of the detector. This may happen for instance due
to technical problems during data acquisition from real collisions that are not taken
into account in the simulation, or poor modelling of certain aspects of the detec-
tor in the simulation software (for instance, it is known that the performance of the
RICH detectors and calorimeters is not accurately simulated by the LHCb software).
These discrepancies are often corrected by a data-driven method called ‘tag & probe’
whereby the simulation efficiency is revised based on data calibration samples from
other well-studied decays.14

The various models described during this stage – i.e. detector layout models, mod-
els of the physical processes and other effects in the detector, models of data flow
in the detector etc. – are all part of the class of experimental models described in
Section 2, whose task is to facilitate the connection between the theoretical and the
final data model of the experiment.

5.3 Data fits

As already mentioned, in addition to the detector efficiencies, the measurement of
the RK ratio requires the calculation of the yields N of the decays of the ratio. This is
achieved in the third stage of data modelling via the process of data fitting. In general,
data fitting is the mathematical process of finding a function that best fits a number
of data points (i.e. the process of ‘fitting the curve’), with the aim of determining or
estimating the values of various unknown parameters affecting the collection of data.

14For a detailed description of the ‘tag & probe’ method see Archilli et al. (2013).



European Journal for Philosophy of Science          (2021) 11:101 Page 21 of 33  101 

As noted by Suppes (1962, p.253), one of the most profound complications in the
reconciliation of data and theoretical predictions is that the former are of a discrete
and finite nature, whereas the latter are typically continuous functions or infinite
sequences. Data fitting is the mathematical tool for solving this tension by finding
the most appropriate (continuous) function that best describes the finite sequence of
data collected in the experiment.

In the context of the measurement of the RK ratio, the fits are performed to the
data for the combined mass m(K+�+�−) in each decay, providing this way a prob-
ability distribution for the mass of the B-meson. This distribution is considered to
be the best description of the set of observations xi , given that these observations
are also affected by the presence of residual background (i.e. background that evades
the data selection process). Once the fit is performed, the probability density func-
tion is re-parametrised so that it is a function of the relevant yield N and RK , and
maximum likelihood estimations are then performed to find the values of the yields
for the signal Ns and background Nb for which it is most likely to observe the given
masses m(K+�+�−) in each decay process. For instance, Fig. 3 illustrates the fit
performed to the m(K+μ+μ−) data in order to extract the yield of the nonresonant
decay B+ → K+μ+μ−. This is an example of an auxiliary data model needed for
the construction of the final data model representing the RK ratio. The extraction
of the yield from these fits involves the use of specialized software algorithms both
for the determination of the shape of the curve and the maximum likelihood estima-
tion of the parameters, taking into account all possible contaminations to the fit from
background contributions.

Maximum likelihood estimation (MLE) is one of the most popular statistical meth-
ods for calculating unknown parameters such as the yields of decay processes in high
energy physics experiments. Roughly speaking, given a probability density func-
tion f (xi; θi) describing a set of observations xi , that are characterised by a set of
parameters θi , MLE is a method of finding the values of θi that make the data most

Fig. 3 Fit to m(K+�+�−) for B+ → K+�+�− events in the Run II data, along with the contribution from
combinatorial background. The extracted values for the signal yield Nsig and the background Ncomb are
displayed at the right of the figure (Humair, 2019)
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likely. What this means in practice, is that the final value of RK which is eventu-
ally compared to the theoretical hypothesis H0, is itself a hypothesis as well, which
nonetheless, is derived from the available experimental data on the basis of various
mathematical criteria. What makes MLE a popular method in HEP is the fact that
compared to other estimation methods, it is characterized by a number of ‘good’
statistical properties such as consistency, small bias and robustness.15

For completeness, let us note here that the most likely value of the RK ratio given
the available data for the most recent measurement (LHCb Collaboration, 2021) was
found to be

RK = 0.846+0.042+0.039
−0.013−0.012 (1)

where the first uncertainty is statistical and the second systematic. The fourth and last
part in the construction of data models concerns the determination of these uncer-
tainties, which, as we shall see, are a very important and indispensable part of a data
model.

5.4 Uncertainty calculations

The attribution of statistical and systematic uncertainties in a HEP experimental result
can be understood as a way of quantifying possible errors in the data taking process.
This understanding reflects the seemingly more popular ‘error approach’ in HEP,
whose objective is to determine an estimate of a quantity which is as close as possible
to the unique true value of the quantity. This is opposed to the ‘uncertainty approach’
whose objective is to determine an interval of values which can be equally assigned
to a quantity with relatively high confidence, and can be understood as a way of
quantifying doubt during a measurement process.16 In the case of the RK ratio, the
preference to the error approach is reflected by the expression of the result as a single
numerical value – which is supposedly as close as possible to the real value of the
ratio – associated with statistical and systematic uncertainties.

Generally speaking, in a HEP experiment, there are six main sources of uncer-
tainty: (i) the intrinsic probabilistic nature of the underlying quantum field theory,
(ii) the theoretical uncertainties involved in the calculation of various quantities due
to highly complicated (usually QCD related) theoretical calculations (iii) the various
measurement errors that are present in the data taking process even without taking
into account any quantum effects, (iv) the variability in the selection of different
models and different measurement methods in the experiment (v) the experimenter’s
insufficient knowledge about various aspects of the experiment due to limitations of

15In short, an estimator of a parameter is said to be consistent if it converges, in probability, to the true
value of the unknown parameter as the number of measurements tends to infinity. The bias of an estimator
is the average deviation of the estimate from the true value over an infinitely large number of repeated
experiments. Robustness is the property of an estimator to have limited sensitivity to the presence of
outliers in the data. The full mathematical definitions of these properties can be found in Lista (2016,
Ch.5).
16See Mari and Giordani (2014) for an illuminating discussion on the error approach and the uncertainty
approach in science.
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cost, computational time, computational power and so on, and (vi) the simple fact
that a repeated measurement may yield different results for the same quantity.17

These and other possible sources of error give rise to two different types of uncer-
tainty that are typically accompanying a HEP result in the form of the data model:
statistical uncertainties and systematic uncertainties. A possible way to distinguish
between these two types of uncertainty on the semantic level, is to understand the
former as expressing the possible fluctuations in a measurement result even when all
input quantities and other factors affecting the measurement are perfectly known and
stable. This means that the presence of statistical uncertainty can be attributed to the
probabilistic nature of quantum field theory and other purely statistical factors, and
thus its minimisation is quite often merely a matter of collecting additional data in
future runs. Systematic uncertainties on the other hand, can be seen as resulting from
our imperfect knowledge on various aspects of the experiment, the mis-modeling of
detectors in the simulations, and the possible defects and biases of measuring instru-
ments during the data taking procedures. A large part of the data analysis process
therefore concerns the precise calculation and mitigation of systematic uncertainties
to the extent allowed by the available funds and the available time, which in turn will
provide extra security and robustness to the final result.

In a recent study on uncertainties in HEP, Staley (2020) aptly notes that the dis-
tinction between statistical and systematic uncertainties in HEP is rather opaque.18

The main reason for this ambiguity stems from the fact that the sources of systematic
uncertainty in a measurement are often unknown and difficult to distinguish from
statistical uncertainties. Moreover, they often require a different method of evalua-
tion, which in turn makes the combination of systematic and statistical uncertainties
in the final result problematic. In order to resolve this lack of consensus, parti-
cle physicists have developed an extensive literature on the treatment of systematic
uncertainties providing possible definitions and practical guidance on methods of sta-
tistical evaluation.19 Barlow (2002) for instance, provides two conflicting definitions
of systematic error by ‘widely read and accepted authors’ and shows how different
measurements in HEP reflect these two definitions. He then concludes his paper with
a set of practical advice for practitioners.

Given this ambiguity, in practice, the lack of consensus on the distinction between
statistical and systematic uncertainties is usually resolved by simply stating the
sources of statistical and systematic uncertainties in a published result.20 In the case

17I am grateful to an anonymous referee for pointing out that this list – or any list – is, of course, non
exhaustive.
18The following remarks from experimental physicist Pekka Sinervo confirm this: ‘the definition of these
two sources of uncertainty in a measurement is in practice not clearly defined, which leads to confu-
sion and in some cases incorrect inferences. [...] The definition of such uncertainties is often ad hoc in a
given measurement, and there are few broadly-accepted techniques to incorporate them into the process
of statistical inference’ (2003, p.122).
19See for example Barlow (2002), Sinervo (2003), Lyons (2006), Wanke (2016), and Bailey (2017) and
references therein. Staley (2020) offers a very illustrative philosophical analysis of the various aspects of
this debate.
20This, of course does not solve the problem of how one should evaluate and combine these two types of
uncertainty as noted by Staley (2020).
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of the RK ratio, ‘by convention, the uncertainty on RK arising from the statistical
fluctuations affecting [the ratio of the yields] NKμμ

NKee
is referred to as statistical uncer-

tainty’ (Humair 2019, p.133, emphasis added). All other sources of uncertainty are
integrated as systematic uncertainties and are listed below (ibid., p.138):

1. Calibration samples size
2. Kinematic reweighting
3. PID calibration
4. Trigger calibration
5. Occupancy proxy
6. Tracking efficiency
7. q2 and mass resolution
8. Decay model
9. Fit shape

Some of these uncertainties are related to the finite nature of the data samples
while others come from various limitations in the detector, and the presence of phys-
ical effects like bremsstrahlung which significantly complicates the identification
of electron tracks. The calculation of each type of uncertainty follows a different
methodology according to the nature of the source, but the main idea remains the
same. As we have seen, the overall data taking process for the extraction of the RK

ratio involves the utilisation of various auxiliary models and other assumptions that
are necessary for carrying out the calculations leading to the final result. However,
given that there is often no theoretical or empirical justification for (i) the use of
one experimental model over another, or (ii) the assignment of a particular value in
a parameter of a model or an assumption (e.g. a specific threshold value in the trig-
gering system) the result is extracted several times either by varying the auxiliary
experimental model or the value of a parameter within the selected model (Sta-
ley 2020, p.102). The variance in the result due to the use of different models and
different parameters is then recorded as a systematic uncertainty.

Uncertainties are a crucial and indispensable part for the reliability of an experi-
mental result but a further discussion on their nature and exact role requires a much
deeper analysis which is beyond the scope of this paper. As a closing remark, let us
simply note that in addition to being a quantifiable measure of comparison between
different results from different experiments, uncertainties are also a solid way of
determining the accuracy and precision of a specific result. This point has been nicely
illustrated by Beauchemin (2017) who emphasizes the critical role of uncertainties
in determining the robustness and the validity of measurements. A measurement is
robust insofar as the systematic uncertainties on the final results are ‘sufficiently
small’ regardless of the source of these uncertainties. Sufficiently small is to be
understood here as being significantly smaller than the order of magnitude of the
physical effect to be measured. How much smaller is significantly smaller is not
written in stone, however, the main idea is that the smaller the uncertainty, the more
robust the result will be.
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Beauchemin also notes, rather interestingly, that in cases of small uncertainties,
the allegedly vicious circularity of theory-ladenness in observation is not problem-
atic, precisely because ‘its impact on the physics conclusions will be small and fully
accounted for’ (ibid., p.303). Beauchemin’s remarks have been further elaborated by
Ritson and Staley (2020) who nicely illustrate how the identification of the assump-
tions on which a result depends and the further quantification of the dependence of
this result on the various assumptions in terms of uncertainty calculations, jointly
control the possibility of a vicious circularity at the practical level. The determina-
tion of the dependence of the result on the various theoretical assumptions in terms
of uncertainty serves in discriminating amongst those model assumptions that have
the highest impact on the uncertainty of the result and those whose variation intro-
duces negligible changes. The clear separation between the statistical and systematic
uncertainties, and the identification of the different sources of uncertainties in the
published result as presented in the above list, nicely demonstrates how Ritson and
Staley’s observations can be applied at the example of the RK ratio.

6 Two dubious distinctions

Now that we have seen how the available data are treated in different ways during
the various stages of the construction of a data model, we are in a position to make
some remarks about the two distinctions between (i) raw and processed data and
(ii) simulated and real (or signal) data. Although in both cases, the two extremes
in these distinctions can be clearly defined, the transition between the two types of
data in each case is, as we have seen, quite blurry. Regarding the first distinction,
raw data are often defined as objects that are directly perceived by our experience
without any mediating processing or influence by theory (cf. Harris, 2003, p.1511).
If this definition is taken seriously, then it is not clear at all what should be counted
as raw data in a large-scale HEP experiment. In practice, physicists tend to refer to
the electronic signals produced by the physical processes in the various parts of the
detector as the ‘raw data’ given to us by the proton collisions, whereas the output of
the triggering system that eventually gets stored in the data centre and reaches the
hands of researchers is referred to as ‘reconstructed events’.

However, none of the signals produced in the detectors is actually directly per-
ceived by the researchers at CERN. Before reaching the hands of physicists, the data
from the electric signals produced at the early stages of the experiment at the Track
Reconstruction and Part Identification systems described in Section 4, undergo a long
process of refinement and reconstruction by the computer algorithms of the LHCb
detectors and triggering systems. Hence, the ‘first points of contact’ – i.e. the recon-
structed events – are long lists of numerical data about energy deposits on detectors,
momenta etc, but as we have seen, these data are far from being unmanipulated and
clear from any theoretical influence. The very nature of particle physics therefore
makes it impossible to talk about raw data in this field in a strong sense.

This point also illustrates that the basic definition of data models as ‘a corrected,
rectified, regimented, and in many instances idealized version of the data we gain
from immediate observation’ given by Frigg and Hartmann (2016) does not really
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apply in the case of HEP. Nevertheless, the data in the reconstructed events are, in a
sense, also ‘raw’, since they still need to undergo a long process of further analysis
by scientists in order to reach their final form as a data model which is comparable to
the theory. A more appropriate way to describe this situation is thus to say that data
follow a long ‘ripening’ journey which starts from their birth as electric signals in the
heart of detectors, and goes all the way up to the final polished form of a data model,
without really worrying at which stage the data should be considered to be raw.21 It
is precisely for this reason that the novel definition of data models in Section 2, does
not depend on a clear-cut distinction between raw and processed data and thus avoids
the relevant objection discussed by Leonelli.

Regarding the folk view that sees the tampering of data as an act of decreasing
their epistemic reliability, it should be obvious from our discussion so far that this
does not apply to HEP experiments. Generally speaking, a dataset is epistemically
reliable if the information it provides for the physical phenomenon it represents is
correct. In the context of LFU tests, to say that the processing of data decreases their
epistemic reliability is therefore to say that the processed datasets provide less accu-
rate information about the possible violation of LFU in B-decays compared to their
less processed counterparts. This is not true however. The successful completion of a
large-scale experiment in HEP and the extraction of meaningful and reliable conclu-
sions about the empirical adequacy of various theoretical claims, necessarily requires
the processing of data by statistical methods and computer simulations. For instance,
as we have seen, the calculation of detector efficiencies (Section 5.2) involves the
introduction of simulated data in the datasets which can be seen as a form of tamper-
ing the initial data. This step however, is taken to ensure that the calculated number
of yields in the data fitting stage reflects the actual number of B-decays occurring in
the collider and not the number of yields detected by the LHCb. Hence, the process-
ing of data in some cases increases the reliability of the datasets in that it mitigates
the impact of possible errors in the less processed datasets due to poor detector
performance, computational limitations and so on.

Moreover, it is safe to say that the so-called raw data from these experiments, are
not just epistemically less reliable than the processed data in some cases, but when
it comes to their comparison with theoretical predictions, they are also practically
useless in their pure form. The successful comparison of a theoretical hypothesis
with data necessarily requires that the raw data extracted from the detectors are
moulded into an appropriate form that makes them comparable to theoretical pre-
dictions in order to serve the purpose for which they are extracted. However, the
raw data extracted from the first level of the triggering system are far from ful-
filling this requirement. Hence, the seemingly counterintuitive claim that processed
data are epistemically more reliable and more useful than the raw data obtained by
experiments is actually a platitude when it comes to HEP.

21Bokulich’s comment on the blurriness of this distinction is characteristic: ‘I will not engage the difficult
question here of where exactly to draw the line between (raw) data and a data model. It may very well be
that the distinction is one of degree with vague boundaries, rather than a difference of kind; [...] and where
the line is drawn may further be context dependent’ (2018, fn.25).
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As for the distinction between simulated and real data in HEP, this has already
been discussed in detail by Margaret Morrison (2015, Ch.8). Morrison uses the exam-
ple of the Higgs discovery to emphasize the absolute necessity of simulation, not
only in calculating the efficiency of a detector, but also in almost every other aspect
of the LHC experiments. Her main conclusion is that given that simulation and signal
data are essentially combined during the data analysis process, the sharp distinction
between simulation and experiment is practically meaningless, and that ‘simulation is
as much part of the experiment as the signal data’ (ibid., p.289). Parker (2017) reaches
a similar conclusion in her attempt to show that the results of computer simulations
that are often embedded in measurement practices can be understood as measurement
outcomes of equal epistemic importance to the outcomes of real measurements.

The calculation of the efficiencies via simulation provided in Section 5.2 is a
clear example of such cases, where simulation results are actually embedded in real
measurement outcomes in a way that makes it practically impossible to distinguish
between the two. This example however, illustrates only one out of the many appli-
cations of simulation in a large-scale HEP experiment such as the LHCb. In addition
to the calculation of the detector efficiency, simulation is also involved in the very
early stages of the experiment to design and optimize the detectors for best physics
performance, as well as in the calculation of the performance of the detector which is
crucial for the extraction and interpretation of the available data (indeed, the numbers
provided at the beginning of Section 4 regarding the performance of the LHCb detec-
tor can only be estimated by simulation). It is also heavily used for the estimation of
background signal in the extracted data and the evaluation of the possible physical
processes in the various parts of the sub-detector in order to assess their impact on
the final data model via the calculation of uncertainties.22

For the purposes of our discussion, it therefore suffices to say that although what
counts as simulation data and what counts as signal data in the experiment is quite
straightforward, the data that reaches the experimenters as reconstructed events for
further analysis, is in effect an indistinguishable amalgamation of these two types.
Along with a number of additional factors, simulation data therefore have a clear
influence on the final properties of the data model either directly via their presence
in the processed datasets that reach the scientists’ desks, or indirectly via their effects
on the various aforementioned stages and procedures of the experiment. Although
the discovery of a new particle or the presence of new physics in a physical process
cannot – of course – be claimed based solely on simulation data, the final data model
that is eventually compared to theory to make such claims is in effect a co-production
of real and simulated data. The extent to which each type of data contributes to the
final results depends on the specific details of the experiment. This further suggests
that the question whether real data are more reliable than simulated data does not
really apply in the case of HEP, since in practice, there is rarely a case in which a
dataset is exclusively constructed from real data.

22For a detailed review of the impact of simulation to collider experiments in general, including the dis-
cussion of cases where the use of simulation samples made a difference in the precision of the physics
results, see Elvira (2017). For a description of the LHCb simulation system see Clemencic et al. (2011).
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7 Concluding remarks

The description of the four stages in HEP data modelling and the following remarks
on the two distinctions between raw/processed data and real/simulated data bring us
to the end of our discussion. As we have seen, the construction of a data model in
HEP typically proceeds via a four stage process in which (i) the selection criteria
for reducing the available data are defined and applied at the trigger systems, (ii) the
efficiency of the detector in recording the relevant events is calculated, (iii) the yields
of the decays are determined by data fitting, and (iv) the uncertainties accompanying
the final result are determined and calculated. It is important to note once again, that
in practice, these four stages are not clearly separated during the data analysis, nor do
they follow a linear path in which one stage follows after the completion of another.
Rather, the activity of constructing a data model is a long and iterative process of trial
and error, in which several attempted algorithms for extracting the result go back and
forth a peer review process until they reach the necessary standards for publication.
The breakdown of these procedures in four different stages only aims in giving an
overview of the main tasks that need to be accomplished in order to compress the
huge amount of information hidden in the available data into a simple data model to
be compared with the theory.

Figure 4 perfectly captures Suppes’ dictum that theoretical hypotheses are eventu-
ally compared with ‘a simple entity’ – i.e. the data model – which incorporates all the
relevant information extracted from the many and various procedures that constitute
the LHCb experiment. The graph is taken from the LHCb’s most recent announce-
ment of the result, and shows the comparison between the theoretical prediction of
the Standard Model (vertical dashed line) and various experimental results for the Rk

ratio (horizontal lines). Compared to the previous result at the LHCb Collaboration
(2019) and the results from the Belle and BaBar experiments, the 2021 LHCb result
by far has the smallest associated uncertainty which makes it the most precise and
robust measurement of the RK ratio to date.

Fig. 4 Comparison of the Standard Model theoretical prediction and various RK ratio results from
different experiments (LHCb Collaboration, 2021)
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This result is consistent with the Standard Model prediction at the level of 3.1 stan-
dard deviations, which corresponds to a p-value of ∼ 0.1%. In practice, this means
that if the ‘null hypothesis’ is correct – i.e. if there is no violation of Lepton Flavour
Universality – then the probability of obtaining any data yielding a discrepancy from
the Standard Model prediction that is at least as great as that obtained with these
data is about 1 in 100000. The 3.1 sigma level is still far away from the golden 5
sigma level for claiming a new discovery in particle physics, corresponding to the
much lower p-value of approximately 1 in 3.5 million. This, however, is a significant
improvement to the 2.5 standard deviation of the 2019 measurement with a p-value
of 1 in 166, in that it comes with even smaller uncertainties and makes the possibil-
ity of discovering new physics in rare B-decays more credible. Future measurements
of the ratio based on larger data samples are expected to both reduce the total uncer-
tainty and increase the sigma level in order to reach a more definite conclusion for
the possible violation of LFU in B-decays.

It is also worth noting that the plethora of experimental results showing potential
anomalies at the 2-3 sigma level has already led to the development of various phe-
nomenological models containing new physics in the form of additional interactions
that allow the violation of LFU. The most promising types of such models involve the
existence of additional particles such as the so-called ‘leptoquarks’ (Bečirević et al.,
2016) or a new heavy neutral Z′ boson (Celis et al., 2015). The precise way in which
indirect searches in HEP, such as the measurement of the RK ratio, give rise to new
models extending the Standard Model of particle physics, and the impact of these
models on future research in HEP is an interesting topic that deserves to be explored
further in future work.

To summarise, the main objective of this article was to explore the connection of
theory with experimental results via the concept of data models, by studying in detail
an example of experimental practice in HEP. Our discussion began with a brief pre-
sentation of Suppes’ hierarchy of models account and his distinction between models
of theory, models of experiment and models of data. The following section focused
in providing the theoretical framework of the rare decays of B-mesons at the LHC
in order to understand the experimental process of LFU tests at the LHCb for which
the data model of the RK ratio is constructed. The discussion continued with a pre-
sentation of the LHCb trigger system, followed by the presentation of the four main
stages for the construction of the data model of the RK ratio and some remarks on
the two distinctions between raw/processed data and real/simulated data in support
of the four main conclusions of this paper.

The first conclusion is that the first data collected at the early stages of the exper-
iment, which can be characterised as the raw data of the experiment, are useless as
they are for the comparison between theory and experimental results, since they nec-
essarily need to undergo a process of refinement in order to be transformed into a
language that is comparable to theory. This also indicates that raw data in HEP cannot
be understood in the traditional sense as data directly perceived from human experi-
ence and that, contra to popular perception, the process of refining the data sometimes
makes the processed datasets epistemically more reliable than non-processed data.

The second conclusion concerns the fact that the final datasets that reach the hands
of physicists for analysis consist of a mixture of simulated and real data that cannot
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be distinguished. The use of simulation and its data are essentially involved directly
or indirectly in almost every step of the data acquisition and data analysis process and
hence, one can safely say that the final data model of the RK ratio that is eventually
compared to the theoretical prediction of the Standard Model is a co-production of
data coming from the physical interactions of particles in the detector and computer
simulations.

The third conclusion is that theory guides the observation and the derivation of
results in three different levels: a fundamental level which is universal across all
experiments in HEP, an intermediate level regarding the various processes throughout
the experiment which are not directly involved with the physical phenomenon under
investigation, and a third and most specific level which explicitly guides the overall
experimental procedure based on the specific research question of the experiment. In
the core of these three levels lies the fundamental assumption that new physics will
resemble known physics. This means that the anticipated models and theories that
go beyond the Standard Model are expected to respect all the fundamental laws of
current physics, and new physics will only appear in extremely short distance/high
energy scales and in rare processes such as the decays of B-mesons which have not
yet been studied in detail.

Finally, the detailed study of the LFU tests at the LHCb showed that Suppes’
categorization is not as rigid as one might first think, in that the three types of mod-
els cannot always be easily distinguished. Nonetheless, this categorization remains a
useful conceptual tool for describing the otherwise extremely complicated structure
of large scale experiments in HEP. In this context, a data model can be understood as
the representation of an experimental result in the form of a graph, table or numerical
answer that allows the comparison of experiment with theory. While this straight-
forward answer to the question of what a data model is does not differ from what
Suppes and others have said, what is of special philosophical interest is the compli-
cated and extremely laborious process of constructing a data model in HEP, which
has largely been overlooked by philosophers of science. The detailed analysis of the
necessary considerations regarding the determination of cuts, the calculation of effi-
ciencies and uncertainties and the fitting of data with sophisticated algorithms shows
that the process of constructing a data model in HEP involves much more than the
mere collection and organization of raw data, and cannot be easily formalized as
Suppes implied.

In addition to these main conclusions, the detailed description of the idiosyn-
crasies of the LHCb experiment for the test of LFU and the various challenges faced
by physicists in their attempt to derive the experimental results also reveals a num-
ber of further issues worthy of philosophical attention. The pragmatic dimension of
the experimental process regarding the determination of selection criteria based on
time limitations, computational power and store capacity, and the fact that the LHCb
detector is able to collect only 25% of the b-quarks that are produced in the proton
collisions of the LHC means that the otherwise huge amount of data that eventually
gets stored for further analysis is only a tiny fraction of the potentially available data
from the proton-proton collisions in the LHC. Although special attention is given
to collect the most relevant data with respect to a research question, it is a widely
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accepted fact that the data that are irretrievably thrown away at the LHC contain evi-
dence for new physics and hence, the final data model of the RK ratio, as well as
most of the results in HEP, is not a solid and flawless representation of reality in the
microscopic scale as one might think. Rather, it is itself a hypothesis based on our
best estimation given the small fragment of data we are able to collect from particle
collisions.
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