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Abstract

Gravitational Waves were first predicted by Einstein more than a hundred years ago.
Often described as ripples in the fabric of spacetime, they arose as wave solutions to his
field equations in the theory of general relativity. The existence as well as detectability
of these gravitational waves was long in doubt, most notably by Einstein himself. The
question of existence was answered in 1974 with the detection of the Hulse-Taylor binary,
two neutron stars revolving around each other and losing energy precisely at the rate
predicted by gravitational waves.

Since this was an indirect observation of gravitational waves, the question of de-
tectability still remained. It was finally answered in 2015 when the LIGO-Virgo-KAGRA
collaboration directly detected gravitational waves from a binary black hole system, since
named GW150914. This detection was significant, since it kick-started a completely new
field of physics, gravitational wave astronomy. We could now observe the universe in a
completely new way, using gravitational waves instead of the traditional electromagnetic
means.

Since then, around 250 new gravitational wave candidates have been detected. The
question of gravitational wave detection has been conclusively answered. This does not
mean that the field of gravitational wave astronomy is over. On the contrary, as we detect
more gravitational waves, more questions arise. These include questions about black hole
and neutron star formation mechanisms and properties, merger rates and population
statistics of these astronomical objects, and the implications of these on general relativity
and cosmology.

Gravitational wave searches are the first step of extracting scientific results from
gravitational wave data. Low-latency searches can contribute to multi-messenger detec-
tions, greatly increasing the amount of information we can extract from astronomical
events, whereas high-latency searches can be used to aggregate results from multiple
robust detections. Hence, in order to answer the previous questions, it is imperative to
make gravitational wave searches more sensitive, robust, accurate, and computationally
efficient.

This work describes the results of such efforts in the lead up to, and during the fourth
observing run of the LIGO Scientific, Virgo and KAGRA Collaboration, with a particular
emphasis on the GstLAL search pipeline. It also talks about both the low-latency and
high-latency operations of the GstLAL pipeline which have contributed towards official
results of GstLAL as well as the LVK collaboration for the fourth observing run.

il



Table of Contents

List of Figures ix

List of Tables xix

Acknowledgments xxi
Chapter 1

Introduction 1

1.1 Gravitational Wave Formalism in General Relativity . . . . . . . ... .. 1

1.1.1 Linearized Field Equations and Wave Solutions . . . . . . .. .. 2

1.1.2  Transverse-Traceless Gauge and Polarization Modes . . . . . . . . 3

1.1.3 Amplitude of Gravitational Waves . . . . . . . .. . .. ... ... 4

1.2 Sources of Gravitational Waves . . . . . . . ... ... ... 4

1.2.1 Compact Binary Coalescences (CBCs) . . . ... ... ... ... 4

1.2.2  Core-Collapse Supernovae and Other Transient Sources . . . . . . 5)

1.2.3  Continuous Gravitational Wave Sources. . . . . . . . ... .. .. 5

1.2.4  Stochastic Background of Gravitational Waves . . . . . . . .. .. 6

1.3 Gravitational Wave Detectors . . . . . . . . . . ... ... L. 6

1.3.1 Interferometer-Based Detectors . . . . . . ... ... ... .... 6

1.3.2 Noise Sources and Mitigation . . . . ... ... ... ... .... 7

1.3.3 Future Developments . . . . . . ... ... ... ... .. ... . 8

1.3.4 Data Analysis and Signal Extraction . . . .. ... ... ... .. 8
Chapter 2

How Many Times Should We Matched Filter Gravitational Wave

2.1
2.2

2.3

Data? A Comparison of GstLAL’s Online and Offline Per-

formance 10
Introduction . . . . . . . ... 11
Software . . . . . . 12
2.2.1 General GstLAL methods . . . . . . ... .. ... ... .. ... 12
2.2.2  Online GstLAL Analysis . . . . . . .. .. ... ... ... .... 14
2.2.3 Offline GstLAL Analysis . . . . . . ... ... ... ... ..... 16
Methodology . . . . . . . . .. 17
2.3.1 OnlineRank . . . . . . . . . ... . . 17

v



2.3.2 Offline Rank Stage Methods . . . . . . ... .. ... .. .. ... 18

2.3.3 Dropped Data Refiltering . . . . ... ... ... ... ...... 20

2.3.4 Computational Cost Reduction . . . . ... ... ... .. .... 21

24 Results . . . . . . e 22

2.4.1 MDC Data Set and Analyses . . .. ... ... .. ... ..... 22

2.4.2  Sensitivity Comparisons . . . . .. .. ... ... 22

2.4.3 Candidate Lists . . . . . . . . . ... 24

2.4.4 Injection Parameter Recovery Comparisons . . . . . . . . .. ... 25

2.5 Conclusion . . . . . . .. 27

2.6 Acknowledgements . . . . . .. .. ... 29

Chapter 3

GstLAL’s online operations during the fourth observing run 31

3.1 Oda ... 32

3.1.1 Public Alerts . . . . . . . . 32

3.1.2 GW230529 . . . . . . 33

3.2 O4b . . 33

3.2.1 AlISky . . . . 34

3211 HLvsHLV ... ... ... .. .. 34

3.21.2 Results . ... ... 35

3.2.2 Early Warning . . . . . . . ... 36

3.2.2.1 Data whitening problem . . . . . .. ... ... 36

3222 Results . .. .. .o 37

3.23 SSM . .o 37

3231 Results . .. .. 37

3.24 Esme . . .. .. 37

3.24.1 Results . . .. ..o 39

3.3 Conclusion . . . . . . . .. 39

Chapter 4

New Methods for Offline GstLAL Analyses 41

4.1 Introduction . . . . . . . .. . 41

4.2  Overview of the GstLAL Offline Analysis . . . . . .. ... ... ..... 42

4.2.1 Template bank creation stage . . . . . ... ... ... 43

4.2.1.1  AllSky template bank . . . . . ... ... ... ... .. 43

4.2.1.2 IMBH template bank . . . . . . .. .. ... ... .... 44

4.2.1.3 Populationmodel . . . . . ... 44

4.2.2  power spectral density (PSD) measurement stage . . . . . .. .. 45
4.2.3  Singular value decomposition (SVD) of templates and template

whitening stage . . . . . ... Lo Lo 46

4.2.4  Matched filtering stage . . . . .. ... oL 46

4.2.5 Rankstage . .. .. .. 47

4.3 New Methods . . . . . . . . .. 48

4.3.1 OnlineRank . . . . . ... ... .. ... ... .. 48



4.3.2 Dropped Data Refiltering . . . . . ... ... ... ... ...
4.3.3 intermediate-mass black hole (IMBH) Analysis . . . . . . ... ..
4.3.4 Combining the AllSky and IMBH analyses . . . . . ... .. ...
4.3.5 Modularity and reusability of results . . . . . ... ... ... ..
4.3.6 Ranking statistic improvements . . . . . .. ... ...
4.3.7 New Extinction Model . . . . .. . ... ... ... ... ...

4.4 Results . . . . . .
441 Dataset . . . . . ..
4.4.2 Candidate lists . . . . . . . ... L
4.4.3 Sensitivity comparison . . . . .. ...
4.4.4 Performance of individual features . . . . . . . . . ... ... ..
4.44.1 IMBH analysis . . . ... ... ... ... ........

4.4.4.2 Extrapolation in p — &2 noise model . . . . . ... .. ..

4.4.4.3 Reliability of results . . . . .. ... ...

4.5 Conclusion . . . . . . ...

Chapter 5

Method for removing signal contamination during significance esti-
mation of a GstLAL anaysis
5.1 Introduction . . . . . . . .. ..
5.2 Signal Contamination . . . . . . . . . ... ...
5.2.1 Likelihood Ratio . . . . . . . . .. .. ... ... ... .. ...,
5.2.2 The p— €2 histograms . . . . . . .. .. ... ... ...
5.3 Removing contamination with the Background Filter . . . . . . . . . ..
5.3.1 Recordingevents . . . . . ... .. ...
5.3.2 Removing contamination . . . . . . ... ...
54 Results . . . . . .
5.4.1 Analysis methods . . . . . . ... ...
5.4.2 Simulation Set . . . .. ..o Lo
5.4.3 Sensitivity Improvements . . . . . . ...
55 Conclusion . . . . . . . ..
5.6 Acknowledgements . . . . .. ...
5.7 Appendix A: Choice of constraints, and their impact on performance
5.8 Appendix B: Criteria for removing events from the background, and its
effect on sensitivity . . . . . . ...
5.9 Appendix C: Differing impacts of singal contamination of the sensitivities
of template bins . . . . . . ...

Chapter 6

Metric Assisted Stochastic Sampling (M ASS) search for gravitational
waves from binary black hole mergers

6.1 Introduction . . . . . . . . . ...

6.2 Motivation . . . . . . ..

6.3 Methods . . . . . . . . .

vi



6.3.1 Data . . . . .. 95

6.3.2 Spectrum estimation and whitening . . . . . . ... ..o 96

6.3.3 Simulation capabilities . . . . .. ..o 97

6.3.4 Parameter space sampling . . . . .. ... ... o0 97

6.3.4.1 Computation of the binary parameter space metric . . . 98

6.3.4.2 Choice of coordinates . . . . . . . .. ... ... ... .. 100

6.3.4.3 Pathologies of the numerical metric . . . . . . . ... .. 100

6.3.4.4 Drawing random samples from ©(J, X) .......... 101

6.3.4.5 Parameter space constraints . . . . . .. ... ... ... 102

6.3.4.6  Glitch Rejection . . . . . . ... ... ... ... ... 102

6.3.4.7  Computing the log-likelihood ratio, £. . . . . . . .. .. 103

6.3.5 Background estimation . . . . . ... ..o L 106

6.4 Results. . . . . . . . 107

6.4.1 Dataset . . . . . . . . 107

6.4.2 Search parameter space . . . . . . . . ... ... 107

6.4.3 Simulationset . . . . . . ... L 107

6.4.4 Candidate list . . . . . . . ... .. 107

6.4.5 Sensitivity estimate . . . . .. . ... Lo 111

6.5 Conclusion . . . . . . . . L 113

6.6 Acknowledgements . . . . . ... .o 114

6.7 Appendix A: Data release details and code versions . . . . .. ... ... 114

6.8 Appendix B: Follow-up of missed injections . . . . . . . . . ... ... .. 114

Chapter 7

Method to get Better Sky Maps in a GstLAL Low-Latency Analysis 116

7.1 Introduction . . . . . . . ... 117

7.2 Methodology . . . . . . . . 120

7.2.1 General GstLAL Methods . . . . .. ... .. ... ... ..... 120

7.2.2 SNR Optimizer Methods . . . . . . . .. .. ... ... ... ... 121

7.2.2.1 Design Principles . . . . . . .. .. ... 121

7.2.2.2 Template Bank . . . . .. ... ..o 122

7.2.2.3 Search Algorithm . . . . ... .. ... ... ... ..., 122

7.2.2.4 Coincidence Formation . . . . . . . ... ... ... ... 125

7.2.2.5 04 Configuration . . . . .. .. ... ... ... ... . 127

7.3 Results. . . . . . 129

7.3.1 Dataset . . . . . .. 129

7.3.2 SNR improvement . . . . . .. .. ... .. ... .. 130

7.3.3 Sky map improvement . . . . . .. ... ... 130

734 Latency . . . . . . . 134

7.3.5 Contributions to the SNR improvement . . . . . . . .. ... ... 136

74 Conclusion . . . . . .. . 138

7.5 Acknowledgements . . . . . .. ..o 141
7.6 Appendix A: Compatibility with other gravitational wave (GW) search

pipelines . . . . . .. 142

vii



7.7 Appendix B: Low-Latency Mode

Bibliography

viii



List of Figures

1.1

1.2

1.3

This figure shows the effect of a gravitational wave passing perpendicular
to the page on a ring of test particles, for the plus polarization (left) and
cross polarization (right). The ring alternately gets deformed into one of
the two ellipses for each half period of the gravitational wave. The ellipses
of the two polarizations are separated by an angle of 7. This figure is
taken from [1]. . . . . ...

This figure shows a simplified schematic for interferometric detectors.
Light from the laser is split at the beamsplitter, causing it to travel down
both arms, with a phase shift in one. The pair of test masses in both
arms form a Fabry-Perot cavity, increasing the effecting arm lengths. In
the absense of a gravitational wave, no interference pattern in produced.
Whan a gravitational wave passes perpendicular to the arms, it causes
the relative arm lengths to change, and hence an interfeence pattern can
be detected at the photodetector. This figure is taken from [2]. . . . . .

This figure shows an example power spectral density (PSD) plot for the

LIGO and Virgo detectors, from the third observing run. This figure is
taken from [3]. . . . ...

X



2.1

2.2

2.3

2.4

2.5

A schematic showing which files are selected for an online rank, from
the online analysis. The rectangles represent the two types of data
products created by the online matched filtering process. The rectangles
at the bottom represent the trigger snapshot files, and those at the top
represent the background snapshot files. Each snapshot file is 4 hours
long. The rectangles colored green are the ones selected by the online
rank. Since the trigger snapshot files are discrete, all those having an
overlap with the online rank duration are selected. In contrast, since the
background snapshot files are cumulative, the earliest one containing all
the background data for the duration of the online rank, and the latest
one containing of it are chosen. These two are then subtracted to produce
a background file containing exactly the background data for the duration
of the online rank, to the granularity of the 4 hour snapshots. This process
is repeated for every template bin in the analysis. . . . . . . .. ... ..

The ratio of the sensitive volume-times of the online rank to that of a
traditional offline analysis over the same period of time, calculated for
different mass bins and at different FAR thresholds. The fact that the VT
ratios for all mass bins are close to 1 across FAR thresholds tells us that
the online rank method is very close in sensitivity to a traditional offline
analysis. The 5% loss in VT comes from the fact that the online analysis
dropped approximately that much data. The peaks and troughs in the
BBH line are because of the small number of statistics in that mass bin.

The ratio of the sensitive volume-times of the online rank augmented with
triggers and background data from the periods of time dropped by the
online analysis to that of a traditional offline analysis over the same period
of time. We see that the 5% loss in VT seen in Fig. 2.2 is recovered by
adding the 5% of dropped data. This shows that the online rank method
is exactly as sensitive as a traditional offline analysis. . . . . . .. . . ..

Histograms of the fractional chirp mass accuracy for the online rank
(top) and histograms of the fractional chirp mass accuracy for the offline
analysis (bottom). The histograms for the online rank and offline analysis
are almost identical, showing that online ranks are just as good at chirp
mass recovery as a traditional offline analysis. . . . . . . .. .. ... ..

Histograms of the fractional total mass accuracy for the online rank (top)
and histograms of the fractional total mass accuracy for the offline analysis
(bottom). The histograms for the online rank and offline analysis are
almost identical, showing that online ranks are just as good at total mass
recovery as a traditional offline analysis. . . . . . . ... ... ... ...

23



2.6

2.7

3.1

3.2

3.3

4.1

Histograms of the recovered time accuracy for the online rank (top) and
histograms of the recovered time accuracy for the offline analysis (bottom).
The histograms for the online rank and offline analysis are almost identical,
showing that online ranks are just as good at time recovery as a traditional
offline analysis. . . . . . . . . . ...

Histograms of the fractional SNR accuracy for the online rank (top) and
histograms of the fractional SNR accuracy for the offline analysis (bottom).
The histograms for the online rank and offline analysis are almost identical,
showing that online ranks are just as good at SNR recovery as a traditional
offline analysis. . . . . . . . ...

This figure shows the ratio of the VT of the HLV AllSky analysis (denoted
“RB” for its two checkerboards) to the VT of the HL AllSky analysis
(denoted “EJ” for its two checkerboards). We see that for the two lowest
mass bins, sensitivity increases by around 2% - 4%. . . .. ... ... ..

This figure shows the real part of the SNR time series obtained in noise
from an Early Warning template when using an FFT length of 4 seconds.
We can see that despite having a mean of 0 as expected, the standard
deviation is smaller than 1, indicating faulty whitening. . . . . . . . ..

This figure shows the real part of the SNR time series obtained in noise
from an Early Warning template when using an FFT length of 8 seconds.
We can see that both the mean and standard deviation take their expected
values, showing that whitening s functioning properly. . . . . . ... ..

AllSky templates and IMBH templates on the log (m;)-log (ms) plane.
Here, the orange dots with m; < 200M,, are AllSky templates and blue
dots with m; > 200M, are IMBH templates. . . . . . . ... .. ... ..

xi



4.2

4.3

4.4

4.5

4.6

An example of a particular online job’s list of dropped data segments.
The dropped data segments at the very start of the plot are because of
slightly different start times of the online and offline analysis, whereas
the ones after that are because of online analysis having failed to analyze
those times, either because the data for those times was dropped in order
to keep up with incoming live data, or because the online job was not
functioning at that time. We see that the amount of dropped data is
not too large, but the segments are dispersed throughout the period of
the analysis. [4] shows that a typical online analysis drops around 5%
of the total data. This data can be filtered offline in order to augment
the online rank’s results. This particular plot was made using a GstLAL
online analysis that participated in the mock data challenge [5]. . . . . .

This plot shows the results of two IMBH searches: one which only considers
triggers with two or more detectors contributing to it, and another with
no such restriction. The plot also shows the noise LR statistics of the
former search for reference. We can see that the likelihood ratio (LR)
statistics of the candidates of the search that only processes triggers with
two or more detectors is well behaved, whereas the other one is not. This
is because the IMBH search, if allowed to process single-detector triggers
recovers an overwhelming amount of them, and the LRs (and hence FARs)
of single-detector triggers are difficult to accurately calculate. As a result,
for O4, GstLAL’s IMBH search doesn’t process single-detector triggers.

Example of p — &2 noise model for one of the low-mass template groups
collected for Laser Interferometer Gravitational-Wave Observatory (LIGO)
Hanford detector during the mock data campaign described in [5] with
the lightblue dashed line as a €2 =1 contour . . . . . ... ... .....

2D p — &2 noise model sliced at the €2 = 1 contour and projected onto the
p dimension. The noise model with the extrapolation closely follows the
expected distribution in black curve at p > 9 as opposed to the red curve
without the extrapolation. . . . . . . ... . ... ... ... .......

Effect of applying the new extinction model on the noise LR histogram.
The effects of candidate clustering and differing relative contributions of
template bins to the candidate set are modeled by modifying the noise
LR histogram, n(L) to A[1 — e~*")]. The values of A and ¢ are found
by curve fitting the modified noise LR histogram to the candidate LR
histogram. We can see that this process is effective from the fact that the
noise LR histogram with the new extinction extinction is very close to
the candidate LR histogram in the noise region (low LR). . . ... ...

xii

52



4.7 VT ratios of the fourth observing run (O4) search with the third observing

4.8

4.9

5.1

run (O3) search. The solid lines represent the full O4 search as compared
to the O3 search, whereas the dashed lines represent the O4 search without
the extrapolation in p—&2 noise model as compared to the O3 search. Since
the extrapolation removes false positives from the candidates, it corrects
previous mis-estimations of the V7T done in the O3 search, superficially
lowering the O4 VT. The VT ratios of the two lowest mass bins are slightly
less than 1. This is because the O3 temlpate bank sampled the lower
mass parameter space with a higher minimum match (0.99) as compared
to O4 (0.97). Additionally, we see that the highest mass bin has a 50% -
100% increase in sensitivity, arising from the LR improvements and the
additional IMBH search donein O4. . . . .. ... ... ... ......

This plot shows the ratio of VT of the O4 combined AllSky+IMBH search
to that of the O4 AllSky search, and it shows us how much sensitivity we
gain by combining the IMBH and AllSky searches, as compared to just
the AllSky search. As expected the sensitivities of the 3 lowest mass bins

are unchanged, since the IMBH bank is not sensitive in that region. The
VT of the IMBH bin increases by 6% - 7%. . . . . . .. ... ... ...

VT ratio of the O4 search with the noise model extrapolation as compared
to without. The extrapolation removes false positives from the set of
candidates, and in the process also downweights a small amount of real
GW signals. The former effect corrects the overestimate of VT that
happens without the extrapolation, whereas the latter decreases the real
sensitivity of the search. Both these effects contribute to the lower than
1 VT ratio seen here. This effect is mostly seen in the BNS ans NSBH
regions, whose VT goes down by 10% - 15%. The BBH and IMBH regions
are mostly unaffected. . . . . .. ... L

An example of an event (GW200129 065458) having templates with high
match in multiple template bins. Bin 818 has the best match with the
GW candidate, and recovers it in both Hanford and Livingston as a
coincidence. Bin 838 has a lower match than bin 818, causing it to recover
the candidate as a Livingston single. This will lead to the candidate
being added to the p — &2 background histogram of bin 838, causing signal
contamination for bin 838. This is shown in Fig. 5.2. The events passing
the p and £2? constraints, and hence recorded by the Background Filter
are outlined in orange. . . . . . . .. ... L

xiii



5.2

5.3

5.4

5.9

5.6

5.7

An example of signal contamination in a p — &2 histogram for Livingston.
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This contamination was caused by GW200129 065458 being recovered
as a single event in this template bin, which is not the best match bin
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The p and &2 constraints for recording events. The bottom right area
bounded by the blue lines is the area in which the Background Filter
records events. If the events also pass the time constraint, the user can
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This plot shows a histogram of the x? value for two types of triggers. The
first, represented in blue, are simulated GW signals, and are guaranteed to
be physical. The second, represented in orange, are triggers with randomly
drawn times, and are highly unlikely to be physical. We see that the
x? = 3 threshold serves as a perfect discriminator between physical and
unphysical triggers. The tiny values of x? for the injection triggers are
numerical noise in the calculation of x?, and actually represent a value of 0.
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7.5

7.6

7.7

7.8

7.9

7.10

7.11

A histogram of the combined signal-to-noise ratio (SNR) improvement
calculated from the SNR Optimizer uploads as compared to GstLAL
uploads. . . . . ..

This plot shows the complementary cumulative distribution of mean
percent improvement in SNR due to the SNR Optimizer vs SNR (top)
and inverse false alarm rate (FAR) (bottom). In both cases, the mean
improvement goes down slightly with an increase in SNR or inverse FAR

This plot shows the complementary cumulative distribution of average
percent of times the SNR Optimizer finds a higher SNR than GstLAL
(i.e. it is the preferred event) for a candidate vs SNR (top) and inverse
FAR (bottom). In both cases, the average preferred event percent goes
down slightly with an increase in SNR or inverse FAR . . . . . . .. . ..

This plot shows cumulative histograms of the 90% sky area for GstLAL
and the SNR Optimizer. We see that sky maps produced from the SNR
Optimizer triggers are on average more constrained than those produced
from GstLAL triggers. In other words, the SNR Optimizer results are
more precise than those of GstLAL. . . . . . .. ... .. ... .....

This plot shows cumulative histograms of the searched area for GstLAL
and the SNR Optimizer. We see that sky maps produced from the SNR
Optimizer triggers on average have a lower searched area than those
produced from GstLAL triggers. This means we have to go to lower
confidence levels for the SNR Optimizer for the sky map to exclude the
true location of the trigger, as compared to GstLAL, implying that the
SNR Optimizer results are more accurate than those of GstLAL.

This plot shows cumulative histograms of the searched probability for
GstLAL and the SNR Optimizer. The SNR Optimizer line is closer to
the diagonal than the GstLAL line. This means that the higher precision
and accuracy of the SNR Optimzier is also self-consistent. This plot is
commonly called a P-P plot. . . . . ... ... .. ... ..

The end-to-end latencies (top) and internal latencies (bottom) of the
SNR Optimizer. The SNR Optimizer has an internal timeout of 240
seconds, causing the internal latencies to be cut off at that value, and the
end-to-end latencies to only rarely exceed that. . . . . . ... ... ...
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7.12

7.13

This plot shows the contributions from finding a better template (top),
and real-time template whitening (bottom), towards the overall SNR
gain obtained by the SNR Optimizer. During the process of finding a
better template, the templates with the maximum SNR is selected, and
hence the contribution from that is strictly positive. Real-time template
whitening is only guaranteed to produce positive contributions on average.
For example, since the PSD can never be perfect due to non-stationary
components in the noise, using the PSD measured in real-time to whiten
the templates will not always produce a higher SNR, but will do so on
average. Fig. 7.13 shows the remaining contributions to SNR gain.

This plot is a continuation of Fig. 7.12. This plot shows the contributions
from using a higher FFT length (top), and higher data sampling rate
(bottom) towards the overall SNR gain obtained by the SNR Optimizer.
Similar to what is explained in Fig. 7.12, the higher FFT lenght and data
sampling rate are only guaranteed to produce positive contributions on
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Chapter 1
Introduction

This work is structured as follows: In Chapter 1, an introduction to gravitational waves
is provided. Chapter 2 contains an introduction to the GstLAL gravitational wave search
pipeline, while also describing a new method adopted by GstLAL that outsources the
matched filtering procedure for an offline analysis to an online analysis run over the
same data. Chapter 3 contains details about the GstLAL’s online operations during
the fourth observing run, whereas Chapter 4 describes GstLAL’s offline operations for
the fourth observing run using the method previously described on these online results.
Chapter 5 talks about a method for preventing gravitational wave signals from being
included in the background used to assign significance to gravitational wave candidates.
Chapter 6 contains a description of a new search pipeline called MASS, which relies on
the parameter space metric to dynamically create new gravitational wave tempalte rather
than rely on a fixed bank of them, and Chapter 7 describes the MASS pipeline being
modified to create a targeted, hierarchical search to follow-up on GstLAL’s candaiates in

an online search to facilitate better skymaps, and hence multi-messenger efforts.

1.1 Gravitational Wave Formalism in General Relativity

Gravitational waves, first predicted by Albert Einstein in 1916 as a consequence of
general relativity, are ripples in the fabric of spacetime produced by non-spherically
symmetric motion of massive objects. Unlike classical Newtonian gravity, which describes
gravitational interactions as instantaneous forces, general relativity formulates gravity as
the curvature of spacetime caused by mass and energy distributions. When massive objects
undergo asymmetric acceleration—such as in binary mergers or stellar collapses—these
distortions propagate outward as gravitational waves, traveling at the speed of light.

The mathematical formulation of gravitational waves arises naturally from Einstein’s



field equations, which describe the dynamic relationship between spacetime curvature
and energy-momentum distribution [9,10]:

871G

1
R'u,y - §Rgp,u = 7T/.LV (]‘]‘>

where R, is the Ricci curvature tensor, R is the Ricci scalar, g, is the metric tensor,

and T}, represents the energy-momentum tensor of matter.

1.1.1 Linearized Field Equations and Wave Solutions

To describe gravitational waves, we consider the weak-field approximation, where the
metric of spacetime deviates only slightly from the Minkowski metric 7,,,. This deviation

is represented as a perturbation h,,,:

Guv = Nuw + h;wa ’huu’ <1 (12)
-1 0 0 0
0 1 00

L, = 1.3

T 0 010 (1.3)
0 0 01

Under this assumption, Einstein’s field equations can be linearized, and in vacuum

(where T}, = 0), they reduce to the simple wave equation [9,10]:

Ohy, =0 (1.4)

where [ is the d’Alembertian operator, and ﬁm, is the trace-reversed perturbation.

P,
O= - L.
o Y (15)
= 1
Py = gy = Sh (1.6)

As commonly done for radiative solutions, we apply the Lorentz gauge [9,10]:

0" hy = 0 (1.7)

This equation admits plane wave solutions of the form:
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Figure 1.1. This figure shows the effect of a gravitational wave passing perpendicular to the
page on a ring of test particles, for the plus polarization (left) and cross polarization (right).
The ring alternately gets deformed into one of the two ellipses for each half period of the
gravitational wave. The ellipses of the two polarizations are separated by an angle of 7. This

figure is taken from [1].

By = Ayye ko) (1.8)

where k7 is the wave vector, and A, is the amplitude of the wave.

1.1.2 Transverse-Traceless Gauge and Polarization Modes

By adopting the transverse-traceless (TT) gauge, we eliminate unphysical degrees of

freedom, reducing the number of independent components of h,, to two polarization

states [1,9,10]:

00 0 0
0 hy hy O

h = A (1.9)
0 hy —h, O
00 0 0

These correspond to the “plus” (hy) and “cross” (hy) polarizations, which affect

spacetime in distinct ways. A passing gravitational wave distorts a ring of test particles

into an oscillating elliptical shape, where the plus polarization alternately stretches and

compresses space, and the cross polarization does the same at an angle 7 from the plus

polarization. This effect is shown in Fig. 1.1



1.1.3 Amplitude of Gravitational Waves

In this formalism, the amplitude of a gravitational wave from some mass distribution
can be calculated to be [1,10]:

2G d*Q;
5% e (1.10)
where ();; is the quadrupole moment of the mass distribution:
Qij = /Pl"iifjdsiv (1.11)

This relation reveals two important features of gravitational waves:

1. The factor of C% tells us that the amplitude of gravitational waves is incredibly
small, and only the most massive objects in the universe, astronomical bodies, can

produce gravitational waves loud enough to be detected

2. The factor of dil%j tells us that only mass distributions with a changing quadrupole

moment can produce gravitational waves

1.2 Sources of Gravitational Waves

1.2.1 Compact Binary Coalescences (CBCs)

One of the primary sources of gravitational waves is the merger of compact binary
systems, such as binary black holes (BBH), binary neutron stars (BNS), and neutron
star-black hole (NSBH) pairs. These systems radiate gravitational waves as they inspiral
due to energy loss, leading to an increasing frequency and amplitude—a characteristic
"chirp" signal—until the final merger.

The strain amplitude observed at a distance Dy from the source is given by:

- 2G Mv?
- ct DL

(1.12)

where M is the total mass of the system, and v is the characteristic velocity of the
inspiraling objects.

As the binary components orbit each other, they lose energy through gravitational
wave emission, causing their separation to decrease and orbital velocity to increase. This

results in a well-defined inspiral phase, followed by a highly dynamic merger phase and a

4



final ringdown phase, where the remnant object settles into a stable state. The evolution
of the gravitational waveform can be accurately modeled using the Post-Newtonian
formalism for the inspiral phase.

The first direct detection of gravitational waves, GW150914, was attributed to a BBH
merger, marking a pivotal moment in astrophysics. Since then, numerous CBC events
have been detected, including GW170817, the first observed BNS merger, which was
accompanied by electromagnetic counterparts, confirming the connection between BNS
mergers and short gamma-ray bursts. The detection of such events provides valuable
insights into fundamental physics, such as constraints on the equation of state of neutron
stars and tests of general relativity in the strong-field regime.

Additionally, the measurement of parameters such as the chirp mass M., given by:

(m1m2)3/5

M, = 2
(m1 +m2)1/5

(1.13)
is crucial for characterizing binary systems. The chirp mass directly influences the fre-
quency evolution of the gravitational waves and is among the most accurately determined

parameters from observed signals.

1.2.2 Core-Collapse Supernovae and Other Transient Sources

Massive stars undergoing core collapse at the end of their life cycles can also emit
gravitational waves. If the collapse is asymmetric, significant variations in the quadrupole
moment produce gravitational radiation. However, these signals are highly complex and
challenging to model due to the turbulent, multi-dimensional nature of the explosion.
Should the collapse result in the formation of a neutron star, additional gravitational

waves may arise from rotational instabilities.

1.2.3 Continuous Gravitational Wave Sources

Certain astrophysical objects, particularly rapidly rotating neutron stars with asymme-
tries, emit nearly monochromatic gravitational waves over extended periods. If a neutron
star possesses a non-axisymmetric deformation, often described as a "mountain’, its
rotation leads to continuous gravitational wave emission. Detecting these signals offers

insights into the internal structure and equation of state of neutron stars.



1.2.4 Stochastic Background of Gravitational Waves

Beyond individual sources, a stochastic background of gravitational waves arises from the
cumulative superposition of numerous weak, unresolved signals across the universe. This
background can originate from astrophysical events such as unresolved CBCs, or from
primordial processes in the early universe, such as cosmic inflation or phase transitions.
Detecting this background would provide groundbreaking insights into the conditions of

the early universe and physics beyond the Standard Model.

1.3 Gravitational Wave Detectors

Gravitational wave detectors are designed to measure the minuscule distortions in
spacetime caused by passing gravitational waves. The challenge in detecting these waves
lies in their extremely small strain values, often on the order of h ~ 1072, necessitating

highly sensitive instruments.

1.3.1 Interferometer-Based Detectors

Gravitational waves alter distances between objects in a characteristic manner that can
be measured by interferometric techniques. The strain, defined as the fractional change

in length, is given by:

_ AL
L

where AL is the change in arm length due to the passing gravitational wave, and L

h (1.14)

is the original arm length. Modern ground-based gravitational wave detectors, such as
LIGO, Virgo, and KAGRA, operate based on the principles of Michelson interferometry.
These detectors consist of long perpendicular arms with highly reflective mirrors at their
ends. A laser beam is split into two, traveling down each arm and reflecting back. The
recombined beam produces an interference pattern that shifts when a gravitational wave
passes through the detector, altering the relative arm lengths.

To improve sensitivity, these interferometers incorporate Fabry-Perot cavities within
their arms. These cavities consist of additional highly reflective mirrors, allowing the
laser light to bounce multiple times before exiting. This effectively increases the optical
path length, amplifying the phase shift induced by a gravitational wave. Furthermore,

power recycling techniques enhance laser intensity, improving the signal-to-noise ratio. A
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Figure 1.2. This figure shows a simplified schematic for interferometric detectors. Light from
the laser is split at the beamsplitter, causing it to travel down both arms, with a phase shift in
one. The pair of test masses in both arms form a Fabry-Perot cavity, increasing the effecting
arm lengths. In the absense of a gravitational wave, no interference pattern in produced. Whan
a gravitational wave passes perpendicular to the arms, it causes the relative arm lengths to
change, and hence an interfeence pattern can be detected at the photodetector. This figure is
taken from [2].

schematic for these detectors is shown in Fig. 1.2.

1.3.2 Noise Sources and Mitigation

Detecting gravitational waves requires overcoming various noise sources, which can mask

weak signals. The dominant noise sources include:

¢ Quantum Noise: Arising from the quantum nature of light, it manifests as shot
noise at high frequencies and radiation pressure noise at low frequencies. Quantum

squeezing techniques have been employed to reduce this limitation.

o Seismic Noise: Vibrations from the Earth, including tectonic movements and
human activity, affect the detector’s stability. Advanced suspension systems isolate

mirrors to mitigate these effects.

e Thermal Noise: Due to fluctuations in the material structure of mirrors and sus-

pensions, thermal noise limits sensitivity at intermediate frequencies. Improvements

7



in mirror coatings and cooling techniques help in reducing this noise.

o Newtonian Noise: Caused by fluctuating gravitational fields due to environmen-
tal mass movements, this noise is difficult to shield against and requires active

monitoring and subtraction techniques.

The total noise floor of the detector is characterized by its power spectral density
(PSD), S,.(f), which quantifies the contribution of different noise sources to the measured

signal:

(£ (£)) = 38,0 — 1) (1.15)

An example of a PSD is shown in Fig. 1.3

1.3.3 Future Developments

Next-generation gravitational wave detectors aim to push sensitivity limits further.

Planned projects include:

« Einstein Telescope (ET): A proposed underground detector with 10 km arms

to improve low-frequency sensitivity.

o LISA (Laser Interferometer Space Antenna): A space-based interferometer
designed to detect millihertz gravitational waves, enabling the study of supermassive

black hole mergers and early universe signals.

o Cosmic Explorer (CE): A proposed U.S.-based detector with 40 km arms,

significantly enhancing detection range and frequency coverage.

Advances in quantum optics, cryogenic technologies, and improved noise reduction

techniques will play a key role in these future detectors.

1.3.4 Data Analysis and Signal Extraction

Even after mitigating noise sources, gravitational wave signals remain buried within
residual detector noise. Sophisticated data analysis techniques need to be applied to
extract signals. For modeled gravitational wave searches, the primary tool used is matched
filtering, which correlates an a-priori known gravitational wave waveform template against
the data. Many other data analysis techniques are used, and these will be explained in

further chapters, particularly for the GstLAL search pipeline.
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Figure 1.3. This figure shows an example power spectral density (PSD) plot for the LIGO
and Virgo detectors, from the third observing run. This figure is taken from [3].



Chapter 2

How Many Times Should We Matched
Filter Gravitational Wave Data?

A Comparison of GstLAL’s Online

and Offline Performance

This chapter is a reprint of [4]

Searches for gravitational waves from compact binary coalescences employ a process
called matched filtering, in which gravitational wave strain data is cross-correlated against
a bank of waveform templates. Data from every observing run of the LIGO, Virgo, and
KAGRA collaboration is typically analyzed in this way twice, first in a low-latency mode
in which gravitational wave candidates are identified in near-real time, and later in a
high-latency mode. Such high-latency analyses have traditionally been considered more
sensitive, since background data from the full observing run is available for assigning
significance to all candidates, as well as more robust, since they do not need to worry
about keeping up with live data. In this work, we present a novel technique to use the
matched filtering data products from a low-latency analysis and re-process them by
assigning significances in a high-latency way, effectively removing the need to perform
matched filtering a second time. To demonstrate the efficacy of our method, we analyze
38 days of LIGO and Virgo data from the third observing run (O3) using the GstLAL
pipeline, and show that our method is as sensitive and reliable as a traditional high-
latency analysis. Since matched filtering represents the vast majority of computing time
for a traditional analysis, our method greatly reduces the time and computational burden
required to produce the same results as traditional high-latency analysis. Consequently,
it has already been adopted by GstLAL for the fourth observing run (O4) of the LIGO,

10



Virgo, and KAGRA collaboration.

2.1 Introduction

Ever since the first observing run (O1) of the LIGO Scientific [11], Virgo [12], and
KAGRA [13] collaboration, the field of gravitational-wave (GW) astronomy has proven
to be an invaluable tool for probing the universe. By detecting mergers of black holes
and neutron stars [6-8,14], GW astronomy has given us the ability to study the universe
in new ways. This has led to a host of new scientific results [15-17]. GW searches are
the first step to producing results within GW astronomy.

Only GWs produced by the mergers of the largest compact objects in the universe
like black holes and neutron stars are loud enough to be observable by GW detectors like
the Laser Interferometer Gravitational-wave Observatory (LIGO), Virgo, and KAGRA.
Even then, GW signals reaching Earth are very faint, and heavily dominated by detector
noise. Matched filtering [18] is the primary tool employed by modeled GW searches to
detect GW signals in noisy data. In this process, the data is corss-correlated against a
template of a GW waveform predicted by general relativity, producing a signal-to-noise
ratio (SNR) timeseries as output.

GstLAL [19-22] is a stream-based GW search pipeline that has contributed to the
LVK’s GW detections since O1. It implements time-domain matched filtering to recognize
periods of time where GW signals are possibly buried in noise (called “triggers”). It then
calculates a likelihood ratio (LR) [23-25] as a ranking statistic for assigning significance
to these triggers. The triggers with particularly high LRs are retained and called GW
candidates. Based on the LRs and rate of triggers recognized as noise, the LRs of
candidates are converted to a false alarm rate (FAR), which represents our confidence
in the candidate. Other search pipelines, such as PyCBC [26-28], MBTA [29, 30],
SPIIR [31,32], and IAS [33,34], also use similar techniques.

The GstLAL pipeline can operate in one of two modes: a low-latency “online” mode,
or a high-latency “offline” mode. The online mode is designed to matched-filter the
data, produce triggers, recognize candidates, and assign FARs in near-real time. The
results are then immediately uploaded to the Gravitational Wave Candidate Event
Database (GraceDB) [35], from where a public alert can be sent if the upload meets
certain criteria. The ability of GstLAL to produce results in near-real time and hence
serve as an independent messenger in the detection of astronomical events is particularly

useful. GW170817 [36,37], a binary neutron star merger (BNS), is an excellent example
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of GW searches contributing to a multi-messenger detection, which led to many new
scientific results [38,39].

In contrast, the offline mode is designed to be run after all the data are available. The
matched filtering, significance estimation, and FAR assignment stages are generally done
one after the other in the offline analysis, and do not need to be done simultaneously like
in the online analysis. Since the full background data can be used to assign significances
to all candidates, it has traditionally been considered more sensitive than the online
analysis. Since it operates in high latency, it is resilient to any processing delays, data
availability delays, and hardware downtime. Consequently, it has traditionally been
considered more reliable and robust than the online analysis. Because of this, the process
of matched filtering, which is identical for both operating modes, has always been repeated
for the offline analysis by all search pipelines, after it was initially done in low-latency
for the online analysis. Since GW searches are expensive, both in terms of time and
computational resources, this repitition has a significant human and computational cost.
With GW searches always looking to produce more scientific results, they are becoming
ever larger, expanding to new parameter spaces, and analyzing more data than ever
before. Consequently, the associated cost of running them is quickly starting to become
unfeasible.

In this work, we address whether the repitition of matched filtering, which requires the
overwhelming majority of computational power and time of any GW search, is necessary.
In Sec. 4.2, we describe the GstLAL pipeline and its two operating modes in detail.
In Sec. 7.2, we introduce a novel technique in which the data products created by the
matched filtering of an online analysis are used in an offline fashion. In Sec. 7.3, we
compare the results of this technique to a traditional offline analysis, to answer the

question of whether data needs to matched-filtered a second time.

2.2 Software

2.2.1 General GstLAL methods

The GstLAL workflow, in either operating mode, contains two broad stages: a setup stage,
and a data processing stage. In the setup stage, input data products are precomputed
for use during the data processing stage. Like all modeled GW searches, GstLAL uses a
“bank” of GW waveform templates. The template bank ahead of O4 was generated using

the manifold [40] software package as described in [41]. It covers waveforms produced
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by binary mergers with component masses from 1-200M and dimensionless spins up to
+0.99. This results in a bank containing approximately 2 million total waveforms.

The template bank is divided into two equal halves, each of which individually covers
the full parameter space described above, but with a lower template density than the
full bank. This process is called checkerboarding. Its primary purpose is to divide the
analysis across different computing clusters, so as to not have it depend on a single
one. This is important for online operations, since it means even if there is instability
at one computing cluster, the online analysis can still remain operational and produce
low-latency results via the other cluster, albeit with a lower sensitivity, since a single
checkerboard of the full bank is less dense than the full bank itself. According to [41],
using a single checkerboard results in 1% lower matches (and hence SNRs) for 90% of
GW signals as compared to using the full template bank.

Both checkerboards are split into "template bins, each of around 1000 templates,
sorted by linear combinations of their Post-Newtonian phase coefficients as described
in [41]. The templates are additionally whitened using a power spectral density (PSD)
that represents the frequency characteristics of detector noise in the data. The templates
in a single template bin are processed together for the purpose of matched filtering
and background collection, and consequently a single job within a GstLAL analysis
corresponds to a specific template bin.

The next stage is the data processing stage. This involves the matched filtering
process, significance assignment, FAR calculation, and uploading the results (the last
only applicable for the online mode). The SNR timeseries produced by matched-filtering

the data with a particular template is defined as:

SNR(t) = [ = drd(t + 1)h(r) (2.1)
where J(f)

d(t) = - df —— ™I 2.2

7 /‘ Sn(lf1)/2 22

is the data whitened with the single-sided PSD, S,,(f), and

> 2.3
/ VS |f\ /2 .

is the similarly whitened template. Since matched filtering needs to be performed for

the full data for every template, it is extremely computationally intensive. Though
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dependent on factors like cluster availability and computational power of the processors,
we can calculate a rough estimate of the percent of time in an offline analysis taken
up by matched filtering. The duration of the first half of O4 is around 8 months. An
offline analysis over this period of time would take around 2 months. The setup stage,
combined with significance assignment and FAR calculation takes around 1 day. That
means matched filtering accounts for more than 98% of the time required for an offline
analysis.

The SNR timeseries of every template is used to form triggers, by identifying times
when the SNR exceeds the threshold value of 4. Since GW signals are expected to be
correlated across detectors, unlike noise, triggers that are formed using a single detector
(also called a “single trigger”) during a time when more than one detector was producing
data (also called “coincident time”) are assumed to have originated from noise, and are
added to the background data. Additional techniques are also employed to ensure GW
signals do not enter the background [42]. The background data thus collected is then
used to rank the triggers using the likelihood ratio as described in [23]. Triggers with a
high LR are retained as GW candidates, and the LRs of noise triggers, as well as the
livetime of the analysis is used to convert the LRs of candidates into FARs.

In the following subsections, we will discuss how the implementation of these steps

differs for the online and offline operating modes of the GstLAL analysis.

2.2.2 Online GstLAL Analysis

The online analysis is designed to ingest the data coming from the detectors in real-time,
and produce results with minimal delay. Typically, GW candidates are uploaded to
GraceDB within 10-20 seconds of the GW reaching Earth [43]. To facilitate this, the

online analysis needs to ensure the following two principles are observed:

1. Causality: To process a GW candidate, the analysis can only use data available
up to that point in time. It cannot wait for more data to become available in the

future.

2. Keeping up with live data: The analysis cannot fall behind the incoming data. If it

does, it needs to drop some data to catch up.

Currently, the GstLAL analysis has the ability to measure the PSD of the data
in small batches of 4 seconds, and whiten the data accordingly (see Eq. (7.1)), thus

effectively ensuring causality well enough to serve the near-real time search. However,
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this ability does not extend to template whitening (see Eq. (7.2)), and the templates
need to be whitened during the setup stage. As a result, the online analysis uses a PSD
projected to represent future noise, to whiten the templates. To minimize this effect,
every week in O4, the GstLAL team has been whitening the templates used by the online
analysis using the PSD measured over the previous week’s data. The expectation is that
this captures any changes in the noise characteristics with a timescale equal to or larger
than a week.

Additionally, to ensure causality, in order to rank a particular trigger, the online
analysis can only use background data collected up to the point of that trigger. It cannot
wait for the full background data to be collected. As a result, it may happen that the
background used to rank a specific trigger has not converged fully, and so the LR and
FAR assigned to that trigger are not as accurate as they would have been had we waited
for the full background to be accumulated. Hence, the online analysis is traditionally
considered to be less reliable.

Finally, to ensure the principle of keeping up with live data, if for any reason the
analysis is unable to process some stretch of data, that data is permanetly lost. The
analysis cannot go back and re-analyze the data. Data drops like this generally happen

for one of three reasons:

1. If the analysis hits a period of high latency, either due to its own internal processing,
or due to external reasons like live data delivery failures, the analysis drops this data

and moves on to newer data after waiting for a set amount of time (60 seconds).

2. During the running of the analysis, there will be regularly scheduled maintenance,
both internally for the analysis, and externally for the hardware it is running on.
It is attempted to make these periods of downtime as short as possible, and to
make them coincide with periods of time when the detectors are not producing

data, which might not always be the case.

3. Unintentional hardware downtime

Due to these reasons, the online analysis is traditionally considered to be less sensitive
and robust as compared to an offline analysis.

While running an online analysis, if the FAR of a candidate crosses a certain thresh-
old [44], it gets uploaded to GraceDB. If certain other criteria are met, a skymap is
generated showing the likely sky location of the source of the GW [45-48], and a public

alert is issued [49]. Additional information, such as low-latency parameter estimation of
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the source of the candidate [50], and the probability of astrophysical origin for different
source classes [51-53] is also included in the public alert. Astronomers can then choose to
follow up on this alert, and correlations can be made with other messengers [54-56]. In

this way, the online analysis plays an instrumental role in multi-messenger astronomy.

2.2.3 Offline GstLAL Analysis

The offline analysis is designed to be robust, reliable, and more sensitive than the online
analysis. The analysis is performed after the full data become available, and so there are
no latency constraints. As a result, the analysis does not need to adhere to the principles
of causality and keeping up with live data, like the online analysis did.

Consequently, the PSD used for template whitening can be directly measured from
the full data itself, guaranteeing the best representaion of detector noise. In practice,
the data are divided into week-long chunks, and the process of PSD measurement and
template whitening is done separately for every chunk. This further improves how well
we capture detector noise, and increases sensitivity.

Similarly, the filtering and ranking stages (which involves significance and FAR
assignment), do not need to occur simultaneously for a given trigger in the offline
analysis, and each stage can be done for all triggers before moving on to the next. This
means that during the ranking stage, the background data from the full analysis can be
used, leading to more reliable results, as well as an increase in sensitivity. With this in
mind, the matched filtering stage and the ranking stage of the GstLAL offline workflow
are completely modular, and designed to be run independently.

Additionally, the analysis does not need to drop data if it gets affected by some source
of latency, whether it is a latency in its internal data processing or a disruption in data
delivery. This means that the analysis is guaranteed to process all available data without
dropping any like the online analysis, making it more reliable and sensitive. Furthermore,
the analysis can make use of more robust data quality and data veto information, provided
by external high-latency tools. This is thought to make the analysis more sensitive by
removing obviously bad data that would have otherewise created false positives in both
the candidates and the background.

The offline analsyis is commonly run with simulated gravitational wave signals injected
into the data. These are called “injections”, and they are used to measure the response
of the analysis (i.e. the sensitivity) for GWs from sources in various parameter spaces, at
different distances, etc. Such offline analyses are used to generate more in-depth results,

such as studies on population properties of compact binary systems [57,58], and tests on
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general relativity [39,59-61].

2.3 Methodology

In the descriptions of the online and offline GstLAL analyses above, the only differences
between the matched filtering stages of the two are PSDs used for template whitening,
and the fact that the two might not analyze exactly the same set of data. Since we
expect the projected PSD used by the online analysis to still be a good approximation of
the true PSD measured over the data that the offline analysis uses, the effect of PSD
mismatch should be low [19]. Additionally, the weekly whitening of the online analysis
templates using the previous week’s PSD will lower any SNR loss due to PSD mismatch
further. Similarly, with improvements to the stability of the online analysis [43], data
distribution, and computing hardware done before O4, we expect the effect of data drops
to also be low. In Sec. 7.3 we show that the online analysis only drops around 5% data

as compared to the offline analysis, and also discuss ways to make up this lost 5%.

2.3.1 Online Rank

Based on this, we developed a novel technique that takes the data products created
by the matched filter stage of an online analysis (i.e. triggers and background data),
and replaces the offline analysis’ matched filter stage with these. The rest of the offline
analysis (i.e. the ranking stage), is kept the same. This is possible since the two stages
are designed to be modular, as described in Sec. 4.2. We call this technique an “online
rank”, since the matched filtering is taken from the online analysis, and an offline ranking
stage is added to it.

Alongside the modularity of the GstLAL offline workflow, the key to making an online
rank possible is a feature of the GstLAL online analysis, called “snapshotting”. Every
4 hours, every job in the the online analysis (each corresponding to a template bin)
will write a snaphot of the triggers and background data it has collected to disk. The
trigger snapshot files are discrete, i.e. each file will only contain triggers created since the
previous snapshot, which amounts to 4 hours of triggers. In contrast, the background
snapshot files are cumulative, i.e. each file will contain background data since the start
of the analysis to the time of the snapshot. Snapshotting can also be used to save the
progress of the online analysis in case something goes wrong and the analysis needs to

be restored to a working state.
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The setup process for an online rank involves going through all the trigger and
background snapshot files written by the online analysis, and picking the relevant files
to forward to the rank stage. The user can specify a start and end time for the online
rank, which defines the duration of the online rank. Since trigger snapshot files are
discrete, every trigger file whose duration (which is encoded in the filename) has an
overlap with the duration of the online rank is forwarded to the rank stage. For the
background snapshot files however, since they are cumulative, the earliest snapshot file
that contains all the background data of the duration of the online rank is chosen. If the
start time of the online analysis is different from the start time of the online rank, the
latest background snapshot file that doesn’t overlap at all with the duration of the online
rank is also chosen. This is subtracted from the earlier file, to produce a background file
that exactly contains the background data for the duration of the online rank, to the
granularity of the 4 hour snapshots. This procedure is illustrated in Fig. 2.1. Typical
of an offline analysis, this background file containing the full background data for the
duration of the online rank is used to rank every trigger, leading to more reliable and
sensitive results. Since trigger and background files are processed separately for every
template bin, this process is repeated for every template bin. In this way, relevant files
can be extracted from an online analysis that might be running for the full observing
run, and offline results for a subset of the duration can be calculated from them. Since
the snapshotting interval of 4 hours is relatively small as compared to typical analysis
periods of many months, trigger and background data can be extracted from the online

analysis for offline processing with high precision.

2.3.2 Offline Rank Stage Methods

After relevant trigger and background files for every template bin are chosen from the
online analysis, they are forwarded to the offline rank stage. From this point on, the
online rank analysis proceeds identically to the traditional offline analysis. In this, the
trigger snapshot files are first aggregated into a single trigger file per template bin. Then,
the background snapshot file for that template bin is used to assign significance to every
trigger in the trigger file. These triggers files are “clustered” across template bins, a
process in which only the most significant trigger in a window of 8 seconds is retained,
leading to a set of GW candidates. This clustering process is designed to reduce the
number of triggers that downstream processes need to process. The underlying assumption
is that a single GW signal could create multiple triggers via multiple template bins, and

by clustering, we are getting rid of these duplicates without losing any information, since
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it’s highly unlikely a single 8 second window could contain triggers from multiple GW
signals, given the current detector sensitivities, and GW detection rates. The online
analysis applies a similar clustering to the triggers within a template bin, but with a
smaller window of 0.1 seconds.

Parallelly, the background snapshot file for every template bin is used to draw samples
of noise triggers, and hence extrapolate the noise triggers to higher significances. These
noise triggers then undergo a process called “extinction”, in which the noise trigger LR
statistics are modified to better resemble the triggers from that template bin. Specifically,

two things are ensured:

1. the number of noise triggers from every template bin is similar to the number of
triggers from that bin. In other words, each template bin must contribute equally

to tbe background as well as foreground.

2. Even though the noise triggers don’t explicitly undergo clustering, the effect of
clustering can be modeled, and the LR statistics of the noise triggers are modified

accordingly.

Extinction is applied to the noise triggers twice, the first time to each template bin-specific
noise triggers, in order to model the effect of internal clustering applied by the online
analysis, and the second time to the noise triggers aggregated across template bins, in
order to model the effect of clustering applied when combining triggers across template
bins as described above.

Finally, the extrapolated and extincted background and the livetime of the analysis
is used to convert the LRs of candidates into FARs. If injections were involved, the
FARs are used to determine which injections were found by the analysis and which were
missed. This is in turn converted into a quantitative statement about the sensitivity of
the analysis, using a quantity called the sensitive 4-dimensional volume-time that the

analysis was able to observe, or the V'T.

2.3.3 Dropped Data Refiltering

In order to make the online rank results even more reliable and sensitive, we can augment
the inputs to the online rank with triggers and background data from times that the
online analysis dropped. To do this, for every job in the online analysis, we take the
list of times the job was functional and producing output. We then subtract that from

the list of times a traditional offline analysis would have analyzed. This is called the
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segment list for the offline analysis, and it is calculated by external tools, by looking at
the periods of time each detector was operational. This leaves us with a list of times that
particular job has dropped. We calculate such a “dropped data segments” list for every
job. Then, we can set up a traditional offline analysis using these dropped data segments.
The only unusual aspect of this procedure is that while setting up this “dropped data
refiltering” analysis, each job has its own segments list rather than a global one for every
job.

By combining the online rank inputs with the results of the dropped data refiltering
analysis, we can be sure the online rank produces offline results for exactly the same
periods of time that the traditional offline analysis would have. The typical amount of

dropped data for any job is around 5% of the total time covered by the offline segments.

2.3.4 Computational Cost Reduction

The online rank procedure requires an online analysis to have been run over the relevant
period of data first. It enables us to re-use the matched filtering data products from the
online analysis in order to get offline results. Since matched filtering is the bulk of the
computational cost of any modeled GW search (98% as discussed in Sec. 4.2), over the
course of an observing run (i.e. including running analyses to get both online and offline
results), the online rank procedure represents approximately a 50% reduction in the total
computational cose.

Given that the online analysis has alrady been run, we can calculate the time saved
to get offline results via an online rank. Since the time required for matched filtering
scales linearly with the amount of data analyzed, but the time required for an online rank
does not strongly depend on the amount of data analyzed, the time saved because of the
online rank method depends on the length of the analysis. The duration of the first half
of O4 is around 8 months. The time required to perform a traditional offline analysis
with injections over this period of time is approximately 4 months. We can get offline
results for the same duration of time via an online rank in as low as 5 hours, if dropped
data refiltering is not included. This represents a 99.8% reduction in the computational
time in the best case scenario.

As discussed before, the typical amount of data dropped by an online analysis is 5%.
This means that even if we choose to perform the dropped data refiltering analysis to
augment the online rank, we still get approximately a 95% reduction in the amount of

time required to get offline results.
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2.4 Results

2.4.1 MDC Data Set and Analyses

In order to test the efficacy of our new method, we ran an online analysis over a mock
data challenge (MDC). This involved running the analysis over 38 days of O3 data from
the LIGO Hanford and Livingston detectors, as well as the Virgo detector. The data
extended from 7 January 15:59:42 UTC 2020 to 14 February 20:39:42 UTC 2020. These
data were then shifted in time by 125952000 seconds to extend from 4 January 10:39:42
UTC 2024 to 11 February 15:19:42 UTC 2024, to make them appear as though they
were live data when we ran the online analysis. The MDC also involved an injection
campaign. More details about the MDC, including details about the injection set used
can be found in [5].

We then performed an online rank on this analyis, as well as a traditional offline
analysis on the same amount of data. After accounting for the times when no detectors
were producing data, we find that the online rank had a livetime of 34.41 days, whereas
the offline analysis had a livetime of 36.05 days. This means that over the course of 38
days, the online analysis dropped around 4.5% of the data. To compensate for this, we
also performed a dropped data refiltering analysis over the 4.5% dropped data. All of
these analyses were performed using a single checkerboard (i.e. half of the full bank) of
the GstLAL O4 template bank.

2.4.2 Sensitivity Comparisons

To compare the sensitivities of the online rank and the offline analysis, we can calculate
the VTs of both, and then take the ratio of the two. Here, we have calculated the VT
separately for injections with chirp mass in four different mass bins, roughly corresponding
to four source categories: binary neutron star mergers (BNS, chirp mass between 0.5 to
2 M) neutron star-black hole mergers (NSBH, chirp mass between 2 to 4.5 M), binary
black hole mergers (BBH, chirp mass between 4.5 to 45 M), and intermediate-mass
black hole mergers (IMBH, chirp mass between 45 to 450 M). The VT is calculated at
different FAR thresholds for considering an injection to be found by the analysis. The
results of this VT comparison for different mass bins and FAR thresholds, for the pure
online rank and offline analysis can be seen in Fig. 2.2. It shows us that the online rank
is almost as sensitive as the offline analysis. We note that the 5% loss in the online rank

VT as compared to the offline analysis lines up perfectly with the 5% of data dropped by
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Figure 2.2. The ratio of the sensitive volume-times of the online rank to that of a traditional
offline analysis over the same period of time, calculated for different mass bins and at different
FAR thresholds. The fact that the VT ratios for all mass bins are close to 1 across FAR
thresholds tells us that the online rank method is very close in sensitivity to a traditional offline
analysis. The 5% loss in VT comes from the fact that the online analysis dropped approximately
that much data. The peaks and troughs in the BBH line are because of the small number of
statistics in that mass bin.

the online analysis.

Next, we repeat the procedure for the online rank augmented with the dropped data
refiltering analysis, and compare its VT to the VT of the offline analysis. The result
of this is shown in Fig. 2.3. The fact that the VT ratios are now much closer to 1 tells
us that the previous 5% loss in VT was indeed coming from dropped data, and that by
augmenting an online rank with a dropped data refiltering analysis, we can get offline

results that are as sensitive as a traditional offline analysis in a fraction of the time.
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Figure 2.3. The ratio of the sensitive volume-times of the online rank augmented with triggers
and background data from the periods of time dropped by the online analysis to that of a
traditional offline analysis over the same period of time. We see that the 5% loss in VT seen
in Fig. 2.2 is recovered by adding the 5% of dropped data. This shows that the online rank
method is exactly as sensitive as a traditional offline analysis.

2.4.3 Candidate Lists

Next, we compare the candidate lists from the online rank augmented with dropped
data refiltering and offline analysis as a further check on the reliability and sensitivity
of the online rank. There are 9 previously reported GW signals in the MDC data, and
both analyses are able to detect 5 of them with a FAR of 1/month (3.86 x 10~7 Hz) or
less. Since the analyses were performed using only one checkerboard, we expect lower
sensitivities than if they were performed with the full bank, and consequently we expect
some of the previously known candidates to be missed by these analyses. The candidate
list for the online rank is shown in Tab. 2.1, and that for the offline analysis is shown in
Tab. 2.2. The top 10 candidates from both analyses are the same. Additionally, both
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Rank FAR (Hz) Time (UTC) my mp a; as

(M) (Mp)

1 5.45 x 1073%  2024-01-26 40.86  30.5 0.05 0.05
01:34:58

2 143 x 1071 2024-01-11 5.24 1.77 -0.29  -0.29
23:03:09

3 6.58 x 10713 2024-01-24 59.52  57.08  0.17 0.17
21:00:11

4 1.15 x 1072 2024-02-05 50.36 3457  -0.2 -0.2
07:41:17

5 8.69 x 107* 2024-02-06 50.36  40.86  -0.08  -0.08
03:34:52

6 1.20 x 1077 2024-02-04 176.4  184.0 0.6 0.6
08:49:54

7 4.16 x 1077 2024-01-26 70.35  79.75  0.45 0.45
06:22:45

8 9.95 x 1077 2024-01-17 79.75  59.52  -0.02  -0.02
21:57:48

9 1.2 x 1076 2024-02-06 40.86  42.6 0.73 0.73
03:40:07

10 1.46 x 1076 2024-01-29 126.3  57.08 -0.08  -0.08
08:21:54

Table 2.1. The candidate list of the online rank. The first five candidates correspond to the
previously reported events of GW200129_ 065458, GW200115_042309, GW200128_ 022011,
GW200208 130117, and GW200209 085452. However, the times are different than those
reported in [6], because the data was shifted in time. The candidates and parameters reported
by the online rank are identical to those reported by the traditional offline analysis in Tab. 2.2

analyses recover those 10 candidates with exactly the same template, as evidenced by
the fact that they have the same primary and secondary masses (m; and my), as well as
the same dimensionless spins (a; and ay). Since the analyses were performed on O3 data
shifted in time by 125952000 seconds, the reported times of the candidates do not match
the times reported in the third Gravitational-Wave Transient Catalog [6]

2.4.4 Injection Parameter Recovery Comparisons

Since an injection campaign was conducted for both the online analysis (and hence the
online rank), and the offline analysis, we can compare the parameters with which the
online rank and offline analysis recovered injections. The FAR threshold used here for an
injection to qualify as “found” is 1/month (3.86 x 10~7 Hz). The parameters we compare

here are the chirp mass, total mass, time, and SNR. For this comparison, we calculate
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Rank FAR (Hz) Time (UTC) my mp a; aq

(Mo)  (Mo)

1 7.92 x 107 2024-01-26 40.86 30.5 0.05 0.05
01:34:58

2 1.2 x 10713 2024-01-11 5.24 1.77 -0.29 -0.29
23:03:09

3 4.49 x 10713 2024-01-24 59.52 57.08 0.17 0.17
21:00:11

4 1.00 x 10712 2024-02-05 50.36 34.57 -0.2 -0.2
07:41:17

5 4.56 x 1079 2024-02-06 50.36 40.86 -0.08 -0.08
03:34:52

6 2.00 x 1077 2024-02-04 176.4 184.0 0.6 0.6
08:49:54

7 4.92 x 107" 2024-01-26 70.35 79.75 0.45 0.45
06:22:45

8 1.18 x 107 2024-01-17 79.75 59.52 -0.02 -0.02
21:57:48

9 1.33 x 1076 2024-02-06 40.86 42.6 0.73 0.73
03:40:07

10 1.88 x 1076 2024-01-29 126.3 57.08 -0.08 -0.08
08:21:54

Table 2.2. The candidate list of the offline analysis. The first five candidates correspond to
the previously reported events of GW200129_ 065458, GW200115_ 042309, GW200128 022011,
GW200208 130117, and GW200209 085452. However, the times are different than those
reported in [6], because the data was shifted in time. The candidates and parameters reported
by the online rank in Tab. 2.1 are identical to those reported by the traditional offline analysis
here

recovered value—injected value)
3

the fractional parameter accuracy of each found injection (i.e. —
injected value

and add that value to the histograms of the detectors the recovered injection trigger
comprised of. Time is treated slightly differently, in that we histogram the non-fractional
accuracy (i.e. recovered time - injected time). We show the fractional accuracy for chirp
mass, total mass, and SNR in Fig. 2.4, Fig. 2.5, and Fig. 2.7 respectively, and the time
accuracy in Fig. 2.6. In all of these plots, the histograms for the online rank for each
detector are plotted on the top panels, and the histograms for the offline analysis for
each detector are plotted on the bottom panels. In each figure, we see that the shape,
mean, and standard deviation of the histogram for the online rank is very similar to that
of the offline analysis. This is further evidence that an online rank is very similar to a

traditional offline analysis.
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Figure 2.4. Histograms of the fractional chirp mass accuracy for the online rank (top)
and histograms of the fractional chirp mass accuracy for the offline analysis (bottom). The
histograms for the online rank and offline analysis are almost identical, showing that online

ranks are just as good at chirp mass recovery as a traditional offline analysis.
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Figure 2.5. Histograms of the fractional total mass accuracy for the online rank (top) and
histograms of the fractional total mass accuracy for the offline analysis (bottom). The histograms
for the online rank and offline analysis are almost identical, showing that online ranks are just
as good at total mass recovery as a traditional offline analysis.

2.5 Conclusion

In this work, we have decribed how a GstLAL analysis functions, and discussed the
differences between the online and offline modes of operation. Both modes share a
common matched filtering stage. The main differences between the two are that the

online analysis needs to maintain causality to ensure low latencies, and that it needs to
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Figure 2.6. Histograms of the recovered time accuracy for the online rank (top) and histograms
of the recovered time accuracy for the offline analysis (bottom). The histograms for the online
rank and offline analysis are almost identical, showing that online ranks are just as good at
time recovery as a traditional offline analysis.
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Figure 2.7. Histograms of the fractional SNR accuracy for the online rank (top) and histograms
of the fractional SNR accuracy for the offline analysis (bottom). The histograms for the online
rank and offline analysis are almost identical, showing that online ranks are just as good at
SNR recovery as a traditional offline analysis.

keep up with live data. Due to the former, the online analysis cannot measure the PSD
over the data after it becomes available, and it cannot use the full background data to
rank triggers. Due to the latter, it needs to drop data if it starts lagging behind. Due
to these reasons, the online analysis has traditionally been considered less sensitive and
robust than the offline analysis.

We introduced a new method called an online rank, in which the data products created
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by the matched filtering stage of an online analysis (i.e. triggers and background data),
which are saved as 4 hour snapshots of the online analysis, can be taken and processed in
an offline fashion. This removes the drawback that the online analysis has, of not having
the full background information available while ranking triggers. Since matched filtering
takes up the large majority of time required for an offline analysis, by not repeating the
process of matched filtering, and taking the matched filtering results from the online
analysis instead, we can get reliable and sensitive offline results in a fraction of the
time compared to what is required for a traditional offline analysis. Over the course of
an observing run (i.e. including both online and offline results), this represents a 50%
reduction in total computational cost.

Furthermore, we discussed a technique called dropped data refiltering in which the
matched filter outputs of the online analysis are augmented by a small offline analysis
which analyzes times dropped by the online analysis. This ensures an online rank analyzes
exactly the same period of time as an offline analysis.

To test our method, we performed an online analysis on 38 days of LIGO and VIRGO
O3 data. We found that the online analysis had dropped around 5% data as compared to
the offline analysis, consequently suffering a 5% loss in VT. By adding the dropped data
refiltering outputs to the online rank, we were able to show the online rank is exactly as
sensitive and reliable as a traditional offline analysis.

Due to the significant reductions in computational effort and time enabled by online
rank method, we belive the future of GW searches lies in this paradigm, in which the
data is matched filtered only once per observing run, by the online analysis, and any
other offline results that are needed will not have to repeat the matched filtering process
again. For O4, the GstLAL group has already adopted the online rank method, enabling

fast and reliable offline results, as well as fast testing on new development work.
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Chapter 3
GstLAL’s online operations during
the fourth observing run

Chapter 2 contained an introduction to the GstLAL analysis [19-23,43]. It also talked
about its two modes of operation, the low-latency “online” mode, and the high-latency
“offline” mode. It described how the online mode is important for multi-messenger
efforts, and provided GW170817 [36,37] as an example of the GstLAL online analysis
contributing to a multi-messenger detection, leading to new scientific results [38,39]. For
every observing run of the LIGO Scientific, Virgo and KAGRA Collaboration (LVK),
search pipelines like GstLAL analyze the full data in real time, in an effort to contribute
to multi-messenger detections. In this chapter, we will talk about GstLAL’s online
operations in the fourth observing run (O4) of the LVK.
During O4, GstLAL has run three types of online searches:

1. AllSky search: This is a generic search for gravitational waves (GWs) arising from
mergers of binary neutron stars (BNSs), neutron star-black hole binaries (NSBHs),
and binary black holes (BBHs)

2. subsolar-mass (SSM) search: This is a search for GWs arising from compact binaries

with at least one component below 1 M, [62].

3. Early Warning search: This is a search for GWs arising from mergers of BNSs.
This search tries to detect the signal before the merger happens by using templates
that are truncated before the merger phase, and hence give astronomers more time

to point their telescopes at, and observe electromagnetically bright mergers. [63—65]

A detailed description of the GstLAL online workflow, including methods and working
principles can be found in Chapter 2. Details of the template bank used for the O4 online
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AllSky analysis can be found in Chapter 4 and [41]. Details about the O4 GstLAL online
SSM template bank can be found in [66,67], whereas details of the O4 GstLAL Early
Warning template bank can be found in [68]. The AllSky and SSM template banks are
both divided into two halves, with each half covering the full parameter space with a lower
density than the full bank. This method is called checkerboarding. Each checkerboarded
half of the template bank is run on a different computing cluster. This is done to ensure
high availability of the online analysis. More details of the checkerboarding process can
be found in Chapter 2.

3.1 O4a

The first half of the fourth observing run (O4a) took place from 24 May 2023 15:00:00
UTC to 16 January 2024 15:00:00 UTC [69]. Along with GstLAL, the modeled online
searches MBTA [29,30], PyCBC [26-28], and SPIIR [31,32] were also running, as well as
the unmodeled searches cWB [70,71] and oLIB [72]. During O4a, the GstLAL team ran
the AllSky, Early Warning, and SSM online searches using data from the LIGO Hanford
and Livingston detectors.

My contributions to O4a were on the development side. I developed a method to
remove GW signals from contaminating the background used to assign their significance.
The details of this can be found in Chapter 5 and in [23,42]. T also developed a method
to get better skymaps from GstLAL search results, which is discussed in Chapter 7
and in [73]. T also contributed to operations, by maintaining the online analyses in
the lead up to, and during O4a. The results of the test online analysis before O4a
is discussed in detail in [43], and the results of GstLAL’s O4a online operations are
discussed in [66,74,75]. As a result, we will discuss them only briefly here. Finally, I was
part of the analysis and paper writing team for GW230529, a neutron star—black hole
binary (NSBH) detected during O4a.

3.1.1 Public Alerts

For the public alert threshold of a false alarm rate (FAR) of 1 per 5 months, there were
88 public alerts from various AllSky searches during this time. Out of these, 7 were
determined to be false alarms, leaving us with 81 GW candidates. The GstLAL AllSky
search contributed to 80 of these, and 26 were found significantly only by GstLAL [75].

There were no public alerts from any Early Warning searches, and SSM public alerts
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were disabled for O4a.

3.1.2 GW230529

GW230529 was a likely NSBH candidate detected in low latency on 2023 May 29 at
18:15:00 UTC in LIGO Livingston data by GstLAL, MBTA, and PyCBC analyses [76].
A public alert was sent out in near-real time [77], and a follow-up alert was sent out
with updated parameter estimation and sky area information [78]. Only one detector
was operational during the time of this candidtae, and being a single detector candidate,
the significance was hard to esimate. After manual verification steps were performed by
the analysis team, of which I was a part, the astrophysical origin of this candidate was
established firmly. Due to its single detecotr nature, sky localization of the source of this
candidate was not tight, giving a 90% credible sky area of 24,200 deg?.

GW230529 was found by the GstLAL, MBTA, and PyCBC online analyses with an
SNR of 11.3, 11.4, and 11.6 respectively. The online inverse FARs were 1.1, 1.1, and
160.4 years respectively. Offline follow-up studies found this candidate with better inverse
FARs of 60.3 ,>1000, and >1000 years respectively.

Despite being a single detector candidate, GW230529 has contributed to many new
scientific results. It’s primary mass was estimated to be 3.6 M, and its secondary mass
was estimated to be 1.4 M. The secondary can confidently be said to be a neutron
star, however the primary could either be a black hole, or a neutron star. Additionally,
it resides in the lower mass gap of 3 My - 5 My, lending support to compact objects
existing in this mass range. This has further implications on black hole and neutron star
formation mechanisms. [76] also shows that GW230529 has significant implications on
populations and merger rates. Specifically, it provides an update to the estimate of the
merger rate of NSBHs, it shows that the inferred minimum mass of black holes in NSBH
binaries decreases when GW230529 is included, and significantly increases the estimate

of NSBHs expected to produce EM counterparts.

3.2 0O4b

The second half of the fourth observing run (O4b) took place from 2024-04-10 17:00:00
UTC to 2025-01-28 17:00:00 UTC. For O4b, the GstLAL team launched and maintained

an unprecedented 9 online analyses. These were:

1. AllSky HL checkerboard 1: "Edward"
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2. AllSky HL checkerboard 2: "Jacob"

3. AllSky HLV checkerboard 1: "Bob'

4. AlISKy HLV checkerboard 2: "Rick"

5. Early Warning FFT length 4: "Alice"

6. Early Warning FFT length 8: "Alice"

7. SSM checkerboard 1: "Charlie"

8. SSM checkerboard 2: "Charlie"

9. An experimental analysis analyzing out-of-observing-mode data: "Esme"

We will discuss all of these analyses below

3.2.1 AlISky

3.2.1.1 HL vs HLV

The GstLAL team started O4b with 2 AllSky online analyses, each divided into 2
checkerboards. The Edward and Jacob analyses were checkerboards of an AllSky analysis
that only analyzed data from the LIGO Hanford and Livingston detectors, whereas the
Rick and Bob analyses were checkerboards of an AllSky analysis that analyzed data from
the two LIGO detectors, as well as the Virgo detector. The reason for running both of
these analyses parallelly at the start of O4b was that the effect of analyzing Virgo data
was unknown. The two LIGO detectors had a sensitivity of around 150 Mpc, but the
Virgo detector had a sensitivity of 50 Mpc, and it was unclear whether analyzing Virgo
data would increase the overall sensitivity of the analysis.

After letting both analyses run for around 3 months, offline results were obtained
from both of them by using the online rank method described in Chapter 2, and the
sensitive volume-time i.e. VT of the two analyses was compared. The results of this are
shown in Fig. 3.1. We see that the HLV analysis was around 2% - 4% more sensitive
than the HL one for the two lower mass bins. As a result, the HLV analysis was chosen

to be the production analysis for GstLAL for O4b, and the HL analysis was retired.
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Figure 3.1. This figure shows the ratio of the VT of the HLV AllSky analysis (denoted “RB”
for its two checkerboards) to the VT of the HL AllSky analysis (denoted “EJ” for its two
checkerboards). We see that for the two lowest mass bins, sensitivity increases by around 2% -

4%.

3.2.1.2 Results

During O4b, there were 103 public alerts from the various AllSky searches. Out of these,
5 were deemed to be false alarms, and hence were retracted. Out of the remaining 98
events, GstLAL participated in 97 of them. Out of these, 30 events had only GstLAL
contributing a significant trigger. These 30 events are shown in Tab. 3.1 Additionally, 19
of these events had contribution only from GstLAL, with no other pipelines detecting

the candidate, even with low significance.
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Superevent ID FAR (Hz) Detectors my (M) my (Mg) GCN
5250109bi 2.049e-08 H1,V1 60.77 15.95 [79]
5241230ev 2.196e-08 H1,L1,V1 98.28 57.08 [80]
5241230bd 6.213e-14 L1,V1 59.51 50.35 [81]
5241225¢ 1.999e-15 L1,V1 13.42 9.53 [82]
$241210d 4.390e-08 H1,L1 76.48 79.74 [83]
5241201ac 4.321e-08 H1,L1,V1 98.28 79.74 [84]
S5241122a 6.393e-08 L1 149.27 149.27 [85]
5241114bi 1.780e-13 L1,V1 14.44 8.15 [86]
S241113p 1.470e-14 L1,V1 23.48 18.27 [87]
5241110br 4.68e-09 H1,L1,V1 19.35 8.79 [88]
5241109p 6.041e-11 L1,V1 48.29 54.74 [89]
S5241101ee 1.374e-11 L1,V1 64.70 20.93 [90]
5241011k 2.531e-34 H1,V1 21.94 5.89 [91]
5241009em 2.817e-09 H1,L1,V1 42.60 42.60 [92]
52410091 3.310e-08 H1,L1,V1 99.51 57.08 (93]
5241002e 1.402e-21 L1,V1 39.18 40.86 [94]
5240921cw 8.018e-10 L1,V1 45.12 11.30 [95]
5240917cb 5.401e-08 H1,L1 59.51 67.46 [96]
5240916ar 1.652e-08 H1,L1,V1 11.18 11.42 [97]
5240915bd 3.294e-14 H1,V1 20.18 5.88 (98]
5240813d 1.806e-18 L1,V1 109.10 31.79 [99]
5240813c 2.614e-09 L1,V1 17.85 8.13 [100]
5240807h 2.011e-11 L1,V1 28.19 5.35 [101]
5240716b 7.861e-16 L1,V1 46.31 48.29 [102]
5240703ad 1.184e-13 L1,V1 39.18 40.86 [103]
5240627by 1.207e-08 H1,L1,V1 18.32 7.71 [104]
5240525p 1.677e-08 H1,L1,V1 46.31 40.86 [105]
5240514c 9.619e-09 L1 64.70 48.29 [106]
5240428dr 2.109e-14 H1,V1 21.60 17.89 [107]
5240422ed 3.095e-13 H1,L1,V1 3.44 1.18 [108]

Table 3.1. This table shows the 30 candidates that only GstLAL found significantly in low-
latency, during O4b. Out of these, 19 events were found only by GstLAL, with no contribution
from other search pipelines.

3.2.2 Early Warning

3.2.2.1 Data whitening problem

In the middle of O4b, it was found that the GstLAL Early Warning analysis was producing

triggers at a very low rate. Investigations into this revealed that the Early Warning

analysis was producing lower SNRs than expected. All GstLAL analyses have a SNR
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threshold of 4 for a detector to contribute to a trigger. Because of the lower SNRs,
exponentially lower number of detectors were passing the SNR 4 threshold, resulting in
very few triggers, and hence a non-functional search. Though the root cause is as yet
unknown, it was found that during O4b, data quality had changed as compared to any
data before O4b, in that the noise in the lower frequency range had been reduced. The
GstLAL PSD measurement and data whitening when using an FFT length of 4 seconds
was not able to adequately compensate for this decrease in noise in the lower frequency
bands.

Though this affects all GstLAL analyses, the frequency range with lower noise is
very small as compared to the frequency range of templates of a search like AllSky (15
Hz - 1024 Hz). However, since the Early Warning templates are cut off in time before
the merger takes place, their frequency is also cut off at a very low value. This value
is template dependent, but a typical frequency range for an Early Warning tempalte is
14 Hz - 45 Hz. This lies exactly in the range of lower noise and faulty data whitening,
leading to much lower SNRs in the Early Warning search. It was found that this faulty
whitening did not manifest when using a FFT length of 8 seconds. This is demonstrated
in Fig. 3.2 and Fig. 3.3, where it is shown that we get the expected SNR statistics in noise
(mean = 0, standard deviation = 1) when using an FFT length of 8, but not when using
an FFT length of 4. As a result, in the middle of O4b, a new GstLAL Early Warning
analysis was set up using an FFT length of 8 seconds, and this was made the production

analysis.

3.2.2.2 Results

There were no significant public alerts from the Early Warning search of any pipeline
during O4b.

3.2.3 SSM

3.2.3.1 Results

There were no significant public alerts from the SSM search of any pipeline during O4b.

3.2.4 Esme

The LIGO and Virgo detectors are often producing data event though they are not in

“observing mode”. This means that extra validation that the data is reasonable has
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Figure 3.2. This figure shows the real part of the SNR time series obtained in noise from
an Early Warning template when using an FFT length of 4 seconds. We can see that despite
having a mean of 0 as expected, the standard deviation is smaller than 1, indicating faulty
whitening.

not been done. Despite this, the data is available to be analyzed. Based on this, we
developed a new method to analyze this out-of-observing-mode data, and launched an
experimental analysis which we named “Esme" using that. This method selects which
stretches of data to analyze not based on whether the detector is in observing mode,
but rather it calculates the range of the detector at that time, and if it lies between
certain values, then the data is analyzed. This is because if the detector is not producing
reasonable output, the range of the detector will often be very low, or unreasonably high.
The former happens when the detector is not running in a configuration allowing it to be
sensitive to GW signals, and the latter happens when it is not tuned properly, and hence
is full of glitches. The minimum and maximum range values were set to 10 and 600 Mpc

for the Esme analsyis
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Figure 3.3. This figure shows the real part of the SNR time series obtained in noise from an
Early Warning template when using an FFT length of 8 seconds. We can see that both the
mean and standard deviation take their expected values, showing that whitening s functioning
properly.

3.2.4.1 Results

The Esme analysis was running on O4b data, which is not public as of this time, and it
also did not have public alerts enabled, since it was an experimental analysis. Hence, the

results of this analysis cannot be discussed here.

3.3 Conclusion

O4b was a huge success for GstLAL’s online operations. The AllSky analysis detected 97
GW candidates, out of which 30 candidates were found significantly only by GstLAL.
Further, 19 of those were found only by GstLAL, with other pipelines not finding them

at all. Many new features were implemented to increase sensitivity and reliability of
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results, and also to facilitate multi-messenger follow-up of candidates. Major problems

with the Early Warning and SSM analysis were discovered and fixed.
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Chapter 4

New Methods for Offline GstLAL
Analyses

In this work, we present new methods implemented in the GstLAL offline gravitational
wave search. These include a technique to reuse the matched filtering data products
from a GstLAL online analysis, which hugely reduces the time and computational
resources required to obtain offline results; a technique to combine these results with a
separate search for heavier black hole mergers, enabling detections from a larger set of
gravitational wave sources; changes to the likelihood ratio which increases the sensitivity
of the analysis; and two separate changes to the background estimation, allowing more
precise significance estimation of gravitational wave candidates. Some of these methods
increase the sensitivity of the analysis, whereas others correct previous mis-estimations of
sensitivity by eliminating false positives. These methods have been adopted for GstLAL’s
offline results during the fourth observing run of LIGO, Virgo, and KAGRA (04). To
test these new methods, we perform an offline analysis over one chunk of O3 data, lasting
from May 12 19:36:42 UTC 2019 to May 21 14:45:08 UTC 2019, and compare it with
previous GstLAL results over the same period of time. We show that cumulatively these
methods afford around a 50% - 100% increase in sensitivity in the highest mass space,
while simultaneously increasing the reliability of results, and making them more reusable

and computationally cheaper.

4.1 Introduction

By detecting gravitational waves (GWs) from the merger of compact objects like black
holes and neutron stars, the LIGO Scientific, Virgo and KAGRA Collaboration (LVK)

has revolutionized the field of gravitational wave astronomy. GW150914 was the first such
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detection of a GW [109], and since then close to 250 GWs have been detected [110]. While
individual detections can often yield important scientific results, e.g., GW150914 [61],
GW170817 [38,39], GW200105 and GW200115 [111], even richer scientific implication can
be extracted from a collection of GW detections. To this end, the LVK releases catalogs of
transient GW detections, called the Gravitational Wave Transient Catalog (GWTC). To
date, four such catalogs have been released: GWTC-1 [14], GWTC-2 [7], GWTC-2.1 [8],
and GWTC-3 [6]. These help inform results related to testing the theory of general
relativity [16,59, 112, 113], cosmology [15, 114], black hole properties and formation
mechnisms [115-117], and binary population and merger rates [57,58,118].

These results are enabled by the detection of GWs by GW search pipelines. The
contents of these catalogs are usually compiled from rigorous high-latency “offline” GW
searches rather than low-latency “online” ones. GstLAL [19-22] is one such GW search
pipeline. Like other modeled GW searches, it makes use of a bank of waveform templates
predicted by general relativity. These templates are cross-correlated against the data in
a process called matched filtering to calculate the signal-to-noise ratio (SNR). GstLAL
performs matched filtering in the time domain [19,21,63] This process is used to identify
periods of time possibly containing GW signals, which are called “triggers”. Matched
filtering is also used to inform the background data, against which triggers are ranked to
evaluate their significance. A likelihood ratio (LR) [23,24] is calculated as the ranking
statistic. Triggers with a high LR are called GW candidates. The LRs of candidates are
then compared with the LR statistics of background triggers, and using the livetime of
the analysis, a false alarm rate (FAR) is calculated for every candidate. Some of these
techniques are used by other GW search pipelines, such as TAS [33,34], MBTA [29, 30],
PyCBC [26-28], and SPIIR [31,32].

This paper is structured as follows. In Sec. 4.2, we describe the GstLAL offline
workflow. Sec. 7.2 is dedicated to describing the new features introduced in the GstLAL
offline workflow in the lead up to, and during the fourth observing run (O4) of the LVK.
Sec. 7.3 contains the results of the tests performed to evaluate these features, and to

compare them against third observing run (O3) results.

4.2 Overview of the GstLAL Offline Analysis

The GstLAL offline analysis can be broadly divided into two stages, each of which is

further divided into smaller stages. These are:

1. setup stage
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(a) template bank creation stage
(b) power spectral density (PSD) measurement stage

(c) singular value decomposition (SVD) of templates and template whitening

stage
2. data processing stage

(a) matched filtering stage

(b) rank stage

4.2.1 Template bank creation stage

For O4, two GstLAL template banks, namely the AllSky and intermediate-mass black
hole (IMBH) banks were generated using manifold [40,119], which is a binary-tree

approach to template bank generation.

4.2.1.1 AllSky template bank

The AllSky template bank includes templates in the binary neutron star (BNS), neutron
star—black hole binary (NSBH), and binary black hole (BBH) parameter spaces [43],
consisting of 1815963 templates in total. This bank is used for the GstLAL online
analysis, as well as for the bulk of the GstLAL offline results. It extends from component
masses of 1 My to 200 M. The dimensionless spin components are restricted to be
aligned with an orbital angular momentum vector to limit the dimensionality of the
bank and their absolute values are capped at 0.99 for non-BNS templates, and 0.05 for
BNS templates. The bank is an aligned-spin bank, to limit its size. Specifications of the
AllSky template bank are shown in Tab. 4.1, and Fig. 4.1 shows a representation of the
AllSky bank in the m;- ms space. Readers are referred to [41] for more details about
the AllSky template bank.

In comparison, the GstLAL O3 AllSky template bank covered component masses
m; € [1.0,400] M. It also limited templates to spin-aligned systems and set an upper
limit of 0.05 on the magnitude of the spin for component masses below 3M. The spin
magnitudes for component masses above 3M were set to 0.999. The O3 template bank
used a minimum match value of 99% for the BNS space, in contrast to the O4 value of
97%. The parameter choices of the O3 template bank is shown in Table II of [7]. As a
result of different template bank generation algorithms and parameter choices, the O3

AllSky bank consisted of 1758763 templates.
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Parameter

‘ AllSky Template Bank

Primary mass, m;
Secondary Mass, my
Mass ratio, ¢ = my/ms
Total mass, mq + ms

€ [1.0,200M]
€ [1.0,200M]
€ [1,20]

€ [2.0,400M)]

Dimensionless spin, s;,, for m; < 3.0Mg | |si,| < 0.05
Dimensionless spin, s;,, for m; > 3.0Mg | |si,| < 0.99

Lower frequency cut-off 10 Hz !

Higher frequency cut-off 512 Hz

Waveform approximant IMRPhenomD
Minimum match 97 %

PSD O4 projected PSD 2
Total number of templates 1815963

Table 4.1. Parameters of the GstLAL O4 AllSky template bank.

4.2.1.2 IMBH template bank

In contrast to the AllSky bank, the IMBH bank is much smaller, and is only used to
augment the GstLAL offline results in the IMBH parameter space. The IMBH bank
covers the mass parameter space higher than what the AllSky template bank targets,
as shown in Table 4.2. The lower limit of m; is set to 200 Mg such that the IMBH
bank is an extention to the AllSky bank and the templates of the two template banks
do not overlap in the mi-ms space, as shown in Fig. 4.1. The templates are limited to
spin-aligned systems to reduce computational costs, similar to the AllSky bank. Details
of the parameters of the IMBH bank are shown in Tab. 4.2. Fig. 4.1 also shows a plot of
the IMBH bank in the mi-my space.

4.2.1.3 Population model

Population models provide weights to templates which represent our prior knowledge
of the astrophysical distribution of GW sources [121]. This is used in the likelihood
ratio (LR) calculation, as well as to compute probabilities of astrophysical origin of
candidates [51]. In O4, the population models for both the AllSky and IMBH banks were
generated using manifold. They implement a Salpeter mass function to assign weights

to templates, defined as:

m1—2.35
plma,ma, 512, 80..) 0 ——— (4.1)
my1 — Mmin
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Figure 4.1. AllSky templates and IMBH templates on the log (mj)-log (mg) plane. Here, the
orange dots with m; < 200M are AllSky templates and blue dots with m; > 200M, are
IMBH templates.

For both the AllSky and IMBH population models, the value of m,,;, is set to 0.8, which
is slightly less than the minimum mass in the combined AllSky+IMBH template bank.

4.2.2 PSD measurement stage

The PSD is the frequency representation of detector noise, and is used in the matched
filter calculation. This is done by whitening both the data and the templates with the
PSD measured from the data. GstLAL has the ability to measure the PSD of the data in
real time and dynamically whiten the data during the matched filtering stage. However,
this ability does not extend to template whitening, and the templates need to be whitened
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Parameter IMBH Template Bank
Primary mass, m; € [200, 543 M)
Secondary Mass, my € [10, 258 M|

Mass ratio, ¢ = my/ma € [1,20]

Total mass, m; + mo € [50,600M]
Dimensionless spin, $;,, for m; | s;, € [—0.69,0.98]
Lower frequency cut-off 10 Hz

Higher frequency cut-off 512 Hz

Waveform approximant IMRPhenomD
Minimum match 929 %

PSD O4 projected PSD 3
Total number of templates 14728

Table 4.2. Parameters of the GstLAL O4 IMBH template bank.

before the analysis starts. The PSD used for this purpose is measured from the data
in the PSD measurement stage. The data is first divided into smaller pieces of up to 8
hours depending on the continuity of segments when each detector is operational. The
PSD over each such piece of data is individually measured, and the median over each
frequency bin is taken, which removes any transient noise features contributing to the
PSD of a single piece of data. The resultant PSD is used to whiten the templates. More

details about PSD measurement can be found in [19].

4.2.3 SVD of templates and template whitening stage

Next, as discussed in [41], the template bank is sorted by linear combinations of their
Post-Newtonian phase coefficients and split into “template bins”, each of around 1000
templates, which are whitened using the median PSD described above. These template
bins further go through a process called SVD to save computational cost of the matched
filtering [122]. The templates in one such template bin are processed together for the
purpose of matched filtering and background estimation, constituting a single matched-
filtering job, and hence this template binning allows for a large-scale parallelization in

both online and offline workflows.

4.2.4 Matched filtering stage

Each template within a template bin is matched filtered with the data, producing

triggers. Alongside SNR, a signal consistency statistic, called &2 is also calculated for
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every trigger [19]. Triggers with contribution from only one detector (referred to as
a “single detector trigger”), during a time when multiple detectors were operational
(referred to as “coincident time”), are considered to originate from noise [42]. This is
because GW signals are expected to be correlated across detectors, unlike noise. The
SNR and &2 statistics of noise triggers are added to the template bin’s common noise
background, which is later one of the inputs used to calculate the LR for triggers.

In parallel, the GW candidates are extracted from the triggers. This is done by
retaining only those triggers within a template bin that have the highest SNR in a 0.2
second window. A single GW signal can create triggers via multiple templates, and
with current detector sensitivities, it is highly unlikely for multiple GW signals to occur
in the same 0.2 second window. Hence, this “clustering” over SNR, duplicate triggers
from a single common signal, reducing the amount of data downstream stages need to
process. The processes of populating the background and generating candidates are done

in parallel for every template bin.

4.2.5 Rank stage

In this stage, the significance of candidates is evaluated, and the results of the search
are produced. First, the candidate list is pruned again by performing a second round of
clustering. This time, it is performed across template bins. The highest LR candidate
with the highest LR in an 8 second window is retained. Apart from eliminating candidates
originating from noise, this ensures that a single GW signal will have at most one candidate
originating from it in the entire analysis.

The LR is then calculated for every surviving candidate. One of the ingredients in
calculating the LR is the SNR-£2 background populated by the matched filtering stage.
To model a smooth distribution of SNR-£? statistics, a kernel density estimate (KDE) is
applied to the background, and the resulting probability density is used for LR evaluation.
This gives us the probability that the (SNR, £2) of a given candidate arises from noise.
This is one of the many terms in the LR equation. More details on the LR calculation
can be found in [23].

Next, to convert the LR to a FAR, we need the LR distribution of noise triggers
from every template bin [24,25]. If we use the same set of noise triggers as was used
to populate the SNR-£2 background, the LR distribution will not be well defined at
higher LRs due to lower number of statistics. Additionally, since these noise triggers were
obtained during the livetime of the analysis, the lowest FAR would be bound by 1 per

livetime. To solve this problem, GstLAL extrapolates the set of noise triggers from every
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template bin by drawing samples of SNR and £2, and assigning random templates as well
as arrival times and phases. This is a computationally cheap operation, and under the
assumption that the template, time and phase distribution of noise triggers is uniform,
this process can effectively extrapolate the LR distribution of noise triggers to high LRs,
enabling the FAR calculation of even the most significant candidates.

However, this process does not work particularly well for low LRs. To fix this, we
can make one more assumption, that at low LRs, even the candidates originate from
noise. Consequently, the low LR distribution of candidates is the same as the low LR
distribution of noise triggers, and the former can be used to inform the latter. The
method of doing so is called the “extinction model”. Once the LR distribution of noise
triggers is calculated, it can be combined with the livetime of the analysis to produce a
FAR for every candidate.

4.3 New Methods

4.3.1 Online Rank

During every observing run, the full data are analyzed in near-real time by the GstLAL
low-latency or “online” analysis. The various stages of the online analysis, up to the
matched filtering stage, are largely similar to those of the offline analysis. Consequently,
during O4, a new method has been adopted to outsource the GstLAL offline analysis’
matched filtering stage to the GstLAL online analysis. This method is called an “online
rank”. A description of the differences between the GstLAL online and offline analyses,
as well as a detailed descreption of the online rank method is provided in [4].

As described in [4], the online rank method significantly reduces the computational
cost and time needed for offline results. Matched filtering is the vast majority of the
computational burden of a modeled GW search. By eliminating the need to repeat
matched filtering a second time for the offline analysis, this method affords a 50%
reduction in computational cost over the course of an observing run, and specifically a

95 - 99.8% reduction in time required to obtain offline results.

4.3.2 Dropped Data Refiltering

In order to make the online rank results even more reliable and sensitive, we can augment
the inputs to the online rank with triggers and background data from times that the

online analysis dropped. To do this, for every job in the online analysis, we take the list
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of time periods when each job was functional and producing output. We then subtract
that from the list of times a traditional offline analysis would have analyzed, which is
calculated by external tools as an extra step in the setup stage of the offline workflow.
This leaves us with a list of times that a particular job has dropped. We calculate such a
“dropped data segments” for every job. Then, we can set up a traditional offline analysis
using these dropped data segments. The only unusual aspect of this procedure is that
while setting up this “dropped data refiltering” analysis, each job has its own segments
list rather than a global one for every job. An example of such a list of dropped data
segments is shown in Fig. 4.2

By combining the online rank inputs with the results of the dropped data refiltering
analysis, we can be sure the online rank produces offline results for exactly the same
periods of time that the traditional offline analysis would have. The typical amount of

dropped data for any job is around 5% of the total time covered by the offline segments [4].

4.3.3 IMBH Analysis

The AllSky template bank was designed to be a general-purpose bank for an online
analysis. To obtain more comprehensive offline results, we want to augment the results
of the AlISky search with a search for IMBH mergers. The GstLAL O4 offline results are
obtained by performing a search over the data using the IMBH template bank described
in Sec. 4.2, which is then combined with the AllSky search into a single set of results
using the procedue described in the following subsection.

As shown in [22,23], the LR contains a term to test the consistency of signals accross
the network of detectors, for observed parameters like SNR and the coalescence time and
phase. These parameters can only take on certain possible physical values for a network
of detectors and follow specific correlations that indicate whether a GW trigger is of
astrophysical origin. The correlation among these observables and their joint distribution
depend on trigger’s template, and hence in principle this signal consistency test should
be modified for every template. However, for the purpose of pre-computation efficiency,
we adopt a BNS template with component masses of 1.4 M, which is shown to be
effective throughout Allsky template bank. In contrast, the mass range of the IMBH
template bank is so high that this empirical fact might not be true, and hence for the
IMBH analysis we use a template with component masses of 60 M.

Other differences in search settings between the AllSky and the IMBH searches
include different lower frequency cutoffs during matched filtering. AlISky uses 15 Hz, but
the IMBH search uses 10H z as these binaries merge at lower frequencies. The Allsky
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Figure 4.2. An example of a particular online job’s list of dropped data segments. The
dropped data segments at the very start of the plot are because of slightly different start times
of the online and offline analysis, whereas the ones after that are because of online analysis
having failed to analyze those times, either because the data for those times was dropped in
order to keep up with incoming live data, or because the online job was not functioning at that
time. We see that the amount of dropped data is not too large, but the segments are dispersed
throughout the period of the analysis. [4] shows that a typical online analysis drops around 5%
of the total data. This data can be filtered offline in order to augment the online rank’s results.
This particular plot was made using a GstLAL online analysis that participated in the mock
data challenge [5].

search uses the TaylorF2 [123] approximant upto a chirp mass of 1.73 for cost effectivity
and the SEOBNRv4 ROM [124] beyond that, while the IMBH search only uses the
SEOBNRv4 ROM as an approximant. Similarly, the autocorrelation length used by
the Allsky search for calculating the £ signal-based veto [19] is 701 sample points upto a
chirp mass of 1.73, and 351 above that. The IMBH search uses a value of 351 sample
points throughout, due to a shorter duration of the waveforms. For this reason, the

minimum number of samples included in a given time slice [19] is 512 for IMBH and 2048
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for Allsky. For similar reasons, while splitting the IMBH bank into template bins, the
templates are sorted by their duration which is found to be more effective for this part of
the parameter space, rather than sorting by linear combinations of their Post-Newtonian
phase coefficients.

It is known that the candidates in the IMBH search are overwhelmingly single-detector
candidates. This was true even for triggers, before any clustering was done. For example,
in the test described in Sec. 7.3, out of the total candidates reported by the IMBH search,
92.75% were found to be single-detector candidates, and out of the set of triggers, 98.57%
were single-detector triggers. The corresponding numbers for the AllSky search are 3.37%
and 35.07% respectively. While the root cause of this is not well understood, the vastly
different percentages of single-detector triggers in the AllSky and IMBH searches indicate
that this arises from the matched filtering and coincidence formation of IMBH templates,
rather than anything to do with the LR.

The LRs of single-detector candidates are notoriously difficult to estimate [125],
and so is the process of LR extrapolation of noise triggers. Consequently, the FARs of
single-detector candidates are unreliable, and a search with such a high percentage of
single detecotr candidates is unlikely to be functional. As a result, for GstLAL’s O4
offline results, the IMBH search ignores single detector triggers, and only processes those
with multiple contributing detectors. The effects on the LR statistics of candidates if

single-detector triggers are allowed to be processed are shown in Fig. 4.3.

4.3.4 Combining the AllISky and IMBH analyses

In order to combine Allsky and IMBH searches into a single search, one can naively treat
every template bin from both the AllSky and IMBH searches as though they are part of
a bigger AllSky+IMBH joint template bank. This means after each template bin assigns
LRs to its candidates, these candidates would be clustered together based on their LR,
and the noise LR statistics of each template bin will be combined via the extinction
model. An implicit assumption of this method is that each template bin’s candidate and
noise LR statistics in the noise regime are approximately the same. However, with the
different parameter space and settings of the IMBH search as compared to AllSky, this
assumption is no longer valid, and hence the naively combined results can be severely
biased. To this end, we have developed a new scheme to combine the AllSky and IMBH
analyses into a single search.

We first calculate a weight for each individual analysis, based on each analysis’

contribution to the final clustered set of candidates. This was done using injection

o1



Event Count vs. Ranking Statistic Threshold

10%
] = min 2 detector search
103 ] min 1 detector search
---- Noise Model, (N)
3 10 ] +V/(N)
Al 5 +2./TNV)
" ]
LE ]
B 100 4 | I
5]
e
210" 5
Z.
1072 i
1073 T T T T T T
—20 —-10 0 10 20 30 40

In £ Threshold

Figure 4.3. This plot shows the results of two IMBH searches: one which only considers
triggers with two or more detectors contributing to it, and another with no such restriction.
The plot also shows the noise LR statistics of the former search for reference. We can see that
the LR statistics of the candidates of the search that only processes triggers with two or more
detectors is well behaved, whereas the other one is not. This is because the IMBH search, if
allowed to process single-detector triggers recovers an overwhelming amount of them, and the
LRs (and hence FARs) of single-detector triggers are difficult to accurately calculate. As a
result, for O4, GstLAL’s IMBH search doesn’t process single-detector triggers.

campaigns for both analyses. Injections are simulated GW signals inserted into the data.
The weights for the AllSky and IMBH analyses was found to be 0.94 and 0.06. This
result is also verified by summing over the population model weights for the AllSky and
IMBH templates after taking into consideration the different SNR detection thresholds
of the two analyses.

Next, the FARs of each analysis’ candidates are scaled up by the inverse of their
respective weights. Note that FARs are assigned to each analysis separately, and hence the
FARs of candidates in the noise regime in both analyses are guaranteed to be distributed
similarly as they only depend on the livetime of the search. Since the weights sum up to
1, this new set of candidates is guaranteed to have a consistent distribution of FARs in
the noise regime, i.e., there will be on average livetime-per-hour number of candidates

with a FAR of one per hour or lower, and so on. Candidates from both analyses are then
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clustered together. The LRs of the candidates are then re-calculated based on their new
FARs, using the inverse of the mapping used by the AllSky analysis to convert LRs into
FARs. In principle, any such mapping would have worked, and the AllSky mapping is

chosen only for convenience.

4.3.5 Modularity and reusability of results

A general theme of the development work prior to and during O4 has been about reducing
the duplication of computations done elsewhere. Apart from the online rank described in
Sec. 4.3.1, we have made the GstLAL offline workflow more modular and flexible. In
general, offline analyses over large periods of data (such as GstLAL’s offline results for O4)
are performed in small chunks, each of around 1 week of data. Alongside the ability to
extract any amount of matched filtering data from the online analysis as specified by the
user (to the granularity of 4 hours) [4], the GstLAL offline workflow also has the ability
to use the data from any set of offline chunks specified by the user. Consequently, one
can specify any period of data covered by any combination of online and offline analyses
using any template banks, and they can be combined into a single result. Therefore, once
a period of data has been matched filtered by a particular template bank via either an
online (complemented by the dropped data refiltering) or offline analysis, it never needs
to be filtered using that template bank again. This has greatly reduced the computational

and time burden of GstLAL operations as well as development work during O4.

4.3.6 Ranking statistic improvements

GstLAL has adopted the likelihood ratio as the ranking statistic to evaluate the statistical
significance of GW candidates [23,24]. The likelihood ratio in GstLAL takes the form of

. P(q,ﬁ,ﬁq,i:(f,WHs), (4.2)
P(0,5,€,1.6,6 | H,)

which represents the probability of obtaining a set of observable parameters, e.g., SNR
for each detector p, under the signal hypothesis (Hs) relative to that under the noise
hypothesis (H,). Here, p refers to the SNR of a single detector, and we will use this
terminology for the rest of this subsection to maintain compatibility with others papers on
this subject. The improvements in this ranking statistic prior to O4’s start are thoroughly

described in [23], which include the upgraded p — £ signal model and removal of signal
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contamination. In particular, the upgraded p — &2 signal model achieved ~ 20% increase
in the search sensitivity, and hence has led to a major contribution of GstLAL to LVK’s
GW detections in O4 so far.

Apart from the improvements mentioned above, we have modified the p — £2 noise
model to make more accurate estimate of event’s significance in some part of (p, £?)
parameter space. As described in [23,42], GstLAL collects single-detector triggers during
coincident time into the 2D p — &2 histogram and estimates its noise model. Since
templates of lighter binary systems such as BNS tend to not couple with non-Gaussian
noise, e.g., glitches, most of noise triggers associated with such low-mass templates
are expected to be modeled by the Gaussian noise component. For each detector,
trigger’s SNR is calculated as square root of a quadrature sum of SNR values given by
two orthogonal templates through matched-filtering, each of which follows the normal
distribution. Therefore, the SNR-squared follows a chi-square distribution with two
degree-of-freedom regardless of the observed &2 value.

Also, according to the formalism of the upgraded p — &2 signal model described
in [23], the expected value of £2 in the noise model can be also given by substituting
the mismatch factor £ = 1, i.e., maximum mismatch between a hypothetical signal and
template, into Eq.(40) of [23],

(€2) = ;f {N+(p* - )RR} ~1, (4.3)
where N is a auto-correlation length used for &2 calculation and R is an auto-correlation
function of a given template normalized so that R[0] = 1. This approximation holds
because an auto-correlation of compact binary coalescence (CBC) signals in general
sharply peaks at the center where two templates exactly align, and hence R'R <«
N(R[0])> = N. Therefore, triggers from the Gaussian noise component are distributed
near £2 = 1 and decaying toward higher SNR. Consistently, this behavior is illustrated
in Fig. 4.4, which shows a p — &2 noise model for one of the low-mass template bins
collected for LIGO Hanford detector during the mock data campaign described in [5]
with the lightblue dashed line as a €2 = 1 contour. In contrast, a tail of the distribution,
which extends toward higher SNR and &2, is known as non-Gaussian noise component.

However, during the online analysis of O4, we discovered that the Gaussian component
of the noise model deviates from the expected chi-square distribution significantly at
p > 9 because very few or zero noise trigger populates such a higher SNR regime and the

KDE applied as a smoothing process does not complement the lack of triggers sufficiently.
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See Fig. 4.5 where a 2D p — &2 noise model is sliced at the £€2 = 1 contour and projected
onto the p dimension. Note that the expected chi-squared distribution shown as a black
curve is given by

2

p(0) = 3(0) L ox 2012 (1.4)

p
Although, this disagreement can eventually improve if we keep the analysis running
and collect noise triggers long enough, early phase of the online analysis is likely to
overestimate an event’s significance due to this bias and send out a public alert, e.g.,
S240422ed [108]*. Also, we cannot guarantee that this bias does not exist even in an
offline analysis where noise triggers collected entirely from single (or subset of) observing
run are considered. Therefore, the objective here is to modify the tail of the Gaussian
noise component such that it can produce more accurate noise model even with fewer
collected triggers and eventually prevent a potential false claim of GW detections.

To this end, after collecting enough noise triggers, we extrapolate the trigger counts
along a given iso-£2 contour using the bulk of the Gaussian component so that its tail part
follows the expected distribution shown in Eq. (4.4). This process is iterated over a range
of —0.5 < log &% < 0.5 and finally the KDE is applied to produce a smoother distribution.
The green curve in Fig. 4.5 shows that the noise model after this extrapolation closely
follows the expected distribution in black curve. Although it can be slightly above the
black curve, one can see that it still provides much more accurate estimate of the event’s

significance than the red curve without the extrapolation at p > 9.

4.3.7 New Extinction Model

A set of candidates undergo two rounds of clustering, the first with other candidates
within the template bin, and the second with candidates from all template bins. These
clustering processes alter the LR distribution of candidates. Consequently, the LR
distribution of the noise triggers which gets used to convert the LR of candidates to FARs
also needs to undergo these clustering processes. The new extinction model quantifies
the change in LR distribution due to clustering, and applies it to the LR distribution on
noise triggers. To mimic clustering, this is performed in two steps, the first within the
noise triggers of a tempalte bin, and the second with noise triggers across template bins.

Additionally, the new extinction model enforces that any template bin’s contribution to

4The statistical significance of this candidate was subsequently estimated to be lower after collecting
more noise triggers and the update alert was sent [126]
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the noise LR distribution is proportional to its contribution to the LR distribution of
candidates. Both of these features ensure that the FARs assigned to candidates are more
accurate than the old method, i.e., stitchin the LR distribution of candidates below some
LR threshold to the LR distribution of noise triggers [127].

Let y(L) be the histogram of noise triggers that GstLAL stores in order to estimate
the complementary cumulative distribution function of noise LRs, N(L). The two are

related in the following way:

N(L) = A /L S (L)AL (4.5)

N(L) = A [Ty L)L (4.6)

where A is some normalization constant, and the subscript ¢ denotes the clustered version

of the respective functions. Equivalently,

AN (L)

i) ==z

(4.7)

The new extinction model assumes that the process of obtaining triggers above a certain

LR threshold L* in the clustering interval is a Poisson process, with Poisson rate given
by:
A=cx N(L") (4.8)

where c is another normalization constant. Hence the probability that some trigger with
LR = L* survives clustering, i.e. that there are no triggers with a higher LR than L* in

the clustering interval is the Poisson probability for zero events.
Psurvival(L*) = 6_)\ = G_CN(L*) (49)

Hence, we can add the effect of clustering to y(L), by multiplying it with the survival
probability.
ye(L) = y(L)e ™ (4.10)

Substituting Eq. (4.10) in Eq. (4.6), it follows

NAL) = A [T y(r)e Y ar
L

-/ T NI GN (L)
L
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— 1[1 — e—cN(L)]
c
where N(oo) = 0. Since GstLAL deals with the complementary cumulative histogram of
LRs, n(L), rather than probability density, we can convert this to the histogram form by
adding another normalization constant. After absorbing relevant constants in A and c,
we get:
ne(L) = A[l — e~(H)] (4.11)

In order to find the constants A and ¢, the new extinction model performs a curve
fit of n.(L) to the LR histogram of candidates. This is first done within a template bin,
and after all of those clustered bin-specific noise histograms are added together, it is
performed across template bins. The constant A takes care of the relative contributions
of template bins to the candidate set, whereas the constant ¢ takes care of the effect
of clustering on the set of candidates. The curve fitting is performed from the 50th
percentile to the 99th percentile of the complementary cumulative histogram of candidate
LRs. This is empirically known to be a region of well-modeled noise candidates. The
uncertainties in the curve fitting can be calculated from the assumption that a particular

realization of the value of y(L) is Poisson distributed. Hence,

oy = \y(L) (4.12)
2 o 2 *
- / y(L*)dL*
L*
onw) = N(L) (4.13)

The effect of applying the new extinction model on the noise triggers is shown in
Fig. 4.6. We can see that in the noise regime (i.e. 50th percentile to the 99th percentile),
the noise LR histogram with the new extinction model is very close to the candiate
histogram. This shows that the new extinction model is successful in applying the effects
of candidate clustering and relative contributions of template bins to the candidate set.
By adopting the new extinction model, we get more accurate FARs, since the noise
LR distribution used to assign FARs is more accurate than the old method. The new
extinction model has also been adopted for GstLAL’s online operations in the second
half of the fourth observing run (O4b).
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4.4 Results

4.4.1 Data set

To test the new methods described in Sec. 7.2, and to serve as a trial run for GstLAL’s
04 offline results, we set up a GstLAL analysis over 1 chunk of LIGO and Virgo O3
data. The data extends for approximately one week, from May 12 19:36:42 UTC 2019 to
May 21 14:45:08 UTC 2019. Since [4] already tests the online rank feature and concludes
it is equivalent to a traditional offline analysis, we do not test that feature here, and
directly set up an offline analysis over the data instead of running an online analysis
and setting up an online rank based on that. The offline analysis included a search with
the AllSky bank, and a search with the IMBH bank, which were then combined into
a single search using the procedure described in Sec. 7.2, referred to as “O4 analysis”
hereafter. It also includes the LR improvements, the extrapolation in p — £2 noise model
and new extinction model. We then compared the results to GstLAL’s O3 offline results
over the same period of data, referred to as “O3 analysis” hereafter. Also, note that
the O3 analysis uses the O3 template bank described in Sec. 4.2.1.1. Both analyses also
included the same injection campaign. The details of the distribution of injections in

this campaign can be found in [7,128].

4.4.2 Candidate lists

This set of data contains 6 GW candidates previously reported in [7,8]. Both the O3 and
O4 analyses recover all 6 candidates in the list of top 10 candidates, as summarized in
Tab. 4.3 and Tab. 4.4 respectively The O4 search recovers all 6 confidently with a FAR

below 1/month, whereas the O3 search only recovers 5 of the 6 confidently.

4.4.3 Sensitivity comparison

To compare the sensitivities of the O4 and O3 analyses, we use the sensitive volume-time,
or VT of the two analyses as a metric. It represents the volume of 4-dimentional space-
time where the search can typically identical signals. Since the times analyzed by both
the O4 and O3 analyses is exactly the same, the VT's of the two analyses are a measure
of their relative sensitivities. Furthermore, the VT's can be calculated for different mass
ranges in order to estimate the relative sensitivities to different source classes. A plot

of the ratio of the VT of the O4 analysis with and without the extrapolation in p — &2
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noise model, with the O3 analysis is shown in Fig. 4.7.

4.4.4 Performance of individual features

4.4.4.1 IMBH analysis

Here, we assess how much sensitivity we gain by combining the IMBH search with the
AllSky search, compared to just the sensitivity of the AllSky search. The VT ratio of the
04 combined AllSky+IMBH search to that of the VT of the O4 AllSky search is shown
in Fig. 4.8. In addition to the 6% - 7% sensitivity improvement in the IMBH space as
shown in Fig. 4.8, by adding the IMBH search to the AllSky one, the combined analyiss
becomes sensitive to a new parameter space, and has the ability to recover GW signals
arising from intermediate-mass black hole mergers, which the AllSky search did not have
by itself. This source class is particularly interesting and by detecting GWs from such

mergers, we enable new scientific results [129].

4.4.4.2 Extrapolation in p — £? noise model

As mentioned previously, the extrapolation in p — 2 noise model removes false positives
in GW candidates. This implies that real GW signals can also be downranked accordingly
and not be recovered as significantly as it would be without the extrapolation. To this
end, we compare the VT's between with and without the extrapolation to assess the signal
recovery performance. Fig. 4.9 shows the VT of the O4 analysis with the noise model
extrapolation as a function of the recovered FAR for each category of injections, being
relative to that for without the extrapolation. Note that the sensitivity can decrease up
to 15% for two lowest mass categories of the injections, e.g., blue and orange curves. This
is because, as mentioned above, the noise model for lower mass templates tends to be
dominated by the Gaussian component and hence the extrapolation is likely to be more
impactful. In contrast, for heavier BBH templates, the non-Gaussian noise component
overwhelms the Gaussian one and makes small changes at its tail part negligible. We also
emphasize that this decrease in the search sensitivity does not necessarily indicate the
lowered performance overall, but rather that the signal recovery without the extrapolation

is overestimated and risks potential false positives.
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4.4.4.3 Reliability of results

The new extinction model and LR improvements ensure the FARs of candidates are more
accurate, and the extrapolation in p — &2 noise model removes potential false positives
in the candidate set. All of these contribute to the O4 results being more reliable then
before. This effect is difficult to measure since wrongly assigned FARs and false positives
are rare. One possible metric is to see how many candidates in the injection campaign
with a FAR below some threshold do not correspond to an injected GW signal. With a
FAR threshold of one per day, this number for the O3 search is 53, representing 0.07%
of all candidates. The corresponding number for the O4 search is 28, representing 0.03%
of all candidates. For a higher FAR threshold of one per hour. the numbers for the O3
and O4 searches is 276 (0.35%) and 132 (0.15%). This shows that the new O4 methods
are successful in lowering the number of false positives.

The O4 search includes the IMBH search. This parameter space is known to be
particularly vulnerable to loud noise transients or non-gaussian transient “glitches”. If we
only look at the O4 AllSky search, for a more direct comparison with O3, the numbers
for the one-per-day and one-per-hour FAR thresholds are 23 (0.03%), and 110 (0.13%),

showing an even higher efficacy of removing false positives.

4.5 Conclusion

In this work, we first gave an overview of the GstLAL offline analysis. This included
desriptions of the GstLAL AllSky and IMBH template banks used in O4. We later
described new methods in the GstLAL offline analysis introduced in the lead up to and
during O4. These new methods are all used to obtain GstLAL’s offline results for O4.

The new methods include a way to outsource everything up to the matched filtering
stage to an online analysis that had previously run on the same data. This, along with
improvements to modularity of the workflow and reusability of results means that GW
data only needs to be matched filtered with a given template bank only once during an
observing run. The results of any such matched filtering, whether online or offline, and
with any template bank can be combined into a single cohesive set of results.

The new methods also include a new IMBH offline search. This search only allows
candidates with multiple contributing detectors, in order to make the search well-behaved
and functional. A new method to combine the AllSky and IMBH searches was also
introduced. It assigns a weight to each search by which the FARs of their candidates,

calculated independently for each search, are scaled up. Afterwards, the set of candidates
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of the two searches can be combined in to single set of candidates.

Finally, we also discussed some changes to the LR calculation, introduced the extrap-
olation in p — &2 noise model, as well as a new extinction model which enables a better
estimation of the LR statistics of noise triggers.

To test these new methods, we set up an offline analysis over one week of O3 data,
and compared the results with those obtained from the same data by GstLAL during
0O3. Both searches recovered the 6 previously reported GWs in the data in their list of
top 10 candidates. The O4 search was able to do so confidently for all 6, whereas the
O3 search managed it only for 5. We found that the sensitivity of the O4 search in the
IMBH space increased by 50% - 100%. The VT in the BNS and NSBH space went down
by 10% - 20% as a result of the extrapolation in p — &2 noise model, which reduces false
positives and downweighting a small number of real GW signals accordingly. Without
the new KDE, those VTs are very close to the O3 ones.

The new methods described in this work variously increase the sensitivity, reliability,
or reusability of the GstLAL offline results. As a result, we expect GstLAL’s offline
results to significantly contribute to the LVK’s scientific results in OA4.
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Figure 4.4. Example of p — £2 noise model for one of the low-mass template groups collected
for LIGO Hanford detector during the mock data campaign described in [5] with the lightblue
dashed line as a ¢ = 1 contour
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Figure 4.5. 2D p — £2 noise model sliced at the €2 = 1 contour and projected onto the p
dimension. The noise model with the extrapolation closely follows the expected distribution in
black curve at p > 9 as opposed to the red curve without the extrapolation.
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Figure 4.6. Effect of applying the new extinction model on the noise LR histogram. The effects
of candidate clustering and differing relative contributions of template bins to the candidate set
are modeled by modifying the noise LR histogram, n(L) to A[l —e~°L)]. The values of A and
¢ are found by curve fitting the modified noise LR histogram to the candidate LR histogram.
We can see that this process is effective from the fact that the noise LR histogram with the new
extinction extinction is very close to the candidate LR histogram in the noise region (low LR).
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Figure 4.7. VT ratios of the O4 search with the O3 search. The solid lines represent the full
04 search as compared to the O3 search, whereas the dashed lines represent the O4 search
without the extrapolation in p — &2 noise model as compared to the O3 search. Since the
extrapolation removes false positives from the candidates, it corrects previous mis-estimations
of the VT done in the O3 search, superficially lowering the O4 VT. The VT ratios of the two
lowest mass bins are slightly less than 1. This is because the O3 temlpate bank sampled the
lower mass parameter space with a higher minimum match (0.99) as compared to O4 (0.97).
Additionally, we see that the highest mass bin has a 50% - 100% increase in sensitivity, arising
from the LR improvements and the additional IMBH search done in O4.
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Figure 4.8. This plot shows the ratio of VT of the O4 combined AllSky+IMBH search to that
of the O4 AllSky search, and it shows us how much sensitivity we gain by combining the IMBH
and AllSky searches, as compared to just the AllSky search. As expected the sensitivities of the
3 lowest mass bins are unchanged, since the IMBH bank is not sensitive in that region. The
VT of the IMBH bin increases by 6% - 7%.
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Figure 4.9. VT ratio of the O4 search with the noise model extrapolation as compared to
without. The extrapolation removes false positives from the set of candidates, and in the
process also downweights a small amount of real GW signals. The former effect corrects the
overestimate of VT that happens without the extrapolation, whereas the latter decreases the
real sensitivity of the search. Both these effects contribute to the lower than 1 VT ratio seen
here. This effect is mostly seen in the BNS ans NSBH regions, whose VT goes down by 10% -
15%. The BBH and IMBH regions are mostly unaffected.
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Chapter 5

Method for removing signal con-
tamination during significance es-
timation of a GstLAL anaysis

This chapter is a reprint of [42]

To evaluate the probability of a gravitational-wave candidate originating from noise,
GstLAL collects noise statistics from the data it analyzes. Gravitational-wave signals
of astrophysical origin get added to the noise statistics, harming the sensitivity of the
search. We present the Background Filter, a novel tool to prevent this by removing noise
statistics that were collected from gravitational-wave candidates. To demonstrate its
efficacy, we analyze one week of LIGO and Virgo O3 data, and show that it improves
the sensitivity of the analysis by 20-40% in the high mass region, in the presence of 868
simulated gravitational-wave signals. With the upcoming fourth observing run of LIGO,
Virgo, and KAGRA expected to yield a high rate of gravitational-wave detections, we
expect the Background Filter to be an important tool for increasing the sensitivity of a
GstLAL analysis.

5.1 Introduction

The Laser Interferometer Gravitational-wave Observatory (LIGO) [11] and Virgo [12]
collaborations have revolutionized the field of gravitational-wave (GW) astronomy by
detecting black hole and neutron star mergers [6-8,14]. The detections have allowed
us to observe the universe in new ways and have opened up new avenues of scientific
inquiry. [57,60,62,130] The GstLAL GW search pipeline [19-22] (referred to as GstLAL
hereafter) has been a significant contributor to this field. In particular, GstLAL’s ability
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to detect signals in low-latency [36] has facilitated multi-messenger observations [131].

GstLAL is a GW search pipeline that can process data from ground-based GW
detectors, such as the Hanford and Livingston LIGO detectors, the Virgo detector and
the KAGRA detector [13], in near real time. It makes use of time-domain matched-filtering
to enable the detection of signals in noise-dominated data. It uses a likelihood ratio
(LR) [23-25] as a ranking statistic for assigning significance to detections. GstLAL divides
its template bank [41,132] into different “template bins” to reduce the computational
cost of the analysis, and analyzes each one separately. Some of these techniques are also
used by other search pipelines, such as PyCBC [26-28], MBTA [29,30], SPIIR [31,32],
and TAS [33,34].

The fourth observing run of the LIGO Scientific, Virgo and KAGRA collaboration
(O4) is set to begin in May 2023 [133] and promises to provide improved detector
sensitivity. GstLAL will continue to play an essential role in the detection of new GW
candidates. As such, it is necessary to keep refining the analysis pipeline to reap the
benefits of improved detector sensitivity to detect even more, and new types of candidates.
The Background Filter is one such new feature to this end.

This paper is structured as follows. In Sec. 5.2, we introduce the LR used by GstLAL,
in particular the p—¢&?2 histograms that GstLAL uses to evaluate one term of the likelihood
ratio, and how the presence of GW signals in the data can cause “contamination” of
these histograms. In Sec. 5.3, we describe how the Background Filter works, and how it
removes this contamination. Finally, in Sec. 7.3, we describe the analyses we performed
to evaluate the performance of the Background Filter, and the impact it has on the

sensitivity of a GstLAL analysis.

5.2 Signal Contamination

5.2.1 Likelihood Ratio

GstLAL is a matched-filtering based GW search pipeline which uses a likelihood ratio
statistic to rank GW candidates [23,24]. The LR is defined as

, (5.1)

where the numerator is the probability of obtaining a GW candidate with parameters
(6, 0, f_é, t o, 0), under the signal hypothesis (#) and the denominator is the probability
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of obtaining the same candidate under the noise hypothesis (H,). O is the subset of
GW detectors that the candidate was found in, g is the set of matched-filtering signal-to-
noise-ratios (SNRs) of those detectors, 52 is the set of &2-signal-based-veto values, t, qg
are the times and phases with which the candidate was found in the detectors, and
is the template which recovered the candidate, which also represents a set of intrinsic
parameters (masses and spins).

The LR can be factorized as

P (0| H) % P (tret, Suer | 0,He) x P (O | trer, M)
P (t, 0| Ho) % P (O] tres, 0, M)
P (7, At, 86 | O, trer, Ha) x P (2| 5,0, Hs)
P (At,¢ | O, M) x P (5,2 | thet, 0, Ha)

L =

(5.2)

For a comprehensive explanation of Eq. (5.2) and every individual term in the LR,
readers are referred to [23]. For the purpose of this paper, we are only concerned with
the last term in the denominator, P (ﬁ, {2 | tref, 0, Hn) (hereby referred to as the p — &2

noise LR term).

5.2.2 The p — £? histograms

The p— &2 noise LR term is calculated in a data-driven way. GstLAL creates a histogram
for each detector and template bin in p — &2 space, called p — £? background histograms,
and populates it with the (p, £%) values of noise events found in that template bin
during the analysis. Then, the p — &2 noise LR term can be calculated by evaluating the
probability density function represented by the histograms at the relevant (p| {2) value.

Since the p — &2 noise LR term assumes the noise hypothesis, we need to populate the
histograms with events originating only from noise, as compared to events originating
from GW candidates. To a large degree, this is achieved by requiring those events to be
recovered only in one detector (called a single-detector or single event in contrast to a
coincident event) during a time when more than one detector was producing data (called
coincident time in contrast to single time). This is because we expect GW signals to be
correlated across detectors, but not noise events.

Despite this, GW signals can sometimes enter the p — £ histograms. The reason
might be astrophysical in origin, e.g. the GW source is located in the blind spot of all
but one detector, or it might be terrestrial, e.g. only one detector is sensitive enough to

pick up the GW signal. In addition, GW signals which are recovered as coincident events
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in one template bin sometimes also get recovered as a single event, with a lower p and LR
in other neighbouring template bins, which don’t contain templates with high p for that
GW signal. We say a bin has a good match with a GW signal if it has templates with a
high p for that GW signal, and that it has a bad match otherwise. GW events being
recovered as coincident events in one bin and as single events in others is demonstrated in
Fig. 5.1 for GW200129_ 065458, a known GW candidate reported in GWTC-3 [6]. The
candidate is recovered as a coincident event in bin 818, with which it has the best match.
It is also recovered in bin 838 as a Livingston single with a lower p, since it’s match
with that bin isn’t as good. As a result, the candidate will be added to the background
histogram of bin 838. Gravitational wave signals entering the background histograms
is commonly called signal contamination of the p — &2 background histograms. The
contamination caused by GW200129 065458 in the background histogram of bin 838
is shown in Fig. 5.2. Since the GW signal gets added to the background histogram, it
occupies a region in p — &2 space typical of signals, but not of noise. As a result, we see
a protrusion to the histogram, which is generally how signal contamination manifests
visually.

Signal contamination can result in the p — &2 histograms not accurately reflecting the
noise characteristics of the data, and as a result, the p — £ noise LR term will not be
calculated correctly. In general, it can cause the p — &2 noise LR term for GW candidates
to be evaluated higher than it’s true value, leading to lower LR values of candidates. In

short, signal contamination can lower the sensitivity of the GW search.

5.3 Removing contamination with the Background Filter

To prevent any loss in sensitivity due to signal contamination, we need to selectively
remove the events in the p — &2 background histograms which originate from GW signals.
The Background Filter is a way to track the background in a time-dependent fashion
so that we only use events from times not corresponding to GW events to populate the
background histograms. In this paper, we will describe the working of the Background
Filter when GstLAL is running in the low-latency online mode, in which data is analyzed

and results are produced in near real time [43].
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Figure 5.1. An example of an event (GW200129_ 065458) having templates with high match
in multiple template bins. Bin 818 has the best match with the GW candidate, and recovers
it in both Hanford and Livingston as a coincidence. Bin 838 has a lower match than bin 818,
causing it to recover the candidate as a Livingston single. This will lead to the candidate being
added to the p — &2 background histogram of bin 838, causing signal contamination for bin 838.
This is shown in Fig. 5.2. The events passing the p and £2 constraints, and hence recorded by

the Background Filter are outlined in orange.
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5.3.1 Recording events

The strategy of the Background Filter is to record the events that are likely to have
originated from GW signals, and then after verification by the user, subtract them
from the background histograms. To associate events with a GW candidate, we need
to record the time at which they were found in the data, apart from their p" and 53
values. This increases the dimensionality of the parameters we need to store, and thus
could potentially impact the memory and storage used during analysis. To prevent this,
we record events only if they pass certain constraints placed on their p, €2, and time
parameters.

The p and &2 constraints take the form of a bounding box in p — &2 space, defined by
p > 6 and £2/p? < 0.04. Qualitatively, £2 represents how well the data fits the template,
with large values of €2 meaning the data is dissimilar to the template. Since in general,
noise events will not fit the template well, they generally have £2/p? values that are
greater than those of signals. As a result, we only expect events originating from GW
signals to fall inside the bounding box. This is shown in Fig. 5.1, where most of the high
p events caused by GW200129 065458 pass the p and €2 constraints, and are recorded
by the Background Filter. The p and &2 constraints are shown on top of a background
histogram in Fig. 5.3

The time constraint makes use of the GstLAL online analysis’ ability to process data,
generate events, assign LRs, and upload them to the Gravitational Wave Candidate
Event Database (GraceDB) [35] in near real time. A GW signal can create multiple
contaminating events across template bins. Only a small subset gets uploaded to GraceDB,
since the events are aggregated within some time window across bins before uploading [43],
and the remaining comtaminating events lie both before and after the uploaded events in
time. With this in mind, and in order to account for processing delays during a GstLAL
online analysis, the Background Filter keeps a temporary record of events passing the
p and &2 constraints, which occurred in the last 5000s. When an event is uploaded to
GraceDB, the events in the 10s window around it are found from the temporary record
of the last 5000s, and are then recorded by the Bakground Filter permanently.

The threshold for uploading an event to GraceDB differs among different GstLAL
analyses, but it is often set to False Alarm Rate (FAR) < 1 per hour. That means all
events recovered as a single event during coincident time, with p > 6, £2/p? < 0.04 and
falling in a 10s interval around an event with FAR < 1 per hour are recorded by the
Background Filter.

The p and &2 constraints, and the time constraint work together to ensure that only

75



101 102

Figure 5.2. An example of signal contamination in a p — &2 histogram for Livingston. The
contamination can be seen as a protrusion to the histogram at (p, £2/p?) ~ (15, 0.004),
a region ususally occupied exclusively by GW signals. This contamination was caused by
GW200129_065458 being recovered as a single event in this template bin, which is not the best
match bin for that GW candidate, as demonstrated in Fig. 5.1. Note that kernel smoothing
has been applied to this histogram.

events originating from GW signals are recorded by the Background Filter in most cases.
As a result, very few events are recorded by the Background Filter, in comparison to the
number of events in the background histograms. This ensures that adding the Background
Filter to a GstLAL analysis does not affect its memory or disk usage significantly. The
choice of these constraints, and their impact on the performance of a GstLAL analysis

are discussed in Appendix 5.7.

5.3.2 Removing contamination

As explained in Sec. 5.2, since the p — &2 noise LR term is calculated by evaluating the
probability density function represented by the background histrgrams at the relevant (g,
f_é) value, we need the background histograms to accurately reflect the detector noise
characteristics for that template bin. As much as possible, we need to take care not to let

events originating from signals enter the background histograms. In addition, we must
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Figure 5.3. The p and £? constraints for recording events. The bottom right area bounded by
the blue lines is the area in which the Background Filter records events. If the events also pass
the time constraint, the user can choose to remove them from the p — &2 histogram. The result
of doing so, to remove the contamination caused by GW200129 065458 is also shown. The
same histogram, without using the Background Filter, and hence with contamination is shown
in Fig. 5.2. Note that kernel smoothing has been applied to this histogram.

also make sure that events originating from noise are not removed from the background
histograms by the Background Filter. In most cases, the p and £? constraints along
with the time constraint are sufficient to ensure only events originating from signals are
recorded by the Background Filter.

However, in rare cases, such as when the GstLAL analysis uploads a false positive
to GraceDB (also called a “retraction”), these measures might not be enough. Out
of an abundance of caution, we leave the decision of which events to remove from the
background histograms to the user. At any point during a GstLAL online analysis, the
user can choose to inform the analysis which events they are confident are GW candidates.
The message is communicated to the analysis in real time using HTTP request methods,
with the help of the Python Bottle module [134]. Then, out of all the events that had
been recorded by the Background Filter previously, it will subtract those which fall
within a 10s window of the given candidate, from the background histograms. Thus, any

contamination that that candidate could have potentially caused is removed, and the LR
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of all future events is evaluated using the modified p - €2 background histograms.
To summarize, for the Background Filter to subtract an event from the background

histograms, three conditions need to be met:
1. The event needs to pass the p and £? constraints
2. The event needs to pass the time constraint

3. The user needs inform the GstLAL analysis that there was a GW candidate nearby

the event in time

The first two conditions are sufficient for the Background Filter to record an event and
save it to disk, but all three are necessary (and sufficient) for the event to be subtracted
from the background histograms. For O4, we have decided that the criteria for informing
the analysis of a GW candidate, and hence for removing the background events associated

with it are:

1. The event should have a FAR < one per 5 months, which is the public alert
threshold for significant events [44]

2. The event should not be a retraction, i.e. the GraceDB event should not have the
“ADVNO?” label applied to it

This criteria was chosen keeping in mind the tradeoff between removing contamination
from as many GW candidates as possible, and not removing noise events from the
background. This choice and its effects on the sensitivity improvement caused by the
Background Filter are discussed in Appendix 5.8.

In Fig. 5.2, signal contamination caused by GW200129 065458 is shown. The same
p - €2 histogram, but with the Background Filter used to remove that contamination is

shown in Fig. 5.3.

5.4 Results

5.4.1 Analysis methods

To test the effect of signal contamination on the sensitivity of a GstLAL analysis, and
the ability of the Background Filter to remove the contamination, we analyze a week of
O3 data [135], from Apr 18 2019 16:46 UTC to Apr 26 2019 17:14 UTC, in three different

ways. First, we perform a control run without any GW signals. Next, to simulate the
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effect of GW signals, we add “blind injections”. The concept of blind injections, and the
set of blind injections that we used are explained in the following subsection. Finally, we
perform a “rerank” with the Background Filter enabled, in which LRs are recomputed
and significance assignment is done again, but the filtering stage of the GstLAL analysis
is taken from the blind injection analysis, since the p and &2 values of analyzed events are
not affected by the Background Filter, only the LRs and the False Alram Rates (FARs)
are. Hence, the rerank corresponds to the case with blind injections present, and the
Background Filter being used.

As noted in Sec. 5.3, our policy during O4 for selecting GW candidates to inform the
analysis about, is that the candidate should have a FAR < one per 5 months. This is
also what is done during the rerank, and hence, the Background Filter is only applied to
events passing the one per 5 months threshold.

This chunk of data contains two known GW candidates reported in GWTC-2.1 [§]
and elsewhere [6,136], GW190421 213856 and GW190425. However, since we use the
Background Filter only on the times of the blind injections, any contamination and
subsequent loss in sensitivity caused by either of the two candidates will be present in all
three analyses that we perform, and will not affect the evaluation of the performance of
the Background Filter.

5.4.2 Simulation Set

Blind injections are simulated GW signals that are added to the data which we analyze
and collect background events from (in contrast to regular injections, from which we do
not collect background events). We use a set of 868 blind injections distributed across the
binary black hole (BBH), binary neutron star (BNS), neutron star-black hole (NSBH),
and intermediate-mass black hole (IMBH) parameter spaces. The blind injection set
comprises of three subsets, a BNS subset, a BBH subset and a broad subset, with the
BNS subset containing half of the total blind injections, and the BBH and broad subsets
containing a quarter each. The BNS subset has component masses distributed uniformly
from 1 to 3 Mg, and the z-components of dimensionless spin (which are parallel to the
orbital angular momentum of the binary) distributed uniformly from -0.05 to 0.05. The
BBH subset has component masses distributed uniformly from 5 to 50 M, and the
z-components of dimensionless spin distributed uniformly from -0.99 to 0.99. The broad
subset spans all four parameter spaces mentioned above. It is distributed uniformly
in the log of the component masses from 1 to 300 M. and has the z-components of

dimensionless spin distributed uniformly from -0.99 to 0.99. In addition to the definitions
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Figure 5.4. The distribution of component masses of the blind injection set, colored by injected
p. Blind injections are used to replicate the contamination caused by GW signals in the data.

of the BNS and BBH parameter spaces provided above, and the implied NSBH parameter
space definitiion, for the purpose of this paper, we shall consider the parameter space
with either component mass greater than 50 M to be the IMBH space. The distribution
of the blind injection set in the two component masses can be seen in Fig. 5.4.

A point to note is that even though 868 blind injections may sound high, most
of these are too quiet to be recovered, as shown in Fig. 5.4, and hence won’t cause
any contamination. The result of the analysis shows that only 190 blind injections are
recovered with a FAR < 1 per 5 months. We will also see later that BNS and NSBH
template bins are not affected by signal contamination to a significant degree. As a result,
only the BBH and IMBH injections will contribute to contaminating the background.
Given the high number of GW candidate events we expect to detect in O4, this is a
reasonable representation of the total amount of signal contamination we expect to see.

We also perform an injection campaign to calculate the sensitivity of the analysis,
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both with and without the application of the Background Filter. The injection set is
distributed similarly to the blind injection set, but with a total size of 86,606 injections.
It is important to note that the injections and blind injections are analyzed separately,
with the blind injections affecting injection recovery only through the background events

they add to the p - €2 background histograms.

5.4.3 Sensitivity Improvements

In order to estimate the sensitivity of a search, we use the sensitive volume-time (V'7T)
as a measure. The volume that we analyze is determined by the efficiency of recovering
injections at a given FAR and redshift, and T is the livetime of the analysis. We calculate
VT separately for injections falling in four different chirp mass bins. The first is from 0.5
to 2 Mg, the second from 2 to 4.5 Mg, the third from 4.5 to 45 M, and the final one is
from 45 to 450 M. The reason for calculating VT separately for different mass bins is
so that we have an idea about how sensitive the analysis is for different source categories,
with the four mass bins roughly corresponding to BNS, NSBH, BBH and IMBH source
categories respectively.

Comparing the blind injection analysis with the control run, signal contamination
due to the presence of blind injections causes a small (~ 5%) decrease in VT in the
two lowest mass bins, but causes a significant (~ 20-30%) decrease in VT in the two
highest mass bins. This is shown in Fig. 5.5. High mass templates have a greater match
with their neighbouring templates, and with themselves across time, as compared to low
mass templates. We hypothesize that this causes a single high mass GW signal to be
recovered multiple times across template bins and time with suboptimal p, leading to
more signal contamination in the high mass template bins than in the low mass ones.
This is discussed in more detail in Appendix 5.9.

Next, to check the efficacy of the Background Filter in removing contamination, we
compare the VT of the rerank to the VT of the control run. Despite the presence of
blind injections in the data, The Background Filter mitigates the effect they have on the
background histograms, and sensitivities of all four mass bins are close to the same as
what they were in the control run. This is shown in Fig. 5.6. This represents a 20-40%
increase in the sensitivities of the two high mass bins, in the case of the rerank, as
compared to that of the blind injection analysis. We can conclude that the Background
Filter is successful in removing close to all of the contamination that the blind injections
cause. Since the number of blind injections we used was a high estimate of the number

of GW events we expect to see in O4, this means that by using the Background Filter,
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Figure 5.5. The decrease in VT caused by signal contamination due to the presence of blind
injections in the data. The two highest mass bins are the most affected. The presence of GW
signals will also have a similar effect.

we do not expect signal contamination to be a significant problem during O4. To test
our readiness for O4, GstLAL has participated in a mock data challenge, where an online
analysis is run over forty days of O3 data [43]. This chunk of data contains 9 GW
candidates. The Background Filter was deployed in this analysis, and applied to all 9
candidates. It was able to remove all instances of signal contamination we had previously

seen, as verified by visual inspection.

5.5 Conclusion

GstLAL constructs p - €2 background histograms to calculate the P (p_', 53 | tret, 0, Hn)
term in the likelihood ratio. However, GW signals in the data can cause the background

histograms to be incorrectly constructed. This is called signal contamination, and it

82



1.00 A
0.95 A1

0.90 1

VTrerank/VTcontrol

—— M.=0.5-2.0 M,
0.854 —— M.=2.0-4.5 M,
—— M. =4.5-45.0 M,
—— M. =45.0 - 450.0 M,

| IR s [T

107 1078 1079 10710 10711 10712 10713
FAR (Hz)

Figure 5.6. The VT of the rerank, which has blind injections with the Background Filter
applied, compared to that of the control run, which has neither. The fact that all four lines
are close to 1 tells us that the Background Filter is successful in removing nearly all of the
contamination caused by the presence of the blind injections in the data. The peaks and dips
in the highest mass bin curve are explained by the smaller number of injections in this bin as
compared to other bins, leading to greater variance.

leads to the sensitivity of the GstLAL analysis being lowered.

The Background Filter is a novel way to remove the contamination. It records the
events that populate the background histograms which satisfy two constraints. The first is
that the event must fall in an area in p - £2 space consistent with GW signals. The second
is that it must fall in a 10s window around a significant event. The user then identifies
which of the significant events originate from GW signals. The user communicates this to
the GstLAL analysis in real time, and then the events recorded by the Background Filter
corresponding to the times identified by the user are subtracted from the background
histograms. Thus, signal contamination is removed from the background histograms.

To test the efficacy of the Background Filter, we ran a GstLAL analysis over a week
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of O3 data, with simulated gravitational-wave signals injected into the data. We found
that signal contamination primarily affects the high mass bins. The sensitivity of these
bins decreased by 20-30% due to the presence of the gravitational-wave signals. By
applying the Background Filter, we were able to increase the sensitivity close to what it
was without the injected gravitational-wave signals. This shows that the Background
Filter is effective in removing nearly all the signal contamination. With a high rate of
gravitational-wave events expected during O4, the Background Filter will be an important

tool in improving the sensitivity of the GstLAL analysis.
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5.7 Appendix A: Choice of constraints, and their impact

on performance

With the constraints described in Sec. 5.3, the Background Filter does not consume too
many resources. When looking at a month-long GstLAL analysis, we found that on
average, it adds ~ bytes to kilobytes to the data products stored by a GstLAL analysis
for every template bin. We didn’t see any significant increase to the memory used by
the GstLAL analysis either. Fig. 5.6 shows that with these constraints, the Background
Filter is effective in removing close to all contamination.

To check if there is any improvement to the sensitivity upon loosening the p and &2
constraints, we performed the same analysis as described in Sec. 7.3, but with the p
and &2 constraints changed to record events with p > 6 and £¢2/p* < 0.4. This broader
bounding box for recording events did not have any noticeable effect on the sensitivity.
This is shown in Fig. 5.7. However, loosening the constraints did increase memory usage
of the GstLAL analysis to a noticeable degree.

We do not expect that loosening the p > 6 constraint or the time constraint would
increase sensitivity, since the extra events collected by changing these constraints would
be no more significant than noise. This discussion, along with Fig. 5.6 show us that the

existing constraints used by the Background Filter satisfy all our requirements.

5.8 Appendix B: Criteria for removing events from the

background, and its effect on sensitivity

In Sec. 5.3, we saw that in order for an event to be removed from the background, it
needs to pass the p and &2 constraints, the time constraint, and the user needs to inform
the analysis that there was a GW candidate at the time of the event. This last condition
was implemented as an additional check that the event being removed does actually
originate from a GW candidate. For the background histograms to accurately model
the p — €2 noise LR term, only events originating from noise must populate the p — &2

histograms. Events originating from GW candidates entering the histograms, and events
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Figure 5.7. The VT with the Background Filter recording events with looser constraints, as
compared to the VT with the Background Filter recording events with the regular constraints.
The fact that the VT ratios for all four mass bins are close to 1 shows that loosening the
constraints does not improve sensitivity. The peaks and dips in the highest mass bin curve are
explained by the smaller number of injections in this bin as compared to other bins, leading to
greater variance. Both analyses included the 868 blind injections described in Sec. 7.3. The
regular constraints are described in Sec. 5.3, whereas the looser constraints are described in
Appendix 5.7.

originating from noise being removed from the histograms will both cause the p — &2
noise LR term to not be evaluated correctly, and will cause a lowering of sensitivity.

As a result, it’s important to choose the criteria for informing the analysis of a
GW candidate correctly. For O4, we have chosen this criteria to be that the candidate
has a FAR < 1 per 5 months, and that it is not retracted. The FAR threshold is low
enough that it is highly unlikely that the candidate is not astrophysical in origin without
being a retraction, while simultaneously being high enough to not exclude too many
contaminating (and hence, loud) GW candidates.

To test this, we set up a rerank similar to the one described in Sec. 7.3, but instead
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Figure 5.8. The VT with the Background Filter removing contamination from all blind
injections, as compared to the VT with the Background Filter removing contamination from
blind injections with FAR < 1 per 5 months. The first represents the best-case performance of
the Background Filter, whereas the second represents the current (O4) performance, designed
to prevent noise events from being removed from the background. This graph shows that the
current system recovers almost all of the lost sensitivity due to signal contamination.

of applying the Background Filter to blind injections with FAR < 1 per 5 months, we
applied it to all blind injections. This rerank represents the biggest improvement in
sensitivity possible from the Background Filter. The result is shown in Fig. 5.8. We can
see that the FAR threshold of 1 per 5 months works well, and out of the 20-30% lost
sensitivity due to signal contamination from the blind injections, it manages to recover
most of it (see Fig. 5.5, Fig. 5.6), with only around 5% not being recovered in the heavier

mass bins.
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5.9 Appendix C: Differing impacts of singal contamination

of the sensitivities of template bins

As discussed in Sec. 7.3, signal contamination only causes a 5% decrease in the VT of
low mass template bins, such as the BNS and NSBH bins, whereas it causes a 20-30%
decrease in the VT of high mass template bins, such as the BBH and IMBH bins. This
is despite the fact that there are more blind injections in the low mass parameter spaces
than in the high mass ones. We conjecture two reasons for this, the first relating to
how the correlation among neighbouring templates changes with mass, and the second
relating to how the correlation of a templates with itself across time changes with mass.
For the remainder of this section, we shall treat BNS template bins as representative of
all low mass bins, and IMBH template bins as representative of all high mass bins.

The “bank correlation function” of a template measures how well it matches with
other templates in the template bank. This calculation is similar to how p is calculated,
except that the match is calcualted between two templates with no time shift between
them. To see how the bank correlation function of templates changes with mass, we
took 5 BNS template bins (corresponding to ~ 5000 templates), calculated the bank
correlation of every combination of templates, and plotted the average bank correlation
function in descending order of template match. We then did the same for 5 IMBH
template bins. The results are shown in Fig. 5.9. The fact that the BNS bank correlation
function drops sharply as compared to the IMBH one, means that there are many IMBH
templates, across template bins that can recover a given IMBH GW signal with a lower
p than the best template, but only a few BNS templates that can recover a given BNS
GW signal. This means a high mass GW signal will create many events, increasing
the probability of signal contamination. This is not a problem for the GW candidates
reported by GstLAL, since “event clustering” [19] ensures that only the best candidate
in an 8s window survives.

The “autocorrelation function” of a template measures how well it matches with a
time-shifted version of itself, similar to how p calculates the match between the data and
a time-shifted template. The autocorrelation function of a typical BNS template and a
typical IMBH template are shown in Fig. 5.10. The IMBH autocorrelation function has
multiple secondary peaks ~ 5-10ms away from the primary one. We conjecture that in
the case of an IMBH GW singal with low p or in high noise, an IMBH template could
recover the signal in different detectors at different times, corresponding to the different

peaks in the IMBH autocorrelation function. This would cause the signal to be recovered
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Figure 5.9. The average bank correlation function of a BNS template in descending order
of template match, as compared to that of an IMBH template, calculated for the five closest
template bins. Since IMBH templates correlate well with other IMBH templates across template
bins, an IMBH GW signal will be recovered by multiple template bins, increasing the probability
of signal contamination. This is not the case for BNS template bins, and it is more likely a
BNS GW signal will be recovered by only one template bin, resulting in fewer cases of signal
contamination.
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as multiple single detector events, instead of a single coincident one, leading to signal
contamination of the high mass template bins. Again, this is not a problem for the GW
candidates reported by GstLAL, due to event clustering. Since all the secondary peaks in
the autocorrelation function of an IMBH template lie well within an 8s window, multiple
single detector events will be clusterd out, and only the best one will survive.

For high mass bins, the bank correlation factor increases the probability of low p
events getting created by a GW signal, and the autocorrelation factor increases the
probability of signal contamination from those events. These two factors compound each
other’s effect, and as a result, we see a much higher impact of signal contamination in

the high mass template bins than in the low mass ones.
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Figure 5.10. The autocorrelation function of a BNS template, as compared to that of an
IMBH template. Since there are multiple peaks in autocorrelation function of the IMBH
template, a quiet IMBH GW signal could be recovered in different detectors at different times,
corresponding to the different peaks in the IMBH autocorrelation function. This will result in
the GW singal being recovered as multiple single detector events rather than a single coincident
event, which leads to signal contamination. Since the BNS autocorrelation function does not
have multiple peaks, signal contamination is less likely for BNS template bins.
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Chapter 6

Metric Assisted Stochastic Sam-
pling (MASS) search for gravi-
tational waves from binary black
hole mergers

This is a reprint of [137].

We present a novel gravitational wave detection algorithm that conducts a matched
filter search stochastically across the compact binary parameter space rather than relying
on a fixed bank of template waveforms. This technique is competitive with standard
template-bank-driven pipelines in both computational cost and sensitivity. However,
the complexity of the analysis is simpler allowing for easy configuration and horizontal
scaling across heterogeneous grids of computers. To demonstrate the method we analyze
approximately one month of public LIGO data from July 27 00:00 2017 UTC — Aug 25
22:00 2017 UTC and recover eight known confident gravitational wave candidates. We

also inject simulated binary black hole (BBH) signals to demonstrate the sensitivity.

6.1 Introduction

Advanced LIGO directly detected gravitational waves (GWs) for the first time in 2015
from the merger of two black holes each about 30 times the mass of our Sun [109]. The
second confident binary black hole (BBH) observation came just three months later [138].
Since then, the LIGO and Virgo Collaborations have detected a total of 90 compact

binary mergers [6-8,14], including two neutron star mergers [37,136] and two neutron
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star-black hole mergers [139]. LIGO and Virgo have made their data public [140] resulting
in several new BBH discoveries by the community [57,141-145].

Historically, gravitational wave searches for compact binary coalescence have relied
on matched filtering [18,146,147], with several groups building on matched filtering as
the foundation for their algorithms [30,63,144,148-150]. These techniques rely on fixed
banks of templates [147,151,152] and are known to scale poorly to high dimensional
spaces [153]. Stochastic sampling methods were first proposed to address gravitational
wave detection in future searches for gravitational waves with LISA [154], but have not
been widely used for detection in LIGO and Virgo data. Stochastic sampling techniques
are, however, state-of-the art for the estimation of compact binary parameters once
detections have been made [47,155].

In this work we blend aspects of traditional matched filter searches, bank placement
techniques, and stochastic sampling to create a new bank-less matched filter search for
gravitational waves. While it remains to be seen what the broad applications of these
techniques could be, we demonstrate a useful case study here by analyzing LIGO data
from the Hanford and Livingston detectors from August 2017 [156] to search for binary

black hole mergers. We recover eight known gravitational wave candidates.

6.2 Motivation

Our goal is to develop an offline compact binary search pipeline which is designed to
detect gravitational waves in archival, LIGO, Virgo, and KAGRA data based on the
GstLAL framework [19-21,157]. We distinguish that an offline analysis has less strict
time-to-solution requirements (hours or days) compared to low-latency analysis where the
time-to-solution needs to be seconds. We will not strive to reach the time-to-solution needs
of low-latency analysis with the algorithm we present here. Our motivation for revisiting
offline matched filter detection for gravitational waves is to more easily parallelize and
deploy analysis across heterogeneous resources such as multiple concurrent sites on the
LIGO and Virgo data grids, the Open Science Grid, campus resources, and commercial
clouds. We aim to achieve this by having a simpler workflow than competing pipelines
such as GstLAL. We also wish to simplify the setup required to conduct an analysis
and to improve usability for new researchers wanting to learn about gravitational wave
detection at scale. The intersection of these desires led us to consider new algorithmic
approaches to searching the compact binary parameter space.

The Open Science Grid defines criteria for opportunistic computing as an application
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that “does not require message passing...has a small runtime between 1 and 24 hours...can
handle being unexpectedly killed and restarted...” and “...requires running a very large
number of small jobs rather than a few large jobs.” [158]. Our proposed workflow consists
of parallel jobs that each search a small amount of gravitational-wave data from LIGO,
Virgo and KAGRA without any interdependency between jobs. To contrast, the current
GstLAL analysis workflow consists of a directed acyclic graph with more than ten levels
of interdependent jobs. In this new approach, we target a ~1-12 hour runtime for each
job, the use of one CPU core per job, and ~ 2 GB of RAM required per job in order
to maximize throughput on opportunistic compute resources. Each job implements a

flexible checkpointing procedure allowing work to be periodically saved.

6.3 Methods

In this work, we will conduct a matched-filter search for binary black holes with the
goal of identifying the maximum likelihood parameters for candidate events over 4s
coalescence-time windows using an analysis that foregoes the use of a pre-computed
template bank and instead employs stochastic sampling of the binary parameter space.
Our workflow consists of two stages. The first stage executes N parallel jobs that conduct
the bulk of the cpu-intensive work - in this study, this first stage consisted of 2974 such
jobs. The results of these parallel jobs are returned to a single location at which point
a second stage is run to combine results, assess candidate significance, estimate the
search sensivity and visualize the results. This second stage requires significantly lower
computing power than the first stage, but is I/O intensive and is designed to be run
potentially on local resources after grid jobs have completed.

In stage one, we begin by reading in gravitational wave data from each observatory.
Next, we measure the data noise power spectrum and whiten the data using the inferred
spectrum. We then stochastically sample the data by proposing jumps governed by
a parameter space metric as described in Sec. 6.3.4. For each jump, we generate the
appropriate template waveform and then compute the matched filter signal-to-noise ratio
(SNR) over a 6s stretch of time using 122s of data per calculation.

Within a 4s time window, we identify peaks in the matched filter output, known
as triggers, for each detector that is being analyzed. For each collection of triggers,
we perform signal consistency checks [19], and calculate a likelihood ratio ranking
statistic [24]. If the new sample has a larger SNR than the previous sample, it is stored -

otherwise a new jump is proposed.
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A local estimate of the noise background is obtained by forming synthetic events
from disjoint windows. This causes the time and phase difference between detectors of a
single background event to be uniformly distributed, which is what we expect from noise
events. This is a somewhat hybrid approach between the time-slide method [149] and
sampling methods [25] already employed in GW searches. The second stage gathers the
candidate events, results of the simulated GW search, and the background samples to
produce a final summary view of the analysis results. In order to estimate the sensitivity
of our methods to detecting gravitational waves, we conduct a parallel analysis over the
same data with simulated signals added and repeat the same process as described above.

The remainder of this section describes key elements of our methods in more detail.

6.3.1 Data

We assume a linear model for the gravitational wave strain data [146], s, which is a vector

of discretely sampled time points for a gravitational wave detector, j,

s; = h(0)) +n,, (6.1)
where: h(gj) is an unknown gravitational waveform accurately modeled as a function
of 9_; = {my, ma, a1, as., tj, ¢;, A; } with my, my being the component masses, a,., az,
being the orbital-angular-momentum-aligned component spins and ¢;, ¢;, A; being the
time of coalescence, phase of coalescence, and amplitude, all of which depend on exactly
where the binary is with respect to the jth gravitational wave detector. n; is a realization
of detector noise. As a concrete example, in this work each job analyzes 800s stretches of
data, divided into 4s windows sampled at 2048 Hz. Thus, after including the Fourier
transform block length (124s), the dimension of each vector in the work described in this
manuscript is 262144 sample points. In addition, each job also contains start padding
(128s), and stop padding (32s). The templates have at least 6s of zero padding, which
makes their length no more than 122s.

We assume that the noise samples are entirely uncorrelated between the gravitational
wave observatories, but that the signals are correlated between observatories. In fact, we
make the simplifying assumption that the gravitational waveform is identical between

detectors except for an overall amplitude, A;, time shift, A¢;, and phase shift, A¢,,

IThese parameters are adequate to describe the measurable gravitational wave parameters for a
non-precessing, circular binary black hole system with only 2-2 mode emission in a single gravitational
wave detector
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[148],
h(0;) =R (F! [A;e?m/ 2624 Fh(X )] ]) | (6.2)

where F[...] denotes the unitary Fourier transform, and X = {my, ms, ay,,as,}.

The exact realization of noise, n, is not possible to predict, but we will assume it
is well characterized as a multivariate normal distribution with a diagonal covariance
matrix in the frequency domain, i.e., that it is stationary. However later on, particularly

in Sec. 6.3.4.6, we account for the fact that the data is often not stationary.

6.3.2 Spectrum estimation and whitening

We rely on the same spectrum estimation methods as described in [19]. Namely we use
a median-mean, stream-based spectrum estimation technique that adjusts to changes
in the noise spectrum on O(min) time scales. The data are divided into 8s blocks with
6s overlap and the spectrum, S,, is estimated by windowing the input blocks with 2s of
zero-padding on each side of the window. Since we analyze only 800s of data per job, we
use a fixed spectrum over the job duration.

From here forward, we will work in a whitened basis for the data, namely that
s; — Fls] o (Sn)™""%, (6.3)

which implies that all components of s are transformed by the inverse noise amplitude
spectrum. Therefore, if the amplitude of h is zero, s has components that satisfy
p(si) = (27) 7% e=1/2 with (s;, s;) = 0;;. In this whitened data basis, an inner product
between two vectors is the dot product u - v, and unit vectors are denoted as t. We
adopt a normalization such that h-h =1 and (n - n) = dimn. With these choices the
SNR is given by p(f;) = h(f;) - s;. We can evaluate the SNR for the unknown phase and

time of coalescence by defining a complex SNR

p(\15,65) = F~' [B(Y) - 5]
+iF ' [h(X,7/2) 5], (6.4)

which is a wvalid matched-filter output for a duration of time equal to the length of the
data minus the length of the template. With at least 6s of zero-padding, the template
length is 122s, and with each window using 128s of data, the matched-filter output is
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valid for a duration of 6s.

6.3.3 Simulation capabilities

We use the GstLAL data source module [157], which provides an interface into the LAL
Simulation package [159]. By providing a LIGO-LW XML format document containing
simulation parameters, we can inject simulated strain into each of the currently operating
ground-based gravitational wave detectors, LIGO, Virgo, KAGRA and GEO-600. When
operating the pipeline in a simulation mode, gravitational wave events are reconstructed
around a £2s interval around the GPS second of the geocentric arrival time of the

gravitational wave peak strain.

6.3.4 Parameter space sampling

The gravitational wave parameter space is explored stochastically, with Gaussian jump
proposals and refinement steps that gradually reduce the jump size as the peak in SNR
is identified. We will refer to this procedure as “sampling”. Our proposal distribution
has a covariance matrix that depends on the location in the parameter space and the
refinement level. It relies on computing the parameter space metric, g [147], which is
described more in the next section. We define a sequence of two parameters that control
how the sampling is done, namely oy, which controls the jump size and N, which controls
the number of samples to reject at each level, k, before moving on to the next. How
exactly to define these parameters is certainly a topic for future research. Our choices

here were determined empirically for the particular search we have done. We define,

o = 1017F, (6.5)
500 (k=0)

Ny, = , (6.6)
100 (k> 0)

for k = 0...n where k is terminated based on the mismatch as in step 7 below. We

define the characteristic jump proposal distance as,
0k(X) = axlg(M)[', (6.7)

where X is the set of intrinsic parameters as defined before, and ¢} is the template

mismatch.
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Gravitational waves are searched over 4 s windows of coalescence time using the

following procedure.

1. Establish a bounding box in the physical parameter space to search over

2. Pick a starting parameter point somewhere in the middle of the parameter space.
We use the approximate expression for template count in [147] to estimate a good

central point.

3. Evaluate the SNR at this point and set a counter to zero.

-

4. Sample from a sampling function ©(d, A), which is described in detail below in
Sec. 6.3.4.4.

5. Check that the new point lies within boundaries established in step 1 and apply any

constraint functions. If the point fails to fall within the constraints, go to step 4.

6. Evaluate the SNR at the new point. If the point has a higher SNR than the
previous sample, update the sample and reset the counter to zero. If the point has

a lower SNR, increment the counter.

7. If the counter is less than Ny, go back to step 4. If the counter is greater than or
equal to Ny, check 62, where §2 is the template mismatch between the current and
previous sample point. If 62 < 0.1, terminate the sampling. Otherwise, increment

k, reset the counter, and proceed to step 4.

6.3.4.1 Computation of the binary parameter space metric

We define the match between adjacent compact binary waveforms in the space of intrinsic

parameters as:

m(X, X+ AN) = max, [h(X) - h(X+AN) . (6.8)

where the maximum is over extrinsic parameters {t., ¢., A}. Note that m(X,X) = 1.
We also introduce a shorthand for computing the match along a deviation in only one

coordinate as:

m(X, X+ AN) = max [h(X) - h(X+ AN)], (6.9)

¢CatC7A
where it is assumed that A); is nonzero only along a given coordinate direction.
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It has previously been shown [147] that is possible to derive a metric on the space of
intrinsic parameters describing compact binary waveforms by expanding our definition of

the match locally e.g. about AX = 0 as follows,

m(X X+ AN) ~ 1+

;mj;mjm(x’ N+ AN o ANAN (6.10)
which suggests the metric
. 1 2 T
gij(A) = —§mm(>\, A+ AN oo (6.11)
The mismatch between templates, 62 = 1 — m becomes
(X, AN)? & AN g(X) AN, (6.12)

In this work, the components of the metric are evaluated with second-order finite

differencing,

, (6.13)

Gii 5 |AX¢|2
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for the off diagonal terms. However, we use a more efficient formula for the off diagonal

terms, in which the number of template evaluations is the same, but the number of match
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calculations is reduced:

1

- 1
2)\ = ——— 77X
950 = = AR AK

—m(X, X — AX,) +m(X, X — AX; — AX)) (6.15)

The sampling method described in section 4 below will not make jumps in coalescence
time, therefore the time component is projected out [147],
gii(A) g15(N)

955 (N) = g55(X) — 5 (6.16)

6.3.4.2 Choice of coordinates

We sought out a coordinate system that maps the masses and spins to be in the interval
[—00, 00]. We also want to choose well measured physical parameters for mass and spin

in at least one dimension each. Therefore, we use the following coordinates to evaluate

the metric
(mymg)?/®
A =1 —_ 6.17
1 0810 [(ml + m2)1/5 ( )
Ay = logyy(ms) (6.18)
m A1,M1 + Q2,Ms
A3 =1t — 6.19
3 an{<2>< my + Mo )} ( )
™ A1,M1 — Q2,19
A=t — 6.20
4 an{<2>< mi + ma )] ( )

6.3.4.3 Pathologies of the numerical metric

For certain regions of the parameter space the metric is nearly singular which leads
to numerical errors causing a non positive definite matrix. To fix this, we conduct an

eigenvalue decomposition of g;;

9ij = qir " e (6.21)

100



We then define a new set of eigenvalues

Brnin = max [ﬂk} X € (6.22)
. k )
(ﬁk), — /ann /8 < /Bmzn (6.23>
Bk, otherwise,

where € is a parameter which we will call the aspect ratio. We define the new metric as
gi; = air (") a) (6.24)

In practice we find that sampling is better when we artificially distort the metric by
setting € = .1 for the broadest refinement level, and € = .0001 for all other levels, and we
have done so in this work, though this should be a direction of future work.

—

6.3.4.4 Drawing random samples from O(d, \)

When sampling, we desire to have a jump proposal distribution that effectively probes
the space by not making jumps that are either too near or too far. The calculation of the
parameter space metric g enables that. We wish to propose a jump from 0 — 0+ Af such
that the expected mismatch is 62. The metric described in previous sections only applies
to the intrinsic parameters. For the extrinsic parameters, our jump proposal will always
choose those values of t and ¢ which maximize the SNR. At every accepted jump point,
the metric is calculated locally, which requires 21 template evaluations, including the
diagonal and off diagonal terms, as specified in Sec. 6.3.4.1. However, we can afford to
calculate coarse versions of the template waveform, since the match we need to calculate
is between two adjacent templates. This means the waveform calculation cost is not high.
The distance between adjacent templates to calculate the match at, Axi as defined in
Sec. 6.3.4.1 is hardcoded, and is the same for all iterations of the sampling procedure.
To facilitate jumping in the intrinsic parameters, we make a coordinate basis trans-
formation in which the new basis has a Euclidian metric. The transformation matrix M

will then be used to transform the coordinates

X = M. (6.25)
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To solve for M we rely on the fact that distance is invariant giving

52 = AN g A) (6.26)
= (AX)T g AN (6.27)
= (AN)TMTg M AN (6.28)
Setting g’ =1 gives
I=M'gM (6.29)
MM =g (6.30)
gt =M"M (6.31)

The last line implies that we can solve for M by taking the Cholesky decomposition of
the inverse metric tensor. Once obtaining M we can produce random samples with an

expected mismatch by defining,
where A\ is a 4-dimensional vector with random components satisfying p(N;) = \/UTT(’ exp [-N?/2]

6.3.4.5 Parameter space constraints

The previously defined sampling function can produce samples that, while physical, may
be outside of the desired search range. We implement a series of user-defined constraints

that will reject samples drawn from ©(8;, X). These are:

my, My, a;,az The user can specify a bounding-box in component masses and z-component

spins. Samples outside this bounding box are rejected.

1 The user can specify a minimum symmetric mass ratio, n = (myms)/(my + ms)?,

below which samples will be rejected.

M The user can specify a chirp mass range outside of which samples will be rejected.

6.3.4.6 Glitch Rejection

Glitches [160, 161] are non-stationarity and non-Gaussian transient noise artefacts of

instrumental or environmental origin found in the data. We employ a novel data-driven
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technique to reject short-duration glitches, using two parameters, the bandwidth, and
the effective spin parameter xy. The bandwidth is the standard deviation of frequency

weighted by template amplitude. It is defined as [162]:

bandwidth? = /I i (

Xﬂjﬂwvsn__<rﬁ<
(

2rdf/s.\ 633
)|2df /Sn '

)
[h()[2df /S,
whereas y is defined as:

o miay; + maaQsg,

(6.34)

my1 + Mo

It has been found that short-duration glitches ring up templates which exclusively occupy
the low bandwidth-low y region in bandwidth-y space, and that this region is not
occupied by gravitational wave signals. This is illustrated in Fig. 6.1. As part of the
simulation campaign we performed (Refer to Sec. 6.4.3 for details), we found that only 28
injections out of 112526 fell into the glitch region. Minimizing this number by fine-tuning
the boundary of the glitch region would be a direction for future work. We define the

glitch region as:
bandwidth x (1 + x) < 20 (6.35)

Any trigger which falls in this region is not considered as a gravitational wave candidate.
Similarly, any time-slid background samples falling in the glitch region are eliminated,
and not used for background estimation. Triggers are explained in more detail in the

next subsection, whereas background estimation is explained in Sec. 6.3.5.

6.3.4.7 Computing the log-likelihood ratio, £

We generally follow the same procedure for ranking candidates as described in [22,24,25]
with a couple of notable exceptions. First, we only implement a subset of the terms
used in the GstLAL-inspiral pipeline — it will be the subject of future work to include
more. Second, we approximate some of the data driven noise terms with analytic
functions. Third, we adopt a normalization so that for signals, the log likelihood ratio,
L is approximately p?/2, where p is the network matched filter SNR defined as the
squareroot of the sum of the squares of the SNRs found in each observatory. We use the

following terms in the log likelihood ratio:
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Figure 6.1. Triggers found in one month’s data for Hanford (top) and Livingston (bottom),
colored by their log-likelihood ratio. All the bright points to the right of the boundary are
known gravitational wave candidates, and all those to the left of the boundary are glitches, and
so not considered gravitational wave candidates, and not used for background estimation.
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L(p, &%) We approximate this term of the log likelihood ratio as

L(7,&) = Z Li(pi, €7 (6.36)

with £i(p;, &) = ple 1 /2 — 4a? (6.37)

where z; = max{0, &% — 1 —0.0005p7} for each of the i detectors which are assumed
to be independent. The —4z? term acts as a penalty for high & values, and helps

eliminate glitches.

L(AF, Ag, Ap) for this term we follow the procedure in [22] with two changes. We do
not include the p=* term. We do this because we are not constructing a data driven
noise term like GstLAL-inspiral, so it’s not necessary to have the corresponding
signal term. We also normalize the result to be 0 when only one detector is
operating. This is useful for achieving the normalization discussed above. These
changes have the effect of making this term ~ 0 for things that are consistent with

signals.

E(f) this term quantifies the probability of having “triggered” the combination of the
gravitational wave detectors in which the event was found and is a function of
the detectors’ sensitivity. We will describe triggering in more detail below. For
example, it is unlikely that only the least sensitive detector would be triggered
for a real gravitational wave event, so this term would be negative in that case.
This term is complementary to the previous term but accounts for events lacking

triggers.

E(ﬁH) this term quantifies the relative likelihood of detecting an event based on the
detector horizon BNS distances, (Dp);. We normalize to the horizon distance of
LIGO Livingston during O3~ 315 Mpc.

< (max (D)}
L(Dy) =1n ( 500 (6.38)
The log-likelihood ratio, £ is then given by
L= L(f, &) + LA, AG, Ap)
+ L(T) + L(Dy) (6.39)
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For each sample drawn in step 4, we construct a template waveform h(\), and filter
that waveform against the data in each detector stream producing an SNR time series
over a 6s period, including 1s padding on either side. We then find the peak SNR in the
middle 4s window in each detector and record the time, phase, SNR, and &2 of each peak,
which we call a “trigger”. For the collection of triggers, we cycle through every detector
combination - for example, if analyzing {H,L.,V}, we cycle through {HLV, HL, HV, LV, H,
L, V} and evalute the likelihood ratio for each combination. We then keep the maximum
L found over these detector combinations. This is done to mitigate the effect of bad
data (noisy data and possibly also glitchy data) in one detector. Hence, triggers are
obtained by maximizing SNR over 4s windows, whereas the detectors to be considered
for the trigger are obtained by maximizing the likelihood ratio over all possible detector
combinations. Note that the SNR maximization for updating the sample discussed in

step 6 is a seperate procedure from either of these.

6.3.5 Background estimation

We treat windows recovered as single triggers and windows recovered as coincidences
differently while estimating the background. For single trigger windows, the foreground
sample itself is used as the background sample representing that window. To estimate
the coincident background, we form false coincidences from a given job which analyzes
800s of data in 200 coalescence time windows. To form false coincidences, we shift the
windows in time with respect to each other. We then draw samples randomly from
all single detector triggers. For each recovered false coincidence, we compute a £ and
histogram the result. This process is then repeated 100 times with different time offsets
to increase the amount of background we have. This background is given an appropriate
weight so that the ratio of singles to coincidences in the background and foreground is
the same, as well as to ensure that the background is normalized. Using the £ histogram
for the background, false alarm rates (FARs) are assigned to all the triggers. One point
to note is that the windows in which we detect events are not used to form combinations

so as to not contaminate the background with signals.
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6.4 Results

6.4.1 Data set

We analyze public gravitational wave data from LIGO taken from July 27 00:00 2017
UTC — Aug 25 22:00 2017 UTC during advanced LIGO’s second observing run. We
choose segments of data with a minimum length of 1200s for each of the LIGO detectors.
From those segments we form coincident segments. Jobs require 128s of start padding,
32s of end padding and 124s for the Fourier transform block to produce triggers. Thus,
each job can analyze a minimum of 288s (which produces triggers for for a single 4s
window) and we choose a maximum duration of 1084s to produce 800s of triggers over
200 windows. Jobs are overlapped so that triggers are produced contiguously.

After accounting for the segment selection effects, we analyzed approximately 20.17

days of coincident data.

6.4.2 Search parameter space

We search for gravitational wave candidates with component masses between 0.9-400 Mg
with z-component spins between —1 and 1. We conduct the matched filter integration
between 10-1024 Hz.

6.4.3 Simulation set

In order to ascertain our sensitivity to gravitational wave signals of the type discovered in
this data, we conducted a simulation campaign with 112526 simulated signals having a 32
Mg mean component mass and standard deviation of 4.0 My, with aligned dimensionless
spins up to 0.25 and a maximum redshift of 1 isotropically distributed in location. The
injections were distributed uniformly in comoving volume. The red-shifted component
mass distribution is visualized in Fig. 6.2. The injection set was specifically created
for the BBH parameter space. We do not make any claims about the sensitivity of our

pipeline in other lower mass parameter spaces.

6.4.4 Candidate list

Our search results are summarized in Fig. 6.3 and Table 6.1. Results from the entire
search are shown in Fig. 6.3. In this plot, we show the observed distribution of all events

as a function of /2L, an expression proportional to the SNR, as well as the background
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Figure 6.2. Distribution of component masses as measured at Earth for the BBH simulation
set.

distribution expected from noise during the same time. The detected events clearly stand
out from the expected noise curve at v/2£ around 8 which suggests that the extra events
at high £ must be signal-like.

In Table 6.1, we report the ten triggers with the smallest FARs. The first five of
these events as well as the seventh were previously reported by the LIGO Collaboration
and others [14,142,163] and labelled GW170817, GW170814, GW170809, GW170823,
GW170729, and GW170818. These events are detected confidently with FARs of 5 x
107 3yr~! for the first five, and 4 x 10~2yr~! for the seventh. GW170817 is recovered as
a single detector candidate in Hanford, since there’s a simultaneous glitch in Livingston,

and the resulting high &2 in Livingston causes its log-likelihood ratio to be strongly
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Figure 6.3. Cumulative histograms of our search results as a function of likelihood ratio. The
orange line represents the corresponding histogram expected from noise during the same time
frame.

penalized. We report many of the components masses of these events outside of confidence
ranges reported by the LIGO Collaboration [14]. It is important to note that this is
not a contradiction: we are not optimizing the posterior probability distribution, as is
done during parameter estimation for the results reported by the LIGO Collaboration.
Despite the differences in masses, we are able to recover each trigger to within tens of
milliseconds of the reported values by the LIGO Collaboration and are confident they
correspond to the respective gravitational wave candidates.

We also recover one binary black hole event, GW170727 previously reported by other
groups [142,163] as well as one, GW170817a reported by Zackay et al [141] which do
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Figure 6.4. Distribution of injected SNRs for recovered injections above £ = 35(v/2L = 8.37).
Missed injections with network SNR above 12 and detector SNRs greater than 7 (indicated by
the shaded contour) are discussed in the appendix.

not appear in the LIGO GWTC-2. We recover the GW170727 event with a FAR of
3 x 10T yr=t. We recover GW170817a in Livingston with a FAR of 5 x 107 3yr~! while
Zackay reports it with a FAR of 8.7 x 10~2yr~!. Zackay also reports the probability of it
being of astrophysical origin at 86% [141], but we do not make that estimation here.
As in the previous case, we recover both these events to within tens of milliseconds of
the previously reported values and are confident that they correspond to the respective
gravitational wave candidates.

We make no claims regarding the possibility of the remaining two events we report

being gravitational wave candidates. These appear eighth and ninth in Table 6.1. They
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are not recovered significantly, and it is likely they are noise.
The first seven events reported in Table 6.1, as well as the last one are excluded from

the background, since all of them are previously reported gravitational wave candidates.
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Figure 6.5. Efficiency of recovering injections at different injected SNRs

6.4.5 Sensitivity estimate

The sensitivity of our new pipeline is demonstrated in Fig. 6.4 and Fig. 6.5. Fig. 6.4
shows the distribution of all the injected events by SNR with a network SNR of 12
contour, and detector SNR of 7 contours added. This figure shows that the majority of
loud injected events were recovered by our pipeline, with 70 missed in the region with

network SNR above 12 and detector SNRs greater than 7. Only nine of these missed
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injections are because the pipeline could not adequately recover the injections. This
shows that the pipeline only very rarely gets stuck at local peaks, instead of finding the
global maxima, which will correspond to the injected signal. It is possible that as we
move to a lower mass parameter space, the frequecy of such occurrences will increase.
All of the loud missed events are discussed in more detail in Appendix B.

Fig. 6.5 shows the efficiency of the pipeline as a function of the injected network snr of
the synthetic gravitational wave set described in section C. This plot shows that without
any data cleaning implementation, almost 90% of events at SNR 10 are recovered by the
pipeline while that percentage only increases with the SNR and plateaus just short of
100% around SNR. 13.

6.5 Conclusion

In this paper, we have described in detail a novel gravitational wave detection algorithm.
This algorithm searches stochastically over the chosen parameter space, saving the time
and computing power required to generate large banks of template waveforms. The
algorithm samples the parameter space by making jumps with a pre-estimated mismatch
between templates informed by the parameter space metric and keeping those points
which have a higher SNR. This method is shown to be of comparable accuracy in the
recovery of gravitational wave events at high masses as current template-based pipelines.

To demonstrate the validity of this method, we have presented an analysis of approxi-
mately one month of LIGO data from July 27 00:00 2017 UTC — Aug 25 22:00 2017 UTC
exploring the binary black hole parameter space. We recovered six known gravitational
wave candidate events to within tens of milliseconds of previously reported coalescence
times, as well as two gravitational wave candidates previously reported.

Additionally, we conducted an injection campagin of compact binary mergers to prove
the sensitivity of the pipeline to binary black hole merger events. We recovered almost
90% of events with SNR 10 and an increasing percentage at higher SNRs that plateaus
just below 100% at SNR 13. The majority of the missing loud injections were due to the
presence of glitches near the injected events.

In the future, we plan to extend our method to all regions of the parameter space. We
expect that even though the algorithm will scale similarly to any search using template
banks at lower mass, it will still retain its other advantages, such as simpler workflow and
ease of setup. We plan to make our method competitive with other searches like GstLAL

for LIGO’s fourth observing run. It remains an open project to get good convergence
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during the sampling process for all regions of the parameter space.
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6.7 Appendix A: Data release details and code versions

A tarball containing the source code and data files necessary to reproduce the results
and plots in this paper can be found at https://dcc.ligo.org/T2100321. Instructions
for installing the code and for using it to create the plots and results can be found in
README.md inside the source code directory in the tarball.

6.8 Appendix B: Follow-up of missed injections

In this appendix, we will discuss the particularly loud injections which were not recovered

during the simulation mode of the pipeline. An injection is deemed to be recovered, if it
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Figure 6.6. An example of a Q-transform plot showing a glitch in Livingston, causing a
simultaneous injection to be missed

was assigned a log-likelihood ratio, £ of 35 or greater. Out of the 112526 injections, 65361
were missed. Most of these (65291 out of 65361) were missed because the injected SNR
was too low for them to be recovered significantly. Some, however had a high injected
SNR and were still missed. We will discuss the reasons for the same, for missed injections
with network SNR above 12 and detector SNRs greater than 7. These injections are
shown in Fig. 6.4, of which there are 70. Out of these, 33 were missed due to the data
containing a glitch simultaneous to the injection, causing the glitch rejection mechanism
to reject that part of the data. The existence of a glitch in the data was verified by
creating Q-transform plots of the data window. An example of such a glitch is shown in
Fig. 6.6. Out of the remaining 37 loud missed injections, 28 fell into the glitch region
as defined in Sec. 6.3.4.6, and hence were rejected. The pipeline failed to recover only
9 injections out of the original 112526. However, such problematic injections can be
recovered by increasing N, the number of samples to reject at each level, k, before

moving on to the next, at the cost of the run-time of the pipeline.
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Chapter 7

Method to get Better Sky Maps
in a GstLAL Low-Latency Analy-
SIS

This is a reprint of [73].

Modeled gravitational wave searches correlate the strain data with a bank of gravita-
tional waves template waveforms to make detections of gravitational wave candidates,
and these results are processed by downstream tools to calculate the likely sky location
and distance of the source of the candidates. This is crucial for multi-messenger efforts,
since it informs astronomers where to point their telescopes to facilitate electormagnetic
follow-up of the gravitational wave candidates. We present a novel method to improve the
low-latency results of the GstLAL gravitational wave seach pipeline, and thus improving
sky location estimates of low-latency candidates. This method involves ingesting the
GstLAL low-latency results, and performing a small targeted hierarchical search to
recover the candidates with more accurate parameters, in a medium-latency timescale
(few seconds to five minutes). To test our method, we perform a GstLAL low-latency
analysis on forty days of data from the third observing run of LIGO, Virgo, and KAGRA,
and show that our method improves the GstLAL results by 5.38% and the subsequent
sky location results by 16.75% on average. In addition to this increase in precision, we
also show that these results are more accurate as compared to the GstLAL results. This
method has been adopted by GstLAL for the fourth observing run.

116



7.1 Introduction

Since the second observing run (O2) of the LIGO Scientific, Virgo, and KAGRA (LVK)
collaboration, gravitational waves (GWs) have emerged as an important messenger in
multi-messenger astronomy. It was during this observing run that GW170817 was
detected [14,36,37]. The source of this event was a binary neutron star (BNS), and
thus electromagnetically bright, leading to the first multi-messenger detection involving
gravitational waves (GWSs). It has since led to a variety of new scientific results [38,39].

Participation of GWs in multi-messenger detections like GW170817 is made possible
by a combination of multiple analysis pipelines and tools working together. First,
a GW search pipeline analyzes the strain data produced by GW detectors like the
Laser Interferometer Gravitational-Wave Observatory (LIGO) Hanford and Livingston
detectors [11], the Virgo detector [12], and the KAGRA detector [13], finds GW candidates
in the data, and uploads them to the Gravitational Wave Candidate Event Database
(GraceDB) [35] in near-real time. Examples of GW search pipelines are GstLAL [19-22],
TAS [33,34], MBTA [29,30], PyCBC [26-28], and SPIIR [31,32].

Next, GW inference pipelines ingest the results of GW searches, and infer source
properties like the source parameters, sky location, distance, etc. Sky location is generally
communicated in the form of a sky map, a two-dimensional plot of the sky showing
contours for probable location of the source. Two commonly used contour values are
50% and 90%. Examples of sky maps are shown in Fig. 7.1. LALInference 164, 165],
BAYESTAR [45,46], and BILBY [47,48] are some of the inference pipelines used.

After the sky map for a GW candidate is calculated, a public alert gets sent [49]. All
of this happens within seconds to minutes of the GW signal reaching Earth. Astronomers
can then choose to point their telescopes at the location described by the sky map
included in the public alert, to try to observe any electromagnetic counterparts to the
GW candidate. However, these electromagnetic counterparts can be very faint and can
fade within seconds of the GW detection. Because of this, it is crucial for multi-messenger
efforts to extract all possible information from the GW signal to give astronomers the
best opportunity to observe any electromagnetic counterparts.

How well constrained the source is in a sky map depends very heavily on the number
of detectors contributing to the detection of the candidate. A single detector gives almost
no information. Two detectors generally localize the source to a circle in the sky. Three
detectors, however, can localize the source to a few points in the sky. For example, in

Fig. 7.1, the left panel is derived from a candidate comprising three detectors, whereas
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Figure 7.1. This figure shows two examples of sky maps. The one on the top is relatively well
constrained in terms of sky location, while the one of the bottom is less constrained. Louder
GW signals being detected in more number of detectors produces more constrained, and hence

better sky maps. These sky maps were produced using the BAYESTAR, package on simulated
GW signals.
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the right panel is derived from a candidate comprising two. With more than three
detectors, even smaller points can be obtained. Consequently, efforts are constantly taken
to minimize detector downtime, and to coordinate maintenance schedules among among
detecotrs to maximize coincident observing time.

Another way to obtain better sky maps is to construct better algorithms to extract
more information from a GW signal. However, that discussion is out of scope for this
work. Instead, we will focus on the final way to improve sky maps, which is to improve
the results produced by GW searches, from which the sky location information gets
extracted by inference pipelines. They do this by looking at the arrival times, phases, and
amplitudes of the GW signal at the different detectors, as reported by the GW search.
Consequently, by measuring these values more accurately, GW searches can contribute
to better sky maps.

In this work, we introduce the GstLAL SNR Optimizer, which is designed to do
just that. GstLAL, like other modeled GW searches uses a collection of GW template
waveforms, each with a different combination of source parameters, called a “template
bank”, and correlates each one of them across the GW strain data, in a process called
matched filtering. The output of this process is called the signal-to-noise ratio (SNR)
time series. However, since the parameter space of GW sources is only discretely sampled
by the template bank, we expect a loss in the SNR, and in the accuracy of the arrival
times and phases measured by GstLAL. Common values of the minimal match between
neighboring templates in a template bank range from 0.97 to 0.99 [41]. As a result, we
expect around a 1 to 3% loss in the SNR. The GstLAL SNR Optimizer, referred to
as the SNR Optimizer hereafter, ingests GstLAL low latency results in real time, and
performs a small targeted hierarchical search. The search is targeted in two ways: The
SNR Optimizer only analyzes the data close in time to a candiate reported by GstLAL,
and it also analyzes the parameter space close to the parameters reported by GstLAL.
It does not analyze a fixed bank of templates, but rather dynamically creates new ones
in the relevant parameter space, hierarchically closing in on the true location of the
signal in the parameter space. It also implements other improvements, like more accurate
matched filtering, leading to higher SNRs, and hence better sky maps. It does all this
in a timescale of a few seconds to five minutes, and if it manages to produce better
results, the skymap produced from its results is included in the public alert issues for the
candidate.

In Sec. 7.2, we will discuss the detailed implementation of the SNR Optimizer, and

in Sec. 7.3, we will discuss the tests that we ran to measure the performance of the SNR
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Optimizer.

7.2 Methodology

7.2.1 General GstLAL Methods

As described before, modeled GW searches like GstLAL make use of a template bank
that discretely samples the intrinsic parameter space (i.e. masses and spins) of the
GW sources, causing a loss in SNR. Before the data can be matched filtered with
the templates, both the data and the templates are whitened using a power spectral
density (PSD) that represents the frequency characteristics of detector noise. GstLAL
implements whitening in the frequency domain, and matched filtering in the time domain.
The whitened data is defined as

df —— T 7.1
/ |f| /2 =

where d(f) is the data represented in the frequency space, and S, (|f|) is the single-sided
PSD. Similarly, the whitened template is defined as

df ———— > 7.2
/ |f\ /2 i

where E( f) is the template represented in the frequency space. The matched filter output
for that particular template, i.e. the SNR is then calculated as

SNR(t) = [ T drd(t + T)h(r) (7.3)

GstLAL currently has the ability to whiten the data in real time, but template
whitening needs to be done before starting the process of matched filtering. For a
low-latency analysis, since the data are not known beforehand, this means that the
templates are whitened using a PSD projected to represent future detector noise [4]. This
mismatch between the PSD used to whiten the templates, and the “true” PSD measured
from detector noise also causes a loss in SNR.

Since ensuring the least possible latencies for public alerts is crucial for multi-messenger
astronomy, the GstLAL low-latency analysis makes certain concessions on the quality

of matched filtering. These include using a relatively short length of data (i.e. an FFT
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length of 4 seconds of data) for measuring the PSD and whitening the data in Eq. (7.1).
This results in lower statistics while measuring the PSD, and produces a PSD sampled at
relatively larger intervals of frequency. Similarly, the data itself is sampled at a relatively
lower rate of 2048 Hz. Both of these concessions case a decrease in the SNR.

The GstLAL analysis recognizes times during which the SNR of some template
crosses the threshold value of 4, called a “trigger”. Triggers recognized as originating
from noise [42] are added to the background. Triggers are then ranked against this
background, and a likelihood ratio (LR) [23] is calculated as a ranking statistic. Triggers
with high LRs are called GW candidates. The LR is then converted to a false alarm
rate (FAR) by taking into account the LR statistics of noise triggers, as well the livetime
of the analysis. For a low-latency analysis, if the FAR crosses a specific threshold [44],
the candidate is uploaded to GraceDB, and a public alert is issued [49]. The public
alert contains information about the sky location of the source, low-latency parameter
estimation of the source [50], as well as information about the probability of astrophysical
origin for different source classes [51-53]. All of this can help astronomers follow-up
on any potential electromagnetic counterparts. A detailed description of the GstLAL
low-latency analysis can be found in [43].

In summary, a GstLAL low-latency analysis loses SNR due to the following reasons:
1. discrete nature of the fixed template bank

2. templates not whitened with a PSD measured in real time

3. low FFT length for PSD measurement and data whitening

4. low rate of data sampling

7.2.2 SNR Optimizer Methods

7.2.2.1 Design Principles

The SNR Optimizer is designed to mitigate any loss in SNR due to the aforementioned
reasons, and maximize SNR, leading to better sky maps. It implements a targeted,
hierarchical, and sub-threshold search in order to follow-up on candidates reported by
GstLAL, and recover them with a higher SNR. The SNR Optimizer has evolved from
the metric assisted stochastic sampling (MASS) GW search described in [137]. As such,
the SNR calculation for any given template is identical to that performed by MASS. A
central philosophy of the SNR Optimizer is that it does not attempt to evaluate the
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significance of a candidate. Instead it relies on the GstLAL low-latency search not only
to provide it with candidates that arise from astrophysical sources rather than noise, but
also to provide the LR, FAR, and the probability of astrophysical origin for different

source classes for these candidates.

7.2.2.2 Template Bank

The SNR Optimizer does not rely on a fixed bank of pre-created templates. Instead,
because of its hierarchical nature, it starts off with a fixed template bank, and dynamically
creates new templates in between the gaps of the original templates, as it closes in on
the true location of the signal in the intrinsic parameter space. To do this, it makes use
of template banks created by the manifold [40] software package.

Manifold implements a metric on the intrinsic parameter space in order to place
templates at a fixed mismatch from each other, and this metric information at the
location of every template is stored in the template bank file. Templates are expressed as
hyper-rectangles in the intrinsic parameter space. Each such rectangle comprises a fixed
area in the intrinsic parameter space (depending on the dimensionality of the space, this
might actually be a 3D or 4D volume), the template at the center of this area, and the
metric at the location of the template Using the metric, any template can be split into
two new templates, each occupying half the area of the original template. The metric gets
re-calculated at the locations of the new templates enabling this process to be repeated
indefinitely. This operation is cheap, since the calculation is done only approximately,
enabling information from the metric at the original template to be re-used. This process
is illustracted in Fig. 7.2. This easy splitting of templates into multiple new ones enabled

by manifold facilitates the hierarchical nature of the SNR Optimizer.

7.2.2.3 Search Algorithm

Similar to GstLAL, the SNR Optimizer can be run in a low-latency “online” mode, or
a high-latency “offline mode”. In the offline mode, it reads in a gstlal event file for a
particular candidate, and analyzes a small amount of data around it. The offline mode
is meant only for testing purposes. More importantly, in the online mode, the SNR
Optimizer continuously reads in live data, continuously calculates the PSD from the data,
and whitens it with that PSD. Because it operates in a medium-latency timescale, it can
afford to use a higher FFT length than GstLAL for the purposes of data whitening. It
can also sample the data at higher rate than GstLAL, since it does not matched filter all

of the data, but rather only short amounts of data around candidates, and hence there
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Figure 7.2. This figure shows a schematic of the template splitting process enabled by the
manifold rectangle structure. Each rectangle has a template at its center, and the metric is
calculated at that location. The boundaries of the rectangle represent the area (or volume,
depending on the dimensionality of the space) occupied by the template. This schematic shows
a template splitting into two new templates, one of which again splits into two new templates,
and again one more time. This schematic shows templates only in the mj-mgy space. For the
fourth observing run, the SNR Optimizer operates in the mi-ma-x.rs space.
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is no danger of falling behind live data. Both of these factors contribute to the higher
SNRs obtained by the SNR optimizer.

Similar to GstLAL, the SNR Optimizer also implements “gating” on the whitened
data, in which if the amplitude of whitened data exceeds a certain number of standard
deviations, it is instead set to 0, with 0.25 seconds of padding on either side [19,21]. This
is done to remove any transient non-gaussian components in the noise, called “glitches”,
which can artificially increase SNR and mimic GWs.

While it is doing this, it also listens for any candidates that the GstLAL low-latency
analysis reports. When it receives such a candidate, it performs matched filtering on
the data in a 2 second window (plus sufficient padding on either side) around the event
time as reported by GstLAL. Because it was continuously whitening data before, data
whitening does not need to be done from scratch for the candidate, helping with latencies.
It does not filter the data using all the templates in the bank, but rather chooses the
1000 closest templtes to the template reported by GstLAL. Because the metric at each
template it known, the operation for finding the closest templates to a given template
is a cheap one. The underlying assumption in only choosing 1000 templates to filter
is in accordance with the central philosophy of the SNR Optimizer, that GstLAL will
only provide astrophysical candidates to the SNR Optimizer, and as such the template
reported by GstLAL is close to the “true” template. All templates are whitened in real
time, using the latest estimate of the PSD. In this way, the SNR Optimizer sets up a
targeted search around the candidate.

After it performs matched filtering for those 1000 templates, triggers are formed from
all 1000 templates using SNRs from all detectors. Out of those, only 500 templates with
the highest network SNR are retained, while the rest are discarded. These 500 templates
are then each split into 2 new templates, and the SNR at each of these new templates is
calculated, and triggers are formed. This cycle is repeated, now using the 500 retained
templates, as well as their child templates, and this time around, only 250 templates get
retained.

There are 2 stopping conditions to this loop. A template will not split further if
its area is lower than some threshold value. This would mean that further splitting it
would only give templates very close by, cauing diminishing returns. If at any iteration
of the loop, no new templates can be formed by this process of splitting, that means
we’ve arrived at our final set of templates, and the template whose trigger has the
highest network SNR is chosen as the temmplate and the candidate reported by the SNR

Optimizer. The second stopping condition is if the SNR Optimizer reaches 4 minutes
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of processing time from the time it received the candidate from GstLAL. When that
happens, the SNR Optimizer takes whatever set of templates it had retained up to that
point, and reports the template with the highest network SNR trigger as its template and
candidate. The reason for this timeout is that the LIGO Scientific, Virgo and KAGRA
Collaboration (LVK) has an internal timout of 4.5 minutes [166] for candidates to be
considered for generating a sky map and issuing a public alert. In this way, the SNR
Optimizer implements a hierarchical search to recover the candidate with a template

very close to the true template of the GW signal.

7.2.2.4 Coincidence Formation

The method implemented by the SNR Optimizer for forming coincidences across detectors
when creating a cndidate is different than that implemented by GstLAL, because of two

reasons:
1. The SNR Optimizer is a sub-threshold search, whereas GstLAL is not

2. Since GstLAL calculates a LR based on the properties of the coincidence itself,
it can afford to be less strict when forming coincidences, because if it forms a
“bad” coincidence (i.e. with an unphysical cobination of arrival times, phases
and SNRs at different detectors), the part of the LR equation that calculates the
probability of such a combination of times, phases and SNRs, commonly called the
dt —d¢ — dSN R term of the LR, will downrank this trigger, and it will not become
a candidate. However, since the SNR Optimizer outsources its LR calculation to

GstLAL, it needs to make sure the coincidence it forms is physical

In order to create coincidences in a sub-threshold search, the SNR Optimizer first
finds peaks in the SNR timeseries for every detector independently, in the 2 second
window of data being analyzed. It then loops over these peaks, and for every one, it adds
the other detectors by finding new peaks in such a way that the combination of arrival
times at the detectors remains physical. No arrival phase or SNR information is used to
assess the physicality of the coincidence, and in the next paragraph, we will show that
this is enough to guarantee physical coincidences. Whenever new detectors are being
added, the order of addition is kept the same as the descending order of SNRs of the
original SNR peaks. This is done because we want to add louder detectors earlier, when
there are less constraints on them for keeping the coincidence physical. After the loop

over all detectors is finished we are left with coincidences equal in number to the number
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of detectors. The coincidence with the maximum network SNR is then chosen to be the
candidate reported by the SNR Optimizer for that window of data.

The two LIGO detectors and the Virgo detector form a plane, and hence the arrival
times of a candidate at the detectors can be converted into information of the arrival
direction of the GW and its velocity parallel to this plane, by solving the following system

of equations:

n-ry
t, = 7.4
=2 (7.4)
n-ro
ty = 7.5
=" (75)
n-rs
i3 = .
= (7.6

where ¢; are the arrival times at the detectors, n is the vector representing the direction
of the GW, and r; are the location vectors of the three detectors. If the velocity of the
GW parallel to the plane so obtained is less than or equal to ¢, the speed of light, the
combination of times are phyical. This argument can be condensed into the calculation

of a 2 statistic:
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where t is the average arrival time that minimizes the expression. For a physical
combination of times, y? will be 0, whereas for an unphysical combination, it will be
larger than 0. While forming coincidences, only those arrival times that give a x? less
than 3 are used. When adding a second detector to a coincidence, this just means
selecting the highest SNR peak within the light travel time of the two detectors. However,
when adding the third detector, all possible sample points within the light travel time of
the two earlier detectors are considered, and the maximum SNR one that gives a x? less
than 3 is added. The reason for selecting a x? threshold of 3 instead of 0 is that due to
numerical noise, even a physical combination of time will not give a x? perfectly equal
to 0, but rather a very small value. A second reason is that due to detector noise, the
arrival time estimate might not be perfect, and the x? threshold needs to allow for that.

Since this only considers information from the arrival times, and not phases or
SNRs, this is necessary, but not sufficient for forming a physical coincidence. However,
we will show that considering time information is also sufficient. Fig. 7.3 shows that
dt — d¢ — dSN R contains more information than 2, but despite that the two are well
correlated. If we had used a threhold on dt — d¢ — dSN R to qualify a trigger as physical
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Figure 7.3. This figure shows the x? value plotted against the dt — d¢ — dSNR term of the
LR implemented by GstLAL, for various triggers. The two quantities, while not perfectly
correlated, are well correlated, and selecting the x> = 3 threshold for calling a coincidence
physical is almost equivalent to selecting a threshold value for dt — d¢p — dSN R. The tiny values
of x? seen on the left side of the plot are numerical noise in the calculation of y?, and actually
represent a value of 0.

instead, it would have had a very similar effect to the x> = 3 threshold. In Fig. 7.4, we see
that the x? = 3 threshold is able to perfectly distinguish between simulated gravitational
wave triggers (and hence guaranteed to be physical) and triggers generated by randomly

drawing arrival times (and hence unlikely to be physical triggers).

7.2.2.5 04 Configuration

The SNR Optimizer has been adopted by GstLAL for use during fourth observing
run (O4). Here, we will provide details about the configuration used for the SNR
Optimizer in O4. The initial template bank used by the SNR Optimizer is the full O4

GstLAL template bank, since it has been generated via manifold. It is generated in
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Figure 7.4. This plot shows a histogram of the y? value for two types of triggers. The first,
represented in blue, are simulated GW signals, and are guaranteed to be physical. The second,
represented in orange, are triggers with randomly drawn times, and are highly unlikely to be
physical. We see that the x> = 3 threshold serves as a perfect discriminator between physical
and unphysical triggers. The tiny values of x? for the injection triggers are numerical noise in
the calculation of x2, and actually represent a value of 0.

the 3 dimensional parameter space of m1-m2-x.ss, where x.rs is the component mass
weighted average of the dimensionless spins. It contains around 2 million templates with
component masses from 1-200M, and dimensionless spins up to +0.99. More information
about the O4 GstLAL template bank can be found in [41].

For matched filtering, the FFT length for PSD measurement and data whitening is
set to 16 seconds worth of data, and the rate of sampling the data is set to 8192 Hz.
Both of these values are larger than those used by GstLAL, which uses an FFT length of
4 seconds of data, and a sample rate of 2048 Hz. The threshold of standard deviations
after which to gate the whitened data is set to 15. The stopping criterion of the minimum

area of a rectangle below which it will not split into new templates is set to the area
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corresponding to a mismatch of 0.001.

Communication between the GstLAL low-latency analysis and the SNR Optimizer is
handled via the Apache Kafka software [167]. When a GstLAL low-latency job finds a
candidate, it sends a kafka message to the “events” kafka topic. From here, a specialized
uploader job reads this message and uploads candidates to GraceDB. Since there can be
multiple triggers reported by different GstLAL jobs for the same candidate, the uploader
job checks at regular intervals and only uploads the best trigger for a given candidate.
The best trigger is defined as the trigger with the lowest FAR, if the FAR of the trigger
is greater than the public alert threshold [44], and the trigger with the highest SNR
otherwise. After it uploads a trigger, it sends a kafka message to the “uploads” kafka
topic. To account for multiple uploads in a short burst of time, 10 SNR Optimizer jobs
are running in parallel. Due to the partition structure of kafka topics, the message to
the uploads topic automatically gets assigned to one particular SNR Optimizer job. After
that job finishes its processing and finds a trigger for the candidate, it sends a kafka
message to the uploads topic, from where the uploader job can upload this trigger if it
has a higher SNR. If it does so, SNR Optimizer jobs will not re-trigger on the message
the uploader job will send to the uploads topic.

7.3 Results

7.3.1 Data set

In order to test the performance of the SNR Optimizer, we set up a GstLAL low-latency
analysis, along with the SNR Optimizer, on data from third observing run (O3). This
was part of a Mock Data Challenge (MDC), and the O3 data was streamed from Jan 02
18:39:42 UTC 2024 to Feb 11 18:39:42 UTC 2024. The MDC also included an injection
campaign. Injections are simulated gravitational wave signals added to the data, and
their purpose is to test the performance of the analysis. More information about the
MDC and the injection distribution used can be found in [5].

During this time, the GstLAL low-latency analysis made 14710 uploads from the
injection part of the analysis. For these GstLAL candidates, the SNR Optimizer was able
to find a higher SNR for 10259 of them, representing 70% of the total GstLAL uploads.
Since GstLAL uploads multiple triggers for the same candidate, after accounting for this
fact, there were 5022 distinct injection candidates that GstLAL had uploads for. Out of
these, the SNR Optimizer had the highest SNR for 2940 of them. The trigger having
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the highest SNR for a candidate if called the “preferred event”. In other words, the
SNR Optimizer was the preferred event for around 60% of candidates found by GstLAL.
These injection uploads from the GstLAL low-latency analysis as well as from the SNR

Optimizer will be used for calculating the results presented below.

7.3.2 SNR improvement

By comparing the network SNRs of the GstLAL uploads and the corresponding SNR
Optimizer uploads, we can create a histogram of combined SNRs improvement due to all
methods implemented by the SNR Optimizer. This histogram is shown in Fig. 7.5. We
see that on average, there’s a 5.38% improvement in SNR. A point to note here is that
since the job responsible for uploading both the GstLAL and SNR Optimizer triggers to
GraceDB only does so if the trigger has a higher SNR than previous triggers uploaded
for the same candidate, only the 70% cases in which the SNR Optimizer found a higher
SNR than GstLAL participate in this histogram.

Additionally, we can plot the mean SNR improvement for different SNR and inverse
FAR thresholds. This is shown in Fig. 7.6. It shows that the SNR Optimizer is most
effective at lower SNRs or inverse FARs, and the effectiveness goes down slightly with
an increase in SNRs or inverse FARs. Similarly, we can also plot the average percent of
times the SNR Optimizer is the preferred event for a candidate for different SNR and
inverse FAR thresholds. This is shown in Fig. 7.7. Similar to the previous figure, we see
the same trend of the effectiveness of the SNR Optimizer going down slightly with an

increase in SNRs or inverse FARs.

7.3.3 Sky map improvement

In this section, we will calculate the improvement in the sky map produced by the higher
SNR of the SNR Optimizer triggers, as compared to GstLAL triggers. The following
tests are usually used to evaluate the performance of an inference pipeline by assuming
the input trigger files are correct (see [45,168]), but for our purposes, we will use it to
evaluate the performance of two sets of trigger files, one from the SNR Optimizer and
one from GstLAL, assuming the inference pipeline is correct.

In order to create a sky map from the trigger files of the SNR Optimizer and GstLAL,
we use the BAYESTAR [45,46] package. BAYESTAR, like other inference pipelines,
produces a sky map that contains sky locations for different confidence levels. In Fig. 7.8,

we compare the sky location areas for the 90% confidence level for both GstLAL and the
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Figure 7.5. A histogram of the combined SNR improvement calculated from the SNR
Optimizer uploads as compared to GstLAL uploads.

SNR Optimizer. It shows that the sky maps produced from the SNR Optimizer triggers
are on average 16.75% smaller than those produced from GstLAL triggers.

However, a reduction in the sky area by itself only tells us that the SNR Optimizer
results are more precise, but not whether they are more accurate. Since these results
were calculated from an injection campaign, for which we know the true sky location of
all triggers, we can use that to gauge the accuracy of the SNR Optimizer results. To
do this, we define two quantities: the searched probability, and the searched area. The
searched probability is the minimum confidence level at which the true location of the
trigger is still within the sky map. The searched area is the area of the sky map at
that confidence level. These can be thought of as a measure of the accuracy of the SNR
Optimizer results. The searched area results for GstLAL and the SNR Optimizer are
shown in Fig. 7.9. We see that in addition to higher precision, the SNR Optimizer results

are also more accurate than those of GstLAL.
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Figure 7.6. This plot shows the complementary cumulative distribution of mean percent
improvement in SNR due to the SNR Optimizer vs SNR (top) and inverse FAR (bottom). In
both cases, the mean improvement goes down slightly with an increase in SNR or inverse FAR
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Figure 7.7. This plot shows the complementary cumulative distribution of average percent of
times the SNR Optimizer finds a higher SNR than GstLAL (i.e. it is the preferred event) for a
candidate vs SNR (top) and inverse FAR (bottom). In both cases, the average preferred event
percent goes down slightly with an increase in SNR or inverse FAR
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Figure 7.8. This plot shows cumulative histograms of the 90% sky area for GstLAL and the
SNR Optimizer. We see that sky maps produced from the SNR Optimizer triggers are on
average more constrained than those produced from GstLAL triggers. In other words, the SNR
Optimizer results are more precise than those of GstLAL.

Finally, we require a self-consistency condition relating the accuracy and precision
results presented above. We require that on average, 90% of triggers have their true
location contained within their 90% confidence level sky map, and so on for every
confidence level. This test, commonly called a P-P plot, relates the searched probability
to the fraction of injections having that value of searched probability. The result is shown

in Fig. 7.10, and it shows that the SNR Optimizer results are self-consistent.

7.3.4 Latency

We can calculate two different types of latencies for the SNR Optimizer. The first is the
end-to-end latency, which is the time between the GW signal reaching Earth, and the
trigger from the SNR Optimizer being uploaded to GraceDB. This includes all sources
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Figure 7.9. This plot shows cumulative histograms of the searched area for GstLAL and the
SNR Optimizer. We see that sky maps produced from the SNR Optimizer triggers on average
have a lower searched area than those produced from GstLAL triggers. This means we have
to go to lower confidence levels for the SNR Optimizer for the sky map to exclude the true
location of the trigger, as compared to GstLAL, implying that the SNR Optimizer results are
more accurate than those of GstLAL.

of latency, like the data distribution latency, the latency of the initial GstLAL trigger,
the internal processing latency of the SNR Optimizer, and any latency incurred by the
uploading process. The second type of latency is the internal processing latency recorded
by the SNR Optimizer.

A histogram of these two types of latencies, calculated for all SNR Optimizer injection
triggers from the MDC is shown in Fig. 7.11. Since the SNR Optimizer has an internal
timeout of 240 seconds, we see the histogram for the internal latencies stop at that value.
Note that the internal latencies are recorded by the SNR Optimizer jobs, and are not
calculated from uploads to GraceDB, and hence the dataset used for this histogram is

larger than the set of uploads, because triggers do not get uploaded to GraceDB if they
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Figure 7.10. This plot shows cumulative histograms of the searched probability for GstLAL
and the SNR Optimizer. The SNR Optimizer line is closer to the diagonal than the GstLAL line.
This means that the higher precision and accuracy of the SNR Optimzier is also self-consistent.
This plot is commonly called a P-P plot.

are not a better trigger than all triggers before. These figures show that the typical
latency for the SNR Optimizer is around 100 seconds, and the timeout of 240 seconds is

only rarely hit.

7.3.5 Contributions to the SNR improvement

As discussed in Sec. 7.2, the SNR Optimizer finds a higher SNR than GstLAL because
of 4 main features: finding a better template, real-time template whitening, higher FF'T
length, and higher data sampling rate. In order to quantify the effects of each, we set up
an offline SNR Optimizer run with all of these features turned off, and then new runs
with each feature turned on separately. By comparing the two, we can get an estimate of

the contribution of each in the overall SNR improvement. Note that this is a fully offline
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Figure 7.11. The end-to-end latencies (top) and internal latencies (bottom) of the SNR
Optimizer. The SNR Optimizer has an internal timeout of 240 seconds, causing the internal
latencies to be cut off at that value, and the end-to-end latencies to only rarely exceed that.
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test, and hence does not have any effects from the selective uploads performed by an
online run. As such, the results here are not directly comparable to the online results
presented in the previous subsections.

The result of this test is shown in Fig. 7.12 and Fig. 7.13. We see that finding a
better template has on average the highest contribution, at 3.92%, followed by real-time
template whitening at 1.41%), higher FFT length at 0.35%, and higher data sampling
rate at 0.29%.

7.4 Conclusion

In order to facilitate the multi-messenger follow-up of GW candidates, it is necessary
to provide an accurate sky map showing the location of the source of the candidate, so
that astronomers know where to point their telescopes. This is done by GW inference
pipelines like BAYESTAR or BILBY, which in turn rely on low-latency GW search
pipelines like GstLAL, MBTA, PyCBC, and SPIIR, to provide information about the
arrival times, phases, and amplitudes of the signal at the different GW detectors.

The estimates of these provided by GW search pipelines might not be completely
accurate due to 4 main reasons: discreteness of the template bank used to find signals
in the data, lack of template whitening using a real-time PSD, low FFT length used to
measure the PSD and whiten the data, and low sampling rate of the data. The latter two
are done to reduce latencies of the low-latency analysis. While some of these factors are
common to all GW search pipelines, others are specific to GstLAL, the search pipeline
that this work focuses on.

We introduced the GstLAL SNR Optimizer as a way to minimize these effects, get
higher SNRs and consequently better sky maps in a low-latency GstLAL analysis. It does
this by setting up a small targeted, hierarchical, sub-threshold search around GstLAL
candidates, in a medium-latency timescale. As long as GstLAL does not report any GW
candidates, the SNR Optimizer keeps ingesting data, measuring its PSD, and whitening
the data with it. As soon as a candidate is reported, the SNR Optimizer finds the 1000
nearest templates to the template reported by GstLAL, and whitens them with the latest
estimate of the PSD it has calculated. It also grabs the the whitened data in a 2 second
interval around the time reported by GstLAL, and matched filters this data with the 1000
whitened tempaltes. It retains the 500 highest SNR templates out of these, and splits
each of them into two new templates occupying the holes of the previous template bank.

To do this, is uses a metric defined on the intrinsic parameter space. As this process
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Figure 7.12. This plot shows the contributions from finding a better template (top), and
real-time template whitening (bottom), towards the overall SNR gain obtained by the SNR
Optimizer. During the process of finding a better template, the templates with the maximum
SNR is selected, and hence the contribution from that is strictly positive. Real-time template
whitening is only guaranteed to produce positive contributions on average. For example, since
the PSD can never be perfect due to non-stationary components in the noise, using the PSD
measured in real-time to whiten the templates will not always produce a higher SNR, but will
do so on average. Fig. 7.13 shows the remaining contributions to SNR gain.
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Figure 7.13. This plot is a continuation of Fig. 7.12. This plot shows the contributions from
using a higher FFT length (top), and higher data sampling rate (bottom) towards the overall
SNR gain obtained by the SNR Optimizer. Similar to what is explained in Fig. 7.12, the higher

FFT lenght and data sampling rate are only guaranteed to produce positive contributions on
average.
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keeps repeats, the SNR Optimizer reaches closer and closer to the true parameters of
the signal. Templates are not split if their parameter space area is lower than a preset
threshold. The process stops when no more templates can split, or an internal timeout
of 240 seconds is hit. In this way, the SNR Optimizer is able to find the best matching
template for a GW signal. Along with real-time template whiteneing, it can also afford
to implement a higher FFT length and a higher data sampling rate, leading to higher
SNRs.

To test the efficacy of the SNR Optimizer, we set up a low-latency GstLAL analysis
alongside the SNR Optimizer on 40 days of O3 data. We found that the SNR Optimizer
is able to find higher SNRs roughly 70% of the time, and that when it does so, it improves
the SNR by 5.38% on average. This increase in SNR translates to a 16.75% reduction in
the size of the sky map derived from the SNR Optimizer trigger. We also showed that
such sky maps are more accurate and self-consistent as compared to those derived from
GstLAL triggers. The SNR Optimizer is able to do this with latencies of 100 seconds on
average. Finally, we showed that the factor contributing the most to increased SNRs is
finding a better template, followed by real-time template whitening, higher FFT length,
and higher data sampling rate.

With more electromagnetically bright sources of GWs expected to be detected in
the future, tools like the SNR Optimizer are likely to prove useful in facilitating multi-
messenger astronomy. GstLAL has already adopted the SNR Optimizer for its low-latency

operations during OA4.
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7.6 Appendix A: Compatibility with other GW search
pipelines

While the SNR Optimizer implements a lot of the same ideas as GstLAL, such as matched
filtering in the time domain, data and template whitening in the frequency domain, as
well as using the GStreamer software [169] to stream data, it does so independently
of GstLAL. As such, it is designed almost completely modularly and can in theory be
used by any other GW search pipeline. Also possible is to have a common set of SNR
Optimizer instances listening to uploads from all GW search pipelines.

The initial template bank required by the SNR Optimizer needs to be made by
manifold, since it needs to contain the parameter space metric information calculated
by manifold, but this initial template bank does not need to be the same as the
template bank used by the search pipeline it is listening to. Currently, there are 2 minor
dependencies that the SNR Optimizer has on GstLAL, but both of these are easy to fix:

1. The SNR Optimizer relies on the GstLAL job which uploads triggers to GraceDB
to process its own uploads. However, another instance of the same job can be easily
set up by the SNR Optimizer to make its uploads independent of the GstLAL
uploader job.

2. The SNR Optimizer relies on the Apache Kafka software package to get information

from the GstLAL low-latency analysis about candidates it found. Since kafka is not
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necessarily used by all search pipelines, this method of communication can instead
by changed to be through GraceDB. There already exists code to continuously
communicate with GraceDB about uploads sent to it, and that can be repurposed
over here. This method will increase the SNR Optimizer latencies by a small
amount, since the communication is not happening locally like in kafka, but this

increase will only be of the order of a second.

7.7 Appendix B: Low-Latency Mode

Since the SNR Optimizer processes data independently of GstLAL, it can analyze data
from more detectors than what GstLAL is doing. This can often happen when a detector
like Virgo is deemed to not be sensitive enough to be included in the GstLAL low-latency
search, since data from the Virgo detector will be used to calculate the significnace of
candidates, potentially leading to a less sensitive analysis. In such situations, the SNR
Optimizer can ingest GstLAL’s candidates formed from LIGO Hanford and Livingston
data, and use that to form candidates with Virgo data added to it as well. This
is particularly useful, since adding detectors to a candidate gives by far the biggest
improvement in sky maps, as discussed in Sec. 7.1.

In such a use case, since the SNR Optimizer is providing a large amount of new
information to the downstream GW inference pipelines, rather than an incremental
amount, it is necessary to reduce the SNR Optimizer’s latencies to fall in the low-latency
regime. As discussed before, the SNR Optimizer normally operates in medium-latency,
and has an average latency of 100 seconds. This is because during the hierarchical search
process, it matched filters the data with tens of thousands of templates. In order to

reduce latencies, a few things can be done:

1. The SNR Optimizer can stop doing any maximization over templates, and to only

use the template reported by GstLAL to produce the SNR Optimizer’s trigger

2. The SNR Optimizer can re-use the Hanford and Livingston data supplied by
GstLAL, and only matched filter Virgo data and add it to the candidate, while

still observing the coincidence formation method discussed in Sec. 7.2.

3. The SNR Optimizer can set its FFT length to be low, like GstLAL does (4 seconds
worth of data)
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4. The SNR Optimizer can set its data sampling rate to be low, like GstLAL does
(2048Hz)

By doing so, the SNR Optimizer is able to very quickly add Virgo data to the
candidates formed by GstLAL from Hanford and Livingston data. The average internal
latency of the SNR Optimzier in this low-latency mode is less than 1 second, with
end-to-end latencies averaging around 10 seconds. This low-latency mode of the SNR
Optimizer was used alongside the regular mode by GstLAL for part of its O4 low-latency

operations.

144



Bibliography

1]

[10]

SATHYAPRAKASH, B. S. and B. F. ScHuTzZ (2009) “Physics, Astrophysics and
Cosmology with Gravitational Waves,” Living Reviews in Relativity, 12(1).
URL http://dx.doi.org/10.12942/1rr-2009-2

LIGO-InDIA, “LIGO-India: Detector,” .
URL https://www.ligo-india.in/activities/research/detector/

GRAVITATIONAL WAVE OPEN SCIENCE CENTER, “O3a Data Release,” .
URL https://gwosc.org/03/03a/

JosHi, P. ET AL. (2024), “How Many Times Should We Matched Filter Gravita-
tional Wave Data? A Comparison of GstLAL’s Online and Offline Performance,”
In preparation.

CHAUDHARY, S. S. ET AL. (2023), “Low-latency alert products and their per-
formance in anticipation of the fourth LIGO-Virgo-KAGRA observing run,” (in

prep).

ABBOTT, R. ET AL. (2021), “GWTC-3: Compact Binary Coalescences Observed by
LIGO and Virgo During the Second Part of the Third Observing Run,” 2111.03606.

(2021) “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo
during the First Half of the Third Observing Run,” Physical Review X, 11(2), p.
021053.

THE LIGO ScCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, R. AB-
BOTT, ET AL. (2021), “GWTC-2.1: Deep Extended Catalog of Compact Binary
Coalescences Observed by LIGO and Virgo During the First Half of the Third
Observing Run,” .

URL https://arxiv.org/abs/2108.01045

FranacaNn, E. E. and S. A. HUGHES (2005) “The basics of gravitational wave
theory,” New Journal of Physics, 7, p. 204—204.
URL http://dx.doi.org/10.1088/1367-2630/7/1/204

CREIGHTON, J. D. and W. G. ANDERSON (2012) Grawvitational-wave physics and
astronomy: An introduction to theory, experiment and data analysis, John Wiley &
Sons.

145



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

Aasi, J. ET AL. (2015) “Advanced LIGO,” Class. Quant. Grav., 32, p. 074001,
1411.4547.

ACERNESE, F. ET AL. (2015) “Advanced Virgo: a second-generation interferometric
gravitational wave detector,” Class. Quant. Grav., 32(2), p. 024001, 1408.3978.

Akutsu, T. ET AL. (2020) “Overview of KAGRA: Detector design and
construction history,” Progress of Theoretical and Fxperimental Physics,
2021(5), 05A101, https://academic.oup.com/ptep/article-pdf/2021/5/
05A101/37974994/ptaal25.pdf.

URL https://doi.org/10.1093/ptep/ptaal2s

ABBOTT, B. P. ET AL. (2019) “GWTC-1: A Gravitational-Wave Transient Catalog
of Compact Binary Mergers Observed by LIGO and Virgo during the First and
Second Observing Runs,” Phys. Rev. X, 9(3), p. 031040, 1811.12907.

245, D.C.H.J. . K. V.. R.D..T.L...S.D..V.S..Y.S...and L. C.
O.C.AI.. HG...HD A. .. M.C...P.D..V.S..247 (2017) “A
gravitational-wave standard siren measurement of the Hubble constant,” Nature,

551(7678), pp. 85-88.

ABBOTT, R., H. ABE, F. ACERNESE, K. ACKLEY, N. ADHIKARI, R. ADHIKARI,
V. ADKINS, V. ADvA, C. AFFELDT, D. AGARWAL, ET AL. (2021) “Tests of
general relativity with GWTC-3,” arXiv preprint arXiv:2112.06861.

ABBOTT, R., T. ABBOTT, S. ABRAHAM, F. ACERNESE, K. ACKLEY, C. ADAMS,
R. ADHIKARI, V. ADYA, C. AFFELDT, M. AGATHOS, ET AL. (2020) “Properties
and astrophysical implications of the 1500, binary black hole merger GW190521,”
The Astrophysical Journal Letters, 900(1), p. L13.

OWEN, B. J. and B. S. SATHYAPRAKASH (1999) “Matched filtering of gravita-
tional waves from inspiraling compact binaries: Computational cost and template
placement,” Phys. Rev. D, 60, p. 022002.

URL https://link.aps.org/doi/10.1103/PhysRevD.60.022002

MEsSICK, C. ET AL. (2017) “Analysis Framework for the Prompt Discovery of
Compact Binary Mergers in Gravitational-wave Data,” Phys. Rev. D, 95(4), p.
042001, 1604.04324.

CANNON, K. ET AL. (2020), “GstLAL: A software framework for gravitational
wave discovery,” 2010.05082.

SACHDEV, S. ET AL. (2019), “The GstLAL Search Analysis Methods for Compact
Binary Mergers in Advanced LIGO’s Second and Advanced Virgo’s First Observing
Runs,” 1901.08580.

HANNA, C. ET AL. (2020) “Fast evaluation of multi-detector consistency for real-
time gravitational wave searches,” Phys. Rev., D101(2), p. 022003, 1901.02227.

146



[23]

[24]

[25]

2]

[27]

28]

[29]

[30]

TSUKADA, L., P. JosHI, S. ADHICARY, R. GEORGE, A. GUIMARAES, C. HANNA,
R. MAGEE, A. ZIMMERMAN, P. BARAL, A. BAYLOR, K. CANNON, S. CAUDILL,
B. Cousins, J. D. E. CreicHTON, B. EwinGg, H. FonG, P. GODWIN,
R. HARADA, Y.-J. HUANG, R. HUXFORD, J. KENNINGTON, S. KUWAHARA,
A. K. Y. L1, D. MEACHER, C. MESSICK, S. MORISAKI, D. MUKHERJEE, W. NI1U,
A. PACE, C. POSNANSKY, A. RAY, S. SACHDEV, S. SAKON, D. SINGH, R. TAPIA,
T. Tsutsul, K. UENO, A. VIETS, L. WADE, and M. WADE (2023) “Improved
ranking statistics of the GstLAL inspiral search for compact binary coalescences,”
2305.06286.

CanNON, K., C. HANNA, and J. PEOPLES (2015), “Likelihood-Ratio Ranking
Statistic for Compact Binary Coalescence Candidates with Rate Estimation,”
1504.04632.

CanNON, K., C. HANNA, and D. KEPPEL (2013) “Method to estimate the
significance of coincident gravitational-wave observations from compact binary
coalescence,” Phys. Rev. D, 88(2), p. 024025, 1209.0718.

CcantoN, T. D.; A. H. Nitz, B. GADRE, G. S. C. DAVIES, V. VILLA-ORTEGA,
T. DENT, I. HARRY, and L. X1A0 (2021) “Real-time Search for Compact Binary
Mergers in Advanced LIGO and Virgo’s Third Observing Run Using PyCBC Live,”
The Astrophysical Journal, 923(2), p. 254.

URL https://dx.doi.org/10.3847/1538-4357/ac2f9a

Daviges, G. S., T. DENT, M. TAprAI, I. HARRY, C. McISAAC, and A. H. NiTz
(2020) “Extending the PyCBC search for gravitational waves from compact binary
mergers to a global network,” Physical Review D, 102(2).

URL https://doi.org/10.1103%2Fphysrevd.102.022004

NiTz, A. H. (2018) “Rapid detection of gravitational waves from compact binary
mergers with PyCBC Live,” Physical Review D, 98(2).

AUBIN, F., F. BRIGHENTI, R. CHIERICI, D. ESTEVEZ, G. GRECO, G. M. GUIDI,
V. JustE, F. MARION, B. MOURS, E. NITOGLIA, O. SAUTER, and V. SORDINI
(2021) “The MBTA pipeline for detecting compact binary coalescences in the third
LIGO-Virgo observing run,” Classical and Quantum Gravity, 38(9), p. 095004.
URL https://doi.org/10.1088%2F1361-6382%2Fabe913

Apawms, T., D. Buskuric, V. GERMAIN, G. M. Guipi, F. MARION, M. MON-
TANI, B. MoOURS, F. PIERGIOVANNI, and G. WANG (2016) “Low-latency analysis
pipeline for compact binary coalescences in the advanced gravitational wave detec-
tor era,” Classical and Quantum Gravity, 33(17), p. 175012.

URL https://dx.doi.org/10.1088/0264-9381/33/17/175012

CHu, Q. (2022) “SPIIR online coherent pipeline to search for gravitational waves
from compact binary coalescences,” Physical Review D, 105(2).

147



[32]

[33]

[41]

(2017) Low-latency detection and localization of gravitational waves from
compact binary coalescences, Ph.D. thesis, The University of Western Australia.

VENUMADHAV, T., B. ZACKAY, J. ROULET, L. DAI, and M. ZALDARRIAGA
(2019) “New search pipeline for compact binary mergers: Results for binary black
holes in the first observing run of Advanced LIGO,” Phys. Rev. D, 100, p. 023011.
URL https://link.aps.org/doi/10.1103/PhysRevD.100.023011

ZACKAY, B., L. DAI, T. VENUMADHAV, J. ROULET, and M. ZALDARRIAGA
(2021) “Detecting gravitational waves with disparate detector responses: Two new
binary black hole mergers,” Physical Review D, 104(6).

URL https://doi.org/10.1103%2Fphysrevd.104.063030

Moke, B., P. BRADY, B. STEPHENS, E. KATsAvOUNIDIS, R. WILLIAMS, and
F. Zuanc (2014), “GraceDB: A Gravitational Wave Candidate Event Database,” .
URL https://dcc.1ligo.org/LIGD-T1400365

LIGO ScCIENTIFIC COLLABORATION AND VIRGO COLLABORATION (2017) GCN,
21505.
URL https://gcn.gsfc.nasa.gov/other/G298048.gcn3

ABBOTT, B. P. ET AL. (2017) “GW170817: Observation of Gravitational Waves
from a Binary Neutron Star Inspiral,” Phys. Rev. Lett., 119(16), p. 161101, 1710.
05832.

(2018) “GW170817: Measurements of Neutron Star Radii and Equation of
State,” Phys. Rev. Lett., 121, p. 161101.
URL https://link.aps.org/doi/10.1103/PhysRevLett.121.161101

(2019) “Tests of General Relativity with GW170817,” Phys. Rev. Lett.,
123, p. 011102.
URL https://link.aps.org/doi/10.1103/PhysRevLett.123.011102

Hanna, C.; J. KENNINGTON, S. SAKON, S. PRIVITERA, M. FERNANDEZ,
J. WANG, C. MEgssick, A. PAce, K. CaANNON, P. JosHI, R. HUXFORD,
S. CaupiLL, C. CHAN, B. Cousins, J. D. E. CREIGHTON, B. EWING, H. FONG,
P. GopwiN, R. MAGEE, D. MEACHER, S. MORISAKI, D. MUKHERJEE, H. OHTA,
S. SACHDEV, D. SINGH, R. Tapria, L. TsukaDpA, D. Tsuna, T. TsuTsul,
K. UENO, A. VIETS, L. WADE, and M. WADE (2023) “Binary tree approach
to template placement for searches for gravitational waves from compact binary
mergers,” Phys. Rev. D, 108, p. 042003.

URL https://link.aps.org/doi/10.1103/PhysRevD.108.042003

SAKON, S. ET AL. (2022), “Template bank for compact binary mergers in the fourth
observing run of Advanced LIGO, Advanced Virgo, and KAGRA,” 2211.16674.

148



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

JosHl, P., L. TSUKADA, and C. HANNA (2023), “Background Filter: A method
for removing signal contamination during significance estimation of a GstLAL
anaysis,” 2305.18233.

Ewing, B., R. HUXFORD, D. SINGH, L. TsukADA, C. HANNA, Y.-J. HUANG,
P. JosHi, A. K. Y. L1, R. MAGEE, C. MESSICK, A. PACE, A. RAY, S. SACHDEV,
S. SAKON, R. TAPIA, S. ADHICARY, P. BARAL, A. BAYLOR, K. CANNON,
S. CAuUDILL, S. S. CHAUDHARY, M. W. CoucGHLIN, B. Cousins, J. D. E.
CREIGHTON, R. Essick, H. FonG, R. N. GEORGE, P. GODWIN, R. HARADA,
J. KENNINGTON, S. KUWAHARA, D. MEACHER, S. MORISAKI, D. MUKHERJEE,
W. Ni1u, C. PosNANSKY, A. ToivoNeEN, T. Tsutsul, K. UENO, A. VIETS,
L. WADE, M. WADE, and G. WARATKAR (2023) “Performance of the low-latency
GstLAL inspiral search towards LIGO, Virgo, and KAGRA'’s fourth observing run,”
2305.05625.

“IGWN Public Alerts User Guide,” https://emfollow.docs.ligo.org/
userguide/analysis/index.html##alert-threshold.

SINGER, L. P. and L. R. PRICE (2016), “Rapid Bayesian position reconstruction
for gravitational-wave transients,” 1508.03634.

SINGER, L. P. ET AL. (2016) “Going the Distance: Mapping Host Galaxies of
LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and
Targeted Follow-up,” Astrophys. J. Lett., 829(1), p. L15, 1603.07333.

ASHTON, G. ET AL. (2019) “BILBY: A user-friendly Bayesian inference library for
gravitational-wave astronomy,” Astrophys. J. Suppl., 241(2), p. 27, 1811.02042.

ROMERO-SHAW, I. M. ET AL. (2020) “Bayesian inference for compact binary coales-
cences with bilby: validation and application to the first LIGO-Virgo gravitational-
wave transient catalogue,” Mon. Not. Roy. Astron. Soc., 499(3), pp. 3295-3319,
2006.00714.

NASA GCN.
URL https://gcn.gsfc.nasa.gov/about.html

Rosg, C. A. (2024) Rapid Parameter Estimation of Compact Binary Coalescences
with Gravitational Waves, Ph.D. thesis, The University of Wisconsin-Milwaukee.

RAY, A. ET AL. (2023), “When to Point Your Telescopes: Gravitational Wave
Trigger Classification for Real-Time Multi-Messenger Followup Observations,” 2306 .
07190.

VILLA-ORTEGA, V., T. DENT, and A. C. BARROSO (2022) “Astrophysical
Source Classification and Distance Estimation for PyCBC Live,” arXiv preprint
arXiw:2203.10080.

149



[53]

[58]

[59]

[60]

[61]

[62]

ANDRES, N., M. Assibuo, F. AUBIN, R. CHIERICI, D. ESTEVEZ, F. FAEDI,
G. M. Guipi, V. JUsTE, F. MARION, B. MOURS, E. NITOGLIA, and V. SORDINI
(2022) “Assessing the compact-binary merger candidates reported by the MBTA
pipeline in the LIGO—-Virgo O3 run: probability of astrophysical origin, classifi-
cation, and associated uncertainties,” Classical and Quantum Gravity, 39(5), p.
055002.

URL https://dx.doi.org/10.1088/1361-6382/ac482a

P1oTRZKOWSKI, B. (2022) Searching for Gravitational Wave Associations with
High-Energy Astrophysical Transients, Ph.D. thesis, The University of Wisconsin-
Milwaukee.

URBAN, A. L. (2016) Monsters in the dark: High energy signatures of black
hole formation with multimessenger astronomy, Ph.D. thesis, The University of
Wisconsin-Milwaukee.

CHO, M.-A. (2019) Low-latency searches for gravitational waves and their electro-
magnetic counterparts with Advanced LIGO and Virgo, Ph.D. thesis, University of
Maryland, College Park.

CoLLABORATION, T. L. S. and THE VIRGO COLLABORATION (2021) “Population
Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave
Transient Catalog,” The Astrophysical Journal Letters, 913(1), p. L7.

URL https://dx.doi.org/10.3847/2041-8213/abe949

ABBOTT, R. ET AL. (2023) “Population of Merging Compact Binaries Inferred
Using Gravitational Waves through GWTC-3,” Phys. Rev. X, 13(1), p. 011048,
2111.03634.

ABBOTT, B. P. ET AL. (2019) “Tests of general relativity with the binary black
hole signals from the LIGO-Virgo catalog GWTC-1,” Phys. Rev. D, 100, p. 104036.
URL https://link.aps.org/doi/10.1103/PhysRevD.100.104036

ABBOTT, R. ET AL. (2021) “Tests of general relativity with binary black holes
from the second LIGO-Virgo gravitational-wave transient catalog,” Phys. Rev. D,
103, p. 122002.

URL https://link.aps.org/doi/10.1103/PhysRevD.103.122002

ABBOTT, B. P. ET AL. (2016) “Tests of General Relativity with GW150914,”
Phys. Rev. Lett., 116, p. 221101.
URL https://link.aps.org/doi/10.1103/PhysRevLett.116.221101

MAGEE, R., A.-S. DeutscH, P. McCLincy, C. HanNnNA, C. HORST,
D. MEACHER, C. MESSICK, S. SHANDERA, and M. WADE (2018) “Methods for
the detection of gravitational waves from subsolar mass ultracompact binaries,”
Phys. Rev. D, 98, p. 103024.

URL https://link.aps.org/doi/10.1103/PhysRevD.98.103024

150



[63]

[64]

[68]

[69]

[70]

[71]

CANNON, K. ET AL. (2012) “Toward Early-Warning Detection of Gravitational
Waves from Compact Binary Coalescence,” Astrophys. J., 748, p. 136, 1107 .2665.

SACHDEV, S., R. MAGEE, C. HANNA, K. CANNON, L. SINGER, J. R. SK,
D. MUKHERJEE, S. CAUDILL, C. CHAN, J. D. CREIGHTON, ET AL. (2020) “An
early-warning system for electromagnetic follow-up of gravitational-wave events,”
The Astrophysical Journal Letters, 905(2), p. L25.

MAGEE, R., D. CHATTERJEE, L. P. SINGER, S. SACHDEV, M. KOVALAM,
G. Mo, S. ANDERSON, P. BRADY, P. BROCKILL, K. CANNON, ET AL. (2021)
“First demonstration of early warning gravitational-wave alerts,” The Astrophysical
Journal Letters, 910(2), p. L21.

SINGH, D. (2024) Ezploring Dark Matter Through Gravitational- Wave Observations,
Ph.D. thesis, The Pennsylvania State University.

Hanna, C.; J. KENNINGTON, W. NI1U, S. SAKON, D. SINGH, S. ADHICARY,
P. BArRAL, A. BAYLOR, K. CANNON, S. CaupiLL, B. Cousins, J. D. E.
CREIGHTON, B. EwWING, H. FONG, R. N. GEORGE, P. GODWIN, R. HARADA,
Y.-J. HUANG, R. HUXFORD, P. JosHI, S. KuwAHARA, A. K. Y. L1, R. MAGEE,
D. MEACHER, C. MESSICK, S. MORISAKI, D. MUKHERJEE, A. PACE, C. Pos-
NANSKY, A. RAY, S. SACHDEV, S. SCHMIDT, U. SHAH, R. TAPIA, L. TSUKADA,
K. Ueno, A. VIETS, L. WADE, M. WADE, Z. YARBROUGH, and N. ZHANG
(2024), “Template bank for sub solar mass compact binary mergers in the fourth
observing run of Advanced LIGO, Advanced Virgo, and KAGRA,” 2412.10951.
URL https://arxiv.org/abs/2412.10951

SACHDEV, S., R. MAGEE, C. HANNA, R. EwWING, D. SINGH, R. HUXFORD,
L. TSukADA, S. SAKON, P. JosHI, A. RAy, W. Niu, A. BAYLOR, P. BARAL,
and A. L1 (2023), “GstLAL EW Online Documents,” LIGO Document T2200352-
V7.

URL https://dcc.ligo.org/LIGO-T2200352/public

LIGO, Virco, AND KAGRA COLLABORATIONS (2025), “LIGO, Virgo, and
KAGRA Observing Run Plans,” Accessed: 2025-02-06.
URL https://observing.docs.ligo.org/plan/

KriMENKO, S., G. VEDOVATO, M. DRAGO, F. SALEMI, V. TiwARI, G. PRODI,
C. LazzAaro, K. ACKLEY, S. TiwaRl, C. DA SiLvA, ET AL. (2016) “Method
for detection and reconstruction of gravitational wave transients with networks of
advanced detectors,” Physical Review D, 93(4), p. 042004.

KLIMENKO, S., S. MOHANTY, M. RAKHMANOV, and G. MITSELMAKHER (2005)
“Constraint likelihood analysis for a network of gravitational wave detectors,”
Physical Review D—Particles, Fields, Gravitation, and Cosmology, 72(12), p.
122002.

151



[72]

[73]

[74]

[75]

[82]

[83]

[84]

“Information-theoretic approach to the gravitational-wave burst detection problem,’

LyncH, R., S. VITALE, R. Essick, E. KATSAVOUNIDIS, and F. ROBINET (2017)

Y

Physical Review D, 95(10), p. 104046.

JosHI, P. ET AL. (2024), “Method to get Better Sky Maps in a GstLAL Low-
Latency Analysis,” In preparation.

HuxrorD, R. (2024) Towards Exclusive Low-Latency Detection of Gravitational
Waves and the Inference of Neutron Star Equation of State With Next Generation
Detection Networks, Ph.D. thesis, The Pennsylvania State University.

EwiNG, B. (2024) Gravitational Wave Searches Towards Multi-Messenger and
Multi-Band Astronomy, Ph.D. thesis, The Pennsylvania State University.

COLLABORATION, L. S., V. CoOLLABORATION, K. COLLABORATION, ET AL.
(2024) “Observation of Gravitational Waves from the Coalescence of a 2.5-4.5 M,
Compact Object and a Neutron Star,” The Astrophysical Journal Letters, 970(2),
p. L34.

URL http://dx.doi.org/10.3847/2041-8213/ad5beb

LVC (2023), “GRB 230529A: LIGO/Virgo detection of gravitational waves as-
sociated with a gamma-ray burst,” https://gcn.gsfc.nasa.gov/notices_1/
52305629ay . 1vc.

CoLLABORATION, T. L. S., T. V. COLLABORATION, and T. K. COLLABORATION
(2023), “GCN CIRCULAR NUMBER: 33891, LIGO/Virgo/KAGRA S230529ay:
Updated Sky localization and EM Bright Classification,” https://gcn.nasa.gov/
circulars/33891.txt, accessed: 2025-02-06.

Lico SciENTIFIC COLLABORATION, VIRGO COLLABORATION, and KAGRA
COLLABORATION (2025) “LIGO/Virgo/KAGRA S250109bi: Identification of a
GW compact binary merger candidate,” GRB Coordinates Network, 38863, p. 1.

(2024) “LIGO/Virgo/KAGRA S241230ev: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 38735, p. 1.

(2024) “LIGO/Virgo/KAGRA 5241230bd: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 38722, p. 1.

(2024) “LIGO/Virgo/KAGRA S241225¢: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 38666, p. 1.

(2024) “LIGO/Virgo/KAGRA S5241210d: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 38512, p. 1.

—— (2024) “LIGO/Virgo/KAGRA S241201ac: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 38402, p. 1.

152



[85]

(2024) “LIGO/Virgo/KAGRA 5241122a: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 38301, p. 1.

(2024) “LIGO/Virgo/KAGRA S241114bi: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 38228, p. 1.

(2024) “LIGO/Virgo/KAGRA S241113p: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 38204, p. 1.

(2024) “LIGO/Virgo/KAGRA S241110br: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 38155, p. 1.

(2024) “LIGO/Virgo/KAGRA S5241109p: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 38138, p. 1.

(2024) “LIGO/Virgo/KAGRA S5241101ee: Identification of a GW compact
binary merger candidate,” GCN Circular 38036.

URL https://gcn.nasa.gov/circulars/380367view=index\&query=
S241101ee\&startDate=\&endDate=\&sort=circularID

[91] —— (2024) “LIGO/Virgo/KAGRA S241011k: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 37776, p. 1.

[92]

(2024) “LIGO/Virgo/KAGRA 5241009em: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 37750, p. 1.

[93]

(2024) “LIGO/Virgo/KAGRA S2410091: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 37743, p. 1.

[94] —— (2024) “LIGO/Virgo/KAGRA 5241002e¢: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 37663, p. 1.

[95] (2024) “LIGO/Virgo/KAGRA S240921cw: Identification of a GW compact

binary merger candidate,” GRB Coordinates Network, 37586, p. 1.
[96]

(2024) “LIGO/Virgo/KAGRA S240917cb: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 37534, p. 1.

[97] — (2024) “LIGO/Virgo/KAGRA S240916ar: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 37530, p. 1.

[98] (2024) “LIGO/Virgo/KAGRA S240915bd: Identification of a GW compact

binary merger candidate,” GRB Coordinates Network, 37514, p. 1.
[99]

(2024) “LIGO/Virgo/KAGRA 5240813d: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 37170, p. 1.

[100] ——— (2024) “LIGO/Virgo/KAGRA 5240813c: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 37168, p. 1.

153



[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

(2024) “S240807h: Identification of a GW compact binary merger candidate,”
GRB Coordinates Network, 37096, p. 1.

(2024) “LIGO/Virgo/KAGRA S240716b: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 36879, p. 1.

(2024) “LIGO/Virgo/KAGRA S240703ad: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 36816, p. 1.

(2024) “LIGO/Virgo/KAGRA S240627by: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 36772, p. 1.

(2024) “LIGO/Virgo/KAGRA S5240525p: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 36539, p. 1.

—— (2024) “LIGO/Virgo/KAGRA S240514c: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 36473, p. 1.

(2024) “LIGO/Virgo/KAGRA S240428dr: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 36340, p. 1.

(2024) “LIGO/Virgo/KAGRA 5240422ed: Identification of a GW compact
binary merger candidate,” GRB Coordinates Network, 36236, p. 1.

ABBOTT, B. P. ET AL. (2016) “Observation of Gravitational Waves from a Binary
Black Hole Merger,” Phys. Rev. Lett., 116(6), p. 061102, 1602.03837.

COLLABORATION, L. (2024), “LIGO-Virgo-KAGRA Cumulative Detection plot -
01-0O4b,” .
URL https://dcc.ligo.org/LIG0-G2302098-v21/public

ABBOTT, R. ET AL. (2021) “Observation of Gravitational Waves from Two Neutron
Star-Black Hole Coalescences,” Astrophys. J. Lett., 915(1), p. L5, 2106.15163.

YANG, S.-C.; W.-B. HAN, and G. WANG (2020) “Tests of weak equivalence prin-
ciple with the gravitational wave signals in the LIGO-Virgo catalogue GWTC-1,”
Monthly Notices of the Royal Astronomical Society: Letters, 499(1), pp. L53—
L57, https://academic.oup.com/mnrasl/article-pdf/499/1/1563/54638219/
mnrasl\_499\_1\_153.pdf.

URL https://doi.org/10.1093/mnrasl/slaal43

EzqQuiaca, J. M. (2021) “Hearing gravity from the cosmos: GWTC-2 probes
general relativity at cosmological scales,” Physics Letters B, 822, p. 136665.
URL https://www.sciencedirect.com/science/article/pii/
S50370269321006055

154



[114]

[115]

[116]

[117)

[118]

[119]
[120]

[121]

[122]

[123]

COLLABORATION, T. L. S. and THE VIRGO COLLABORATION (2021) “A
Gravitational-wave Measurement of the Hubble Constant Following the Second
Observing Run of Advanced LIGO and Virgo,” The Astrophysical Journal, 909(2),
p. 218.

URL https://dx.doi.org/10.3847/1538-4357/abdcb7

Wu, S., Z. Ca0, and Z.-H. ZHU (2020) “Measuring the eccentricity of binary
black holes in GWTC-1 by using the inspiral-only waveform,” Monthly Notices
of the Royal Astronomical Society, 495(1), pp. 466-478, https://academic.oup.
com/mnras/article-pdf/495/1/466/33387647/staall76.pdf.

URL https://doi.org/10.1093/mnras/staall76

Wang, H.-T., P.-C. L1, J.-L. JianG, G.-W. YUAN, Y.-M. Hu, and Y.-Z. FAN
(2021) “Constrains on the electric charges of the binary black holes with GWTC-1
events,” The European Physical Journal C, 81(8), p. 769.

URL https://doi.org/10.1140/epjc/s10052-021-09555-1

BourraNAls, Y., M. MAPELLI, F. SANTOLIQUIDO, N. GracoBBo, U. N.
D1 CARLO, S. RASTELLO, M. C. ARTALE, and G. IoRrIO (2021) “New insights
on binary black hole formation channels after GWTC-2: young star clusters versus
isolated binaries,” Monthly Notices of the Royal Astronomical Society, 507(4),
pp. 5224-5235, https://academic.oup.com/mnras/article-pdf/507/4/5224/
40392757/stab2438. pdf.

URL https://doi.org/10.1093/mnras/stab2438

COLLABORATION, T. L. S. and THE VIRGO COLLABORATION (2019) “Binary
Black Hole Population Properties Inferred from the First and Second Observing
Runs of Advanced LIGO and Advanced Virgo,” The Astrophysical Journal Letters,
882(2), p. L24.

URL https://dx.doi.org/10.3847/2041-8213/ab3800

HANNA, C. (2024), “manifold,” https://git.ligo.org/chad-hanna/manifold.

(2022), “LIGO Sensitivity (190 Mpc) (used for O4 simulations),” .
URL https://dcc.ligo.org/public/0165/T2000012/002/aligo_04high.txt

Fong, H. K. Y. (2018) From simulations to signals: Analyzing gravitational waves
from compact binary coalescences, Ph.D. thesis, Toronto U.
URL https://tspace.library.utoronto.ca/handle/1807/91831

CannoN, K., A. CHapmaN, C. HANNA, D. KEPPEL, A. C. SEARLE, and
A. J. WEINSTEIN (2010) “Singular value decomposition applied to compact binary
coalescence gravitational-wave signals,” Phys. Rev. D, 82, p. 044025.

URL https://link.aps.org/doi/10.1103/PhysRevD.82.044025

BuonaNnNO, A., B. R. IYER, E. OCHSNER, Y. PAN, and B. S. SATHYAPRAKASH
(2009) “Comparison of post-Newtonian templates for compact binary inspiral signals

155



[124]

[125]

[126]

[127]

128]

[129]

[130]

[131]

[132]

[133]

[134]

in gravitational-wave detectors,” Phys. Rev. D, 80, p. 084043.
URL https://link.aps.org/doi/10.1103/PhysRevD.80.084043

Bong, A., L. SHAO, A. TARACCHINI, A. BUONANNO, S. BABAK, I. W. HARRY,
I. HINDER, S. OSSOKINE, M. PURRER, V. RaymonD, T. CuHu, H. FoNgG,
P. KuMAR, H. P. PFEIFFER, M. BOYLE, D. A. HEMBERGER, L. E. KIDDER,
G. LOVELACE, M. A. SCHEEL, and B. SZILAGYI (2017) “Improved effective-one-
body model of spinning, nonprecessing binary black holes for the era of gravitational-
wave astrophysics with advanced detectors,” Phys. Rev. D, 95, p. 044028.

URL https://link.aps.org/doi/10.1103/PhysRevD.95.044028

CALLISTER, T., J. KANNER, T. MASSINGER, S. DHURANDHAR, and A. WEIN-
STEIN (2017) “Observing gravitational waves with a single detector,” Classical and
Quantum Gravity, 34(15), p. 155007.

Lico ScIENTIFIC COLLABORATION, VIRGO COLLABORATION, and KAGRA
COLLABORATION (2024) “LIGO/Virgo/KAGRA S240422ed: Updated significance
estimate,” GRB Coordinates Network, 36812, p. 1.

MEssIcK, C. (2019) Detecting Gravitational Waves for Multi-Messenger Astro,
Ph.D. thesis.

COLLABORATION, L. S. and V. COLLABORATION, “GWTC-2 Data Release:
Sensitivity of Matched Filter Searches to Binary Black Hole Merger Populations,”
https://dcc.ligo.org/P2000217/public.

ABBOTT, R., T. D. ABBOTT, F. ACERNESE, K. ACKLEY, C. ADAMS, N. AD-
HIKARI, R. X. ADHIKARI, V. B. ApyA, C. AFFELDT, D. AGARWAL, ET AL.
(2022) “Search for intermediate-mass black hole binaries in the third observing run
of Advanced LIGO and Advanced Virgo,” Astronomy & astrophysics, 659, p. A84.

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, and THE
KAGRA COLLABORATION (2023), “Search for gravitational-lensing signatures in
the full third observing run of the LIGO-Virgo network,” 2304 .08393.

ABBOTT, B. P. ET AL. (2017) “Multi-messenger Observations of a Binary Neutron
Star Merger,” Astrophys. J. Lett., 848, .12, 1710.05833.

MUKHERJEE, D. ET AL. (2018) “The GstLAL template bank for spinning compact
binary mergers in the second observation run of Advanced LIGO and Virgo,”
1812.05121.

“IGWN Public Alerts User Guide:Observing Capabilities,” https://emfollow.
docs.ligo.org/userguide/capabilities.html.

“Bottle: Python Web Framework: https://bottlepy.org/docs/dev/,” .

156



[135]

[136]

[137]

[138)]

[139]

[140]

[141]

[142]

[143]

[144]

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, THE
KAGRA COLLABORATION, R. ABBOTT, ET AL. (2023), “Open data from the
third observing run of LIGO, Virgo, KAGRA and GEO,” .

URL https://arxiv.org/abs/2302.03676

ABBOTT, B. P. ET AL. (2020) “GW190425: Observation of a Compact Binary
Coalescence with Total Mass ~ 3.4M,” 2001.01761.

Hanna, C., P. JosHi, R. HuxrorD, K. CANNON, S. CAuDILL, C. CHAN,
B. Cousins, J. D. E. CrReiGHTON, B. EwiNnG, M. FERNANDEZ, H. FoNg,
P. GopwiN, R. MAGEE, D. MEACHER, C. MESSICK, S. MORISAKI, D. MUKHER-
JEE, H. OHTA, A. PACE, S. PRIVITERA, S. SACHDEV, S. SAKON, D. SINGH,
R. TAriA, L. TSUKADA, D. Tsuna, T. Tsutsul, K. UENO, A. VIETS, L. WADE,
M. WADE, and J. WANG (2022) “Metric assisted stochastic sampling search for
gravitational waves from binary black hole mergers,” Phys. Rev. D, 106, p. 084033.
URL https://link.aps.org/doi/10.1103/PhysRevD.106.084033

ABBOTT, B. P. ET AL. (2016) “GW151226: Observation of Gravitational Waves
from a 22-Solar-Mass Binary Black Hole Coalescence,” Phys. Rev. Lett., 116(24),
p. 241103, 1606.04855.

ABBOTT, R., T. ABBOTT, S. ABRAHAM, F. ACERNESE, K. ACKLEY, A. ADAMS,
C. Apawms, R. ADHIKARI, V. ADYA, C. AFFELDT, ET AL. (2021) “Observa-
tion of gravitational waves from two neutron star—black hole coalescences,” The
Astrophysical Journal Letters, 915(1), p. L5.

TRrROVATO, A. (2020) “GWOSC: Gravitational Wave Open Science Center,” PoS,
Asterics2019, p. 082.

ZACKAY, B., L. DA1, T. VENUMADHAV, J. ROULET, and M. ZALDARRIAGA
(2019) “Detecting Gravitational Waves With Disparate Detector Responses: Two
New Binary Black Hole Mergers,” 1910.09528.

VENUMADHAV, T., B. ZACKAY, J. ROULET, L. DAI, and M. ZALDARRIAGA
(2019) “New Binary Black Hole Mergers in the Second Observing Run of Advanced
LIGO and Advanced Virgo,” 1904.07214.

ZACKAY, B., T. VENUMADHAV, L. DAI, J. ROULET, and M. ZALDARRIAGA
(2019) “Highly spinning and aligned binary black hole merger in the Advanced
LIGO first observing run,” Phys. Rev., D100(2), p. 023007, 1902.10331.

VENUMADHAV, T., B. ZACKAY, J. ROULET, L. DAI, and M. ZALDARRIAGA

(2019) “New search pipeline for compact binary mergers: Results for binary black
holes in the first observing run of Advanced LIGO,” Phys. Rev., D100(2), p. 023011,
1902.10341.

157



[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Nitz, A. H., C. D. CAPANO, S. KUMAR, Y.-F. WANG, S. KASTHA, M. SCHAFER,
R. DHURKUNDE, and M. CABERO (2021), “3-OGC: Catalog of gravitational waves
from compact-binary mergers,” 2105.09151.

FiNnn, L. S. and D. F. CHERNOFF (1993) “Observing binary inspiral in
gravitational radiation: One interferometer,” Phys. Rev., D47, pp. 2198-2219,
gr-qc/9301003.

OWEN, B. J. (1996) “Search templates for gravitational waves from inspiraling
binaries: Choice of template spacing,” Phys. Rev. D, 53, pp. 6749-6761.
URL https://link.aps.org/doi/10.1103/PhysRevD.53.6749

ALLEN, B., W. G. ANDERSON, P. R. BrRADY, D. A. BROWN, and J. D. E.
CREIGHTON (2012) “FINDCHIRP: An Algorithm for detection of gravitational
waves from inspiraling compact binaries,” Phys. Rev., D85, p. 122006, gr-qc/
0509116.

BaABAK, S., R. Biswas, P. BRADY, D. A. BROwN, K. CANNON, C. D. CAPANO,
J. H. CLayTON, T. COKELAER, J. D. CREIGHTON, T. DENT, ET AL. (2013)

“Searching for gravitational waves from binary coalescence,” Physical Review D,
87(2), p. 024033.

Nitz, A. H., T. DENT, T. DAL CANTON, S. FAIRHURST, and D. A. BROWN
(2017) “Detecting binary compact-object mergers with gravitational waves: Un-
derstanding and Improving the sensitivity of the PyCBC search,” Astrophys. J.,
849(2), p. 118, 1705.01513.

HARRy, I. W., B. ALLEN, and B. SATHYAPRAKASH (2009) “Stochastic template

placement algorithm for gravitational wave data analysis,” Physical Review D,
80(10), p. 104014,

AJiTH, P., N. FOoTOPOULOS, S. PRIVITERA, A. NEUNZERT, N. MAZUMDER, and
A. WEINSTEIN (2014) “Effectual template bank for the detection of gravitational
waves from inspiralling compact binaries with generic spins,” Physical Review D,
89(8), p. 084041.

HARRY, L., S. PRIVITERA, A. BOHE, and A. BUONANNO (2016) “Searching for
gravitational waves from compact binaries with precessing spins,” Physical Review

D, 94(2), p. 024012,

CornisH, N. J. and J. CROWDER (2005) “LISA data analysis using Markov chain
Monte Carlo methods,” Physical Review D, 72(4), p. 043005.

VEITCH, J., V. RAyMOND, B. FARR, W. FARR, P. GRAFF, S. VITALE, B. Av-
LOTT, K. BLACKBURN, N. CHRISTENSEN, M. COUGHLIN, W. DEL Po0zzo0,
F. FErOZ, J. GAIR, C.-J. HASTER, V. KALOGERA, T. LITTENBERG, I. MAN-
DEL, R. O’SHAUGHNESSY, M. PITKIN, C. RODRIGUEZ, C. ROVER, T. SIDERY,

158



[156]

[157]
[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]
[167]

R. SmiTH, M. VAN DER SLUYS, A. VECCHIO, W. VOUSDEN, and L. WADE
(2015) “Parameter estimation for compact binaries with ground-based gravitational-
wave observations using the LALInference software library,” Phys.Rev.D, 91(4), p.
042003, 1409.7215.

ET AL. (LIGO SCIENTIFIC COLLABORATION, R. A. and V. COLLABORATION)
(2021) “Open data from the first and second observing runs of Advanced LIGO
and Advanced Virgo,” SoftwareX, 13, p. 100658.

URL https://www.sciencedirect.com/science/article/pii/
52352711021000030

(2023), “GstLAL,” https://git.ligo.org/lscsoft/gstlal.

(2021), “Open Science Grid: Introduction,” .
URL https://opensciencegrid.org/about/introduction/

LIGO ScIENTIFIC COLLABORATION (2018), “LIGO Algorithm Library - LAL-
Suite,” free software (GPL).

AsHTON, G., S. THIELE, Y. LECOEUCHE, J. MCIVER, and L. K. NUTTALL
(2021), “Parameterised population models of transient non-Gaussian noise in the
LIGO gravitational-wave detectors,” 2110.02689.

Davis, D., L. V. WHITE, and P. R. SAuLsON (2020) “Utilizing al.IGO glitch
classifications to validate gravitational-wave candidates,” Classical and Quantum
Gravity, 37(14), p. 145001.

URL http://dx.doi.org/10.1088/1361-6382/ab91e6

FAIRHURST, S. (2009) “Triangulation of gravitational wave sources with a network
of detectors,” New Journal of Physics, 11(12), p. 123006.

Nirz, A. H., T. DENT, G. S. DAVIES, S. KuMAR, C. D. CapPANO, I. HARRY,
S. MozzoN, L. NUTTALL, A. LUNDGREN, and M. TAPAI (2019) “2-OGC: Open
Gravitational-wave Catalog of binary mergers from analysis of public Advanced
LIGO and Virgo data,” 1910.05331.

LSC ALGORITHM LIBRARY, “LSC Algorithm Library,” http://www.lsc-group.
phys.uwm.edu/lal, uRL http://www.lsc-group.phys.uwn.edu/lal.

AAsi, J. ET AL. (2013) “Parameter estimation for compact binary coalescence
signals with the first generation gravitational-wave detector network,” Phys. Reuv.
D, 88, p. 062001.

URL https://link.aps.org/doi/10.1103/PhysRevD.88.062001

(2023), “gwcelery,” https://git.ligo.org/emfollow/gucelery.

FounbpaTioN, A. S., “Apache Kafka,” .
URL https://kafka.apache.org/

159



[168] SIDERY, T., B. AYLOTT, N. CHRISTENSEN, B. FARR, W. FARR, F. FEROZ,
J. GAIrR, K. GROVER, P. GRAFF, C. HANNA, V. KALOGERA, I. MAN-
DEL, R. O’SHAUGHNESSY, M. PITKIN, L. PrRICE, V. RAYMOND, C. ROVER,
L. SINGER, M. VAN DER SLUYS, R. J. E. SMITH, A. VECCHIO, J. VEITCH, and
S. VITALE (2014) “Reconstructing the sky location of gravitational-wave detected
compact binary systems: Methodology for testing and comparison,” Phys. Rev. D,
89, p. 084060.

URL https://link.aps.org/doi/10.1103/PhysRevD.89.084060

[169] NEWMARCH, J. and J. NEWMARCH (2017) “GStreamer,” Linuz Sound Program-
ming, pp. 211-221.

160



Vita
Prathamesh Joshi

Education

The Pennsylvania State University 2019-2024
Ph.D. in Physics (Advisor: Chad Hanna)

The Indian Institute of Technology, Bombay 20152019
B.Tech. in Engineering Physics

Fellowships and Awards

David H. Rank Memorial Physics Award 2020
The Pennsylvania State University

Homer F. Braddock Fellowship 2019, 2020
The Pennsylvania State University

Select Publications

P. Joshi, et al. How Many Times Should We Matched Filter Gravitational Wave Data?
A Comparison of GstLAL’s Online and Offline Performance, 2024.

P. Joshi, et al. Method to get Better Sky Maps in a GstLAL Low-Latency Analysis,
2024.

P. Joshi, et al. New Methods for Offline GstLAL Analyses, 2024.

P. Joshi, et al. Method for removing signal contamination during significance estimation
of a GstLAL analysis, Physical Review D, vol. 108, p. 084032, Oct. 2023.

L. Tsukada, P. Joshi, et al. Improved ranking statistics of the GstLAL inspiral search
for compact binary coalescences, Physical Review D, vol. 108, no. 4, Aug. 2023.

C. Hanna, P. Joshi, et al. Metric assisted stochastic sampling search for gravitational
waves from binary black hole mergers, Physical Review D, vol. 106, no. 8, Oct. 2022.

Collaboration publications with major contributions

A. G. Abagc, et al. Observation of Gravitational Waves from the Coalescence of a 2.5-4.5
M, Compact Object and a Neutron Star, 2024 ApJL 970 L34



