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ABSTRACT 

A semiclassical monopole configuration of generalized electro- 

magnetic charge and its associated electromagnetic field that satisfies 

Maxwell's equations and has a symmetry under the subgroup of the 

conformal group isomorphic to O(4) is explicitly constructed. This 

configuration has no singularities, carries quanta of two different 

kinds of angular momenta, and is called a vorton. It also carries 

topological charge. It is shown that the rotation associated with the 

angular momenta leads to a minimum energy for the configuration. 

Setting the energy to this minimum and quantizing the angular momenta 

of rotation yields a quantization condition for the magnitude of the 

electromagnetic charge. The smallest allowable nonzero electromagnetic 

charge carried by a configuration which has a nonzero topological 

charge equals 25.8e. 
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1. INTRODUCTION 

-Nearly half a century ago it was pointed out' that magnetic mono- 

poles may exist, and if so, they could furnish an explanation for the 

universal value of electric charge associated with elementary parti- 

cles. Recently it was shown2 that certain gauge transformations in 

compact, non-Abelian groups will yield field configurations having the 

character of finite energy monopole solutions to classical field equa- 

tions. Since that time, there has been an enormous amount of work3 on 

monopole solutions and their associated topological charge. 

The purpose of this paper is to give an explicit construction of 

a configuration of electromagnetic source and field that satisfies 

(generalized) Maxwell's equations and that at the same time manifests 

a symmetry with respect to transformations generated by the operators 

of a certain subgroup of the conformal group. The generalization of 

Maxwell's equations which is used here is one which treats the elec- 

tric and magnetic parts of the field tensor on an equal footing, 4 and 

the straightforward extension of such an approach to include both 

electric and magnetic charge. 5,6,7 It is seen that this configuration 

is a finite energy monopole solution without singularities which car- 

ries topological charge. As will be shown below, the topological 

charge is associated with the symmetry which is specifically built 

into the configuration. 

II. THE CONFORMAL CONNECTION 

It has been known for a long time that Maxwell's equations in 

Minkowski space are invariant under the operators of the conformal 
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group, 8 a group with 15 generators. These include the ten generators 

of the Poincar& group, M and P 
1-I' 

as well as five additional ones: 
I-lV 

K 
P 

the generator of special conformal transformations, and D, the 

generator of dilatations. The conformal group in Minkowski space is 

isomorphic to the group 0(4,2).' 

In an analysis of 0(4,2), it has been shown 10 that there is a 

system of six operators L. and X 
1 

i (where i = 1,2,3) which obey commu- 

tation relations isomorphic to those of O(4). [The global properties 

of this subgroup, however, differ from those of O(4); see Appendix C.1 

Invariance under the transformations generated by these operators is 

explicitly built into the configurations constructed in this paper. 

In terms of the generators of the conformal group, 

Li =M 
jk 

. . 
=, 33 k cyclic , 

and 

'i = (Ki - Pi)/2 , (1) 

Since CLi, X,1 = 0, no summation over i, one can simultaneously 

diagonalize L3 and X3. The transformations associated with L3, the 

usual angular momentum operator, are rotations about the z-axis, while 

those associated with X 
3' are shown to be toroidal "rotations," also 

- 
associated with the z-axis. The eigenvalues associated with L3 and X3 

have been shown to be either both integer or both half-integer. 10 

Clearly, these eigenvalues respectively denote the projections of 

ordinary angular momentum and toroidal angular momentum on the z-axis. 

In keeping with the semiclassical outlook of this paper, only integral 

eigenvalues are considered here. 
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While the nature of the rotation generated by L3 is familiar, and 

may Be measured by the azimuthal angle 9, the rotation generated by X3 

is not so well known. It is easy to generate this latter rotation or 

mapping by using the isomorphism of the conformal group in Minkowski 

space to the group 0(4,2) in a 6 dimensional pseudo-Euclidean space 

with coordinates 11 

1+x2 1-x2 - - 2 , 2 1 , (2) 

where 1-1 = 0,1,2,3 and A = 0,1,2,3,5,6. The metric in xV space is diag 

[1,-1,-1,-l] while that in nA space is diag [1,-1,-1,-1,-l, 11. By an 

arbitrary choice of K, all of Minkowski space maps onto the light cone 

in conformal space (i.e., 
A 

onto a hypersurface satisfying nA n = 0, 

where the usual summation over A is taken). 

The coordinates nl, n2, n3, and n5 are the ones which exhibit the 

O(4) (sub)symmetry. The operators Li generate rotations in the T,.- nk 
J 

plane, i, j, k, = 1, 2, or 3 and cyclic, while the operators Xi gener- 

at,e them in the n -n plane. i5 
Using an angle + to describe a rotation 

in the n - 1 n2 plane and an angle x to describe one in the n3- n5 plane, 

one writes 

11; = 7-1~ COS$+~\~ sin+ , 

7-1; = - nl sin$+n2 co+ 
(3) 

, 

II; = Q3 cosx + n 5 
sinx , 

and 

n; = - n3 sinx+ n5 cosx 1 

(4) 

The transformations (3) and (4) are clearly independent and leave 

A invariant the condition nAn = 0. 
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To study the effect of the rotation in 3-space associated with 

the angle x we set K =l and choose no = 0 (i.e., x 
0 = 0). This latter 

requi;ement ensures that the points of 3-space under the action of X 
3 

remain in the same time frame, as is appropriate for what we shall see 

are static configurations. These steps taken, one can easily demon- 

strate that the rotation induced by X 
3' moves the points of 3-space 

along circular paths which are identical to those of constant u and + 

in a toroidal coordinate system, l2 (a,vJ,4'). The toroidal angle + in 

this case (is opposite in sense to X and) measures displacement around 

the toroidal generating circles (labeled by u), while @ measures the 

usual azimuthal angle in the x-y plane. The O(4) symmetry of the con- 

figurations of this model, then, is an invariance with respect to arbitrary 

rotations of the electromagnetic charge distributions through the two 

angles $ and I$. Finite rotations are to be constructed as an integral of 

infinitesimal rotations. In the course of these (infinitesimal) rotations, 

the charge should be viewed as a (compressible) fluid, moving along with 

their local coordinate points as though entrained by them. 

The angle $I going from zero to 2~r effects one full rotation about 

z-axis, -mapping the points of 3-space back upon themselves. Likewise 

J, going from zero to 2a effects one full "rotation," also mapping 

3-space back upon itself. Such mappings are members of homotopy 

classes13 associated with the group under consideration, in this case 

the "O(4)" subgroup of the conformal group. If we perform both rota- 

tions at the same time (4 from 0 to HIT and $ from 0 to HIT), we again 

effect a mapping of all points in 3-space back onto themselves. This 

mapping has a topology like that of a Mabius strip (except that it has 

a full twist rather than the usual half-twist). Hence, intuition sug- 

gests that it is not a member of the homotopy class containing the 
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identity operation. This would mean that solutions to Maxwell's equa- 

tion.2 that are characterized by nonzero eigenvalues m 
9 

and m 
dJ 

would 

exhibit topological charge. In Appendix C it is shown that for the 

configurations constructed in this paper, this is indeed the case. 

Since we have indicated the O(4) symmetry in which we are inter- 

ested here is related to the toroidal coordinate system in Euclidean 

3-space, it would be natural to study solutions of the wave equation 

in a toroidal coordinate system. Unfortunately, the wave equation, 

0$=0 (and hence also Maxwell's equations), does not separate in 

toroidal coordinates, 14 and general solutions to the wave equation in 

this coordinate system have never been explicitly found. Consequently, 

the approach of this paper is to use the well established electro- 

dynamical relations between sources and fields, to construct monopole 

solutions which satisfy Maxwell's equations and which at the same time 

manifest the above described O(4) (sub)symmetry of the conformal group. 

The toroidal aspect that is so constructed into these solutions 

bears some resemblance to a smoke ring. However, rather than a local- 

ized vortex ring, the "motion" generated by X 3 is spread throughout 

all of 3-space (as is the rotational motion associated with L3). 

Because the vortex ring is an essential feature of the monopole con- 

figurations constructed in this paper and because they are subject to 

a quantum condition, we shall refer to them as "vortons." 

III. GENERAL VORTON STRUCTURE 

The basis of the vorton as a monopole configuration is an elec- 

tromagnetic charge density distribution q centered at the origin of 

3-space, normalized such that the total charge 
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Q = /1/q dV . (5) 

Since we are employing the generalized form of Maxwell's equa- 

tions, Q can be either electric or magnetic charge. In fact, by the 

symmetry of these equations, the vorton can in general carry both 

electric charge and magnetic charge given by Qsin@ and QcosO respec- 

tively, where 0 is the dyality angle 15 employed by Han and Bieden- 

harn. 7 For simplicity in the following calculations, we shall set 

0 = 4, yielding an electric vorton configuration. But we shall keep 

in mind that since electromagnetic theory is invariant with respect to 

this angle, 0 will be a free parameter of the vorton configuration. 

This charge distribution is assumed to be in a state of "double 

rotation," by which is meant that it behaves as though it is moving 

through equal increments of $ in equal increments of time, and through 

equal increments of $ in equal increments of time. The vorton config- 

uration is, therefore, characterized by "angular velocities" w 
+ 

and w 
IJ' 

While the 0 motion is just like that of a rigid body rotating about 

the z-axis in 3-space, the 9 rotation is rigid only in the six dimen- 

sional pseudo-Euclidean space. But as we shall see, in spite of the 

difference in these two kinds of rotations in 3-space, the integral 

quantities derived from them are equal--a manifestation of the under- 
- 

lying O(4) symmetry. 

Each type of (charge) rotation will be associated with an 

electromagnetic dipole-like field (magnetic for 0 = &IT/~, electric for 

0 = 0 or n), proportional to w 
$ 

and w 
tJ 

respectively. Since we assume 

that w 
4 

and w+ do not vary with time and the charge distribution is 
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constructed to be O(4) symmetric, these fields do not vary with time. 

In fa_ct, as a result of the symmetry built into the vorton configura- 

tion, none of the vortonic quantities vary with time, including the 

charge density itself; the (static) dipole-like fields are the only 

external evidence of the postulated motion of the charge. Therefore, 

the vorton configurations constructed in this paper are actually 

static solutions, and for this class of solutions we have no need to 

consider time as an independent variable. Consequently, we shall view 

the motion of the charge as "internal" in nature and the quantities w 
0 

and w 
4J 

as parameters rather than representing physical velocities. 

This view enables us to ignore the possible difficulty that there 

are regions of the vorton charge distribution to which are attributed 

internal velocities exceeding that of light. We recall that (phase) 

velocities exceeding that of light are common in certain microwave 

field configurations, but that such velocities are not regarded to be 

in contradiction with relativistic theory as long as they do not 

entail superluminal group velocities. On this point, we note that 

since the fields and charge distribution of the vorton configuration 

do not change with time, the relevant group velocities are zero. 

IV. DETAILED VORTON STRUCTURE 
- 

In order to attain an object exhibiting the desired O(4) symmetry, 

the charge density must be distributed such that there are equal incre- 

ments of charge contained within equal increments of $ and of $. 

Assuming further, that q is constant over a sphere of radius a, where 
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a sets the scale of a toroidal coordinate system, it is shown in 

Appezdix A that 

which is spherically symmetric. It follows that the electric dis- 

placement vector has only a radial component. Using Gauss's law one 

q = 4a3Q 

T2(a2 + r ) 23 (6) 

obtains in Gaussian units: 

D(r) = 

The last term in the square bracket is dominant for r>>a and we see 

that the distant field goes like Q/r', as expected for a monopole 

field. Forr-tO, q" 44 and Gauss's law yields D + i6Qr 

T2a3 3aa3' 
a linear 

dependence upon r which agrees with the lowest order nonzero term of 

the power series expansion of Eq. (7). 

In Appendix B the components of the magnetic field intensity vec- 

tor associated with w 
9 

were found: 

8a3Qti case 
H = 

r 3Tcr3 r 

where 
- 

(8) 

0 ar 2 5r + 3 tan-'r/a 3 
r 

= 22- 
(a2 + r ) 2(a2 + r2) 2a + , (9) 

r (a2 + r2)2 

and 
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where 
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8a3Qti sin@ 
= 

3ncr3 9 
, 

r-3 

(10) 

0 ar 2 5r - = 
22- 

0 

2(a2 + r > 4(a2 + r2> 

+ 3 tan-'r/a _ 
4a 22 (a2 + r ) 

* (11) 

In both expressions, the distant field is given by the arc tangent 

term in the curly brackets. The distant field,then, goes like r -3 and 

is the same as that of a dipole of moment 17 2 Qa w 
4 

. Thus, the effec- 
- 

tive radius of the rotating vortonic charge distribution is J2a, which 
m 

is just the result one obtains by calculating <p2> = L qp2r2dr = 2a2, 

where p is the usual cylindrical coordinate. 

Also derived in Appendix B is the component of the magnetic field 

intensity vector associated with w 
+ 

. By symmetry, one sees that 

3 has only a $I component: 

-4Qw a2r sin0 

H4J = 22 
nc(a2 + r > 

this 

(12) 

Again, we see that the distant field goes like r -3 , as is characteris- 

tic of a dipole. 

It is already evident that the vorton configuration has features 

which characterize objects now known as solitons. 18 It is therefore 

appropriate to investigate the topological charge of the vorton. One 

indicator of topological charge is a nonzero value for the Hopf invar- 

iant or Hopf charge. 19 In Appendix C, it is explicitly shown how to 

derive the relevant components of the vortonic electromagnetic field 
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from a specified triplet of scalar fields, (pi, from which is then 

obtaAned the value of the Hopf invariant Q,, a mapping index associ- 

ated with the (pi. 

QH = Crnirni j (13) 

where C is the largest common factor in m 
0 

and m 
+ 

; i.e., m' and m' are 
4 JI 

relatively prime. Thus, the vorton configuration carries a topologi- 

cal charge if and only if both types of angular momenta are present, 

in agreement with the intuition already drawn from the topology of the 

mappings of 3-space induced by the operators L 3 
and X 

3' 
It is also 

relevant to note that there is an infinite set of possible values of 

Q, for the vorton,indicating that Q, will be additive modulo infinity. 

(Recall that in 't Hooft's SO(3) model, 2 there was only one class of 

mappings in addition to that associated with the identity, and thus 

the associated topological charge for that model was additive modulo 2.) 

V. ENERGY AND ACTION INTEGRALS AND THE QUANTIZATION 
OF VORTONIC CHARGE 

Since the energy density of an electromagnetic field is 

(3 l rf + ii l &/87r, the energy Wm associated with the monopole field is 

proportional to Q2: 
- 

'rn = KmQ2 . 

Km is evaluated in Appendix D; 

Km = -ii 
4Ta ' 

(14) 

(15) 
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inversely proportional to the size of the vorton, as would be expected 

from dimensional analysis. Similarly, one can write for the energy of 
& 

the vorton configuration associated with the dipole-like components of 

its electromagnetic field the equation 

'd = Kd Q 
2 2 2 

(a9 6+ + a$. 6+) 

where the dimensionless quantities 

In Appendix D it is shown that we can set 

and take 

a+ = a4J = IL - 

(16) 

(17) 

(18) 

(19) 

Equation (19) is a manifestation of the O(4) symmetry built into the 

vorton.configuration. Again we see that the vorton energy is 

inversely proportional to the vorton size. 

We now observe that the variables C$ and $ are cyclic, and we may 

apply the Bohr-Sommerfeld quantum condition to the action (integrals) 

associated with these variables, quantizing them in units of Planck's 

constant h. These action integrals may be used to define associated 

angular momenta, which are thereby equivalently quantized in units of 

Ii, and which yield (semi-classical) equations of the form 
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and 

(20) 

(21) 

where m 
9 

and rn+ are integers respectively denoting the (quantized) 

projections of the Cp and $ angular momenta on the z-axis. In Appen- 

dix E the angular momenta associated with these rotations are defined 

in terms of action integrals and are then evaluated. Quantizing them 

according to the Bohr-Sommerfeld quantum condition, and using 

Eqs. (20) and (21) yields 

b9 = b 
JI 

=3xcZb . (22) 

Again we see that the O(4) symmetry obtains. 

Now Bip and @+ are related by Eqs. (20) and (21) which we use to 

define the quantity 
6 

F = -9 = !!k 
m4J “4J 

obtaining the relation 

Q2 = b% B 
/ . 

Using Eq. (24) in Eq. (14) yields - 

'rn = K; 
/ 2 

where 

Kil f K,b% . 

Similarly, Eq. (16) becomes 

(23) 

(24) 

(z-5) 

(26) 
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'd =K;" , 

where 

Kil - Kdb$ (rni + rni) . 

One can now see that the total vorton energy, 

-1 
wT = Wm + Wd = Km -$ + K; g 

will have a minimum with respect to Bwhen 

F2 = K;/K; . 

(27) 

(28) 

(29) 

(30) 

At this minimum 

'rn = 'd = (31) 

the monopole and dipole-like contributions are equal. It is straight- 

forward to reduce this minimum WT to the form 

(32) 

When g is such that WT is minimized, we have a (semi-classical) quan- 

tization condition on the vorton charge: 

Putting the values for the constants into Eq. (33) yields 

(33) 

(34) 
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We see that the allowable values for the quantized electromag- 

neti charge depend upon the value of the topological charge, as spec- 

ified by m 
+ 

and m 
tJ' 

If vortons would exist as physical entities, one 

presumes that those with the smallest nonzero topological charge would 

be the most impo rtant. The smallest nonzero topological charge, which 

obtains when Irn 
4 

I=lm+l=l, yields 

which, using e2/%c = c1 Z l/137, is equivalent to 

Q 2' 25.8e . 

(35) 

(36) 

VI. SUMMARY AND DISCUSSION 

In order to construct our monopole solution, called a vorton, we 

have postulated a generalized electromagnetic charge distribution hav- 

ing a certain O(4) symmetry and in a state of "double rotation." It 

is seen that the simultaneous presence of these two kinds of rotation 

leads to a topological charge associated with the vorton. Due to the 

symmetry of the configuration none of the electromagnetic quantities 

vary with time and the configuration is, in fact, static. Further, 

the vorton fieldsare seen to have no singularities. Thus.the vorton 

has features which characterize objects now known as solitons. IL8 It 

is also worthwhile to remark that since its electromagnetic and topo- 

logical quantities obey Maxwell's equations, Lorentz invariance of the 

vorton configuration is assured. 
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An energy minimum with respect to a rotational parameter Fwas 

shown to exist. -c. Setting the energy to this minimum and quantizing the 

angular momenta associated with the rotation of the charge distribu- 

tion led to a quantization condition upon the total electromagnetic 

charge. Thus, the allowable values of the magnitude of the electro- 

magnetic charge are seen to depend upon the topological charge of the 

vorton as specified by quantum numbers m 
9 

and m 
+J' 

This electromag- 

netic charge is, by employing an invariance pointed out by Rainich, a 

combination of electric and magnetic charge specified by the dyality 

angle @, a free parameter of the configuration. 

The electromagnetic charge (magnitude) of the vorton with the 

smallest nonzero topological charge was shown to be 25.8e, different 

from 68.5e or 137e anticipated from the analyses of Dirac or 

Schwinger. 20 Of course, one could seek values of m 
9 

and m 
dJ 

which 

would bring a calculated value of Q into better agreement with these 

anticipated charge strengths, but such an approach lacks a serious 

logical or physical foundation, and was not undertaken. Rather, one 

expects that quantum mechanical effects, not accounted for in this 

semi-classical analysis, might cause the value of Q to differ from 

25.8e; a factor of about five would be required to yield e/a. 

One,cannot resist the speculation that vortons might be more than - 

just an interesting mathematical construction. In fact, there is his- 

torical precedent for supposing that vortices might play a key role in 

the structure of matter. Lord Kelvin once proposed that atoms might 

be vortex rings. 21 
But, if vortons should exist as physical parti- 

cles, they would be quite different from presently known particles. 
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Indeed, since vortons find their basis in a subgroup of the conformal 

group, they would not be included in the celebrated particle classifi- 

cation scheme of Wigner, 
22 

which is based upon the representations of 

the Poincare group, a different subgroup of the conformal group. 

The total vorton energy was derived and found to be finite and 

inversely proportional to the size of the vorton; there is no fixed 

vorton "mass." This result is not a surprise since it is often 

remarked that mass is not a conformally invariant quantity. 23 Presum- 

ably, then, vortons could come with different energies (just as pho- 

tons come with different energies), and the energy content of a given 

vorton would depend upon the conditions prevailing in its production 

process. 

Once a vorton of some particular size and energy would be pro- 

duced, it is unclear what its time evolution might be. In hydrodynam- 

ics, in the absence of viscous forces, vortices have been shown to 

persist indefinitely. 24 So it is, perhaps, not unjustified to suppose 

that vortons might persist long enough to enable experimental observa- 

tion. On the other hand, a subsequent expansion of the vorton size 

could take place rendering difficult its observation as a localized 

particle, relieving a possible conflict with the negative results of 

monopole searches. 
25 
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APPENDIX A 

Derivation of the Vortonic Charge Distribution 

and the 

Monopole Component of Its Field 

In the construction of the vorton solution, it is postulated that, 

centered at the origin of 3-space, there is a generalized electromag- 

netic charge density q(a, j.~, $), where CT, $, and (9 are.toroidal coordi- 

12 nates. As mentioned in the text,to simplify the calculations q will 

be assumed to consist of electric charge (dyality angle @ = r/2) only. 

Since we are seeking a solution which exhibits the O(4) symmetry 

described in Sec. II, there must be equal increments of charge contained 

in equal increments of @ and of $. Thus, in general we expect that 

s(u, $, 6) = q(0, IJJ) = K(o) = K(a)(cosha - co&) 3 
(A-1) 

hu hgJ h$ 3 a sinha 

where a gives the scale of the toroidal coordinate system, h u, h , and YJ 
hQ are the usual coordinate scaling factors (proportional to a) and K(a) 

is at our disposal to effect the desired symmetry of q. To this end, we 

shall choose K(a) such that q is uniform on the surface of the sphere of 

radius a. This choice is the only one which will achieve a-distribution 

which is symmetric with respect to rotations about the x-axis and the 

y-axis (i.e., under Ll and L ) 2 as well as the z-axis. On this sphere 

+ = *IT/~, co& = 0, and we obtain 
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Thus, 

which yields 

Since the radius 
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q(o,+T/z) = K(“,’ 
3 

cash cT = K,/a3 . 

q may be simplified to 

a-l sinho ” 

K(o) = KG sinh; , 
cash o 

KQ(cosha - co@) 3 

s(o,lJ> = 3 3 . 
a cash o 

coshu -I- cos* l/2 
r=a cosho - COSJ, , 

4a3Q 
'=22 23 ' 7r(a +r) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

(A-6) 

where KG was evaluated by setting J//q dV = Q. Thus we see that the 

charge distribution is indeed spherically symmetric,,being a function of 

radius alone. 

The charge density of Eq. (A-6) may be used with Gauss's law to 

obtain the radial component of the electric displacement vector associ- 

ated with this monopole configuration. That is, in Gaussian units, 

D(r) = 3 
/ 

r 
q(r')rV2dr' 

r 0 
(A-7) 

which yields 26 

3 -1 D(r) = 9 -r 

(a2 + r ) 22+ 
r r/a 

Tr 2a2(a2 + r2) 

+ tan 

2a3 3 
. (A-8) 
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APPENDIX B 

The Fields Associated with the 

Rotation of Vortonic Charge 

In the construction of this monopole solution, it is assumed that 

the vortonic charge distribution can take on rotations consistent with 

the subgroup of the conformal group of Minkowsky space-time isomorphic 

to O(4). Since L3 and X 3 can be simultaneously diagonalized, we consider 

only rotations associated with the z-axis. As described in Sec. III, 

these rotations are characterized by the parameters w 
0 

for the ordinary 

rotation and w$ for the toroidal rotation. 

In order to find the fields proportional to w+, one can use the 

calculation of the (magnetic) field components at the point (r,0,$) 

generated by a circular loop carrying a current AI around the z-axis at 

distance r', and latitude angle 8' from the origin: 27 

AH _ 47~A1 sine' 
r 2ac Pi(cos0') Pn(cosJ3) (B-1) 

and 

AH _ 4~rA1 sine' 
e -2ac 2 t (-$i),_' p~(c0se7 Pi(c0se) , (B-2) 

n=l 

where r' > r. The formulae for r' < r may be obtained by the substitu- 

tions (r'/r)n+2 for (r/r')n-l in Eq. (B-l) and -n(r'/r)n+2/(n+l) for 

(r/r') 
n-l in Eq. (B-2). The factor OIT/C replaces the permeability u in 

the formulae of Smythe to obtain the expressions in Gaussian units. 
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Since the AI here represents an increment of the total current in 
-c. 

question, we set 

AI = q dr'r'de'w 
9 

p' (B-3) 

where q is given by Eq. (A-6) and p'= r' sine'. By noting that 

sine' = Pt(S') where 5' = cOsef , we can integrate over the 9' dependence 28 
1. 

and set the value of n in the summations: 

J- 

1 al 

-1 
65’ P;(c') 

c p;w = &- 
n=l 

It is now straightforward to obtain 

He = 
16a3 Qwg sine 

3Trc 

where 

and 

(n+l>! 6 
(n-l)! nl = $ ' 03-4) 

+ -9&(r) 3 , 

' r'4dr' 

r J- 0 (a2 + r12)3 

m 

,$..,(r) E -2 

The forms of $I and LZI1 are tabulated:2g 

2 
4(a2a+rr2)2 5r 3 -1 - L 

8(a2 + r2) 
+Gtan a 

I 

and 

&z I- 1 
II 2(a2 + r ) 22 l 

(B-5) 

(B-6) 

(B-7) 

03-8) 

(B-9) 
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In similar fashion one obtains 

- Hr = pi - %I] (B-10) 

While one can derive the HO field which is proportional to w 
JI 

by a 

similar calculation, it is much simpler to exploit the symmetry of the 

problem, and use the relationship 

(B-11) 

The line integral on the left-hand side can be taken around a cap of con- 

stant $ while the surface integral on the right-hand side is taken over 

the surface of that cap. 

Since, by the symmetry in this problem, there is only a 4 component 

of 5, the left-hand side becomes WITH p, where p is the cap radius. 
0 

The 

current density vector is normal to the cap and given by-qh w 
j, JI' 

where 

h$ = a sinho/(cosho - cosq). The surface integral may then be written 

as 

which reduces to 

, 

(B-12) 

(B-13) 

an elementary integral. 

Noting the directions of the unit vectors lJ, and l$, these results 

combine to yield 

-Ql!J 1cI sinho(cosha - COSI)) 

Hb = - 
, Tat cosh30 

(B-14) 
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expressed in toroidal coordinates,and 

-.4Qw a2r sine 
H = 

4 Irc(a2 + r ) 22 , (B-15) 

expressed in spherical coordinates. 
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APPENDIX C 

The Determination of the Hopf Charge 

for the Vorton Configuration 

In order to determine the Hopf invariant 19 or charge for the vor- 

ton configuration, we must first record some results of homotopy theory. 

Since our intent here is in the application of these results rather than 

their derivation, the interested reader should consult appropriate ref- 

30 erences if more mathematical detail is desired. 

The Hopf invariant is defined in terms of a mapping function from 

the sphere S 2n-1 onto the sphere S 
n , n even. It is appropriate to set 

n = 2 for our analysis of the "static" vorton configuration in Minkowski 

3 space. Our mapping, then, will be between S and S2. By adding the 

point at infinity, the three spatial coordinates of Minkowski space are 

compactified to form an S3. The vector G (defined in the vorton rest 

frame) identifies the points on S3. The desired mapping is performed 

by a triplet of scalar functions cp i, where i = 1,2,3, which satisfy the 

normalization condition. 

(C-1) 

The 'pi specifies the points on S2, a sphere of radius R. While it is 

common to use the unit sphere in cp - space, the Hopf index is invariant 

with respect to R, and the flexibility introduced by R is useful in 

relating the configuration of the Hopf mapping functions to that of the 

vorton. 
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One then introduces a "Hopf" field tensor function 

-c. 
f Z& (Pia Q.avcpk I (c-2) 

PV ijk ?J J 

a 
where u,v = 0,1,2,3; - with x' = (ct, xl); i,j,k = 1,2,3; and E ijk 

is 
axp 

the totally antisymmetric tensor with zz123 = 1. Clearly f 
WV 

=-fvu. 

.Since we shall be interested in relating (the "six-vector") f to the 
!JV 

Maxwell F 
W' 

we shall denote its components f = e 
Oi i 

and f.. = h 
1J k ; 

i,j,k cyclic. For completeness, we introduce two more vector fields, 

d = E-z = z and c = p < = <, using E = 1 and 1-1 = 1, which is the equiva- 

lent of Gaussian units for the Hopf fields. 

From Eq. (C-l), one can show31 that the dual of f is conserved. 
?JV 

That is, 

au (+Epvpa fpo) = 0 , (C-3) 

where suvpO is the totally antisymmetric tensor, with E 0123 = 1 . One 

can also form the four-vector 

a fl-lv - 3 .V 
1-I CJ ’ (c-4) 

where by analogy to electromagnetism, c denotes the velocity of light. 

Using Eq. .(C-2) in Eq. (C-4), it is easy to show that jv is conserved. 
- 

That is, 

av jv = 0 . (c-5) 

Eq. (C-3) is equivalent to 
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while Eq. (C-4) is equivalent to 

-6h = 4lTo 

(C-6) 

(C-7) 

(C-8) 

(C-9) 

if, as is conventional, we define j 
V 

= (CP, 3. Eqs. (C-6) through (C-9) 

show that the components of f 
IJV 

obey the familiar Maxwell's equations. 

This fact is crucial in relating f to F 
l-iv WV' 

We now have enough background to introduce a construction for the 

Hopf index. Consider an arbitrary fixed point qi -2 on our S . Then 

q3 = (PO i (C-10) 

is the equation of a closed curve 8 0 3 on S . (We have dropped the time 

dependence as unimportant here; since time development is a smooth proc- 

ess, it cannot alter the homotopy class of the functions. 32) Taking 1' 

as a two dimensional closed connected surface on S 3 having go as a bor- 

der, then (pi(G) maps Co onto the whole S 2 
sphere, covering it an inte- 

gral number of times. This integer is the Hopf index or charge QH. It 

can be shown that Q, is independent of the chosen point 9;. 

Integral expressions have also been found which yield Q,. To write 

these down one introduces, as is permitted by Eq. (C-3), a vector 

(potential) au such that 
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f =aa-aa . 
UV 1.Iv ?J?J 

(C-11) 

One of the equivalent expressions for the Hopf invariant QH is given by 

an integral over 3-space: 3i 

QH = -!z- J/J 2. 
4nR6 

(? x 2) dV 

or 

QH = L J/J & i; dV 
48R6 

(C-12) 

(C-13) 

where, as is conventional, 

ii =-$x;: . (c-14) 

The factor R -6 accounts for the radius R of our S 2 . It is straightfor- 

ward to demonstrate (using integration by parts) that QH,- as given by 

Eq. (C-13), is invariant under the gauge transformation z +- 2 x $ A, 

where A is an arbitrary function. 

It is important to note that Eq. (C-13) shows that the Hopf invari- 

ant is determined by the "magnetic" part of the tensor function f 
W' 

that is, c. (In fact, for a static configuration z = 0.) Equivalently, 

from Eq. (C-9) the Hopf invariant may be viewed as residing in the 

configuration of the current 5. Thus in our investigation of the Hopf 

charge of the vorton, we need only concern ourselves with its dipole- 

like fields. Since for convenience of calculation, 0 = 7~/2 was chosen 

( an "electric" vorton), we shall therefore be interested in the 8 

fields. But because Maxwell's equations, which govern both f and F 
PV I-IV' 

are invariant with respect to 0, the results obtained will be valid for 

any 0. 
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In order to specify the functions qi which will yield the correct 

? ij) ~' e magnetic part of F 
FiV' 

we first define a quasi-toroidal coordi- 

nate system (z,$,$) based upon the vorton 2 fields as follows: 

O<ar@~ with sheets (of revolution about the z-axis) of constant a 

+(O) lying parallel to the local H fields, the superscript denoting that 

the field is due to the 4 rotation, i.e., proportional to w 
9 

. As in 

the usual toroidal coordinate system, we choose 0 = 0 on the z-axis and 

0 = Q) on a ring of radius a in the x = y = 0 plane. a 21.825a is the 

root of {I,= 0, where {I, is given by Eq. (11). O_<JIr2lT. where the 

sheets of constant $ are constructed to be orthogonal to the sheets of 

constant 0. T = 4, the usual azimuthal coordinate. 

We now consider the functions 

'pl = R cos S(G) , 

(p2 =RsinS(a) cos (m+$+mg $) , and 

'p3 
=RsinS(o) sin(m+J)+m+T) , (C-15) 

where S(o) is an arbitrary function to be specified later. S(O) is an 

angle with boundaries S(0) = T' and S(a) = 0. These 'pi clearly satisfy 

Eq. (C-l). 

Using these 'pi in Eq. (C-2) to calculate the (magnetic) components 

f ij in the system-(a,$,$), which we denote by -%l, (with a bar to avoid 

confusion with the usual coordinate scaling factors h;, h-, and h-) 
1c, @J 

we find that 

m. sin S S' 

f12 = % =+ a $ 
(C-16) 
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f23 = % = O ' and 

m+ sin S S' 

f31 =$=hh , 
ji a 

(C-17) 

where St = dS/dz. 

We note that since I;- u = 0, the fields $ are parallel to the vorton 

fields f;(@) 3 which are due to the rotations proportional to m 
4 

. Clearly, 

the function S(o) can be selected to make g- 
IJ 

everywhere proportional to 

~W and then R to make 

(C-18) 

With this selection, assuming that the Hopf currents J are due to a uni- 

form rotation of (Hopf) charge density parametrized by w 
9' 

we see that, 

because f 
PV 

and j" obey Maxwell's equations, the Hopf currents and 

charge densities must be equal to those of the vorton. Thus the Hopf 

charge distribution is distributed according to Eq. (6). [What we refer 

to here is a moving charge density associated with the 1 and not the 

integrand of Eq. (C-13), which is also sometimes referred to as a Hopf 

charge density. As in an electric wire, this moving charge density is 

evidently electrically neutralized by an equal and opposite charge den- 

sity at rest. 1 We now can invoke the conformal invariance of Maxwell's 

equations in both systems to assert that the Hopf field 

(C-19) 
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(which is proportional to w 
VJ 

). Thus the (relevant) fields of the vorton 

can bz derived from a specified triplet of scalar functions 'pi. As a 

consequence we attribute to the vorton the QH associated with these 'pi. 

While we could now use Eq. (C-12) with the vorton fields (and vector 

potential) in place of the Hopf fields to compute the QH for the vorton, 

it is simpler and more revealing to examine directly the mapping prop- 

erites of the 'pi given by Eqs. (C-15). The choice of a (PO i selects a 

-0 o and specifies the sum 

(C-20) 

The closed curve ;Ii" in S 3 , then, will lie on a (quasi)toroidal surface 

of constant a, spiraling around it in a path determined by rnti and m 
@ 

. 

If we extract C, the product of the common factors in m $- and m $9 such 

that 

“VJ = Cm' 
IJ 

and 

m0 = Cm' 
+ ' 

(C-21) 

where m' and m' 0 
$ 9 

are relative primes, then the curve Z will in one 

circuit wind m' times around the z-axis and m' times around the ring of 
+ + 

radius a. The surface 1' can be taken in such a way to include m' cuts, - (4 
-0 with 5 constant, in the CT torus or doughnut, and m' 

d 
central) webs with 

? constant, across the hole in that doughnut. (The remaining portions 

of 1' lying on 0 = a0 do not contribute to the mapping multiplicity.) 

The cuts in the doughnut govern the mapping on S2 for a > 0' while 

the webs govern it for 0 < a'. Since there are m' cuts with a mapping 
4 
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multiplicity m 
J' 

and m' webs with a mapping multiplicity m 
J, @' 

we see that 

QH = rni mJI = rn+ "3, = C md) rn$ ; (C-22) 

the Hopf charge is nonzero if and only if m 
+ 

and rn$ # 0. The sign of QH 

is determined by the relative sense of m 
VJ 

and m 
$' 

That quanta of both types of angular momenta must be present in 

order for QH#O can also be deduced from the symmetry of the vorton and 

the form of Eq. (C-13). The integrand simplifies to the sum of two 

terms which are of the form A(') l S(') +I(') •6~~). We note in passing 

that a simple loop of current would be characterized by m 
9 

# 0 and 

"4J 
= 0 and hence would have a null topological charge. This result can 

be deduced from the fact that (in Coulomb gauge) such a configuration 

has be 6 = 0 everywhere. 

Finally, it is of interest to remark that while the six operators 

Li and Xi form a subgroup of the conformal group locally isomorphic to 

O(4), the global properties of this subgroup are different from those of 

O(4). O(4) is quadruply connected, 13 meaning it has only four distinct 

homotopic classes of mappings, while Q,, which enumerates the distinct 

homotopic classes for the vorton, can take on an infinite set of values. 
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APPENDIX D 

- 
The Enerpy in the Vortonic Electromagnetic Fields 

The energy associated with the vortonic electromagnetic fields may 

be found by integrating the energy density 

+-(a.;.;.;) 

over all space. 

Gaussian units are such that c = 2 and 5; = G (in free space) 

these free space relationships in the integral 

Using 

W = JJJu dV (D-2) 

the energy associated with the monopole field reduces to 

-2r 
+ 2 2’ +& tan -1 -L 

(a2 + r2)2 a (a + r2) a3 1 2 dr a 
2 l 

(D-1) 

(D-3) 

The resultant integrals are either tabulated 33 or convertible to tabu- 

lated forms. The (tan -1 r/a> 2 term is converted to tabulated form 34 by 

the substitution tan -1 r - = n, a to be integrated over the range 0 I n I n/2. 

-1 A further substitution sin X = n, yields tabulated forms, 
35 

to be inte- 

grated over 0 < X < 1, for the terms linear in tan -1 r/a. Collecting 

all terms yields - 

w=g. m (D-4) 

The calculation of the energy associated with the $ rotation may be 

simplified by using the expressions of the fields given in Eqs. (B-5) 

and (B-10) directly in Eq. (D-2). Thus we obtain 
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(D-5) 

where sI(r) and sII(r) are given by Eqs. (B-8) and (B-9), respectively. 

While the second term can be done employing a tabulated form, 36 

m2 r dr s&(r) = 2 ., 
128a5 

(D-6) 

the first is more conveniently done by integrating by parts. We use 

Judv = uv - Jvdu where u =$$(.r) and dv = r2dr, which means 

du = d91 
2$I(r) dr dr and v = r3/3. We see that the term uv/i = 0. Evalu- 

ation of the Jvdu term and some manipulation yields 

s 032 53 
r 

0 
dr&$(r) = -$ 

s 
rdr r rf4dr' 

0 (a2+r2)3 s 0 (a2-,r ' 2)3 

which using tabulated forms 37 yields 

J m 2 r dr#:(r) = -?!-- 
0 512a5 

Eqs. (D-6) and (D-8) in Eq. (D-5) yields 

2 2 

'd 
(9) = Q % 

6Ta 

(D-7) 

(D-8) 

(D-9) 

- 
where the dimensionless quantity 

(D-10) 

Substituting Eq. (B-15) into Eq. (D-2) yields a tabulated form38 

for the radial integral for the energy Wd ($1 associated with the + rota- 

tion. Using this form and Jo* sin35d8 = 4/3 yields 
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'd 
(YJ> Q*~,2 - 

6Ka 

where the dimensionless quantity 

&?!4 
% c ’ 

(D-11) 

(D-12) 
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APPENDIX E 

Action and Angular Momenta in the 

Vortonic Electromagnetic Fields 

This analysis starts with the definition of the action 

where 

S = Z1J.Z dVdt , (E-1) 

E2 - B2 
cP= HIT C 

(E-2) 

is the standard Lagrangian density for Maxwell's equations. 39 While it 

is known that for the general case, which includes both electric and 

magnetic charges, there are problems with the Lagrangian formulation, 40 

we do this analysis for @ = r/2, the electric charge con-figuration for 

which the above Lagrangian applies. Once we have the desired results, 

we assert that because Maxwell's equations are invariant with respect to 

the angle 0, 15 we are no longer constrained to 0 = n/2, but may take 

0 as a free parameter. 

We now must separate out the appropriate piece of the action asso- 

ciated with the rotations; Jdt in Eq. (E-l) will then be taken over one 

period. Thus, 

for ordinary rotations around the z-axis and for toroidal rotations 

(also associated with the z-axis) respectively. 

Using the results of Appendix D, we know from Eq. (31) that at the 

minimum of the energy (which condition is specified for the vorton 
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configuration) the first term in Eq. (E-2) will lead to a null integral. 

We also discard the second term because it is not associated with the 

-rotat!ons. The action which we will investigate, then, is 

(E-4) 

for the (ordinary) $-rotation and 

s(e) I 2lT 
WC 

/// f'+> .pj dv (E-5) 
4J 

for the (toroidal) $-rotation. The superscripts are used to label the 

quantities appropriately. We note that there are no cross terms in the 

actions; i.e., J 

Since the angles (p and $ range from 0 to 2~r, the associated angular 

momenta will be given by 

and 

(E-6) 

(E-7) 

The current densities to be used in Eqs. (E-6) and (E-7) are given 

and 

(E-8) 

(E-9) 

respectively. 

To evaluate L(O) in Eq. (E-6) we first calculate xto) . Using 

Smythe41 * In a manner similar to that in Appendix B, we obtain: 
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,aA+ 
($> = pA1 sine' O" 

c 
n1 

2 Pn(cosB') P;(cose) 

n=l 
(E-10) 

for r < r' and 

AA ($1 = vA1 Sine’ c4 
c 

1 
(P 2 

r’ n+1 pl(cose+) pl(cose) 
n(n+l> F 0 n n (E-11) 

n=l 

for r > If'. Proceeding as in Appendix B, Eqs. (E-10) and (E-11) yield 

AO 
(0) = 

8~~ sin6 a3Q 

3Trc 2rLZI - r9 II (E-12) 

where$I and LZII are defined by Eqs. (B-6) and (B-7) respectively. 

Using the evaluations of$I and$II given in Appendix B, Eq. (E-12) 

yields 

AdJ 
(dJ) = . (E-13) 

In Eq. (E-6) using J(') given by Eq. (E-8) and the Ai') given by 

Eq. (E-13) one, after some calculations, obtains 

(E-14) 

Of course, one can also obtain this same result directly by noting that 

the self-energy content of a current distribution is given by 42 

-& /// $1 dB ; (E-15) 
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equating this energy to the evaluation of the magnetic energy given by 

Eq. (D-9) yields the value of the action integral, and hence the value 

of the angular momentum. 

Another approach to obtain the (ordinary) angular momentum associ- 

ated with the vorton is to evaluate it directly in the manner of 

Thompson's calculation, 
43 That is, we simply find the amount of angular 

momentum (circulating around the z-axis) which is residing in the elec- 

tromagnetic field. Since the electromagnetic fields associated with 

vortonic charge distribution have already been obtained, we can evalu- 

ate Poynting's vector 

an integral of the appropriate component of g over 3-space will yield 

the z-projection of the ordinary angular momentum. That is, using 

Z = Z x $, we simply write 

,(44 = & J/J DrHer dV (E-17) 

where D r is obtained from Eq. (A-8) and He is given by Eq. (B-5). (As 

in Appendix D, we shall assume the Gaussian free-space relationships 

$ = 6 and $ = $- It is a straightforward matter to multiply out the 

product DrHe and perform the integrals term by term; doing this, one 

again obtains Eq. (E-14). The conformity of these two different 

approaches gives one additional confidence that the action formulation 

of Eqs. (E-4) and E-5) is correct. 
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We can easily obtain L (4J) by using Eq. (E-7). Again employing 

Eq. (Ezl5), this time with Eq. (D-11), yields 

(E-18) 

Since it is not clear how to define L ($1 in terms of g, this calculation 

is not done. 

While it is tedious, for the sake of completeness, the integral in 

Eq. (E-7) was also evaluated directly, again obtaining Eq. (E-18). To 

do this I(') was determined in the same fashion as was xc') above. 

+($I For the interested reader we record the components of A here: 

2 
A cd)) = 

-4a Qw~ P:(cose) 
a2 - 

P 3acr2 2(a2 + r2) 
+ 1 - g tan-l r 

. I 
a (E-19) 

and 

+ p2(c0se) , (E-21) 

where 

[I [ a4 = a 2a2 + 3a3 tan-l 1: -- - - 
r2(a2 + r2> r2 r3 a - 1 (E-22) 

For this calculation, the direction cosines 

adw cl.1 z---z 
'PJ, P JI hJi 

-sinha sin$ 
cosha - co@ (E-23) 

and 
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and 

-h 
Y zi.1 = c0sh0 COSJ~ - i adaq 

& z JI 
hJI 

coshcr - cos$ (E-24) 

are also useful. In performing the integrations in spherical coordinates 

these quantities will combine with 

hJ’ = 
a 

cosho - cos$ 

to yield 
2 

h$YPJi = 
- $- c0se sine 

and 

& 2(r II sine) 2 
(a2 + r2> 1 

(E-25) 

(~-26) 

(E-27) 

- 
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