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Introduction

In the last decades, experimental physics has developed immensely. The rapid evolu-
tion of technology allowed the construction of complex experiments to probe, and in
some cases extend, the boundaries of known physics. In the case of particle physics,
scattering experiments evolved from simple setups such as The Geiger-Marsden ex-
periment -also known as The Golden Foil Experiment- to much more complex like
those present in the modern colliders or modern fixed-target experiments.

In this spirit it is that we studied the hadronization phenomenon via the data ac-
quired from the Eg2 experiment performed at Jefferson Lab (JLAB). Specifically,
the study was based on positive pions electro-production.

This thesis is divided in two, where we provide experimental and phenomenological
work. We will show the influence of nuclear media on hadronization through observ-
ables calculated directly from data, and we will use theoretical models to extract

theoretical parameters of interest.
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Chapter 1

Theoretical Description of

Lepton-Nucleon Scatterings

The collision of high-energy particles is the main method to study the internal
structure of composite particles and for this type of collisions the analysis of deep
inelastic scattering (DIS) events, between a lepton and a nucleon, plays a central
role in understanding the latter’s structure.

In this chapter we will present the relevant theoretical background and terminology
to have a clear picture of the lepton-nuclei scattering process. The sources used for

this chapter were [1, 2, 3].

1.1 Deep Inelastic Scattering

In Deep Inelastic Scattering (DIS)
[+ N =1+ X, (1.1)

a lepton [ scatters off a nucleon N. The final products of the reaction are the de-
tected scattered lepton and an unknown final state which are denoted as I’ and X,

respectively (see Fig.1.1).
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Figure 1.1: N is the targeted nucleon and X is an unknown final state.

This process is characterized by two independent kinematical variables associated

with the virtual photon. Usually, these variables are:

Q2
C 2pn g

P=-(-)=-¢=-0"—d") ; = (1.2)

where v is the energy of the virtual photon, q its spatial momentum, and x; is the
Bjorken Scaling Variable or Bjorken .

()? is associated with the virtual photon’s capacity to probe the constituents of the
targeted nucleon. With ) much larger than the nucleon mass, My, the virtual

photon is able to resolve the internal structure of the nucleon.

Figure 1.2: (Left) The interaction is with the whole nucleon -Q? ~ MZ-. (Right) The interaction
is with one of the constituents -Q? >> M3-.

To understand =z, it is useful to define the squared invariant mass of the final

state:

W2 = (q+pn)*. (1.3)

To have inelastic collisions it is required that W2 > M%. Then, the Bjorken variable

10
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can be re-written as:
QQ
Q>+ W2 — My

Tp

Hence, we can associate x;, with the elasticity of the reaction:

e For W2 >> M%, the reaction is inelastic and z;, — 0.

e For W% = M2%, the reaction is elastic and z;, = 1.

After the presentation of the adequate variables, we can state the unpolarized DIS

differential cross-section as:

d%o B Ao

de dQ? Q4

“‘”Mﬂfﬂ (2, Q)| (1.5)

where y is a Lorentz-invariant kinematical variable which, in the nucleon’s rest frame,

can be interpreted as the fraction of energy lost by the scattered lepton:

3
2
)
X

y=""2 - _ (1.6)

3
2
3]

Fy and Fy are known as Structure Functions (SFs) and they have encoded the
nucleon structure probed by the virtual photon.

The Stanford Linear Accelerator (SLAC) was the first place where the SF were
experimentally studied in the decade of the 70s. The experiment collided electrons
with protons. Two important phenomena were observed at the time (see Figure

1.3):

1. The SF did not depend on @Q?. This phenomenon was called Bjorken Scaling

and it indicated that the nucleon is made of pointlike objects.

2. The SF are not independent and are related by the Callan-Gross relation:

Fy(z) ~ 2zF(x). (1.7)

11
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Figure 1.3: (Left) Manifestation of Bjorken Scaling. (Right) Manifestation of the Callan-Gross
relation. Plots obtained from [1]

Then, under the wing of experimental observations, the DIS cross-section can be

rewritten:
do Ao 2

Y
d? ~ O'z [(1—y)+§] Fy(x). (1.8)

This equation does provide some insight on DIS. However, the introduction of the

Parton Model would provide more physical interpretation about DIS.

1.1.1 Parton Model (PM)

This model was presented by Richard Feynman in the decade of the 60s[4] to explain
the experimental results obtained at SLAC. He stated that hadrons were constituted
by quasi-free, pointlike particles called partons. These, to be quasi-free, had to be
analyzed through a reference frame where the elements of a collision were traveling
at high energies; therefore, due to time dilation, the timescale of the parton-parton
interaction would be larger than the timescale of the lepton-parton interactions.

Thus, the DIS cross-section can be stated as a sum of probabilities of incoherent’

lepton-parton (lg — lq) scattering cross-sections:

do.lq—>lq

d 1
T = 3 | ek < (19)

12
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where £ is the hadron’s fraction of longitudinal momentum carried by the parton,
f4(€) is the Parton Distribution Function (PDF) and f,(£)d¢ represents the proba-
bility to scatter a parton ¢ with momentum fraction &.

Also, ¢ can be related to the Bjorken variable through energy conservation. Let p,,
and p,, be the initial and final four-momentum of the scattered parton, respectively.

Then, squaring the energy conservation equation, we obtain

m2 =mi — Q>+ 2q - p,,. (1.10)

Considering p,, = {pn, the previous equation reads:

QQ

572(]'19N

= 1. (1.11)

Thus, in the PM, x, is interpreted as the hadron’s fraction of momentum carried by
the parton.
The lepton-parton cross section is the same as two fermions t-channel scattering.

At leading order (LO) in QED? it reads:

dola=la  Arale? 2

q Y
iQdr @ {(1 —y)+ 5} 3z —&). (1.12)

Then, using eqs. (1.11) and (1.12) in eq. (1.9), the differential cross-section can be

rewritten as:

d Ao 2
dxdoé2 = gff {(1 —y)+ %] ;egfq(a:). (1.13)

If we compare it with eq. (1.8), then:

Fy(x) :xZegfq(x). (1.14)

Incoherent is another form of saying independent.
2In this case, leading order means we are considering the Feynman diagram with the lowest
power of the coupling constant.

13
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From the independence of (), we can conclude that, in this model, the nucleon is
made of pointlike particles.

This model provides a basic foundation to understand the inner structure of hadrons,
despite the fact that this interpretation relies on a particular reference frame. Later,

with the QCD formalism, this subject would be improved.

1.2 Quantum Chromodynamics

QCD is the field theory that describes the strong interaction, and it formalizes the
concept of partons through quarks and gluons. QCD is a non-abelian gauge theory

based on the SU(3) symmetry group. Its Lagrangian density reads:

1 o o
L= —ZF&“ﬁFAﬁ + an(ry Dy — my0ab)av® (1.15)

flav

Where ¢, are the quark fields of color a and flavor ¢, v#D,, is the contraction of the
gamma matrices with the covariant derivative, m, is the mass of the quark ¢, and

—l l.S t:he g].uoll ﬁ()ld Slrenglh lenSOI defi“ d as:
Oéﬂ e

Where A7 are the gluon fields, g is the coupling constant of QCD, and f45¢ is the
structure constant of the SU(3) group. The term —gf4#“ A A§ originates from the
requirement of gauge invariance in the SU(3) group.
Besides the color inclusion, the Lagrangian of QCD is similar to that of QED.
Nonetheless, there is a fundamental difference: QCD’s field strength tensor has a
term that allows interactions between the interaction carriers -gluons- which in-
creases the complexity of Feynman diagrams for QCD-related processes. This term
is:

gf AP AL AS. (1.17)

14
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Then, the gauge invariance requirement yields the gluon self-interaction.

Quantum field theories allow to calculate cross-sections and decay rates through
Feynman Rules. In QED, perturbation theory can be used to obtain expressions for
the aforementioned observables. However, in QCD, the use of perturbation theory

is not straightforward due to its coupling constant behavior.

1.2.1 The Running Coupling

Coupling constants® are quantities that indicate how intense is an interaction, and
in perturbative calculations they are proportional to the number of vertexes in a
reaction’s Feynman Diagram. For instance, in QED, the coupling constant « is less
than one and positive, given a finite energy scale* 9, meaning that if a reaction has
a higher number of vertexes it is more unlikely.

In the case of QCD’s coupling constant « it is not always possible to use perturba-
tion theory. If the energy scale is low the ay reaches values near unity and above.

The running” of the coupling constant can be described as a function of Q?*:

= flas), (1.18)

where the beta function is arbitrary and can be expanded in powers of aj:

Bla) = —ba’[1 + bas +b'a? + O0(a?))]. (1.19)

The b™ is given by QCD calculations and depends on the number of active flavours
ny. If this number is less than 16, the 3 function is negative, which contrasts with

the case of QED, where its 8 function is positive.

3The name coupling constant is debatable because, strictly speaking, these are not constants.
Nevertheless, the name remained in time.

4In this section we will use @ to refer to the energy scale of the processes since it is widely used
in the literature. Do not mistake with the virtuality of the virtual photon in DIS.

Sruns means that it evolves with a certain kinematical variable

15
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If we truncate the expansion to its lowest order we obtain:

2 g (p?) Q? 33 — 2ny
= /7 . =] - =" 1.2
@) = Tt “(;ﬂ , 2 )

where p is a mass scale introduced to deal with UV divergences when we use a; to

describe an observable. Then, it is noticeable that:
a,(Q*) =0 ;Q* = . (1.21)

This result is called asymptotic freedom and it is also obtainable if we truncate
the § function at higher order. It is essential since it allows to use perturbative
calculations in QCD. Having said this, it is useful to define a constant that delimits
the border between the use of perturbative and non-perturbative calculations. For

this matter it is defined a dimensionful constant parameter:
2 P o

Then, from this equation and the previous ones:

1

() = @ Rgen)

(1.23)

Notice that if the energy scale () is equal to Agep the coupling constant blows up;

hence, not allowing the use of perturbative calculations.

1.2.2 QCD Description of DIS

In QCD, the cross-section of neutral current DIS is given by the contraction of the

hadronic tensor W,, and the leptonic tensor L*":

d%c

dx dQ?

o< LMW, (1.24)

16
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The leptonic tensor is given by electromagnetic interactions between the incoming
lepton and the quarks inside the nucleon. The hadronic tensor is harder to express
because it represents whatever is inside the targeted nucleon and its interactions;

therefore, it contains the SFs. The leptonic tensor is defined as:
Ly =2 (L, + 1L, — gul - 1), (1.25)

and the hadronic tensor is defined as:

q2
) (P — ¢"pn - 4/@%) (P — ¢“pN - 4/ 4°)
PN - (g

W =F (z,Q°) (_gw + q“_q>
1.26
+ F2 (QZ’, Q2 ( )

QCD gives the framework to derive mathematical expressions for the SF in terms
of non-perturbative objects, which, at this point, were described by experimental
observables and PM approximations. To obtain SFs mathematical expressions the

factorization procedure is used.

1.2.2.1 Collinear Factorization

Collinear factorization is a process where the physical cross-section is factorized
into non-perturbative (long distance) functions -the parton densities- and a hard

cross-section calculable in perturbation theory:

do Y dy o [z Q? Adep
m-;/ﬁ ?fq(y’u)XM(g’?)+O( 02 > (1.27)

The main difference between this equation and eq. (1.9) is the dependence on p by

the parton density and the hard cross-section. However, this dependence is canceled
inside the integral such that the physical cross-section is independent of p. This is
the general idea of the renormalization group equations which in this case leads to
the DGLAP equations [5, 6, 7] for the parton densities.

At leading order ¢ is given by eq. (1.12) obtained in the PM. Nonetheless, in the

17
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present case the structure function depends on the energy scale:
FQ(Q27J7) :xzegfq(xa Q2)7 (128)
q

where we chose 1 = (). Given these results, regarding the structure functions, the

nucleon does have a structure and it is not made only of pointlike particles.

1.3 Semi-Inclusive Deep Inelastic Scattering

DIS events can be classified according to the number of detected particles in the

final state. This classification can be stated as:

e Inclusive events: only the out-coming lepton I’ is detected. X can be anything.

[+ N—=I'+X (1.29)

e Semi-Inclusive events: the out-coming lepton I’ and a hadron h are detected

I+ N U +h+X (1.30)

e Exclusive events: all the particles from the final state are detected.

In this thesis we studied the Semi-Inclusive Deep Inelastic Scattering (SIDIS) regime

with a positive pion as the detected hadron:
e(0) + N (pn) =€ () + 7" (pn) + X(px). (1.31)

To describe this process it is necessary to define additional kinematical variables:

e s: The squared invariant mass of the initial state.

s=(l+pn) (1.32)

18
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e 2, In the rest frame of the target can be interpreted as the fraction of energy

passed from the virtual photon to the detected hadron.

pn _E
_ Py Th (1.33)
PN -4 v

Zh

e PZ The squared transverse momentum of the detected hadron w.r.t. the

virtual photon’s direction (see Fig.1.4).

e ¢p: The azimuthal angle between the hadronic and the leptonic plane (see

Fig.1.4).

Figure 1.4: SIDIS schematic representation.

The SIDIS differential cross-section can be written in a model-independent format
where we can find several SFs that describe the internal properties of the nucleon|8].
The differential cross-section has 18 SF but this number will be reduced since we are
studying an unpolarized target . The cross-section, assuming single virtual photon

exchange, reads [9]:

do T’

dvp dy dz, dP2dp — QPxy {(L+ W= 9)?) Fov +22 - ) VT =y cos o

+2(1 — y)FlC]OUS(w) cos(2¢) }
(1.34)

Notice that unpolarized SIDIS has three structure functions in comparison to DIS

which has two that are inter-dependent.

6Unpolarized target: Nucleon target in which the total spin of averages to zero.

19



Chapter 1

1.3.1 TMD Factorization

Collinear factorization is not applicable in problems with two energy scales, for
instance, when Pp << Q7. In this case, we can use the TMD factorization. As an

example, we can state the general factorization expression for Fyy as:

Fyu =Hqq (Q)

/d2pLd2kJ_§<PT —py — znky) fo(wy, ki3 Q) X D2 (zn, p1; Q) (1.35)

" O(%%

where H,; is a hard factor calculable in perturbation theory, f, is the transverse
momentum dependent PDF, D('; is the transverse momentum dependent Fragmen-
tation Function (FF). In this scheme, different transverse momenta (see Fig.1.5) are

fundamental to describe the cross-section.

Figure 1.5: k, is the parton’s intrinsic transverse momentum. &', is the parton’s intrinsic transverse
momentum post-scattering. p, is the transverse momentum of the hadronized quark w.r.t. k'

This factorization provides a three dimensional representation of the nucleon. To

use it, the following kinematical condition is required[10]:

K~ Ph << Q% (1.36)

"The number of scales used is related to how similar are the energy variables. For instance,
Pr ~ (@ is a one scale problem.

20
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At LO the relation between collinear and TMD PDF is:

Ja(ao) :/koqu(kiaxb)~ (1.37)

From now on, we will omit the Q% dependence of partonic and fragmentation func-
tions. The integration is performed in all of k,’s phase space such that we retrieve
the collinear PDF.

A usual model to represent the TMD PDF is

eiki“ki)

folwp, k1) = fq(ﬁb)w

(1.38)

This model can be used with other distributions. For instance, the Fragmentation

Function (FF) reads:

P2/ )

Dh/q(Zh,PU = Dh/q(zh)T

(1.39)

—~
o
~—

Then, the SFs with the TMD factorization can be represented as convolutions of
certain transverse momentum-dependent partonic/hadronic distributions. At LO,

these convolutions read as [11]:

e Convolution of the unpolarized distributions. This term is associated with the

phi-independent term of the cross-section.

Fyy = Zeg/dﬂﬂfq/p (2,k1) Dpyg (2,p1) - (1.40)
q

e Convolution with two separate contributions: unpolarized and polarized. This

21
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term is associated with the cos ¢ term (Cahn term).

cos k r 7
FUU¢h =2 E :63/612’%5 [(PT : kl) Jap (z,k1) Dhyq (z,p1)
q

Pr — zpky (PT : I%L) (1.41)
qu*/p (I7 kL)

+
2p1

XANDh/qT (z,pL)} .

e Convolution of the polarized distributions. This term is associated with cos2¢

term.

cos2¢p z : 2

q
N N N N 2
Pr (PT - kL) — 2k, (PT - kzL> + ok
X /d2kj_
2p1

(1.42)

X qulf/p (SL’, kJ_) ANDh/q/ (Z’pJ_) .

Here we give the definitions of the distributions without the transverse momentum

dependent term:
o f(x)q/p : Parton Distribution Function

® D(zp)n/q © Fragmentation Function. It represent the distribution of a hadron

h, originated from the fragmentation of a quark ¢, with zj,.

o Af(wy)4t), : Boer-Mulders Distribution Function. It is the polarized analogous
of the PDFs, i.e. the distribution of a polarized parton with a certain fraction

xp of nucleon momentum.

o AND(zy)4t : Collins Fragmentation Function. It represents the distribution
of a hadron h, originated from the fragmentation of a polarized quark ¢, with

Zh-

With the Gaussian model, the convolutions that compose the SF can be integrated

analytically if the integration is in all the phase space. Assuming that the widths of

22
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the Gaussians are flavour independent, then:

5 o ) Du o)
Fou=> e fup (@) Dnjg(2n) — 57—
- (PR
_p2 2
[eos26n ., p2 262 quT/p (z5) ANDh/qT (zn) e PT/<PT>BM
UvU T - q MBM Mh 7_{_<P’121>3
2 2
2 (k1 )pu (P

(k1) (p1)

i)
cos e T\ Te 1.43
FUU¢h :_2_26 Jfayp (xB) Dhyq (2 )#Z’l <ki> (1-43)
T (Pf)a
+2 Z o Ayt (w5) AYDL ) (21) e T (PR
6_
My My 7w (PR

<ki>BM <pJ_>i‘ 52 (12 2 /p2
<ki> <p2L> [ h <kJ->BM (PT <PT>BM)

+(PL)c (Pr)pul

where Mgy, M), are parameters of the polarized distributions (Collins, Boer-Mulders),

and

(PPo = 1)+ D). ()ay, = it ps (1h)e = paibpia. (144

A noteworthy result, considering all the assumptions made so far, is that

i &Py Pido
X @Prdo

(Pr) = = (Pr)c. (1.45)

Hence, within the TMD factorization scheme, the average of the squared transverse
momentum is related to two contributions of different nature: one coming from
the intrinsic parton momentum (k) and the other coming from the hadronization
process (p_).

At the moment, the fundamental descriptions are solid enough. Nonetheless, there
is a concept that we haven’t explained too much: hadronization. This is key in what

the struck quark will do once it is freed from its bound state with the nucleon.
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1.4 Hadronization

In physics, Confinement is an unsolved problem where a parton cannot propagate
as a free particle; hence, it has to transform into a hadron. This transformation is

known as Hadronization.

Vacuum + induced Color neutralization

energy loss

Figure 1.6: Space-time development process of hadronization[12]. [, and [y are the production
length/time and the formation length/time, respectively.

This process can be characterized by two timescales [13]: the production time and
the formation time (see Fig.1.6). The former ranges from when the quark is knocked-
out off the nucleon to when its color field is neutralized. The latter ranges from when
color neutralization happens to when the hadron fully forms.

In the production time, the free quark loses energy according to its environment and
its energy. In wvacuum, the quark will produce a jet of hadrons with which it will
share its energy. At this point, a non-perturbative model to describe the energy loss

is the Lund string model[14]; thus, the energy loss is given by:
ABye = KL, (1.46)

where k is known as string tension and is usually assigned the value 1[{GeV/fm)],
and L is the distance traveled by the quark. In DIS, gluon bremmstrahlung be-
comes an additional or even the principal source of energy loss; hence, we can use a

perturbative approach to describe the energy loss[13]:

_ i 2\ 2
B = 5-a,(@Q)QL. (1.47)
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When the quark travels through nuclear media, an additional source of energy loss
is the induced energy loss. 1t is given by the elastic collisions between the quark
and the nucleons inside the nucleus. The former gains transverse momentum due to

these collisions. Induced energy loss reads[13]:
3 2 3 2
AFE;,. = gozsApTL = ZasC(E)pAL , (1.48)

where p4 is the nuclear density, Ap2 is the transverse momentum acquired by the
quark, and C(FE) is the derivative of the nucleon-dipole cross-section w.r.t. the sep-
aration between the dipole components, where this separation is evaluated at zero
after the derivation[15].

In the formation time (see Fig.1.6), the prehadron has an uneventful trip if it is
in vacuum. However, in nuclear media, the prehadron can elastically and inelasti-
cally scatter with nucleons. The latter leads to nuclear absorption. The former is
measured experimentally and is parameterized as a fraction of the hadron-nucleon

elastic cross section (see next section).

1.4.1 Transverse Momentum Broadening

Induced energy loss and transverse momentum broadening are conceptually tied as
we previously saw. There are models to obtain expressions for the broadening. In

this section we will show a model in which the broadening is given by [15]:

1

2\ _ /2
<ApJ—>q - <UqJ_> (S*> X
o z+lp . o .
/ d?bdzp (b, z)/ dz' pa (b, z’) exp <—a*/ dz"pa <b, z”)) ,
—oc0 2 z+lp

(1.49)

which is based on the hard-sphere approrimation. The terms of the equation are:

e (0q?) is the mean transverse momentum acquired by the quark in one collision:

do
(oq]) = /dchquLqi, (1.50)
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where ¢ is the quark-nucleon cross section.

e S* represents the pre-hadron survival probability, i.e., the probability that the
pre-hadron is not absorbed by the medium. Assuming that the shape of the
prehadron does not change substantially over space-time, the mean of S* is

defined as:

(S*) = /_OO dPbdzp (b, z) exp (—O'* /OO dz' pa(b, z’)) : (1.51)

e’} +lp

where o, is the prehadron-nucleon inelastic cross section. It is experimentally

determined as a fraction of the hadron-nucleon cross section:
Oy X —OupN- (152)

It is worth remarking that eq. (1.51) it is not the proper survival probability.
The survival probability of a prehadron is called Nuclear Transparency and,

for prehadrons with quasi non-changing size, is defined as [13]:

(1.53)

where the ¢g subscript references to a dipole which is a common picture refer-
encing the prehadron, ry represents the transverse distance between the dipole

components, and T4 is the nuclear thickness function:
Ty = /dsz(b, ). (1.54)

The nuclear density ps can be determined in the hard-sphere approximation. This
is reasonable when the size of the boundary of the nucleus is smaller in comparison

to its whole body. Then, the nuclear density can be expressed as:

pa(b,2) = poO(Ra — )O(R(M) — =) R() = \JRA -2, (L55)
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where the homogeneous nuclear density po is 0.16[fm ™3] (experimental value), and
R, is the nuclear radius which is proportional to A'/3.
Finally, an analytical expression of eq. (1.49) can be obtained considering a non-

changing size dipole[15]:

er-itinfe | -5 (1 - () )

3
RO (1, ZRA)} .

O (2R4 — 1)

(1.56)

The importance of eq. (1.56) lies in the behavior of the broadening according to
variables such as [, and R4.

The term accompanied by © (I, — 2R 4) refers to when the hadronization happens
outside the nucleus. If that is the case, the usual proportion APZ oc AY3 is re-
covered. The term accompanied by © (2R4 — [,) addresses the case in which the
production length is smaller than the nucleus, in which the [,/ R4 terms are correc-

tions introduced due to the finite size of the nucleus.
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Experimental setup

2.1 CEBAF Accelerator

The Continuous Electron Beam Accelerator Facility (CEBAF) accelerator (see Fig.2.1)
is located at the Thomas Jefferson National Accelerator Facility (JLAB) in New-
port News, Virginia, USA; and the main lines of investigation is nuclear physics and

elementary particle physics.

NEW Hall D

~
RF S
eparators _ -

Injector .
I L South Linac

West Arc

\NEW 5th Pass Separator
NEW Arc 10

%7 Experimental Halls

Figure 2.1: CEBAF map

The accelerator functioning can be summarized in the following steps:

1. The injector delivers 45[MeV] polarized or unpolarized electrons with a fre-
quency of 1.4791[GHz].

2. The electrons enter the north linear accelerator (LINAC) which is composed of

20 cryo-modules. Each cryo-module (see Fig.2.2) is composed of eight niobium
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cavities kept at 2[K| due to the constant supply of liquid hydrogen, work of
the Central Helium Liquefier. In these cavities, an electric field accelerates the
electrons. At the end of the linear accelerator (LINAC) the electrons’ energy
should increase in 0.6[GeV].

Miobium Cavity
RF Antenna He Pumping Port

L_ Electric Fields

Liquid He Bath
Beam Path

AL

He Fill Port

Yacuum Insulation

Figure 2.2: Reference image of the structure of a cryo-module

3. After the LINAC, the electrons go to the recirculating arc. This is a semi-
circular track that brings electrons from one LINAC to the other. The arcs
are a solution to the acceleration procedure given the space availability of the

facility.

4. In the southern LINAC occurs the same process as in the first. However, there

is a difference in the possible outcome:

e The electrons can exit the acceleration process and enter one of the halls.

e The electrons can keep going with the acceleration process entering the

northern LINAC once again, then the south, and so forth so on.

Recently, the facility was updated to perform with a 12[GeV] beam, and also with
the construction of Hall D.

As of now, there are four halls: A, B, C, and D. Hall A and C reaches luminosities of
10%[em 2571, with very small acceptance, meanwhile Hall B reaches luminosities

of 2 % 10%*[cm~2s~!] with large acceptance.

29



Chapter 2

2.2 CLAS Detector

Inside Hall B it is located the CEBAF Large Acceptance Spectrometer (CLAS)
detector (see Fig.2.3). One of its main characteristics is that it has a near 47 solid
angle detection coverage. Considering the z axis as the beamline (see Fig.2.4), the
coverage in the polar coordinate 6 is from 8° to 142°. In the azimuthal coordinate,
it is from 0° to 360°, with six gaps due to the magnetic coils. These gaps divide the

detextor in six sectors.

CEBAF

L arge
Acceptance
Spectrometer

Figure 2.3: CLAS detector general view.

The plane perpendicular to the beamline is divided in six sectors due to the
presence of superconducting coils (see Fig. 2.4). These form a torus shaped magnetic

field around the beamline:

Direction

Figure 2.4: CLAS detector division by the coils

The particles involved in the scattering processes are affected by this magnetic
field, hence, they are deviated from their original paths. In the case of positively
charged particles, these tend to have an out-bending trajectory deviation. Mean-

while, the negatively charged particles tend to have an in-bending trajectory de-
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viation. In the case of the target and the non-scattered electrons, the magnetic
field won’t affect them because the design contemplates a null magnetic field in the
beamline. This allows the usage of a polarized target.

Additionally, around the target zone, we can find a smaller version of the large torus,
and it applies a small magnetic field that deviates low energy electrons, produced
by Moller scattering, from reaching the innermost drift chambers. In other words,
the smaller torus greatly reduces background.

All the non-scattered electrons are collected in a Faraday Cup (FC) at the end of
their route.

CLAS is composed of[16]:

Drift chambers

Cherenkov counters

Time of Flight counters

Electromagnetic calorimeters

2.2.1 Drift Chambers

Drift chambers (DC) are detectors filled with inert gas or a mixture of gases. In
CLAS case this mixture is 90%Ar and 10%CO,. Additionally, they have conducting
wires subject to a certain electric potential. Then, when a charged particle passes,
the gas ionizes and the electrons produced by this process goes to the wires due to
the electric force exerted by their electric field. This generates an electric pulse that
allows to detect where the original particle passed. Hence, DC are used to measure
particle trajectories and momentum.

CLAS has 18 multi-wire DC. Three per sector, and each one of them in a different

radial position or region (see Fig.2.5).
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Drift Chambers TOF Counters
Region 1
Region 2

Region 3

4l

Mini-torus Coils

NEV/

Main Torus Coils

Figure 2.5: CLAS point of view facing the beamline

The DC has a 8 < 0 < 142° and 80% ¢ coverage [17]. Track resolution for

1[GeV] charged particles were:

e Relative resolution (dp/p < 0.5%)

e 00,00 < 2[mrad.

2.2.2 Cherenkov Counters

The Cherenkov effect is a physical phenomenon where a charged particle induces to
the traversed medium to radiate. This happens whenever the charged particle has a

speed greater than the speed of light in the medium. The essential condition being;:

B-n>1 (2.1)

Where n is the medium’s refractive index.

In CLAS, the Cherenkov counters (CC) are used to identify, or discriminate, charged
particles, specifically electrons and pions. With a coverage in the 6 angle up to
45°[18], the structure is divided by the sectors of CLAS. The CC are composed of
several mirrors to reflect the Cherenkov radiation into Winston Cones (see Fig.2.6)

where the latter conducts the light to photo-multiplier tubes.
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Figure 2.6: Cherenkov detector of one CLAS sector

These tubes are filled with Perfluorobutane -C'y Fio-, which has a refractive index
n = 1.00153. This allows a high photon yield and a pion momentum threshold of
pen = 2.5[GeV/][16].

2.2.3 TOF Counters

The Time Of Flight (TOF) counters correspond to a family of detectors know as

Scintillator Counters. How these work is simple:

1. A charged particle interacts with the surrounding atoms.

2. Excited atomic electrons re-emit energy through photons.

3. The emitted photons travel through the scintillator and reach a photo-multiplier
tube. In other cases, if the frequency of the light is out of the detector sensi-

bility, it reach a wavelength shifter first and then a photo-multiplier tube.

4. The photo-multiplier converts the light into an electric signal.

In CLAS, there are 57 scintillators per sector, with a 8° < 6 < 142° and full active
¢ coverage. The thickness of every scintillator is 5.08]cm], and its length stretches
from 15[cm] in the front to 4.22[m] in the middle. Also, their widths stretch from
15[em] to 22[em] [19]. At both ends of every scintillator there is a photo-multiplier
tube (see Fig.2.7).
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Beam L

Figure 2.7: Scintillator system of one CLAS’ sector

The timing resolution of the scintillators was parameterized with the following

formula[16]:

2 2
OTOF = \/00 + Npe oL/ (2.2)

Where:
e 0y = 0.062[ns] is the natural timing resolution of the scintillator.

e 0, = 2.1[ns| is the combined single photo-electron response of the scintillator

and the photo-multiplier tube.

op = 0.0118[ns/em| accounts for path-length variations in the light collection.

Npe = 1043 is the average number of photo-electrons that the photo-multiplier

tube would receive if there was no attenuation in the scintillator.

L is the scintillator length.

A is the light wavelength.

2.2.4 Calorimeters

Calorimeters are detectors used to detect charged and neutral particles. The detec-
tion works via deposition of energy. Showers of secondary particles are produced and
this generates signals in a contained region of the detector. The type of calorimeters
used in CLAS are called sampling calorimeters and are composed of various layers
of scintillators and absorbers.

CLAS possesses two types of sampling calorimeters: the forward calorimeters and
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the large angle calorimeter.

The forward calorimeters have a projective geometry where the polar angle coverage
extends up to 45°. They are divided in modules and are located in the sectors of the
detector. Each triangle-shaped module consists of 39 layers, with each one of them
increasing its area linearly w.r.t. the distance from the target. The layers are com-
posed of a 22[mm)| thick lead sheet and a 10[mm] thick BC142 scintillator, the latter
is aligned parallel to one of the sides of the triangle shaped module. Layer-by-layer,

this orientation changes. These are denoted as U, V and W (see Fig.2.8).

Scintillator bars

LU - plane =
* Lead sheets

V- planc e
Weplane
Fiber Light Ginides
(Frismt )

Fiber Light Guides
(rear)

Figure 2.8: Calorimeters modules

There is an exclusion zone within 10[cm] from the edges of the module. This is to
contain completely the showers produced by the traversing particle. The detection
is made through a triangulation of the shower’s position. The scintillators are the
devices in charge of giving the signal of the shower.

The relative resolution of the forward calorimeter is:

AE 10.3%
= 2.3
E E[GeV| (23)

The large angle calorimeter (LAC) is used to detect neutral particles and scattered
electrons. It covers up to 120° in the azimuthal coordinate, hence it covers two
sectors. In the polar coordinate goes from 45° to 75°. The modules are comprised

of 33 layers of lead foil and scintillators.
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2.3 Eg2 Experiment

The Eg2 experiment had its experimental runs through 2004 at Jefferson Lab’s
Hall B. The motivation of this experiment was to study phenomena such as the
hadronization process and color transparency. These would be analyzed in nu-
clear media through specific observables like the hadronic multiplicity ratios or the
hadronic transverse momentum broadening.

For this experiment, a double target system [20] was designed in which a liquid
(hydrogen, deuterium) and a solid (carbon, iron, lead, tin, aluminum) target would
be exposed simultaneously to JLAB’s electron beam (see Fig.2.9). In this thesis
we used the results from the carbon, iron and lead targets with its liquid results

associated.

Figure 2.9: Eg2’s double target system. The claws holds the interchangeable solid targets. The
cylinder-shaped object wrapped in foil is the liquid target.

The spatial dimensions of the target were designed such that both solid and
liquid targets provide the same luminosity, except in the case of Pb. The specific
lengths and areal densities (A.D.) are given in Table 2.1]20].

To perform acceptance correction on the data a GEANT package called GSIM was

Target | Length [mm]| | Longitudinal A.D. [g/cm?| | Transverse A.D. [g/cm?|
C 1.7 0.38 0.33
Fe 0.40 0.31 1.2
Pb 0.14 0.16 1.7

Table 2.1: Eg2’s solid target dimensions.
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developed in which the target geometry was implemented by Hayk Hakobyan [20]

to realistically simulate the experiment (see Fig.2.10).

J
V
W”rh.

N
m'ﬁw

Figure 2.10: GSIM representation of the liquid target cross-section looked from the side (left).GSIM
representation of the solid target (green) and the liquid target (yellow) looked from the front (right).
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Data analysis

3.1 Particle Identification and Vertex Determina-
tion

The data acquired is reconstructed with RECSIS in a process that is known as
cooking. Then, the data is stored in a BOS (Bank Object System) format database.
The files that contain the events is in CLASTool format, which is a C+-+ package
developed to analyse CLAS data. Finally, Analyser is used to filter these events and
calculate its respective variables.

To select an event, first, we need to identify an electron. Afterwards, the rest of the
particles can be identified. In this analysis those particles were positive pions. These
were stored in TNtuples on ROOT files with all its relevant kinematical variables.
The data set and the particle identification scheme used in the approved analysis

note of charged pions [21] were used in this analysis.

3.1.1 Electrons

The following criteria was used to identify a particle candidate as an electron:

e A negatively charged signal must be recorded in the Drift Chambers (DC),
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the Cherenkov Counters (CC), the Electromagnetic Calorimeters (EC), and

the Scintillator Counters (SC, TOF).

e It is required a minimum number of photo-electrons (Nphe), which are emitted
by the passage of a candidate in the CC, to reduce negative pion contamina-
tion. The Nphe requirement depends on the CLAS’s sector where a candidate

was detected: )

> 25; Sector 1
> 25; Sector 2
> 26; Sector 3
Nphe = (3.1)
> 21; Sector 4

> 28; Sector b

> 28; Sector 6

Sector 0 Sector 1 Sector 2
- Nphe>25 . Nphe>25 Nphe>26
g 3 P
S E— s — T e
Sector 3 Sector 4 Sector 5
Nphe>21 o Nphe>28 Nphe>28
Rﬂh‘\»\ o g

Nphex10 ) Nphex10 Nphex10

Figure 3.1: Nphe distributions for different CLAS’s sectors. The red lines represent where the cut
was applied. The regions of low Nphe are associated with negative pion contamination. Plot from
[21].

e A coincidence time between the EC and SC was required. This time is defined

as:

(3.2)

AT = (Time(EC) — Time(SC)) — (P ath(EC) Path(SC))

vel vel

Where:

— Time(EC/SC) is the time a candidate takes from the vertex to the EC/SC
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and it is measured with the TOF detector.

— Path(EC/SC) is the distance traveled by the candidate from the vertex
to the EC/SC.

— wvel is the velocity of a candidate measured through its momentum which

is obtained with the DC.

From eq.(3.2) is obtained a Gaussian-like distribution centered at zero (see

Fig.3.2).

14000 —

dN/dT

12000 :—
10000 :—
8000 :—
6000 :—
4000 :—

2000 —

2 3
AT [ns]

Figure 3.2: Coincidence time distribution of electron candidates. The dashed red lines represent
the points where the cut was applied. Plot from [21].

The cut imposed on AT is given by the standard deviation o obtained from a

fit to the variable with a Gaussian function:

|AT| <5%035=5%0 (3.3)

e A set of cuts was applied to the candidates in the EC based on the energy
deposited in it. This energy can be treated twofold: total energy deposited
in the 13 layers of the EC (Ey,;) or energy deposited in the outer (E,,;) and
inner (E;,) part of the EC. The inner part is the closest set of five layers to
the vertex. Meanwhile, the outer part is the farthest set of eight layers to the

vertex.
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Therefore, the following cut was applied:

E,u > 0[GeV] (3.4)

To reduce negative pions contamination it is imposed:

Ej > 0.06[GeV] (3.5)

To further reduce this contamination two more sets of cuts were applied. The
first involved E,, and it is applied under the assumption that negative pion’s

energy deposition in the EC is independent of their momentum (see Fig.3.3).

Sector 0 Sector Sector 2

Etot/0.27
Etot/0.27

Etot/0.27
Etot/0.27

Figure 3.3: Candidates’ normalized FE;, versus their momentum for all sectors of CLAS. Events
between the red lines are the ones selected in the analysis. Plot from [21].

Thus, the cuts applied were:

r9%: B, <1.05xP+018 ; T9: E/,>1.05xP —0.46
Il: B, <1.05xP+018 ; Ti: E/, >1.05%xP —0.46
I?: B, <111xP+018 ; I'Z: B, >1.11xP—0.43
I8: B, <1.07xP+018 ; T3: E/, >1.07xP—043
I: B, <111xP+018 ; T'i: E, >1.11xP—0.43
IS: B, <11l1xP+018 ; I': E, >1.11xP—043

Where Ej, is the normalized energy F, , = E;,/0.27.
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The second set of cuts involved E;, and E,,; (see Fig.3.4). The cuts are based

on the same assumption in regards to the previous set.

Sector 2

Eoutf.27/P
Fout.27/P

Ein/0.27/P Ein.27/P Ein/0.27/P

Sector 3 Sector 4 Sector 5

Eout/0.27/P
Eout/0.27/P

T2 =
Ein/0.27/P Einf).27/P Ein/0.27/P

Figure 3.4: Candidates’ normalized F;, versus normalized FE,,; for all sectors of CLAS. Events
between the red lines are the ones selected in the analysis. Plot from [21].

Thus, the cuts applied were:

M: E +E,<111xP E, +E ,>07xP
I': B +E,, <111xP Bl +E, >075xP
r?: B, +E,<119xP El +E|,,>084xP (37)
3: E +E,<115xP E +E ,>08xP
It B +E,, <122xP Bl +E, >085xP
I%: B +E., <1.19xP El +E.,, >084xP

e This requirement, developed by Taisiya Mineeva [22], is based on positive pions
energy deposition. This is approximately 27% of their energy on the EC (see
Fig.3.5).
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0.0“.

Figure 3.5: Candidates’ total energy deposited normalized to its momentum vs its momentum.
The dashed line represents the approximate value of the Fy,:/P ratio expected for electrons.

Therefore, a fit is performed on every sector’s E/P vs P distribution (see

Fig.3.6). A second degree polynomial is used:

w(P) =a; +ay x P+ az x P?

- (3.8)
o(P) =1/aj + %5
Then the cut is stated as:
E
'ﬁ —ul < 2.5 x g, E = M&.T(Etot, Ein + Emam) (39)

Sector 0 Sector 1 Sector 2

R
R I B T R T B R R R T W O S R R R I B T R T B R
P P P

Sector 3 Sector 4 Sector 5

051 152 253 354 455 0 05 1 152 25 3‘ 3.‘5 4455 0 05 1 15 2 253 354 455 °
P P P
Figure 3.6: The black line corresponds to v, and the red lines correspond to v &= 0. The events

between the red lines were selected for the analysis. These plots show electron candidates with
some cuts already applied as can be observed from the drastic cutoff near E/P = 0.21.
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e Fiducial cuts were applied to exclude regions of the detectors that did not have
a good reconstruction in the simulations. These requirements were imposed
in the DC and EC.

The DC fiducial cuts were developed by Lorenzo Zana [23] and were applied to
exclude regions where the simulation did not represent the detector optimally
(see Fig.3.7).

The EC fiducial cuts exclude its edges. Hits detected there had the issue that

0.5<P<0.7 0.7<P<09 09<P<1.1 1L1<P<13

05000 150 200 250 300y, 0RT00 150 200 25 300y 0TS0 T00 150 200 25 300 0TS0 T00 150 200 250 300y

1.3<P<15 1.5<P<17 1.7<P<19 19<P<2.1

050100 150 200 250 00, 0RT00 TS0 200 250 300 05000 T80 200 250 300, 07750 T00 50 200 250 300y

21<P<23 23<P<25 25<P<27 27<P<29

T 20024300

Figure 3.7: Superimposed plots of lab angles. The events in black are those removed due to the
DC fiducial cuts.

showers wouldn’t be entirely contained in the detector. The cuts were applied
in the coordinates of the different layers of the EC!.

The cuts were the following:

40 < U <410 V <370 W <405 (3.10)

The effect is best observed in the plane perpendicular to the beam line (see

Fig.3.8).

!The layers of the EC had certain orientations with the purpose of a precise triangulation
procedure of the shower. The orientations are denoted with the letters U, V and W.
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Figure 3.8: Superimposed plots of X-Y coordinate. The events in gray are those removed due to
the EC fiducial cuts. Plot from [21].

3.1.2 DIS Cuts

After electrons have been selected we isolate DIS events. The following cuts were

applied:

e Q% > 1[GeV?] to ensure that the energy of the virtual photon is enough to

resolve the elemental constituents of the targeted nucleon.
e W > 2[GeV] to avoid the resonance region and to select inelastic events.

e y < 0.85 to reduce the number of events with a high radiation of photons.

3.1.3 Positive Pions

To select positive pions with P < 2.7[GeV] a TOF-based method was used. In this

case was defined a variable similar to the coincidence time of the electron. It reads:

C Ur+

L&, LY
AT — ( flight flzght) — (te —tor) (3.11)

Where the L’s are the distances from the vertex point to the location of the SC

for the indicated particle, v is the velocity of the particle, and t’s are the measured
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times from the vertex point to the SC. Similarly to the electron coincidence time,
we expect that this variable should be centered in zero. The cuts were applied in

different bins of momentum (see Table 3.1).

P[GeV/c] | Lower Limit | Upper Limit
[0.00-0.25] 20.70 0.70
] 0.25:0.50] | -0.70 0.65
] 0.50-0.75] -0.70 0.65
] 0.75-1.00] -0.70 0.65
] 1.00-1.25] -0.55 0.55
] 1.25-1.50] -0.50 0.55
] 1.50-1.75] | -0.50 0.40
] 1.75-2.00] -0.48 0.40
] 2.00-2.25] -0.50 0.40
] 2.25-2.50] -0.50 0.40
] 2.50-2.70] -0.50 0.40

Table 3.1: AT cuts in different momentum ranges.

3.1.4 High Energy Positive Pions

Methods that only use TOF variables to identify positive pions at high momentum
(P > 2.7|GeV]) are not reliable. Therefore, CC cuts are added.

The requirements were the following:
e Entries in the CC and a positive status in the CC bank.

e To reduce heavy hadron contamination it was imposed:

Nphe > 1.5 (3.12)

To further reduce heavy hadron contamination a TOF cut is applied (see Table

3.2).

P[GeV/c] | Lower Limit | Upper Limit
12.7-3.3] 20.60 0.45
3.3-6.0] -0.60 0.50
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e A geometrical matching cut between the SC and CC hit:

Geo.Match < 5° (3.13)

3.1.5 Vertex Determination

Taisiya Mineeva developed these cuts in her neutral pion approved analysis note
[24]. The CLAS’s track reconstruction determined the location where the particles
were coming. The previous procedure assumed that the beam position, in an z,y
plane -perpendicular to the beamline-, is (z,y) = (0[cm], 0[cm]). Nevertheless, using
proton elastic scattering, an offset was determined. Then, the real beam position
was (z,y) = (—0.043[cm], 0.33[cm]). This offset implied that the real position of the
vertex had to be obtained after the application of a sector-dependent correction to
its coordinates. The set of corrected coordinates obtained were named: XC', Y,
ZC.

After this procedure, the ZC coordinate becomes sector-independent, meaning that
the longitudinal vertex cut selection also acquires this feature . The solid targets
cut were determined through a Gaussian fit to ZC. Then, the cuts (see Table 3.3)

are given by the parameters obtained from the fit:

(ZC) —30 < ZC < (ZC) + 30 (3.14)

Where (ZC') is the mean, and o is the standard deviation.

Target | ZCpinlem] | ZChazlem]
D —31.80 —28.40
C —25.33 —24.10
Fe —25.65 —24.26
Pb —25.54 —24.36

Table 3.3: ZC' cuts for different targets.
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3.1.6 Additional Cuts

The following cuts were applied to further improve the quality of data:

e To reduce background, a YC' cut was applied. A study by Orlando Soto,
Raphael Dupré, and William Brooks [24], determined that |Y'C| < 1.4[em] re-
duced the amount of events in 22%, approximately. With this cut, background

is subtracted such that it can be negligible in some regions (see Fig.3.9).

dN/dz
dN/dz

[YC[>1.4 cm

wE  |YC[>0.1 cm
£ |YC|>1.0 cm

22 20
Z [cm]

Figure 3.9: YC cut effect looking at the longitudinal coordinate Z. Notice that in the right plot
the background is almost completely removed by the |YC| < 1.4[em] cut. Plot from [21].

Therefore, the cut applied on Y C was:

Y C| < 1.4[em)] (3.15)

e Simulation-based studies determined that ~ 18% of positive pions decay in
flight into muon-neutrino pairs [25]. The muon takes most of the energy of
the pion, and the former is often misreconstructed as a pion with different
momentum. To reduce the number of these events, first, the difference of 7

coordinate was defined as:

AZ =Zpi — 2, (3.16)
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Then, based on [26], the cut applied was:

|AZ] < 3[em)] (3.17)
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3.2 Binning

The following criteria was used to determine the binning:

e Every (Q% v) bin has, approximately, the same number of events.

e Bigger bins are to be used at high z;, to reduce the statistical uncertainties in

that region.

e The (Q? v) bins are large such that we have enough events to provide a detailed

description of P2 distributions’ tails.

The binning is given by:

Variable | Number of Bins Limits
Q*[GeV?| 3 1-13-18-4
v[GeV] 3 2.2-32-37-4.26
Zh 8 0-01-02-03-04-05-06-08-1
P2[GeV?] 90 0,3]
opg|Deg.] 12 [-180,180]

Table 3.4: Binning used in this analysis
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3.3 Experimental Corrections of the Data

3.3.1 Acceptance Correction

Pions that were not detected due to geometrical or efficiency reasons are included
in the analysis via the application of the acceptance correction. This is calculated
in a five-dimensional phase space. For every five-dimensional bin ¢, the acceptance
factor was calculated as:

N, accept;

Acc; = (3.18)

Ntnrown,
Where Nyceeps, is the number of detected events in the realistic detector simulation,
given by the GEANT simulation, and Nipown, 1S the number of generated events by
the PYTHIA simulation. These simulations were generated by Hayk Hakobyan [27].

Then, the factors were applied to data as:

(Data);

(Acc. Corr. Data) Acc,

(3.19)

The statistical error of this factor was calculated with error propagation and under

the assumption that there is no correlation between Nyccept and Nypyown:

N, accept; N thrown;

dAce = Acc x \/(M\]‘ELDIM)2 - (M>2 (3.20)

The statistical error of the thrown events is zero since these were generated from
a theoretical model encoded in PYTHIA. Hence, the acceptance statistical error

reads:
6Naccepti ) 2

N, accept;

dAcc = Acc * ( (3.21)

To estimate 0 Ngceept,, Wwe used the binomial distribution to characterize the behavior
of the number of accepted events. The previous distribution is given by an n number
of independent trials with a p probability of success in each trial. This is an analog to

the acceptance in which 7 = Niprown, and p can be estimated as p ~ Acc. Therefore,
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the error of the acceptance factor is:

Ace(1l — Acc)

N; thrown

dAcc =+ (3.22)

We followed a conservative approach regarding the requirements to the acceptance
factors since we explored the variations to these requirements in the systematic

errors chapter. Hence, the acceptance factors were filtered by:

Naccept > 1 (3.23)

The effects of the acceptance correction on the integrated (P2) results without the

x¢ cut and with the z; cut are displayed in Figs.3.10 and 3.11, respectively.
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Figure 3.10: Ratio between the uncorrected and the acceptance corrected integrated results of

(P2). The hollow points correspond to the liquid targets results, and the full points correspond to
the solid targets results.
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Figure 3.11: Ratio between the uncorrected and the acceptance corrected integrated results of

(P2) with z ¢ > 0. The hollow points correspond to the liquid targets results, and the full points
correspond to the solid targets results.

The effects of the acceptance correction on the integrated APZ results without

the x; cut and with the z; cut are displayed in Figs.3.12 and 3.13, respectively.
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Figure 3.12: Ratio between the uncorrected and the acceptance corrected integrated results of
APz
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Figure 3.13: Ratio between the uncorrected and the acceptance corrected integrated results of
AP2 with x cut.

We observed a non-negligible influence of the acceptance correction on the squared
transverse momentum. The region that is most affected is low zj.
In the case of the transverse momentum broadening, the effect is amplified. Also,

high z, is affected reaching up to 12% of effect in the case of Carbon.
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3.3.2 Radiative Correction

To correct the cross section that contains real photon emission and internal loops

(see Fig.3.14) we used a SIDIS radiative correction package called HAPRAD.

LLXXX

a)

Figure 3.14: Born cross-section diagram (a) and diagrams with different radiative contributions

(b,e,d,e).

The calculations in [28, 29] were used as the main reference to obtain the Radia-
tive Correction (RC) factors. These are defined as the ratio between the radiatively

corrected cross section and the Born cross section:

Spe = (3.24)

The 0,,q reads [28]:

Orad = OBorn€ ™ (1 + Oy g + Ovac) + O (3.25)

Where o is the contribution of the radiative tail, d;,¢ and d,,. are corrections re-
lated to radiation of soft photons and effects of vacuum polarization, and dy g is an
infra-red sum of factorized parts of real and virtual photon radiation. The previous
terms are given in [28].

The procedure to obtain the RC factors is based on a data-driven structure func-
tion extraction method where the acceptance corrected ¢ distributions, given by

(Q?,x, z, Pr) bins, are fitted with the following function:

f(@)=A+ B-Cos(p)+ C - Cos(2¢) (3.26)

The quality of the fits can be observed in Figs.(3.15, 3.16)
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ndf

Figure 3.15: Distribution of the goodness of fit. The dashed lines correspond to the liquid targets
results. The red corresponds to C-related results, the blue corresponds to Fe-related results, and
the black corresponds to Pb-related results.

Figure 3.16: Distribution of the goodness of fit for zy > 0 results. The dashed lines correspond
to the liquid targets results. The red corresponds to C-related results, the blue corresponds to
Fe-related results, and the black corresponds to Pb-related results.

The RC factors were calculated in a five-dimensional phase space; then, they

were applied to the data as:

(Data);

(Rad. Corr. Data); =
OrC

(3.27)

We estimated the effect of the radiative corrections over the acceptance corrected
results due to the use of the latter by HAPRAD. Thus, the effects of the radiative
correction on the integrated (PZ) results without the z; cut and with the z; cut are

displayed in Figs.3.17 and 3.18, respectively.
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Figure 3.17: Ratio between the acceptance and the acceptance+radiative corrected integrated
results of (P2Z). The hollow points correspond to the liquid targets results, and the full points
correspond to the solid targets results.
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Figure 3.18: Ratio between the acceptance and the acceptance+radiative corrected integrated

results of (P2) with z ¢ > 0. The hollow points correspond to the liquid targets results, and the
full points correspond to the solid targets results.

The effects of the radiative corrections on the integrated AP# results without

the xy cut and with the z; cut are displayed in Figs.3.19 and 3.20, respectively.
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Figure 3.19: Ratio between the acceptance and the acceptance+radiative corrected integrated
results of APZ.
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Figure 3.20: Ratio between the acceptance and the acceptance4radiative corrected integrated
results of APZ with z > 0.

The radiative corrections do not present a big effect (such as the acceptance
correction) on the averaged squared transverse momentum. The biggest effects are
in the order of 3%.

For the transverse momentum broadening the effect is also amplified. However, in
zp, < 0.6 the effect is only about 5%. The region where the correction has its biggest
effect is in z;, > 0.6.

Due to the small effect of the radiative corrections, in comparison to the acceptance
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correction, this is considered as a systematic uncertainty source.
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3.4 Background Subtraction

Due to the observables we chose to analyze, P2 distributions are fundamental.
Therefore, to ensure a good quality of these the following two-step process was

implemented.

3.4.1 Distributions’ Cutoff Value

We called scattered events to those that had high P2 values and did not followed
an exponential trend (see Fig.3.21). These events were a minor fraction of the total

and, in consequence, considered as background.

2 2-
2[GeV?]
J
QU

dN/dP:

. T ﬁﬁ

' F'Z[Gevz]s
T

Figure 3.21: P2 distribution for Fe target and within 1.3 < Q?[GeV?] < 1.8, 2.2 < v[GeV] < 3.2,
0.6 < 2z, < 0.8. The red points indicates which bins were considered as scattered points.

The method, in summary, consisted in the calculation of a cutoff based on multi-
ple fits. The advantage is that it reduces the bias in the cutoff estimation. Usually,
one fit per distribution for these endeavours is used. Instead, multiple fits weighted
by the quality of the fit is a less biased form to obtain a cutoff.

The procedure is detailed next for a given distribution in a three-dimensional bin:

1. The distribution is fitted from the first to the last bin of P2 with an exponential

distribution (see Fig.3.22):

f(P})=a-e 1/ (3.28)
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Where a is a normalization parameter, and b is associated with the width of

the distribution.

X2/ ndf 145.7 167
— po 3.797e+04 + 2.690e+02
S

2 p1 0.2348 +0.0011
Q

0 0.5 1 15 2 25

PZ[GeVZ]S
T

Figure 3.22: P2 distribution for Fe target and within 1.3 < Q?[GeV?] < 1.8, 2.2 < v[GeV] < 3.2,

0.6 < z, < 0.8. The black line corresponds to the fit with the function described in equation
(3.28).

2. The cutoff for that fit is determined as the P2 value where the fit function is
equal to 1.

3. Then we repeat (1) and (2) but with a change in the first step: the beginning

of the fit is pushed to the next bin of P# (see Fig.3.23).

X2/ ndf 139.1/66
_ po 3.85e+04 + 3.42e+02
g

% pl 0.2335 +0.0012
o

0 0.5 1 15 2 25

PZ[GeVZ]S
T

Figure 3.23: P2 distribution for Fe target and within 1.3 < Q?[GeV?] < 1.8, 2.2 < v[GeV] < 3.2,

0.6 < z, < 0.8. The black line corresponds to the fit with the function described in equation
(3.28).

To corroborate the exponential behavior of data we repeated this step 15 times.

Two reasons are behind this decision:
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e If this number was increased, to a certain extent, we observed no differ-

ence in the cutoff calculated (see next steps).

e [f the fit starts near the end of the distribution the curve adjusts perfectly
to the last points -scattered points-. Therefore, we obtain an overesti-
mated cutoff where this overestimation is transferred to the final cutoff

-the explanation of the final cutoff’s estimation is in the following steps-.

After some repetitions, the fits look like Fig.3.24.

X2/ ndf 53.83/53
— po 5.073e+04 * 2.325e+03
&
‘a pl 0.2145 +0.0029
(4]
@10 \
ks
2
o

10°

)
10? ] * *
10 Tﬁ

5 3
P2[GeV?]
Figure 3.24: P2 distribution for Fe target and within 1.3 < Q?[GeV?] < 1.8, 2.2 < v[GeV] < 3.2,

0.6 < z; < 0.8. The black line corresponds to the fit with the function described in equation
(3.28).

4. After we applied the fits a weight was assigned to every cutoff value. That
weight considered two attributes: X?Ldf and ndf. The functions that processed

these attributes were:

) X?zdf — a Gaussian distribution given by:

2 2
_(Xndfi_l)
e 2:0.2

GOly) = ———
(Xndfz) \/%02

(3.29)

Therefore, fits that described well the data (X?v,dfi — 1) were given a higher
value of this function. The standard deviation value 0.2 is arbitrary but
was selected in such manner that fits outside the 1 + 20 range would

practically have a null contribution to the final weight (see Fig.3.25).
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Figure 3.25: Red lines denote the +o values.

e ndf — a linear function where higher values of ndf give a higher value of

the function:
ndftotal Z;V ndfj

L(ndf;) = (3.30)

The inclusion of ndf as an attribute is to assign a slightly bigger weight

to one of two fits whenever both of them would have an equal X} .

Both attributes had weights assigned: («, 8) = (0.95,0.05). Then, the weight

assigned to a cutoff value, obtained from a fit 7, is defined as:

o — O G0Gap) + 8- L(ndfi) (3.31)
[ Oé—{—ﬁ .

5. Finally, the cutoff reads:

> wi PR
2 = Teveety (3.32)

Tcutoﬁ' Zf\/ wl
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3.4.2 Interpolation Procedure

After the cutoff procedure took place, empty bins are replaced with interpolated
values. Therefore, for these points, a value is calculated via linear interpolation
between the two nearest non-zero bins:

2 2
2 _ Plpe ¥ Pl
Tinterpolated - 2

(3.33)

2 2;
dN/dP2[GeV?]
=
QU

10° e
10? ?# '
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3
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Figure 3.26: P2 distribution for Fe target and within 1.3 < Q?[GeV?] < 1.8, 2.2 < v[GeV] < 3.2,
0.6 < z;, < 0.8. The red points are the bins which were interpolated.

The errors of the interpolated point have no importance on the observable cal-

culation since they are not considered in the calculation of averages [30]:

<[E> o Zz w; - mcenteri

=S (3.34)

Where the index 7 runs through all bins of the histogram, w; is the weight of the i*"

bin, and Zcenter; is the bin center of bin 7.
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Systematic Uncertainties

The sources of systematic uncertainties are based loosely on those selected in the
charged pion research [21].
To calculate the deviation percentage between nominal and variation values, we

used:

Xnomina - Xvaria ion
Dev.% = 100 x ‘ : (4.1)

X variation

The approach [21] to calculate the systematic error was based on the assumption
that the nominal value is the center of a uniform distribution. The biggest deviation
w.r.t. the nominal value A was considered the limit value of that distribution; thus,
its length was 2A. We estimated the real value of the measurement to be within a

68% confidence interval in the uniform distribution. Thus, the systematic error is:

Syst. Error = +£A/v/3. (4.2)

It is worth mentioning that the studied observables have a numerical difference of
one order of magnitude. Therefore, single-digit systematic errors in (P2) can be

translated to double-digits systematic error in the Broadening.
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4.1 Pion Identification

4.1.1 TOF Method

The method used to identify a pion depended on the candidate’s momentum. The
momentum value that discriminated between methodologies was 2.7[GeV]. There-

fore, two variations were applied to this limiting value: 2.5[GeV] and 2.9[GeV].

e In the case of (P#), the deviations from the nominal values are negligible until
zp, = 0.6. At higher z, values, it is observed that the P < 2.5[GeV] variation
has a positive deviation, and the P < 2.9]GeV] variation has a negative devi-
ation (see Figs. B.1,B.2,B.4,B.3)

For the configurations of liquid target and solid targets, with and without
xy cut, the systematic errors oscillated within the [0.86,0.93]% range and

[0.83,0.97)% range, respectively.

e The APZ deviations did not display behavior as clear as the previous observ-
able. Nonetheless, on z;, > 0.6 could be observed the biggest deviations (see
Figs.B.5,B.6).

For all targets’ configurations, with and without x cut, the systematic errors

oscillated within the [0.79,4]% range.
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4.2 Vertex Selection

4.2.1 Vertex Cut

Two different vertex cuts were tested: one developed by Hayk Hakobyan (HH) [27],
and the other developed by Raphael Dupré (RD) [26].

L L L L | L n L L
-40 -35 -30 -25 -20 -15
ZC[cm]

Figure 4.1: In gray the events selected by TM vertex cut. In green the events selected by HH
vertex cut. In blue the events selected by RD vertex cut.

HH’s vertex selection works with uncorrected coordinates; thus, it is sector-
dependent, and its solid target vertex selection is target independent. The cuts are

presented in Table 4.1.

Sector

le‘qu'idma;x; [Cm]

ZSOlidmin [Cm]

Zsolidmax [Cm]

0

T W N~

—32.50
—32.50
—-32.00
-32.00
—32.50
—32.50

—28.00
—27.50
—27.75
—27.75
—28.35
—28.75

—26.50
—26.00
—25.65
—25.85
—26.65
—27.15

—20.00
—20.00
—20.00
—20.00
—20.00
—20.00

Table 4.1: HH longitudinal coordinate Z cut per Sector.

RD’s vertex selection procedure is sector-dependent and target-dependent. It

uses a shift in the Z coordinate to correct the offset of the beam (see Table 4.2).
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The shifts were determined through a fit to the solid target position in all sectors

Sector

Shift[cm]

0 +0.1
—0.4
—0.6
—0.1
+0.4
+0.6

Ot = W DN =

Table 4.2: RDs Z coordinate shift.

of CLAS. The cuts are presented in Table 4.3.

Target Ztiquidmen (€M | Ziiguidmas (€M | Zsolidpen (€M | Zsolidmas (€]
D-C setup —-32.1 —28.1 —26.2 —23.2
D-Fe setup —32.2 —28.2 —26.4 —23.4
D-Pb setup —32.1 —28.1 —26.2 —23.2

Table 4.3: RD longitudinal coordinate Z cut.

e In the case of (P2), the deviations from the nominal value are negligible in
the liquid targets results. However, the solid targets’ deviations were non-
negligible in the last bin (see Figs.B.7,B.8,B.9,B.10).

With and without z; cut, the liquid configurations’ systematic errors were of
the 1072 order. The solid targets’ deviations oscillated within the [0.1,0.4]%

range.

e The AP? deviations do not have a clear pattern, and the z; cut results seems
to have been have bigger deviations at low z; in comparison to the results
without the x; cut (see Figs.B.11,B.12). In general, the biggest deviations
gives systematic errors around 1% and 2%.

4.2.2 |AZ| Variation

In this systematic uncertainty we tested two variations: |AZ| < 3.5[cm] and |AZ] <

2.5[cm].
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e The deviations of (P?) are uniform through z,. Also, no significant differ-
ence was observed between the results with and without x; cut (see Figs.
B.13,B.14,B.15,B.16). For the different configurations of targets, the system-

atic errors fluctuated between [0.3 — 0.7]%.

e The AP? variations vaguely resembled the behavior of the previous variations
(see Figs.B.17,B.18). For the different configurations of targets, the values of

the systematic errors ranged from 0.1% to 4%.

4.3 Acceptance

4.3.1 Minimum Nyccept Value

The nominal cut applied to the acceptance factors was Naceept > 1. Therefore, we

tested two variations: Naccept > 0 and Nyceept > 2.

e In the case of (P2), the liquid targets’ deviations are uniform through zy;
however, the solid targets’ deviations, from z;, > 0.5, presented a separation
between both variations (see Figs.B.19,B.20,B.21,B.22). Between the results
with xy cut and the results without z; cut, there was not a noticeable differ-
ence. The systematic errors associated with the liquid targets’ deviations and

the solid targets’ deviations can go up to 0.17% and 0.56%, respectively.

e The APZ deviations presented a similar behavior to the previous observables’
deviations(see Figs.B.23,B.24). In most cases, the values of the systematic
errors can go up to 4%. Nonetheless, the behavior depended on the target and

if the xy cut was applied or not.
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4.3.2 Minimum Acceptance Value

An explicit cut on the acceptance factor was not applied; therefore, we tested two

variations: Acc > 0.005 and Acc > 0.01.

e In the case of (P?), the deviations are all negatives (see Figs.B.25,B.26,B.27,B.28).
The systematic errors can go up to 0.9% in the liquid targets case and up to

1.2% in the solid targets case.

e The behavior of the previous deviations is inherited by those of APZ. In the
xy cut case, the low zj, region acquires more deviations in comparison with
its no =y cut pair (see Figs.B.29,B.30). Then, the systematic errors varied
between 0.2% and 3.5% when the x; cut was not applied. When this cut was

applied the systematic errors varied between 0.6% and 3.5%.

4.3.3 Different P? Binning

The nominal number of bins chose for P2 was 90. Then, we tested the following two

variations: 70 and 110 bins in PZ.

e In the case of (P?), it was noticed that the deviations were mostly uniform
through 2, except when z;, < 0.2 along with z; > 0 (see Figs.B.31,B.32,B.33,B.34).
The systematic errors for liquid targets could go up to 0.25% and for solid tar-
gets could go up to 0.48%. In the case of xy > 0 results we obtained similar
results except at z;, < 0.2 where the systematic errors for the liquid targets

could go up to 2% and for the solid targets could go up to 2.45%.

e In the case of AP? (see Figs.B.35,B.36) the systematic errors varied between
0.22% and 3.8%. This depended on the target and the if the x; cut was

applied.
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4.3.4 Closure Test (CT)

The CT is a procedure that evaluates the acceptance correction algorithm’s quality

and it was performed via the next steps:

1. Simulations were divided into:

e Reconstructed Events: one half was considered pseudo-data and the other

half was used to calculate acceptance factors.

e Thrown Events: one half was considered the true data (Thrown’) and the

other half was used to calculate acceptance factors.

2. With the acceptance factors calculated from the previous step -Acc’- we ap-

plied them to the pseudo-data.

Pseudo-dat
Corr.Pseudo-data = Leundo-data , ala (4.3)
Acc

3. The following ratio was evaluated:

Corr.Pseudo-data
w =

4.4
Thrown’ (4:4)

Thus if:
Corr.Pseudo-data
Thrown’

~1 (4.5)

Then, we can say the CT closes, and the correction algorithm is healthy. However,
if that is not the case then we might be under/over correcting data. To compensate
this, a scale factor can be applied to the nominal acceptance factor Acc. Thus, the

compensated acceptance factor Acc,,, reads:

Acceorr = w * Acc (4.6)
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Then, the corrected data in the analysis is:

Data

Corr.Data =
Acceopr

(4.7)

The w factors are calculated in a five-dimensional phase space. Ideally, the same
binning as the nominal acceptance factors should be used, though it is not manda-
tory. In our case, the nominal PZ binning was too thin to observe any noticeable
trend in the w factors . Therefore, these were calculated with less P? bins, namely
70 and 50 bins were used.

To assign a w factor, a revision was done in all the bins of the nominal P2 distribu-

tion:
1. Get the center value of the P} bin.
2. Search in the w distribution the bin in which the value of step (1) fits.

3. The bin found in step 2 will be assigned to the nominal P2 bin being analyzed.

e In the case of (P#), with and without ¢ cut, the impact of the Scale Factors
was visible in medium to high zj(see Figs.B.37,B.38,B.39,B.40). The system-
atic error values could go up to 0.8% in the case of the liquid targets and could
go up to 1.3% in the case of solid targets. These numbers were independent

of the z; cut.

e The AP? deviations, without z cut, inherited the behavior from the previous
observables. The biggest deviations are located at medium to high zj (see
Fig.B.41). When we analyzed the deviations of the results without x; cut, was
observed that in z, < 0.3 there were big deviations. This can be explained
looking at the (P2) deviations with -y cut, where the solid results are enhanced
(negative deviation) and the liquid results are suppressed (positive deviation).
This provoked the enhancement in the broadening’s deviations that resulted

in a large negative deviation (see Fig.B.42). The systematic errors could go
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up to 4.5% when the zy was not applied. Also, the systematic errors could
go up to 20% when the z; was applied. Nevertheless, the general value of the

systematic error ranges from 7% to 8%.

4.4 Background Subtraction

The background subtraction consisted of two procedures: the P2 cutoff calculation
and the interpolation of missing bins. Therefore, we tested two variations: no

background subtraction on data and only P2 cutoff on data.

e In the case of (P2), the deviations for both liquid targets and solid targets are
uniform through z;, except in the last bin of z;, where solid targets’ deviations
are bigger w.r.t. the deviations in z;, < 0.8 (see Figs.B.43,B.44,B.45B.46).The
systematic errors associated to liquid targets reached up to 0.23% and to solid

targets reached up to 0.64%. This was independent of the x; cut application.

e The AP2 has a similar deviation pattern to the previous observable (see
Fig.B.47,B.48). The systematic errors reaches up to 2.8% at high z,. This

was dependent on the target, but independent of the x; cut application.

4.5 Radiative Corrections

The radiative corrections were included in two different forms. Not treated refers to
radiative corrections that were applied without any type of interpolation; therefore,
any bin where the RC factor would be evaluated as one. Treated refers to RC factors
that could not be calculated and they where replaced by an interpolation between
all non-zero neighbouring factors. The factors that weren’t calculated are located

in the high P2 region.
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e In the case of (P2), the deviations followed a similar pattern between them
where high z;, deviations are the biggest and the rest are small. The z; cut
accentuated the deviations at low and medium z,. Also, it was noticed that the
biggest deviations happened in the solid targets (see Figs.B.49,B.50,B.51,B.52).
The deviations’ values are well bounded in the 1% region, except for the last
bin of z, where in the liquid targets results it could go up to 3% and in the

solid targets results it could go up to 7%.

e The broadening deviations inherited the same behavior from the previous ob-
servables and also enhances them (see Figs.B.53,B.54). In z;, < 0.6 the devia-
tions are relatively small and contained within the statistical fluctuations. At

zp > 0.6 deviations can reach up to 23%.
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4.6 Summary

To have a detailed outlook of the systematic errors an interval description was used

instead of a single number characterization. The intervals are determined by:

[Min(Syst.Err(zp)), Max(Syst.Err(z))] (4.8)

We used the codes that plotted the deviations to obtain the intervals that are pre-
sented next. Finally, the total systematic errors intervals were calculated directly
from the codes that plotted the final results with these errors included. The total
systematic error reads:

O-Lzyst(zh) = Z 01'2<Zh) (49)

Where N is the number of systematic uncertainties sources and the index ¢ runs

through all the systematic uncertainties sources.

Source |  (PF)pc (Pf)Dre (PF) P
TOF < 0.33% < 0.93% < 0.86%
VvC < 0.02% < 0.02% < 0.02%
IAZ| |[0.37,1.20% | [0.34,1.02]% | [0.38,1.13]%
Naceept < 0.17% < 0.09% < 0.12%
Accpin < 0.86% < 0.70% < 0.76%
P2 bins | [0.05,0.28]% | [0.06,0.20]% | [0.08,0.25]%
CT | [0.12,1.15]% | [0.15,1.11]% | [0.15,1.11)%
Tail < 0.29% <0.11% < 0.12%
Rad | [0.05,1.77]% | [0.04,1.57]% | [0.02,1.43]%
Total | [0.61,2.5]% | [0.59,2.22]% | [0.61,2.16]%
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Table 4.5:

Table 4.6: Systematic errors for (P#) liquid targets results with x; cut.

Source (Pf)c (PF) e (PF) P
TOF < 0.88% < 0.9% < 0.97%
VC | [0.03,0.1]% | [0.03,0.191% | < 0.4%
IAZ| | [0.36,1.43% | [0.32,1.21]% | [0.35, 1.54]%
Naccept < 0.54% < 0.56% < 0.59%
Accpin < 1.18% < 0.85% < 1.24%
P2 bins | [0.14,0.48)% | [0.09,0.25]% | [0.16,0.37)%
CT | [0.15,1.13]% | [0.03,1.29]% | [0.04, 1.25]%
Tail < 0.39% < 0.25% < 0.64%
Rad | [0.07,2.88]% | [0.02,3.64]% | [0.11,3.67]%
Total | [0.64,3.63]% | [0.53,4.11]% | [0.57,4.37%

Systematic errors for (P#) solid targets results without z; cut.

SOUI‘CG <P72“>DC’ <P’12">DF€ <P721>pr
TOF < 0.89% < 0.93% 0.85%
VC < 0.02% < 0.02% < 0.02%
IAZ| | [0.34,1.20)% | [0.31,1.02]% | [0.35,1.12]%
Naceept < 0.15% < 0.09% < 0.12%
Accpin < 0.86% < 0.70% < 0.76%
P2 bins | [0.04,1.85]% | [0.06,2.05]% | [0.03,1.9]%
CT | [0.28,0.82]% | [0.28,0.80]% | [0.23,0.8]%
Tail < 0.29% < 0.08% < 0.13%
Rad | [0.05,1.77]% | [0.07,1.57)% | [0.06,1.43]%
Total | [1,2.53]% | [0.95,2.26]% | [1.02,2.17)%

Source (Pf)c (PF) e (PF) po
TOF < 0.83% 0.89% 0.97%
VC | [0.01,0.15]% | < 0.2% < 0.4%
IAZ| | [0.33,1.43]% | [0.35,1.54]% | [0.35,1.54]%
Naccept < 0.52% < 0.52% < 0.31%
Accpin < 1.13% < 0.83% < 1.24%
P2 bins | [0.12,2.11]% | [0.05,2.45]% | [0.13,2.36]%
CT | [0.38,1.28)% | [0.01,1.00]% | [0.05,1.26]%
Tail < 0.39% < 0.26% < 0.64%
Rad | [0.33,2.92]% | [0.175,3.64]% | [0.22,3.67)%
Total | [0.96,3.66)% | [0.9,4.12]% | [0.91,4.45]%

Table 4.7: Systematic errors for (P7) solid targets results with x; cut.
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Source (APZ)c (AP2)p. (AP?)py
TOF < 2.7% < 0.79% < 4%
VO | 0.35,0.77)% | [0.18,1]% < 2.1%
IAZ| | [0.15,3.07% | [0.17,2.18)% | [0.19,3.26]%
Naccept < 3.98% [0.03,2.73]% < 3.58%
Accum | [0.17,3.43]% | [0.20,1.54% | [0.27,3.30]%
P2 bins | [0.82,3.78]% | [0.24,0.82]% | [0.22,1.66]%
CT | [1.36,4.56)% | [0.34,3.55]% | [0.05,3.40]%
Tail | [0.19,1.15]% | [0.04,1.12]% | < 2.85%
Rad | [0.07,10.8)% | [0.01,13.3]% | [0.15,13.1]%
Total | [1.97,13.51]% | [0.95, 14.09]% | [0.95, 15.05]%

Table 4.8: Systematic errors for APZ without z cut.

Source (APZ)c (AP2)pe (AP2)py
TOF < 2.7% < 0.9% < 4%
VC | [0.36,1.6)% | [0.09,0.94% | <21%
IAZ| | [0.15,3.90% | [0.05,2.37% | [0.19,3.30]%
Nuceepe | [0.06,3.82)% | [0.33,2.51]% | [0.05,1.97]%
Acemmn | [0.59,3.49]% | [1.14,2.26)% | [0.62,3.30]%
P2 bins | [0.08,3.72% | [0.18,2.83% | [0.69,2.14]%
CT | [11,20.8)% | [4.92,8.19)% | [4.94,6.88%
Tail | [0.24,1.14]% | [0.03,1.19]% | < 2.83%
Rad | [0.8,11.7]% | [2.18,13.3]% | [2.71,13.1]%
Total | [5.52,21)% | [5.12,14.72]% | [2.61, 16.05]%

Table 4.9: Systematic errors for AP? with z; cut.
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Results

5.1 Experimental Measurements

The results are shown in a common format where:

e Statistical errors were represented by vertical bars.

e Total errors (/03,4 0%,;) Were represented by an horizontal line at the end

of every point.

e All the plots, except the differential APZ vs z,, followed the color convention:

red (C), blue (Fe) and black (Pb).

e In the (P2) plots, the colored hollow points represented the deuterium data

associated with the solid target data given by the color.

e All the plots, except the integrated AP2 vs A'/3, had points with small shifts

to improve readability.
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5.1.1 Average Transverse Momentum

In the integrated results we observed:

1. The liquid targets results had small variations between them. Nonetheless,

the fluctuations compensated these variations.

2. The solid targets results were bigger than the liquid targets’ and there was a

correlation between the mass of the solid targets and their P2 values.

3. The z; cut removed a non-negligible portion of the P? tail at 2z, < 0.6 -
specially in the solid targets results- since the values of (P2) decrease in that
region (see Figs.B.55,B.56). This decrease is estimated to be between 10% to

20%.

In the differential results we observed:
1. All the observations stated for the integrated results.

2. An increase in the (P?) values with v (see Figs.B.57,B.56).
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5.1.2 Transverse Momentum Broadening
In the transverse momentum broadening w.r.t. A'/3 results we observed:

1. Integrated results

e A positive non-linear correlation between the transverse momentum broad-

ening and the mass of the target (see Figs.B.59,B.60).

e The z cut application roughly reduced the magnitude of the transverse

momentum broadening in 30% (see Fig.B.60).
2. Differential results

e The results without the z; cut presented a correlation between the trans-
verse momentum broadening and the mass of the target. However, there
was not a clear correlation between the former and the z;, interval (see

Fig.B.61).

e The results with the z; cut presented a correlation between the transverse
momentum broadening and the mass of the target. In this case, there was
a clearer correlation between the former and the zj, interval (see Fig.B.62)
where the magnitude of the transverse momentum broadening increased

w.r.t. z.

In the transverse momentum broadening w.r.t. z;, results we observed:

1. Integrated results

e The transverse momentum broadening was not zero at z;, — 1. This could
imply a contribution of the intrinsic parton momentum to the broadening
since the hadronization-related contribution would be zero, due to energy
conservation; or a contribution from hadronic elastic scattering with the

nuclear medium.

e The results with the z; cut applied presented a positive correlation be-

tween the broadening and the value of z,. The C-related broadening
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presented a linear behavior; meanwhile, the other targets presented a
non-linear behavior.
Also, these results show that the xy cut has an effect in every bin except

the last one.
2. Differential results

e Again, the results presented non-zero values at z, — 1.

e The application of the x; cut delivered the same outcome as in the in-
tegrated results. Nonetheless, the bins where 3.7 < v[GeV] < 4.3 show
some deviation, from a monotonic increase, in the C-related results and

the Pb-related results.
For the other variables:

e A weak dependence on v is observed. This is clearer in the results where the

xy cut was applied.

e No visible Q% dependence was observed
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5.2 Intrinsic Parton Momentum

The previous broadening results have an interesting behavior at z, — 1 and is its

non-zero value. This, is something not observed in HERMES’ results (see Fig.5.1).
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Figure 5.1: HERMES transverse momentum broadening measurements in function of different
kinematical variables. Notice that for the z; dependence the broadening vanishes at z, — 1.

Due to energy conservation the broadening should be zero in that kinematical
region, since:

AP} = (Quark Broadening) o [, (5.1)

where the production length is directly related to the energy loss of the traversing
quark; hence, if [, — 0 then the quark does not lose energy because it transforms
directly into a pre-hadron.

Eq. (5.1) works under the assumption that the (k%) is the same in every target,
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given that a more general expression yields

AP} = (Quark Broadening) + 23 ((k3)4 — (k7)p). (5.2)

Therefore, a possible explanation of CLAS broadening’s behavior at z;, — 1is (k?)’s
variation between the different targets. A recent research conducted by Brooks
and Lopez [31] concluded that for HERMES’ measurements the contribution of the

intrinsic parton momentum to the broadening was:

2z ((k3) 4 — (k%) p) = —0.002 + 0.001[GeV?], (5.3)

in all the considered bins of z,. In CLAS case we propose that this contribution is
positive.
In this section, we extract the values of (k? ) via fitting of (P2)(Q?, v, z;,) and analyze

if (k%) is dependent of the nuclear environment. The fitting function depends on:

e (k?) as a free parameter.

e (p?)(25) which is described by a beta distribution and a normalization con-
stant.

(p3)(zn) = (Norm.) x Beta(zp; a, ) (5.4)

The beta distribution was chose because:

— Under certain parameters («,/3) values, it vanishes at zj, = 1.

— Given that (P2%) > (p? ) we expect a similar asymmetric behavior between
both variables. The beta distribution has a convenient asymmetric shape

(see Fig.5.2).

Then, to a good approximation, it describes the behavior of (p%)(zy).
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Figure 5.2: Beta distributions with different parameter configurations. Notice that the blue plot
has the behavior that is expected from (p? ).

In consequence, the hadronization-related term is described by three free pa-
rameters.
We tested two fitting functions:
1. The expression of the averaged squared transverse momentum given by eq.(1.45).

2. The eq.(1.45), but without the integration to infinity (see following section for

more detail).
Additionally, we tried different global fits based on the following hypotheses:

1. (p%) is independent of Q? and v; and dependent of z,. (k%) depends on @Q?

and v.

2. (p?) is independent of @* and v; and dependent of z;,. (k%) depends on v.

5.2.1 Fit With Analytic Function

The function to fit the averaged squared transverse momentum is given by

(Pr) = (p1) + 2 (k1) (5.5)
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This, is the same equation called (P?)¢ in chapter (1). Thus, we assumed that:

(P) = (Ph)c (5.6)

The results of the intrinsic parton momentum extraction are in chap. (C.3), and
the plots of the global fits are in chap.(B.4).

In table (5.1) can be found the quality of the fits.

xy | Target ;4 | Target x;,4 | Hypothesis
0,1] | DC 129 C 126 1
0.1 | DFe 112| Fe 152 1
0,1 | DPb 149| Pb  9.93 1
—1,1]| DC 76| C 353 1
[~1.1]| DFe 6.17| Fe 3.71 1
[-1,1]| DPb 7.55| Pb 254 1
0,1 | DC 18 | C 185 2
0,1 | DFe 17.7| Fe 229 2
0,1 | DPb  209| Pb 135 2
11| DC 127] C 805 5
(~1,1]| DFe 124| Fe 805 2
~1,1]| DPb 138 | Pb 377 2

Table 5.1: Table that contains the quality of the global fits with the analytical fit
function.

The results in the tables of chapter (C.3) lead to the following observations:

e Hypothesis 1 described the data better than hypothesis 2. Hence, (k?) does

depend on both Q? and v.

e When the zy cut was not applied we obtained a better description of data.

This happened with both hypothesis.

e Hypothesis 1, with no x; cut, showed that (k%) increases with v and with
Q?. Nonetheless, the dependence is stronger for . This makes sense since the

experimental results show that (P2)(z, — 1) values increases with v.

In summary, the analytic function describes the results optimally when the results

do not have the z; cut applied and when the fits consider the intrinsic parton mo-
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mentum dependent on Q? and v.

5.2.2 Fit With Integral

The fit function used for (P2) is a modified version of the integral presented in
eq.(1.45). The experimental extension of the P2 distributions were taken into ac-

count to fix an upper limit (P2 ) in the previously mentioned integral. To deter-

Tamax
mine this, we selected the maximum value of the P2 distribution with the longest
tail which is usually located in 0.4 < z, < 0.5. This is done for every target and
every (Q*v) bin. It is worth mentioning that P%MAX depends continuously on zj,
but we will study that dependence in future works.

The fit function used normalized TMDs and the mathematical definition of (PZ).

Then:

P k1 2 k3 / (k1) pi /(i)
<P721> :/ MAX dp%/ MAX dki/ do erL k; - el 2i % P%
0 0 0 m(k2)(1—e” Tarax/ kL) ) W(pl>

(5.7)
Regarding the previous equation there are various points to address:
e That maximum value of k7 is given by [11]:
2 2p(1 — xp) o,
Larax :—(1_2x )2Q y l‘b<05
b (5.8)

ki}uAX = (2 - xb)(l - xb)QQ; xp > 0.5

This choice has a direct influence in the representation of the transverse mo-

mentum dependent parton distribution.

e Flavour-independent Gaussian widths were used in the transverse momentum

dependencies.

The transverse momentum related to the hadronization p, is associated with the

intrinsic momentum and the hadronic transverse momentum by the following rela-
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tionship[11]:
pL ~ Pr— 2k, (5.9)

Thus:

pi = P+ 27 k% — 22, Prk cos(6) (5.10)

Notice that the angle 6 also appears in eq. (5.7) as the polar angle of k,. In the
integration, this angles can be easily associated through a rotation due to them
being in the same plane, approximately.

In table (5.2) can be found the quality of the global fits.

Target x.4 | Target x;, | Hypothesis

i
0,1 | DC 143 C 102 1
0,1 | DFe 192| Fe 139 1
0,1 | DPb 18 | Pb 118 1
[~1,1]| DC 963 C 567 1
[-1,1] | DFe 7.96| Fe 6.33 1
[-1,1] | DPb 958 | Pb 357 1
0,1 | DC 171] C 139 2
0,1 | DFe 24 | Fe 21 2
0,1 | DPb 226| Pb 15 2
[—1,1]| DC 148 C 101 2
[~1,1] | DFe 146| Fe 10.6 2
[-1,1]| DPb 163 | Pb 493 2

Table 5.2: Table that contains the quality of the global fits with the numerical fit
function.

The results in the tables of chapter (C.3) lead to the same observations as in the

case where we tested the analytic function in the fit.

5.2.3 Observations

Given the previous results we made the following observations:

e From the two hypotheses, the first described the data better.

e The fit functions described better the results when these were without the s

cut applied.
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e The data was described better by the analytic fit function.

e The fits to Fe-related results yields unexpected low results. Nonetheless, the

(k%) pe — (k%) pre is positive.

e The global fits quality is still far from what is considered a good fit. However,

the results of the best fits (analytic function, hypothesis 1) give ((k%)4 —

(k1)p) = 0.
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Conclusion

In this thesis we presented the experimental measurements of the averaged squared
transverse momentum and the transverse momentum broadening; and a phenomeno-
logical analysis of the intrinsic parton momentum.

Both experimental observables presented a dependence on the z; cut. This is more
noticeable in the transverse momentum broadening, where its shape changes dras-
tically if we are observing it w.r.t. zj.

A strong dependence on z, and to A is also observed on both observables. The de-
pendence on z, bears a behavior unseen in other transverse momentum broadening
measures, that being its non-zero values at z, — 1. The dependence on v is rather
weak and to Q? is weaker. However, the v dependence is more noticeable in the
averaged transverse momentum measurements than in the transverse momentum
broadening.

The phenomenological analysis was done via global fits. These showed that there
might be a contribution of the intrinsic parton momentum on the previously men-
tioned behavior of the broadening. However, the global fits need to be improved in
order to be considered a valid representation of the data since the average value of
Xagr for deuterium target results is seven, and for solid target results is three. This
is far from unity, which is the value used as standard to consider the quality of a fit

as good. Lastly, the Fe-related results presented low values w.r.t. C-related results.
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This is something to investigate in the future.
To conclude this section we would like to mention that the works presented in this
document will be portrayed in two different scientific articles, that will be connected

by the concepts they touch.
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Additional Discussions

A.1 Heuristic Approach to Structure Functions

To understand the meaning of these functions it is useful to take some steps back in
the theory. Quantum Field Theory (QFT) allow us to calculate probability ampli-
tudes of elementary processes with the Feynman rules of the theory that describes
the aforementioned process, but also this probability amplitudes can be calculated

with old fashioned perturbation theory. Then, we can write:
o oc |[My|* o | (final| H |initial) |? (A.1)

Where o is the cross section, |My;|* the probability amplitude of the process, and
Hy is the interaction term in the Hamiltonian which described the process.

Now the question is: ;What has to do the previous with the Structure Functions?.
There is a well known case that helps to connect the dots: the Rosenbluth formula. It
is used to describe the differential cross section of the elastic scattering of a charged
lepton with a proton, but in the case that the proton is considered to have a certain
spatial distribution, i.e., proton is no longer considered a point-like particle. The
equation reads as:

do a? F; <G2E +7G3,

0 0
i ) 2= 4+ 27G3, sin? ~ A2
00~ sl B \ (157 5 g T 2Csin 2) (A.2)
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The objects of interest in this equation are Gg and Gy, these are known as Form
Factors and their origin is encoded in (A.1). Say that an electron is the lepton
that scatters off the proton, the charged nature of the particles will result in an

electromagnetic interaction, thus:

HI X Helect'ric + Hmagnetic
Helectric 08 p(T) (A3)

Hmagnetic X U (7’)

Where p(r) and p(r) are densities respectively associated with the electric and mag-
netic properties of the proton. In few words, the elastic Form Factors contain the
information about the electric and magnetic distributions of the proton.

Then the Structure Functions can be related to the Form Factors as being more
general and complex objects, but in their meaning they are similar: they contain

information about the target.
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Plots

B.1

Systematic Errors
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Figure B.1: TOF systematic uncertainty’s (P#) deviations from the nominal values for liquid
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Figure B.2: TOF systematic uncertainty’s (P2), with xy > 0, deviations from the nominal values

for liquid targets

1‘0.1 0.2 03 04 05 06 07 08 09
b4
h

93

191 02 03 04 05 06 07 08 09

Zy




Chapter

1 1 1
10| [Dc <P2> stat. Error 10 [@Fe <P2> stat. Error 10 [dPb <P?> stat. Error
AC, TOF P<2.5[GeV] AFe, TOF P<2.5[GeV] APb, TOF P<2.5[GeV]
S 8 vc, ToF P<2.9[GeV] 8| vFe, TOF P<2.9[GeV] 8] vpb, TOF P<2.9[GeV]
5 [§ 6 6
£ 4 4 4]
S 2 2| 2 i
£ 0o = b § x x x : 3 o] = x b § x x ¢ o x x x x x #
o
=2 T -2 -2 M
f=4
2 -4 =4 -4
<
< -6 -6 -6
)
0 -8 -8 -8
-10] 10| -10
19102 03 04 05 06 07 08 09

Figure B.3: TOF systematic uncertainty’s (P2) deviations from the nominal values for solid targets

Z,

19102 03 04 05 06 07 08 09

h

>1f).l 02 03 04 05 06 07 08 09

Zy

1. 1 1
10 [Oc <P2> stat. Error 10 [@Fe <P?> stat. Error 10 [dPb <P2> stat. Error
AC, TOF P<2.5[GeV] AFe, TOF P<2.5[GeV] APb, TOF P<2.5[GeV]
S 8] vc, TorP29cev) 8| vFe, TOF P<2.9[GeV] 8| vpb, TOF P<2.9[GeV]
(_Cu 6) 6] 6]
£ 4 4] 4
g 2| 2 2 "
£ 0o = b § x x x : 3 of —= x b § x x g o =® x x x x :
o
£ -2 T -2 -2 1
c
S -4 -4 -4
©
S -6 -6 -6
@
0 -g -8 -8
-10 10 -10]
19102 03 04 05 06 0.7 08 09

15102 03 04 05 06 07 08 09 D1 02 03 04 05 06 07 08 09
z, z, z,

Figure B.4: TOF systematic uncertainty’s (P2), with x ¢ > 0, deviations from the nominal values
for solid targets
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Figure B.5: TOF systematic uncertainty’s AP deviations from the nominal values
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Figure B.6: TOF systematic uncertainty’s APZ, with xy > 0, deviations from the nominal values
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Figure B.8: Vertex cut systematic uncertainty’s (P#), with 2y > 0, deviations from the nominal

values for liquid targets
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Figure B.10: Vertex cut systematic uncertainty’s (P#), with z¢ > 0, deviations from the nominal

values for solid targets
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Figure B.11: Vertex cut systematic uncertainty’s AP2 deviations from the nominal values
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Figure B.12: Vertex cut systematic uncertainty’s AP2, with ¢ > 0, deviations from the nominal
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Figure B.16: AZ cut systematic uncertainty’s (PZ), with xy > 0, deviations from the nominal
values for solid targets
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Figure B.19: Ngceept cut systematic uncertainty’s (P#) deviations from the nominal values for

liquid targets
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Figure B.20: Nyccept cut systematic uncertainty’s (P#), with 25 > 0, deviations from the nominal
values for liquid targets
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Figure B.21: Ngecept cut systematic uncertainty’s (P#) deviations from the nominal values for solid
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Figure B.22: Nyccept cut systematic uncertainty’s (P2), with z¢ > 0, deviations from the nominal

values for solid targets
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Figure B.25: Minimum Acc cut systematic uncertainty’s (P2) deviations from the nominal values
for liquid targets

Zn

Zn

Zy

1 1 1
10 [dpoc <P2> stat. Error 10| [pFe <P?> stat. Error 10 [oPb <P2> stat. Error
ADC, Acc>0.005 A DFe, Acc>0.005 ADPb, Acc>0.005
S 8] vbe, Accs0.01 8| vDFe, Acc>0.01 8| vbPb, Acc>0.01
3 ° 6 5
g 4 4 4
S 2 2 2
£ O] = x x  * * * A o —= x * + x x A of x x * * x x A
o v v v
£ -2 -2
=
2 -4 -4 -4
©
2 6 -6 -6
[
0-g -8| -8
-10] 10 10
13102 03 04 05 06 07 08 00 ‘91 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

Figure B.26: Minimum Acc cut systematic uncertainty’s (P%), with xy > 0, deviations from the
nominal values for liquid targets

99



Chapter B

1 1 1
10| [Dc <P2> stat. Error 10 [@Fe <P2> stat. Error 10 [dPb <P?> stat. Error
AC, Acc>0.005 A Fe, Acc>0.005 APb, Acc>0.005
S 8] vc, Accs0.01 8 vre, Acc>0.01 8 vpb, Acc>0.01
5 6) 6| 6]
= 4 4 4
5
2 2 2| 2
g o = x x * x ¢+ R o] —x x * * * x : of x x x * * * kK
= -9 v -2 -2 v
f=4
2 -4 =4 -4
54
< -6 -6 -6
)
0 -8 -8 -8
-10| 10 -10)

19102 03 04 05 06 07 08 00 91 02 03 04 05 06 07 08 08 D1 02 03 04 05 06 07 08 09
z, z, Zy

Figure B.27: Minimum Ace cut systematic uncertainty’s (P#) deviations from the nominal values
for solid targets
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Figure B.28: Minimum Acc cut systematic uncertainty’s (P2), with = ¢ > 0, deviations from the
nominal values for solid targets
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Figure B.29: Minimum Acc cut systematic uncertainty’s APZ deviations from the nominal values
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Figure B.30: Minimum Acc cut systematic uncertainty’s APZ, with z; > 0, deviations from the
nominal values
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Figure B.31: Number of P2 bins systematic uncertainty’s (P#) deviations from the nominal values

for liquid targets
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Figure B.32: Number of P bins systematic uncertainty’s (P#), with z; > 0, deviations from the

nominal values for liquid targets
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Figure B.33: Number of P2 bins systematic uncertainty’s (P2) deviations from the nominal values

for solid targets
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Figure B.34: Number of P2 bins systematic uncertainty’s (P2), with z; > 0, deviations from the
nominal values for solid targets
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Figure B.36: Number of P# bins systematic uncertainty’s APZ, with z¢ > 0, deviations from the

nominal values

12 1 1
10 [doc <P2> stat. Error 10 [DFe <P?> stat. Error 10 [doPb <P2> stat. Error
ADC, CT 50 Pi bins ADFe, CT 50 Pi bins ADPb, CT 50 Pi bins
S 8] voc, cT70 P bins 8| vDbre, CT 70 P bins 8| voPb, CT 70 P2 bins
§ 6) 6] 6]
£ 4 4] 4
£
e v I 1 2 v I 1 2 v I 1
g Of X——Tgeh I of =Xyt I of x X g A I
= -2 -2 -2
c
2 -4 -4 -4
©
< - -6 6
@
0 -g -8 -8
-10 10 -10]

13102 03 04 05 06 07 08 09

Zy

Figure B.37: CT systematic uncertainty’s (PZ) deviations from the nominal values for liquid targets
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Figure B.40: CT systematic uncertainty’s (P2), with x; > 0, deviations from the nominal values
for solid targets
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Figure B.41: CT systematic uncertainty’s AP2 deviations from the nominal values
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Figure B.42: CT systematic uncertainty’s APZ, with xy > 0, deviations from the nominal values
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Figure B.43: BG subtraction systematic uncertainty’s (P2) deviations from the nominal values for
liquid targets
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Figure B.44: BG subtraction systematic uncertainty’s (PZ),
nominal values for liquid targets
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Figure B.45: BG subtraction systematic uncertainty’s (P2) deviations from the nominal values for
solid targets
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Figure B.47: BG subtraction systematic uncertainty’s AP% deviations from the nominal values
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Figure B.48: BG subtraction systematic uncertainty’s APZ, with zy > 0, deviations from the
nominal values
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Figure B.49: RC systematic uncertainty’s (P#) deviations from the nominal values for liquid targets
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Figure B.50: RC systematic uncertainty’s (P2), with x; > 0, deviations from the nominal values
for liquid targets
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Figure B.51: RC systematic uncertainty’s (P%) deviations from the nominal values for solid targets

1 1 1
10| [Dc <P2> stat. Error 10 [@Fe <P2> stat. Error 10 [dPb <P?> stat. Error
AC, RC Treated AFe, RC Treated APb, RC Treated
S 8] vc, RC Not Treated 8| vFe, RC Not Treated 8| vPb, RC Not Treated
% 6| 6 v 6 v
£ Y i 4 4
§ 2 il o2 N 4
z e ox oy x x x x + x x x x ¢
E o0 X 0 = o X
= -2 -2 -2
2 -4 =4 -4
T
.a;J —_g| -6 -6
0 -8 -8 -8
-10 -10) -10]

19102 03 04 05 06 07 08 00 91 02 03 04 05 06 07 08 08 D1 02 03 04 05 06 07 08 09
z, z, z,

Figure B.52: RC systematic uncertainty’s (P2), with zy > 0, deviations from the nominal values
for solid targets
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Figure B.53: RC systematic uncertainty’s APZ deviations from the nominal values
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Figure B.54: RC systematic uncertainty’s AP#, with z; > 0, deviations from the nominal values
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B.2 Average Squared Transverse Momentum
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Figure B.55: (P2) with all variables integrated except zj, and no zscut. Statistical errors are too

small to be seen.

o DC
0.3| o DFe
o DPb
o C ,
-o-Fe 6!
025| -ePb ) o
. 4
j (e} o
s ©00 ”
> ®
Q02 o* -
O, 000 ot
NA|— .77
S e
0.15 o® 0%
00
0.1
CCL)
0.3 0.4 0.5 0.6 0.7 0.8 0.9
z

h

Figure B.56: (PZ) with all variables integrated except z;, and xy > 0 cut. Statistical errors are

too small to be seen.

107



Chapter B

3.7<v[GeV]<4.3

3.2<v[GeV]<3.7

2.2<v[GeV]<3.2

1.0<Q*GeV?<1.3

1.3<Q*GeV?<1.8

1.8<Q*GeV?<4.0

e B

.0..0..0.%»

Rl WG

' 10.....@.

* ., @

.Qoo%v
*e,8
ooo%

%8

i 0b.

.0&..0.@.

ve.d

“.?

.8

0,. 8

e, %
%o o 8

03 04 05 06 07 08 09

0.2

0.9

0.8

0.7

0.5

0.4

0.2

03 04 05 06 07 08 09

0.2

“.8 %.8 . 8
“.8 %.8 .8
h il 8
%, 2 % 8 %3
V.8 o 8 %
®e. 8 % .8 ®0 o8
%. 8 %.8 ®e.8
.8 %8 % .8
~.8 %8 %8

e 000 ® %
s ° M_N%o_o&n_v ° ) s c ) ° _N>wo_oAn_v : i = ) M_Nioﬂwav s ) s

Zn

Zn

Figure B.57: (P#) differential distributions with no x cut.
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Figure B.58: (P#) differential distributions with z¢ > 0 cut.
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B.3 Transverse Momentum Broadening
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Figure B.59: APZ with all variables integrated and no xs cut.
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Figure B.60: AP with all variables integrated and with z¢ > 0 cut.
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B.4 Fits to Averaged Squared Transverse Momen-
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B.4.1 Fit With Analytic Function (Hypothesis 1)
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Figure B.67: Fits to Deuterium (C) results with zy > 0 cut applied.
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Figure B.68: Fits to Deuterium (Fe) results with zy > 0 cut applied.
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Figure B.69: Fits to Deuterium (Pb) results with zy > 0 cut applied.
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Figure B.70: Fits to Deuterium (C) results with 2y > 0 cut not applied.
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Figure B.71: Fits to Deuterium (Fe) results with zy > 0 cut not applied.
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Figure B.72: Fits to Deuterium (Pb) results with 2y > 0 cut not applied.
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Figure B.73: Fits to C results with xy > 0 cut applied.
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Figure B.74: Fits to Fe results with xy > 0 cut applied.
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Figure B.75: Fits to Pb results with xy > 0 cut applied.
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Figure B.76: Fits to C results with x5 > 0 cut not applied.
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Figure B.77: Fits to Fe results with 2y > 0 cut not applied.
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Figure B.78: Fits to Pb results with zy > 0 cut not applied.
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B.4.2 Fit With Analytic Function (Hypothesis 2)
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Figure B.79: Fits to Deuterium (C) results with zy > 0 cut applied.
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Figure B.80: Fits to Deuterium (Fe) results with zy > 0 cut applied.
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Figure B.81: Fits to Deuterium (Pb) results with zy > 0 cut applied.
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Figure B.82: Fits to Deuterium (C) results with 2y > 0 cut not applied.
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Figure B.83: Fits to Deuterium (Fe) results with zy > 0 cut not applied.
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Figure B.84: Fits to Deuterium (Pb) results with 2y > 0 cut not applied.
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Figure B.85: Fits to C results with zy > 0 cut applied.
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Figure B.86: Fits to Fe results with xy > 0 cut applied.
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Figure B.87: Fits to Pb results with xy > 0 cut applied.
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Figure B.88: Fits to C results with x5 > 0 cut not applied.

137



Chapter B

2.2<v[GeV]<3.2

3.2<v[GeV]<3.7

3.7<v[GeV]<4.3

+
03
_._
Ly
0.25 =)
A
S
2 02 o
o, <
& o
jaN A
V015 A
w
0.1
0.05
03
_‘_
0.25]
=
w
< b
3 02 =
8 [)
A @
o 5
vV 015 <
B
©
0.4
005
03
0.25 i
=
] %
02
) Q,
2 =
¥ o1s 3
' >
A
»
0.1 o
0.05
04 05 06 07 08 09 05 06 07 08 4 05 06 07 08 09 1

Zn

Zp

Figure B.89: Fits to Fe results with 2y > 0 cut not applied.
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Figure B.90: Fits to Pb results with zy > 0 cut not applied.
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B.4.3 Fit With Integral Function (Hypothesis 1)
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Figure B.91: Fits to Deuterium (C) results with zy > 0 cut applied.

140



Chapter B

2.2<v[GeV]<3.2

3.2<v[GeV]<3.7

3.7<v[GeV]<4.3

0.3

0.25

0.1

0.05

0.3]

0.25|

0.9

0.05)

0.3

0.25

0.2

<P:>|Gev|

0.1

0.05

~
N
N

8T>[,N09],0>¢'T €1>[,A29,0>0T

07>[,A99],0>8'T

0.4 0.5 0.6 0.7
Zp

0.8

0.9

I

4 0.5 0.6 0.7 0.8
Zn

Figure B.92: Fits to Deuterium (Fe) results with zy > 0 cut applied.
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Figure B.93: Fits to Deuterium (Pb) results with 2y > 0 cut applied.
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Figure B.94: Fits to Deuterium (C) results with 2y > 0 cut not applied.
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Figure B.95: Fits to Deuterium (Fe) results with zy > 0 cut not applied.
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Figure B.96: Fits to Deuterium (Pb) results with 2y > 0 cut not applied.
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Figure B.97: Fits to C results with zy > 0 cut applied.
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Figure B.98: Fits to Fe results with xy > 0 cut applied.
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Figure B.99: Fits to Pb results with xy > 0 cut applied.
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Figure B.100: Fits to C results with xy > 0 cut not applied.
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Figure B.101: Fits to Fe results with 2y > 0 cut not applied.
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Figure B.102: Fits to Pb results with x; > 0 cut not applied.
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Figure B.103: Fits to Deuterium (C) results with zy > 0 cut applied.
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Figure B.104: Fits to Deuterium (Fe) results with xy > 0 cut applied.
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Figure B.105: Fits to Deuterium (Pb) results with z; > 0 cut applied.
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Figure B.106: Fits to Deuterium (C) results with 2y > 0 cut not applied.
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Figure B.107: Fits to Deuterium (Fe) results with 5 > 0 cut not applied.
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Figure B.108: Fits to Deuterium (Pb) results with 2y > 0 cut not applied.
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Figure B.109: Fits to C results with xy > 0 cut applied.
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Figure B.110: Fits to Fe results with 2y > 0 cut applied.
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Figure B.111: Fits to Pb results with zy > 0 cut applied.
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Figure B.112: Fits to C results with xy > 0 cut not applied.
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Figure B.113: Fits to Fe results with 2y > 0 cut not applied.
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Figure B.114: Fits to Pb results with z; > 0 cut not applied.
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Appendix C

Tables

C.1 Average Squared Transverse Momentum

2n (P2)c +Stat.  £Syst. (PZ)pe +Stat.  £Syst. (PZ) py +Stat.  £Syst.

0.1-0.2 0.078 8.3e-05 0.0005 0.082 7.3e-05  0.00044 0.085 0.00011  0.00049

0.2-0.3 | 0.14 0.0002  0.0011 0.15 0.00018  0.0012 0.16 0.0003  0.0012
0.3-0.4 | 0.19  0.00037 0.0018 0.21 0.00036  0.002 0.22 0.00058  0.0021
0.4-0.5 0.23 0.00058 0.0035 0.24 0.00056 0.0036 0.26 0.00097 0.0045
0.5-0.6 | 025  0.00097 0.0041 0.26 0.00086  0.0044 0.28 0.0014  0.0048
0.6-0.8 | 025  0.00094 0.0042 0.27 0.00081  0.0045 0.27 0.0015  0.0056
0.8-1 0.18 0.0015  0.0065 0.19 0.0013  0.0076 0.19 0.003  0.0085
Zn (P2)pc  +Stat.  +Syst. (P2)pr. +Stat.  £Syst. (P2)pp, +Stat.  +Syst.

0.1-0.2 0.073 7.1e-05  0.00044 0.071 5.8e-05  0.00042 0.072 6.3e-05  0.00044

0.2-0.3 0.13 0.00016 0.001 0.13 0.00013  0.0009 0.13 0.00014 0.001
0.3-0.4 0.17 0.00029  0.0016 0.17 0.00024  0.0015 0.17 0.00026  0.0016
0.4-0.5 0.21 0.00046  0.0025 0.21 0.00037  0.0024 0.21 0.0004 0.0025
0.5-0.6 0.23 0.00067  0.0037 0.23 0.00054  0.0034 0.23 0.00062  0.0037
0.6-0.8 0.23 0.00068  0.0038 0.23 0.00052  0.0035 0.23 0.00056  0.0038
0.8-1 0.16 0.001 0.0039 0.15 0.00074  0.0034 0.16 0.0008 0.0034

Table C.1: Integrated average squared transverse momentum in [GeV?].

1< Q?[GeV?] < 1.3;2.2< v[GeV] < 3.2

Zh (PZ)e +Stat.  +Syst. (P2)pe +Stat.  £Syst. (P2 py +Stat.  £Syst.

0.1-0.2 0.062 0.00017  0.00065 0.063 0.00015  0.00063 0.065 0.00023  0.00064

0.2-0.3 0.13 0.00044 0.001 0.14 0.00039  0.00099 0.14 0.00062  0.0012
0.3-0.4 0.18 0.0009 0.0018 0.19 0.00081 0.0019 0.2 0.0013 0.002
0.4-0.5 0.21 0.0014 0.0025 0.23 0.0013 0.0027 0.23 0.0022 0.0028
0.5-0.6 0.23 0.0028 0.0035 0.25 0.0023 0.0028 0.26 0.0033 0.0037
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0.6-0.8 0.23 0.002 0.0031 0.24 0.0018  0.0029 0.25 0.0032  0.0033
0.8-1 0.16 0.0028  0.0077 0.17 0.0026  0.0083 0.18 0.0063 0.011
1< Q%[GeV?] < 1.3 ;3.2 <v[GeV] < 3.7
Zh (P2)c +Stat.  £Syst. (P2) e +Stat.  £Syst. (P2) Py +Stat.  £Syst.
0.1-0.2 | 0.083  0.00027 0.00076 0.086 0.00024  0.0009 0.09 0.00036  0.00099
0.2-0.3 0.15 0.00067  0.0017 0.17 0.00064  0.0022 0.17 0.00098  0.0021
0.3-0.4 0.2 0.0013  0.0021 0.22 0.0013  0.0026 0.22 0.0019  0.0026
0.4-0.5 0.24 0.002 0.003 0.26 0.002 0.0037 0.27 0.0033  0.0046
0.5-0.6 0.26 0.003 0.0039 0.28 0.0028  0.0048 0.3 0.005 0.0068
0.6-0.8 0.27 0.0038  0.0073 0.29 0.0029  0.0044 0.3 0.0052  0.0082
0.8-1 0.2 0.011 0.014 0.22 0.0091 0.014 0.24 0.014 0.015
1< Q?[GeV?] < 1.3;3.7<v[GeV] < 4.3
Zn (P%)c +Stat. +Syst. <P72~>Fe +Stat. +Syst. (P%>Pb +Stat. +Syst.
0.1-0.2 | 0.096  0.00031 0.00057 0.1 0.00027  0.00055 0.11 0.00041  0.00067
0.2-0.3 0.16 0.00085  0.002 0.18 0.00077  0.0019 0.19 0.0012  0.0026
0.3-0.4 0.22 0.0015  0.0023 0.23 0.0015  0.0024 0.24 0.0022  0.0028
0.4-0.5 0.26 0.0024  0.0033 0.28 0.0023  0.0032 0.3 0.0039  0.0044
0.5-0.6 0.29 0.0034  0.0044 0.31 0.0034  0.0041 0.32 0.005 0.0094
0.6-0.8 0.3 0.0051  0.0094 0.33 0.0045 0.01 0.34 0.0076 0.013
0.8-1 0.26 0.01 0.012 0.27 0.0087  0.011 0.26 0.014 0.016
1.3 < Q?[GeV?] < 1.8 ;2.2 < v[GeV] < 3.2
zn (P2)c  +Stat.  +Syst.  (P2)p.  +Stat.  +Syst.  (P2)p,  +Stat.  +Syst.
0.1-0.2 | 0.063  0.00015 0.00054 0.065 0.00012  0.00033 0.067 0.0002  0.00057
0.2-0.3 0.13 0.00036  0.00089 0.14 0.00033  0.0013 0.14 0.00054  0.0016
0.3-0.4 0.17 0.00071  0.0016 0.19 0.00065  0.0018 0.2 0.0011  0.0023
0.4-0.5 0.21 0.0011 0.002 0.22 0.0011  0.0021 0.23 0.0019  0.0033
0.5-0.6 0.23 0.0018  0.0033 0.24 0.0015  0.0029 0.25 0.0029  0.0041
0.6-0.8 0.23 0.0015  0.0021 0.24 0.0013  0.0019 0.25 0.0024  0.0036
0.8-1 0.16 0.0017  0.0054 0.17 0.0015  0.0074 0.17 0.0031 0.008
1.3 < Q?[GeV?] < 1.8 ;3.2 < v[GeV] < 3.7
2n (P2)c +Stat. +Syst. (P2)Fe +Stat. +Syst. (P2)pb +Stat. +Syst.
0.1-0.2 | 0.081  0.00022 0.00095 0.086 0.00019  0.0012 0.089 0.0003  0.0012
0.2-0.3 0.15 0.00055  0.0018 0.16 0.00051  0.0022 0.17 0.00083  0.0024
0.3-0.4 0.2 0.001 0.002 0.21 0.0012  0.0024 0.22 0.0016  0.0029
0.4-0.5 0.23 0.0016  0.0024 0.25 0.0016  0.0029 0.27 0.0026  0.0038
0.5-0.6 0.26 0.0022  0.0031 0.27 0.0021  0.0042 0.28 0.0036  0.0052
0.6-0.8 0.27 0.0024  0.0034 0.28 0.0021  0.0058 0.29 0.0058  0.0071
0.8-1 0.19 0.0051 0.012 0.2 0.0039 0.01 0.2 0.0075  0.0098
1.3 < Q%[GeV?] < 1.8 ;3.7 < v[GeV] < 4.3
Zh (P3¢ +Stat.  £Syst. (P2)pe +Stat.  £Syst. (P2)py +Stat.  £Syst.
0.1-0.2 | 0.094  0.00027  0.001 0.1 0.00024  0.0013 0.1 0.00037  0.0015
0.2-0.3 0.16 0.00068  0.0021 0.18 0.00067  0.0028 0.18 0.0011  0.0032
0.3-0.4 0.22 0.0012  0.0021 0.23 0.0012  0.0025 0.25 0.0019  0.0029
0.4-0.5 0.26 0.0019 0.003 0.28 0.0018  0.0033 0.29 0.0032  0.0046
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0.5-0.6 0.28 0.0026  0.0033 0.3 0.0024  0.005 0.31 0.0044  0.0061
0.6-0.8 0.29 0.0038  0.0066 0.3 0.0033  0.0057 0.32 0.0067  0.0066
0.8-1 0.25 0.007  0.0085 0.26 0.0053  0.0086 0.27 0.0096 0.01
1.8 < Q%[GeV?] < 4 ;2.2 < v[GeV] < 3.2
Zh (PZ)e +Stat.  +Syst. (P2)pe +Stat.  £Syst. (P2 py +Stat.  £Syst.
0.1-0.2 | 0.066  0.00022  0.00087 0.07 0.00019  0.00093  0.072  0.00031  0.00044
0.2-0.3 0.12 0.00055  0.0017 0.14 0.0005  0.0016 0.14 0.00086  0.0013
0.3-0.4 0.17 0.0011  0.0016 0.19 0.00099  0.0027 0.2 0.0018  0.0016
0.4-0.5 0.2 0.0016  0.0026 0.22 0.0016  0.0025 0.24 0.0028  0.003
0.5-0.6 0.22 0.0024  0.0034 0.24 0.0022  0.0027 0.25 0.0041  0.006
0.6-0.8 0.22 0.0019  0.0017 0.24 0.0018  0.0025 0.24 0.0034  0.0036
0.8-1 0.16 0.0023  0.0053 0.17 0.0022  0.005 0.17 0.0044  0.0055
1.8 < Q%[GeV?] < 4 ;3.2 < v[GeV] < 3.7
zn (P2)c +Stat.  +Syst.  (P2)p.  +Stat.  +Syst.  (P2)p,  +Stat.  +Syst.
0.1-0.2 | 0.079  0.00021 0.00045  0.084  0.00018 0.00046  0.087 0.0003  0.00068
0.2-0.3 0.14 0.0005  0.0015 0.16 0.00048  0.0016 0.16 0.00081  0.002
0.3-0.4 0.19 0.00092  0.0021 0.21 0.00092  0.0026 0.22 0.0016  0.003
0.4-0.5 0.22 0.0014  0.0034 0.24 0.0014  0.0034 0.25 0.0024  0.005
0.5-0.6 0.23 0.0019  0.0035 0.25 0.0019  0.0041 0.27 0.0034  0.0055
0.6-0.8 0.25 0.002  0.0075 0.26 0.0018  0.0091 0.27 0.0033  0.0073
0.8-1 0.17 0.0032  0.0045 0.17 0.0028  0.0067 0.18 0.0057  0.0091
1.8 < Q%[GeV?] < 4 ;3.7 < v[GeV] < 4.3
zn (P2)c +Stat. +Syst. (P2) e +Stat. +Syst. (P2) Py +Stat. 4Syst.
0.1-0.2 | 0.092  0.00026 0.00056  0.098  0.00023  0.00049 0.1 0.00037  0.00065
0.2-0.3 0.16 0.0006  0.0015 0.17 0.00058  0.0014 0.18 0.00097  0.0015
0.3-0.4 0.2 0.001 0.002 0.22 0.001  0.0023 0.24 0.0018  0.0027
0.4-0.5 0.24 0.0016  0.003 0.26 0.0016  0.0032 0.28 0.003  0.0045
0.5-0.6 0.26 0.0023  0.0025 0.27 0.0023  0.0026 0.3 0.004  0.0046
0.6-0.8 0.27 0.0037  0.0087 0.29 0.0026  0.0089 0.29 0.0048 0.01
0.8-1 0.22 0.0039 0.01 0.22 0.0034  0.011 0.24 0.0075  0.0096
1< Q?[GeV?] < 1.3;2.2< v[GeV] < 3.2
zn (P2ypc  +Stat. +Syst. (P2)pp.  *Stat. +Syst.  (P2)pp,  EStat. +Syst.
0.1-0.2 | 0.059  0.00015 0.00065  0.058  0.00012 0.00065  0.058  0.00013  0.00065
0.2-0.3 0.11 0.00036  0.0011 0.11 0.00029  0.00096 0.11 0.00031  0.0011
0.3-0.4 0.16 0.00068  0.0015 0.16 0.00056  0.0016 0.16 0.00059  0.0016
0.4-0.5 0.19 0.0011  0.0021 0.19 0.0009  0.0022 0.19 0.00096  0.0021
0.5-0.6 0.21 0.0017  0.003 0.21 0.0013  0.0024 0.22 0.0016  0.0029
0.6-0.8 0.21 0.0015  0.0032 0.21 0.0011  0.003 0.21 0.0012  0.0031
0.8-1 0.14 0.002  0.0032 0.14 0.0014  0.0034 0.14 0.0015  0.0033
1< Q?[GeV?] < 1.3;3.2< v[GeV] < 3.7
zn (P2)pc  +Stat.  +Syst. (P2)pr. +Stat.  £Syst. (P2)pp, +Stat.  +Syst.
0.1-0.2 | 0.077  0.00023  0.0006 0.076  0.00019 0.00057  0.076  0.00021 0.00061
0.2-0.3 0.14 0.00055  0.0014 0.14 0.00047  0.0013 0.14 0.00049  0.0015
0.3-0.4 0.18 0.0012  0.0022 0.18 0.00092  0.0021 0.18 0.00095  0.0021
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0.4-0.5 0.22 0.0016  0.0021 0.22 0.0013  0.0024 0.22 0.0014  0.0025
0.5-0.6 0.25 0.0024  0.0043 0.24 0.0019  0.0027 0.24 0.0021  0.0036
0.6-0.8 0.25 0.0033  0.0067 0.25 0.0023  0.006 0.25 0.0024  0.0056
0.8-1 0.17 0.0059  0.0091 0.17 0.0048  0.011 0.18 0.0046  0.011
1< Q?[GeV?] < 1.3;3.7<v[GeV] < 4.3
zn (P2)pc  +Stat.  £Syst. (P2)pp. +£Stat.  £Syst. (PZ)pp, +Stat.  £Syst.
0.1-0.2 | 0.088  0.00026 0.00055 0.087 0.00022  0.00051 0.087  0.00023  0.00061
0.2-0.3 0.15 0.00069  0.0018 0.15 0.0006  0.0017 0.15 0.0006  0.0016
0.3-0.4 0.2 0.0012  0.0022 0.2 0.001  0.0019 0.2 0.0011  0.0021
0.4-0.5 0.25 0.0019  0.003 0.24 0.0016  0.0027 0.24 0.0016  0.0029
0.5-0.6 0.27 0.0026  0.0047 0.27 0.0021  0.0038 0.27 0.0023  0.004
0.6-0.8 0.29 0.0039  0.0089 0.28 0.003  0.0081 0.28 0.0032  0.0058
0.8-1 0.24 0.0066  0.0077 0.23 0.0055  0.0093 0.24 0.0074  0.0074
1.3 < Q?[GeV?] < 1.8 ;2.2 < v[GeV] < 3.2
Zn (P2)pc  +Stat. +Syst. (P2)pp.  +Stat. +Syst. (P2)ppy,  +Stat. +Syst.
0.1-0.2 0.06 0.00013  0.00051 0.059 0.0001  0.00048 0.06 0.00011  0.00059
0.2-0.3 0.11 0.0003  0.00091 0.1 0.00024  0.00097 0.11 0.00026  0.00086
0.3-0.4 0.16 0.00054  0.0011 0.16 0.00044  0.0011 0.15 0.00047  0.0012
0.4-0.5 0.19 0.00087  0.0014 0.19 0.00069  0.0014 0.19 0.00074  0.0014
0.5-0.6 0.21 0.0012  0.0019 0.21 0.00096  0.0017 0.21 0.001  0.0024
0.6-0.8 0.21 0.001  0.0021 0.21 0.00077  0.0017 0.21 0.00085  0.0019
0.8-1 0.14 0.0011  0.0053 0.14 0.00076  0.0046 0.14 0.00088  0.0047
1.3 < Q%[GeV?] < 1.8 ;3.2 < v[GeV] < 3.7
2n (P2)pc  +Stat.  £Syst. (P2)pp. +Stat.  £Syst. (P2)pp, +Stat.  £Syst.
0.1-0.2 | 0.075  0.00019  0.00075 0.075 0.00016  0.00076 0.075 0.00017  0.00077
0.2-0.3 0.13 0.00045  0.0014 0.13 0.00037  0.0015 0.13 0.00039  0.0016
0.3-0.4 0.18 0.00082  0.0019 0.18 0.00069  0.0018 0.18 0.00073  0.0019
0.4-0.5 0.21 0.0014  0.0022 0.21 0.00099  0.0019 0.21 0.0011  0.0023
0.5-0.6 0.23 0.0018  0.0024 0.23 0.0014  0.0024 0.23 0.0015  0.0026
0.6-0.8 0.25 0.0019  0.0039 0.25 0.0014  0.0038 0.25 0.0015  0.004
0.8-1 0.17 0.0029  0.0084 0.16 0.0023  0.0089 0.16 0.0023  0.0092
1.3 < Q%[GeV?] < 1.8 ; 3.7 < v[GeV] < 4.3
Zh (P2)pc  +Stat.  £Syst. (P2)pp. +£Stat.  £Syst. (PZ)pp, +£Stat.  £Syst.
0.1-0.2 | 0.087  0.00023  0.00089 0.086 0.00019  0.00086 0.086 0.0002  0.00089
0.2-0.3 0.15 0.00055  0.0017 0.15 0.00047  0.0019 0.15 0.00048  0.0018
0.3-0.4 0.2 0.00094  0.0021 0.2 0.00078  0.0021 0.2 0.00083  0.0023
0.4-0.5 0.24 0.0015  0.0025 0.23 0.0012  0.0022 0.23 0.0013  0.0025
0.5-0.6 0.26 0.0021  0.0031 0.25 0.0016  0.0031 0.26 0.0018  0.0035
0.6-0.8 0.27 0.0028  0.0068 0.27 0.0021  0.0054 0.27 0.0024  0.0061
0.8-1 0.22 0.0052  0.0069 0.22 0.0039  0.0064 0.22 0.0034  0.0065
1.8 < Q?[GeV?] < 4 ;2.2 < v[GeV] < 3.2
Zn (P2)pc  +Stat. +Syst.  (P2)pre  *Stat. +Syst. (P2)ppy,  *Stat. +Syst.
0.1-0.2 | 0.062  0.00019 0.00048 0.061 0.00015  0.00075 0.062 0.00017  0.00048
0.2-0.3 0.11 0.00043  0.0011 0.11 0.00035  0.0013 0.11 0.00038  0.0011
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0.3-0.4 0.15 0.00078  0.0012 0.15 0.00063  0.0012 0.15 0.00068  0.0012
0.4-0.5 0.18 0.0012 0.0012 0.19 0.00097 0.002 0.19 0.0011 0.0016
0.5-0.6 0.21 0.0017 0.0015 0.21 0.0013 0.001 0.21 0.0014 0.0011
0.6-0.8 0.2 0.0013 0.003 0.2 0.00099  0.0016 0.2 0.0011 0.0029
0.8-1 0.14 0.0015 0.0037 0.14 0.0011 0.0031 0.14 0.0013 0.0028

1.8 < Q?[GeV?] < 4 ;3.2 < v[GeV] < 3.7

zn (P2)pc  +Stat.  +Syst. (P2)pr. +Stat.  £Syst. (P2)pp, +Stat.  +Syst.

0.1-0.2 0.072 0.00018  0.00046 0.071 0.00014  0.00044 0.071 0.00015  0.00046

0.2-0.3 0.12 0.00039  0.0015 0.12 0.00031 0.001 0.12 0.00034  0.0011
0.3-0.4 0.16 0.0007 0.0017 0.17 0.00056  0.0016 0.17 0.00061  0.0018
0.4-0.5 0.2 0.001 0.0019 0.19 0.00084  0.0021 0.2 0.0009 0.002
0.5-0.6 0.21 0.0015 0.0022 0.21 0.0012 0.0023 0.21 0.0013 0.0021
0.6-0.8 0.23 0.0014 0.0021 0.23 0.001 0.0034 0.23 0.0011 0.002
0.8-1 0.14 0.0033 0.0067 0.14 0.0015 0.0073 0.14 0.0017 0.0073

1.8 < Q?[GeV?] < 4 ;3.7 < v[GeV] < 4.3

zn (PZ)pc  +Stat. +Syst. (P2)pre  *Stat. +Syst. (P2)ppy,  *Stat. +Syst.

0.1-0.2 0.082 0.00022  0.00054 0.081 0.00018  0.00049 0.081 0.00019  0.00057

0.2-0.3 0.14 0.00047  0.0012 0.14 0.00039  0.0012 0.14 0.00041  0.0012
0.3-0.4 0.18 0.00081 0.0018 0.18 0.00065  0.0017 0.18 0.0007 0.0017
0.4-0.5 0.22 0.0012 0.0024 0.21 0.001 0.0021 0.21 0.0011 0.0023
0.5-0.6 0.24 0.0018 0.0029 0.23 0.0014 0.0023 0.23 0.0015 0.0026
0.6-0.8 0.26 0.0022 0.0066 0.25 0.0017 0.0064 0.26 0.0018 0.0056
0.8-1 0.19 0.0028 0.0084 0.18 0.0019 0.0095 0.19 0.0022 0.0086

Table C.2: Average squared transverse momentum measurements in [GeV?].

zn (P)c +Stat. +Syst. (P2)Fe +Stat. +Syst. (P2) Py +Stat. +Syst.

0.1-0.2 0.035 6e-05 0.00081 0.034 5e-05 0.00087 0.034 7.8e-05  0.00085
0.2-0.3 0.085 0.00013  0.00083 0.085 0.00011  0.00077 0.087 0.00017  0.00079

0.3-04 | 0.15  0.00027 0.0014 0.15 0.00024  0.0014 0.15 0.00037  0.0014
0.4-0.5 0.2 0.00047  0.0033 0.21 0.00043  0.0029 0.21 0.0007  0.0031
0.5-06 | 023  0.00086 0.0037 0.24 0.00073  0.0028 0.25 0.0011  0.0039
0.6-0.8 | 0.25 0.0009  0.004 0.26 0.00075  0.0042 0.27 0.0014  0.0054
0.8-1 0.18 0.0015  0.0065 0.19 0.0013  0.0077 0.19 0.003  0.0086
zn (P2)pc  +Stat.  +Syst. (P2)pr. +Stat.  £Syst. (P2)pp, +Stat.  +Syst.

0.1-0.2 0.035 5.5e-05  0.00071 0.035 4.5e-05  0.00077 0.035 4.8e-05  0.00075
0.2-0.3 0.084 0.00011  0.00085 0.084 9.5e-05 0.0008 0.084 0.0001  0.00085

0.3-0.4 0.14 0.00024  0.0014 0.14 0.00019  0.0013 0.14 0.00021  0.0014
0.4-0.5 0.19 0.00041 0.002 0.19 0.00033  0.0019 0.19 0.00036  0.0021
0.5-0.6 0.22 0.00064  0.0026 0.22 0.00052  0.0024 0.22 0.00059  0.0027
0.6-0.8 0.23 0.00068  0.0033 0.23 0.00052 0.003 0.23 0.00056  0.0034
0.8-1 0.16 0.001 0.004 0.15 0.00074  0.0035 0.16 0.0008 0.0034

Table C.3: Integrated average squared transverse momentum in [GeV?] with 2y > 0.
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1< Q%[GeV?] < 1.3 ;2.2 < v[GeV] < 3.2

zh (P2)c +Stat.  £Syst. (P2) e +Stat.  £Syst. (P3) py +Stat.  £Syst.
0.1-0.2 0.027 0.00013 0.0012 0.027 0.00011 0.0013 0.027 0.00017 0.0012
0.2-0.3 0.068 0.00027 0.001 0.068 0.00023  0.00097 0.069 0.00036  0.00097
0.3-0.4 0.12 0.0006 0.0013 0.13 0.00051 0.0013 0.12 0.0008 0.0013
0.4-0.5 0.18 0.0011 0.0021 0.18 0.00095 0.0022 0.18 0.0015 0.002
0.5-0.6 0.21 0.0023 0.0028 0.22 0.0018 0.0022 0.22 0.0026 0.003
0.6-0.8 0.22 0.0019 0.0031 0.23 0.0017 0.0029 0.24 0.0029 0.003
0.8-1 0.16 0.0028 0.0077 0.17 0.0027 0.0083 0.18 0.0063 0.011
1< Q?[GeV?] < 1.3;32< v[GeV] < 3.7
zn (P3¢ +Stat.  +Syst. (P2) pe +Stat.  £Syst. (P2Z)po +Stat.  £Syst.
0.1-0.2 0.037 0.00019  0.00061 0.036 0.00016 0.0008 0.036 0.00024  0.00082
0.2-0.3 0.094 0.00041  0.00075 0.095 0.00037  0.00085 0.096 0.00056  0.00077
0.3-0.4 0.16 0.00093 0.0017 0.16 0.00084 0.0017 0.17 0.0012 0.0016
0.4-0.5 0.22 0.0017 0.0029 0.22 0.0015 0.003 0.23 0.0024 0.0029
0.5-0.6 0.25 0.0027 0.0033 0.27 0.0025 0.0041 0.28 0.0041 0.0043
0.6-0.8 0.27 0.0037 0.0071 0.29 0.0028 0.0043 0.3 0.0051 0.0063
0.8-1 0.2 0.011 0.014 0.22 0.0091 0.014 0.24 0.014 0.015
1< Q?[GeV?] < 1.3 ;3.7 < v[GeV] < 4.3
zh (P2)c  +Stat.  £Syst.  (P2)p.  £Stat.  +Syst.  (P2)p,  +Stat.  £Syst.
0.1-0.2 0.044 0.0002 0.00045 0.043 0.00017  0.00048 0.044 0.00025  0.00043
0.2-0.3 0.11 0.00053 0.0013 0.11 0.00045 0.0011 0.11 0.0007 0.0017
0.3-0.4 0.19 0.0011 0.0017 0.19 0.001 0.0018 0.19 0.0015 0.0019
0.4-0.5 0.25 0.0021 0.0031 0.26 0.0018 0.0029 0.27 0.003 0.0034
0.5-0.6 0.29 0.0032 0.004 0.3 0.0031 0.0034 0.31 0.0046 0.0049
0.6-0.8 0.3 0.005 0.0093 0.33 0.0044 0.011 0.33 0.0075 0.012
0.8-1 0.26 0.01 0.012 0.27 0.0087 0.011 0.26 0.014 0.016
1.3 < Q?%[GeV?] < 1.8 ; 2.2 < V[GeV] < 3.2
Zh (PZ)e +Stat.  £Syst. (P2)pe +Stat.  £Syst. (PZ)pp +Stat.  £Syst.
0.1-0.2 0.027 0.00011 0.0014 0.026 8.6e-05 0.0014 0.026 0.00014 0.0014
0.2-0.3 0.066 0.00021  0.00052 0.066 0.00018  0.00054 0.066 0.00029  0.00058
0.3-0.4 0.12 0.00046  0.00095 0.12 0.0004 0.00076 0.12 0.00066  0.00086
0.4-0.5 0.17 0.00085 0.0012 0.18 0.00077 0.0011 0.18 0.0013 0.0016
0.5-0.6 0.21 0.0015 0.002 0.21 0.0012 0.0015 0.22 0.0022 0.002
0.6-0.8 0.22 0.0014 0.0018 0.23 0.0012 0.0023 0.24 0.0022 0.003
0.8-1 0.16 0.0017 0.0053 0.17 0.0015 0.0074 0.17 0.0031 0.008
1.3 < Q%[GeV?] < 1.8 ;3.2 < v[GeV] < 3.7
2n (P3¢ +Stat. +Syst. (P2)pe +Stat. +Syst. (PZ)po +Stat. +Syst.
0.1-0.2 0.035 0.00015  0.00069 0.034 0.00013  0.00079 0.034 0.0002 0.00093
0.2-0.3 0.089 0.00033  0.00077 0.089 0.00029  0.00082 0.089 0.00045 0.0008
0.3-0.4 0.16 0.0007 0.0016 0.16 0.00077 0.0017 0.16 0.001 0.0018
0.4-0.5 0.21 0.0013 0.0024 0.22 0.0012 0.0024 0.22 0.0019 0.0027
0.5-0.6 0.24 0.002 0.003 0.25 0.0017 0.0036 0.26 0.0031 0.0041
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0.6-0.8 0.27 0.0023  0.0034 0.28 0.002  0.0052 0.29 0.0055  0.0053
0.8-1 0.19 0.0051  0.012 0.2 0.0039 0.01 0.2 0.0075  0.0098
1.3 < Q?[GeV?] < 1.8 ; 3.7 < v[GeV] < 4.3
zn (P2)c +Stat. +Syst. (P2)Fe +Stat. +Syst. (P2) Py +Stat. +Syst.
0.1-0.2 | 0.042  0.00017 0.00053 0.041 0.00015  0.00061 0.041 0.00022  0.00064
0.2-0.3 0.11 0.00042  0.00093 0.11 0.0004  0.0013 0.11 0.00061  0.0012
0.3-0.4 0.18 0.00086  0.0018 0.18 0.00079  0.0019 0.19 0.0012  0.0019
0.4-0.5 0.24 0.0016  0.0029 0.25 0.0015  0.0031 0.25 0.0024  0.0035
0.5-0.6 0.28 0.0025  0.003 0.28 0.0021  0.0045 0.3 0.0039  0.0051
0.6-0.8 0.29 0.0037  0.0059 0.3 0.0032  0.0053 0.31 0.0064  0.0056
0.8-1 0.25 0.007  0.0085 0.26 0.0053  0.0086 0.27 0.0096 0.01
1.8 < Q%[GeV?] < 4 ;2.2 < v[GeV] < 3.2
Zn (PZ)ye +Stat. +Syst. (P2)pe +Stat. +Syst. (P2) py, +Stat. +Syst.
0.1-0.2 | 0.026  0.00015  0.0016 0.026 0.00012  0.0016 0.026 0.0002  0.0016
0.2-0.3 | 0.063 0.0003  0.001 0.064 0.00027  0.001 0.064  0.00044  0.0011
0.3-0.4 0.12 0.00067  0.00098 0.12 0.00057  0.0013 0.12 0.00097  0.0014
0.4-0.5 0.17 0.0012  0.0015 0.17 0.0011  0.0016 0.18 0.0018  0.0017
0.5-0.6 0.2 0.002  0.0026 0.21 0.0017  0.0014 0.21 0.0029  0.0018
0.6-0.8 0.22 0.0018  0.0016 0.23 0.0016  0.0022 0.23 0.0031  0.003
0.8-1 0.16 0.0023  0.0053 0.17 0.0022  0.005 0.17 0.0044  0.0055
1.8 < Q%[GeV?] < 4 ;3.2 < v[GeV] < 3.7
zn (P2)c  +Stat.  +Syst.  (P2)p.  +Stat.  +Syst.  (P2)p,  +Stat.  +Syst.
0.1-0.2 | 0.031  0.00014  0.00089 0.031 0.00011  0.00091 0.03 0.00019  0.001
0.2-0.3 | 0.077  0.00028  0.0011 0.078 0.00025  0.001 0.078 0.00041  0.0011
0.3-0.4 0.14 0.0006  0.0016 0.14 0.00057  0.0015 0.14 0.0009  0.0015
0.4-0.5 0.19 0.0011  0.0021 0.19 0.00098  0.0017 0.2 0.0017  0.0026
0.5-0.6 0.22 0.0017  0.0022 0.23 0.0015  0.0022 0.24 0.0027  0.0031
0.6-0.8 0.24 0.0019  0.0067 0.25 0.0016  0.0083 0.26 0.003  0.0061
0.8-1 0.17 0.0032  0.0046 0.17 0.0028  0.0067 0.18 0.0057  0.0091
1.8 < Q%[GeV?] <4 ;3.7 <v[GeV] < 4.3
2n (P3)c +Stat.  £Syst. (P2)Fe +Stat.  £Syst. (P2) Py +Stat.  £Syst.
0.1-0.2 | 0.037  0.00016  0.00063 0.036 0.00014  0.00066 0.036 0.00022  0.00049
0.2-0.3 | 0.094  0.00034  0.0011 0.094 0.0003  0.001 0.095 0.00049  0.00095
0.3-0.4 0.16 0.00071  0.0018 0.16 0.00065  0.0018 0.17 0.0011  0.0018
0.4-0.5 0.21 0.0013  0.0026 0.22 0.0012  0.0025 0.22 0.002 0.003
0.5-0.6 0.25 0.002  0.0022 0.25 0.002  0.0021 0.27 0.0032  0.0033
0.6-0.8 0.27 0.0036  0.0087 0.28 0.0024  0.0079 0.29 0.0046  0.0093
0.8-1 0.22 0.0039 0.01 0.22 0.0034  0.011 0.24 0.0075  0.0096
1< Q?[GeV?] < 1.3;22< v[GeV] < 3.2
2n (P2ypc  +Stat.  £Syst. (P2)pp. +Stat.  £Syst. (P2)pp, +Stat.  £Syst.
0.1-0.2 | 0.028  0.00012  0.0011 0.028 9.4e-05  0.0011 0.028 0.0001  0.0012
0.2-0.3 | 0.068  0.00023  0.00093 0.068 0.00019  0.00091 0.068 0.00021  0.00095
0.3-0.4 0.12 0.0005  0.0012 0.12 0.00042  0.0012 0.12 0.00044  0.0012
0.4-0.5 0.17 0.00092  0.0019 0.17 0.00076  0.002 0.17 0.00082  0.002
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0.5-0.6 0.21 0.0016  0.0028 0.21 0.0013  0.0023 0.21 0.0015  0.0028
0.6-0.8 0.21 0.0014  0.0034 0.21 0.0011  0.0031 0.21 0.0012  0.0033
0.8-1 0.14 0.002  0.0032 0.14 0.0014  0.0034 0.14 0.0015  0.0033
1< Q?[GeV?] < 1.3;3.2 < v[GeV] < 3.7
Zn (P2)pc  +Stat. +Syst. (P2)pp.  *Stat. +Syst. (P2)ppp  *Stat. +Syst.
0.1-0.2 | 0.037  0.00017  0.00062 0.037 0.00015  0.00067 0.037 0.00015  0.00062
0.2-0.3 | 0.093  0.00038 0.00079 0.094 0.00032  0.00078 0.093 0.00034  0.00088
0.3-0.4 0.16 0.00093  0.002 0.16 0.00073  0.0018 0.16 0.00076  0.0017
0.4-0.5 0.21 0.0014  0.0024 0.21 0.0012  0.0024 0.21 0.0013  0.0024
0.5-0.6 0.24 0.0023  0.0043 0.24 0.0019  0.0027 0.24 0.002 0.0037
0.6-0.8 0.25 0.0033  0.0068 0.25 0.0023  0.006 0.25 0.0024  0.0057
0.8-1 0.17 0.0059  0.0091 0.17 0.0048  0.011 0.18 0.0046  0.011
1< Q?[GeV?] < 1.3;3.7 < v[GeV] < 4.3
2n (P2)pc  +Stat. +Syst. (P2)pp. *Stat. +Syst. (P2)ppp  *Stat. +Syst.
0.1-0.2 | 0.044  0.00019  0.00039 0.044 0.00016  0.00046 0.044 0.00016  0.00039
0.2-0.3 0.11 0.00049  0.0013 0.11 0.00042  0.0013 0.11 0.00042  0.0011
0.3-0.4 0.18 0.00099  0.0019 0.18 0.00085  0.0017 0.18 0.00089  0.0019
0.4-0.5 0.24 0.0017  0.0029 0.23 0.0015  0.0027 0.24 0.0015  0.0028
0.5-0.6 0.27 0.0025  0.0045 0.27 0.0021  0.0036 0.27 0.0022  0.004
0.6-0.8 0.29 0.0039  0.0089 0.28 0.003  0.0079 0.28 0.0032  0.0057
0.8-1 0.24 0.0066  0.0077 0.23 0.0055  0.0093 0.24 0.0074  0.0074
1.3 < Q?[GeV?] < 1.8 ;2.2 < v[GeV] < 3.2
Zn (P2)pc  +Stat. +Syst.  (P2)pre  *Stat. +Syst. (P2)ppy,  +Stat. +Syst.
0.1-0.2 | 0.027  9.8e-05  0.0011 0.027 7.7e-05  0.0011 0.027 8.4e-05  0.0011
0.2-0.3 | 0.065  0.00019 0.00049 0.066 0.00015  0.00045 0.065 0.00016  0.00053
0.3-0.4 0.12 0.0004  0.00072 0.12 0.00033  0.0007 0.12 0.00035  0.00081
0.4-0.5 0.17 0.00075  0.0011 0.17 0.00059  0.0012 0.17 0.00064  0.0012
0.5-0.6 0.2 0.0011  0.0016 0.2 0.00091  0.0016 0.2 0.00099  0.0018
0.6-0.8 0.21 0.001 0.002 0.21 0.00076  0.0018 0.21 0.00085  0.0019
0.8-1 0.14 0.0011  0.0053 0.14 0.00076  0.0046 0.14 0.00088  0.0047
1.3 < Q%[GeV?] < 1.8 ;3.2 < v[GeV] < 3.7
2n (P2)pc  +Stat. +Syst. (P2)pp.  *Stat. +Syst. (P2)ppp  *Stat. +Syst.
0.1-0.2 | 0.035  0.00014 0.00072 0.035 0.00011  0.00076 0.035 0.00012  0.00068
0.2-0.3 | 0.088  0.00029 0.00072 0.088 0.00025  0.00069 0.087 0.00026  0.00075
0.3-0.4 0.15 0.00064  0.0017 0.15 0.00054  0.0017 0.15 0.00058  0.0017
0.4-0.5 0.2 0.0013  0.0024 0.2 0.00088  0.002 0.2 0.00096  0.0023
0.5-0.6 0.23 0.0018  0.0024 0.23 0.0014  0.0023 0.23 0.0014  0.0025
0.6-0.8 0.25 0.0019  0.0039 0.25 0.0014  0.0039 0.25 0.0015  0.0043
0.8-1 0.17 0.0029  0.0084 0.16 0.0023  0.0089 0.16 0.0023  0.0092
1.3 < Q%[GeV?] < 1.8 ; 3.7 < v[GeV] < 4.3
zn (P2)pc  +Stat.  +Syst. (P2)ppe +Stat.  £Syst. (PZ)ppy, +Stat.  +Syst.
0.1-0.2 | 0.043  0.00016  0.00052 0.042 0.00013  0.00058 0.042 0.00014  0.00051
0.2-0.3 0.11 0.00038  0.001 0.11 0.00032  0.0011 0.11 0.00033  0.001
0.3-0.4 0.18 0.00076  0.002 0.18 0.00064  0.002 0.18 0.00068  0.0021
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0.4-0.5 0.23 0.0014 0.0027 0.22 0.0011 0.0024 0.23 0.0012 0.0026
0.5-0.6 0.25 0.002 0.003 0.25 0.0016 0.003 0.25 0.0017 0.0033
0.6-0.8 0.27 0.0028 0.0066 0.27 0.0021 0.0054 0.27 0.0024 0.0062
0.8-1 0.22 0.0052 0.0069 0.22 0.0039 0.0064 0.22 0.0034 0.0065

1.8 < Q?[GeV?] < 4 ;2.2 < v[GeV] < 3.2

2n (P2)pc  +Stat.  £Syst. (P2)pp. +Stat.  Syst. (PZ)pp, +Stat.  £Syst.

0.1-0.2 0.027 0.00014  0.0016 0.027 0.00011 0.0015 0.027 0.00012  0.0015

0.2-0.3 0.062 0.00027  0.0011 0.063 0.00022  0.0011 0.063 0.00023  0.0011
0.3-0.4 0.11 0.00056  0.0011 0.11 0.00046  0.0012 0.11 0.00049  0.0012
0.4-0.5 0.16 0.0011 0.0014 0.17 0.00084  0.0025 0.17 0.0009 0.001
0.5-0.6 0.2 0.0016 0.0016 0.2 0.0012  0.00097 0.2 0.0013 0.0011
0.6-0.8 0.2 0.0013 0.0029 0.2 0.00098  0.0016 0.2 0.0011 0.0028
0.8-1 0.14 0.0015 0.0037 0.14 0.0011 0.0031 0.14 0.0013 0.0028

1.8 < Q?[GeV?] < 4 ;3.2 < v[GeV] < 3.7

zn (PZ)pc  +Stat. +Syst. (P2)pre  *Stat. +Syst. (P2)ppy,  *Stat. +Syst.

0.1-0.2 0.032 0.00013  0.00078 0.032 0.0001 0.00082 0.032 0.00011  0.00078

0.2-0.3 0.077 0.00025  0.0013 0.077 0.0002 0.001 0.076 0.00022  0.0012
0.3-0.4 0.13 0.00053  0.0017 0.13 0.00043  0.0016 0.13 0.00046  0.0017
0.4-0.5 0.18 0.00092  0.0017 0.18 0.00074  0.0018 0.18 0.0008 0.0017
0.5-0.6 0.21 0.0014 0.0017 0.21 0.0011 0.0021 0.21 0.0012 0.0019
0.6-0.8 0.23 0.0014 0.002 0.22 0.001 0.0032 0.23 0.0011 0.002
0.8-1 0.14 0.0033 0.0067 0.14 0.0015 0.0073 0.14 0.0017 0.0073

1.8 < Q%[GeV?] < 4 ;3.7 < v[GeV] < 4.3

zn (P2)pc  +Stat. +Syst. (P2)pp.  *Stat. +Syst.  (P2)pp,  EStat. +Syst.

0.1-0.2 0.038 0.00015  0.00058 0.037 0.00012  0.00063 0.037 0.00013  0.00061

0.2-0.3 0.093 0.00031 0.001 0.092 0.00026  0.00099 0.092 0.00027 0.001
0.3-0.4 0.16 0.00063  0.0017 0.15 0.00051 0.0016 0.16 0.00055  0.0017
0.4-0.5 0.2 0.0011 0.0022 0.2 0.00093  0.0021 0.2 0.001 0.0022
0.5-0.6 0.23 0.0017 0.0027 0.23 0.0014 0.0022 0.23 0.0015 0.0024
0.6-0.8 0.26 0.0022 0.0075 0.25 0.0017 0.0063 0.26 0.0018 0.0058
0.8-1 0.19 0.0028 0.0084 0.18 0.0019 0.0095 0.19 0.0022 0.0086

Table C.4: Average squared transverse momentum measurements in [GeV?] with
Ty > 0.
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C.2 Transverse Momentum Broadening
Zh AP%C +Stat. +Syst. AP%Fe +Stat. +Syst. AP%Pb +Stat. +Syst.
0.2-0.3 | 0.014  0.00025 0.00022  0.028  0.00023 0.00037  0.035  0.00033  0.00042
0.3-0.4 | 0.018  0.00047 0.00052  0.036  0.00043 0.00081  0.045  0.00064  0.001
0.4-0.5 | 0.02  0.00074  0.0011 0.04  0.00067  0.0014 0.05 0.001 0.0023
0.5-0.6 | 0.021  0.0012 0.00073  0.039 0.001 0.0018  0.051  0.0015  0.0023
0.6-0.8 | 0.018  0.0012  0.0017  0.036  0.00096 0.0029  0.043  0.0016  0.0036
0.8-1 | 0.022  0.0018  0.003 0.033  0.0015  0.0046  0.037  0.0031  0.0056
Table C.5: Integrated transverse momentum broadening results in [GeV?].
1< Q?[GeV?] < 1.3; 2.2 < v[GeV] < 3.2
Zh AP%C +Stat. +Syst. A}’:’%Fe +Stat. +Syst. AP%Pb +Stat. +Syst.
0.2-0.3 | 0.012  0.00056 0.00032  0.022  0.00049 0.00035  0.027  0.00069 0.00054
0.3-0.4 | 0.017  0.0011 0.00072  0.033  0.00098 0.00064  0.039  0.0014  0.00091
0.4-0.5 | 0.022  0.0018 0.00057 0.035  0.0016 0.00077  0.041  0.0024  0.0015
0.5-0.6 | 0.021  0.0032  0.0011  0.033  0.0026  0.0012  0.043  0.0037  0.0026
0.6-0.8 | 0.014  0.0025 0.0016  0.033  0.0022  0.0022  0.035  0.0034  0.0027
0.8-1 | 0.017 0.0034  0.0051  0.029 0.003  0.0077  0.034  0.0065  0.0091
1< Q?[GeV?] < 1.3 ;3.2 < v[GeV] < 3.7
Zh AP%C +Stat. +Syst. AP%FE +Stat. +Syst. AP%Pb +Stat. +Syst.
0.2-0.3 | 0.015 0.00087 0.00043  0.03  0.00079 0.00095  0.036  0.0011  0.00075
0.3-0.4 | 0.018  0.0018  0.0012  0.034  0.0016  0.0007  0.041  0.0022 0.001
0.4-0.5 | 0.019  0.0025  0.0011  0.038  0.0024  0.0015  0.044  0.0036  0.0024
0.5-0.6 | 0.018  0.0038  0.0019  0.042  0.0034 0.0031  0.056  0.0054  0.0053
0.6-0.8 | 0.018  0.0051  0.0034 0.04 0.0037  0.0055 0.05 0.0058  0.0079
0.8-1 | 0.029  0.012 0.012 0.047 0.01 0.009 0.06 0.015 0.01
1< Q?[GeV?] < 1.3;3.7<v[GeV] < 4.3
Zn AP%C +Stat.  £Syst. AP%FC +Stat.  +Syst. AP%Pb +Stat.  £Syst.
0.2-0.3 | 0.015  0.0011 0.00048  0.032  0.00098 0.0009  0.039  0.0014  0.0014
0.3-0.4 | 0.015  0.0019 0.00066 0.034  0.0018  0.0011  0.042  0.0025  0.0013
0.4-0.5 | 0.019  0.003  0.0014  0.042  0.0028  0.0014  0.056  0.0042  0.0027
0.5-0.6 | 0.023  0.0043  0.0025  0.047 0.004  0.0034  0.047  0.0055  0.0081
0.6-0.8 | 0.012  0.0064  0.0082  0.047  0.0054  0.0062  0.055  0.0082 0.01
0.8-1 0.02 0.012 0.0066  0.036 0.01 0.0047  0.023 0.015 0.012
1.3 < Q?%[GeV?] < 1.8 ; 2.2 < V[GeV] < 3.2
Zn AP%C +Stat.  £Syst. AP:%FE +Stat.  +Syst. AP%Pb +Stat.  £Syst.
0.2-0.3 | 0.013  0.00047 0.00048  0.023  0.0004  0.0015  0.031  0.0006  0.0014
0.3-0.4 | 0.019 0.00089  0.0008  0.034  0.00079 0.0012  0.044  0.0012  0.0017
0.4-0.5 | 0.018  0.0014 0.00073  0.035  0.0013  0.0012  0.045 0.002  0.0028
0.5-0.6 | 0.016  0.0022  0.0016  0.033  0.0018  0.0015  0.044  0.0031  0.0023

173



Chapter C

0.6-0.8 0.022 0.0018 0.0014 0.031 0.0015 0.002 0.038 0.0025 0.0023
0.8-1 0.023 0.002 0.0022 0.032 0.0017 0.0029 0.032 0.0032 0.0045
1.3 < Q?[GeV?] < 1.8 ;3.2 < v[GeV] < 3.7

zn APf_,  +£Stat.  £Syst. AP7 ~ £Stat.  £Syst. AP7 =~ +Stat.  £Syst.
0.2-0.3 0.015 0.00071  0.00048 0.03 0.00063  0.00078 0.038 0.00092  0.00084
0.3-0.4 0.018 0.0013 0.00027 0.035 0.0014 0.00093 0.045 0.0018 0.0011
0.4-0.5 0.021 0.0021 0.00068 0.04 0.0018 0.0012 0.052 0.0028 0.002
0.5-0.6 0.023 0.0029 0.0022 0.042 0.0025 0.0035 0.048 0.0039 0.004
0.6-0.8 0.022 0.003 0.0035 0.035 0.0025 0.007 0.041 0.006 0.0082
0.8-1 0.025 0.0059 0.0062 0.036 0.0045 0.004 0.039 0.0079 0.0063
1.3 < Q?[GeV?] < 1.8 ;3.7 < v[GeV] < 4.3
Zh AP%C +Stat. +Syst. AP%FE +Stat. +Syst. AP%Pb +Stat. +Syst.
0.2-0.3 0.015 0.00087  0.00061 0.03 0.00082 0.001 0.038 0.0012 0.0016
0.3-0.4 0.017 0.0015 0.00056 0.033 0.0014 0.00066 0.047 0.0021 0.0011
0.4-0.5 0.019 0.0024 0.00069 0.044 0.0022 0.0014 0.054 0.0034 0.0028
0.5-0.6 0.025 0.0034 0.0015 0.047 0.0029 0.0036 0.058 0.0047 0.004
0.6-0.8 0.015 0.0048 0.0034 0.037 0.0039 0.0037 0.047 0.0071 0.0056
0.8-1 0.038 0.0087 0.0027 0.045 0.0066 0.0039 0.05 0.01 0.006
1.8 < Q%[GeV?] < 4 ;2.2 < v[GeV] < 3.2
73 AP%C +Stat. +Syst. AP%FE +Stat. +Syst. AP%Pb +Stat. +Syst.
0.2-0.3 0.014 0.0007 0.0017 0.027 0.00061  0.00039 0.035 0.00094  0.00035
0.3-0.4 0.019 0.0013 0.00079 0.037 0.0012 0.0024 0.048 0.0019 0.00056
0.4-0.5 | 0.021 0.002 0.0017 0.039 0.0019  0.0038 0.051 0.003 0.0032
0.5-0.6 0.015 0.0029 0.0023 0.035 0.0025 0.0021 0.047 0.0043 0.0054
0.6-0.8 0.021 0.0023 0.0031 0.037 0.002 0.0036 0.038 0.0036 0.0034
0.8-1 0.013 0.0027 0.0045 0.024 0.0024 0.0052 0.023 0.0045 0.0047
1.8 < Q?[GeV?] < 4 ;3.2 < v[GeV] < 3.7
Zh AP%C +Stat. +Syst. AP%Fe +Stat. +Syst. AP%Pb +Stat. +Syst.
0.2-0.3 0.017 0.00063 0.0003 0.033 0.00057  0.00058 0.039 0.00088  0.00089
0.3-0.4 0.024 0.0012 0.00059 0.041 0.0011 0.0011 0.05 0.0017 0.0015
0.4-0.5 0.019 0.0017 0.0017 0.043 0.0016 0.0014 0.052 0.0026 0.0033
0.5-0.6 0.02 0.0024 0.0015 0.037 0.0022 0.002 0.056 0.0036 0.0036
0.6-0.8 0.019 0.0024 0.0059 0.034 0.002 0.0059 0.042 0.0035 0.0064
0.8-1 0.026 0.0046 0.0028 0.031 0.0031 0.0037 0.035 0.0059 0.0072
1.8 < Q%[GeV?] < 4 ;3.7 < v[GeV] < 4.3
Zh AP%C +Stat. +Syst. AP%Fe +Stat. +Syst. AP%Pb +Stat. +Syst.
0.2-0.3 0.018 0.00076  0.00034 0.035 0.0007 0.00047 0.045 0.0011 0.00042
0.3-0.4 | 0.018  0.0013  0.00028  0.041 0.0012  0.0008 0.056 0.002 0.0013
0.4-0.5 0.02 0.002 0.00092 0.047 0.0019 0.0012 0.061 0.0032 0.0028
0.5-0.6 0.025 0.0029 0.0013 0.039 0.0027 0.0014 0.066 0.0043 0.003
0.6-0.8 0.014 0.0043 0.0026 0.032 0.0031 0.0031 0.037 0.0051 0.0048
0.8-1 0.027  0.0049  0.0026 0.038 0.0039  0.0015 0.057 0.0078  0.0059

Table C.6: Transverse momentum broadening measurements in [GeV?].
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Zh AP%C +Stat. +Syst. AP%Fe +Stat. +Syst. AP%Pb +Stat. +Syst.
0.2-0.3 | 0.00085 0.00017 0.00018 0.0018  0.00015 0.00016  0.0025  0.0002  0.0002
0.3-0.4 | 0.0036  0.00036  0.0002  0.0074 0.00031 0.00041  0.0089  0.00043  0.00023
0.4-0.5 | 0.0083  0.00062 0.0017  0.015  0.00054 0.0013  0.018  0.00078  0.0013
0.5-0.6 | 0.011  0.0011  0.0018  0.022  0.00089  0.0011 0.03  0.0013  0.002
0.6-0.8 | 0.015 ~ 0.0011  0.0022  0.03  0.00091 0.0034  0.036  0.0015  0.0042

0.8-1 | 0.022  0.0018 0.0029  0.033 00015 0.0048  0.037  0.0031  0.0059
Table C.7: Integrated transverse momentum broadening results in [GeV?] with z; >
0.

1< Q?[GeV?] < 1.3;2.2 < v[GeV] < 3.2

Zh AP%C +Stat. +Syst. AP%FE +Stat. +Syst. AP%Pb +Stat. +Syst.
0.2-0.3 | 0.00017 0.00035 0.00016 0.00075  0.0003  0.0001  0.0013  0.00041 0.00011
0.3-0.4 | 0.0015 0.00078  0.0005  0.0051  0.00066 0.00033  0.0044  0.00091 0.00034
0.4-0.5 | 0.0069  0.0014  0.00034  0.0093  0.0012  0.00047  0.0089  0.0017  0.0008
0.5-0.6 | 0.0072  0.0028  0.00065  0.012  0.0022  0.001 0.017 0.003  0.0014
0.6-0.8 | 0.01 0.0024  0.001 0.025 0.002 0.002 0.027  0.0031  0.0023
0.8-1 0.017  0.0034  0.0052  0.029 0.003  0.0077  0.034  0.0065  0.0092

1< Q?[GeV?] < 1.3;32< v[GeV] < 3.7

zn APZ~ £Stat.  £Syst. APZ ~ Stat. £Syst. APz~ £Stat.  Syst.
0.2-0.3 | 0.00036 0.00056 0.00033  0.0016  0.00049 0.00029  0.0024  0.00065 0.00024
0.3-0.4 | 0.0053  0.0013  0.0011  0.0072  0.0011  0.00029  0.0087  0.0014  0.00076
0.4-0.5 | 0.011  0.0022 0.00061  0.017  0.0019  0.00083  0.015  0.0027  0.0011
0.5-0.6 | 0.012  0.0035  0.0021 0.03 0.0031  0.0021  0.035  0.0046  0.0025
0.6-0.8 | 0.016  0.0049  0.0035  0.036  0.0036  0.0055  0.047  0.0056  0.0074
0.8-1 0.029 0.012 0.012 0.047 0.01 0.009 0.06 0.015 0.01

1< Q?[GeV?] < 1.3;3.7<v[GeV] < 4.3

zn AP, EStat.  £Syst. APZ ~ Stat. £Syst. APz~ £Stat.  +Syst.
0.2-0.3 | 0.00051 0.00072 0.00034  0.0029  0.00062 0.00056  0.0031  0.00081  0.00077
0.3-0.4 | 0.0043  0.0015  0.00028  0.01 0.0013  0.0004  0.011  0.0017  0.00042
0.4-0.5 | 0.011  0.0027  0.001 0.025  0.0024 0.00072  0.032  0.0034  0.00091
0.5-0.6 | 0.018  0.0041  0.0017  0.039  0.0038  0.0027 0039  0.0051  0.0028
0.6-0.8 | 0.0094  0.0063  0.0082  0.045  0.0053  0.0058  0.055  0.0081  0.0087
0.8-1 0.02 0.012  0.0067  0.036 0.01 0.0046  0.023 0.015 0.012

1.3 < Q?[GeV?] < 1.8 ;2.2 < v[GeV] < 3.2

7 AP EStat.  £Syst. APZ ~ Stat.  £Syst. APz~ £Stat.  +Syst.
0.2-0.3 | 0.00074 0.00028 7.1e-05  0.0006  0.00024 0.00011  0.00099  0.00034 0.00018
0.3-0.4 | 0.0021  0.00061 0.00051  0.0041  0.00052 0.00022  0.0051  0.00075 0.00036
0.4-0.5 | 0.0028  0.0011  0.00024  0.0056  0.00097 0.00055  0.0088  0.0014  0.001
0.5-0.6 | 0.004  0.0019 0.00051  0.011  0.0015 0.0004  0.017  0.0024 0.00096
0.6-0.8 | 0.018  0.0017  0.0013  0.023 00014 00022 0029 00023  0.0023
0.81 | 0.023 0.002  0.0021  0.032  0.0017  0.0029  0.032  0.0032  0.0045
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1.3 < Q?[GeV?] < 1.8 ;3.2 < v[GeV] < 3.7

Zn AP%C +Stat. +Syst. AP%Fe +Stat. +Syst. AP%Pb +Stat. +Syst.

0.2-0.3 | 0.0011  0.00044  9.4e-05 0.0013  0.00038 0.00019  0.0019  0.00052  7.3e-05
0.3-0.4 | 0.0034  0.00095 0.00028 0.006 0.00094  0.0006 0.0074 0.0012  0.00053
0.4-0.5 0.011 0.0018  0.00065 0.017 0.0015  0.00051 0.021 0.0021 0.00074
0.5-0.6 0.015 0.0027 0.0017 0.026 0.0022 0.0027 0.032 0.0034 0.0021
0.6-0.8 0.019 0.003 0.0033 0.03 0.0024 0.0064 0.035 0.0057 0.0071
0.8-1 0.025 0.0059 0.0063 0.036 0.0045 0.0042 0.039 0.0079 0.0063

1.3 < Q%[GeV?] < 1.8 ;3.7 < v[GeV] < 4.3

Zn AP%C +Stat. +Syst. AP%F@ +Stat. +Syst. AP2 +Stat. +Syst.

Tpp

0.2-0.3 | 0.0013  0.00056 0.00022  0.0023  0.00052 0.00038  0.0023  0.00069 0.00052
0.3-0.4 | 0.0044 0.0011 0.00038  0.0081 0.001 0.00036 0.013 0.0014  0.00032
0.4-0.5 0.011 0.0021 0.00078 0.024 0.0018  0.00076 0.025 0.0026 0.001
0.5-0.6 0.021 0.0032 0.001 0.033 0.0026 0.0028 0.047 0.0042 0.0025
0.6-0.8 0.013 0.0047 0.0035 0.032 0.0038 0.0043 0.044 0.0068 0.0054
0.8-1 0.038 0.0087 0.0027 0.045 0.0066 0.004 0.05 0.01 0.0067

1.8 < Q%[GeV?] < 4 ;2.2 < v[GeV] < 3.2

Zh AP%C +Stat. +Syst. AP%Fe +Stat. +Syst. AP2

Ty +Stat. +Syst.

0.2-0.3 | 0.00017  0.0004  0.00014 0.001 0.00034  0.00013 0.00096  0.0005 5.2e-05
0.3-0.4 | 0.0023  0.00087 0.00069  0.0048  0.00073 0.00019  0.0039 0.0011 0.00049
0.4-0.5 | 0.0037 0.0016 0.0014 0.0061 0.0013 0.0015 0.011 0.002 0.0012
0.5-0.6 | 0.0032 0.0026 0.0018 0.011 0.0021  0.00093 0.013 0.0032 0.0013
0.6-0.8 0.016 0.0022 0.0035 0.027 0.0018 0.0033 0.029 0.0033 0.0037
0.8-1 0.013 0.0027 0.0045 0.024 0.0024 0.0052 0.023 0.0045 0.0047

1.8 < Q?[GeV?] < 4 ;3.2 < v[GeV] < 3.7

Zh AP%C +Stat. +Syst. AP%Fe +Stat. +Syst. AP2

Ty +Stat. +Syst.

0.2-0.3 | 0.00062 0.00038 0.00022  0.0013  0.00032  4.9e-05 0.0019  0.00047  0.00027
0.3-0.4 0.005 0.0008  0.00044 0.0068  0.00071 0.00047  0.0071 0.001 0.00052
0.4-0.5 | 0.0048 0.0014  0.00075 0.012 0.0012  0.00033 0.014 0.0018 0.0011
0.5-0.6 0.01 0.0022  0.00088 0.017 0.0019  0.00037 0.03 0.0029 0.0015
0.6-0.8 0.015 0.0023 0.0053 0.027 0.0019 0.0052 0.033 0.0032 0.0051
0.8-1 0.026 0.0046 0.0029 0.031 0.0031 0.0039 0.035 0.0059 0.0072

1.8 < Q%[GeV?] < 4; 3.7 < v[GeV] < 4.3

Zh AP%C +Stat. +Syst. AP%Fe +Stat. +Syst. AP%Pb

0.2-0.3 | 0.0011  0.00046  0.00011 0.0021 0.0004  0.00017  0.0029  0.00056 0.00016

+Stat. +Syst.

0.3-0.4 | 0.0028  0.00095 0.00025 0.0077  0.00082  0.0003 0.011 0.0012  0.00043
0.4-0.5 0.008 0.0017  0.00056 0.02 0.0015  0.00062 0.02 0.0022 0.001
0.5-0.6 0.016 0.0027  0.00083 0.024 0.0024  0.00061 0.042 0.0036 0.0017
0.6-0.8 0.01 0.0042 0.0028 0.026 0.003 0.0024 0.033 0.0049 0.004

0.8-1 0.027 0.0049 0.0026 0.038 0.0039 0.002 0.057 0.0078 0.006

Table C.8: Transverse momentum broadening measurements in [GeV?| with z; > 0.
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C.3 Intrinsic Parton Momentum

C.3.1 Fit With Analytic Function

Target | xoq | Q°[GeV?] | v[GeV] | (K1)[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.0653 +0.0217
1-1.3 3.2-3.7 0.166 +0.0229
1-1.3 3.7-4.26 0.256 +0.0227
1.3-1.8 2.2-3.2 0.0531 4+0.0221

DC 12.9 1.3-1.8 3.2-3.7 0.139 +0.0223
1.3-1.8 3.7-4.26 0.212 +0.0222
1.8-4 2.2-3.2 0.0531 +0.0217
1.8-4 3.2-3.7 0.0902 +0.0223
1.8-4 3.7-4.26 0.157 +0.0221

Table C.9: Deuterium (C) global fit with Hypothesis 1. z cut applied.

Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]

1-1.3 2.2-3.2 0.0809 +0.0157

1-1.3 3.2-3.7 0.18 +0.0167

1-1.3 3.7-4.26 0.261 +0.017

1.3-1.8 2.2-3.2 0.0725 +0.016

DFe | 11.2 1.3-1.8 3.2-3.7 0.153 +0.0163
1.3-1.8 3.7-4.26 0.22 +0.0163

1.8-4 2.2-3.2 0.0711 +0.0156

1.8-4 3.2-3.7 0.099 +0.0162

1.8-4 3.7-4.26 0.167 +0.0162

Table C.10: Deuterium (Fe) global fit with Hypothesis 1.

Target | xog | Q°[GeV?] | v[GeV] | (k7])[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.0782 +0.0189
1-1.3 3.2-3.7 0.183 +0.0201
1-1.3 3.7-4.26 0.258 +0.02
1.3-1.8 2.2-3.2 0.0659 +0.0193
DPb | 14.9 1.3-1.8 3.2-3.7 0.154 +0.0195
1.3-1.8 3.7-4.26 0.22 +0.0194
1.8-4 2.2-3.2 0.0651 +0.0187
1.8-4 3.2-3.7 0.101 +0.0195
1.8-4 3.7-4.26 0.167 +0.0193

Table C.11: Deuterium (Pb) global fit with Hypothesis 1. z; cut applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]

1-1.3 2.2-3.2 0.0243 +0.00477

1-1.3 3.2-3.7 0.114 +0.00788

1-1.3 3.7-4.26 0.196 +0.00867

1.3-1.8 2.2-3.2 0.0135 +0.00454

DC 7.6 1.3-1.8 3.2-3.7 0.0893 +0.00614
1.3-1.8 | 3.7-4.26 0.158 +0.00714

1.8-4 2.2-3.2 0.01 +0.0195

1.8-4 3.2-3.7 0.0445 +0.00502

1.8-4 3.7-4.26 0.102 +0.00687

Table C.12: Deuterium (C) global fit with Hypothesis 1. x; cut not applied.

Target | xpq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.023 +0.00415
1-1.3 3.2-3.7 0.108 £0.00696
1-1.3 3.7-4.26 0.184 +0.00793
1.3-1.8 2.2-3.2 0.0145 +0.00365
DFe |6.17| 1.3-1.8 3.2-3.7 0.0871 +0.00546
1.3-1.8 | 3.7-4.26 0.148 +0.00609
1.8-4 2.2-3.2 0.01 +0.0614
1.8-4 3.2-3.7 0.0343 £0.00503
1.8-4 3.7-4.26 0.0947 +0.00617

Table C.13: Deuterium (Fe) global fit with Hypothesis 1. x¢ cut not applied.

Target | xoq | Q%[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]

1-1.3 2.2-3.2 0.0223 +0.00454

1-1.3 3.2-3.7 0.112 +0.0074

1-1.3 3.7-4.26 0.185 +0.00775

1.3-1.8 2.2-3.2 0.01 +0.0155

DPb | 7.55 1.3-1.8 3.2-3.7 0.0878 +0.00596
1.3-1.8 | 3.7-4.26 0.151 +0.00658

1.8-4 2.2-3.2 0.0106 +0.00672

1.8-4 3.2-3.7 0.0383 +0.0046

1.8-4 3.7-4.26 0.0971 +0.00635

Table C.14: Deuterium (Pb) global fit with Hypothesis 1. z; cut not applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.0715 +0.0184
1-1.3 3.2-3.7 0.13 +0.0188
1-1.3 3.7-4.26 0.215 +0.0184
1.3-1.8 2.2-3.2 0.0715 +0.0184
DC 18 1.3-1.8 3.2-3.7 0.13 +0.0188
1.3-1.8 | 3.7-4.26 0.215 +0.0184
1.8-4 2.2-3.2 0.0715 +0.0184
1.8-4 3.2-3.7 0.13 +0.0188
1.8-4 3.7-4.26 0.215 +0.0184

Table C.15: Deuterium (C) global fit with Hypothesis 2. x; cut applied.

Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.0779 +0.0149
1-1.3 3.2-3.7 0.137 +0.0151
1-1.3 3.7-4.26 0.211 +0.015
1.3-1.8 2.2-3.2 0.0779 +0.0149
DFe | 17.7 1.3-1.8 3.2-3.7 0.137 +0.0151
1.3-1.8 3.7-4.26 0.211 +0.015
1.8-4 2.2-3.2 0.0779 +0.0149
1.8-4 3.2-3.7 0.137 +0.0151
1.8-4 3.7-4.26 0.211 +0.015

Table C.16: Deuterium (Fe) global fit with Hypothesis 2. z; cut applied.

Target | xog | Q°[GeV?] | v[GeV] | (k7])[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.0788 +0.0163
1-1.3 3.2-3.7 0.138 +0.0168
1-1.3 3.7-4.26 0.218 +0.0164
1.3-1.8 2.2-3.2 0.0788 +0.0163
DPb | 20.9 1.3-1.8 3.2-3.7 0.138 +0.0168
1.3-1.8 3.7-4.26 0.218 +0.0164
1.8-4 2.2-3.2 0.0788 +0.0163
1.8-4 3.2-3.7 0.138 +0.0168
1.8-4 3.7-4.26 0.218 +0.0164

Table C.17: Deuterium (Pb) global fit with Hypothesis 2. z; cut applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]

1-1.3 2.2-3.2 0.01 £0.0549

1-1.3 3.2-3.7 0.0633 +0.0104

1-1.3 3.7-4.26 0.138 +0.0107

1.3-1.8 2.2-3.2 0.01 +0.0549

DC 12.7 ] 1.3-1.8 3.2-3.7 0.0633 +0.0104
1.3-1.8 | 3.7-4.26 0.138 +0.0107

1.8-4 2.2-3.2 0.01 +0.0549

1.8-4 3.2-3.7 0.0633 +0.0104

1.8-4 3.7-4.26 0.138 +0.0107

Table C.18: Deuterium (C) global fit with Hypothesis 2. x; cut not applied.

Target | xpq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]

1-1.3 2.2-3.2 0.01 +0.277

1-1.3 3.2-3.7 0.0637 +0.025

1-1.3 3.7-4.26 0.13 +0.0251

1.3-1.8 2.2-3.2 0.01 +0.277

DFe | 124 ] 1.3-1.8 3.2-3.7 0.0637 +0.025
1.3-1.8 3.7-4.26 0.13 +0.0251

1.8-4 2.2-3.2 0.01 +0.277

1.8-4 3.2-3.7 0.0637 £0.025

1.8-4 3.7-4.26 0.13 +0.0251

Table C.19: Deuterium (Fe) global fit with Hypothesis 2. x cut not applied.

Target | xoq | Q%[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]

1-1.3 2.2-3.2 0.01 +0.0272

1-1.3 3.2-3.7 0.0604 +0.00327

1-1.3 3.7-4.26 0.134 +0.00396

1.3-1.8 2.2-3.2 0.01 +0.0272

DPb | 13.8 1.3-1.8 3.2-3.7 0.0604 +0.00327
1.3-1.8 | 3.7-4.26 0.134 +0.00396

1.8-4 2.2-3.2 0.01 +0.0272

1.8-4 3.2-3.7 0.0604 +0.00327

1.8-4 3.7-4.26 0.134 +0.00396

Table C.20: Deuterium (Pb) global fit with Hypothesis 2. z; cut not applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.0348 +0.0655
1-1.3 3.2-3.7 0.131 +0.0723
1-1.3 3.7-4.26 0.22 +0.0715
1.3-1.8 2.2-3.2 0.0332 +0.0649
C 3.53 1.3-1.8 3.2-3.7 0.115 +0.0724
1.3-1.8 | 3.7-4.26 0.182 +0.0719
1.8-4 2.2-3.2 0.0236 +0.161
1.8-4 3.2-3.7 0.0533 +0.0686
1.8-4 3.7-4.26 0.123 +0.0714

Table C.21: C global fit with Hypothesis 1. z; cut not applied.

Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]

1-1.3 2.2-3.2 0.0194 +0.00616
1-1.3 3.2-3.7 0.12 +0.00863
1-1.3 3.7-4.26 0.208 +0.0102
1.3-1.8 2.2-3.2 0.01 +0.201

Fe 3.71 1.3-1.8 3.2-3.7 0.0936 +0.00807
1.3-1.8 3.7-4.26 0.165 +0.00841
1.8-4 2.2-3.2 0.0114 +0.00552
1.8-4 3.2-3.7 0.0357 +0.00771
1.8-4 3.7-4.26 0.107 +0.00824

Table C.22: Fe global fit with Hypothesis 1. x cut not applied.

Target | xog | Q°[GeV?] | v[GeV] | (k7])[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.0761 +0.0393
1-1.3 3.2-3.7 0.193 40.0407
1-1.3 3.7-4.26 0.268 +0.0341
1.3-1.8 2.2-3.2 0.0763 +0.0439
Pb 2.54 1.3-1.8 3.2-3.7 0.154 40.0404
1.3-1.8 | 3.7-4.26 0.239 +0.0373
1.8-4 2.2-3.2 0.0751 4+0.041
1.8-4 3.2-3.7 0.109 40.0404
1.8-4 3.7-4.26 0.196 +0.0387

Table C.23: Pb global fit with Hypothesis 1. z; cut not applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.0908 +0.00814
1-1.3 3.2-3.7 0.22 +0.0176
1-1.3 3.7-4.26 0.3 +0.00123
1.3-1.8 2.2-3.2 0.0881 +0.0063
C 12.6 1.3-1.8 3.2-3.7 0.193 +0.0127
1.3-1.8 | 3.7-4.26 0.269 +0.0131
1.8-4 2.2-3.2 0.0806 +0.00623
1.8-4 3.2-3.7 0.118 +0.00824
1.8-4 3.7-4.26 0.204 +0.0169
Table C.24: C global fit with Hypothesis 1. z; cut applied.
Target | xpq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.0281 40.00391
1-1.3 3.2-3.7 0.16 +0.00892
1-1.3 3.7-4.26 0.278 +0.01
1.3-1.8 2.2-3.2 0.0145 +0.00199
Fe 15.2 1.3-1.8 3.2-3.7 0.127 +0.0071
1.3-1.8 | 3.7-4.26 0.207 +0.00871
1.8-4 2.2-3.2 0.0101 +0.000231
1.8-4 3.2-3.7 0.0552 +0.00593
1.8-4 3.7-4.26 0.147 +0.00717
Table C.25: Fe global fit with Hypothesis 1. x cut applied.
Target | xoq | Q%[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.0356 +0.0137
1-1.3 3.2-3.7 0.19 +0.0157
1-1.3 3.7-4.26 0.3 +0.016
1.3-1.8 2.2-3.2 0.0288 +0.0132
Pb 9.93 1.3-1.8 3.2-3.7 0.149 +0.0147
1.3-1.8 3.7-4.26 0.243 +0.0155
1.8-4 2.2-3.2 0.0259 +0.0132
1.8-4 3.2-3.7 0.0811 4+0.0141
1.8-4 3.7-4.26 0.18 +0.0148

Table C.26: Pb global fit with Hypothesis 1. z; cut applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]

1-1.3 2.2-3.2 0.01 +0.0361

1-1.3 3.2-3.7 0.0703 +0.00437

1-1.3 3.7-4.26 0.145 +0.00521

1.3-1.8 2.2-3.2 0.01 +0.0361

C 8.05 1.3-1.8 3.2-3.7 0.0703 +0.00437
1.3-1.8 | 3.7-4.26 0.145 +0.00521

1.8-4 2.2-3.2 0.01 +0.0361

1.8-4 3.2-3.7 0.0703 +0.00437

1.8-4 3.7-4.26 0.145 +0.00521

Table C.27: C global fit with Hypothesis 2. z; cut not applied.

Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]

1-1.3 2.2-3.2 0.01 +0.0236

1-1.3 3.2-3.7 0.0762 £0.0048

1-1.3 3.7-4.26 0.15 £0.00523

1.3-1.8 2.2-3.2 0.01 +0.0236

Fe 8.05 1.3-1.8 3.2-3.7 0.0762 +0.0048
1.3-1.8 | 3.7-4.26 0.15 +0.00523

1.8-4 2.2-3.2 0.01 +0.0236

1.8-4 3.2-3.7 0.0762 £0.0048

1.8-4 3.7-4.26 0.15 £0.00523

Table C.28: Fe global fit with Hypothesis 2. x cut not applied.

Target | xog | Q°[GeV?] | v[GeV] | (k7])[GeV?] | 0(k])[GeV?]

1-1.3 2.2-3.2 0.0688 +0.0506

1-1.3 3.2-3.7 0.136 40.0507

1-1.3 3.7-4.26 0.219 40.0503

1.3-1.8 2.2-3.2 0.0688 £0.0506

Pb 3.77 | 1.3-1.8 3.2-3.7 0.136 +0.0507
1.3-1.8 | 3.7-4.26 0.219 +0.0503

1.8-4 2.2-3.2 0.0688 +0.0506

1.8-4 3.2-3.7 0.136 +0.0507

1.8-4 3.7-4.26 0.219 +0.0503

Table C.29: Pb global fit with Hypothesis 2. z; cut not applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]

1-1.3 2.2-3.2 0.01 +0.0666

1-1.3 3.2-3.7 0.0873 +0.217

1-1.3 3.7-4.26 0.18 +0.0973

1.3-1.8 2.2-3.2 0.01 +0.0666

C 18.5 1.3-1.8 3.2-3.7 0.0873 +0.217
1.3-1.8 | 3.7-4.26 0.18 +0.0973

1.8-4 2.2-3.2 0.01 +0.0666

1.8-4 3.2-3.7 0.0873 +0.217

1.8-4 3.7-4.26 0.18 +0.0973

Table C.30: C global fit with Hypothesis 2. z; cut applied.

Target | xpq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]

1-1.3 2.2-3.2 0.01 +0.0331

1-1.3 3.2-3.7 0.0961 £0.00407

1-1.3 3.7-4.26 0.192 +0.00465

1.3-1.8 2.2-3.2 0.01 +0.0331

Fe 229 1.3-1.8 3.2-3.7 0.0961 +0.00407
1.3-1.8 3.7-4.26 0.192 +0.00465

1.8-4 2.2-3.2 0.01 +0.0331

1.8-4 3.2-3.7 0.0961 +0.00407

1.8-4 3.7-4.26 0.192 +0.00465

Table C.31: Fe global fit with Hypothesis 2. x cut applied.

Target | xoq | Q%[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]

1-1.3 2.2-3.2 0.0607 +0.0336

1-1.3 3.2-3.7 0.159 +0.0336

1-1.3 3.7-4.26 0.259 +0.0332

1.3-1.8 2.2-3.2 0.0607 +0.0336

Pb 13.5 1.3-1.8 3.2-3.7 0.159 +0.0336
1.3-1.8 | 3.7-4.26 0.259 +0.0332

1.8-4 2.2-3.2 0.0607 +0.0336

1.8-4 3.2-3.7 0.159 +0.0336

1.8-4 3.7-4.26 0.259 +0.0332

Table C.32: Pb global fit with Hypothesis 2. z; cut applied.
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C.3.2 Fit With Numerical Integration

Target | xog | Q°[GeV?] | v[GeV] | (k7])[GeV?] | 0(k])[GeV?]

1-1.3 2.2-3.2 0.0779 +0.00768

1-1.3 3.2-3.7 0.115 +0.0192

1-1.3 3.7-4.26 0.3 £0.00878

1.3-1.8 2.2-3.2 0.0978 £0.0062

DC 143 | 1.3-1.8 3.2-3.7 0.0999 £0.00984
1.3-1.8 3.7-4.26 0.127 +0.0125

1.8-4 2.2-3.2 0.121 +0.00575

1.8-4 3.2-3.7 0.0754 +0.00831

1.8-4 3.7-4.26 0.0826 £0.0108

Table C.33: Deuterium (C) global fit with Hypothesis 1.

Target | xog | Q°[GeV?] | v[GeV] | (k7])[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.0972 +0.00701
1-1.3 3.2-3.7 0.167 +0.0267
1-1.3 3.7-4.26 0.3 +0.006
1.3-1.8 2.2-3.2 0.121 £0.00541
DFe |19.2 ] 1.3-1.8 3.2-3.7 0.126 £0.00864
1.3-1.8 3.7-4.26 0.173 +0.0124
1.8-4 2.2-3.2 0.141 +0.00463
1.8-4 3.2-3.7 0.0961 +0.00766
1.8-4 3.7-4.26 0.0931 £0.00929

Table C.34: Deuterium (Fe) global fit with Hypothesis 1. z; cut applied.

Target | xog | Q°[GeV?] | v[GeV] | (k7])[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.0902 +0.00565
1-1.3 3.2-3.7 0.162 +0.0238
1-1.3 3.7-4.26 0.3 40.00647
1.3-1.8 2.2-3.2 0.11 +0.00441
DPb 18 1.3-1.8 3.2-3.7 0.119 +0.00751
1.3-1.8 | 3.7-4.26 0.176 +0.0105
1.8-4 2.2-3.2 0.135 +0.00395
1.8-4 3.2-3.7 0.111 +0.000223
1.8-4 3.7-4.26 0.0893 +0.00772

Table C.35: Deuterium (Pb) global fit with Hypothesis 1. z; cut applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.0167 +0.00423
1-1.3 3.2-3.7 0.119 +0.0152
1-1.3 3.7-4.26 0.3 +0.00645
1.3-1.8 2.2-3.2 0.01 +0.00118
DC |9.63 1.3-1.8 3.2-3.7 0.0811 +0.00604
1.3-1.8 | 3.7-4.26 0.156 +0.00841
1.8-4 2.2-3.2 0.01 +0.000998
1.8-4 3.2-3.7 0.0367 +0.00443
1.8-4 3.7-4.26 0.0937 +0.00649

Table C.36: Deuterium (C) global fit with Hypothesis 1. z; cut not applied.

Target | xpq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.0177 +0.00382
1-1.3 3.2-3.7 0.115 +0.0109
1-1.3 3.7-4.26 0.3 +0.00668
1.3-1.8 2.2-3.2 0.01 +0.00364
DFe | 7.96 1.3-1.8 3.2-3.7 0.0811 +0.00518
1.3-1.8 | 3.7-4.26 0.146 +0.00686
1.8-4 2.2-3.2 0.01 +0.000681
1.8-4 3.2-3.7 0.0286 +0.00523
1.8-4 3.7-4.26 0.0885 +0.00592

Table C.37: Deuterium (Fe) global fit with Hypothesis 1. x; cut not applied.

Target | xoq | Q%[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.0176 +0.00397
1-1.3 3.2-3.7 0.122 4+0.0125
1-1.3 3.7-4.26 0.3 +0.00597
1.3-1.8 2.2-3.2 0.01 +0.000877
DPb | 9.58 1.3-1.8 3.2-3.7 0.0826 £0.00558
1.3-1.8 | 3.7-4.26 0.151 +0.00753
1.8-4 2.2-3.2 0.01 4+0.00116
1.8-4 3.2-3.7 0.0333 +0.0041
1.8-4 3.7-4.26 0.0918 +0.00598

Table C.38: Deuterium (Pb) global fit with Hypothesis 1. z; cut not applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.105 +0.00548
1-1.3 3.2-3.7 0.0925 +0.00753
1-1.3 3.7-4.26 0.123 +0.00882
1.3-1.8 2.2-3.2 0.105 +0.00548
DC 17.1 1.3-1.8 3.2-3.7 0.0925 40.00753
1.3-1.8 | 3.7-4.26 0.123 +0.00882
1.8-4 2.2-3.2 0.105 +0.00548
1.8-4 3.2-3.7 0.0925 +0.00753
1.8-4 3.7-4.26 0.123 +0.00882

Table C.39: Deuterium (C) global fit with Hypothesis 2. x; cut applied.

Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.13 +0.00606
1-1.3 3.2-3.7 0.119 +0.00774
1-1.3 3.7-4.26 0.144 +0.0107
1.3-1.8 2.2-3.2 0.13 +0.00606
DFe 24 1.3-1.8 3.2-3.7 0.119 +0.00774
1.3-1.8 3.7-4.26 0.144 +0.0107
1.8-4 2.2-3.2 0.13 +0.00606
1.8-4 3.2-3.7 0.119 +0.00774
1.8-4 3.7-4.26 0.144 +0.0107

Table C.40: Deuterium (Fe) global fit with Hypothesis 2. z; cut applied.

Target | xog | Q°[GeV?] | v[GeV] | (k7])[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.119 40.00447
1-1.3 3.2-3.7 0.12 £0.00596
1-1.3 3.7-4.26 0.14 +0.00717
1.3-1.8 2.2-3.2 0.119 £0.00447
DPb |226| 1.3-1.8 3.2-3.7 0.12 £0.00596
1.3-1.8 3.7-4.26 0.14 +0.00717
1.8-4 2.2-3.2 0.119 +0.00447
1.8-4 3.2-3.7 0.12 £0.00596
1.8-4 3.7-4.26 0.14 £0.00717

Table C.41: Deuterium (Pb) global fit with Hypothesis 2. z; cut applied.

187



Chapter C

Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]

1-1.3 2.2-3.2 0.01 £0.00053

1-1.3 3.2-3.7 0.0583 +0.00341

1-1.3 3.7-4.26 0.128 +0.00459

1.3-1.8 2.2-3.2 0.01 +0.00053

DC 14.8 1.3-1.8 3.2-3.7 0.0583 +0.00341
1.3-1.8 | 3.7-4.26 0.128 +0.00459

1.8-4 2.2-3.2 0.01 +0.00053

1.8-4 3.2-3.7 0.0583 +0.00341

1.8-4 3.7-4.26 0.128 +0.00459

Table C.42: Deuterium (C) global fit with Hypothesis 2. x; cut not applied.

Target | xpq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.01 +0.000523
1-1.3 3.2-3.7 0.06 £0.00331
1-1.3 3.7-4.26 0.122 +0.00411
1.3-1.8 2.2-3.2 0.01 +0.000523
DFe | 14.6 1.3-1.8 3.2-3.7 0.06 +0.00331
1.3-1.8 3.7-4.26 0.122 +0.00411
1.8-4 2.2-3.2 0.01 +0.000523
1.8-4 3.2-3.7 0.06 +0.00331
1.8-4 3.7-4.26 0.122 +0.00411

Table C.43: Deuterium (Fe) global fit with Hypothesis 2. x¢ cut not applied.

Target | xoq | Q%[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.01 40.000471
1-1.3 3.2-3.7 0.0562 +0.00323
1-1.3 3.7-4.26 0.125 +0.0023
1.3-1.8 2.2-3.2 0.01 +0.000471
DPb | 16.3 1.3-1.8 3.2-3.7 0.0562 +0.00323
1.3-1.8 3.7-4.26 0.125 +0.0023
1.8-4 2.2-3.2 0.01 40.000471
1.8-4 3.2-3.7 0.0562 +0.00323
1.8-4 3.7-4.26 0.125 +0.0023

Table C.44: Deuterium (Pb) global fit with Hypothesis 2. z; cut not applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.011 +0.00877
1-1.3 3.2-3.7 0.122 +0.0164
1-1.3 3.7-4.26 0.3 40.00854
1.3-1.8 2.2-3.2 0.01 +0.0162
C 5.67 | 1.3-1.8 3.2-3.7 0.0912 +0.00647
1.3-1.8 | 3.7-4.26 0.167 +0.0103
1.8-4 2.2-3.2 0.01 +0.000787
1.8-4 3.2-3.7 0.0299 +0.0061
1.8-4 3.7-4.26 0.099 +0.00758

Table C.45: C global fit with Hypothesis 1. z; cut not applied.

Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]

1-1.3 2.2-3.2 0.0126 40.00558

1-1.3 3.2-3.7 0.134 +0.0162

1-1.3 3.7-4.26 0.3 +0.00717

1.3-1.8 2.2-3.2 0.01 +0.00104

Fe 6.33 1.3-1.8 3.2-3.7 0.0862 +0.00763
1.3-1.8 3.7-4.26 0.167 +0.0104

1.8-4 2.2-3.2 0.01 £0.00156

1.8-4 3.2-3.7 0.0283 +0.0072

1.8-4 3.7-4.26 0.0997 +0.00782

Table C.46: Fe global fit with Hypothesis 1. x cut not applied.

Target | xog | Q°[GeV?] | v[GeV] | (k7])[GeV?] | 0(k])[GeV?]

1-1.3 2.2-3.2 0.01 +0.00624
1-1.3 3.2-3.7 0.156 40.0309
1-1.3 3.7-4.26 0.3 +0.018
1.3-1.8 2.2-3.2 0.01 £0.00455

Pb 3.57 | 1.3-1.8 3.2-3.7 0.0848 +0.01
1.3-1.8 | 3.7-4.26 0.183 +0.0156
1.8-4 2.2-3.2 0.01 40.00421
1.8-4 3.2-3.7 0.0396 +0.00942
1.8-4 3.7-4.26 0.127 +0.0105

Table C.47: Pb global fit with Hypothesis 1. z; cut not applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.0963 +0.00953
1-1.3 3.2-3.7 0.207 +0.0522
1-1.3 3.7-4.26 0.3 +0.0116
1.3-1.8 2.2-3.2 0.117 +0.00656
C 10.2 1.3-1.8 3.2-3.7 0.132 +0.0112
1.3-1.8 | 3.7-4.26 0.162 +0.0165
1.8-4 2.2-3.2 0.145 +0.00569
1.8-4 3.2-3.7 0.0908 +0.0097
1.8-4 3.7-4.26 0.0857 +0.0125

Table C.48: C global fit with Hypothesis 1. z; cut applied.

Target | xpq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.0711 +0.00917
1-1.3 3.2-3.7 0.197 +0.043
1-1.3 3.7-4.26 0.3 +0.0109
1.3-1.8 2.2-3.2 0.116 +0.00608
Fe 13.9 1.3-1.8 3.2-3.7 0.118 +0.0111
1.3-1.8 3.7-4.26 0.148 +0.0151
1.8-4 2.2-3.2 0.152 +0.00519
1.8-4 3.2-3.7 0.0727 +0.00957
1.8-4 3.7-4.26 0.0619 +0.0122

Table C.49: Fe global fit with Hypothesis 1. x cut applied.

Target | xoq | Q%[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]

1-1.3 2.2-3.2 0.0804 +0.00919

1-1.3 3.2-3.7 0.3 +0.0576

1-1.3 3.7-4.26 0.3 +0.0134

1.3-1.8 2.2-3.2 0.129 +0.00651

Pb 11.8 1.3-1.8 3.2-3.7 0.127 +0.0113
1.3-1.8 3.7-4.26 0.172 +0.0179

1.8-4 2.2-3.2 0.184 40.00544

1.8-4 3.2-3.7 0.132 +0.0093

1.8-4 3.7-4.26 0.134 +0.0114

Table C.50: Pb global fit with Hypothesis 1. z; cut applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.01 +0.000693
1-1.3 3.2-3.7 0.0654 +0.00428
1-1.3 3.7-4.26 0.134 +0.0055
1.3-1.8 2.2-3.2 0.01 +0.000693
C 10.1 1.3-1.8 3.2-3.7 0.0654 40.00428
1.3-1.8 | 3.7-4.26 0.134 £0.0055
1.8-4 2.2-3.2 0.01 +0.000693
1.8-4 3.2-3.7 0.0654 +0.00428
1.8-4 3.7-4.26 0.134 +0.0055

Table C.51: C global fit with Hypothesis 2. z; cut not applied.

Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]
1-1.3 2.2-3.2 0.01 +0.000571

1-1.3 3.2-3.7 0.0698 £0.00468

1-1.3 3.7-4.26 0.138 £0.00558

1.3-1.8 2.2-3.2 0.01 +0.000571

Fe 10.6 1.3-1.8 3.2-3.7 0.0698 +0.00468

1.3-1.8 | 3.7-4.26 0.138 40.00558

1.8-4 2.2-3.2 0.01 £0.000571

1.8-4 3.2-3.7 0.0698 +0.00468

1.8-4 3.7-4.26 0.138 £0.00558

Table C.52: Fe global fit with Hypothesis 2. x cut not applied.

Target | xog | Q°[GeV?] | v[GeV] | (k7])[GeV?] | 0(k])[GeV?]

1-1.3 2.2-3.2 0.01 +0.00136

1-1.3 3.2-3.7 0.0722 +0.00653

1-1.3 3.7-4.26 0.153 +0.00815

1.3-1.8 2.2-3.2 0.01 +0.00136

Pb 4.93 1.3-1.8 3.2-3.7 0.0722 £0.00653
1.3-1.8 | 3.7-4.26 0.153 +0.00815

1.8-4 2.2-3.2 0.01 +0.00136

1.8-4 3.2-3.7 0.0722 +0.00653

1.8-4 3.7-4.26 0.153 +0.00815

Table C.53: Pb global fit with Hypothesis 2. z; cut not applied.
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Target | xoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.124 +0.00303
1-1.3 3.2-3.7 0.108 +0.00488
1-1.3 3.7-4.26 0.123 +0.00549
1.3-1.8 2.2-3.2 0.124 +0.00303
C 13.9 1.3-1.8 3.2-3.7 0.108 +0.00488
1.3-1.8 | 3.7-4.26 0.123 +0.00549
1.8-4 2.2-3.2 0.124 +0.00303
1.8-4 3.2-3.7 0.108 +0.00488
1.8-4 3.7-4.26 0.123 +0.00549

Table C.54: C global fit with Hypothesis 2. z; cut applied.

Target | xpoq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k1)[GeV?]
1-1.3 2.2-3.2 0.129 +0.00456
1-1.3 3.2-3.7 0.108 +0.00696
1-1.3 3.7-4.26 0.123 +0.00835
1.3-1.8 2.2-3.2 0.129 +0.00456
Fe 21 1.3-1.8 3.2-3.7 0.108 +0.00696
1.3-1.8 | 3.7-4.26 0.123 +0.00835
1.8-4 2.2-3.2 0.129 +0.00456
1.8-4 3.2-3.7 0.108 +0.00696
1.8-4 3.7-4.26 0.123 +0.00835

Table C.55: Fe global fit with Hypothesis 2. x cut applied.

Target | xpq | Q°[GeV?] | v[GeV] | (k7)[GeV?] | 0(k])[GeV?]

1-1.3 2.2-3.2 0.157 +0.0062

1-1.3 3.2-3.7 0.156 £0.00929

1-1.3 3.7-4.26 0.182 +0.0118

1.3-1.8 2.2-3.2 0.157 +0.0062

Pb 15 1.3-1.8 3.2-3.7 0.156 +0.00929
1.3-1.8 3.7-4.26 0.182 +0.0118

1.8-4 2.2-3.2 0.157 £0.0062

1.8-4 3.2-3.7 0.156 +0.00929

1.8-4 3.7-4.26 0.182 +0.0118
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Table C.56: Pb global fit with Hypothesis 2. z; cut applied.
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