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Abstract. The Dynamic Aperture is an important concept for the study of non-linear beam
dynamics in a circular accelerator. The DA is defined as the extent of the phase-space region
in which the particle’s motion remains bounded over a finite number of turns. Such a region is
shaped by the imperfections in the magnetic fields, beam-beam effects, electron lens, electron
clouds, and other non-linear effects. The study of the DA provides insight into the mechanisms
driving the time evolution of beam losses, which is essential for the operation of existing circular
accelerators, such as the CERN Large Hadron Collider, as well as for the design of future ones.
The standard approach to numerical evaluation of the DA relies on the ability to accurately track
initial conditions, distributed in phase space, on a realistic time scale, and this is computationally
demanding. To accelerate the angular DA calculation, we propose the use of a Machine Learning
technique for the angular DA regression based on simulated HL-LHC data. We demonstrate
the implementation of a Deep Neural Network model by measuring the time and assessing the
performance of the angular DA regressor, as well as carrying out studies with various hardware
architectures including CPU, GPU, and TPU.

1. Introduction

The study of dynamic aperture (DA), defined as the extent of the connected phase-space region
in which the single-particle dynamic is bounded, provides insight into the single-particle, non-
linear beam dynamics and mechanisms driving the time evolution of beam losses (see, e.g. [1]),
which is essential for the design and operation of existing (see, e.g. [2, 3]) and future circular
accelerators (see, e.g. [4]).

The numerical calculation of the DA involves tracking a large number of initial conditions
in phase space for many turns (see, e.g. [5, 6]). This method is computationally demanding,
especially for large accelerators such as the CERN Large Hadron Collider (LHC) [2], and for this
analytical scaling laws have been studied for several years [7, 6]. In general, in the accelerator
community, there is growing interest in developing methods to accelerate the DA calculation
while maintaining its accuracy.

In recent years, Machine Learning (ML) techniques have emerged as a promising approach
to accelerate DA evaluation (see, e.g. [8, 9, 10, 11]). By training a model on a large data set
of simulated initial conditions, an ML algorithm can learn the complex mapping between the
initial conditions and the angular DA (see below) and provide a fast and accurate prediction of
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the angular DA for new sets of initial conditions and machine configurations. This approach has
the potential to reduce the computational cost of DA evaluation and enable faster accelerator
parameter optimisation.

Here, we propose to use machine learning techniques to speed up angular DA evaluation
based on simulated data obtained using the High Luminosity LHC (HL-LHC) lattice [3]. We
investigated the use of a Deep Neural Network (DNN) model to regress the angular DA as
a function of the initial conditions. We study the performance of this ML model on various
hardware architectures and compare it with the standard simulation method.

2. Simulated Samples
To train the ML model, we simulated several accelerator configurations using MAD-X [12] and

the V1.0 HL-LHC lattice in the injection configuration at 450 GeV [13]. We varied six accelerator
parameters, namely the betatron tunes @y, @y, chromaticities Q’,, ;, strength of the Landau

octupoles (using the current, Ip;0, powering the octupoles) and the realisations (also called
seeds) of the magnetic field errors assigned to the various magnet families. Furthermore, both
Beam 1 and Beam 2 have been considered in these studies. For this first study, we limited
the parameters sampling to two @, @, scans (8 Q. values in [0.255,0.295] and 9 @, values in
[0.280,0.325]) and a @', Iyjo scan (15 Q' values in [0,15] and 17 Iyjo values in [—40,40]A) for
Beam 1 and Beam 2 and the possible realisations of the magnetic errors. This resulted in a total

of 29880 sets of accelerator parameters.
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Figure 1. Stability distribution given in units of beam o for a specific accelerator configuration.

The phase space was probed by tracking with SixTrack [14] for 10° turns a set of initial
conditions selected along 11 polar angles, evenly distributed in |0, /2] and 290 radial amplitudes,
evenly distributed in [0.00, 200]. An example of the results of these computations in the z — y
space is shown in Fig. 1 for a specific accelerator configuration, in which the stability time, i.e.
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the time taken by the orbit to reach an amplitude corresponding to a numerical overflow, is
provided for each initial condition.

The input for the surrogate model is given by the parameters describing the accelerator
configuration and the polar angle, the regressor will learn for each accelerator configuration the
value of the last stable amplitude for that angle, which we call angular DA. When considering
the angle as an additional parameter, the number of samples is increased to 328680. From this
number, 10% of the samples were used for validation during training, and 10% was used only to
test the performance of the model, not for training.

To prevent extreme angular DA values from affecting the regressor [15], we cap values above
10 o, as they are outliers in a distribution ranging from 0 ¢ to 20 o. Additionally, to make the
training data set more representative of any angular DA value, a weighting scheme based on
the inverse angular DA distribution was used. This ensured that the less common angular DA
values had higher weights, resulting in a more accurate regression model throughout the range
of angular DA values.

3. Network Architecture and Training

As our data set is limited to about 328k samples, which is considered a small size to train
a deep learning model [16], we decided to test a simple Deep Feed Forward Neural Network
and train with the NADAM optimiser [17]. The network was developed using the TensorFlow
library [18]. Architecture and hyperparameters were optimised by random search with the Keras
Tuner framework [19]. The best model consists of four hidden layers with 1024, 512, 256 and 32
nodes, respectively. Batch normalisation and dropout (5%) were added between hidden layers
to improve performance and avoid overfitting. The loss used for the regressor is Mean Absolute
Error (MAE) function. The initial learning rate is 5 x 10™% and is halved every 5 sequential
epochs if the validation loss is not improved. We found training for 80 epochs to be sufficient
for convergence.

4. Regressor for the Angular Dynamic Aperture

4.1. Results

The MAE of the angular DA regressor is 0.64(0.65) beam o for the test (train) data set.
This suggests that the regressor is making relatively accurate predictions, with errors that
are generally small compared to the typical range of angular DA values. Although the Mean
Absolute Percentage Error (MAPE) is 8.1(8.2)% for the test (train) data set and the Absolute
Percentage Error (APE) distribution indicates that the angular DA regressor has the same
accuracy throughout the range of angular DA values, rather than being biased towards specific
values.

In addition, analysis of the angular DA scatter histogram in Fig. 2 reveals that the model
performs well for most of the data points, with a tight cluster around the diagonal line, indicating
accurate predictions. Furthermore, only 5.62% of the test data set has an APE greater than
10%. These higher errors are likely due to the limited size of the train data set and the number of
accelerator parameters, causing a non-linear relationship between the input parameters and the
angular DA values. To better understand and address these predictions, we plan to investigate
the impact of new input parameters on the accuracy of the model, and to explore potential ways
to improve the model’s performance.

4.2. Timing Performance

Various factors, such as the number of samples and accelerator parameters, can significantly
impact the training and evaluation time of a model, leading to an increase in computational
costs and memory requirements.
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Figure 2. Angular DA predicted as a function of the expected angular DA values for the test
data set.

To address this challenge, we compared timing performance using mixed precision operations
and a fixed batch size of 128 samples for four hardware architectures with our angular DA
regressor: an Apple M1 Pro [20], a NVIDIA Titan V [21], a NVIDIA A100 Tensor Core [22],
and Google TPU v2-8 [23].

We tested the Apple M1 Pro on a MacBook Pro laptop. The Titan V was accessed through
CERN workstations, utilising 48 AMD Ryzen Threadripper 2970WX CPU cores for data loading
and pre-processing tasks. The A100 was accessed via the Google Colab platform with 12 available
Intel Xeon 2.20 GHz CPU cores. Google TPU v2-8, a cloud-based accelerator optimised for deep
learning workloads, was accessed through the Google Colab platform.

The Titan V outperformed other devices in terms of I/O time (0.012 ms/batch) due to the
higher number of available cores for data loading and pre-processing tasks. On the other hand,
the Google TPU had the highest I/O time (0.092 ms/batch) due to the need to transfer data to
and from the cloud, which introduced network latency. However, the TPU outperformed other
devices in terms of training (4 ms/batch) and validation time (3 ms/batch), indicating that it is
optimised for deep learning workloads and has a low latency I/O pipeline that does not compete
for CPU resources.

Both Titan V and A100 had similar performance in training (7 ms/batch) and validation (2
ms/batch), outperforming M1 Pro (49 ms/batch for training and 9 ms/batch for validation) in
terms of training and validation time, indicating that they are better suited for large-scale ML
workloads.

Despite the relatively small data set used in this study (20 MB), future studies with larger
data sets and more accelerator parameters should consider I/O time as bottlenecks can occur
and affect training and validation times.
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5. Discussion
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Examples of angular DA reconstruction carried out by our regressor for four accelerator
configurations (available only in the test data set) are shown in Fig. 3.
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Figure 3. Angular DA regressor in the test data set.

As mentioned above, the data set used in this study is relatively small, with only 328680
instances. This may have limited the complexity of the surrogate model, as deep learning models
typically require large amounts of data to achieve their full potential [24]. Therefore, it is likely
that the predictive accuracy of the regressor will improve with larger data sets. Furthermore, the
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model accuracy could improve by including additional dynamical variables, such as the phase
advance between Interaction Points, the amplitude detuning, the linear coupling, and others.

Note also that the average inference time of the angular DA regressor for a batch size of
128 samples is approximately 1.4s using GPUs (approximately 0.12s/machine configuration),
which is significantly faster than the average 5day run time of a full simulation submission of
4800 HL-LHC accelerator configurations using the standard approach based on MAD-X and
SixTrack combined with the BOINC system [25] to submit multiple tracking jobs in parallel
(approximately 90 s/machine configuration). Therefore, the angular DA regressor is about 750
times faster than the standard approach in terms of computing time per machine configuration.
Therefore, the angular DA regressor is about 750 times faster than the standard approach in
terms of computing time per machine configuration.

As a MAPE of 8.1% could be considered high in the context of deep learning [26], it may
not completely replace traditional simulations for predicting angular DA values due to its sub-
optimal accuracy. As the physics of unstable chaotic motion is only accessible via tracking,
traditional simulations are still essential in determining whether initial conditions are chaotic.
For this reason, one could use the regressor in conjunction with tracking to reduce the number
of simulations required and ensure reliable results.

6. Conclusions

Our study explored the potential of ML techniques, specifically a DNN model, for predicting the
angular DA of circular accelerators. Although the results showed promising performance of the
model, with relatively low errors in predicting angular DA values, more research is necessary to
confirm its effectiveness in a larger and more diverse data set. Furthermore, our results indicate
that deep learning can reduce the computational cost of angular DA evaluation. This approach
could enable faster machine parameter optimisation and, in the future, perhaps even real-time
monitoring and control of beam dynamics in circular accelerators. However, tracking is still
essential to determine whether the dynamics of certain initial conditions is chaotic.
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