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In this work, we extend our previous blind GW signal estimation method1 to the
case of multiple detectors and show that, with a full use of redundancy, it gives promis-

ing results, e.g. a faster decay of fluctuations than that expected from the central limit

theorem. This method, whose design explicitly accounts for redundancy in multiple mea-
surements, considerably improves the efficiency of signal extraction in a multi-detector

network.

1. Introduction

Given that detector noise is several orders of magnitude larger than expected gravi-

tational wave (GW) signals from black hole mergers, the analysis of LIGO’s data is

challenging. This is one reason why LIGO consists of two independent detectors sep-

arated by 3000 km. It is reasonable to divide the task into three relatively distinct

parts. These include event detection, waveform extraction, and the identification

of its physical origin. Here, we will be concerned with the two final steps in this

process, focusing on black hole mergers like GW150914. Since thermal and seismic

effects lead to substantial low frequency noise and since quantum noise is dominant

at high frequencies, it is possible to reduce the effects of noise by band-pass filtering

(or equivalent operations) to a restricted frequency range e.g., 30 – 300 Hz. LIGO

extracts waveforms by comparing the data from the Livingston and Hanford de-

tectors with (suitably time-shifted) elements of a bank of templates describing the

merger of two black holes with various masses, spins and initial conditions. A sat-

isfactory level of agreement would then lead to the acceptable conclusion that the

data is not inconsistent with a black hole merger. An equally satisfactory conclu-

sion would be that, if the event is due to a black hole merger, it has the parameters

corresponding to the best-fit template. However, in our view, the far stronger con-

clusion that such agreement proves that the event actually is due to a black hole

merger with the corresponding parameters is unwarranted.
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Moreover, there are disturbing features in the noise associated with LIGO’s

events. Although this noise is complex, its two essential characteristics are clear

and unambiguous. First, LIGO noise is neither stationary nor Gaussian.2 In fact,

both stationarity and Gaussianity are implicitly assumed in the Bayesian likelihood

analysis as a diagonal approximation for the noise covariance matrices for both

the Hanford and Livingston detectors.3 Second, the LIGO “residuals” (defined as

the cleaned data minus the best-fit template) for the two detectors should not be

correlated. In fact, the residuals associated with GW150914 are strongly correlated

when shifted by the same time lag as the template itself and considerably larger than

the expected level of “accidental” correlations for LIGO data.4,5 Since the Hanford

(H) and Livingston (L) detectors are assumed to be completely independent except

for a possible GW signal, this correlation in the residuals tells us that a template-

based analysis does not provide a reliable description of the common signal seen by

the H and L detectors.

Template-based analyses have a strong tendency to be self-fulfilling, this alone

should be sufficient to emphasize the importance of maintaining a clean separation

between the extraction of a signal and attempts to divine its physical origin.

In order to make optimal use of the independence of the H and L detectors

and to quantify the uncertainties in previously extracted waveforms, we have con-

structed a template-free method that includes minimization of residual correlations

in order to determine a “best common signal” for GW150914.1 Since the residual

for an individual detector is a complicated function of time (or frequency), there

are many ways to realize the desired absence of correlations. This means that our

algorithm yields a family of best common signals that enable us to estimate the

probability, p, that the best common signal is a black hole merger template. For

GW150914, we find p = 0.008. It is unclear whether this small probability is indica-

tive of inadequacies in the gravitational wave templates, imperfect knowledge of the

acceptance of the instruments, or of a completely different physical explanation —

either astrophysical or terrestrial — of this event. As the amplitude of the signal

becomes smaller with respect to the noise level, the relative width of the envelope

of best common solutions obtained by this method grows and eventually covers the

line of zero signal. The signal to noise ratio (SNR) for other possible black hole

merger events is smaller than that found for GW150914, and we find that all of

these subsequent events are consistent with a best common signal of precisely zero.

The fact that LIGO does not make use of the only relevant information available

about noise properties (i.e., the fact that L and H residuals must be uncorrelated)

also suggests that their analysis does not optimally exploit the benefits of redun-

dancy that should accrue from two independent measurements of the same signal.

Since the power of redundancy becomes clearer as the degree of redundancy is in-

creased, our primary concern in this paper is to extend the results of Ref. 1 to the

case of an arbitrary number of GW detectors. We emphasize that this approach

is not merely a pedagogic exercise. There is considerable current discussion about

adding additional detectors to the GW network. Since the effects an additional
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detector can have on the accuracy of signal attraction depends sensitively on the

degree to which redundancy is exploited, we believe that the present work can be of

practical relevance in deciding the extent to which such an investment is justified.

We begin in section 2 by presenting simple schematic models that illustrate the

dramatic differences found when analyzing multi-detector events with or without

consideration of the effects of redundancy. These models will provide a gauge of

the extent to which redundancy is realized in practice. The extension of our earlier

model for the blind estimation of the common signal to the case of many detectors

will be described in section 3 along with the results of realistic simulations. Finally,

section 4 contains a discussion based on these results.

2. The value of redundancy and its price

We all have an intuitive understanding of the important role that redundancy can

play in the accurate determination of a signal transmitted in the presence of noise.

When told an important telephone number in a noisy environment, our immediate

reaction is to ask for it to be repeated. Hearing the same number twice greatly

increases our confidence that it has been transmitted correctly. Clearly, redun-

dancy is equally important in a scientific context, and it was surely one of the

primary reasons that LIGO wished to have multiple GW detectors. In the analysis

of GW170814, LIGO makes use of the Virgo detector as a consistency check for

the results from Hanford and Livingston.6 The additional information from Virgo

improves the false-alarm rate compared to the two detector case. In general, the

SNR of the LIGO/Virgo network is defined as a sum in quadrature of the individual

detector SNRs, i.e.7

ρ2network =

M∑
i=1

ρ2i . (1)

The precondition for this definition is ideal detector noise uncorrelated between

detectors, with off-diagonal terms of the noise covariance matrix neglected. Fur-

thermore, the addition of detector SNRs in this way fails to properly exploit redun-

dancy, because the network SNR can be dominated by the SNR of a single detector.

A high network SNR does not necessarily imply agreement between detectors.

Our aim in this section is to provide a better understanding of both the power

of redundancy and the price that must be paid to obtain it.

We first consider a schematic but instructive example of redundancy in which

there are two independent measurements of a common signal consisting of N pieces

of data. In the absence of noise, the two measured signals will be identical to one

another and to the true signal. Now, simulate noise by assuming that there is a

probability, p, that any given piece of genuine data, di, has been replaced by noise

ni (with ni 6= di). The probability that both of the measured signals are free of

errors and therefore correct is evidently (1 − p)2N , which vanishes exponentially

as the signal becomes more complex (i.e., N → ∞). It is necessary, however, to
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consider the possibility of false positives, for which the signals are not correct in

spite of being identical. To investigate this question, assume that the probability

that two randomly drawn pieces of noise are identical is q. (E.g., If the ni are

randomly drawn digits between 0 and 9, q = 1/9.) The probability that the two

signals will be identical (either genuinely or accidentally) is

N∑
m=0

(1− p)2(N−m)p2mqm
N !

(N −m)!m!
=
[
(1− p)2 + p2q

]N
. (2)

Thus, the probability that identical results of the two measurements will actually

be correct is [
(1− p)2

(1− p)2 + p2q

]N
.

The extension of this problem to the case where there are M detectors is straight-

forward. In this case, all M detectors see the same event. The probability that

all of the measured signals are free of errors (and therefore measured correctly)

is evidently (1 − p)MN , which clearly decreases exponentially with increasing M .

The generalization of Eq. 2 describing the probability that these M signals will be

identical (but not necessarily correct) then becomes

P =
[
(1− p)M + pMqM−1

]N
, (3)

and thus the probability that identical results for all M measurements will actually

be the correct signal is

P =

[
(1− p)M

(1− p)M + pMqM−1

]N
. (4)

To illustrate this result, consider the transmission of an 8-digit telephone number

in a noisy environment. For this case, assume N = 8, p = 1/4, and q = 1/9 and

consider the cases of M = 2, 3, and 4 detectors. The probability that identical (but

not necessarily correct) results will be obtained for all M measurements is approx-

imately 0.01, 0.001, and 0.0001, respectively. The probabilities that these identical

results will be false are 0.0935, 0.00365, and 0.000135, respectively. The exponential

decrease of this error is evident and emphasizes the dramatic improvement in accu-

racy that results from M identical measurements of the same signal. Unfortunately,

it also reminds us that the probability of actually obtaining M identical signals also

decreases exponentially with M .

The preceding example might seem to indicate that redundant measurement

of a given signal will lead to signal detection and extraction with a confidence

that grows to 1 exponentially with the redundancy M . We now wish to consider

a second example to illustrate that this is not necessarily the case. To this end,

consider M independent measurements each of which for simplicity consists of a

common signal, s, and an independent realization of N pieces of random noise.
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The data obtained at detector k is thus d(k) = s + n(k).a We wish to extract s

from this data without making unwarranted assumptions about the noise such as

stationarity and/or Gaussianity. Given this strong constraint, the only assumption

that can be made is that the measurements in the various detectors are genuinely

independent and that there are therefore no correlations in their noise realizations

To be concrete, we will imagine that cross-correlations are given as the Pearson

cross-correlation to be adopted below.b

In these circumstances, it might seem natural to approximate the best common

signal as the average record

S =
1

M

M∑
k=1

d(k) = s+
1

M

M∑
k=1

r(k) . (5)

Given this guess, we can re-express the individual data strings as d(k) = S + ρ(k)

where the residuals are given as

ρ(k) =
1

M

(M − 1)r(k) −
∑
j 6=k

r(j)

 . (6)

For sufficiently large N , it is reasonable to make the approximation that the cross-

correlators C(s, r(k)) = 0 for all k and C(r(j), r(k)) = 0 for all j 6= k. This leads to

the result that

C(s,S) =
1√

1 + 1/M
≈ 1− 1

2M
and C(ρ(j), ρ(k)) = − 1

M − 1
. (7)

It is true that S converges to the exact result s and that the correlations between

the residuals, ρ(k), vanish as expected in the limit of large M . Unfortunately, these

convergence rates, which are an elementary consequence of the central limit theorem,

are far too slow to be useful. The fact that all of the M(M−1)/2 correlators between

the residuals have the same value of −1/(M − 1) is also unphysical. Thus, the

assumption that the signal can be approximated by Eq. 5 is unjustified. For the case

M = 2, the cross-correlator C(s,S) has the unsatisfactorily small value of
√

2/3,

and there is a perfect anti-correlation between the residuals with C(ρ1, ρ2) = −1.

As noted in our earlier work4,8, similarly large and unphysical correlations in the

residuals determined by LIGO for GW1509149 suggest the existence of problems

with the corresponding GW signal.c

aNote that this is the model used for Bayesian analysis of the LIGO events.3
bFor two vector records of length N , we first shift the records so that each has average value zero
and rescale them so that the scalar product of each vector with itself is 1. The Pearson cross-

correlation is then the scalar product of these shifted and rescaled vectors and will have a value

between −1 and +1.
cThe presence of correlations in the Hanford and Livingston residuals determined in original

template-based analysis of GW150914 raises questions about this analysis. It is important for
others to confirm the existence of these correlations. This can be done using the publicly available

data, as described on our webpage:

http://www.nbi.ku.dk/gravitational-waves/residual correlations notebook.html
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The two examples presented in this section can serve as a measure of the extent

to which the benefits of redundancy have been realized by a given method of signal

extraction. When redundancy is not exploited, we find that the extracted signal

converges to the true signal with an error that vanishes slowly (i.e., like 1/
√
M)

as the degree of redundancy increases. In contrast, a maximal implementation of

redundancy leads to an exponentially decreasing error rate as a function of M .

This test will be applied in practice in the following sections of this paper. It

should be noted, however, that this increased confidence level has a relatively high

price. As we have seen, the probability that an event will pass the redundancy test

also vanishes exponentially with M . Thus, if event rates are too low, it may be

impossible to realize fully the benefits of redundancy. We stress that the examples

here are highly schematic and are intended to illustrate the general fact that the

benefit of multiple independent measurements depends sensitively on the way these

measurements are analyzed. They do not tell us to how the benefits of redundancy

can be maximally realized in the case of GW data. We consider one such approach

in the following section.

3. Application of the blind estimation method to multiple GW

detectors

3.1. Basis of the blind estimation method: cross-correlation and

Fisher transformation

We briefly review our previous work on blind estimation.1 The strain signal detected

by LIGO in the i-th detector is assumed to be

Xi(t) = ai · h(t,∆τi,∆θi) +Ni(t), (8)

where Xi(t) is the total strain data, Ni(t) is the noise, and ai · h(t,∆τi,∆θi) is

the gravitational wave signal with given amplitude ai, time lag ∆τi and phase shift

∆θi, which contain both contributions from projection and detector acceptance. As

mentioned in Ref. 1, we pre-match detector data to roughly remove the contribu-

tions of ∆τi and ∆θi (this can be done precisely with, e.g., an EM-counterpart),

and then the equation becomes

Xi(t) = ai · h(t) +Ni(t). (9)

For a blind estimation, we also need to further derive the residual noise, for which

we consider two data sets X1 and X2 of length N (e.g. cleaned strain data from

two independent detectors) which contain a common signal A. The amplitude of A

could potentially be different in each detector, either due to projection or detector

acceptances. For convenience, we assume that X1, X2, and A have been shifted to

have zero average values and normalized to have variance unity. Then the Pearson

cross-correlation coefficient of two such vectors, CX1 X2
, is simply the inner product

SX1 X2 given by
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SX1 X2
=

1

N − 1

N∑
k=1

X1(k) ·X2(k). (10)

The residuals are defined as

Ri = Xi −A ·
SAXi

SAA
= Xi −A · SAXi

. (11)

As mentioned above, the amplitude of the term A (i.e. SAX/SAA) can be different

for two decectors. By construction, the correlations of both R1 and R2 with A are

zero.

The criterion for determining the blind estimate of A is to maximize the CAXi

while simultaneously minimizing the cross-correlation between the residuals CR1R2 .

Note that the residuals R1 and R2 are not automatically normalized.

For familiarity and simplicity, we obtain approximate Gaussianity of the result-

ing correlations by using the Fisher transformation:10

ZXY =
1

2
log

(
1 + CXY

1− CXY

)
. (12)

3.2. Extension of the likelihood approach

In our previous work,1 a blind GW-template estimation was done by considering

the likelihood that a given initial guess, A, is the common signal observed by two

detectors (X1 and X2) as

log(L) = Z2
AX1

+ Z2
AX2
− kZ2

R1R2
, (13)

where ZAX1 and ZAX2 represent the similarity between A and the detector data as

measured by the Pearson cross correlation, ZR1R2
represents the similarity between

the residuals from the two detectors, and k is a constant factor determining the

relative weight of the two contributions. The likelihood function is designed to be

maximized at higher Z2
AX1

and Z2
AX2

and lower Z2
R1R2

. The initial guess A is then

improved by a random walk approach until the likelihood reaches an oscillatory

region (see Fig. 2 of Ref. 1). The oscillatory region is used to estimate the range of

fluctuation for each pixel as shown in Figs. 4 and 5 of Ref. 1.

The above method was initially designed for the GW150914 event for which

there were only two detectors in the network. A natural extension of the method is

to apply it to multiple detectors, so the likelihood function becomes:

log(L) =

M∑
i=1

(ZAXi
)2 − k

M−1∑
i=1

M∑
j=i+1

ZRiRj
, (14)

where M is the number of detectors, Xi is the data from the i-th detector, A is

the blind estimate of the signal, and Ri is the residual after removing this estimate

from the i-th detector. With this modified likelihood function, the blind estimation

method presented in Ref. 1 can be extended to the case of multiple detectors.
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Also note that this kind of likelihood approach is different from a likelihood

approach that assumes either a known covariance matrix or a known theoretical

model, or even both. Here, neither the covariance matrix nor the theoretical model

is assumed, and one starts only from basic ideas about “correlated signals and un-

correlated noise”. Thus the likelihood approach here is totally blind, i.e. it makes

minimal assumptions. This is unlike template-free methods currently in use by

LIGO, such as BayesWave and oLIB, which begin with the assumption of a sta-

tionary Gaussian noise model.11,12 Finally, we note that if there is any reliable

additional information, such as a known correlation between two of the detectors,

or an especially low SNR in one of the detectors, then such information can also be

added to Eq. 14 by changing the weights of the corresponding terms.

3.3. Test and results

To test the performance of the blind estimation method for the case of multiple de-

tectors, we run a simulation as follows: We select the GW150914 waveform template

as the input “real signal”, and inject it into genuine strain data taken 2, 3, . . . ,M+1

seconds after the GW150914 event to simulate the data from multiple detectors.

Here, we are mainly interested in the trend of how the error of estimation decreases

with increasing number of detectors. Thus, for convenience, we assume identical

projections and similar noise levels for all detectors (see also Sec 3.1 of Ref. 1).

In practice, when multiple detectors have different projections and signal-to-noise

ratios, the overall performance will become worse. For simplicity, we will neglect

these concerns here.

For comparison, we adopt a reference estimator of the common signal that is

simply the average of the data from the individual detectors and further assume

that the detector noise is Gaussian. The estimated error will then scale like 1/
√
M .

We shall compare the performance of our method with this reference.

As mentioned above, the range of fluctuations is an immediate result from the

oscillations of the likelihood function caused by chance correlations. In the sim-

ulation here, we select the 10th and 90th percentiles of the fluctuation range and

use their difference as a measure of the range of fluctuation for each pixel. This

quantity is averaged over the entire time range of the event as the final estimator

of the uncertainty of blind estimation:

EM = 〈S90(t)− S10(t)〉M . (15)

The result of the simulation described above is given in Fig. 1 where it is apparent

that the blind estimation (black) performs better than the 1/
√
M reference (red).

This result is not surprising because the 1/
√
M reference is obtained by simple

averaging without consideration of the residual correlations. In other words, an

estimation method that considers both the correlations between signal and data

(first term in Eq. 14) and the correlations between residuals (second term in Eq. 14)

will certainly give better results than simple averaging.
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Fig. 1. The range of fluctuation defined by Eq. 15. The horizontal axis shows the number of
detectors, and the vertical axis shows the estimator of uncertainty, EM , calculated using the

convention that strain data is shifted to have zero mean and normalized to have variance unity.
The black line is the performance of the multi-detector blind estimation method, and the red line

is the expectation of the central limit theorem that scales as 1/
√
M given by simple averaging,

which has been normalized to the black line at M = 3.

We also show the input signal and the range of error obtained from blind es-

timations for the extreme example of 32 detectors in Fig. 2. We include, for test

purporses, a slight variation of the above method in which the first term in Eq. 14,

∝ Z2
AXi

, is dropped. One can see that even without this seemingly essential term,

one still gets unbiased estimations of the “real signal”. Only the error of estimation

is larger.

The error of the estimated common signal can also be evaluated by comparison

to the real signal h(t). Three cases are considered: the simple average of multiple

detectors, B1(t); the average of the blind estimations, B2(t); and the average of

blind estimations calculated only using the residual correlation terms in Eq. 14,

B3(t). For each of the three cases, we determine the deviation from the real signal

h(t) as

δ1 = B1(t)− h(t) (16)

δ2 = B2(t)− h(t)

δ3 = B3(t)− h(t),

and calculate the standard deviations as σ1, σ2 and σ3 respectively. For a given

number of detectors, we calculate two ratios

r12 = σ1/σ2 (17)

r13 = σ1/σ3,

which are defined such that larger values correspond to better performance than

simply averaging. Our blind estimation method is expected to give smaller uncer-

tainties than simple averaging, thus we should see r12 > 1. Larger values of r12
indicate better results given by the blind estimation. On the other hand, we expect
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Fig. 2. The real input template (black) and the 10%–90% range of uncertainty (see Eq. 15) given

by the blind estimation for the case of 32 detectors. Upper: using the whole likelihood, as in
Eq. 14. Lower: same as the upper panels but only the residual terms are used. Left: the full time

range. Right: only the second half.

that a blind estimation only using the correlations of the residuals is worse than

simple averaging, but it should still be a reasonable estimation, thus r13 should be

less than 1 but not much lower.

In Fig. 3, we show r12 and r13 as functions of the number of detectors. The

ratio r12 lies around 1.2–1.4, indicating that simple averaging gives a 20%–40%

larger error than blind estimation. Also, r13 is about 0.8–0.9, indicating that, even

from only regarding the residual–residual terms of the likelihood, one can still get a

reasonably good estimation of the real input signal. Therefore, Figs. 2 and 3 suggest

that to only compare template to data and ignore residuals is an inefficient use of

experimental resources. We also see from Fig. 3 that, if the number of detectors is

less than 10, then the blind estimation method is significantly better than simple

averaging. With increasingM , however, the improvement of the method slows. This

is possibly due to the finite record length. Since in the near future, the number of

GW detectors will not exceed 10, a blind estimation method such as this one is

especially important.

 T
he

 F
if

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
a0

2:
81

08
:5

0b
f:

e6
b8

:e
07

b:
ca

ba
:6

8b
d:

29
6 

on
 0

1/
12

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



April 18, 2022 13:25 WSPC Proceedings - 9.61in x 6.69in ch06-main page 81

81

Fig. 3. The ratios r12 (black) and r13 (red) as functions of the number of detectors. r12 > 1
means our blind estimation gives lower estimation error than a simple averaging, while r13 close to

1 means even without using the template–data term, one can still get a reasonably good estimation
of the potential common signal using the same blind estimation method.

4. Discussions

The aim of the present paper is two-fold. On the one hand, an exploration of the

role of redundancy in the analysis of LIGO data can help better to understand the

reliability of events already observed. On the other, it can offer some guidance

regarding the most fruitful way to analyze data in the coming multi-detector era of

gravitational wave science. It is our firm conviction that template-based analysis

alone is in principle circular and thus fundamentally flawed. Clearly, a bank that

only contains templates for black hole mergers can never detect anything other than

black hole mergers. The best that one can hope for is to claim that an event is not

inconsistent with black hole merger and then make the best case possible that other

possible origins — terrestrial as well as astrophysical — can be excluded. Rather, we

are convinced that data analysis should begin with the template-free extraction of a

best common signal that can later be compared with specific physical models. This

conviction led to the development of the blind signal estimation initially presented

in Ref. 1 and extended here. This method enabled us to determine the probability

that the best common signal could be described by a gravitational wave template.

Unfortunately, this probability is remarkably low. The probability that the common

signal is LIGO’s original published template was found to be 4×10−6. The best GW

template was found to have substantially higher masses (38 and 48 solar masses) and

high spins (0.96 and −0.85, respectively). While better than the published template,

the probability that it was the best common signal still had the unacceptably small

value of 0.008. It should be noted that GW150914 is by far the strongest event seen.

A similar template-free analysis of all other putative gravitational wave events is

consistent with a common signal of zero.

Gravitational wave signals are characteristically much smaller than measured

data indicating that the noise is much stronger than the signal. Thus, a reliable
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blind analysis of GW data requires detailed knowledge of the origin and nature

of detector noise. Unfortunately, it is generally acknowledged that this noise is

neither Gaussian nor stationary. In order to make a reliable detection of a GW

signal, it is essential that there be no correlation between the residuals observed at

individual detectors. This obvious requirement lies at the heart of the justification

for incurring the expense of performing redundant measurements of a given signal

with two or more independent detectors. We have thus provided simple schematic

examples to show that the accuracy of detection can be improved exponentially with

an increasing degree of redundancy. This stands in sharp contrast to the far slower

convergence expected from a simple average of the measured signals. These results

are supported by simulations based on a realistic gravitational wave form and real

LIGO noise data. These results indicate the important role played by the residual

correlations in the data analysis. Indeed, it is possible to obtain a reasonably good

estimation of the injected signal by using only these terms. In summary, these

results provide a strong reminder of the importance of exploiting redundancy in

the analysis of both present and future gravitational wave data and suggest that

this can be accomplished by including the suppresion of residual correlations in the

construction of a satisfactory likelihood function.
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