

Derivation of a novel formula for α -decay half-life

Basudeb Sahu and Swagatika Bhoi*

Department of Physics, College of Engineering and Technology, Bhubaneswar-751003, INDIA and
* Department of Physics, Sambalpur University, Burla-768019, INDIA

Based on the basic principle of quantal decay of particle, we derive a formula of logarithm of decay half-life of an alpha particle emitting from a radioactive nucleus. The process of decay is understood as the transition of the particle from an isolated quasi-bound state to a scattering state. In this picture, the decay width is a resonance width in the system consisting of an α -cluster and the residual nucleus. The general formula of the width can be expressed by [1]

$$\Gamma = 2\pi | \langle \psi | H - H_0 | \phi \rangle |^2 \quad (1)$$

Where ψ is a bound initial state for the decaying nucleus, and ϕ is a final scattering state for the α +daughter system. The Hamiltonians H_0 and H are associated with ϕ and ψ , respectively.

The final state wave function ϕ is expressed as

$$\phi_\ell(r) = \sqrt{\frac{2\mu}{\pi\hbar^2 k}} \frac{F_\ell}{r}, \text{ where } k = \sqrt{2\mu E}/\hbar, \mu \text{ is the reduced mass of the } \alpha\text{-daughter system, and } F_\ell \text{ is the regular Coulomb wave function.}$$

The initial state wave function describes the quasi-bound state of α cluster in the decaying nucleus. Its radial wave function, $\psi_{n\ell}(r) = \frac{u_{n\ell}}{r}$, is achieved through exact solution of the Schrödinger equation with an effective potential which is a combination of nuclear potential and the electrostatic potential in the $\ell=0$ case [2].

The α cluster in the decaying nucleus is governed by a nuclear potential $V_N(r)$ and a Coulomb potential $V_C(r)$ while the α particle outside the nucleus by the point-charge Coulomb potential $V_C^P(r) = Z_1 Z_2 e^2 / r$. $H - H_0$

is considered as the difference between the potentials in the two situations, that is,

$$H - H_0 = (V_N(r) + V_C(r)) - V_C^P(r) = V_{eff}(r) - V_C^P(r). \quad (2)$$

Using the exact wave function $u_{n\ell}(r)$ for $\ell=0$ in the interior region [2], the expression (1) of the decay width reduces to

$$\Gamma = \frac{4\mu}{\hbar^2 k} \frac{|\int_0^R F_\ell(V_{eff}(r) - V_C^P(r)) u_{n\ell}(r) dr|^2}{\int_0^R |u_{n\ell}(r)|^2 dr}. \quad (3)$$

Then the α -decay half-life is related to the decay width by the well known relationship $T = \hbar \ln 2 / \Gamma$. Using Γ given by (3) in it, the half-life T is expressed as

$$T = \frac{0.693 \hbar^3 k}{4\mu} \frac{1}{J}, \quad (4)$$

$$J = \frac{|\int_0^R F_\ell(V_{eff}(r) - V_C^P(r)) u_{n\ell}(r) dr|^2}{\int_0^R |u_{n\ell}(r)|^2 dr}. \quad (5)$$

For a typical α +nucleus system with its characteristic energy Q -value, the values of Sommerfeld parameter η and parameter $\rho = kR$ are such that the product $\eta\rho \leq 50$ and $\rho \approx 10$. In this situation, one can express the regular Coulomb wave function $F_\ell(r)$ by using power series expansion and write as

$$F_\ell^{ps}(r) = C_\ell \rho^{\ell+1} B, \quad (6)$$

$$(n+1)(n+2\ell+2)B_{n+1} = 2\eta\rho B_n - \rho^2 B_{n-1}, \quad (7)$$

$B_0 = 1$, $B_1 = \frac{\eta\rho}{(\ell+1)}$, $B = \sum_j B_j$,

$$C_\ell^2 = \frac{P_\ell(\eta)}{2\eta} \frac{C_0^2(\eta)}{(2\ell+1)}, \quad (8)$$

*Electronic address: bd_sahu@yahoo.com

$$P_\ell(\eta) = \frac{2\eta(1+\eta^2)(4+\eta^2)\dots(\ell^2+\eta^2)2^{2\ell}}{(2\ell+1)[(2\ell)!]^2}. \quad (9)$$

In particular, for $\ell=0$, $P_0(\eta) = 2\eta$ and

$$C_0^2(\eta) = 2\pi\eta \{ \exp(2\pi\eta) - 1 \}^{-1}, \quad (10)$$

$$F_0^{ps}(r) = C_0 \rho \tilde{B}, \quad (11)$$

where \tilde{B} is equal to B derived through expression (7) taking $\ell=0$.

On comparison, we find the exact Coulomb wave function for $\ell = 0$, $F_0(r) = x_m F_0^{ps}(r)$, with $x_m \approx 70$.

The integral J given by expression (5) can be equated to the value of $F_0(r)$ at a point $r=R \leq R_B$ with some multiplying factor to account for the contributions to the integral from other regions within $0 < r < R$ such that $J = |c_f F_0(R)|^2 = |c_f x_m F_0^{ps}(R)|^2$, for $\ell=0$. The value of $c_f (= J/[x_m F_0^{ps}(R)]^2)$ for a typical α -nucleus system is found to be of the order of 0.22.

Using this simplified result for J and the expression (11) for $F_0^{ps}(R)$ with $C_0^2(\eta) \approx \frac{2\pi\eta}{\exp(2\pi\eta)}$ due to large value of $2\pi\eta$, the expression (4) for T reduces to

$$T = 0.693\hbar \frac{\exp(2\pi\eta)}{f_m^2}, \quad (12)$$

where

$$f_m = \sqrt{4\mu/\hbar^2 k} \sqrt{2\pi\eta} c_f x_m \rho \tilde{B}. \quad (13)$$

Taking logarithm of both sides and writing η , ρ and f_m explicitly in terms of Z_1 , Z_2 , A_1 , A_2 , and Q -value, we get

$$\log T = a \chi + c + d, \quad (14)$$

where $a = 1.4398\pi Z_1 Z_2 \sqrt{2(931.5)}/197.329$, $\chi = \sqrt{\frac{A_1 A_2}{(A_1 + A_2) Q}}$, $c = -2\log D$, $d = -2\log S$, $D = \frac{2 \times 931.5 \times \sqrt{1.4398 \times 2\pi}}{(197.329)^2 \sqrt{0.693 \times 197.329 \times 0.333 \times 10^{-23}}}$, and $S = c_f x_m R \tilde{B} \left(\frac{A_1 A_2 \sqrt{Z_1 Z_2}}{A_1 + A_2} \right)$. In our calculation for the potential we have taken $R=r_0(A_1^{0.3333} + A_2^{0.3333}) + 2.72$ with $r_0=0.97$

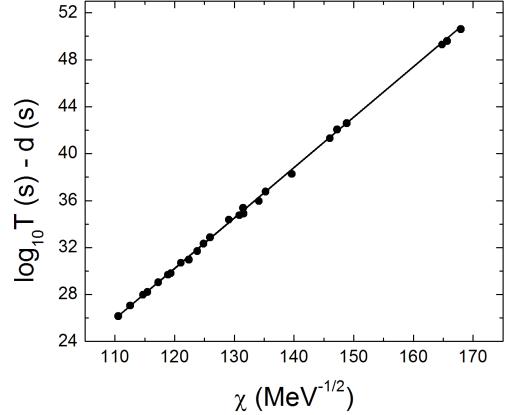


FIG. 1: Plot of decay law (14) for α -decays in $\ell = 0$ state from decaying nuclei with $Z=60-74$. The straight line is given as $a\chi + c$ for $(\log_{10} T - d)$ of (14).

fm that specifies the radial position of the Coulomb barrier, $c_f=0.22$ and $x_m=70$.

As the parameter d depends on energy Q through the quantity \tilde{B} , the variation of $\log T$ as function of χ does not represent a straight line but the quantity $(\log T - d)$ as a function χ does show a linear variation.

We consider a set of naturally existing nuclei for which experimental data of Q and α decay half-lives are available. In Fig. 1, the results from experiments $\log_{10} T^{(expt)} - d$ [3] and our calculated values $\log_{10} T^{(calt)} - d$ are plotted as a function of the quantity χ defined in (14). It is clearly seen that the experimental data (solid dots) which align themselves in a linear path are explained by our calculated results in the form of a perfect straight line remarkably well.

References

- [1] R G Lovas et al., *Phys. Rep.* **294** 281 (1998).
- [2] B Sahu, *Phys. Rev. C* **78** 044608 (2008), *Phys. Rev. C* **84** 037607 (2011), *Phys. Rev. C* **85** 057601 (2012).
- [3] Y Ren and Z Ren, *Phys. Rev. C* **85** 044608 (2012).