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Abstract
One of the Grand Challenges in beam physics is devel-

opment of virtual particle accelerators for beam prediction.
Virtual accelerators rely on efficient and effective methodolo-
gies grounded in theory, simulation, and experiment. We ad-
dress one sample methodology, extending the understanding
and the control of deleterious effects, for example, emittance
growth. We employ the application of the Sparse Identifica-
tion of Nonlinear Dynamical systems algorithm—previously
presented at NAPAC’22 [1] and IPAC’23 [2]—to identify
emittance growth dynamics caused by nonuniform, empiri-
cal distributions in phase space in a linear, uniform focusing
channel. To gain further understanding of the evolution
of emittance growth as the beam’s distribution approaches
steady state, we compare our results to theoretical predic-
tions describing the final state emittance growth due to col-
lective and N-body mode interaction of space charge nonuni-
formities as a function of free-energy and space-charge in-
tensity.

MOTIVATION
Nagaitsev et al. [3] have enumerated four Grand Chal-

lenges enabling future Department of Energy (DOE) High
Energy Physics (HEP) programs. Grand Challenge #4 Beam
Prediction poses the question: "How do we develop predic-
tive virtual particle accelerators"?

In our prior work [1, 2] we operated underneath the um-
brella of this Grand Challenge and were able to elucidate
analytic expressions governing beam centroid evolution in
an electron ring and moment deviations in a flat to round
setup. Our aim is to speed up commissioning and design
studies of accelerators by uncovering underlying physics in
virtual and real accelerators. Our approach was to apply
an existing method from the data-driven, nonlinear dynam-
ics community called Sparse Identification of Nonlinear
Dynamics (SINDy) [4, 5] to uncover physics in problems
that can’t be solved analytically.

In our current work, we are studying the modal dynamics
of the eigenfunctions for a nonuniform beam injected into
uniform focusing channel. This work is building on work
done by Gluckstern who derived the eigenfunctions to the
linearized Boltmann and Poisson equation [6], Lund’s work
in warm fluid equilibria which also examined and enumer-
ated Gluckstern’s eigenfunctions [7]. In addition, to this
scholarship, other work in a similar vein has been done by
Hofmann [8, 9], Lund [10–12], and Carlsten [13]. This work
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is also motivated by the Fermi-Pasta-Ulam-Tsingou prob-
lem [14] that examined ergodicty and modal interaction in a
chain of coupled, nonlinear oscillators. The beam dynamics
present within this paper are somewhat similar, as in as we
turn up the nonlinear interaction (1/𝑟2) between particles
by increasing the space charge the nonlinear particle inter-
action increases. Key differences are that their oscillators
interacted only with nearest neighbors and couldn’t force
themselves past each other. Our “oscillators" are all the par-
ticles in the beam and our modes are not a Fourier transform
of the motion of all the particles.

APPROACH
Our approach is to inject a matched beam into a uniform

focusing channel—see Fig. 1(a)—in a first principle simula-
tion (Warp [15]) initialized with one of three initial velocity
distributions with(out) a configuration space (𝑥, 𝑦) pertur-
bation to observe modal dynamics. The characteristic axial
length was set to 1.0 such that calculated phase advances
were calculated per axial unit length.

These simulations had 4 million macroparticles, trans-
verse simulation resolution of 𝑁𝑥 = 𝑁𝑦 = 512, a pipe radius
bounding the simulation of 𝑟pipe = 1.3 cm, and axial step
size 𝑑𝑧 of 1 cm. These simulations were convergence tested
in both the axial step size resolution and the transverse res-
olution. An initial beam size of 2.5 mm was injected into
the uniform focusing channel whose electric field gradi-
ent 𝜕𝐸𝑟/𝜕𝑟 = 𝑘𝐸 was set to an initial value 30.45 kV/m2

for a zero current simulation. The dimensionless variable
𝑟 = 𝑟/𝑟𝑏 is used for plotting purposes. This potential gives
rise to a linear restoring force, 𝐹 = −𝑞𝑘𝐸𝑟 direction indi-
cated by the green arrows, inducing simple harmonic motion
of a single (or 𝑁 non interacting) charged particle interacting
with this potential. We increased the electric field gradient,
increasing the undepressed phase advance per axial unit
length 𝜎0, in higher current simulations to keep the same
value for depressed phase advance per axial unit length 𝜎.

Three candidate 𝑓0 (𝑣), Fig. 1(b), (KV, Parabolic [PL],
and Semigaussian [SG]) were selected based on them be-
ing stationary solutions to the Boltzmann equation (KV), a
warm fluid equations (PL) [7], or neither (SG) to investigate
thermalization timescales and dynamics.

To match the beam we estimated a beam envelope from
the asymmetric beam envelope equation

𝑅′′ + 𝑞

𝑚𝛾3𝛽2𝑐2 𝑘𝐸︸          ︷︷          ︸
𝜎2

0 focusing

𝑅 − 𝐾

𝑅
− 𝜀2

𝑅3︸   ︷︷   ︸
defocusing

= 0 (1)
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Figure 1: (a) Electrostatic potential 𝑉 (𝑟), blue line, that the
beam interacts with in the uniform focusing channel. (b)
Initial velocity distributions used in simulation: blue solid
is KV; yellow dashed is the PL distribution; and the green
dotted is the SG distribution.

with 𝑅 being twice the statistical root mean square (rms)
horizontal/vertical beam size, 𝑅 = 2𝑥rms, 𝑞 particle charge,
𝛾 the relativistic factor, 𝛽 the dimensionless beam velocity
𝛽 = 𝑣/𝑐, 𝑐 the speed of light, 𝑚 the particle mass, 𝐾 the
beam perveance, 𝜀 the beam’s rms total emittance, and 𝜎0
the undepressed phase advance per axial unit length. An
envelope code was iterated to actually obtain a matched
beam radius.

Table 1 shows a table of simulations performed with
various amounts of space charge. As the space charge is
increased the nonlinear interaction between particles in
the beam increases. Case (a) simulations are emittance
dominated simulations with not nonlinear interaction be-
tween particles in the beam, while case (d) simulations are
space charge dominated beams. The intensity parameter
𝜒 = 1 − 𝜎2/𝜎2

0 [16] is a dimensionless measure of how
much space charge dominates beam dynamics. For 𝜒 = 0
the beam is emittance dominated, while for 𝜒 → 1 beams
become space charge dominated.

Table 1: Simulation Cases

Case 𝑘𝐸 [kV/m2] I [mA] 𝜎/𝜎0 𝜒

(a) 30.45 0.0 1.00 0.0
(b) 35.37 0.1 0.92 0.13
(c) 55.05 0.5 0.74 0.44
(d) 276.5 5.0 0.33 0.88

Beam Eigenfunctions
The linearized, axisymetric Boltmann and Poisson equa-

tions may be shown to have eigenfunctions for the particle
number density 𝑛(𝑟) that are composed of Legendre Poly-
nomials [6, 7]. The particle number density 𝑛(𝑟) can be
decomposed into the following form

𝑛(𝑟) =
∑︁

𝑐𝑛𝑃𝑛

(
1 − 2 (𝑟/𝑟𝑏)2

)
(2)

with 𝑃𝑛 being the 𝑛’th order Legendre polynomials whose ar-
gument has been remapped from 𝑥 ∈ [−1, 1] to 𝑟 ∈ [𝑟𝑏, 0.0]

where 𝑟𝑏 is the beam edge1, 𝑐𝑛 is the modal amplitude, and
𝑛(𝑟) = 𝑁 (𝑟)/𝑟 where 𝑁 (𝑟) is the physical particle number
at that radial location in the beam. In this paper we study the
modal amplitude dynamics, 𝑐𝑛 (𝑧), of these first 6 modes.

The coefficients 𝑐𝑛 of these eigenfunctions are evaluated
from

𝑐𝑛 =
2𝑛 + 1

2

∫ 𝑟𝑏

0
𝑑𝑟 𝑤(𝑟) 𝑃𝑛

[
1 − 2

(
𝑟

𝑟𝑏

)2
]
𝑛(𝑟) (3)

with 𝑛 being mode order, 𝑤(𝑟) = 4𝑟/𝑟2
𝑏

the orthogonality
weighting function for 𝑃𝑛, and 𝑛(𝑟) the particle number
density.

Candidate Perturbations
We examined five different candidate perturbations 𝛿𝑛 in

Fig. 2(a): a heaviside function 𝜃 [(1−𝑟)/10], an offset, nega-
tive parabolic 1−𝑟2, an offset, positive parabolic, a Gaussian
𝑒−10𝑟2 , and a Maxwell-Boltzmann 10𝑟2𝑒−10𝑟2 . We chose the
Gaussian 𝛿𝑛 as it had the highest fidelity reconstructed with
the proposed Gluckstern [6, 7] eigenfunctions, see Fig. 2(b).
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Figure 2: (a) candidate perturbations 𝛿𝑛(𝑟). The solid blue
line is 𝜃 [(1 − 𝑟) /10], the dashed yellow is 1 − 𝑟2, dot-
ted green 𝑟2 − 1, red dot-dashed 𝑒−10𝑟2 , and thick purple
10𝑟2𝑒−10𝑟2 . The horizontal axis is dimensionless beam ra-
dius and the vertical is the dimensionless perturbation di-
vided by their absolute value at 𝑟 = 0. (b) residue of the
candidate perturbations with the horizontal axis being the
mode number for the reconstructed 𝛿𝑛 and the vertical axis
the residue.

To effect the perturbation in our simulation we took a
random 10% of the beam—400,000 particles—and redis-
tributed them randomly into a Gaussian distribution with
an angle taken from the uniform 𝜃 ∈ [0, 2𝜋) distribution
and dimensionless radial variable 𝑟 = 𝑟/𝑟𝑏 taken from a uni-
form distribution for 𝑥 between 𝑒−10 (upper bound for radius
because of -log argument) and 1.0 (lower bound) and then
inserted into the following function 𝑟 =

√︁
−2𝜎2 ∗ log(𝑥) to

obtain bounded Gaussian filling that is truncated at the beam
edge with 𝜎2 = 0.052.

1 This remapping has implication for the weighting function that maintains
the Legendre polynomial orthonormality over the range 𝑟 ∈ [𝑟𝑏 , 0.0]

2 This 𝜎2 is variance of the Gaussian perturbation, not 𝜎 the depressed
phase advance.
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RESULTS
A total of 24 different simulations with(out) perturbations

with four cases of space charge and three different initial
velocity distributions were performed. Shown here are the
results for 8 of those simulations with the Gaussian pertur-
bations in configuration space and the KV and the PL initial
𝑓0 (𝑣) distributions. The SG initial distribution has slightly
faster rise and fall times for certain parts of the modal dy-
namics for zero space charge, but aside from that show no
difference to the PL case and as such are not shown here.
The dynamics of the modal coefficients without a perturba-
tion show a marked difference, but are not reported in this
paper.

Particle Number Density
Figures 3(a) to 3(d) and 4(a) to 4(d) shows the normalized

particle number density 𝑛(𝑟, 𝑧) plotted with the blue corre-
sponding to minimum particle number density and yellow
maximum particle number density. These are shown for
increasing amounts of space charged 𝐼 ∈ [0.0, 0.1, 0.5, 5]
mA (𝜎/𝜎0=[1.0, 0.92, 0.74, 0.33], respectively).

For zero space charge, Figs. 3(a) and 4(a) the perturba-
tion reoccurs, a Poincaré recurrence, every half betatron
period. As we increase space charge, other feature dynam-
ics are observed in Figs. 3(b), 3(c), 4(b) and 4(c) with the
increased amount of space charged creating a thermaliza-
tion timescale and thus making the beam approach another
equilibrium. For the space charge dominated beam, the
equilibration timescale is almost instantaneous with either
broadband structure observed in the KV beam or what ap-
pears to be a limit cycle for the PL beam.

The initial velocity distribution has no impact on the initial
configuration space, but as the beam propagates down the
lattice the modal dynamics are accelerated and equilibrium
via thermalization of the space charge nonuniformintiy is
accelerated.

CONCLUSION
The mode spectrum excited by nonuniformity in config-

uration space leads to complex evolution of phase space
dynamics influenced by initial velocity space distributions
and space charge. Space charge accelerates beam evolution
toward equilibrium commensurate with plasma period ther-
malization, while both PL and SG 𝑓0 (𝑣) suppress higher
order mode correlations with the emittance. Further work is
required to ascertain consistent tracking of the surface charge
elements (not) corresponding to theory present within these
beams and numerical integration near the beam edge. Fu-
ture work will focus on changing the amount of the beam
perturbation to observe how that influences modal dynamics
and determining how and if these modes interact with each
to produce complex dynamics.
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Figure 3: Particle number density 𝑛(𝑟, 𝑧) for the KV 𝑓0 (𝑣)
beam. (a) 𝐼 = 0.0 mA (b) 𝐼 = 0.1 mA (c) 𝐼 = 0.5 mA (d) 𝐼 =
5.0 mA
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Figure 4: Particle number density 𝑛(𝑟, 𝑧) for the PL 𝑓0 (𝑣)
beam. (a) 𝐼 = 0.0 mA (b) 𝐼 = 0.1 mA (c) 𝐼 = 0.5 mA (d) 𝐼 =
5.0 mA
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