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RESUMO

CALZA, T.C.A. Teorias de campos em espaços toroidais aplicadas ao efeito Casimir.
2020. 85 f. Tese (Doutorado em Física) – Instituto de Física Armando Dias Tavares,
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.

Neste trabalho utilizamos o formalismo de teorias quânticas de campos para descre-
ver a interação desses campos em espaços não triviais. Tal formalismo é uma generalização
da prescrição de Matsubara da teoria de campos a temperatura finita, sendo chamado de
formalismo em espaços toroidais. O objetivo deste trabalho é fazer como uma aplicação
deste método o estudo do efeito Casimir, fenômeno caracterizado por flutuações na ener-
gia de ponto zero do campo dando origem a uma força de atração entre duas superfícieis
neutras. O efeito, então, será estudado em espaços com dimensões compactadas, obtendo
grandezas como a energia e a pressão de Casimir, nessas topologias não triviais. O método
de regularização para eliminar as divergências da diferença das energias de ponto zero é
o chamado método local. A partir dele obtemos os resultados para as duas quantidades
mais fundamentais no efeito Casimir, conforme citado acima. Posteriormente, estendemos
esse estudo para o cálculo das correções radiativas a 1 loop no contexto da eletrodinâmica
quântica. Calculamos, então, o diagrama de loop fermiônico, representando a interação
do elétron com o campo eletromagnético, obtendo assim a correção para a energia de
Casimir.

Palavras-chave: Teoria de campos . Eletrodinâmica quântica. Simetria quebrada .
Transformações de fases .



ABSTRACT

CALZA, T.C.A. Toroidal quantum field theories applied to Casimir effect. 2020. 85 f.
Tese (Doutorado em Física) – Instituto de Física Armando Dias Tavares, Universidade
do Estado do Rio de Janeiro, Rio de Janeiro, 2020.

In this work we use the formalism of quantum field theories to describe the interac-
tion of these fields in non-trivial spaces. Such formalism is a generalization of Matsubara’s
prescription of the field theory at finite temperature, namely as field theories in toroidal
spaces. The main goal of this work is to study the Casimir effect, a phenomenon characte-
rized by fluctuations in the zero point energy of the field, giving rise to an attractive force
between two neutral surfaces. The effect, then, will be studied in spaces with compactified
dimensions so as to compute quantities such as Casimir energy and pressure, by the local
method, in these non-trivial topologies. Later, we extended this work to compute one
loop radiative corrections in quantum electrodynamics, thus computing the contribution
to Casimir energy due to interaction of the electron field with the electromagnetic field.

Keywords: Field Theories. Quantum Eletrodynamics. Broken symmetry. Phase
Transitions.
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INTRODUÇÃO

Ao longo dos anos, o interesse em sistemas físicos restritos a um determinado nú-
mero de dimensões espaciais vem aumentando cada vez mais. Tais restrições de espaço
levam a diferentes condições de contorno impostas a um determinado sistema. Ao impor-
mos, por exemplo, condições de contorno periódicas a essas dimensões espaciais, cada uma
delas assume a topologia de um círculo de determinado comprimento. Dessa maneira, um
espaço com um número total de dimensões D pode posssuir um número d de dimensões
compactadas, caracterizando assim um espaço com uma topologia toroidal, devido a es-
sas limitações em algumas de suas dimensões (KHANNA et al., 2014);(LINHARES et
al., 2012);(MALBOUISSON; MALBOUISSON; SANTANA, 2002). Uma das aplicações
desses sistemas restritos a um tamanho finito consiste na transição de fase da matéria
hadrônica, caracterizada pela mudança de uma fase em que os quarks estão confinados no
interior dos hádrons a uma determinada temperatura, para uma fase de desconfinamento,
conhecida como um plasma de quarks e glúons (KAPUSTA; GALE, 2013).

Esse trabalho se insere no estudo das teorias quânticas de campos aplicadas a siste-
mas físicos restritos a espaços com topologias toroidais. Tais restrições levam a alterações
nas integrais dos diagramas de Feynman com loops em analogia com o tratamento similar
ao de temperaturas finitas. Em particular, estudamos o efeito Casimir, fenômeno quân-
tico em que, em sua formulação original, surgem forças entre placas paralelas condutoras,
separadas por uma pequena distância L entre elas (CASIMIR, 1948). Estas forças são
induzidas pela presença de um campo eletromagnético entre as placas; em outras pala-
vras, o efeito Casimir pode ser entendido como variações na energia de ponto zero do
campo. Qualquer que seja o tipo de campo considerado, poderá ocorrer uma flutuação
da energia de vácuo. Assim, o efeito Casimir pode ser investigado para diversos tipos
de campos relativísticos. Também podem ser consideradas diferentes geometrias que, de
alguma forma, delimitem o espaço onde atuam os campos, levando a uma variedade de
condições de contorno às quais eles estão sujeitos (FARINA, 2006). O trabalho se concen-
trará no estudo do efeito Casimir no contexto de teorias de calibre, com simetria abeliana,
portanto estamos interessados no estudo da eletrodinâmica quântica. O objetivo deste
trabalho é utilizar o formalismo de teoria quântica de campos em espaços toroidais para
obter expressões para a pressão e a energia de Casimir, em função da separação entre as
placas, fazendo restrições espaciais. Em seguida, esse cálculo será generalizado de forma a
também incluir efeitos térmicos simultaneamente com a restrição espacial. Tais grandezas
podem ser obtidas por diferentes métodos e também utilizando diferentes condições de
contorno. Considerando, primeiramente, o efeito Casimir para o campo eletromagnético,
realizamos os cálculos de pressão e energia, na aproximação de campo livre, via tensor de
energia-momentum e sua ligação com o propagador de campo livre (REGO; LINHARES;
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MALBOUISSON, 2016). Aplica-se, então, o formalismo de Matsubara generalizado, com
condições de contorno periódicas. Em seguida, estendemos esse estudo do efeito Casimir
considerando a interação do campo eletromagnético e do campo do elétron, de acordo
com a eletrodinâmica quântica na aproximação de 1 loop (ITZYKSON; ZUBER, 2005).
Obtêm-se, assim, neste contexto, correções radiativas (BORDAG; ROBASCHIK; WIEC-
ZOREK, 1985) para o efeito Casimir, bem como correções devidas a temperatura finita.
O tratamento de integrais relativas a amplitudes de Feynman é, novamente, realizado
através do método de Matsubara para temperatura e delimitação de uma dimensão es-
pacial. Os resultados assim obtidos para a energia e a pressão de Casimir podem ser
comparados com os já conhecidos na literatura, calculados por outros métodos. Esta tese
foi dividida conforme a seguinte sequência:

No capítulo 1 falamos sobre a teoria de campos a temperatura finita, segundo a
prescrição de Matsubara. A partir disso, generalizamos tal prescrição apresentando o mé-
todo de teorias de campos em topologias toroidais. No capítulo 2, abordamos o conceito de
vácuo na mecânica quântica e na teoria quântica de campos. Nesse contexto, discutimos
o processo histórico sobre efeito Casimir e suas aplicações nos diferentes ramos da física.
Além disso, enfatizamos que o mesmo está muito além de uma força atrativa entre duas
placas paralelas descarregadas. Em outras palavras, tal efeito é caracterizado como sendo
variações da energia de ponto zero dos campos, contidos no vácuo, utilizados em questão.
Neste capítulo deixamos explicito que o efeito Casirmir é a principal aplicação do método
de teorias quânticas de campos em topologiais toroidais utilizado ao longo dessa tese. No
capítulo 3, aplicamos o formalismo de Matsubara generalizado para calcular expressões
para a pressão e a energia de Casimir, em função da separação entre as placas, fazendo
restrições espaciais. Em seguida, esse cálculo será generalizado de forma a também in-
cluir efeitos térmicos simultaneamente com a restrição espacial. Tais grandezas podem
ser obtidas por diferentes métodos e também utilizando diferentes condições de contorno.
Considerando, o efeito Casimir para o campo eletromagnético, realizamos os cálculos de
pressão e energia, na aproximação de campo livre, via tensor de energia-momento e sua
ligação com o propagador de campo livre, caracterizando o uso do método local para
obtenção de tais grandezas. Aplica-se, então, o formalismo de Matsubara generalizado,
com condições de contorno periódicas impostas aos campos. Em seguida, no capítulo 4,
estendemos esse estudo do efeito Casimir considerando a interação do campo eletromag-
nético e do campo do elétron, de acordo com a eletrodinâmica quântica na aproximação a
1 loop, obtendo então a correção da energia de Casimir e seu comportamento com relação
a distância L entre as placas. Encerramos com algumas considerações finais a respeito da
aplicabilidade do efeito Casimir em diferentes geometrias e diferentes teorias de interação.
Destacando que tanto a geometria e as condições de contorno impostas aos campos podem
gerar flutuações na energia de ponto zero do vácuo, o que caracteriza o efeito Casimir.
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1 TEORIAS QUÂNTICAS DE CAMPOS EM ESPAÇOS TOROIDAIS

Em muitos problemas em física nos deparamos com condições de contorno pe-
riódicas em sistemas restritos a uma extensão finita de um certo número de dimensões
espaciais. Diferentemente do espaço livre, estas dimensões finitas com condições de con-
torno, do ponto de vista topológico, são ditas compactas. Cada dimensão compactada
adquire, portanto, a topologia de um círculo S1. Um espaço euclidiano de D dimensões,
com um número d < D de suas dimensões compactadas, possui assim uma topologia de
um hipertoro, de modo que, em geral, tais geometrias são ditas possuindo uma topologia
toroidal. Isto é, sua topologia é do tipo ΓdD = (S1)d×RD−d. Tal formalismo de topologias
toroidais aplica-se a diversos ramos da física, como o estudo de transições de fase em ma-
teirias supercondutores, transições de fase da matéria hadrônica, problemas envolvendo
dimensões extras. Além disso, esse formalismo por se tratar de limitações em determi-
nadas dimensões de um dado espaço dá origem a um dos fenômenos de maior interesse
na física desde as últimas dácadas, o chamado efeito Casimir. Esse será o grande objeto
de estudo nessa tese, no qual iremos aplicar as compactações de determinadas dimen-
sões (espaciais e temporal) ao campo eletromagnético. Em outras palavras, utilizando as
condições de contorno periódicas, limitamos o campo mencionado a uma certa região do
espaço, estudando assim as flutuações na energia de ponto zero do mesmo. Para um estudo
detalhado sobre esse formalismo, envolvendo métodos de cálculo e aplicações, indicamos
as seguintes referências. (KHANNA, 2009);(KHANNA et al., 2014);(ABREU, 2013);(LI-
NHARES et al., 2012);(CALZA, 2016);(MALBOUISSON; MALBOUISSON; SANTANA,
2002);(CARDOSO, )

1.1 Teoria de campos a temperatura finita

O estudo da teoria de campos a temperatura finita consiste em aplicarmos os efeitos
térmicos, no contexto da mecânica estatística, para descrever a interação desses campos
com um determinado meio externo. Existem alguns formalismos para se descrever essa
interação, que diferem um do outro pela maneira de como a variável de temperatura é
introduzida. Dentre esses formalismos, temos os chamados formalismos de tempo imagi-
nário e tempo real (DAS, 1997), esse último sendo mais adequado para descrever processos
fora do equilíbrio(EZAWA; TOMOZAWA; UMEZAWA, 1957). O mais antigo deles, for-
malismo de tempo imaginário ou também chamado de formalismo de Matsubara, proposto
por Takeo Matsubara em 1955 (MATSUBARA, 1955), é ideal para descrever os sistemas
em equilíbrio. A abordagem devida a Matsubara propõe que seja utilizado um espaço
euclidiano, no qual, além das três dimensões espaciais usuais, há uma quarta dimensão,
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de extensão finita, limitada de zero a β = T−1. Por analogia, esta abordagem é dita de
tempo imaginário. Considera-se, ainda, uma periodicidade das funções de correlação de
campos bosônicos, como o campo escalar. Portanto, a periodicidade no formalismo de
tempo imaginário é equivalente a formular a teoria em uma topologia toroidal do tipo
Γ1

4 = S1 × R3, onde S1 é uma circunferência de comprimento proporcional ao inverso da
temperatura. Posteriormente, alguns formalismos foram desenvolvidos de forma a gene-
realizar a prescrição de Matsubara, entre eles temos o chamado formalismo de topologias
toroidais(KHANNA, 2009), o qual será utilizado amplamente nesse trabalho.

1.2 Formalismo de Matsubara

Para desenvolver um pouco da abordagem do formalismo de Matsubara, vamos
introduzir alguns conceitos fundamentais da mecânica estatística (LEBELLAC, 1996).
Consideramos, então, um sistema descrito por uma hamiltoniana H na presença de um
reservatório térmico de temperatura 1/β, caracterizando, no equilíbrio térmico, o chamado
ensemble canônico. O operador de matriz densidade que descreve a evolução desse sistema
é dado por:

ρ = e−βH (1)

onde β = 1/T , no sistema de unidades naturais. Para extrair diversas grandezas termodi-
nâmicas de um sistema, como pressão, entropia, número de partículas, definimos a função
de partição:

Z = Tr(ρ) =
∑
n

〈
n | e−βH | n

〉
. (2)

A partir dela podemos obter diversas grandezas importantes da mecânica estatísitica,
conforme alguns exemplos abaixo.

P = T
∂ lnZ
∂V

(3)

N = T
∂ lnZ
∂µ

(4)

S = T
∂ lnZ
∂T

(5)
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Podemos, então, obter o valor esperado de um dado operador O, em equilíbrio térmico
no seu ensemble, como:

〈O〉0 =
∑
n

〈n | O | n〉 , (6)

onde | n〉 é um conjunto completo de estados ortonormais. Porém, quando o sistema
encontra-se em um banho térmico, o valor esperado do operador deve ser calculado como
a média sobre o ensemble com um fator de Boltzmann

〈O〉β = 1
Z

∑
n

〈n | O | n〉 e−βH = 1
Z

Tr
(
e−βHO

)
, (7)

podendo ser escrito também em termos do operador matriz densidade, como:

〈O〉β = TrOρ
Trρ . (8)

A partir de agora, podemos obter uma relação fundamental na teoria de campos a tem-
peratura finita (DAS, 1997). Utilizando a função de green da teoria, obtemos:

〈φ(x, t)φ(y, 0)〉 = 1
Z

Tr[e−βHφ(x, t)φ(y, 0)]

= 1
Z

Tr[φ(x, t)e−βHeβHφ(y, 0)e−βH ]

= 1
Z

Tr[φ(x, t)e−βHei(−iβH)φ(y, 0)e−i(−iβH)]

= 1
Z

Tr[φ(x, t)e−βHφ(y,−iβ)]

= 1
Z

Tr[e−βHφ(y,−iβ)φ(x, t)]
= 〈φ(y,−iβ)φ(x, t)〉 , (9)

conforme mostrado acima,utilizamos a propriedade de permutação cíclica do traço do
produto de operadores.

Observa-se, então, que a temperatura desempenha um papel de variável de tempo imagi-
nário. Desse modo, a variável de tempo imaginária é definida, por uma rotação de Wick,
da seguinte maneira:

τ = it t = −iτ, (10)

portanto, a equação (9) pode ser reescrita como

〈φ(x, τ)φ(y, 0)〉 = 〈φ(y, β)φ(x, τ)〉 . (11)

A equação acima, assim como a eq.(9),é conhecida na teoria de campos a temperatura
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finita, como relação Kubo-Martin-Schwinger ou de forma abreviada relação KMS. Inter-
pretando a relação acima, observamos que o propagador da teoria é periódico no eixo do
tempo imaginário, com período delimitado por uma extensão igual ao inverso da tempe-
ratura. A partir da relação KMS, temos que os campos obedecem à seguinte condição de
contorno:

φ(x, 0) = ±φ(x, β), (12)

nessa equação, o sinal ± representa se os campos são bosônicos (comutam) ou fermiôni-
cos (anticomutam). Em outras palavras, a relação KMS evidencia que os campos podem
assumir condições de contorno periódicas ou antiperiódicas.

De maneira análoga ao que é feito na toeria de campos à temperatura zero, tra-
balhamos com os campos no espaço de momento-freqüência. Devido a periodicidade
imposta pelas codições de contorno sobre os campos, podemos representar os mesmos por
uma expansão de Fourier de seguinte maneira:

φ(x, τ) =
∑
n

φ(x,wn)eiwnτ . (13)

Portanto, ao impormos restrições em alguma das variáveis, o que antes era uma integral
contínua de Fourier é substituído por uma série de Fourier, na qual as frequências dos
modos dos campos assumem valores discretos. Respectivamente, para bósons e férmions,
esses valores são dados por:

ωn = 2nπ
β

(14)

ωn = (2n+ 1)π
β

. (15)

Tais valores discretos, onde n são números inteiros que podem variar de −∞ a +∞, são
conhecidos como frequências de Matsubara.

Podemos, então, de forma análoga a teoria de campos usual (temperatura zero),
obter os propagadores livres em termos da variável de tempo imaginário. Desta maneira,
podemos definifir os propagadores de Matsubara conforme abaixo:

∆(τ) = 1
Z

∑
n

〈
n | e−βHφ(τ)φ(0) | n

〉
. (16)
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tomando sua transformada de Fourier, temos:

∆(iwn) =
∫ β

0
dτeiwnτ∆(τ), (17)

as frequências de Matsubara ωn = 2nπ
β

podem ser observadas da condição:

∆(τ) = 1
β

∑
n

eiwnτ∆(iwn) = ∆(τ + β). (18)

A relação entre os propagadores livres no formalismo de tempo imaginário e no tempo
real pode ser encontrada como:

∆(τ) = ∆+ (t = −iτ) =
∫ dk0

2π e
−k0τ

[
1 + n(k0)

]
ρ(k0), (19)

onde n(k0) e ρ(k0) representam, respectivamente, a distribuição de Bose-Einstein (LE-
BELLAC, 1996) e a função espectral (PESKIN; SCHROEDER, 1995), dadas por:

n = 1
e−βk0 − 1

ρ(k0) = 2πεk0δ
(
(k0)2 − Ek

)
substituindo a eq.(19) na eq.(17), obtemos:

∆(iwn) =
∫ β

0
dτeiwnτ

∫ dk0

2π e
−k0τ

[
1 + n(k0)

]
ρ(k0)

=
∫ dk0

2π

∫ β

0
dτe(iwn−k0)τ

[
1 + n(k0)

]
ρ(k0), (20)

integrando em τ , temos:

∆(iwn) =
∫ dk0

2π
e(iwn−k0)τ

(iwn − k0

β

0

[
1 + 1

e−βk0 − 1

]
ρ(k0) = −

∫ dk0

2π
ρ(k0)

iwn − k0 (21)

substituindo ρ(k0), encontramos que:

∆(iwn) = − 1
2Ek

( 1
iwn − Ek

− 1
iwn + Ek

)
, (22)

onde Ek = k2 + m2.
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Portanto, o propagador livre de Matsubara é dado por:

∆ (ωn,k) = 1
ωn2 + k2 +m2 = 1(

2πn
β

)2
+ k2 +m2

(23)

De forma análoga a teoria quântica de campos à temperatura zero, as regras de
Feynman na expansão perturbativa (PESKIN; SCHROEDER, 1995) também podem ser
obtidas para o formalismo de campos a temperatura finita. De um modo geral, a integra-
ção sobre todas as componentes do momento (à temperatura zero) é substituída por uma
soma sobre as frequências de Matsubara. Mais especificamente, devemos usar:

∫ d4k

(2π)4 →
1
β

∑
n

∫ d3k

(2π)3 (24)

A conexão entre mecânica estatística e teoria quântica de campos é baseada no
fato de que o operador e−βH , na função de partição, pode ser identificado com o operador
de evolução temporal ao longo do eixo temporal imaginário. Ou seja, formalmente, o
operador quântico de evolução temporal e−itH (} = 1) se transforma em e−βH quando
realizamos a continuação analítica t→ −iβ. Dito isso, podemos obter uma generalização
da função de partição da eq. (2), reescrevendo-a em termos de uma integral de caminho

Z = Tre−βH =
∫
D qe−

∫ β
0 dτL(q), (25)

onde a integração funcional é realizada sobre todas as trajetórias q(τ) sujeitas à condição
de contorno q(0) = q(β). Generalizando da teoria quântica de partículas para a teoria
quântica de campos, formulada em D+ 1 dimensões, obtemos para a função de partição

Z = Tre−βH =
∫
D φe−

∫ β
0 dτ

∫
dDxL[φ(x)], (26)

onde todas as configurações φ(x, τ) que satisfazem a condição de contorno da eq.(12)
devem ser incluídas na integral de caminho. É interessante observar que no limite de
temperatura nula, quando β →∞, a eq.(26) se reduz à teoria de campos usual formulada
no espaço euclidiano (neste caso, as condições de contorno deixam de ser importantes).

1.3 Formalismo de Matsubara generalizado

Conforme mencionamos no início de deste capítulo, um sistema contido em um
certo espaço de D dimensões, pode ter um certo número d de suas dimensões compac-
tadas, de forma que este é dito ter uma topologia da forma: ΓdD = (S1)d × RD−d . O
formalismo de Matsubara, portanto, é um caso particular em que apenas a dimensão tem-
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poral (tempo imaginário) é compactada, tendo uma topologia do tipo Γ1
D = S1 × RD−1.

Porém, além da dimensão temporal, as dimensões espaciais também podem ser compac-
tadas de forma que 1 ≤ d ≤ D, sendo a dimensão temporal e cada uma das dimensões
espaciais compactadas em uma circunferência de comprimento Li, no qual L0 = β corres-
ponde a extensão do inverso da temperatura para a dimensão temporal (LINHARES et
al., 2012). Podemos, então, considerar um sistema que encontra-se em equilíbrio térmico
a uma certa temperatura e confinado em uma caixa retangular com (d − 1) dimensões
espaciais. Adotamos coordenadas cartesianas r = (x1, ..., xd, z), onde z é um vetor (D−d)
dimensional e com um vetor no espaço de momento dado por k = (k1, ..., kd,q), sendo q
um vetor (D − d) no espaço dos momentos. Portanto, o formalismo de Matsubara pode
ser generalizado da seguinte forma:

∫ dki
2π →

1
Li

∞∑
n=−∞

,

e as componentes compactadas dos momentos são dados por:

ki =


2πni
Li
, para bósons

2π(ni+ 1
2)

Li
, para férmions

(27)

onde i = 0, 1, ..., d, sendo i = 0 correspondente a dimensão de tempo imaginário. Portanto,
explicitamente, temos que as regras de Feynman compostas pelas integrais no espaço
de momento são sustituídas agora por somas de valores discretos de frequências. Ao
escolhermos, então, uma dimensão temporal (efeito térmico) e uma dimensão espacial
para serem compactadas, a prescrição de Matsubara é dada por:

∫ dk0

2π →
1
β

∞∑
n0=−∞

, k0 →
2πn0

β
, k0 →

2π
(
n0 + 1

2

)
β

. (28)

∫ dk1

2π →
1
L1

∞∑
n1=−∞

, k1 →
2πn1

L1
, k1 →

2π
(
n1 + 1

2

)
L1

. (29)

De um modo geral, as integrais de Feynman são calculadas pelos métodos usuais da teoria
quântica de campos (PESKIN; SCHROEDER, 1995), enquanto a parte das dimensões que
foram compactadas, correspondente a séries sobre as frequências de Matsubara, são tra-
tadas pelas propriedades da funções Zeta de Epstein-Hurwitz. Para um estudo detalhado
sobre essas funções é interessante a leitura de (ELIZALDE, 1995); (KIRSTEN, 1994).
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2 O EFEITO CASIMIR

2.1 O conceito de vácuo na mecânica quântica

A ideia de vácuo, segundo a física clássica, está associada a um espaço vazio,
sem qualquer tipo de partículas e interação entre as mesmas. A única generalização do
conceito, desde o surgimento do eletromagnetismo de Maxwell, é de que as ondas eletro-
magnéticas propagam-se nesse vácuo assim como as ondas mecânicas precisam de um meio
material para se propagar. Com o surgimento da mecânica quântica e posteriormente da
teoria quântica de campos, a ideia de vácuo passou a assumir um outro significado, o
qual agora é caracterizado como sendo o estado quântico de mais baixa energia. Nesse
vácuo ocorrem a todo momento criação e aniquilação de pares de partículas virtuais, essas
podem interagir durante espaços e tempos muito pequenos de acordo com princípio de
incerteza de Heisenberg. Todas essas pequenas interações entre as partículas são ditas
como sendo flutuações em torno da energia de ponto zero do vácuo . Por exemplo no
caso da eletrodinâmica quântica (QED), teoria que descreve a propagação e interação de
férmions com o campo eletromagnético, tanto a propagação de um elétron ou de um fóton
é agora afetada por suas interações com esses pares de partículas virtuais. Em particular,
o movimento de uma carga elétrica é afetado pelas interações que essa partícula sofre
com o vácuo, de modo que esse começa a se comportar como um meio dielétrico devido a
presença dessa carga, conforme ilustra a Fig.1.
Esse fenômeno de alinhamento dos dipolos é conhecido como a polarização do vácuo.
Além disso, tais flutuações dos campos não se restringem simplemsmente ao campo ele-
tromagnético descrito na eletrodinâmica quântica, qualquer teoria relativística pode ter
flutuação da energia de vácuo com seu respectivo campo. Dentre algumas condições ex-
ternas que podem influenciar essas flutuações do vácuo, a principal delas será o objeto de
estudo dessa tese, o chamado efeito Casimir e de que maneira esse efeito influencia nessa
energia de ponto zero (MILONNI, 1994)
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Figura 1 - Interação no vácuo quântico

Legenda: Interação entre pares de partículas
virtuais com uma carga elétrica no
vácuo quântico

Fonte: Página do INFNa

a Disponível em <http://w3.lnf.infn.it>.
Acesso em: 27 jul. 2020.

2.2 O surgimento do efeito Casimir

No fim da década de 1940, o físico Holandês Hendrik Casimir do Laboratório de
Pesquisa Phillips, chegou a previsão de que duas placas neutras condutoras, separadas
por uma certa distância a, muito menor que suas dimensões, e colocadas em uma região
de vácuo, estão sujeitas a uma força de atração entre elas (CASIMIR, 1948) que varia de
forma inversamente proporcional com a quarta potência da distância entre as mesmas.
Porém, devido as placas estarem neutras, essa força que surge entre elas não é de origem
elétrica conforme espera-se pela lei de Coulomb, além disso, o vácuo é um meio incapaz
de exercer qualquer tipo de interação, conforme prevê a física clássica. Em 1948, Casimir
publica em seu artigo que essa força surge das flutuações da energia do campo contido
no vácuo formado entre as placas (CASIMIR; POLDER, 1948). De fato, ao se considerar
a natureza quântica do vácuo, a simples presença das placas já afeta tais flutuações de
energia dos campos, contrariando a física clássica. Logo, podemos dizer agora que existe
algum tipo de interação entre o vácuo e as placas, conforme ilustrado na Fig.2. Como
os campos são um conjunto de vários osciladores harmônicos quantizados, esses possuem
valores de energia bem definidos sem a possiblidade de valores intermediários. Tais valores
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Figura 2 - Efeito Casimir

Legenda: Força atrativa entre placas neutras
devido a flutuações do vácuo

Fonte: Adaptado pelo autorb

b Traduação da imagem coletada no site do
INFN

permitidos formam um espectro de energia discreto dado pela seguinte equação:

En =
(
n+ 1

2

)
~ω, (n = 0, 1, 2...) , (30)

onde ~ é a constante de Planck e ω são os possíveis modos de frequência do campo ele-
tromagnético.

Observando a equação acima, percebemos que esse espectro só possui valores discretos
de energia e esses sempre sendo múltiplos de ~ω, conforme prevê a mecânica quântica.
Porém, a contribuição de maior relevância para entendermos a origem da força de atração
no efeito Casimir vem do fato que a energia de um oscilador quântico jamais terá um valor
nulo, conforme a eq.(30). Para o nível de mais baixa energia, chamado de fundamental,
o valor será dado por ~ω/2, conhecido como energia de ponto zero. Portanto, a força de
atração se origina devido as flutuações da energia de ponto zero do campo eletromagnético.
O cálculo da força de Casimir, pode ser feito utlizando a energia do estado fundamental
do campo, a chamada energia de ponto zero. Essa energia é uma quantidade infinita,
mas em um caso simplificado em que desconsideramos influências de campos externos e
condições de contorno, esse termo infinito poderia ser eliminado por uma redefinição da
escala de energia. Porém, a grande contribuição de Casimir ao explicar a força de atração
entre as placas está na influência das condições de contorno, impostas pelas placas, na
energia de ponto zero. De fato, essas condições de contorno fazem com que a energia
do campo eletromagnética adquira uma dependência com a distância entre as placas de
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forma que essa não pode ser descartada por uma redefinição de escala. O método utilizado
por Casimir para obter a expressão a força entre duas placas paralelas consiste em somar
todas as frequências possíveis no interior de uma caixa. Tal método é caracterizado pela
diferença entre a energia de ponto zero sujeita influência de condições de contorno e a
energia de ponto sem tais restrições espaciais. A demonstração da força de Casimir é feita
agora, segundo (MILONNI, 1994), utilizando o sistema de unidades naturais.

Partindo da ideia de restringir uma porção do espaço, consideramos uma caixa
vazia em forma de paralelpípedo de lados Lx = Ly = L e sendo Lz = d a distância entre
as placas paralelas. Devido as condições de contorno impostas, as frequências discretas
possíveis no interior da caixa são dadas por:

ωlmn =
(
k2
x + k2

y + k2
z

)1/2
= π

(
l2

L2 + m2

L2 + n2

L2

)1/2

(31)

onde l, m e n correspondem a valores inteiros positivos e zero. A energia de ponto zero é
definida como:

E0(d) =
∑
lmn

(2)1
2ωlmn = π

(
l2

L2 + m2

L2 + n2

L2

)1/2

, (32)

o fator 2 aparece devido as duas polarizações independentes dos modos quando l, m,n são
diferentes de zero. Sendo as dimensões das placas muito maior que a distância entre elas,
L� d, podemos escrever os somatórios como integrais da forma:

E0(d) = L2

π

∑
n

∫ ∞
0

dx
∫ ∞

0
dy

(
x2 + y2 + πn2

d2

)1/2

, (33)

sendo d arbitrariamente grande, esse somatório restante pode ser substituído por uma
integral:

E0(∞) = L2

π

∫ ∞
0

dx
∫ ∞

0
dy
∫ ∞

0
dz
(
x2 + y2 + z2

)1/2
. (34)

A energia de ponto zero no interior das placas é dado pela diferença entre o termo de
energia com restrição espacial e o termo sem restrição espacial, de forma que:

E(d) = E0(d)− E0(∞), (35)

substituindo as equações(33) e (34), temos:

E(d) = L2

π

∑
n

∫ ∞
0

dx
∫ ∞

0
dy

(
x2 + y2 + πn2

d2

)1/2

− d

π

∫ ∞
0

dx
∫ ∞

0
dy
∫ ∞

0
dz
(
x2 + y2 + z2

)1/2

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(36)

passando de um sistema de coordenadas cartesianas para coordenadas polares:

E(d) = L2π

2π2

∑
n

∫ ∞
0

rdr

(
r2 + π2n2

d2

)1/2

− d

π

∫ ∞
0

dz
∫ ∞

0
rdr

(
r2 + z2

)1/2
 (37)

fazendo uma mudança de variável, temos:

E(d) = π2L2

4d3

[∑
n

∫ ∞
0

dx
(
x2 + n2

)1/2
−
∫ ∞

0
dz
∫ ∞

0
dx
(
x2 + z2

)1/2
]

(38)

essa diferença de energia, pode ser reescrita da seguinte forma:

E(d) = π2L2

4d3

[
1
2F (0) +

∞∑
n=1

F (n)−
∫ ∞

0
dzF (z)

]
(39)

onde o fator 1/2 no primeireo termo corresponde a uma única polarização independente
quando n = 0. As funções F (n) e F (z) são dadas por:

F (n) =
∫ ∞

0
dx
(
x2 + n2

)1/2
F(z)=

∫∞
0 dx (x2 + z2)1/2

. (40)

Utilizando a fórmula de Euler–Maclaurin, para ordens baixas (APOSTOL, 1999), como
forma de aproximar essa diferença de duas quantidades infinitas para somas finitas:

∞∑
n=1

F (n)−
∫ ∞

0
dzF (z) = −1

2F (0)− 1
12F

′(0) + 1
720F

′′′(0) (41)

onde F ′(z) = −2z2 ; F ′(0) = 0 e F ′′′(0) = −4. Portanto,

∞∑
n=1

F (1)−
∫ ∞

0
dzF (z) = −1

2F (0)− 4
720 (42)

logo, a eq.(39) assume a forma:

E(d) = π2L2

4d3

(
− 4

720

)
= − π

2L2

720d3 (43)

para de determinarmos a força basta fazer a derivada da energia em relação a d, logo:

F (d) = ∂E(d)
∂d

= −A π2

240d4 (44)

onde A = L2 corresponde à área de cada uma das placas. O sinal negativo indica que a
força é de origem atrativa. Além disso, observando a expressão acima, percebemos que a
força de Casimir é pequena comparada à lei de Gravitação Universal e à lei de Coulomb,
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já que ela comporta-se com o inverso da quarta potência da distância, enquanto as outras
duas comportam-se com o inverso do quadrado da distância.

É válido destacar que a grande contribuição do efeito Casimir não está no fato de
surgir uma força atrativa entre duas placas condutoras neutras,pois tal comportamento
já tinha sido estudado na teoria de London, na qual ele falava das forças dispersivas
entre moméculas neutras. Em outras palavras, o efeito Casimir pode ser caracterizado
por qualquer tipo de restrição em um certo espaço, pois tais restrições sempre geram
condições de contorno que influenciam as flutuações da energia de ponto zero de um
determinado tipo de campo. Do ponto de vista experimental, o efeito Casimir demorou
basicamente 50 anos para ser comprovado devido a grande dificuldade de se medir a
força, devido ao seu valor bem pequeno, em torno 0, 013dyn, e por se tratar de uma
distância muito pequena entre as placas, da ordem de 10−6m. O primeiro a tentar essa
verificação experimental foi Sparnaay (SPARNAAY, 1958), em 1958. Seus resultados não
se mostraram incompatíveis, mas a incerteza na medida da separação das placas implicava
demais na precisão para o valor final da força. Passados quase 40 anos do experimento de
Sparnaay, em 1997 Lamoreaux (LAMOREAUX, 1997) chega a um resultado preciso que
comprova a força prevista por Casimir em 1948. Lamoreaux utilizou uma placa plana e
uma placa esférica variando a distância entre ambas com valores de 0, 6 micrômetros a
6 micrômetros, obtendo assim um erro experimental de 5% que garantiu a precisão do
resultado para comprovar a existência do efeito Casimir. Posteriormente, essa precisão
foi ainda melhor no experimento de Mohideen e Roy (MOHIDEEN; ROY, 1998), obtendo
um erro experimental de 1%.
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3 EFEITO CASIMIR EM UMA TOPOLOGIA TOROIDAL

Conforme apresentamos no capítulo anterior, o efeito Casimir é caracterizado por
alterações (flutuações) na energia de ponto zero do vácuo em que o campo eletromagnético
está contido. Apesar do efeito original ser descrito utilizando o campo eletromagnético,
qualquer campo relativístico, confinado em uma certa região do espaço, pode afetar essa
energia de vácuo devido as condições de contorno impostas por esse confinamento. De
fato, essa modificação na energia de ponto zero é o que chamamos de energia de Casimir,
responsável pela força de atração entre as placas, caracterizando assim o efeito descrito
pelo mesmo em 1948. Considerando, então, que o campo eletromagnético comporta-se
com um conjunto de infinitos osciladores harmônicos, cada um com energia dado pela
eq.(30), podemos escrever a energia de Casmir como sendo:

Ec =
[∑
n

~ω
2

]
cc

−
[∑
n

~ω
2

]
sc

, (45)

onde o primeiro termo corrresponde a energia do vácuo com condições de contorno (cc) e o
segundo termo a energia do vácuo sem as condições de contorno (sc). Entretanto, ambas as
somas na equação acima são quantidades divergentes, assim como a diferença entre os dois
termos. Essa definição da energia não tem um sentido físico, para isso precisamos utilizar o
processo de renormalização com o objetivo de transformar essa energia em uma quantidade
finita e de possível interpretação física. Hoje em dia, existem uma razoável quantidade
de métodos de regularização para transformar certas expressões divergentes em algo que
seja finito. Dentre esses métodos podemos citar o método de corte nas frequências, o
método da discretização do espaço, método da função zeta generalizada, entre outros
(FARINA, 2006). Além desses, temos os chamados métodos locais. Cada método tem
suas características e possui maior eficácia ou não dependendo do quanto a fundo você
quer estudar o fenômeno. Nesta tese, utilizamos o chamado método local, para tratar a
expressão da eq.(45) e obter uma quantidade finita da energia de ponto zero, chamda de
energia de Casimir. Para um estudo detalhado sobre as características, fatos históricos,
relacionados ao efeito Casimir e as flutuações da energia de ponto zero, vale a leitura das
seguintes referências (MILONNI, 1994);(FARINA, 2006);(COUGO-PINTO; FARINA; A,
2000);(LAMOREAUX, 2007);(ELIZALDE; ROMEO, 1991);(MILTON, 2001).
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3.1 Energia de Casimir pelo método local

O método local, consiste em utilizarmos o tensor-energia momento do campo ele-
tromagnético, como forma de regularizar a diferença das energias de ponto zero, e obter
assim grandezas com significado físico, como a densidade de energia e a pressão de Casi-
mir. Tal método consiste em escrever o tensor energia momento em termos das funções de
Green que aparecem na teoria. Em outras palavras, calculamos o valor esperado do tensor
energia momento como sendo o propagador do campo em questão utilizado. Esse método
é utilizado, conforme Brown e Maclay (BROWN; MACLAY, 1969), os quais introduziram
o formalismo local de obtenção da energia de vácuo. Nesta seção faremos o caso do campo
eletromagnético livre, portanto calculamos o propagador livre do fóton, para cada compo-
nente do tensor energia momento desejada. A densidade de energia de Casimir é obtida
pela componente T 00 do tensor, enquanto a pressão de Casimir é obtida pela componente
T 33. O cálculo será feito compactando uma dimensão espacial, utilizando a prescrição de
Matsubara generalizada. Em seguida, compactamos duas dimensões, sendo uma espacial
e a dimensão temporal, como forma de incluir os efeitos térmicos no fenômeno estudado
(REGO; LINHARES; MALBOUISSON, 2016). No capítulo seguinte, calculamos a inte-
ração do campo do fóton com o campo fermiônico, obtendo assim as correções radiativas
para a energia de Casimir.

Partindo da teoria do eletromagnetismo, a densidade de lagrangiana é dada por:

L = −1
4FµνF

µν , (46)

e o tensor eletromagnético possui a seguinte representação:

F µν = ∂µAν − ∂νAµ, (47)

onde A representa o vetor potencial no espaço de Minkowski.

Conforme mencionado acima, o método local baseia-se no cálculo do valor esperado do
tensor energia-momento do campo eletromagnético. Partindo da definição deste tensor,
temos:

T µν = F µαF ν
α + 1

4g
µνFαβF αβ , (48)

utilizando a técnica de separação de pontos, podemos definir o tensor energia-momento,
como:

T µν (x) = lim
x−→x′

[
F µα (x)F ν

α (x′) + 1
4g

µνFαβ (x)Fαβ (x′)
]
, (49)
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substituindo a eq.(47) nessa equação, temos:

T µν (x) = lim
x−→x′

[(∂µAα (x)− ∂αAµ (x)) (∂′αAν (x′)− ∂′νAα (x′))

+ 1
4g

µν (∂µAα (x)− ∂αAµ (x))× (∂′αAν (x′)− ∂′νAα (x′))
]
, (50)

após certa álgebra, temos:

T µν (x) = lim
x−→x′

[
gνβ∂µ∂′α − gαβ∂µ∂′ν − gµαgνβ∂ρ∂′ρ + gµα∂β∂′ν

+ 1
2g

µν
(
gβα∂ρ∂′ρ − ∂β∂′α

)]
× Aα (x)Aβ (x′) . (51)

Deste modo, o valor esperado no vácuo do tensor energia-momento é dado por:

T µν =
〈

0 | T µν | 0
〉

= lim
x−→x′

[Oµν (x, x′)] 〈0 | TAα (x)Aβ (x′) | 0 〉, (52)

onde T representa o produto de ordenamento temporal e Oµν representa o tensor do
operador diferencial. Por definição, 〈0 | TAα (x)Aβ (x′) | 0 〉 = G (x− x′) representa a
função de Green no espaço de Minkowski de D dimensões. Logo, a integral de Fourier
dessa função pode ser escrita como:

G (x− x′) = −igαβ
∫ dDk

(2π)D
e−ik.(x−x

′)

k2 + iε
, (53)

sendo k e x vetores nesse espaço de D dimensões. Substituindo a expressão acima na
eq.(52) e aplicando o tensor de operador diferencial, obtemos o tensor energia-momento
da seguinte forma:

T µν = 2i
∫ dDk

(2π)D
D−2

2 (kµkν)− D−3
4 gµνk2

k2 + iε
, (54)

utilizando uma rotação de Wick de forma que k0 → ik0
E, dDk → idDkE e gµν = −δµν , o

tensor energia-momento no espaço euclidiano assume a forma:

T µν = 2
∫ dDkE

(2π)D
D−2

2 (kµEkνE)− D−3
4 δµνk2

E

k2
E +m2 . (55)

onde m é uma massa fictícia introduzida como regulador infravermelho e que no final será
feito um limite em que m tende a zero. O índice E será omitido de agora em diante no
decorrer dos cálculos.

Como estamos procurando algum significado física para a energia de Casimir, o valor
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esperado na vácuo, renormalizado, para o tensor energia-momento é definido como a
diferença entre valor esperado de T µν com as condições de contorno impostas e o valor
de T µν sem condições de contorno, ou seja,

T µν = 〈0 | T µν | 0 〉cc − 〈0 | T µν | 0 〉sc (56)

onde cc representa com condições de contorno e sc o termo sem condições de contorno.
Analisando a eq.(52), o tensor de operador diferencial não se altera ao impormos condições
de contorno. As divergências que surgem do caráter local dos propagadores também
não afetam o valor esperado, podendo assim serem eliminadas (KHANNA et al., 2014).
Portanto, na equação acima, o termo que corresponde à energia de Casimir e que tem
contribuição física é aquele em que as condições de contorno são impostas e que assim
geram as flutuações na energia de vácuo. A partir desse momento iremos nos referir à
energia de Casimir como sendo apenas a parte do tensor energia-momento com condições
de contorno. O termo original da energia de ponto zero, livre de condições de contorno, é
eliminado pele método de regularização que utilizamos. Durante todos os cálculos iremos
utilizar o sistema natural de unidades (~ = c = K = 1).

3.2 Energia de Casimir com restrições espaciais

Nesta seção, vamos calcular a energia de Casimir para o campo eletromagnético
utilizando o formalismo de topologias toroidais. A princípio, vamos incluir apenas res-
trições espaciais, compactando uma dimensão, d = 1 e impondo condições de contorno
periódicas ao campo eletromagnético. Posteriormente, iremos considerar as contribuições
da temperatura ao compactarmos a dimensão de tempo imaginário, conforme (REGO;
LINHARES; MALBOUISSON, 2016)

Partindo da expressão do tensor energia-momento, dado pela eq.(54), vamos a cal-
cular componente T 00 deste tensor como forma de obter a energia de Casimir em um
espaço com uma topologia do tipo Γ1

D = S1 × RD−1, onde S1 corresponde a uma circun-
ferência de comprimento L. A partir da componente T 00 do tensor energia-momento, de
acordo com a eq.(55), temos:

T 00 = 2
∫ dDk

(2π)D
D−2

2 (k0)2 − D−3
4 k2

k2 +m2 , (57)
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sendo k2 = (k0)2 + (k1)2 + (k2)2 + ....+ (kD)2 as componentes do momento, temos que:

T 00 = (D − 2)
∫ dDk

(2π)D
(k0)2

k2
⊥ + (k3)2 +m2 −

(
D − 3

2

) ∫ dDk

(2π)D
k2
⊥ + (k3)2

k2
⊥ + (k3)2 +m2 , (58)

onde k⊥ são as componentes perpendiculares à componente k3 do momento.

Utilizando o formalismo de Matsubara estendido, as regras de Feynman são modificadas
de acordo com a seguinte prescrição:

∫ dk3

2π →
1
L

∞∑
n=−∞

, k3 →
2nπ
L
, (59)

logo, a eq. (58) pode ser reescrita da seguinte forma:

T 00 = (D − 2) 1
L

∞∑
n=−∞

∫ dD−1k⊥
(2π)D−1

(k0)2(
k2
⊥ + (2π)2n2

L2 +m2
)s

−
(
D − 3

2L

) ∞∑
n=−∞

∫ dD−1k⊥
(2π)D−1

k2
⊥(

k2
⊥ + (2π)2n2

L2 +m2
)s

−
(
D − 3

2L

) ∞∑
n=−∞

∫ dD−1k⊥
(2π)D−1

(2π)2n2

L2(
k2
⊥ + (2π)2n2

L2 +m2
)s , (60)

onde s é apenas um expoente, no caso particular valendo 1, colocado no denominador das
integrais para fazermos uma regularização dimensional das mesmas.

Utilizando as seguintes fórmulas de regularização dimensional,

∫ dDl

(2π)D
1

(l2 + ∆)s = 1
(4π)D/2

Γ (s−D/2)
Γ(s)

( 1
∆

)s−D2
∫ dDl

(2π)D
l2

(l2 + ∆)s = 1
(4π)D/2

D

2
Γ
(
s− D

2 − 1
)

Γ(s)

( 1
∆

)s−D2 −1

∫ dDl

(2π)D
lµlν

(l2 + ∆)s = 1
(4π)D/2

−δµν

2
Γ
(
s− D

2 − 1
)

Γ(s)

( 1
∆

)s−D2 −1
, (61)
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podemos, então, escrever o tensor energia-momento da seguinte forma:

T 00 = (D − 2) 1
L

∞∑
n=−∞

1
(4π)D/2

−δ00

2
Γ
(
s− D−1

2 − 1
)

Γ(s)

 1
(2π)2n2

L2 +m2

s−
D−1

2 −1

−
(
D − 3

2L

) ∞∑
n=−∞

1
(4π)D/2

D − 1
2

Γ
(
s− D−1

2 − 1
)

Γ(s)

 1
(2π)2n2

L2 +m2

s−
D−1

2 −1

−
(
D − 3

2L

) ∞∑
n=−∞

1
(4π)D/2

(2π)2n2

L2

Γ
(
s− D−1

2

)
Γ(s)

 1
(2π)2n2

L2 +m2

s−
D−1

2

, (62)

escrevendo em termos de parâmetros adimensionais, temos:

T 00 = 2−D
2L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

∞∑
n=−∞

1
(an2 + c2)ν−1

−(D − 3) (D − 1)
4L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

∞∑
n=−∞

1
(an2 + c2)ν−1

−D − 3
2L

1
(4π)(D−1)/2

Γ (ν)
Γ(s)

1
(2π)2(ν−1)

∞∑
n=−∞

an2

(an2 + c2)ν , (63)

onde a = 1
L2 , c2 = m2

(2π)2 , ν = s− D−1
2 .

Somando e subtraindo o fator c2 no numerador dentro do somatório do último termo da
equação acima, obtemos:

T 00 = 2−D
2L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

∞∑
n=−∞

1
(an2 + c2)ν−1

−(D − 3) (D − 1)
4L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

∞∑
n=−∞

1
(an2 + c2)ν−1

−D − 3
2L

1
(4π)(D−1)/2

Γ (ν)
Γ(s)

1
(2π)2(ν−1)

×
[ ∞∑
n=−∞

1
(an2 + c2)ν−1 −

∞∑
n=−∞

c2

(an2 + c2)ν
]
. (64)

A soma em cada um dos termos da equação acima é reconhecida como uma das funções
zeta de Epstein-Hurwitz (ELIZALDE, 1995), definida como:

Zc2

d (ν; a1, . . . , ak; b1, . . . , bk) =
∞∑

{nj}=−∞

[
a1(n1 − b1)2 + · · ·+ ak(nk − bk)2 + c2

]−ν
, (65)

a qual, em nosso caso de uma dimensão compactada (d = 1) e sendo b = 0, é reduzida na
forma:

Zc2

1 (ν; a, ) =
∞∑

n=−∞

[
an2 + c2

]−ν
. (66)



32

Utilizando a propriedade da função gama Γ (ν) = (ν − 1) Γ (ν − 1), a eq.(64) pode ser
reescrita como:

T 00 = 1
2L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

{
(2−D)Zc2

1 (ν − 1; a)

− (D − 3) (D − 1)
2 Zc2

1 (ν − 1; a)− (D − 3) (ν − 1)

×
[
Zc2

1 (ν − 1; a)− c2Zc2

1 (ν; a)
]}

(67)

O termo c2Zc2
1 (ν; a) na equação acima é eliminado, pois c2 não depende da separação

entre as placas e assim não contribui para a energia de Casimir. Logo a eq.(67) é reescrita
como

T 00 = 1
2L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

×
[
(2−D)− (D − 3) (D − 1)

2 − (D − 3) (ν − 1)
]
Zc2

1 (ν − 1; a) , (68)

fazendo uma continuação analítica na função zeta, podemos escrevê-la em termos de uma
função de Bessel modificada de segunda espécie (ELIZALDE, 1995; ELIZALDE, 1989),
que no caso geral para d dimensões, é dada por:

Zc2

d (ν; a1, ..., ad) = 2πd/2
√
a1, ..., adΓ (ν)

[
Γ (ν − d/2)
2c2(ν−d/2)

+2
d∑
j=1

∞∑
nj=1

(
πnj
c
√
aj

)ν−d/2
Kν−d/2

(
2πcnj√
aj

)
+ ...

+ 2d
∞∑

n1,...,nd=1

π
c

√
n2

1
a1

+ ...+ n2
d

ad

ν−d/2

× Kν−d/2

2πc
√
n2

1
a1

+ ...+ n2
d

ad

 , (69)

para o caso de uma dimensão compactada, d = 1, essa continuação analítica é reduzida
para:

Zc2

1 (ν; a) = 2πd/2√
aΓ (ν)

Γ (ν − 1/2)
2c2ν−1 + 2

∞∑
n=1

(
πn

c
√
a

)ν−1/2

Kν−1/2

(
2πnc√
a

) . (70)

Eliminando termos independentes de L na equação acima, a eq.(68), pode ser escrita
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como:

T 00 = 1
2L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

×
[
(2−D)− (D − 3) (D − 1)

2 − (D − 3) (ν − 1)
]

× 4
√
π

Γ (ν − 1)

∞∑
n=−∞

(
πn

c
√
a

)ν−3/2

Kν−3/2

(
2πcn√
a

)
, (71)

simplificando alguns termos, considerando ν − 1 = 1−D
2 e s = 1, obtemos:

T 00 = 1
2

1
(4π)(D−1)/2 (2π)(D−1) (2−D) 4

√
π

∞∑
n=−∞

(
2π2nL

m

)−D/2
KD/2 (mnL) , (72)

usando a aproximação da função de Bessel para argumentos pequenos, dada por:

KD/2 (mnL) ∼ 1
2Γ

(
D

2

)( 2
mnL

)D/2
, (73)

a equação (72) assume a forma:

T 00 = 1
2

1
(4π)(D−1)/2 (2π)(D−1) (2−D) 4

√
π

∞∑
n=−∞

(
m

2π2nL

)D/2 ( 2
mnL

)D/2 1
2Γ

(
D

2

)

= 1
2

1
(4π)(D−1)/2 (2π)(D−1) (2−D) 4

√
π

1
2Γ

(
D

2

) 1
πDLD

∞∑
n=−∞

1
nD

, (74)

utilizando um espaço de dimensões D = 4, temos:

T 00 = 1
2

1
(4π)3/2 (2π)(3) (−2)

√
πΓ (2) 1

π4L4 ζ (4) , (75)

onde ζ (4) = π4

90 corresponde à função zeta de Riemann. Logo, a energia de Casimir em um
espaço de 4 dimensões, com uma de suas dimensões espaciais compactadas, corresponde
a:

T 00 = E (L) = − 2π2

90L4 = − π2

45L4 . (76)

onde o sinal negativo refere-se ao caráter atrativo da força entre as placas.
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3.3 Pressão de Casimir

O cálculo da pressão de Casimir, pelo método local, é demonstrado de maneira
totalmente análoga ao feito para a energia na seção anterior. A diferença é a componente
do tensor energia momento utilizada. Como estamos interessados na pressão de Casimir,
vamos partir da componente T 33 do tensor energia-momento, dada por:

T 33 = 2
∫ dDk

(2π)D
D−2

2 (k3)2 − D−3
4 k2

k2 +m2 , (77)

T 33 = (D − 2)
∫ dDk

(2π)D
(k3)2

k2
⊥ + (k3)2 +m2 −

(
D − 3

2

) ∫ dDk

(2π)D
k2
⊥ + (k3)2

k2
⊥ + (k3)2 +m2 , (78)

ao aplicarmos a prescrição de Matsubara, a integral na componente k3 do momento
transforma-se numa soma sobre valores discretos. Desse modo, a eq.(78) pode ser re-
escrita da seguinte forma:

T 33 = (D − 2) 1
L

∞∑
n=−∞

∫ dD−1k⊥
(2π)D−1

(2π)2n2

L2(
k2
⊥ + (2π)2n2

L2 +m2
)s

−
(
D − 3

2L

) ∞∑
n=−∞

∫ dD−1k⊥
(2π)D−1

k2
⊥(

k2
⊥ + (2π)2n2

L2 +m2
)s

−
(
D − 3

2L

) ∞∑
n=−∞

∫ dD−1k⊥
(2π)D−1

(2π)2n2

L2(
k2
⊥ + (2π)2n2

L2 +m2
)s , (79)

após aplicarmos a regularização, dada por (61), temos:

T 33 = (D − 2) 1
L

∞∑
n=−∞

1
(4π)(D−1)/2

(2π)2n2

L2

Γ
(
s− D−1

2

)
Γ(s)

 1
(2π)2n2

L2 +m2

s−
D−1

2

−
(
D − 3

2L

) ∞∑
n=−∞

1
(4π)(D−1)/2

D − 1
2

Γ
(
s− D−1

2 − 1
)

Γ(s)

 1
(2π)2n2

L2 +m2

s−
D−1

2 −1

−
(
D − 3

2L

) ∞∑
n=−∞

1
(4π)(D−1)/2

(2π)2n2

L2

Γ
(
s− D−1

2

)
Γ(s)

 1
(2π)2n2

L2 +m2

s−
D−1

2

, (80)
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renomeando alguns parâmetros, temos:

T 33 = D − 2
L

1
(4π)(D−1)/2

Γ (ν)
Γ(s)

1
(2π)2(ν−1)

∞∑
n=−∞

an2

(an2 + c2)ν

−(D − 3) (D − 1)
4L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

∞∑
n=−∞

1
(an2 + c2)ν−1

−D − 3
2L

1
(4π)(D−1)/2

Γ (ν)
Γ(s)

1
(2π)2(ν−1)

∞∑
n=−∞

an2

(an2 + c2)ν , (81)

somando e subtraindo c2 no numerador dentro do somatório do primeiro e último termo
da equação acima,

T 33 = D − 2
L

1
(4π)(D−1)/2

Γ (ν)
Γ(s)

1
(2π)2(ν−1)

×
[ ∞∑
n=−∞

1
(an2 + c2)ν−1 −

∞∑
n=−∞

c2

(an2 + c2)ν
]

−(D − 3) (D − 1)
4L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

∞∑
n=−∞

1
(an2 + c2)ν−1

−D − 3
2L

1
(4π)(D−1)/2

Γ (ν)
Γ(s)

1
(2π)2(ν−1)

∞∑
n=−∞

an2

(an2 + c2)ν

×
[ ∞∑
n=−∞

1
(an2 + c2)ν−1 −

∞∑
n=−∞

c2

(an2 + c2)ν
]
, (82)

utilizando a identidade Γ (ν) = (ν − 1) Γ (ν − 1), reconhecendo as funções zeta de Epstein-
Hurwitz, conforme feito anteriormente, e organizando de forma a colocar fatores comuns
em evidência:

T 33 = 1
L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

{[
(D − 2)− (D − 3)

2

]
(ν − 1)

×
[
Zc2

1 (ν − 1; a)− c2Zc2

1 (ν; a)
]
−
[

(D − 3)(D − 1)
4 Zc2

1 (ν − 1; a)
]}

. (83)

Eliminando os termos sem contribuição física,que não dependem da distância entre as
placas, e escrevendo a função zeta de Epstein-Hurwitz por sua continuação analítica no
caso particular de apenas uma dimensão compactada, obtemos que:

T 33 = 1
L

1
(4π)(D−1)/2

Γ (ν − 1)
Γ(s)

1
(2π)2(ν−1)

×


[
(D − 2)− (D − 3)

2

]
(ν − 1)− (D − 3)(D − 1)

4


× 4

√
π

Γ (ν − 1)

∞∑
n=−∞

(
πn

c
√
a

)ν−3/2

Kν−3/2

(
2πcn√
a

)
. (84)
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Retornando às variáveis originais, considerando ν− 1 = 1−D
2 , s = 1, e organizando alguns

termos, a equação fica reduzida a:

T 33 = 1
(4π)(D−1)/2 (2π)(D−1)

(
−D2 + 14D

4 − 1
)

×4
√
π

∞∑
n=−∞

(
2π2nL

m

)−D/2
KD/2 (mnL) , (85)

utilizando a aproximação da função de Bessel para argumentos pequenos, a equação acima
fica:

T 33 = 1
(4π)(D−1)/2 (2π)(D−1)

(
−D2 + 14D

4 − 1
)

4
√
π

1
2Γ

(
D

2

) 1
πDLD

∞∑
n=−∞

1
nD

, (86)

fazendo D = 4, temos:

T 33 = 1
(4π)3/2 (2π)(3) (−3) 2

√
πΓ (2) 1

π4L4 ζ (4) , (87)

lembrando ζ (4) = π4

90 . Deste modo, a pressão de Casimir, para D = 4 dimensões, corres-
ponde a:

T 33 = P (L) = − 6π2

90L4 = − π2

15L4 . (88)

Portanto, as equações (76) e (88) correspondem, respectivamente, à energia e à pressão
de Casimir em um espaço com uma topologia do tipo Γ1

4 com condições de contorno
periódicas aplicadas ao campo eletromagnético. Tais resultados estão de acordo com
aqueles encontrados por (BROWN; MACLAY, 1969), basta considerarmos que L = 2a,
correspondendo às condições de contorno de Dirichlet. Ao substituirmos L = 2a nas
equações da energia e da pressão, obtemos:

T 00 = E (a) = − π2

720a4 T 33 = P (a) = − π2

240a4 , (89)

tais resultados correspondem aquele previsto por Casimir em 1948. Vale destacar que
diferentes tipos de condições de contorno podem ser utilizados ao estudarmos o efeito
Casimir, como Dirichlet, Neumann, mistas, entre outras. Ao longo dessa tese, utilizamos
condições de contorno periódicas no estudo do efeito Casimir.
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3.4 Efeitos térmicos na energia de Casimir

De forma análoga ao caso anterior, vamos agora obter a energia de Casimir in-
cluindo efeitos térmicos (REGO; LINHARES; MALBOUISSON, 2016). Portanto, além
de compactar uma dimensão espacial, vamos compactar também a dimensão temporal,
na qual obtemos uma circunferência comprimento igual ao inverso da temperatura e uma
circunferência de comprimento L referente a dimensão espacial. Podemos dizer, então,
que agora nosso espaço possui uma topologia do tipo Γ2

4. Partindo da eq.(55), dada por:

T 00 = (D − 2)
∫ dDk

(2π)D
(k0)2

k2
⊥ + (k0)2 + (k3)2 +m2

−
(
D − 3

2

) ∫ dDk

(2π)D
k2
⊥ + (k0)2 + (k3)2

k2
⊥ + (k0)2 + (k3)2 +m2 , (90)

onde k⊥ são as componentes perpendiculares as componentes k3 e k0 do momento, sendo
estas compactadas de acordo com a prescrição de Matsubara, dada por:

∫ dk0

2π →
1
β

∞∑
n1=−∞

, k0 →
2πn1

β
. (91)

∫ dk3

2π →
1
L

∞∑
n2=−∞

, k3 →
2πn2

L
. (92)

Assim, o tensor energia-momento pode ser escrito como:

T 00 = (D − 2) 1
βL

∞∑
n1,n2=−∞

∫ dD−2k⊥
(2π)D−2

(2π)2n2
1

β2(
k2
⊥ + (2π)2n2

1
β2 + (2π)2n2

2
L2 +m2

)s
−
(
D − 3
2βL

) ∞∑
n1,n2=−∞

∫ dD−2k⊥
(2π)D−2

k2
⊥(

k2
⊥ + (2π)2n2

1
β2 + (2π)2n2

2
L2 +m2

)s
−
(
D − 3
2βL

) ∞∑
n1,n2=−∞

∫ dD−2k⊥
(2π)D−2

(2π)2n2
1

β2(
k2
⊥ + (2π)2n2

1
β2 + (2π)2n2

2
L2 +m2

)s
−
(
D − 3
2βL

) ∞∑
n1,n2=−∞

∫ dD−2k⊥
(2π)D−2

(2π)2n2
2

L2(
k2
⊥ + (2π)2n2

1
β2 + (2π)2n2

2
L2 +m2

)s (93)
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fazendo uma regularização dimensional, a equação acima fica da forma:

T 00 = (D − 2) 1
βL

∞∑
n1,n2=−∞

1
(4π)D/2

Γ
(
s− D−2

2

)
Γ(s)

 (2π)2n2
1

β2

(2π)2n2
1

β2 + (2π)2n2
2

L2 +m2


s−D−2

2

−
(
D − 3
2βL

) ∞∑
n1,n2=−∞

1
(4π)D/2

D − 2
2

Γ
(
s− D−2

2 − 1
)

Γ(s)

 1
(2π)2n2

1
β2 + (2π)2n2

2
L2 +m2


s−D−2

2 −1

−
(
D − 3
2βL

) ∞∑
n1,n2=−∞

1
(4π)D/2

Γ
(
s− D−2

2

)
Γ(s)

 (2π)2n2
1

β2

(2π)2n2
1

β2 + (2π)2n2
2

L2 +m2


s−D−2

2

−
(
D − 3
2βL

) ∞∑
n1,n2=−∞

1
(4π)D/2

Γ
(
s− D−2

2

)
Γ(s)

 (2π)2n2
1

β2

(2π)2n2
1

β2 + (2π)2n2
2

L2 +m2


s−D−2

2

. (94)

Definindo em termos de alguns parâmetros adimensionais, a1 = 1
β2 ; a2 = 1

L2 ; c2 = m2

(2π)2 ,
sendo ν = s− D−2

2 − 1 e utilizando a propriedade Γ (ν + 1) = νΓ (ν), obtemos:

T 00 = 1
βL

1
(4π)(D−2)/2

Γ (ν)
Γ(s)

1
(2π)2ν

∞∑
n1,n2=−∞

{
(D − 2)ν a1n

2
1

(a1n2
1 + a2n2

2 + c2)ν+1

−(D − 3)
2

[
D − 2

2
1

(a1n2
1 + a2n2

2 + c2)ν + νa1n
2
1 + νa2n

2
2

(a1n2
1 + a2n2

2 + c2)ν+1

]}
, (95)

com a finalidade de reconhecermos as funções Zeta de Epstein-Hurwitz, fazemos a seguinte
álgebra: ao primeiro termo da equação acima somamos e subtraímos a2n

2
2 +c2 e no último

termo somamos e subtraímos νc2. Portanto, a equação fica da forma:

T 00 = 1
βL

1
(4π)(D−2)/2

Γ (ν)
Γ(s)

1
(2π)2ν

∞∑
n1,n2=−∞

×
{

(D − 2)ν
(

1
(a1n2

1 + a2n2
2 + c2)ν −

a2n
2
2 + c2

(a1n2
1 + a2n2

2 + c2)ν+1

)

− (D − 3)
2

[
D − 2

2
1

(a1n2
1 + a2n2

2 + c2)ν + ν

(a1n2
1 + a2n2

2 + c2)ν

− νc2

(a1n2
1 + a2n2

2 + c2)ν+1

]}
, (96)

sendo a função Zeta de Epstein-Hurwitz, com duas dimensões compactadas, dada por:

Zc2

2 (ν; a1, a2) =
∞∑

n=−∞

1
(a1n2

1 + a2n2
2 + c2)ν , (97)

e sua derivada em relação a a2 dada por:

∂

∂a2
Zc2

2 (ν; a1, a2) =
∞∑

n=−∞

−νn2
2

(a1n2
1 + a2n2

2 + c2)ν+1 , (98)
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eliminando os termos c2 que não possuem dependência com a distância entre as placas, a
eq.(96) pode ser escrita da seguinte forma:

T 00 = 1
βL

1
(4π)(D−2)/2

Γ (ν)
Γ(s)

1
(2π)2ν

∞∑
n1,n2=−∞

×
{[

(D − 2)ν − (D − 3) (D − 2)
4 + D − 3

2 ν

]
Zc2

2 (ν; a1, a2)

+ (D − 2) a2
∂

∂a2
Zc2

2 (ν; a1, a2)
}

(99)

A função zeta de Epstein-Hurwitz, fazendo uma continuação analítica, pode ser escrita
em termos de uma função de Bessel de segunda espécie,conforme a eq.(69). No caso de
d = 2 dimensões compactadas, essa é dada por:

Zc2

2 (ν; a1, a2) = 2π
√
a1a2Γ (ν)

Γ (ν − 1)
2c2(ν−1) + 2

∞∑
n1=1

(
πn1

c
√
a1

)ν−1

Kν−1

(
2πcn1√
a1

)

+ 2
∞∑

n2=1

(
πn2

c
√
a2

)ν−1

Kν−1

(
2πcn2√
a2

)

+ 22
∞∑

n1,n2=1

π
c

√
n2

1
a1

+ n2
2
a2

ν−1

Kν−1

2πc
√
n2

1
a1

+ n2
2
a2


 , (100)

e sua derivada em relação a a2 será:

∂

∂a2
Zc2

2 (ν; a1, a2) = 2π
√
a1a2Γ (ν)

(1− ν) πν−1

cν−1a
ν+1

2
2

∞∑
n2=1

1
n1−ν

2
Kν−1

(
2πcn2√
a2

)

+ πν

cν−2a2a
ν
2
2

∞∑
n2=1

1
n−ν2

[
Kν−2

(
2πcn2√
a2

)
+Kν

(
2πcn2√
a2

)]

+ 2(1− ν)
a2

2

(
π

c

)ν−1 ∞∑
n1,n2=1

n2
2

π
c

√
n2

1
a1

+ n2
2
a2

ν−3

× Kν−1

2πc
√
n2

1
a1

+ n2
2
a2


+ 2πν
cν−2a2

2

(
π

c

)ν−1 ∞∑
n1,n2=1

n2
2

π
c

√
n2

1
a1

+ n2
2
a2

ν−2

×

Kν−2

2πc
√
n2

1
a1

+ n2
2
a2

+ Kν

2πc
√
n2

1
a1

+ n2
2
a2


− π

a2
√
a1a2Γ (ν)Z

c2

2 (ν; a1, a2) . (101)
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Substituindo a equação da função Zeta e sua respectiva derivada na eq.(99)e separando
em três termos, cada um deles dependendo de um certo tipo de somatório, obtemos que:

T 00 = 1
βL

1
(4π)(D−2)/2

1
Γ(s)

1
(2π)2ν

[(
2(3D − 7)ν − (D − 3)(D − 2)

4

)

× 2πΓ (ν − 1)
2√a1a2c2(ν−1) − (D − 2) 2πΓ (ν − 1)

2√a1a2c2(ν−1)

]
+ Tn1 + Tn2 + Tn1,n2 . (102)

O termo 1
βL

= √a1a2 pode ser simplificado com os mesmos termos que aparecem dentro
do colchete. Dessa forma, podemos fazer uma renormalização por subtração e desprezar
os termos que não dependem das separações β e L das placas. Portanto, a eq.(102),
assume a forma:

T 00 = Tn1 + Tn2 + Tn1,n2 . (103)

sendo Tn1 a parte do tensor que possui termos com somatório apenas em n1, Tn2 apenas
para termos com somatório em n2 e Tn1,n2 representa os termos cruzados que apresentam
somatório duplo em n1 e n2. Cada um desses termos gera uma contribuição para a
expressão geral do tensor energia momento. Trabalhando, separadamente, cada um deles,
obtemos que Tn1 será:

Tn1 = 1
(4π)(D−2)/2

1
Γ(s)

1
(2π)2ν

(
2(3D − 7)ν − (D − 3)(D − 2)

4

)

× 4πν
c(ν−1)(√a1)ν−1

∞∑
n1

1
n1−ν

1
K1−ν

(
2πcn1√
a1

)
, (104)

sendo ν = s− D−2
2 − 1 e fazendo o limite em que s→ 1, obtemos:

Tn1 = 1
(4π)(D−2)/2 (2π)D−2 ((3D − 7)(2−D)− (D − 3)(D − 2))

× π
2−D

2

c−D/2(√a1)−D/2
∞∑
n1

1
n
D/2
1

KD/2

(
2πcn1√
a1

)
, (105)

usando a aproximação KD/2 (mnL) ∼ 1
2Γ
(
D
2

) (
2

mnL

)D/2
, a eq.(105) pode ser escrita como:

Tn1 = 1
(4π)(D−2)/2 (2π)D−2 ((3D − 7)(2−D)− (D − 3)(D − 2))π 2−D

2

×
∞∑
n1

(
m

2πn1β

)D/2 ( 2
mn1β

)D/2 1
2Γ

(
D

2

)
, (106)
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organizando os termos, temos:

Tn1 = 1
(4π)(D−2)/2 (2π)D−2 ((3D − 7)(2−D)− (D − 3)(D − 2))π 2−D

2

×1
2Γ

(
D

2

) 1
πD/2βD

∞∑
n1

1
nD1

, (107)

fazendo D = 4 e identificando ∑∞n1
1
nD1

= ζ (4) = π4

90 como a função zeta de Riemann,
obtemos que o termo Tn1 do tensor energia-momento será:

Tn1 = π2

15β4 . (108)

O resultado acima corresponde a contribuição da temperatura para a energia de Casimir.
O comportamento com o inverso da quarta potência da temperatura reproduz a lei de
Stefan-Boltzmann (Radiação de corpo negro).

Trabalhando agora com o termo Tn2 , obtemos uma expressão análoga a eq.(105)com
termos adicionais referentes aos somatórios em n2, dada por :

Tn2 = 1
(4π)(D−2)/2 (2π)D−2

(
(3D − 7)(2−D)− (D − 3)(D − 2)

4

)
2π 2−D

2

c−D/2(√a2)−D/2

×
∞∑
n2

1
n
D/2
2

KD/2

(
2πcn2√
a2

)
+ (D − 2) 2π 2−D

2 a2D/2
c−D/2(√a2)−D/2

∞∑
n2

1
n
D/2
2

KD/2

(
2πcn2√
a2

)

+(D − 2) 2π 4−D
2

c
D+2

2 (√a2) 2−D
2

∞∑
n2

1

n
D−2

2
2

[
KD+2

2

(
2πcn2√
a2

)
+KD−2

2

(
2πcn2√
a2

)]
, (109)

simplificando alguns termos, organizando a equação acima, e lembrando que os parâmtros
adimensionais são dados por c = m

2π e a2 = 1
L
, obtemos que:

Tn2 = 2
(
m

2πL

)D/2 ((3D − 7)(2−D)− (D − 3)(D − 2)
4

) ∞∑
n2

1
n
D/2
2

KD/2 (mn2L)

−mL2 (D − 2)
∞∑
n2

1
n
D/2−1
2

KD/2−1 (mn2L) +

+mL2 (D − 2)
∞∑
n2

1
n
D/2−1
2

KD/2+1 (mn2L) , (110)

colocando alguns termos comuns em evidência, temos:

Tn2 = 2
(
m

2πL

)D/2 ((3D − 7)(2−D)− (D − 3)(D − 2)
4

) ∞∑
n2

1
n
D/2
2

KD/2 (mn2L)

−mL2 (D − 2)
∞∑
n2

1
n
D/2−1
2

(
KD/2−1 (mn2L)−KD/2+1 (mn2L)

)
, (111)

utilizando a seguinte recorrência da função de Bessel Kν−1(x) − Kν+1 = −2ν
x
Kν(x), a
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equação acima fica:

Tn2 = 2
(
m

2πL

)D/2 ((3D − 7)(2−D)− (D − 3)(D − 2) + 2(D − 2)D
4

)

×
∞∑
n2

1
n
D/2
2

KD/2 (mn2L) + (D − 2)D
2

∞∑
n2

1
n
D/2
2

KD/2 (mn2L) , (112)

sendo a função de bessel commum a ambos os termos, podemos escrever como:

Tn2 = 2
(
m

2πL

)D/2(3D − 7)(2−D)− (D − 3)(D − 2) + 2(D − 2)D + (D−2)D
2

4


×
∞∑
n2

1
n
D/2
2

KD/2 (mn2L) . (113)

Fazendo D = 4 e utilizando e identificando a função zeta de Riemann, obtemos:

Tn2 = − π2

45L4 . (114)

O resultado é idêntico ao encontrado na eq.(76), portanto representa a compactação de
uma dimensão espacial.

Por fim, podemos trabalhar no termo, Tn1n2 , correspondendo a contribuição de
ambas as dimensões compactadas. Desse modo,

Tn1n2 = 1
(4π)(D−2)/2 (2π)D−2

{(
(3D − 7)(2−D)− (D − 3)(D − 2)

4

)
4π−D/2
c−D/2

×
∞∑

n1,n2=1

√n2
1
a1

+ n2
2
a2

−D/2KD/2

2πc
√
n2

1
a1

+ n2
2
a2


+ 4π (D − 2)D

2a2

(
π

c

)−D/2 ∞∑
n1,n2=1

n2
2

√n2
1
a1

+ n2
2
a2

−D/2−2

× KD/2

2πc
√
n2

1
a1

+ n2
2
a2


+ (D − 2) 4π2−D/2

a2c−D/2−1

∞∑
n1,n2=1

n2
2

√n2
1
a1

+ n2
2
a2

−D/2−1

×

KD/2+1

2πc
√
n2

1
a1

+ n2
2
a2

+KD/2−1

2πc
√
n2

1
a1

+ n2
2
a2

, (115)

escrevendo em termos das variáveis originais e simplificando alguns termos, a equação
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acima pode ser escrita como:

Tn1n2 = 4
(
m

2π

)D/2 {((3D − 7)(2−D)− (D − 3)(D − 2)
4

)

×
∞∑

n1,n2=1

 1√
n2

1β
2 + n2

2L
2

D/2KD/2

(
m
√
n2

1β
2 + n2

2L
2
)

+ (D − 2)DL
2

2

∞∑
n1,n2=1

n2
2

 1√
n2

1β
2 + n2

2L
2

D/2+2

KD/2

(
m
√
n2

1β
2 + n2

2L
2
)

+ mL2

2

∞∑
n1,n2=1

n2
2

 1√
n2

1β
2 + n2

2L
2

D/2+1

×
[
KD

2 +1

(
m
√
n2

1β
2 + n2

2L
2
)

+KD
2 −1

(
m
√
n2

1β
2 + n2

2L
2
)], (116)

usando a relação de recorrência da função de Bessel Kν+1 = Kν−1(x) + 2ν
x
Kν(x), organi-

zando e colocando em eviência um fator comum, obtemos:

Tn1n2 = 4
(
m

2π

)D/2
∞∑

n1,n2=1

 1√
n2

1β
2 + n2

2L
2

D/2

×
[

(3D − 7)(2−D)− (D − 3)(D − 2)
4 + n2

2L
2(D − 2)

n2
1β

2 + n2
2L

2

(
D

2 + 1
) ]

× KD/2

(
m
√
n2

1β
2 + n2

2L
2
)

+ mL2(D − 2)
∞∑

n1,n2=1
n2

2

 1√
n2

1β
2 + n2

2L
2

D
2 +1

× KD
2 −1

(
m
√
n2

1β
2 + n2

2L
2
), (117)

fazendo o limite em que m→ 0, a equação acima fica:

Tn1n2 = 4
(
m

2π

)D/2 ∞∑
n1,n2=1

 1√
n2

1β
2 + n2

2L
2

D/2

×

(3D − 7)(2−D)− (D − 3)(D − 2)
4 + n2

2L
2(D − 2)

n2
1β

2 + n2
2L

2

(
D

2 + 1
)

×KD/2

(
m
√
n2

1β
2 + n2

2L
2
)
. (118)

Considerando a dimensão como D = 4, utilizando a aproximação da função de Bessel
para argumentos pequenos , e simplificando alguns termos, a eq.(118)assume a seguinte
forma

Tn1n2 = − 8
π2

∞∑
n1,n2=1

n2
1β

2 − n2
2L

2

(n2
1β

2 + n2
2L

2)3 . (119)
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Portanto, de acordo com a eq.(103), a energia de Casimir com efeitos térmicos, é dada
por:

T 00 = π2

15β4 −
π2

45L4 −
8
π2

∞∑
n1,n2=1

n2
1β

2 − n2
2L

2

(n2
1β

2 + n2
2L

2)3 . (120)

onde o primeiro termo reproduz a radiação de corpo negro (compactação da dimensão
temporal), o segundo termo expressa a contribuição da energia de Casimir (compactação
da dimensão espacial), e o último termo representa a contribuição mista das compactações
espacial e temporal. O resultado acima foi calculado utilizando condições de contorno
periódicas, podendo esse ser generalizado para as condições de Dirichlet, Neumann ou
mistas.
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4 CORREÇÕES RADIATIVAS AO EFEITO CASIMIR

4.1 Teorias de calibre

As simetrias ligadas as teorias físicas desempenham um papel fundamental no
estudo de diversos fenômenos na natureza. O termo simetria em física refere-se ao fato
de algum parâmetro ser invariante na sua forma. Deste modo, dizemos que um sistema
é invariante sob um determinado grupo de transformações ou que ele apresenta uma
determinada simetria em algum parâmetro que o descreve. Em física, existem dois tipos
de simetria: as chamadas simetrias globais e as chamadas simetrias locais, essas últimas
sendo de grande importância no desenvolvimento da teoria de campos, conhecidas como
simetrias de calibre ou de gauge. Na década de 1960 a teoria quântica de campos passou
a ser estudada no contexto das chamadas teorias de calibre. Como exemplos dessas
teorias,temos: a eletrodinâmica quântica (QED), que descreve essencialmente os processos
de interação entre elétrons e fótons, classificada como uma teoria de calibre abeliana.
Além dessa, temos também a chamada cromodinâmica quântica (QCD), descrevendo a
interação entre os quarks e glúons no interior da matéria hadrônica, sendo caracterizada
como uma teoria de calibre não abeliana. Nesse trabalho, o efeito Casimir é estudado no
contexto da eletrodinâmica quântica, porém o mesmo pode ser aplicado a outros tipos de
campos, conforme descrito pela QCD.

4.2 Correções radiativas na eletrodinâmica

Até agora estudamos e ofeito Casimir, considerando apenas o campo livre, ou
seja, apenas o propagador do fóton. Porém, para uma teoria quântica de campos que
descreve a natureza de uma forma mais precisa, é necessário consideramos a interação
entre os campos. Quanto maior as ordens na teoria de perturbação mais próximo da
realidade será descrito o fenômeno estudado. No caso particular, o estudo do efeito Ca-
simir. A partir desse momento, estendemos nosso estudo, considerando a interação do
campo eletromagnético e do campo do elétron, de acordo com a eletrodinâmica quântica
na aproximação de 1 loop. Obtêm-se, assim, neste contexto, correções radiativas para
o efeito Casimir, bem como correções devidas a temperatura finita. O tratamento de
integrais relativas a amplitudes de Feynman é, novamente, realizado através do método
de Matsubara generalizado, delimitando então um determinado número de dimensões.
Os resultados assim obtidos para a energia e a pressão de Casimir podem ser compa-
rados com os já conhecidos na literatura, calculados por outros métodos (RAVNDAL;
THOMASSEN, 2004);(BARONE; CAVALCANTI; FARINA, 2004);(BORDAG; SCHAR-
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NHORST, 1998)(CAVALCANTI; FARINA; BARONE, 2006). Os primeiros a calcularem
correções radiativas a energia de Casimir foram Bordag, Robaschik, e Wieczorek (BOR-
DAG; ROBASCHIK; WIECZOREK, 1985), encontrando ∆E0 = π2α

2560ma4 como a correção
em primeira ordem da energia de vácuo, ondem corresponde a massa do elétron, a sendo a
separação entre as placas. Tal correção se origina como um efeito devido a polarização do
vácuo. O processo físico de nosso interesse no presente trabalho corresponde aquele onde
há dois fótons externos, representando portanto a propagação do fóton na presença da
interação. As contribuições perturbativas são identificadas como a auto-energia do fóton,
na qual o fóton ao se propagar cria um par elétron-pósitron que interage com o campo
bosônico (ITZYKSON; ZUBER, 2005). Portanto, estamos interessados em calcular o
diagrama de loop fermiônico que representa a auto-energia do fóton, conforme mostra a
Fig.3. O tratamento aqui será feito de forma análoga ao utilizado nos cálculos para campo

Figura 3 - Auto-energia do fóton

Legenda: Correção ao propagador do fóton
Fonte: O autor, 2020.

livre. Partindo da ideia de calcularmos a energia de Casimir pelo valor esperado no vácuo
do tensor energia-momento, representado pela eq.(52), podemos escrever que:

〈
Ω | TAα (x)Aβ (x′) | Ω

〉
=
〈
0 | TAα (x)Aβ (x′) | 0

〉
+
〈
Ω | TAα (x)Aβ (x′) | Ω

〉
(1),

(121)

onde o primeiro termo na equação acima corresponde ao campo livre do fóton e o segundo
termo representa a correção a 1 loop ao propagador do fóton, coforme representado pelos

Figura 4 - Representação por diagramas

Legenda: Propagaor livre e progador fermiônico a 1
loop

Fonte: O autor, 2020.
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diagrmas da Fig.4

Deste modo, de acordo com as regras de Feynman na QED, a correção radiatava para a
energia de Casimir, pode ser calculado pelo diagrma de loop fermiônico. Logo:
〈

Ω | TAα (x)Aβ (x′) | Ω
〉

(1) = gαρgσβ

∫ dDk

(2π)D
e−ik.(x−x

′)

(k2 + iε)2

×
[
(−1)× (−e2)

∫ dDp

(2π)DTr
(
γρ

1
6 p−m+ iε

γσ
1

6 p− 6 k −m+ iε

)]
, (122)

onde o fator −1 representa o loop fermiônico e e2 corresponde a carga do elétron.

Fazendo as contrações de gαρ e gσβ com o operador diferencial Oµν , o tensor energia-
momento pode ser escrito da forma:

T µν (x) = lim
x−→x′

[
δνσ∂

µ∂′ρ − gρσ∂µ∂′ν − δµρ δνσ∂λ∂′λ + δµρ∂σ∂
′ν + 1

2g
µν
(
gρσ∂λ∂′λ − ∂σ∂′ρ

)]
×
∫ dDk

(2π)D
e−ik.(x−x

′)

(k2 + iε)2

× e2
∫ dDp

(2π)DTr
(
γρ

1
6 p−m+ iε

γσ
1

6 p− 6 k −m+ iε

)
, (123)

utilizando as propriedades do traço das matrizes gama, em um espaço de D dimensões,
dadas por:

Tr (γργσ) = Dgρσ

Tr (γργαγσγβ) = D (gραgσβ − gρσgαβ + gρβgασ) ,

a equação (123) assume a seguinte forma:

T µν (x) = lim
x−→x′

[
δνσ∂

µ∂′ρ − gρσ∂µ∂′ν − δµρ δνσ∂λ∂′λ + δµρ∂σ∂
′ν + 1

2g
µν
(
gρσ∂λ∂′λ − ∂σ∂′ρ

)]
×
∫ dDk

(2π)D
e−ik.(x−x

′)

(k2 + iε)2

×De2
∫ dDp

(2π)D
pρ(p− k)σ + pσ(p− k)ρ − gρσ(p.(p− k)−m2)

(p2 −m2)((p− k)2 −m2) , (124)
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após uma certa álgebra no numerador da integral em p, e passando para o espaço eucli-
diano, o tensor energia-momento fica:

T µν (x) = lim
x−→x′

[
δνσ∂

µ∂′ρ − gρσ∂µ∂′ν − δµρ δνσ∂λ∂′λ + δµρ∂σ∂
′ν + 1

2g
µν
(
gρσ∂λ∂′λ − ∂σ∂′ρ

)]
×
∫ dDk

(2π)D
e−ik.(x−x

′)

(k2 +m2)2

De2
∫ dDp

(2π)D
2pρpσ − pρkσ − δρσ((p2 − p.k) +m2)

(p2 +m2)((p− k)2 +m2) . (125)

Observando o numerador da integral em p, percebemos que esse representa um polinônimio
do segundo grau. Desse modo, podemos escrevê-lo como derivadas que atuam em uma
função exponencial (CARDOSO, ), portanto:

T µν (x) = lim
x−→x′

[
δνσ∂

µ∂′ρ − gρσ∂µ∂′ν − δµρ δνσ∂λ∂′λ + δµρ∂σ∂
′ν + 1

2g
µν
(
gρσ∂λ∂′λ − ∂σ∂′ρ

)]
×De2

∫ dDk

(2π)D
e−ik.(x−x

′)

(k2 +m2)2

∫ dDp

(2π)D

×
[

2 ∂
∂zρ

∂
∂zσ
− kσ ∂

∂zρ
− kρ ∂

∂zσ
− δρσ(O2 − ki ∂∂zi +m2)

(p2 +m2)((p− k)2 +m2)

]
× ep.z

∣∣∣∣∣
z=0

. (126)

Esse polinômio mencionado, pode ser interpretado como um operador, escrito da seguinte
forma:

P(k, ∂
∂z

) =
[
2 ∂

∂zρ
∂

∂zσ
− kσ

∂

∂zρ
− kρ

∂

∂zσ
− δρσ(O2 − ki

∂

∂zi
+m2)

]
× ep.z

∣∣∣∣∣
z=0

,

(127)

portanto, a parte da eq.(126) referente a integral em p, pode ser escrita com a seguinte
notação:

Γρσ (k) = lim
z→0
P(k, ∂

∂z
)I (k, z) , (128)

onde I (k, z), é a parte remanescente da integral em p, dada por:

I (k, z) =
∫ dDp

(2π)D
epz

(p2 +m2)((p− k)2 +m2) . (129)

Utilizando a prescrição de Matsubara para a compactação de uma dimensão espacial, a
eq.(128) fica da forma:

Γρσ (k) = lim
z→0

1
L

∑
n

∫ dNp⊥
(2π)N P(k, ∂

∂z
) ep⊥z⊥+lz′

(p2
⊥ +m2 + l2)((p⊥ − k⊥)2 +m2 + (l − k′)2) , (130)

onde p⊥ e z⊥ são as componentes ortogonais em relação as componentes compactadas do
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momento e do parâmetro z, dadas respectivamente por l e z′. O número N corresponde
à dimensão do espaço após uma compactação. Portanto, N = D − 1, correspondendo a
uma dimensão espacial compactada. Logo,

Γρσ (k) = lim
z→0

1
L

∑
n

PρσΓN(k, n, z)ez′l, (131)

sendo ΓN(k, n, z), igual a:

ΓN(k, n, z) =
∫ dNp⊥

(2π)N
ez⊥p⊥

(p2
⊥ +m2

1)((p⊥ − k⊥)2 +m2
2) , (132)

onde m2
1 = m2 + l2 e m2

2 = m2 + (l − k′)2.

Escrevendo o polinômio de derivadas P(k, ∂
∂z

) junto com a integral acima, podemos defini-
los conforme abaixo:

I =
∫ dNk⊥

(2π)N
P( ∂

∂z
)ez⊥p⊥

(k2
⊥ +m2

1)((k⊥ + p⊥)2 +m2
2) . (133)

Utilizando os parâmetros de Schwinger (ITZYKSON; ZUBER, 2005), podemos reescrever
denominador da integral como:

1
k2
⊥ +m2

1
=
∫ ∞

0
dα1e

−α1(k2
⊥+m2

1)

1
(k⊥ + p⊥)2 +m2

2) =
∫ ∞

0
dα2e

−α2(k⊥+p⊥)2+m2
2) (134)

sendo assim, a integral pode ser escrita na forma:

I = P( ∂
∂z

)
∫ ∞

0
dα1dα2

∫ dNk⊥
(2π)N e

−α1(k2
⊥+m2

1)−α2(k⊥+p⊥)2+m2
2). (135)

Desenvolvendo o expoente da integral acima, podemos escrevê-lo da seguinte maneira:

−E = α1k
2
⊥ + α2

(
k2
⊥ + 2k⊥p⊥ − k⊥

z⊥
α2

)
+
∑

m2
iαi + α2p

2
⊥ (136)

após uma certa álgebra, obtemos:

−E = (α1 + α2)
[(
k⊥ + α2

α1 + α2

(
p⊥ −

z⊥
2α2

))2
− α2

2

(α1 + α2)2

(
p⊥ −

z⊥
2α2

)2
]

+
∑

m2
iαi + α2p

2
⊥, (137)

fazendo um deslocamento sem jacobiano, ou seja, k⊥ → k⊥+ α2
α1+α2

(
p⊥ − z⊥

2α2

)
, o expoente
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pode ser escrito como:

−E = (α1 + α2) k2
⊥ −

α2
2

(α1 + α2)

(
p2
⊥ −

p⊥z⊥
α2

+ z2
⊥

4α2
2

)
+
∑

m2
iαi + α2p

2
⊥

= (α1 + α2) k2
⊥ + α1α2

(α1 + α2)p
2
⊥ −

1
α1 + α2

(
z2
⊥
4 − α

2z⊥p⊥

)
+
∑

m2
iαi, (138)

substituindo o expoente de volta na integral I, dada pela (eq.135), obtemos:

I = P( ∂
∂z

)
∫ ∞

0
dα1dα2

∫ dNk⊥
(2π)N e

[
(α1+α2)k2

⊥+ α1α2
(α1+α2)p

2
⊥−

1
α1+α2

(
z2
⊥
4 −α

2z⊥p⊥

)
+
∑

m2
iαi

]
. (139)

Podemos, então, resolver a integral em k⊥ como:

∫ dNk⊥
(2π)N e

−(α1+α2)k2
⊥ = 1

(2π)N

(
π

(α1 + α2)

)N/2
, (140)

logo, a integral I assume a forma:

I = P(∂/∂z)
(4π)N/2

∫ ∞
0

dα1dα2
1

(α1 + α2)N/2
e
−
α1α2p

2
⊥

α1+α2
+
∑

m2
iαi−

1
(α1+α2)2

(
z2
⊥
4 −α2p⊥z⊥

)
.

(141)

Inserindo a seguinte relação de completeza dada pela delta de Dirac:

1 =
∫ ∞

0
dλδ (λ− α1 − α2) , (142)

obtemos:

I = P(∂/∂z)
(4π)N/2

∫ ∞
0

dλ
∫ ∞

0
dα1dα2

1
(α1 + α2)N/2

δ (λ− α1 − α2) e−
α1α2p

2
⊥

α1+α2

+
∑

m2
iαi −

1
(α1 + α2)2

(
z2
⊥
4 − α2p⊥z⊥

)
, (143)

fazendo um escalonamento, de forma que αi → λαi, temos:

I = P(∂/∂z)
(4π)N/2

∫ ∞
0

dλ
∫ 1

0
dα1dα2

λ2−N/2

(α1 + α2)N/2
δ (λ− λ(α1 − α2))

×e
−λ
[
α1α2p

2
⊥

α1+α2
+
∑

m2
i

]
− 1
λ(α1+α2)

[
z2
⊥
4 −λα2p⊥z⊥

]
,

(144)

utilizando a propriedade da delta de Dirac δ (λ− λ(α1 − α2)) = 1
λ
δ (1− (α1 − α2)), temos:

I = P(∂/∂z)
(4π)N/2

∫ ∞
0

dλ
∫ 1

0
dα1dα2

λ2−N/2−1

(α1 + α2)N/2
δ (λ− λ(α1 − α2))

×e
−λ
[
α1α2p

2
⊥

α1+α2
+
∑

m2
i

]
− 1
λ(α1+α2)

[
z2
⊥
4 −λα2p⊥z⊥

]
,

(145)
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integrando em α1 com a delta de Dirac, a integral I fica da forma:

I = P(∂/∂z)
(4π)N/2

∫ ∞
0

dλ
∫ 1

0
dαλ2−N/2−1e

−λ[(1−α)αp2
⊥+
∑

m2
i ]− 1

λ

[
z2
⊥
4 −λαp⊥z⊥

]
, (146)

fazendo p → −k, a integral acima volta a ter o mesmo formato da integral ΓN(k, n, z),
dada pela eq.(132). Portanto, temos que:

ΓN = P(∂/∂z)
(4π)N/2

∫ ∞
0

dλ
∫ 1

0
dαλ2−N/2−1e

−λ[(1−α)αk2
⊥+
∑

m2
i ]− 1

λ

[
z2
⊥
4 −λαk⊥z⊥

]
, . (147)

Substituindo a integral acima na expressão do tensor energia-momento, dado pela eq.(125),
obtemos:

T µν = lim
y−→0

Θµνσρ

∫ dDk

(2π)D
ek.y

(k2 +m2)2 Γρσ, (148)

onde Γρσ = limz→0
1
L

∑
nPρσΓN(k, n, z)ez′l , y = −i(x − x′). Sendo Θµνσρ, um operador

de 4ª ordem, definido por:

Θµνσρ = −δνσ∂µ∂ρ − δρσ∂µ∂ν + δρµδσν∂
2 − δρµ∂σ∂ν −

1
2δµν

(
δρσ∂

2 + ∂ρ∂σ
)

(149)

onde ∂µ = ∂
∂yµ

.

De forma análoga ao que fizemos no início desse capítulo, vamos trabalhar agora com
o momento externo k do diagrama de loop. Logo, pela prescrição de Matsubara, temos
que: k = k⊥ + k′ e y = y⊥ + y′, onde k′ e y′ representam as componentes compactadas
em relação as componentes ortogonais k⊥ e y⊥. Desse modo, o tensor energia-momento,
assume a seguinte forma:

T µν = lim
y−→0

1
L2

∑
mi

∫ dNk⊥
(2π)N

Θµνσρ

(
ey⊥k⊥ey

′k′Γρσ
)

(k2
⊥ +m2

3)2 , (150)

sendo m2
3 = k′2 +m2

Lembrando que Γρσ possui um operador diferencial Pρσ escrito em termos de k. Portanto,
de forma análoga a eq.(127), podemos definir que:

Pρσ = Ωρσe
k.y

∣∣∣∣∣
y=0

, (151)



52

onde Ωρσ, representa um operador diferencial que atua em ek.y, dado por:

Ωρσ =
[
2 ∂

∂zρ
∂

∂zσ
− ∂

∂yσ
∂

∂zρ
− ∂

∂yρ
∂

∂zσ
− δρσ(O2 − ∂

∂yi
∂

∂zi
+m2)

]
. (152)

Portanto, reescrevemos o tensor energia-momento, dado pela eq.(150), da seguinte ma-
neira:

T µν = Ψµν
1
L2 lim

z,y−→0

∑
mi,nj

∫ dNk⊥
(2π)N

ek⊥y⊥ΓN

(k2
⊥ +m2

3)2 e
k′y′+z′l, (153)

onde Ψµν = ΘµνσρΩρσ representa um operador diferencial resultante da contração dos dois
outros operadores de ordens diferentes.

Definindo a integral em k⊥ na expressão acima como:

A =
∫ dNk⊥

(2π)N
ek⊥y⊥ΓN

(k2
⊥ +m2

3)2 . (154)

O denominador da integral acima esta elevado a uma potência, utilizando uma ideia
análoga a uma transformada de Laplace para escrever parâmetros de Schwinger, podemos
escrevê-lo como:

1
(k2
⊥ +m2

3)2 =
∫ ∞

0
dββe−β(k2

⊥+m2
3),

deste modo,

B = 1
(4π)N/2(2π)N

∫
dNk⊥e

−βk2
⊥−λ(1−α)αk2

⊥−αz⊥k⊥+k⊥y⊥ , (155)

trabalhando no expoente, temos:

−E = −βk2
⊥ − λ(1− α)αk2

⊥ − αz⊥k⊥ + k⊥y⊥

= (β + λ(1− α)α)
[
k2
⊥ + (αz⊥ − y⊥)k⊥

β + λ(1− α)α

]

= (β + λ(1− α)α)
(k⊥ + 1

2
(αz⊥ − y⊥)

β + λ(1− α)α

)2

− 1
4

(αz⊥ − y⊥)2

(β + λ(1− α)α)2

 . (156)

Fazendo o deslocamento k⊥ → k⊥ + 1
2

(αz⊥−y⊥)
β+λ(1−α)α , a integral em k⊥ pode ser escrita na

forma:

B = 1
(4π)N/2(2π)N

∫
dNk⊥e

−
[
(β+λ(1−α)α)k2

⊥−
1
4

(αz⊥−y⊥)2

(β+λ(1−α)α)2

]
, (157)
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resolvendo a integral em k⊥, obtemos que:

B =
(

π

β + λ(1− α)α)

)N/2
e
− 1

4
(αz⊥−y⊥)2

(β+λ(1−α)α)2 ,

(158)

logo, a eq.(154) pode se escrita como:

A = 1
(4π)N

∫ ∞
0

dλλ2−N/2−1e−
z2
⊥

4λ

∫ 1

0
dαe−λ

∑
αim

2
i

∫ ∞
0

dββe−βm
2
3

× (β + λ(1− α)α))−N/2 e−
1
4

(αz⊥−y⊥)2

(β+λ(1−α)α)2 (159)

fazendo β → λβ;
∫∞

0 dβ →
∫ 1

0 dβ,obtemos que:

A = 1
(4π)N

∫ 1

0
dβdα (β + (1− α)α))−N/2

∫ ∞
0

dλλ4−N−1

×e−λ(
∑

αim
2
i+βm

2
3)−

z2
⊥

4λ −
1
4

(αz⊥−y⊥)2

(β+(1−α)α)2 . (160)

Substituindo na expressão do tensor energia-momento, dado pela eq.(153), temos:

T µν = 1
(4π)N

1
L2 lim

z,y−→0

∑
mi,nj

[∫ 1

0
dβdα (β + (1− α)α))−N/2

∫ ∞
0

Ψµνdλλ
4−N−1

×e−λ(
∑

αim
2
i+βm

2
3)−

z2
⊥

4λ −
1
4

(αz⊥−y⊥)2

(β+(1−α)α)2

]
ek
′y′+z′l. (161)

Lembrando que Ψµν = ΘµνσρΩρσ é o operador diferencial resultante da contração dos
outros dois operadores. Contraindo cada um dos termos de Θµνσρ, dado pela eq.(149),
com cada termo de Ωρσ,dado pela eq.(152), obtemos que:

Ψµν = ∂2

∂yµ∂yρ

[
2 ∂

∂zρ
∂

∂zν
− ∂

∂yν
∂

∂zρ
− ∂

∂yρ
∂

∂zν
− δνρ(O2 − ∂

∂yi
∂

∂zi
+m2)

]

− ∂2

∂yµ∂yρ

[
(2−D)

(
O2 − ∂2

∂yi∂zi

)
−Dm2

]

+ ∂2

∂y2

[
2 ∂

∂zµ
∂

∂zν
− ∂

∂yν
∂

∂zµ
− ∂

∂yµ
∂

∂zν
− δµν(O2 − ∂

∂yi
∂

∂zi
+m2)

]

− ∂2

∂yσ∂yν

[
2 ∂

∂zµ
∂

∂zσ
− ∂

∂yσ
∂

∂zµ
− ∂

∂yµ
∂

∂zσ
− δµσ(O2 − ∂

∂yi
∂

∂zi
+m2)

]

−1
2δµν

{
∂2

∂y2

[
(2−D)

(
O2 − ∂2

∂yi∂zi

)
−Dm2

]

+ ∂2

∂yρ∂yσ

[
2 ∂

∂zρ
∂

∂zσ
− ∂

∂yσ
∂

∂zρ
− ∂

∂yρ
∂

∂zρ
− δρσ(O2 − ∂

∂yi
∂

∂zi
+m2)

]}
, (162)

fazendo as devidas contrações, simplificando alguns termos, e organizando esse operador



54

diferencial resultante, obtemos:

Ψµν = 2 ∂2

∂yµ∂zν

(
∂2

∂zρ∂yρ
− O2

)
+ 2O2 ∂2

∂zµ∂zν

+ ∂2

∂yµ∂yν

(
∂2

∂zσ∂yσ
− ∂2

∂zρ∂yρ
−
[
(2−D)

(
O2 − ∂2

∂yi∂zi

)
−Dm2

])

−2 ∂2

∂zµ∂yν
∂2

∂zσ∂yσ

−1
2δµν

{
O2
[(

O2 − ∂2

∂yi∂zi

)
(1 + (2−D))−m2(D − 1)

]}
. (163)

Arrumando o operador Ψµν e fazendo µ = ν, pois estamos interessados na componente
T 00 do tensor energia-momento que representa energia de Casimir, podemos escrevê-lo
como:

Ψµµ = O2
y

[
2
(
∂2

∂z2
µ

− ∂2

∂yµ∂zµ

)
− (3−D)

2

(
O2
z −

∂2

∂yρ∂zρ

)]

+(D − 1)
2 m2 + ∂2

∂y2
µ

[(
O2
z −

∂2

∂yρ∂zρ

)
(2−D)

]
, (164)

esse operador irá atuar na função exponencial contida na eq.(161), dada por:

f(z, y) = eay
2
⊥+by⊥z⊥+cz2

⊥+z′l+k′y (165)

onde os parâmtros acima são identificados por:

a = − 1
4 (β + (1− α)α)2

b = α

2 (β + (1− α)α)2

c = −
(

α2

4 (β + (1− α)α)2 + 1
4λ

)

Observando a eq.(164) podemos identificar 4 operadores distintos, dados por
(
O2
z − ∂2

∂yρ∂zρ

)
;(

∂2

∂z2
µ
− ∂2

∂yµ∂zµ

)
; O2

y e ∂2

∂y2
µ
. Portanto, cada um desses termos irá atuar na função f(z, y)

descrita acima. Logo, temos que:

O2
zf(z, y) =

∑ ∂2

∂z2
i

f(z, y) = ∂2f(z, y)
∂zi∂zj

= ∂

∂zj

(
∂

∂zi
eay

2
⊥+by⊥z⊥+cz2

⊥+z3l+k′y3

)
, (166)
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para i = 0, 1, 2, obtemos:

∂

∂zj

(
(byi + 2czi)f(z, y)

)
=
(
2cδij + (byi + 2czi)(byj + 2czj)

)
f(z, y) (167)

para i = 3, temos ∂2

∂z2
3

= l2f(z, y).

Aplicando o outro termo do primeiro operador, temos que:

∂2f(z, y)
∂yj∂zi

=
(
bδij + (byi + 2czi)(bzi + 2ayj)

)
f(z, y), (168)

para i = j = 0, 1, 2, temos:

∂2f(z, y)
∂yj∂zi

=
(
bδii + (byi + 2czi)(bzi + 2ayi)

)
f(z, y), (169)

para i=j=3, temos que ∂2

∂y3∂z3
= k′lf(z, y).

Tomando o limite de z → 0, obtemos que o primeiro operador será:

(
O2
z −

∂2

∂yρ∂zρ

)
f(0, y) =

(
δii(2c− b) + y2(b2 − 2ba) + l2 − k′l

)
f(0, y) (170)

de forma análoga o termo
(
∂2

∂z2
µ
− ∂2

∂yµ∂zµ

)
, pode ser escrito como:

(
∂2

∂z2
µ

− ∂2

∂yµ∂zµ

)
=
(
δµµ(2c− b)yµ2(b2 − 2ba)

)
f(0, y). (171)

Portanto, o operador diferencial Ψµµ, dado pela eq.(164),pode ser reescrito da seguinte
maneira:

ΨµµG(y) = δµµO2
y

{[
(2c− b)(2 + D − 3

2 δii)− (3−D)
2

(
(b2 − 2ba)y2 + l2 − k′l

)]
G(y)

}

+(b2 − 2ba)O2
y

[
yµ2G(y)

]
+ δµµ

(D − 1)
2 m2G(y)

+ ∂2

∂y2
µ

[ (
δii(2c− b) + l2 − k′l + y2(b2 − 2ba)

)
(2−D)G(y)

]
, (172)

onde G(y) = f(0, y) = eay
2
⊥+k′y3 .

Organizando os termos da equação acima, obtemos:
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ΨµµG(y) = δµµ
[
(2c− b)(2 + D − 3

2 δii) + (D − 3)
2 (l2 − k′l)O2

yG(y)

+ D − 3
2 (b2 − 2ba)O2

y(y2G(y))
]

+ (b2 − 2ba)O2
y(yµ2G(y))

+
[(
δii(2c− b) + l2 − k′l

) ∂2G(y)
∂y2

µ

+ (b2 − 2ba) ∂
2

∂y2
µ

(y2G(y))
]

×(2−D) + δµµ
(D − 1)

2 m2G(y). (173)

Observando a equação acima, podemos identificar 5 tipos de derivadas: O2
yG(y); O2

y(y2G(y));
O2
y(yµ2G(y)); ∂2G(y)

∂y2
µ

; ∂2

∂y2
µ
(y2G(y)). Atuando cada uma dessas derivadas na função G(y) e

tomando o limite em que y → 0, temos que:

O2
yG(y) = ∂2G(y)

∂y2
i

= ∂

∂yi

(
2ayieay

2
⊥+k′y3

)
=
(
2aδii + (2a)2y2

)
G(y), (174)

para i = 0, 1, 2.

Sendo i = 3, obtemos:

∂2G(y)
∂y2

i

= k′2G(y)

Desse modo:

O2
yG(0) =

(
2aδii + (2a) + k′2

)
. (175)

Fazendo o processo análogo para os outros 4 tipos de derivadas restantes e substituindo
os resultados na expressão do operador diferencial, dado pela eq.(173), e considerando
δii = (D − 1) e δµµ = 1, obtemos que:

Ψµµ =
[
(2c− b)(2 + D − 3

2 (D − 1)) + (D − 3)
2 (l2 − k′l)

] (
2a(D − 1) + k′2

)
+
[
(D − 3)(D − 1) + 2 + 2(2−D)

]
(b2 − 2ba)

+2a(2−D)
[
(D − 1)(2c− b) + l2 − k′l

]
+ (D − 1)

2 m2 (176)

fazendo algumas manipulações algébricas, podemos reescrever essa equação da forma:
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Ψµµ = a(2c− b)(D − 1)
(
(D − 3)2 + 4)

)
+ (b2 − 2ba)(D − 3)2

+(2c− b)
[
k′2

2
(
(D − 2)2 + 3

)]
+ a((D − 3)2 − 2)

(
l2 − k′l

)
+k
′2

2
(
l2 − k′l

)
(D − 3) + (D − 1)

2 m2. (177)

Lembrando que esse operador está contido na expressão do tensor energia-momento, dada
por:

T µµ = 1
(4π)N

1
L2

∑
ni,nj

∫ 1

0
dβdα (β + (1− α)α))−N/2

∫ ∞
0

Ψµµdλλ
4−N−1

×e−λ(
∑

αim
2
i+βm

2
3), (178)

observando a equação acima, podemos identificar 5 tipos de integrais que aparecem com
a atuação do operador diferencial, dado pela eq.(177). Cada uma dessas integrais são
nomeadas abaixo, como:

tipo 1: O1 = a(2c− b)
tipo 2: O2 = (b2 − 2ba)
tipo 3: O3 = (2c− b)
tipo 4: O4 = a

tipo 5: O5 = 1
Além disso, temos também 4 tipos de termos que influenciam o somatório da equação,
dados por:

tipo 1: S1 = k′2

tipo 2: S2 = (l2 − k′l)
tipo 3: S3 = k′2 (l2 − k′l)
tipo 4: S4 = 1

Lembrando que os parâmetros a, b e c são:

a = − 1
4 (β + (1− α)α)2 (179)

b = α

2 (β + (1− α)α)2 (180)

c = −
(

α2

4 (β + (1− α)α)2 + 1
4λ

)
. (181)
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a partir dessas definições acima, conseguimos relacionar os parâmetros, conforme abaixo:

b = −2αa (182)

e tambem que:

c = α2a− 1
4λ. (183)

Desse modo, cada um dos 5 tipos de integrais ficam da forma:

O1 = 2a
(
α2a− 1

4λ + αa
)

(184)

O1 = 2a2α (α + 1)− a

2λ. (185)

De forma similar para O2:

O2 = b(b− 2a) (186)

O2 = 4a2α(α + 1). (187)

Analogamente para O3:

O3 = 2aα (α + 1)− 1
2λ. (188)

Portanto, ao reeorganizarmos, cada um dos tipos de integral fica:
tipo 1: O1 = 2a2α (α + 1)− a

2λ

tipo 2: O2 = 4a2α(α + 1)
tipo 3: O3 = 2aα (α + 1)− 1

2λ

tipo 4: O4 = a

tipo 5: O5 = 1.
De maneira geral, esses diferentes tipos de integral são da forma:

Ui =
∫ 1

0
dβdαβ (β + (1− α)α)−N/2

∫ ∞
0

dλλ4−N−1Oie
−λ(∑αim

2
i+βm

2
3), (189)

observando cada um dos tipos, percebemos que apenas as integrais U1 e U3 tem modi-
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ficações sobre as integrais em λ. O restante das integrais tem apenas modificações nas
integrais sobre α e β. Explicitamente, essas integrais são da forma:

U1 = 1
8

∫ 1

0
dβdαβα (α + 1) (β + (1− α)α)−N/2−4

∫ ∞
0

dλλ4−N−1e−λ(
∑

αim
2
i+βm

2
3)

+1
8

∫ 1

0
dβdαβ (β + (1− α)α)−N/2−2

∫ ∞
0

dλλ4−N−2e−λ(
∑

αim
2
i+βm

2
3) (190)

U2 = 1
4

∫ 1

0
dβdαβ (β + (1− α)α)−N/2−4

∫ ∞
0

dλλ4−N−1e−λ(
∑

αim
2
i+βm

2
3) (191)

U3 = −1
2

∫ 1

0
dβdαβα (α + 1) (β + (1− α)α)−N/2−2

∫ ∞
0

dλλ4−N−1e−λ(
∑

αim
2
i+βm

2
3)

−1
2

∫ 1

0
dβdαβ (β + (1− α)α)−N/2

∫ ∞
0

dλλ4−N−2e−λ(
∑

αim
2
i+βm

2
3) (192)

U4 = −1
4

∫ 1

0
dβdαβ (β + (1− α)α)−N/2−2

∫ ∞
0

dλλ4−N−1e−λ(
∑

αim
2
i+βm

2
3) (193)

U5 =
∫ 1

0
dβdαβ (β + (1− α)α)−N/2

∫ ∞
0

dλλ4−N−1e−λ(
∑

αim
2
i+βm

2
3); (194)

As integrais que irão gerar as funções de Bessel modificadas de segunda especie são as
integrais sobre λ. A parte que interfere nas somas, referente aos termos Si, podem ser
feitas facilmente transformamdo os termos de somatório Si em operadores diferenciais
atuando sobre a exponencial e−λ(

∑
αim

2
i+βm

2
3),com algumas modificações da forma:

e−λ(
∑

αim
2
i+βm

2
3) = e−λ(

∑
αim

2
i+βm

2
3+φ1l2+φ2k2++φ3lk)

∣∣∣∣
φ1=φ2=φ3=0

. (195)

Desta forma , qualquer polinômio pode ser substituido por operadores diferenciais.

l2 = −1
λ

∂

∂φ1
e−λ(

∑
αim

2
i+βm

2
3+φ1l2+φ2k2++φ3lk)

∣∣∣∣
φ1=φ2=φ3=0

(196)

k2 = −1
λ

∂

∂φ2
e−λ(

∑
αim

2
i+βm

2
3+φ1l2+φ2k2++φ3lk)

∣∣∣∣
φ1=φ2=φ3=0

. (197)
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lk = −1
λ

∂

∂φ3
e−λ(

∑
αim

2
i+βm

2
3+φ1l2+φ2k2++φ3lk)

∣∣∣∣
φ1=φ2=φ3=0

. (198)

Atuando esses termos de somatório, algumas integrais sobre λ devem ser modificadas.
Porém, de um modo genérico:

H =
∫ ∞

0
dλλ4−N−P e−λ(

∑
αim

2
i+βm

2
3+φ1l2+φ2k2+φ3lk) (199)

onde P são os possíveis valores do expoente de λ referente a cada uma das integrais cha-
madads de U .

Utilizando a identidade da função gama dada por:

∑
(x+ y)−s = 1

Γ(s)
∑∫ ∞

0
ts−1dte−(x+y)t, (200)

a eq.(199) pode ser reescrita como:

H = Γ(4−N − P + 1)
(∑αim2

i + βm2
3 + φ1l2 + φ2k2 + φ3lk)4−N−P+1 . (201)

Substituindo a função H na eq.(178), obtemos:

T µµ = 1
(4π)N

1
L2

∑
n1,n2

∫ 1

0
dβdα (β + (1− α)α))−N/2 ΨµµΓ(4−N − P + 1)

×
(∑

αim
2
i + βm2

3 + φ1l
2 + φ2k

2 + φ3lk
)−(4−N−P+1)

, (202)

o somatório dessa equação dado pelo termo
∑
n1,n2

(∑
αim

2
i + βm2

3 + φ1l
2 + φ2k

2 + φ3lk
)−(4−N−P+1)

, (203)

é identificado como um caso particular da função zeta de Epstein-Hurwitz. Trabalhando
nessa função, temos que:
∑
n1,n2

(
α1m

2
1 + α2m

2
2βm

2
3 + φ1l

2 + φ2k
2 + φ3lk

)−(4−N−P+1)
, (204)

lembrando que m2
1 = m2 + l2 ; m2

2 = m2 + (l − k′)2; m2
3 = k′2.

Portanto, a função zeta pode ser escrita como:

ζ =
∑
n1,n2

(
α1(m2 + l2) + α2(m2 + l2 − 2lk′ + k′2) + βk′2 + φ1l

2 + φ2k
2 + φ3lk

)−(4−N−P+1)
,(205)
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sendo l = 2πn1
L

e k′ = 2πn2
L

a compactação de uma dimensão dos momentos internos e
externos pela prescrição de Matsubara. Portanto, organizando os termos, obtemos

ζ =
∑
n1,n2

[
(2π
L

)2(α1 + α2 + φ1)n2
1 + (2π

L
)2(φ3 − 2α2)n1n2 + (2π

L
)2(α2 + β + φ2)n2

2

+ m2(α1 + α2)
]−(4−N−P+1)

, (206)

escrevendo de uma forma mais compacta, temos:

ζ =
∑
n1,n2

(
w1n

2
1 + w2n1n2 + w3n

2
2 + q

)−(4−N−P+1)
, (207)

onde os parâmetros utilizados acima são identificados como:

w1 = (2π
L

)2(α1 + α2 + φ1)

w2 = (2π
L

)2(φ3 − 2α2)

w3 = (2π
L

)2(α2 + β + φ2)

q = m2(α1 + α2).

Utilizando a fórmula de Chowla-Selberg (ELIZALDE, 1995), essa função zeta pode ser
escrita como:

ζ (s;w1, w2, w3; q) =
∑
n1,n2

(
w1n

2
1 + w2n1n2 + w3n

2
2 + q

)−s
= 2Z1(s, q/w1)w−s1 + 22s√πws−1

1
Γ (s) (4w1w3 − w2

2)s−1/2 Γ (s− 1/2)Z1
(
s− 1/2, 4w1q/(4w1w3 − w2

2))

+ 2s+5/2πs

Γ (s)√w1

∞∑
n=1

ns−1/2 cos (nπw2/w1)
∑
d|n
d1−2s

(
(4w1w3 − w2

2) + 4w1q

d2

)1/4−s/2

×Ks−1/2

πn
w1

√
(4w1w3 − w2

2) + 4w1q

d2

 (208)

onde o somatório duplo sobre n1 e n2 é reescrito como uma soma sobre o produto n = n1n2

e sobre os divisores desse produto dado por∑d|n d
1−2s (ELIZALDE, 1995). Os dois termos

de Z1(s, v) correspondem a função zeta de Epstein-Hurwitz no caso de uma dimensão
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compactada,definida como :

Z1(s, v) = −v
−s

2 +
√
πΓ(s− 1/2)

2Γ(s) v−s+1/2 + 2πsv−s/2+1/4

Γ(s)

∞∑
n=1

ns−1/2Ks−1/2
(
2πn
√
v
)
.(209)

onde v = q/w1.

Substituindo os parâmetros w1, w2, w3 e q da eq.(207) na eq.(208), temos:

ζ (s;w1, w2, w3; q) = 2Z1(s, q/w1)
[
(2π
L

)2(α1 + α2 + φ1)
]−s

+
22s√π

[
(2π
L

)2(α1 + α2 + φ1)
]s−1

Γ(s− 1/2)

Γ (s)
(
(2π
L

)4 [4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2]
)s−1/2

×Z1
(
s− 1/2, 4w1q/(4w1w3 − w2

2)
)

+ 2s+5/2πs

Γ (s)
√

(2π
L

)2(α1 + α2 + φ1)

∞∑
n=1

ns−1/2cos (nπ(φ3 − 2α2)/(α1 + α2 + φ1))

×
∑
d|n
d1−2s


(2π
L

)4 [
4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2

]

+
4(2π

L
)2(α1 + α2 + φ1)m2(α1 + α2)

d2


1/4−s/2

×Ks−1/2

 πn

(2π
L

)2(α1 + α2 + φ1)

[(2π
L

)4 (
4
(
α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2

)

+
4(2π

L
)2(α1 + α2 + φ1)m2(α1 + α2)

d2

]1/2
 (210)

observando a expressão acima, temos que L é um parâmetro análogo a distância entre as
placas no efeito Casimir e m corresponde a massa do elétron. Ao compararmos essas duas
quantidades, podemos verificar que a ordem de grandeza da massa, em torno de 10−31,
será muito menor que a ordem de grandeza de L, dada por 10−6. Portanto, sendo m� L,
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podemos tomar um limite em que m→ 0, logo a equação acima pode ser escrita como:

ζ (s;w1, w2, w3; q) = 2
(2π
L

)−2s
(α1 + α2 + φ1)−s Z1(s, q/w1)

+22s√π
(2π
L

)−2s [(α1 + α2 + φ1)]s−1 Γ(s− 1/2)

[4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2 ]s−1/2Γ (s)

×Z1
(
s− 1/2, 4w1q/(4w1w3 − w2

2)
)

+

(
2π
L

)−2s
2s+5/2πs

Γ (s)
√

(α1 + α2 + φ1)

∞∑
n=1

ns−1/2 cos (nπ(φ3 − 2α2)/(α1 + α2 + φ1))

×
[
4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2

]1/4−s/2
×Ks−1/2

[
πn

(α1 + α2 + φ1)

(
4
(
α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2

)1/2
]
. (211)

Lembrando que s = 4 − N − P + 1, sendo N = D − d o número de dimensões após
a compactação, e P o expoente das integrais em λ. Ao aplicarmos nas integrais Ui os
termos que contribuem para a soma, dados pelas eqs.(196),(197) e (198), observamos que
o expoente P assume os valores 1, 2 e 3. Fazendo D = 4, e aplicando os valores de P ,
obtemos s = 1, s = 0 e s = −1. O valor de s = 1 corresponde a função de Bessel com
ordem ν > 0, enquanto os valores s = 0 e s = −1 correspondem a uma ordem ν < 0
que podem ser tratadas pela propriedade de reflexão das funções de Bessel (WATSON,
2011). Utilizando a aproximação da função de Bessel Kν (z) ∼ 1

2Γ (ν)
(

2
z

)ν
de argumentos

pequenos,temos:

ζ (s;w1, w2, w3; q) = 2
(2π
L

)−2s
(α1 + α2 + φ1)−s Z1(s, q/a)

+22s√π
(2π
L

)−2s [(α1 + α2 + φ1)]s−1 Γ(s− 1/2)
[4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2]s−1/2 Γ (s)

×Z1
(
s− 1/2, 4w1q/(4w1w3 − w2

2)
)

+

(
2π
L

)−2s
2s+5/2πs

Γ (s)
√

(α1 + α2 + φ1)

∞∑
n=1

ns−1/2 cos (nπ(φ3 − 2α2)/(α1 + α2 + φ1))

×
[
4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2

]1/4−s/2
×1

2Γ (s− 1/2)
(

2(α1 + α2 + φ1)
πn [4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2]1/2

)s−1/2

(212)

Renomeando alguns termos da equação acima de forma a limpar um pouco a notação,
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temos:

ζ (s;w1, w2, w3; q) = 2
(2π
L

)−2s
[f1 (α1, α2, φ1)]−s Z1(s, q/w1)

+22s√π
(2π
L

)−2s [f1 (α1, α2, φ1)]s−1 Γ(s− 1/2)
[f2 (α1, α2, φ1, φ2, φ3, β)]s−1/2 Γ (s)

×Z1
(
s− 1/2, 4w1q/(4w1w3 − w2

2)
)

+

(
2π
L

)−2s
2s+5/2πs

Γ (s)
√
f1 (α1, α2, φ1)

∞∑
n=1

ns−1/2 cos (nπf3 (α2, φ3) /f1 (α1, α2, φ1))

×
[
f2 (α1, α2, φ1, φ2, φ3, β)]1/4−s/2

× 2s−3/2

(πn)s−1/2 Γ (s− 1/2)
(

[f1 (α1, α2, φ1)]
[f2 (α1, α2, φ1, φ2, φ3, β)]1/2

)s−1/2

, (213)

onde os termos renomeados são identificados abaixo por:

f1 (α1, α2, φ1) = α1 + α2 + φ1

f2 (α1, α2, φ1, φ2, φ3, β) = 4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2

f3 (α2, φ3) = φ3 − 2α2 (214)

Observando a eq.(213), identificamos os termos Z1(s, q/w1) e Z1 (s− 1/2, 4w1q/(4w1w3 − w2
2))

que são funções zeta de Epstein-Hurwitz definidas coforme a eq.(209). Portanto, temos:

Z1(s, q/w1) = −1
2

(
m2(α1 + α2)

(2π
L

)2(α1 + α2 + φ1)

)−s

+
√
πΓ(s− 1/2)

2Γ(s)

(
m2(α1 + α2)

(2π
L

)2(α1 + α2 + φ1)

)−s+1/2

+ 2πs
Γ(s)

(
m2(α1 + α2)

(2π
L

)2(α1 + α2 + φ1)

)−s/2+1/4

×
∞∑
n=1

ns−1/2Ks−1/2

2πn

√√√√( m2(α1 + α2)
(2π
L

)2(α1 + α2 + φ1)

) . (215)

De forma análoga ao que foi feito na eq.(211), devidos aos valores possíveis de s, temos
que nas funções de Bessel, para os valores de s − 1/2 < 0, utilizamos a propriedade de
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reflexão dessas funções. Portanto, Ks−1/2 = K1/2−s.Logo, utilizando a aproximação para
argumentos pequenos, obtemos, respectivamente, as expressões de Z1(s, q/w1) correspon-
dente as ordens maiores que zero (s− 1/2 > 0) da função de Bessel e as ordens inferiores
a zero (s− 1/2 < 0):

Z1(s, q/w1) = −1
2

(2π
L

)2s
m2s

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−s

+
√
πΓ(s− 1/2)

2Γ(s)

(2π
L

)2s−1
m−2s+1

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−s+1/2

+Γ(s− 1/2)
Γ(s) 22s−1π2s−1/2L−2s+1m−2s+1ζ(0)

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−s+1/2

, (216)

onde f4 (α1, α2) = α1 + α2. Lembrando que a função zeta de Riemann é definida como
ζ(ε) = ∑∞

n=1 n
−ε, podemos identificar na equação acima no termo ∑∞

n=1
ns−1/2

ns−1/2 , sendo
portanto ε = 0. Pela continuação analítica da função zeta de Riemann, temos que
ζ(0) = −1/2.

Analogamente, a expressão para ordens inferiores à zero, é dada por

Z1(s, q/w1) = −1
2

(2π
L

)2s
m2s

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−s

+
√
πΓ(s− 1/2)

2Γ(s)

(2π
L

)2s−1
m−2s+1

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−s+1/2

+Γ(1/2− s)
Γ(s) π2s−1/2ζ(1− 2s) (217)

onde ζ(1− 2s) corresponde a função zeta de Riemann para os possíveis valores de s.

Aplicando os possíveis valores de s nas equações acima, obtemos:

Z1(1, q/w1) = −1
2

(2π
L

)2
m2

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−1

+
√
πΓ(1/2)
2Γ(1)

(2π
L

)
m−1

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−1/2

−π3/2L−1m−1
[

f4 (α1, α2)
f1 (α1, α2, φ1)

]−1/2

(218)
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Z1(0, q/w1) = −1
2 +
√
πΓ(−1/2)
2Γ(0)

(2π
L

)−1
m

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]1/2

+Γ(1/2)
Γ(0) π−1/2ζ(1) (219)

Z1(−1, q/w1) = −1
2

(2π
L

)−2
m−2

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−1

+
√
πΓ(−3/2)
2Γ(−1)

(2π
L

)−3
m3

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]3/2

+Γ(3/2)
Γ(−1) π

−5/2ζ(3) (220)

Trabalhando agora na função zeta Z1 (s− 1/2, 4w1q/(4w1w3 − w2
2)), temos que:

Z1
(
s− 1/2, 4w1q/(4w1w3 − w2

2)
)

=

−1
2

 4(2π
L

)2(α1 + α2 + φ1)m2(α1 + α2)(
2π
L

)4
[4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2]


−s+1/2

+
√
πΓ(s− 1)

2Γ(s− 1/2)

 4(2π
L

)2(α1 + α2 + φ1)m2(α1 + α2)(
2π
L

)4
[4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2]


−s+1

+ 2πs−1/2

Γ(s− 1/2)

 4(2π
L

)2(α1 + α2 + φ1)m2(α1 + α2)(
2π
L

)4
[4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2]


−s/2+1/2

∞∑
n=1

ns−1Ks−1

2πn

√√√√√√
 4(2π

L
)2(α1 + α2 + φ1)m2(α1 + α2)(

2π
L

)4
[4(α1 + α2 + φ1)(α2 + β + φ2)− (φ3 − 2α2)2]


. (221)
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escrevendo de uma forma mais compacta e simplificando alguns termos:

Z1
(
s− 1/2, 4w1q/(4w1w3 − w2

2)
)

=

−2−2s
(2π
L

)2s−1
m−2s+1

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]−s+1/2

+2−2s+1
√
πΓ(s− 1)

Γ(s− 1/2)

(2π
L

)2s−2
m−2s+2

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]−s+1

+2−s+2πs−1/2

Γ(s− 1/2)

(2π
L

)s−1
m−s+1

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]−s/2+1/2

∞∑
n=1

ns−1Ks−1

2nmL
[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]1/2
 , (222)

como o argumento dessa função Zeta difere da outra, a função de Bessel assumirá valores
diferentes. Substituindo os três valores possíveis de s, encontramos K0, K−1 e K−2.
Portanto, para as funções de Bessel de ordens menores que zero, temos:

Z1
(
s− 1/2, 4w1q/(4w1w3 − w2

2)
)

=

−2−2s
(2π
L

)2s−1
m−2s+1

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]−s+1/2

+2−2s+1
√
πΓ(s− 1)

Γ(s− 1/2)

(2π
L

)2s−2
m−2s+2

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]−s+1

+π2s−3/2 Γ(1− s)
Γ(s− 1/2)ζ(2− 2s). (223)

Para obter a expressão da zeta correspondente a ordem zero da função de Bessel, vamos
fazer a seguinte manipulação algébrica:
∞∑
n=1

n−εKε =
∞∑
n=1

n−ε
Γ(ε)

2

( 2
Un

)ε
= Γ(ε)

21−εU
−ε
∞∑
n=1

n−2ε,

(224)

tomando um limite em que ε→ 0, temos:
∞∑
n=1

n−εKε = lim
ε→0

Γ(ε)ζ(2ε)U
−ε

21−ε = Γ(0)ζ(0)
2 , (225)

utilizando uma propriedade de todas as funções zeta, conhecida como fórmula de reflexão
(ELIZALDE, 1995), dada por:

ζ(s) = 2sπs−1πn

2 Γ(1− s)ζ(1− s) (226)
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obtemos para s = 1

ζ(1) = 2Γ(0)ζ(0) (227)

substituindo na eq.(225), chegamos a conclusão que:
∞∑
n=1

n−εKε = ζ(1)
4 . (228)

Portanto, para a ordem zero da função de Bessel, a eq.(222) é reescrita como:

Z1
(
s− 1/2, 4w1q/(4w1w3 − w2

2)
)

=

−2−2s
(2π
L

)2s−1
m−2s+1

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]−s+1/2

+2−2s+1
√
πΓ(s− 1)

Γ(s− 1/2)

(2π
L

)2s−2
m−2s+2

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]−s+1

+ 2−sπs−1/2

Γ(s− 1/2)

(2π
L

)s−1
m−s+1

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]−s/2+1/2

ζ(1). (229)

Substituindo os três valores possíveis de s, temos:

Z1
(
1/2, 4w1q/(4w1w3 − w2

2)
)

=

−2−2
(2π
L

)
m−1

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]−1/2

+ 2−1
√
πΓ(0)

Γ(1/2) + 2−1π1/2

Γ(1/2) ζ(1) (230)

Z1
(
−1/2, 4w1q/(4w1w3 − w2

2)
)

=

−2
(2π
L

)−1
m

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]1/2

+ 2
√
πΓ(−1)

Γ(−1/2)

(2π
L

)−2

×m2
[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]
+ π−3/2 Γ(1)

Γ(−1/2)ζ(2) (231)

Z1
(
−3/2, 4w1q/(4w1w3 − w2

2)
)

=

−22
(2π
L

)−3
m3

[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]−1/2

+ 23
√
πΓ(−2)

Γ(−3/2)

(2π
L

)−4

×m4
[
f1 (α1, α2, φ1) f4 (α1, α2)
f2 (α1, α2, φ1, φ2, φ3, β)

]2

+ π−7/2 Γ(2)
Γ(−3/2)ζ(4). (232)

Substituindo as equações das funções Zeta de Epstein-Hurwitz na fórmula de fórmula de
Chowla-Selberg, dada pela eq.(213), obtemos para os valores de s que:
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ζ (1;w1, w2, w3; q) = −m2f−1
4 (α1, α2) +

(2π
L

)−1
πm−1

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−1/2

−π
−1/2

2L−1

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−1/2

− π
(2π
L

)−1
m−1 [f1 (α1, α2, φ1) f4 (α1, α2)]−1/2

+2π
(2π
L

)−2
Γ(0)f−1/2

2 (α1, α2, φ1, φ2, φ3, β) + 2π
(2π
L

)−2
ζ(1)

×f−1/2
2 (α1, α2, φ1, φ2, φ3, β)

+8π
(2π
L

)−2 ∞∑
n=1

cos (nπf3 (α2, φ3) /f1 (α1, α2, φ1)) , (233)

ζ (0;w1, w2, w3; q) = −1−
(2π
L

)−1 2π
Γ(0)m

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]1/2

+ 2ζ(1)
Γ(0)

+ 4π
Γ(0)

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]1/2 (2π
L

)−1
m+ 2πΓ(−1)

Γ(0) m2 f4 (α1, α2)
f

1/2
2 (α1, α2, φ1, φ2, φ3, β)

+ π

6Γ(0)
f−1

1 (α1, α2, φ1)
f
−1/2
2 (α1, α2, φ1, φ2, φ3, β)

− 4π
Γ(0)

∞∑
n=1

cos (nπf3 (α2, φ3) /f1 (α1, α2, φ1))

×f
1/2
2 (α1, α2, φ1, φ2, φ3, β)

f1 (α1, α2, φ1) (234)

ζ (−1;w1, w2, w3; q) = −f
2
1 (α1, α2, φ1)
f4 (α1, α2) m−2 + 4π

3Γ(−1)

(2π
L

)−1
m3 f

3/2
4 (α1, α2)

f
1/2
1 (α1, α2, φ1)

+ π−2

Γ(−1)

(2π
L

)2
f1 (α1, α2, φ1) ζ(3)− 4π

3Γ(−1)

(2π
L

)−1 f
−5/2
1 (α1, α2, φ1) f−1/2

4 (α1, α2)
f−2

2 (α1, α2, φ1, φ2, φ3, β)

+2π
(2π
L

)−2 Γ(−2)
Γ(−1)m

4 f 2
4 (α1, α2)

f
1/2
2 (α1, α2, φ1, φ2, φ3, β)

+ π

90Γ(−1)

(2π
L

)2

× f−2
1 (α1, α2, φ1)

f
−3/2
2 (α1, α2, φ1, φ2, φ3, β)

+
(2π
L

)2 2π
3Γ(−1)

∞∑
n=1

cos (nπf3 (α2, φ3) /f1 (α1, α2, φ1))

×f
3/2
2 (α1, α2, φ1, φ2, φ3, β)

f 2
1 (α1, α2, φ1) (235)

Lembrando que as três equações acima serão multiplicadas por um fator global de Γ(s)/L2

que vem da eq.(202) Portanto, temos que:



70

Γ(1)
L2 ζ (1;w1, w2, w3; q) = − 1

L2m
2f−1

4 (α1, α2) + (2π)−1

L
πm−1

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−1/2

−π
−1/2

2L

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]−1/2

− π (2π)−1

L
m−1 [f1 (α1, α2, φ1) f4 (α1, α2)]−1/2

+(2π)−1Γ(0)f−1/2
2 (α1, α2, φ1, φ2, φ3, β) + (2π)−1ζ(1)f−1/2

2 (α1, α2, φ1, φ2, φ3, β)

+8π(2π)−2
∞∑
n=1

cos (nπf3 (α2, φ3) /f1 (α1, α2, φ1)) , (236)

Γ(0)
L2 ζ (0;w1, w2, w3; q) = −Γ(0)

L2 −
(2π)−1

L
2πm

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]1/2

+ 1
L2 2ζ(1)

+ 1
L2 4π

[
f4 (α1, α2)

f1 (α1, α2, φ1)

]1/2

(2π)−1m+ 1
L2 2πΓ(−1)m2 f4 (α1, α2)

f
1/2
2 (α1, α2, φ1, φ2, φ3, β)

+ 1
L2
π

6
f−1

1 (α1, α2, φ1)
f
−1/2
2 (α1, α2, φ1, φ2, φ3, β)

− 1
L2 4π

∞∑
n=1

cos (nπf3 (α2, φ3) /f1 (α1, α2, φ1))

×f
1/2
2 (α1, α2, φ1, φ2, φ3, β)

f1 (α1, α2, φ1) (237)

Γ(−1)
L2 ζ (−1;w1, w2, w3; q) = −Γ(−1)

L2
f 2

1 (α1, α2, φ1)
f4 (α1, α2) m−2 + 1

L

4π
3 (2π)−1m3 f

3/2
4 (α1, α2)

f
1/2
1 (α1, α2, φ1)

+ 1
L4π

−2(2π)2f1 (α1, α2, φ1) ζ(3)− 1
L

4π
3 (2π)−1f

−5/2
1 (α1, α2, φ1) f−1/2

4 (α1, α2)
f−2

2 (α1, α2, φ1, φ2, φ3, β)

+2π(2π)−2Γ(−2)m4 f 2
4 (α1, α2)

f
1/2
2 (α1, α2, φ1, φ2, φ3, β)

+ 1
L4

π

90(2π)2 f−2
1 (α1, α2, φ1)

f
−3/2
2 (α1, α2, φ1, φ2, φ3, β)

+ 1
L4 (2π)2 2π

3

∞∑
n=1

cos (nπf3 (α2, φ3) /f1 (α1, α2, φ1)) f
3/2
2 (α1, α2, φ1, φ2, φ3, β)

f 2
1 (α1, α2, φ1) . (238)

Estudando o regime assintótico de cada equação acima com seu valor específico de s,
como L refere-se a distância entre as placas no efeito Casimir, sendo L � 1, os termos
que mais contribuem são aqueles com a maior potência de L no denominador. Além disso,
os termos que não dependem da distância entre as placas podem ser desprezados, pois não
possuem nenhuma contribuição física para a energia de Casimir. Podemos observar que
na eq.(236), todos os termos podem ser desprezados, pois possuem potências menores 4.
Os termos que contém divergências devido a Γ(0) e ζ(1) não possuem dependência em L,
podendo assim serem eliminados por uma renormalização por subtração. Já nas equações
(237) e (238), mantemos apenas as maiores potências de L e os termos de divergência
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com dependência em L. Portanto, as equações ficam reescritas como:

Γ(0)
L2 ζ (0;w1, w2, w3; q) = −Γ(0)

L2 + 2
L2 ζ(1) + 1

L2 2πΓ(−1)m2 f4 (α1, α2)
f

1/2
2 (α1, α2, φ1, φ2, φ3, β)

(239)

colocando os termos comuns em evidência:

Γ(0)
L2 ζ (0;w1, w2, w3; q) = 2

L2

(
−Γ(0)

2 + ζ(1) + πΓ(−1)m2f4 (α1, α2)
f

1/2
2 (α1, α2, φ1, φ2, φ3, β)

)
(240)

e a outra equação, para o caso de s = −1, fica:

Γ(−1)
L2 ζ (−1;w1, w2, w3; q) = −Γ(−1)

L2
f 2

1 (α1, α2, φ1)
f4 (α1, α2) m−2 + 2

L4f1 (α1, α2, φ1) ζ(3)

− 2
3L

f
−5/2
1 (α1, α2, φ1) f−1/2

4 (α1, α2)
f−2

2 (α1, α2, φ1, φ2, φ3, β)
+ 4π3

90L4
f

3/2
2 (α1, α2, φ1, φ2, φ3, β)

f 2
1 (α1, α2, φ1)

+ 8π3

3L4

∞∑
n=1

cos (nπf3 (α2, φ3) /f1 (α1, α2, φ1)) f
3/2
2 (α1, α2, φ1, φ2, φ3, β)

f 2
1 (α1, α2, φ1) , (241)

usando a regularização de Dirichlet, dada por:

lim
ε→0

( ∞∑
n=1

n−ε cos (nπf3 (α2, φ3) /f1 (α1, α2, φ1))
)

= −1
2 , (242)

podemos reescrever a eq.(241) conforme abaixo:

Γ(−1)
L2 ζ (−1;w1, w2, w3; q) = −Γ(−1)

L2
f 2

1 (α1, α2, φ1)
f4 (α1, α2) m−2 + 2

L4f1 (α1, α2, φ1) ζ(3)

− 2
3L

f
−5/2
1 (α1, α2, φ1) f−1/2

4 (α1, α2)
f−2

2 (α1, α2, φ1, φ2, φ3, β)
+ 4π3

90L4
f

3/2
2 (α1, α2, φ1, φ2, φ3, β)

f 2
1 (α1, α2, φ1)

−4π3

3L4
f

3/2
2 (α1, α2, φ1, φ2, φ3, β)

f 2
1 (α1, α2, φ1) , (243)

organizando de forma a colocar os termos comuns em evidência, temos:

Γ(−1)
L2 ζ (−1;w1, w2, w3; q) = 2

L4

f1 (α1, α2, φ1) ζ(3)− 58π3

90
f

3/2
2 (α1, α2, φ1, φ2, φ3, β)

f 2
1 (α1, α2, φ1)


−Γ(−1)

L2
f 2

1 (α1, α2, φ1)
f4 (α1, α2) m−2 − 2

3L
f
−5/2
1 (α1, α2, φ1) f−1/2

4 (α1, α2)
f−2

2 (α1, α2, φ1, φ2, φ3, β)
(244)

Como o operador Ψµµ, dado pela eq.(177), gera 5 tipos de integrais (U1, U2, U3, U4, U5),
sendo cada uma delas com um expoente P específico, que pode assumir valores 1, 2 ou
3. Lembrando que em algumas dessas integrais também atuam termos de somatório,
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conforme definimos anteriormente (S1, S2, S3, S4). As integrais com expoente P = 1 são
desprezadas devido ao termo ζ (1;w1, w2, w3; q) que foi ignorado por possuir potências de
L abaixo de 4 e possuir termos sem sentido físico. Atuando cada uma das integrais com
seus valores correspondentes de P , temos que:

S4U1 = 15
4L2

∫ 1

0
dβdαβ (β + (1− α)α)−N/2−2

×
[
−Γ(0)

2 + ζ(1) + πΓ(−1)m2 (α1 + α2)
(4(α1 + α2)(α2 + β)− 4α2

2)1/2

]
(245)

S1U3 = 7
2

∫ 1

0
dβdαβα (α + 1) (β + (1− α)α)−N/2−2

×
[
− 1
L2πΓ(−1)

(
4(α1 + α2)(α2 + β)− 4α2

2

)−3/2
(α1 + α2)2

]
+7

2

∫ 1

0
dβdαβ (β + (1− α)α)−N/2

×
[
− 4

3L
(
4(α1 + α2)(α2 + β)− 4α2

2

)
(α1 + α2)−2

− 29
15L4

(
4(α1 + α2)(α2 + β)− 4α2

2

)1/2
(α1 + α2)−1

]
(246)

S2U4 = 1
4L2

∫ 1

0
dβdαβ (β + (1− α)α)−N/2−2

×
[
πΓ(−1)m2

(
4(α1 + α2)(α2 + β)− 4α2

2

)−3/2
(α1 + α2) (5α2 + β)

]
(247)

S3U5 =
∫ 1

0
dβdαβ (β + (1− α)α)−N/2

×−
( 58

45L4

)3
4
(
4(α1 + α2)(α2 + β)− 4α2

2

)−1/2
(α1 + α2) (−3α2 + β)

+
(
4(α1 + α2)(α2 + β)− 4α2

2

)1/2 (
(α2 + β)− 3 (α1 + α2)−1

)
−2 (α1 + α2)−1/2

3L

(4(α1 + α2)(α2 + β)− 4α2
2

)
×
(
2 (α1 + α2)−5/2 (α2 + β)− 5 (α1 + α2)−3/2

)
+2 (α1 + α2)−3/2 ((α2 + β) + 4α2)

. (248)
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Da mesma forma feita anteriormente, dentre as integrais acima, mantemos apenas os
termos de maior potência de L e aqueles termos que possuem algum tipo de divergência.
Lembrando que α1 + α2 = 1 ; α2 = 1 − α e N = D − d. Portanto, para D = 4, essas
equações podem ser reescritas como:

S4U1 = 15
8L2

∫ 1

0
dβdαβ (β + (1− α)α)−7/2

×
[
−Γ(0) + 2ζ(1) + πΓ(−1)m2

(
α + α2 + β

)−1/2
]

(249)

S1U3 = − 7
16L2

∫ 1

0
dβdαβα (α + 1) (β + (1− α)α)−7/2 πΓ(−1)

(
α + α2 + β

)−3/2

− 203
15L4

∫ 1

0
dβdαβ (β + (1− α)α)−3/2

(
α + α2 + β

)1/2
(250)

S2U4 = 1
32L2

∫ 1

0
dβdαβ (β + (1− α)α)−7/2 πΓ(−1)

×
(
α + α2 + β

)−3/2
(−5α + β − 5) (251)

S3U5 = − 58
45L4

∫ 1

0
dβdαβ (β + (1− α)α)−3/2

×
[(3

8
(
α + α2 + β

)−1/2
(3α + β − 3) + 2

(
α + α2 + β

)1/2
(−α + β − 2)

]
(252)

Analisando cada umas das 4 equações acima, percebemos que aquelas que possuem conver-
gência são dadas pelas equações (250) e (252). Ambos os termos relevantes se comportam
com o inverso de L4. Podemos, então, resolver as integrais convergentes utilizando o
software Wolfram. Desse modo, a integral convergente em (250) é dada por
∫ 1

0
dββ (β + (1− α)α)−3/2

(
α + α2 + β

)1/2
=

(
α + α2 + β

)1/2

−3α2 + 3α + β

(α− α2 + β)1/2 +
2(2α− 1) sinh−1

(
(α−α2+β)1/2

21/2α

)
(α+α2+β)1/2

α

+ C (253)

aplicando os limites de integração, temos:
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∫ 1

0

(
α + α2

)1/2

−3α2 + 3α
(α− α2)1/2 +

2(2α− 1) sinh−1
(

(α−α2)1/2

21/2α

)
(α+α2)1/2

α

 dα = 1, 0236 (254)

∫ 1

0

(
1 + α + α2

)1/2

 1− 3α2 + 3α
(1 + α− α2)1/2 +

2(2α− 1) sinh−1
(

(1+α−α2)1/2

21/2α

)
(1+α+α2)1/2

α

 dα = 2, 01796

(255)

Portanto, o valor da integral será
∫ 1

0
dββ (β + (1− α)α)−3/2

(
α + α2 + β

)1/2
= 2, 01796− 1, 0236 ≈ 0, 994. (256)

Trabalhando agora na resolução da integral na eq.(252), percebemos que ela possui um
fator comum de (α + α2 + β) com diferença apenas no seu expoente. Portanto, a integral
pode ser dividida em duas integrais: uma com −1/2 no expoente do fator mencionado
e outra com expoente 1/2. Dessa forma, temos que para o expoente −1/2, essa integral
será:

I−1/2 =
∫ 1

0
dβ
∫ 1

0
dαβ (β + α (1− α))−3/2 (β + α (1 + α))−1/2 (3α + β − 3) , (257)

dividindo esssa integral em 3 partes, conforme abaixo:

I1 =
∫ 1

0
dβ
∫ 1

0
dαβα (β + α (1− α))−3/2 (β + α (1 + α))−1/2 (258)

I2 =
∫ 1

0
dβ
∫ 1

0
dαβ2 (β + α (1− α))−3/2 (β + α (1 + α))−1/2 (259)

I3 =
∫ 1

0
dβ
∫ 1

0
dαβα (β + α (1− α))−3/2 (β + α (1 + α))−1/2 , (260)

desse modo, a eq.(257), é escrita como:

I = 3I1 + I2 − 3I3. (261)
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Para resolver as integrais acima, podemos utilizar a seguinte aproximação:

α (1− α) ≈ 0 (262)

α (1 + α) ≈ 2α, (263)

portanto, cada uma das integrais assume a forma:

I1 =
∫ 1

0
dβ
∫ 1

0
dαβα (β)−3/2 (β + 2α)−1/2 (264)

I2 =
∫ 1

0
dβ
∫ 1

0
dαβ2 (β)−3/2 (β + 2α)−1/2 (265)

I3 =
∫ 1

0
dβ
∫ 1

0
dαβ (β)−3/2 (β + 2α)−1/2 . (266)

Integrando I2 e I3 em relação à α:
∫ 1

0
dα (β + 2α)−1/2 = (−

√
β +

√
β + 2) (267)

, de maneira análoga, a integral I1 ao ser integrada em α será:

∫ 1

0
dαα (β + 2α)−1/2 = 1

3

(
β3/2 − (β − 1)

√
2 + β

)
. (268)

Integrando em β cada uma delas, encontramos:

I1 = 1
3

∫ 1

0
dββ−1/2

(
β3/2 − (β − 1)

√
2 + β

)
= 1

6 + sinh−1
(

1√
2

)
(269)

I2 =
∫ 1

0
dββ1/2(−

√
β +

√
β + 2) = −1

2 +
√

3− sinh−1
(

1√
2

)
(270)

I3 =
∫ 1

0
dββ−1/2(−

√
β +

√
β + 2) = −1 +

√
3 + 2 sinh−1

(
1√
2

)
, (271)
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substituindo I1, I2 e I3 na eq.(261):

após uma certa álgebra, o resultado encontrado para essa integral será:

I−1/2 = 3− 2
√

3− sinh−1
(

1√
2

)
≈ −1.12258. (273)

De forma análoga, podemos resolver a outra integral da eq.(252), correspondendo ao
expoente 1/2. Sendo assim, identificamos a integral como:

I1/2 =
∫ 1

0
dβ
∫ 1

0
dαβ (β + α (1− α))−3/2 (β + α (1 + α))1/2 (−2α + 2β − 6) , (274)

fazendo as mesmas aproximações, dadas pelas equações (262) e (263),

I1/2 =
∫ 1

0
dβ
∫ 1

0
dαβ−1/2 (β + 2α)1/2 (−2α + 2β − 6) , (275)

dividindo a integral acima em três tipos de integrais, temos:

I1/2 = −2I4 + 2I5 − 6I6, (276)

identificando cada uma delas, conforme abaixo

I4 =
∫ 1

0
dβ
∫ 1

0
dαβ−1/2α (β + 2α)1/2 (277)

I5 =
∫ 1

0
dβ
∫ 1

0
dαβ1/2 (β + 2α)1/2 (278)

I6 =
∫ 1

0
dβ
∫ 1

0
dαβ−1/2 (β + 2α)1/2 . (279)

Observando as equações acima, temos 2 tipos de integral em α. Para as integrais I5 e I6,
temos:
∫ 1

0
dα (β + 2α)1/2 = 1

3
(
−β3/2 + (2 + β)3/2

)
(280)

, enquanto para a integral I4, a integração em α nos fornece:
∫ 1

0
dαα (β + 2α)1/2 = 1

15
(
β5/2 − (β − 3)(2 + β)3/2

)
. (281)
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Fazendo as integrais em relação à β, encontramos:

I4 = 1
15

∫ 1

0
dββ−1/2

(
β5/2 − (β − 3)(2 + β)3/2

)
= 1

45 + 21
45
√

3 + 30
45 sinh−1

(
1√
2

)
, (282)

I5 = 1
3

∫ 1

0
dββ1/2(−β3/2 + (2 + β)3/2) = −1

9 + 2
3
√

3− 1
3 sinh−1

(
1√
2

)
(283)

I6 = 1
3

∫ 1

0
dββ−1/2

(
−β3/2 + (2 + β)3/2

)
= −1

6 +
√

3 + sinh−1
(

1√
2

)
. (284)

Substituindo na eq.(276), obtemos:

I1/2 = − 2
45 + 1− 2

9 −
42
45
√

3 + 4
3
√

3− 6
√

3− 60
45 sinh−1

(
1√
2

)

−2
3 sinh−1

(
1√
2

)
− 6 sinh−1

(
1√
2

)
, (285)

logo, o resultado para essa integral é dado por:

I1/2 = 11
15 −

28
5
√

3− 8 sinh−1
(

1√
2

)
= −14.23398 (286)

Substituindo os valores encontrados, dados pelas equações (273) e (286), na equação (252),
encontramos:

S3U5 = − 58
45L4

(
−1.122583

8 − 14.23398
)
≈ 18.8886

L4 . (287)

Desse modo, as integrais que contribuem para a correção na energia de Casimir são dadas
por:

S3U5 + S1U3 = 18.888599
L4 − 203

15L4 0.994 = 5.436334184
L4 . (288)

Por fim, esse resultado é substituído na expressão geral do tensor energia-momento, dado
pela equação (202). Lembrando ainda que, tal resultado deve ser multiplicado por um
fator global de De2, dado pela equação (125), que se refere a dimensão total do espaço
e a carga do elétron. Portanto, encontramos para a correção da energia de Casimir em
primeira ordem, um valor de:

T 00 ' (4e2)5.436334184
(4π)3L4 ' 4e2π2

3603L4 . (289)
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Esse resultado apresenta o mesmo comportamento daquele encontrado por (BORDAG;
ROBASCHIK; WIECZOREK, 1985).

O cálculo de correções radiativas para a energia de Casimir, apresentado nessa tese, foi
feito utilizando o formalismo de topologias toroidais, tendo como base a compactação
de uma dimensão espacial. O resultado encontrado, para a correção da energia, mostra
um comportamento que varia com o inverso da quarta potência da distância entre as pla-
cas. Observamos que o tensor energia momento também forneceu quantidades divergentes
para essa correção, as quais não conseguimos extrair algum significado físico. De fato,
ao utilizarmos o método de topologias toroidais esperamos uma diminuição no grau de
divergência que surge durante o cálculo do diagrama de loop. Porém, para uma melhor
interpretação dos resultados, precisamos aplicar a teoria de renormalização no cálculo des-
ses diagramas de loop, na qual os contratermos que surgem da teoria perturbativa podem
absorver as contribuições sem significado físico nos parâmetros utilizados. Portanto, como
uma perspectiva futura seria necessário entender e aplicar a teoria de renormalização nes-
ses espaços com parte de suas dimensões compactadas, comparando assim a diferença no
grau da divergência dos parâmetros em uma teoria quântica de campos convencional (tem-
peratura zero) com a teoria quântica de campos a temperatura finita, sendo esta última
descrita conforme realizado nessa tese, pelo formalismo de Matsubara generalizado.
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CONCLUSÃO

Observa-se, então, que o efeito Casimir é um fenômeno caracterizado por flutu-
ações na energia de ponto zero de um determinado campo relativístico restrito a uma
certa região do espaço, a qual é feita de vácuo. Conforme discutido ao longo da tese, tal
vácuo é entendido como o estado de menor energia do campo em questão, sendo que essa
energia surge a partir das interações entre o campo e as partículas virtuais que são criadas
a todo momento nesse vácuo, obedecendo assim ao princípio de incerteza de Heisenberg.
Além disso, o efeito casimir não é restrito apenas a um determinado tipo de geometria ou
campo. O mesmo pode ser descrito por placas esféricas, cilíndricas, toroidais, entre outras.

Tal energia de vácuo, conforme mostrado por Casimir no fim dos anos 40, é definida
como a diferença entre duas quantidades divergentes, sendo um termo dependente da se-
paração entre as placas, impostas por um determinado conjunto de condições de contorno
utilizada. Enquanto isso, o outro termo não depende das condições de contorno. Desse
modo, por se tratar de uma quantidade divergente, é necessário aplicar algum método
de regularização como forma de extrair um sentido físico para essas quantidades diver-
gentes. Com a evolução da teoria quântica de campos, novos métodos de regularização
foram sendo criados com o intuito de contornarmos tais quantidades sem sentido físico,
a princípio. Além disso, a escolha de qual método de regularização utilizar não deve in-
fluenciar nos resultados que são fisicamente relevantes, podendo um método ou outro ser
mais eficiente de acordo com as características a serem extraídas do fenômeno. Dentre
algumas dessas escolhas, podemos citar o método de corte nas frequências, o método da
função zeta generalizada, o método da função de Green, entre outros. Nesse trabalho,
escolhemos o método local para tratarmos essas divergências. Esse baseia-se em calcular
o valor esperado do tensor energia momento em termos dos propagadores de uma deter-
minada teoria, a qual fizemos no contexto da eletrodinâmica quântica.

O estudo do efeito Casimir foi feito utilizando o formalismo de topologias toroi-
dais, o qual trata-se de uma generalização de formalismo de campos a temperatura finita,
desenvolvido por Matsubara em 1955. Em outras palavras, além de compactarmos a
dimensão temporal (interpretada como temperatura), podemos compactar também di-
mensões espaciais. Portanto, as integrais nos momentos que variam de zero à infinito,
podem agora ser substituídas por somatórios com valores discretos dos momentos. Nesse
contexto, utilizamos o tensor energia-momento em termos do propagador livre do fóton,
para calcular as expressões da energia e da pressão entre as placas, chegando no mesmo
resultado previsto por Casimir em 1948. Posteriormente, esse cálculo é feito incluindo os
efeitos térmicos na energia de Casimir, realizando uma compactação dupla, sendo uma
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coordenada espacial e a outra temporal. No resultado encontrado, observa-se que o termo
referente a compactação temporal reproduz a lei de Stefan-Boltzmann, a compactação es-
pacial reproduz a energia encontrada por Casimir e o último termo da equação representa
a contribuição mista de ambas as dimensões citadas.

Por fim, a parte mais importante dessa tese, concentra-se em calcular as correções
radiativas na energia de Casimir na aproximação a 1 loop. Dessa maneira, consideramos
a interação do elétron com o campo eletromagnético, na qual calculamos o digrama de
loop fermiônico que representa a auto-energia do fóton. O resultado obtido mostra um
comportamento com o inverso da quarta potência da distância entre as placas no efeito
Casimir. Porém, alguns termos aparecem como quantidades divergentes ao fim desse cál-
culo. Tais divergências têm origem devido a alguns valores específicos da função gama
(pólos) e da função Zeta de Riemann. Como uma possível solução futura para eliminar
as divergências desse cálculo, precisamos fazer um estudo da renormalização desses di-
agramas em um espaço com dimensões compactadas. Uma das maneiras de fazer essa
renormalização, seria considerar os contratermos de maneira englobar esses termos de di-
vergêngia, restando apenas aqueles com algum significado físico.

Como perspectiva futura, podemos estender esse estudo do efeito Casimir no con-
texto da cromodinâmica quântica. Quarks e glúons, como se sabe, são quanta de campos
completamente confinadas dentro dos hádrons. Ou seja, em todos os experimentos já
realizados, utilizando níveis de energia cada vez mais elevados, os quarks nunca foram
observados de forma isolada. Por esse motivo, o confinamento é um dos aspectos mais
estudados desde a década de 1970 até os dias de hoje, buscando respostas para essa ca-
racterística dos quarks. Uma solução foi a criação do chamado modelo de sacola (bag
model). Neste modelo, os hádrons são interpretados como sacolas confinantes, na quais
os quarks e glúons estão contidos. Assim, tornam-se relevantes as contribuições à energia
de Casimir dos campos em questão, não apenas as de campos livres, mas também as das
interações entre eles, no contexto da cromodinâmica quântica a 1 loop, à temperatura
zero e a temperatura finita.



81

REFERÊNCIAS

ABREU, L. M. t. Magnetic effects on spontaneous symmetry breaking/restoration in a
toroidal topology. Physical Review D, [S.l], v. 88, n. 10, 2013.

APOSTOL, T. An elementary view of euler’s summation formula. The American
Mathematical Monthly, [S.l], v. 106, n. 5, p. 409, 1999.

BARONE, F.; CAVALCANTI, R.; FARINA, C. Radiative corrections to the casimir
effect for the massive scalar field. Nuclear Physics B, [S.l], v. 127, n. 3, p. 118–122, 2004.

BORDAG, M.; ROBASCHIK, D.; WIECZOREK, E. Quantum field theoretic
treatmentof the casimir effect. Annals of Physics, [S.l], v. 165, p. 192, 1985.

BORDAG, M.; SCHARNHORST, K. o(α) radiative correction to the casimir energy for
penetrable mirrors. Physical Review Letters, [S.l], v. 81, n. 5, p. 3815, 1998.

BROWN, L.; MACLAY, G. Vacuum stress between conducting plates: An image
solution*. Physical Review, [S.l], v. 184, n. 5, p. 1272, Jan 1969.

CALZA, T. C. A. t. Compatibility between the ginzburg–landau model and finite-
temperature quantum field theory. Modern Physics Letters A, [S.l], v. 31, n. 40, p.
1650227, Jun 2016.

CARDOSO, F. Um estudo dos efeitos das compactações dimensionais nas teorias de
campos. Tese (Doutorado) — Universidade do Estado do Rio de Janeiro, Rio de Janeiro,
2020.

CASIMIR, H. On the attraction between two perfectly conducting plates. Proc. K. Ned.
Akad. Wet, [S.l], v. 51, n. 4A, p. 793, 1948.

CASIMIR, H.; POLDER, D. The influence of retardation on the london-van der waals
forces plates. Physical Review, [S.l], v. 73, p. 360–372, 1948.

CAVALCANTI, R.; FARINA, C.; BARONE, F. Radiative corrections to casimir effect
in the λφ4 model. Physical Review Letters, [S.l], n. 5, p. 24, 2006.

COUGO-PINTO, M.; FARINA, C.; A, T. O efeito casimir. Revista Brasileira de Ensino
de Física, [S.l], v. 22, n. 1, p. 122, 2000.

DAS, A. Finite temperature field theory. Singapore: World Scientific, 1997.

ELIZALDE, A. t. Zeta regularization techniques with applications. Journ.Math.Phys,
[S.l], v. 30, p. 1133, 1989.

ELIZALDE, E. Ten physical applications of spectral zeta functions. Berlin: Springer,
1995.

ELIZALDE, E.; ROMEO, A. Essentials of the casimir effect and its computation.
RAmerican Journal of Physics, [S.l], v. 59, n. 1, p. 711, 1991.

EZAWA, H.; TOMOZAWA, Y.; UMEZAWA, H. Quantum statistics of fields and
multiple production of mesons. Il Nuovo Cimento, [S.l], v. 5, n. 4, p. 810–841, 1957.



82

FARINA, C. The casimir effect: Some aspects. Brazilian Journal of Physics, [S.l], v. 36,
n. 4A, p. 1137, 2006.

ITZYKSON, C.; ZUBER, J. Quantum field theory / Claude Itzykson and Jean-Bernard
Zuber. New York: Dover Publications, 2005.

KAPUSTA, J.; GALE, C. Finite-temperature field theory: principles and applications.
Reino Unido: Cambridge University Press, 2013.

KHANNA, F. et al. Quantum field theory on toroidal topology: Algebraic structure and
applications. Physics Reports, [S.l], v. 539, n. 3, p. 135–224, 2014.

KHANNA, F. C. Thermal quantum field theory: algebraic aspects and applications.
Hackensack, NJ: World Scientific, 2009.

KIRSTEN, K. Spectral functions in mathematics and physics. Journ.Math.Phys, [S.l],
v. 35, p. 459, 1994.

LAMOREAUX, S. Demonstration of the casimir force in the 0.6 to 6m range. Phys. Rev.
Lett., [S.l], v. 78, n. 5, p. 751, 1997.

LAMOREAUX, S. Casimir forces: still surprising after 60 years. Physicis Today, [S.l],
v. 78, n. 5, p. 40–45, 2007.

LEBELLAC, M. Thermal field theory. Reino Unido: Cambridge University Press, 1996.

LINHARES, C. A. et al. Spontaneous symmetry restoration in a field theory at finite
chemical potential in a toroidal topology. Physical Review D, [S.l], v. 86, n. 10, 2012.

MALBOUISSON, A.; MALBOUISSON, J.; SANTANA, A. Spontaneous symmetry
breaking in compactified λφ4 theory. Nuclear Physics B, [S.l], v. 631, n. 1-2, p. 83–94,
2002.

MATSUBARA, T. A new approach to quantum-statistical mechanics. Progress of
Theoretical Physics, [S.l], v. 14, n. 4, p. 351–378, 1955.

MILONNI, P. The Quantum Vacuum: An Introduction to Quantum Electrodynamics.
San Diego: Academic, 1994.

MILTON, K. Physical Manifestation of zero point energy - The Casimir effect. Singapore:
World Scientific, 2001.

MOHIDEEN, U.; ROY, A. Precision measurement of the casimir force from 0.1 to 0.9m.
Phys. Rev. Lett., [S.l], v. 81, n. 5, p. 4549, 1998.

PESKIN, M. E.; SCHROEDER, D. V. An introduction to quantum field theory. Reading,
Massachusetts: Westview Press Inc, 1995.

RAVNDAL, F.; THOMASSEN, J. Radiative corrections to the casimir energy and
effective field theory. Nuclear Physics B, [S.l], v. 127, n. 3, p. 135–224, 2004.

REGO, A.; LINHARES, C.; MALBOUISSON, A. Casimir effect via a generalized
matsubara formalism. arXiv:1608.01367, [S.l], 2016.



83

SPARNAAY, M. Measurements of attractive forces between flat plates. Physica, [S.l],
v. 24, p. 751–764, 1958.

WATSON, G. N. A treatise on the theory of Bessel functions. Reino Unido: Cambridge
University Press, 2011.



84

APÊNDICE A – Função Zeta de Epstein-Hurwitz

A.1 Continuação analítica da Função Zeta de Epstein-Hurwitz

As funções zeta inomogêneas de Epstein-Hurwitz, são definidas da seguinte forma

Zc2

k (ν, a1..., ak; b1, ...bk) =
∞∑

nj=−∞

[
a1(n1 − b1)2 + ...ak(nk − bk)2 + c2

]−ν
, (290)

fazendo o caso particular de uma dimensão compactada, essa equação é reduzida para:

Zc2

1 (ν, a, b) =
∞∑

n=−∞

[
a(n− b)2 + c2

]−ν
, (291)

utilizando uma representação da zeta de Epstein-Hurwitz pode ser representada, dada
por:

Zc2

1 (ν, a, b) =
∞∑

n=−∞

1
Γ (ν)

∫ ∞
0

dt tν−1e−a(n−b)2te−c
2t. (292)

Utilizando a identidade,

∞∑
n=−∞

e−tn
2+2πinb =

(
π

t

)1/2 ∞∑
n=−∞

e−π
2(n−b)2/t, (293)

fazendo t→ 1/t:

∞∑
n=−∞

e−n
2/t+2πinb = (πt)1/2

∞∑
n=−∞

e−π
2(n−b)2t, (294)

e definindo t′ = a
π2 t, obtemos

Zc2

1 (ν, a, b) = 1
Γ (ν)

(
π2

a

)ν
π−1/2

∫ ∞
0

dt tν−1/2−1e−(π2/a)c2t
∞∑

n=−∞
e−n

2/t+2πinb. (295)

O somatório na equação acima pode ser reescrito como

∞∑
n=−∞

e−n
2/t+2πinb = 1 +

−1∑
n=−∞

e−n
2/t+2πinb +

∞∑
n=1

e−n
2/t+2πinb = 1 + 2

∞∑
n=1

cos(2πnb)e−n2/t,

(296)
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desta maneira, a eq.(295) torna-se

Zc2

1 (ν, a, b) = 1
Γ (ν)

(
π2

a

)ν
π−1/2

[∫ ∞
0

dt tν−1/2−1e−(π2/a)c2t + 2
∞∑
n=1

cos(2πnb)

×
∫ ∞

0
dt tν−1/2−1e−(π2/a)c2t−n2/t

]
. (297)

A integral no primeiro termo de Zc2
1 pode ser obtida pela identidade

1
∆ν

= 1
Γ (ν)

∫ ∞
0

dt tν−1e−∆t. (298)

Logo, obtemos que:
∫ ∞

0
dt tν−1/2−1e−(π2/a)c2t = Γ (ν − 1/2)(

π2

a
c2
)ν−1/2π

1/2.

(299)

Substituindo na eq. (297), obtemos que o primeiro termo de Zc2
1 é

Γ (ν − 1/2)
Γ (ν)

(
π2

a

)1/2

c1−2ν . (300)

O segundo termo de Zc2
1 pode ser expresso em termos das funções de Bessel modificadas

de segunda espécie Kν , as quais possuem uma representação integral dada por

2
(
A

B

)ν/2
Kν

(
2
√
AB

)
=
∫ ∞

0
dt tν−1e−A/t−Bt. (301)

Assim, podemos escrever como

1
Γ (ν)

(
π2

a

)ν
4π−1/2

∞∑
n=1

cos(2πnb)
(
n
√
a

πc

)ν−1/2

Kν−1/2

(
2πc√
a
n

)

= 1
Γ (ν)

4πν

(
√
a)ν+1/2 c

1/2−ν
∞∑
n=1

cos(2πnb)nν−1/2Kν−1/2

(
2πc√
a
n

)
. (302)

Colocando ν = s− (D − 1)/2, a expressão final para Zc2
1 é da forma

Zc2

1 (s− (D − 1)/2; a; b) =
Γ
(
s− D

2

)
Γ
(
s− D−1

2

) (π
a

)1/2
c1−2ν

+ 4πs−(D−1)/2

(
√
a)s−D/2+1

cD/2−s

Γ
(
s− D−1

2

) ∞∑
n=1

cos(2πnb)
nD/2−s

KD/2−s

(
2πc√
a
n

)
.

(303)
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