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RESUMO

CALZA, T.C.A. Teorias de campos em espagos toroidais aplicadas ao efeito Casimir.
2020. 85 f. Tese (Doutorado em Fisica) — Instituto de Fisica Armando Dias Tavares,
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.

Neste trabalho utilizamos o formalismo de teorias quanticas de campos para descre-
ver a interacao desses campos em espacos nao triviais. Tal formalismo é uma generalizagao
da prescricao de Matsubara da teoria de campos a temperatura finita, sendo chamado de
formalismo em espagos toroidais. O objetivo deste trabalho é fazer como uma aplicacao
deste método o estudo do efeito Casimir, fendmeno caracterizado por flutuagoes na ener-
gia de ponto zero do campo dando origem a uma forca de atracao entre duas superficieis
neutras. O efeito, entdo, serd estudado em espagos com dimensoes compactadas, obtendo
grandezas como a energia e a pressao de Casimir, nessas topologias nao triviais. O método
de regularizacao para eliminar as divergéncias da diferenca das energias de ponto zero é
o chamado método local. A partir dele obtemos os resultados para as duas quantidades
mais fundamentais no efeito Casimir, conforme citado acima. Posteriormente, estendemos
esse estudo para o célculo das corre¢oes radiativas a 1 loop no contexto da eletrodinamica
quantica. Calculamos, entdao, o diagrama de loop fermionico, representando a interacao
do elétron com o campo eletromagnético, obtendo assim a correcdo para a energia de
Casimir.

Palavras-chave: Teoria de campos . Eletrodinamica quéantica. Simetria quebrada .

Transformacoes de fases .



ABSTRACT

CALZA, T.C.A. Toroidal quantum field theories applied to Casimir effect. 2020. 85 f.
Tese (Doutorado em Fisica) — Instituto de Fisica Armando Dias Tavares, Universidade
do Estado do Rio de Janeiro, Rio de Janeiro, 2020.

In this work we use the formalism of quantum field theories to describe the interac-
tion of these fields in non-trivial spaces. Such formalism is a generalization of Matsubara’s
prescription of the field theory at finite temperature, namely as field theories in toroidal
spaces. The main goal of this work is to study the Casimir effect, a phenomenon characte-
rized by fluctuations in the zero point energy of the field, giving rise to an attractive force
between two neutral surfaces. The effect, then, will be studied in spaces with compactified
dimensions so as to compute quantities such as Casimir energy and pressure, by the local
method, in these non-trivial topologies. Later, we extended this work to compute one
loop radiative corrections in quantum electrodynamics, thus computing the contribution
to Casimir energy due to interaction of the electron field with the electromagnetic field.

Keywords: Field Theories. Quantum Eletrodynamics. Broken symmetry. Phase

Transitions.
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INTRODUCAO

Ao longo dos anos, o interesse em sistemas fisicos restritos a um determinado nu-
mero de dimensoes espaciais vem aumentando cada vez mais. Tais restrigoes de espaco
levam a diferentes condi¢oes de contorno impostas a um determinado sistema. Ao impor-
mos, por exemplo, condigoes de contorno periddicas a essas dimensoes espaciais, cada uma
delas assume a topologia de um circulo de determinado comprimento. Dessa maneira, um
espago com um numero total de dimensoes D pode posssuir um ntmero d de dimensoes
compactadas, caracterizando assim um espac¢o com uma topologia toroidal, devido a es-
sas limitagoes em algumas de suas dimensoes (KHANNA et al., 2014);(LINHARES et
al., 2012);(MALBOUISSON; MALBOUISSON; SANTANA, 2002). Uma das aplicagoes
desses sistemas restritos a um tamanho finito consiste na transicao de fase da matéria
hadronica, caracterizada pela mudanca de uma fase em que os quarks estao confinados no
interior dos hadrons a uma determinada temperatura, para uma fase de desconfinamento,
conhecida como um plasma de quarks e glions (KAPUSTA; GALE, 2013).

Esse trabalho se insere no estudo das teorias quanticas de campos aplicadas a siste-
mas fisicos restritos a espagos com topologias toroidais. Tais restrigoes levam a alteragoes
nas integrais dos diagramas de Feynman com loops em analogia com o tratamento similar
ao de temperaturas finitas. Em particular, estudamos o efeito Casimir, fenomeno quan-
tico em que, em sua formulacao original, surgem forcas entre placas paralelas condutoras,
separadas por uma pequena distdncia L entre elas (CASIMIR, 1948). Estas forgas sao
induzidas pela presenca de um campo eletromagnético entre as placas; em outras pala-
vras, o efeito Casimir pode ser entendido como variagoes na energia de ponto zero do
campo. Qualquer que seja o tipo de campo considerado, podera ocorrer uma flutuagao
da energia de vacuo. Assim, o efeito Casimir pode ser investigado para diversos tipos
de campos relativisticos. Também podem ser consideradas diferentes geometrias que, de
alguma forma, delimitem o espago onde atuam os campos, levando a uma variedade de
condi¢bes de contorno as quais eles estao sujeitos (FARINA, 2006). O trabalho se concen-
trara no estudo do efeito Casimir no contexto de teorias de calibre, com simetria abeliana,
portanto estamos interessados no estudo da eletrodindmica quéantica. O objetivo deste
trabalho é utilizar o formalismo de teoria quantica de campos em espacos toroidais para
obter expressoes para a pressao e a energia de Casimir, em fungao da separagao entre as
placas, fazendo restrigoes espaciais. Em seguida, esse cdlculo serd generalizado de forma a
também incluir efeitos térmicos simultaneamente com a restrigao espacial. Tais grandezas
podem ser obtidas por diferentes métodos e também utilizando diferentes condigoes de
contorno. Considerando, primeiramente, o efeito Casimir para o campo eletromagnético,
realizamos os calculos de pressao e energia, na aproximacao de campo livre, via tensor de

energia-momentum e sua ligagdo com o propagador de campo livre (REGO; LINHARES;
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MALBOUISSON, 2016). Aplica-se, entao, o formalismo de Matsubara generalizado, com
condi¢oes de contorno periddicas. Em seguida, estendemos esse estudo do efeito Casimir
considerando a interacao do campo eletromagnético e do campo do elétron, de acordo
com a eletrodindmica quantica na aproximagao de 1 loop (ITZYKSON; ZUBER, 2005).
Obtém-se, assim, neste contexto, corre¢oes radiativas (BORDAG; ROBASCHIK; WIEC-
ZOREK, 1985) para o efeito Casimir, bem como corre¢oes devidas a temperatura finita.
O tratamento de integrais relativas a amplitudes de Feynman é, novamente, realizado
através do método de Matsubara para temperatura e delimitacdo de uma dimensao es-
pacial. Os resultados assim obtidos para a energia e a pressao de Casimir podem ser
comparados com os ja conhecidos na literatura, calculados por outros métodos. Esta tese
foi dividida conforme a seguinte sequéncia:

No capitulo 1 falamos sobre a teoria de campos a temperatura finita, segundo a
prescricao de Matsubara. A partir disso, generalizamos tal prescricao apresentando o mé-
todo de teorias de campos em topologias toroidais. No capitulo 2, abordamos o conceito de
vacuo na mecanica quantica e na teoria quantica de campos. Nesse contexto, discutimos
o processo histérico sobre efeito Casimir e suas aplicagoes nos diferentes ramos da fisica.
Além disso, enfatizamos que o mesmo estd muito além de uma forca atrativa entre duas
placas paralelas descarregadas. Em outras palavras, tal efeito é caracterizado como sendo
variagoes da energia de ponto zero dos campos, contidos no vacuo, utilizados em questao.
Neste capitulo deixamos explicito que o efeito Casirmir é a principal aplicacdo do método
de teorias quanticas de campos em topologiais toroidais utilizado ao longo dessa tese. No
capitulo 3, aplicamos o formalismo de Matsubara generalizado para calcular expressoes
para a pressao e a energia de Casimir, em funcao da separacao entre as placas, fazendo
restrigoes espaciais. Em seguida, esse calculo serd generalizado de forma a também in-
cluir efeitos térmicos simultaneamente com a restricao espacial. Tais grandezas podem
ser obtidas por diferentes métodos e também utilizando diferentes condi¢oes de contorno.
Considerando, o efeito Casimir para o campo eletromagnético, realizamos os calculos de
pressao e energia, na aproximacgao de campo livre, via tensor de energia-momento e sua
ligacdo com o propagador de campo livre, caracterizando o uso do método local para
obtencao de tais grandezas. Aplica-se, entdo, o formalismo de Matsubara generalizado,
com condigoes de contorno periédicas impostas aos campos. Em seguida, no capitulo 4,
estendemos esse estudo do efeito Casimir considerando a interacao do campo eletromag-
nético e do campo do elétron, de acordo com a eletrodinamica quantica na aproximacao a
1 loop, obtendo entao a correcao da energia de Casimir e seu comportamento com relagao
a distancia L entre as placas. Encerramos com algumas consideragoes finais a respeito da
aplicabilidade do efeito Casimir em diferentes geometrias e diferentes teorias de interagao.
Destacando que tanto a geometria e as condigoes de contorno impostas aos campos podem

gerar flutuagoes na energia de ponto zero do vacuo, o que caracteriza o efeito Casimir.
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1 TEORIAS QUANTICAS DE CAMPOS EM ESPACOS TOROIDAIS

Em muitos problemas em fisica nos deparamos com condi¢bes de contorno pe-
riddicas em sistemas restritos a uma extensao finita de um certo nimero de dimensoes
espaciais. Diferentemente do espaco livre, estas dimensoes finitas com condi¢oes de con-
torno, do ponto de vista topoldgico, sao ditas compactas. Cada dimensao compactada
adquire, portanto, a topologia de um circulo S*. Um espaco euclidiano de D dimensoes,
com um numero d < D de suas dimensoes compactadas, possui assim uma topologia de
um hipertoro, de modo que, em geral, tais geometrias sao ditas possuindo uma topologia
toroidal. Isto é, sua topologia é do tipo 'Y, = (S1)? x RP~4. Tal formalismo de topologias
toroidais aplica-se a diversos ramos da fisica, como o estudo de transi¢oes de fase em ma-
teirias supercondutores, transicoes de fase da matéria hadronica, problemas envolvendo
dimensoes extras. Além disso, esse formalismo por se tratar de limitagbes em determi-
nadas dimensoes de um dado espago da origem a um dos fenémenos de maior interesse
na fisica desde as ultimas dacadas, o chamado efeito Casimir. Esse sera o grande objeto
de estudo nessa tese, no qual iremos aplicar as compactacoes de determinadas dimen-
soes (espaciais e temporal) ao campo eletromagnético. Em outras palavras, utilizando as
condigoes de contorno periddicas, limitamos o campo mencionado a uma certa regiao do
espaco, estudando assim as flutuagoes na energia de ponto zero do mesmo. Para um estudo
detalhado sobre esse formalismo, envolvendo métodos de calculo e aplica¢oes, indicamos
as seguintes referéncias. (KHANNA, 2009);(KHANNA et al., 2014);(ABREU, 2013);(LI-
NHARES et al., 2012);(CALZA, 2016);(MALBOUISSON; MALBOUISSON; SANTANA,
2002);(CARDOSO, )

1.1 Teoria de campos a temperatura finita

O estudo da teoria de campos a temperatura finita consiste em aplicarmos os efeitos
térmicos, no contexto da mecanica estatistica, para descrever a interacao desses campos
com um determinado meio externo. Existem alguns formalismos para se descrever essa
interacao, que diferem um do outro pela maneira de como a varidvel de temperatura é
introduzida. Dentre esses formalismos, temos os chamados formalismos de tempo imagi-
nério e tempo real (DAS, 1997), esse tltimo sendo mais adequado para descrever processos
fora do equilibrio(EZAWA; TOMOZAWA; UMEZAWA, 1957). O mais antigo deles, for-
malismo de tempo imaginario ou também chamado de formalismo de Matsubara, proposto
por Takeo Matsubara em 1955 (MATSUBARA, 1955), é ideal para descrever os sistemas
em equilibrio. A abordagem devida a Matsubara propoe que seja utilizado um espaco

euclidiano, no qual, além das trés dimensoes espaciais usuais, ha uma quarta dimensao,
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de extensdo finita, limitada de zero a 3 = T~!. Por analogia, esta abordagem é dita de
tempo imaginario. Considera-se, ainda, uma periodicidade das fungoes de correlacao de
campos bosdnicos, como o campo escalar. Portanto, a periodicidade no formalismo de
tempo imaginario é equivalente a formular a teoria em uma topologia toroidal do tipo
I'l = S* x R3, onde S! é uma circunferéncia de comprimento proporcional ao inverso da,
temperatura. Posteriormente, alguns formalismos foram desenvolvidos de forma a gene-
realizar a prescricao de Matsubara, entre eles temos o chamado formalismo de topologias

toroidais(KHANNA, 2009), o qual sera utilizado amplamente nesse trabalho.

1.2 Formalismo de Matsubara

Para desenvolver um pouco da abordagem do formalismo de Matsubara, vamos
introduzir alguns conceitos fundamentais da mecénica estatistica (LEBELLAC, 1996).
Consideramos, entao, um sistema descrito por uma hamiltoniana H na presenca de um
reservatorio térmico de temperatura 1//3, caracterizando, no equilibrio térmico, o chamado
ensemble candnico. O operador de matriz densidade que descreve a evolugao desse sistema

¢ dado por:
p= eiﬁH (1)

onde f = 1/T, no sistema de unidades naturais. Para extrair diversas grandezas termodi-
namicas de um sistema, como pressao, entropia, nimero de particulas, definimos a funcao

de partigao:
Z="Tr(p) =Y (n|e™|n). (2)

A partir dela podemos obter diversas grandezas importantes da mecénica estatisitica,

conforme alguns exemplos abaixo.

0lnZ
P=T— (3)
0lnZ
— 4
N Taﬂ (4)
SZT@]HZ (5)

or
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Podemos, entdao, obter o valor esperado de um dado operador O, em equilibrio térmico

no seu ensemble, como:

(0)g=>_(n|0]n), (6)
n

onde |n) é um conjunto completo de estados ortonormais. Porém, quando o sistema

encontra-se em um banho térmico, o valor esperado do operador deve ser calculado como

a média sobre o ensemble com um fator de Boltzmann
1 1
_ “BH _ —BH
(0)s=->(n]O|nje ——ZTr<e 0), (7)

n

podendo ser escrito também em termos do operador matriz densidade, como:

(0) =3 )

A partir de agora, podemos obter uma relagao fundamental na teoria de campos a tem-

peratura finita (DAS, 1997). Utilizando a func¢ao de green da teoria, obtemos:

(6,06, 0) = ~Tele P 3(z,1)6(y,0)

7

= L Tufo(a. e e o(y,0)

= ;Tr[gb(x, t)e PH ) gy )~ (1A

= ;Tr[eb(x,t)e‘ﬁ%(y, —if})]

= ey, ~if)o(x, 1)

= (8ly, —iB)d(z,1)) (9)

conforme mostrado acima,utilizamos a propriedade de permutagao ciclica do traco do

produto de operadores.

Observa-se, entao, que a temperatura desempenha um papel de variavel de tempo imagi-
nario. Desse modo, a variavel de tempo imaginaria é definida, por uma rotacdo de Wick,

da seguinte maneira:

T=it  t=—ir (10)
portanto, a equagao (9) pode ser reescrita como

(¢(z,7)o(y,0)) = (o(y, B)o(x, 7)) (11)

A equagdo acima, assim como a eq.(9),é conhecida na teoria de campos a temperatura
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finita, como relagdo Kubo-Martin-Schwinger ou de forma abreviada relacao KMS. Inter-
pretando a relagao acima, observamos que o propagador da teoria é periédico no eixo do
tempo imaginario, com periodo delimitado por uma extensao igual ao inverso da tempe-
ratura. A partir da relacdo KMS, temos que os campos obedecem a seguinte condi¢ao de

contorno:

o(x.0) = £o(z, B), (12)

nessa equagao, o sinal + representa se os campos sao bosonicos (comutam) ou fermioni-
cos (anticomutam). Em outras palavras, a relagio KMS evidencia que os campos podem

assumir condi¢oes de contorno periddicas ou antiperiddicas.

De maneira analoga ao que é feito na toeria de campos a temperatura zero, tra-
balhamos com os campos no espaco de momento-freqiiéncia. Devido a periodicidade
imposta pelas codi¢oes de contorno sobre os campos, podemos representar os mesmos por

uma expansao de Fourier de seguinte maneira:
Oz, 7) =Y dw, wy)e™ " (13)

Portanto, ao impormos restricoes em alguma das varidveis, o que antes era uma integral
continua de Fourier é substituido por uma série de Fourier, na qual as frequéncias dos
modos dos campos assumem valores discretos. Respectivamente, para bésons e férmions,

esses valores sao dados por:

Wy, = QZ;T (14)
oy — (2”;1)” . (15)

Tais valores discretos, onde n sao niimeros inteiros que podem variar de —oo a +00, sao

conhecidos como frequéncias de Matsubara.

Podemos, entdo, de forma andloga a teoria de campos usual (temperatura zero),
obter os propagadores livres em termos da variavel de tempo imaginario. Desta maneira,

podemos definifir os propagadores de Matsubara conforme abaixo:

A(r) = 5 3 (n] e o(r)o(0) | n). (16)
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tomando sua transformada de Fourier, temos:

B 4
Aliw,) = / dre™ T A(T), (17)

0
as frequéncias de Matsubara w,, = 2"” podem ser observadas da condicgao:

1 )

A1) = 3 > e TA(iw,) = AT + B). (18)

A relagao entre os propagadores livres no formalismo de tempo imaginario e no tempo

real pode ser encontrada como:

dk(] 7]?0

A(r) = A* (t = —ir) = / 5 (14 n(k%)] p(k2), (19)

T

onde n(k°) e p(k") representam, respectivamente, a distribui¢do de Bose-Einstein (LE-

BELLAC, 1996) e a fungdo espectral (PESKIN; SCHROEDER, 1995), dadas por:

1
e Bk —1

n =
p(k°) = 2mek® ((K°)? - Ey)
substituindo a eq.(19) na eq.(17), obtemos:
Aliw,) = / dretnT dko e [1 4 n(k%)] p(k°)

- [ dko / dre@ =R [1 4 n(k0)] p(k0), (20)
integrando em 7, temos:

dko e(iwnfko)f B
27 (iw, — kO,

1

1t ] ot = — [ o 2D

21w, — kO

Aiwy,) =

substituindo p(k°), encontramos que:

1 1 1
Aliw,) = — ( _ ) 99
(72n) 2E, \iw, — B, iw, + Ey (22)

onde E), = k% + m?.
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Portanto, o propagador livre de Matsubara é dado por:

1 1
A (wp, k) = = (23)
wr? + k2 +m? (QZn)2+k2_|_m2

De forma andloga a teoria quantica de campos a temperatura zero, as regras de
Feynman na expansao perturbativa (PESKIN; SCHROEDER, 1995) também podem ser
obtidas para o formalismo de campos a temperatura finita. De um modo geral, a integra-
¢ao sobre todas as componentes do momento (a temperatura zero) ¢ substituida por uma

soma sobre as frequéncias de Matsubara. Mais especificamente, devemos usar:

djrl;g (24)

d*k 1 /
ﬁ J—
Jam 3%/
A conexao entre mecanica estatistica e teoria quantica de campos é baseada no
fato de que o operador e ## | na funcio de particdo, pode ser identificado com o operador
de evolugao temporal ao longo do eixo temporal imaginario. Ou seja, formalmente, o

operador quantico de evolucdo temporal e *H

(h = 1) se transforma em e ?# quando
realizamos a continuacao analitica t — —if. Dito isso, podemos obter uma generalizacao

da fungao de particao da eq. (2), reescrevendo-a em termos de uma integral de caminho
—BH - fB drL(q)
Z =Tre = /qu 0 ’ (25)

onde a integragao funcional é realizada sobre todas as trajetérias ¢(7) sujeitas a condigao
de contorno ¢(0) = ¢(B). Generalizando da teoria quantica de particulas para a teoria

quantica de campos, formulada em D + 1 dimensoes, obtemos para a fun¢ao de particao
7 = Tre PH = / D e Jo 4 [ dPaLlo@)] (26)

onde todas as configuragoes ¢(x,T) que satisfazem a condi¢do de contorno da eq.(12)
devem ser incluidas na integral de caminho. E interessante observar que no limite de
temperatura nula, quando 5 — oo, a eq.(26) se reduz a teoria de campos usual formulada

no espaco euclidiano (neste caso, as condigdes de contorno deixam de ser importantes).

1.3 Formalismo de Matsubara generalizado

Conforme mencionamos no inicio de deste capitulo, um sistema contido em um

certo espacgo de D dimensoes, pode ter um certo nimero d de suas dimensoes compac-
. . d _

tadas, de forma que este é dito ter uma topologia da forma: I'4, = (S1)* x RP=4 . O

formalismo de Matsubara, portanto, é um caso particular em que apenas a dimensao tem-
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poral (tempo imaginario) é compactada, tendo uma topologia do tipo '}, = St x RP~L.
Porém, além da dimensao temporal, as dimensoes espaciais também podem ser compac-
tadas de forma que 1 < d < D, sendo a dimensdo temporal e cada uma das dimensoes
espaciais compactadas em uma circunferéncia de comprimento L;, no qual Ly = 3 corres-
ponde a extensdo do inverso da temperatura para a dimensdo temporal (LINHARES et
al., 2012). Podemos, entdo, considerar um sistema que encontra-se em equilibrio térmico
a uma certa temperatura e confinado em uma caixa retangular com (d — 1) dimensoes
espaciais. Adotamos coordenadas cartesianas r = (1, ..., x4,2), onde z é um vetor (D —d)
dimensional e com um vetor no espago de momento dado por k = (ky, ..., k4, q), sendo q
um vetor (D — d) no espago dos momentos. Portanto, o formalismo de Matsubara pode

ser generalizado da seguinte forma:

dk; 1 &

277'—)72’

? n=—00

e as componentes compactadas dos momentos sao dados por:

272’_“ , para bosons
ki = 1 (27)
27r(nz+2) , .
—5—24, para férmions
k2

ondei = 0,1, ...,d, sendo ¢« = 0 correspondente a dimensao de tempo imaginario. Portanto,
explicitamente, temos que as regras de Feynman compostas pelas integrais no espaco
de momento sdo sustituidas agora por somas de valores discretos de frequéncias. Ao
escolhermos, entdo, uma dimensdo temporal (efeito térmico) e uma dimensdo espacial

para serem compactadas, a prescricao de Matsubara é dada por:

dky 1 & 2mng 2m (mo + 3)

— == ko — ko - ————=~. 28
o ﬁ nO:iooa 0 B ’ 0 6 ( )
dey, 1 & 274 2 ("1+ %)

L Yk oy — —~ 2/ 9
27]' — Ll nl:_oo7 1 — Ll 5 1 — Ll ( 9)

De um modo geral, as integrais de Feynman sao calculadas pelos métodos usuais da teoria
quantica de campos (PESKIN; SCHROEDER, 1995), enquanto a parte das dimensoes que
foram compactadas, correspondente a séries sobre as frequéncias de Matsubara, sao tra-
tadas pelas propriedades da fungoes Zeta de Epstein-Hurwitz. Para um estudo detalhado
sobre essas fungoes é interessante a leitura de (ELIZALDE, 1995); (KIRSTEN, 1994).



20

2 O EFEITO CASIMIR

2.1 O conceito de vacuo na mecanica quantica

A ideia de vacuo, segundo a fisica classica, estd associada a um espago vazio,

sem qualquer tipo de particulas e interacdao entre as mesmas. A tunica generalizacao do
conceito, desde o surgimento do eletromagnetismo de Maxwell, ¢ de que as ondas eletro-
magnéticas propagam-se nesse vacuo assim como as ondas mecanicas precisam de um meio
material para se propagar. Com o surgimento da mecanica quantica e posteriormente da
teoria quantica de campos, a ideia de vacuo passou a assumir um outro significado, o
qual agora ¢é caracterizado como sendo o estado quantico de mais baixa energia. Nesse
vacuo ocorrem a todo momento criagao e aniquilagao de pares de particulas virtuais, essas
podem interagir durante espacos e tempos muito pequenos de acordo com principio de
incerteza de Heisenberg. Todas essas pequenas interacoes entre as particulas sao ditas
como sendo flutuacdes em torno da energia de ponto zero do vacuo . Por exemplo no
caso da eletrodindmica quantica (QED), teoria que descreve a propagagao e interagao de
férmions com o campo eletromagnético, tanto a propagacao de um elétron ou de um féton
é agora afetada por suas interagoes com esses pares de particulas virtuais. Em particular,
o movimento de uma carga elétrica é afetado pelas interagoes que essa particula sofre
com o vacuo, de modo que esse comega a se comportar como um meio dielétrico devido a
presenca dessa carga, conforme ilustra a Fig.1.
Esse fendmeno de alinhamento dos dipolos é conhecido como a polarizacdo do vacuo.
Além disso, tais flutuagoes dos campos nao se restringem simplemsmente ao campo ele-
tromagnético descrito na eletrodinamica quantica, qualquer teoria relativistica pode ter
flutuagao da energia de vacuo com seu respectivo campo. Dentre algumas condig¢oes ex-
ternas que podem influenciar essas flutuagoes do vacuo, a principal delas sera o objeto de
estudo dessa tese, o chamado efeito Casimir e de que maneira esse efeito influencia nessa
energia de ponto zero (MILONNI, 1994)
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Figura 1 - Interagdo no vacuo quantico

Legenda: Interacdo entre pares de particulas
virtuais com uma carga elétrica no
vacuo quantico

Fonte: Pégina do INFN?

@ Disponivel em  <http://w3.Inf.infn.it>.
Acesso em: 27 jul. 2020.

2.2 O surgimento do efeito Casimir

No fim da década de 1940, o fisico Holandés Hendrik Casimir do Laboratério de
Pesquisa Phillips, chegou a previsao de que duas placas neutras condutoras, separadas
por uma certa distancia a, muito menor que suas dimensoes, e colocadas em uma regiao
de vacuo, estao sujeitas a uma forga de atragao entre elas (CASIMIR, 1948) que varia de
forma inversamente proporcional com a quarta poténcia da distdncia entre as mesmas.
Porém, devido as placas estarem neutras, essa forca que surge entre elas nao é de origem
elétrica conforme espera-se pela lei de Coulomb, além disso, o vacuo é um meio incapaz
de exercer qualquer tipo de interagao, conforme prevé a fisica classica. Em 1948, Casimir
publica em seu artigo que essa forga surge das flutuagoes da energia do campo contido
no vacuo formado entre as placas (CASIMIR; POLDER, 1948). De fato, ao se considerar
a natureza quantica do vacuo, a simples presenca das placas ja afeta tais flutuagoes de
energia dos campos, contrariando a fisica classica. Logo, podemos dizer agora que existe
algum tipo de interagao entre o vacuo e as placas, conforme ilustrado na Fig.2. Como
os campos sao um conjunto de varios osciladores harmonicos quantizados, esses possuem

valores de energia bem definidos sem a possiblidade de valores intermediarios. Tais valores
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Figura 2 - Efeito Casimir

Placas metdlicas neutras

&K

Flutuagoes do vacuo

Forc¢a de Casimir

Legenda: Forga atrativa entre placas neutras
devido a flutuagoes do vacuo

Fonte: Adaptado pelo autor®

b Traduacdo da imagem coletada no site do
INFN

permitidos formam um espectro de energia discreto dado pela seguinte equacao:
1
E, - <n+2) hw, (n=0,1,2..), (30)

onde h é a constante de Planck e w sdo os possiveis modos de frequéncia do campo ele-

tromagnético.

Observando a equacao acima, percebemos que esse espectro s possui valores discretos
de energia e esses sempre sendo multiplos de hw, conforme prevé a mecanica quantica.
Porém, a contribuicao de maior relevancia para entendermos a origem da forca de atracao
no efeito Casimir vem do fato que a energia de um oscilador quéantico jamais terd um valor
nulo, conforme a eq.(30). Para o nivel de mais baixa energia, chamado de fundamental,
o valor sera dado por Aw/2, conhecido como energia de ponto zero. Portanto, a forga de
atragao se origina devido as flutuagoes da energia de ponto zero do campo eletromagnético.
O calculo da forca de Casimir, pode ser feito utlizando a energia do estado fundamental
do campo, a chamada energia de ponto zero. Essa energia é uma quantidade infinita,
mas em um caso simplificado em que desconsideramos influéncias de campos externos e
condi¢oes de contorno, esse termo infinito poderia ser eliminado por uma redefinicao da
escala de energia. Porém, a grande contribuicao de Casimir ao explicar a forca de atracao
entre as placas estd na influéncia das condi¢oes de contorno, impostas pelas placas, na
energia de ponto zero. De fato, essas condigdes de contorno fazem com que a energia

do campo eletromagnética adquira uma dependéncia com a distancia entre as placas de
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forma que essa nao pode ser descartada por uma redefini¢ao de escala. O método utilizado
por Casimir para obter a expressao a forca entre duas placas paralelas consiste em somar
todas as frequéncias possiveis no interior de uma caixa. Tal método é caracterizado pela
diferenca entre a energia de ponto zero sujeita influéncia de condigdes de contorno e a
energia de ponto sem tais restri¢oes espaciais. A demonstragao da for¢a de Casimir é feita
agora, segundo (MILONNI, 1994), utilizando o sistema de unidades naturais.

Partindo da ideia de restringir uma por¢ao do espago, consideramos uma caixa
vazia em forma de paralelpipedo de lados L, = L, = L e sendo L, = d a distancia entre
as placas paralelas. Devido as condigdes de contorno impostas, as frequéncias discretas

possiveis no interior da caixa sao dadas por:
l2 m2 n2 1/2
2 2 2

onde [, m e n correspondem a valores inteiros positivos e zero. A energia de ponto zero é

definida como:

1 2 om? 2\
Ey(d) = 2(2)§wlmn = <L2 +z+ L2> , (32)

Ilmn

o fator 2 aparece devido as duas polarizacoes independentes dos modos quando [, m.,n sao
diferentes de zero. Sendo as dimensoes das placas muito maior que a distancia entre elas,

L > d, podemos escrever os somatorios como integrais da forma:

LQZ/ daz/ dy(:v +y+d2>/2, (33)

sendo d arbitrariamente grande, esse somatorio restante pode ser substituido por uma

integral:

L2 o) 00 00 1/2
Eo(oo):?/o da:/o dy/o dz (2 +2 + )" (34)

A energia de ponto zero no interior das placas é dado pela diferenca entre o termo de

energia com restricao espacial e o termo sem restricao espacial, de forma que:
E(d) = Eo(d) — Eo(0), (35)

substituindo as equagoes(33) e (34), temos:

Z/ dw/ dy<x+y+ ) ——/ dx/ dy/ dz (o + 2 + )"
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(36)

passando de um sistema de coordenadas cartesianas para coordenadas polares:

Z/ ( W") —f/ dz/ rdrr+z)1/2] (37)

fazendo uma mudanca de variavel, temos:

E(d

27T2

E(d) = 4d3 [Z/ d:c :U + n? /2—/000dz/000d:c<:c2+z2>1/2] (38)

essa diferenca de energia, pode ser reescrita da seguinte forma:

B(d) = w2 L? ll

o |3FO +n§::1F(n) - /0 sz(z)] (39)

onde o fator 1/2 no primeireo termo corresponde a uma unica polarizagdo independente

quando n = 0. As fungées F'(n) e F(z) sao dadas por:

F(n)= / dx (:v2 + n2)1/2 F(z)=J5° dv (z* + z2)1/2 . (40)
0

Utilizando a féormula de Euler-Maclaurin, para ordens baixas (APOSTOL, 1999), como

forma de aproximar essa diferenca de duas quantidades infinitas para somas finitas:

0 1 1
F(n / d2F (= —fF — F(0) 4+ —F" 41
7;1 z (0) = 5 F(0) + o F7(0) (41)
onde F'(z) = —22%; F'(0) =0 e F"(0) = —4. Portanto,

i F1)~ [ deF(e) = S F(0) - 7‘210 (42)

logo, a eq.(39) assume a forma:

w22 4 w2 L2
Ed) = —_— = 43
(d) 4d3 ( 720) 720d3 (43)

para de determinarmos a forca basta fazer a derivada da energia em relacao a d, logo:

0E(d) w2
Fld=—F=-A—— 44
() od 240d* (44)
onde A = L? corresponde & area de cada uma das placas. O sinal negativo indica que a
forca é de origem atrativa. Além disso, observando a expressao acima, percebemos que a

forca de Casimir é pequena comparada a lei de Gravitacao Universal e a lei de Coulomb,
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ja que ela comporta-se com o inverso da quarta poténcia da distancia, enquanto as outras

duas comportam-se com o inverso do quadrado da distancia.

E vélido destacar que a grande contribuicio do efeito Casimir nio estd no fato de
surgir uma forga atrativa entre duas placas condutoras neutras,pois tal comportamento
ja tinha sido estudado na teoria de London, na qual ele falava das forgas dispersivas
entre moméculas neutras. Em outras palavras, o efeito Casimir pode ser caracterizado
por qualquer tipo de restricio em um certo espaco, pois tais restricbes sempre geram
condicoes de contorno que influenciam as flutuagoes da energia de ponto zero de um
determinado tipo de campo. Do ponto de vista experimental, o efeito Casimir demorou
basicamente 50 anos para ser comprovado devido a grande dificuldade de se medir a
forca, devido ao seu valor bem pequeno, em torno 0,013dyn, e por se tratar de uma
distancia muito pequena entre as placas, da ordem de 107%m. O primeiro a tentar essa
verificacao experimental foi Sparnaay (SPARNAAY, 1958), em 1958. Seus resultados nao
se mostraram incompativeis, mas a incerteza na medida da separacao das placas implicava
demais na precisao para o valor final da forca. Passados quase 40 anos do experimento de
Sparnaay, em 1997 Lamoreaux (LAMOREAUX, 1997) chega a um resultado preciso que
comprova a forca prevista por Casimir em 1948. Lamoreaux utilizou uma placa plana e
uma placa esférica variando a distancia entre ambas com valores de 0,6 micrémetros a
6 micrometros, obtendo assim um erro experimental de 5% que garantiu a precisao do
resultado para comprovar a existéncia do efeito Casimir. Posteriormente, essa precisao
foi ainda melhor no experimento de Mohideen e Roy (MOHIDEEN; ROY, 1998), obtendo

um erro experimental de 1%.



26

3 EFEITO CASIMIR EM UMA TOPOLOGIA TOROIDAL

Conforme apresentamos no capitulo anterior, o efeito Casimir é caracterizado por
alteragoes (flutuagoes) na energia de ponto zero do vicuo em que o campo eletromagnético
esta contido. Apesar do efeito original ser descrito utilizando o campo eletromagnético,
qualquer campo relativistico, confinado em uma certa regiao do espaco, pode afetar essa
energia de vacuo devido as condig¢oes de contorno impostas por esse confinamento. De
fato, essa modificacdo na energia de ponto zero é o que chamamos de energia de Casimir,
responsavel pela forca de atracdo entre as placas, caracterizando assim o efeito descrito
pelo mesmo em 1948. Considerando, entao, que o campo eletromagnético comporta-se
com um conjunto de infinitos osciladores harmonicos, cada um com energia dado pela

eq.(30), podemos escrever a energia de Casmir como sendo:

hew hew

=23 -3 &
n 2 cc n 2 sc

onde o primeiro termo corrresponde a energia do vacuo com condigoes de contorno (cc) e o
segundo termo a energia do vacuo sem as condigoes de contorno (sc). Entretanto, ambas as
somas na equacao acima sao quantidades divergentes, assim como a diferenca entre os dois
termos. Essa defini¢ao da energia nao tem um sentido fisico, para isso precisamos utilizar o
processo de renormaliza¢ao com o objetivo de transformar essa energia em uma quantidade
finita e de possivel interpretacao fisica. Hoje em dia, existem uma razoavel quantidade
de métodos de regularizacao para transformar certas expressoes divergentes em algo que
seja finito. Dentre esses métodos podemos citar o método de corte nas frequéncias, o
método da discretizacao do espago, método da funcao zeta generalizada, entre outros
(FARINA, 2006). Além desses, temos os chamados métodos locais. Cada método tem
suas caracteristicas e possui maior eficacia ou nao dependendo do quanto a fundo vocé
quer estudar o fendomeno. Nesta tese, utilizamos o chamado método local, para tratar a
expressao da eq.(45) e obter uma quantidade finita da energia de ponto zero, chamda de
energia de Casimir. Para um estudo detalhado sobre as caracteristicas, fatos historicos,
relacionados ao efeito Casimir e as flutuacoes da energia de ponto zero, vale a leitura das
seguintes referéncias (MILONNI, 1994);(FARINA, 2006);(COUGO-PINTO; FARINA; A,
2000);(LAMOREAUX, 2007);(ELIZALDE; ROMEO, 1991);(MILTON, 2001).
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3.1 Energia de Casimir pelo método local

O método local, consiste em utilizarmos o tensor-energia momento do campo ele-
tromagnético, como forma de regularizar a diferenca das energias de ponto zero, e obter
assim grandezas com significado fisico, como a densidade de energia e a pressao de Casi-
mir. Tal método consiste em escrever o tensor energia momento em termos das funcgoes de
Green que aparecem na teoria. Em outras palavras, calculamos o valor esperado do tensor
energia momento como sendo o propagador do campo em questao utilizado. Esse método
é utilizado, conforme Brown e Maclay (BROWN; MACLAY, 1969), os quais introduziram
o formalismo local de obtencao da energia de vacuo. Nesta se¢ao faremos o caso do campo
eletromagnético livre, portanto calculamos o propagador livre do féton, para cada compo-
nente do tensor energia momento desejada. A densidade de energia de Casimir é obtida
pela componente 7% do tensor, enquanto a pressao de Casimir é obtida pela componente
T33. O céalculo serd feito compactando uma dimensao espacial, utilizando a prescricao de
Matsubara generalizada. Em seguida, compactamos duas dimensoes, sendo uma espacial
e a dimensao temporal, como forma de incluir os efeitos térmicos no fendmeno estudado
(REGO; LINHARES; MALBOUISSON, 2016). No capitulo seguinte, calculamos a inte-
racao do campo do foton com o campo fermidnico, obtendo assim as corregoes radiativas

para a energia de Casimir.

Partindo da teoria do eletromagnetismo, a densidade de lagrangiana é dada por:

1
L= _ZF’WFW’ (46)

e o tensor eletromagnético possui a seguinte representacao:
F* =0,A, —0,A,, (47)
onde A representa o vetor potencial no espaco de Minkowski.

Conforme mencionado acima, o método local baseia-se no calculo do valor esperado do
tensor energia-momento do campo eletromagnético. Partindo da defini¢do deste tensor,
temos:

uy F,uaFl/ 1 ,LLVF Faﬁ’ 4
T - «a + zg aB ( 8)

utilizando a técnica de separacao de pontos, podemos definir o tensor energia-momento,

COIMOo:

T (2) = lim |5 () FY () + g™ F8 (z) Fag ()] | (49)

T—x’! 4
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substituindo a eq.(47) nessa equagao, temos:

T (z) = lim [(0"A% () — 0% A" (2)) (9,47 (2) — 0" Au (2'))
+ leg“” (0" A% () — 0% A% (z)) x (9,4" (2') = 0" Aa («)) ], (50)

apos certa algebra, temos:

Tp,u (l’) — h_}ﬂ]/ [guﬂaua/a . gaﬁaualu . guagyﬂapa; + guaéﬂalu
1
+ 59 (g ord), - aﬁa'a)} x Aq (z) Ag () (51)

Deste modo, o valor esperado no vacuo do tensor energia-momento é dado por:
T = (01T 10 )= lim (0" (2,2)] (0] TAd (@) As (+)) | 0), (52)
r—x!

onde T representa o produto de ordenamento temporal e O* representa o tensor do
operador diferencial. Por defini¢do, (0| TA, () Ag (2/) |0) = G (v — ') representa a
funcao de Green no espago de Minkowski de D dimensdes. Logo, a integral de Fourier

dessa funcao pode ser escrita como:

dPk e—zk x—a')
Glw—a)= Zg“’B/ @m)P K2 +ie (53)

sendo k e x vetores nesse espaco de D dimensoes. Substituindo a expressao acima na
eq.(52) e aplicando o tensor de operador diferencial, obtemos o tensor energia-momento

da seguinte forma:

APl DP=2(fnfvy — D=3 juw[.2
T“”:%/ g (FF) ~ T g™k (54)
(2m)P k2 +ie
utilizando uma rotagdo de Wick de forma que k° — ik%, dPk — idPkg e g** = —6", o
tensor energia-momento no espaco euclidiano assume a forma:
T / dPkg %(k%k}/;) - %&wk% (55)
(2m)P k3 + m? '

onde m é uma massa ficticia introduzida como regulador infravermelho e que no final serd
feito um limite em que m tende a zero. O indice E serd omitido de agora em diante no

decorrer dos célculos.

Como estamos procurando algum significado fisica para a energia de Casimir, o valor



29

esperado na vacuo, renormalizado, para o tensor energia-momento é definido como a
diferenca entre valor esperado de 7 com as condigdes de contorno impostas e o valor

de 7" sem condigoes de contorno, ou seja,

T = <0 | T | 0>cc - <0 | T | 0>sc (56)

onde cc representa com condicoes de contorno e sc o termo sem condigoes de contorno.
Analisando a eq.(52), o tensor de operador diferencial nao se altera ao impormos condigoes
de contorno. As divergéncias que surgem do carater local dos propagadores também
nao afetam o valor esperado, podendo assim serem eliminadas (KHANNA et al., 2014).
Portanto, na equagado acima, o termo que corresponde a energia de Casimir e que tem
contribuicao fisica é aquele em que as condi¢oes de contorno sao impostas e que assim
geram as flutuagdes na energia de vacuo. A partir desse momento iremos nos referir a
energia de Casimir como sendo apenas a parte do tensor energia-momento com condi¢oes
de contorno. O termo original da energia de ponto zero, livre de condi¢oes de contorno, é
eliminado pele método de regularizacao que utilizamos. Durante todos os célculos iremos

utilizar o sistema natural de unidades (h =c= K =1).

3.2 Energia de Casimir com restricoes espaciais

Nesta se¢do, vamos calcular a energia de Casimir para o campo eletromagnético
utilizando o formalismo de topologias toroidais. A principio, vamos incluir apenas res-
trigoes espaciais, compactando uma dimensao, d = 1 e impondo condigoes de contorno
peridédicas ao campo eletromagnético. Posteriormente, iremos considerar as contribuicoes
da temperatura ao compactarmos a dimensao de tempo imaginario, conforme (REGO;
LINHARES; MALBOUISSON, 2016)

Partindo da expressao do tensor energia-momento, dado pela eq.(54), vamos a cal-
cular componente 7% deste tensor como forma de obter a energia de Casimir em um
espaco com uma topologia do tipo I'l, = S' x RP~1, onde S' corresponde a uma circun-
feréncia de comprimento L. A partir da componente 7% do tensor energia-momento, de

acordo com a eq.(55), temos:

_2/ de D 2 ]{30) %kﬁ

k2 +m?2 ’ (57)
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sendo k? = (k%)% + (k') + (k?)? + ... + (kP)? as componentes do momento, temos que:

- dPk (k°)2 D-3\ [ d’k K%+ (k)
TH=(D- 2)/ CmP K + (B2 +m? ( 2 ) / 2m)P k2 + (k3)2 + m?’ (58)

onde k, sdo as componentes perpendiculares a componente £ do momento.

Utilizando o formalismo de Matsubara estendido, as regras de Feynman sao modificadas

de acordo com a seguinte prescri¢ao:

1
T Y ko (59)

n=—oo

logo, a eq. (58) pode ser reescrita da seguinte forma:

7—00 Z /dD llﬁ_ (k0)2
n——o0 27T D— 1 (27T) _|_m2)
<D > Z /dD 1kl k%
e 2m)P- 1 (L)J _|_m2)s
D-1 (2m)*n?
(%) X G e (o)
) (2m)P- 1 % +m2)

onde s ¢ apenas um expoente, no caso particular valendo 1, colocado no denominador das

integrais para fazermos uma regularizacao dimensional das mesmas.

Utilizando as seguintes formulas de regularizagdo dimensional,

A
/ QmP @+ AY — @4mP2 I(s)

1
)
dPl 12 B 1
/ 2m)P 2+ A)° —  (4m)P2
A 1 _5uur(s—g_1) L \s-2-1
/ 2mP (P + A~ (4m)PR 2 T'(s) ( > , (61)
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podemos, entdo, escrever o tensor energia-momento da seguinte forma:

D—-1

s— -1
1 & 1 =T (s— -1 1 ?
TOO = (D - 2) = Z D/2 ( = ) (271.)2”2
L n=—00 (47T) 2 F(S) iz + m2
_ s—2=1 1
<D—3> $o D-1T(s— 22 -1) 1 :
2L ) 2, (AmPP 2 I(s) T
D_1 s— D—1
B <D I 3) i L (el (s~ 50) ! 2 (62)
2L ) = (4m)P/2 L2 [(s) (272# + m2 ’
escrevendo em termos de parametros adimensionais, temos:
2—-D 1 'v-1) 1 > 1
0 _
T = 2L (4m)(P-D/2 T(s) (2m)2-D) n;oo (an? + 02)”71
_(D—3)(D—1) 1 'v—-1) 1 i 1
AL (4m)®P-D2 T(s) (2m)20-D 2= (an? + ¢2)""!
D -3 1 I (v) 1 > an?
TR OO T(s) @D 2= ank + &) (62)
onde a = 35, ? = (;’;2)2, v=s—2-1

Somando e subtraindo o fator ¢ no numerador dentro do somatério do tltimo termo da

equagao acima, obtemos:

2-D 1 Tw-1) 1 b 1

T = 2L (4m)(P-D/2 T(s) (2m)2=D n;w (an? 4 )"
(D-3)(D-1) 1 I'(v-1) 1 > 1
- 4L (4m)(P-1/2 T(s) (2m)2@-1) n:z_:oo (an? + )"

D=3 1 T 1
5L (Am)D D2 T(s) (2r )2 D
00 1 00 02 ]

x| > T = D

(a2 (an? o+ 2

(64)

A soma em cada um dos termos da equagao acima é reconhecida como uma das fungoes
zeta de Epstein-Hurwitz (ELIZALDE, 1995), definida como:
Z§ (viar,. . apsby, b)) = > [a(n —b)P 4 — ) +F T, (65)

{nj}=-o0

a qual, em nosso caso de uma dimensao compactada (d = 1) e sendo b = 0, é reduzida na

forma:

[e.9]

zi (via) = Y [an*+ (66)

n=—oo
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Utilizando a propriedade da fun¢ao gama I'(v) = (v —1)T' (v — 1), a eq.(64) pode ser

reescrita como:

1 1 Tw-1 1

T = 2L (4m)P-D/2 T(s) (2m)2-D {(2 - D) Zlcg (v —1;a)
_ (D—3)2(D_ 1)252 L) — (D -3 (1)
X [ZfZ (v —1;a) — cQZf (v; a)” (67)

2 ~ . , . . . ~ ~
O termo 2Z{ (v;a) na equagdo acima ¢ eliminado, pois ¢? nao depende da separacio

entre as placas e assim nao contribui para a energia de Casimir. Logo a eq.(67) é reescrita

o 1 1 rv—1) 1
T = 5 (4m)(P-D/2 T(s) (2m)2—1)
x [(2—= D) — (D_?’)Q(D_ D _ (D=3)(v—1)| 2 (v —1;a), (68)

fazendo uma continuagao analitica na fungao zeta, podemos escrevé-la em termos de uma
funcdo de Bessel modificada de segunda espécie (ELIZALDE, 1995; ELIZALDE, 1989),

que no caso geral para d dimensoes, ¢ dada por:

78 (viay, ..., aq) =

2md/2 I'(v—d/2)
2c2(v—d/2)

ay, ..., aql (V)

A 2men;
nL () men ()
i=in,=1 \Cy/@j Vi

> T |n? n? v
+20 3 o+
=1 L eV a ag

77777

, (69)

para o caso de uma dimensao compactada, d = 1, essa continuacao analitica é reduzida

para:

% i) = F b s () (2371)] . (T

Eliminando termos independentes de L na equagdo acima, a eq.(68), pode ser escrita
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CO1mo:

1 1 rv—1) 1
T = 2L (47)P-D/2 T(s) (2m)2v-1D

X [(Q—D)—(D_3)2(D_1)—(D—3)(u—1)]

n=—oo

simplificando alguns termos, considerando v — 1 = % e s = 1, obtemos:
11 < (2xnL\ "
0o_ -+ (D-1) (9 _
usando a aproximacao da fungao de Bessel para argumentos pequenos, dada por:
1_./D 2 \D2
K Ly~-T(—=)(—— 73
amnt) ~ 50 (3) (7z) ()

a equagao (72) assume a forma:

11 > m \P?/ 2 \P21_ /D
= S a-ons £ (G2) () )
L 2 @y 2 (2= D) ﬁn;w 2r2nL mnL) 2 \2
1 1 . 1_./D 1 > 1
T 2(4m@02 (2m'*™V (2~ D) Wt (2) mDLP n;m nb’ (74)
utilizando um espaco de dimensoes D = 4, temos:
o 1 1 3) 1
7_0 = 5(471_)3/2 (27T) (_2) ﬁr (2) 7T4L4C(4) ) (75)

4 N ~ . . . .
onde ( (4) = §; corresponde & fungao zeta de Riemann. Logo, a energia de Casimir em um

espaco de 4 dimensoes, com uma de suas dimensoes espaciais compactadas, corresponde

a:

o2 2
0 __ _ —
T = E(L) = e i (76)

onde o sinal negativo refere-se ao cardter atrativo da forca entre as placas.
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3.3 Pressao de Casimir

O célculo da pressao de Casimir, pelo método local, é demonstrado de maneira
totalmente analoga ao feito para a energia na secao anterior. A diferenca é a componente
do tensor energia momento utilizada. Como estamos interessados na pressao de Casimir,

vamos partir da componente 733 do tensor energia-momento, dada por:

dP M(k3>2_ﬁk2
33 _ 2 4
T ()
dPk (/~c3)2 D -3 dPk k2 + (k?’)2
33 _ . _ L
T=(D=2) / (2m)P k2 + (k3)%2 +m? ( 2 > / (2m)P k3 + (k%)% + m?’ (78)

ao aplicarmos a prescricao de Matsubara, a integral na componente k3 do momento
transforma-se numa soma sobre valores discretos. Desse modo, a eq.(78) pode ser re-

escrita da seguinte forma:

dP- 1/{5 (2m)2%n?

33 __ L2
T = nzoo/ 27TD1 M+mz)s
ey ot oty
) (2m)Pt ﬂ_,_mQ)

(27)2n?

D—-1
< ) Z /d Dkl i 3 (79)
e 27T %_’_m?)

apés aplicarmos a regularizagao, dada por (61), temos:

S_D—l
T 1 @202l (s — 251 1 2
33 o =
T¥=([D-2)+ > (ZTrL);712 + m?2

L, (4m)P=biz 12 T(s)
_ o D;1_1
<D—3> i 1 D-1T(s=2%-1) .
2L /2= (Am)mz 2 I'(s) EL

D—-1

_ (D 7 3) s L eowtl (s — %) 1 o (80)
2L (4m)(D-1)/2 ]2 [(s) (272#_1_”12 )

n=—oo
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renomeando alguns parametros, temos:

T8 D -2 1 I'(v) 1 i an?
L (4m)®@-D2T(s) (2m)2-D) = (an? + c2)”
(D-3)(D-1) 1 I'v-1) 1 i 1
AL (4m)P-D/2 T(s) (2m)2-D &= (an? + c2)" "
D -3 1 I(v) 1 > an?
. LN 1
2L (4m)@-D/2 T(s) (27)20—D) n;w (an? + @) (81)

somando e subtraindo ¢? no numerador dentro do somatério do primeiro e tltimo termo
da equacao acima,
D—2 1 I (v) 1

L (4m)P-1/2 T(s) (2m)2—1

0 1 [e’¢) C2

X _— — —_—

Lz_oo (an? +¢2)""! n:z_oo (an? + ¢2) ]

(D—-3)(D-1) 1 'v-1) 1 > 1

7—33 —

4], (47T)(D—1)/2 F(S) (27T)2(u—1) n;oo (ang + Cg)zx—l
D -3 1 I'(v) 1 i an?
2L (4m)P-D/2 T(s) (2m)2v=1) = (an?+ ?)”

o] 1 [e’¢) C2
X _ - — 1, 82

L:Z_OO (sz + C2)1/71 nzz_oo (anZ + 02) 1 ( )
utilizando a identidade I" (v) = (v — 1) I" (v — 1), reconhecendo as fungoes zeta de Epstein-
Hurwitz, conforme feito anteriormente, e organizando de forma a colocar fatores comuns

em evidéncia:

L. 1 1 Tw-1) 1 (D —3)
R i P T CRU R [

x |2 (v = 150) = Z5 (via)| - [(D — 3)4(D — 1>Zf (v — 1;a)1 } (83)

Eliminando os termos sem contribuicao fisica,que nao dependem da distdncia entre as
placas, e escrevendo a func¢ao zeta de Epstein-Hurwitz por sua continuacado analitica no

caso particular de apenas uma dimensao compactada, obtemos que:

1 1 I'v—1) 1
L (4r)P-D/2 T(s) (2m)2-D)
X — 2)

[(D _(D-3)

7—33 —

1(1/_1)_(0—31(1)—1)}
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Retornando as variaveis originais, considerando v — 1 = %, s = 1, e organizando alguns
termos, a equagao fica reduzida a:

o 1 14D

33 _ _ L+ (D-1) (_p2,
T () ( D*+ = 1)

00 2 2 L -D/2
xdvm S ( mn ) Kpjs (mnL) (85)
n=-—oo m

utilizando a aproximacao da funcao de Bessel para argumentos pequenos, a equac¢ao acima

fica:
1 14D 1 D 1 > 1
33 D—1 2
T = G n) 0 (0 )W (5) o o (9
fazendo D = 4, temos:
1
T = () (3)2VAT () (), (57)

lembrando ¢ (4) = g—é. Deste modo, a pressao de Casimir, para D = 4 dimensoes, corres-
ponde a:
672 2

33 _ _
T =P(L)= 0L I (88)

Portanto, as equagoes (76) e (88) correspondem, respectivamente, & energia e a pressao
de Casimir em um espaco com uma topologia do tipo I'} com condigdes de contorno
periddicas aplicadas ao campo eletromagnético. Tais resultados estao de acordo com
aqueles encontrados por (BROWN; MACLAY, 1969), basta considerarmos que L = 2a,
correspondendo as condigoes de contorno de Dirichlet. Ao substituirmos L = 2a nas

equagoes da energia e da pressao, obtemos:

2 2

0 = E = — i 33 - P == —77(
T (@) =m0 T (@) = = 51001

(89)

tais resultados correspondem aquele previsto por Casimir em 1948. Vale destacar que
diferentes tipos de condigoes de contorno podem ser utilizados ao estudarmos o efeito
Casimir, como Dirichlet, Neumann, mistas, entre outras. Ao longo dessa tese, utilizamos

condic¢oes de contorno peridédicas no estudo do efeito Casimir.
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3.4 Efeitos térmicos na energia de Casimir

De forma analoga ao caso anterior, vamos agora obter a energia de Casimir in-
cluindo efeitos térmicos (REGO; LINHARES; MALBOUISSON, 2016). Portanto, além
de compactar uma dimensao espacial, vamos compactar também a dimensao temporal,
na qual obtemos uma circunferéncia comprimento igual ao inverso da temperatura e uma
circunferéncia de comprimento L referente a dimensao espacial. Podemos dizer, entéao,

que agora nosso espacgo possui uma topologia do tipo I'4. Partindo da eq.(55), dada por:

o de, (]{30)2
™ = 0-9 [ R L T

D-3 d°k KR+ (K)? + (B7)?
- < ) / (

2 2m)P k + (k9)2 + (k3)2 + m?’

(90)

onde k, sdo as componentes perpendiculares as componentes k® e k° do momento, sendo

estas compactadas de acordo com a prescricao de Matsubara, dada por:

dk’o 1 > 277—”1

— = = ko — . 91
25 ; 0= (91)

dk’g 1 o 277'712

— = = k . 2

w L, BT (92)

Assim, o tensor energia-momento pode ser escrito como:

o0 Loy (4R o
= (D - 2) / 5
BL pyipm oo’ (2m)P72 (k3 4 BPnd g GRS o)

(D—B) i /dD 21@ k2
28L 21772 (42 + Crpnf | g +m2)

n1,ne=—00

32
T)2n2
D-3) /dD 2/@ (25)21
26L n1,Ma——00 27T D— 2 _|_ (271') nl + 2 ﬂ') n% +m2)s
D—-3 dD Qk. (27") n
_< L) > / Dé I Lz(w) " g (93)
2 n1,Ma=—00 27T + 1 + 2 +m2)
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fazendo uma regularizagdo dimensional, a equagao acima fica da forma:

D—2
— (27)2n?2 ST73
1 oo 1 F s — D=2 1
T = (D-2) 57 Z D/2 ( : ) (2m)2n2 (ﬁ;r) 29,2
BL ni,me=—00 (47T> F<8) 52 1 _|_ 12 2 + m2
s— D27271
<D—3> y D2l (s— 23 1) 1
25L ni,ne=—00 (47T>D/2 2 F(S) (27222n1 + (27r) n2 T m2
S,M
<D - 3) 5 1 T (s—2532) (on)or ?
Q/BL ni,ma=—00 (47T)D/2 P(S) (27()2”1 + (271') n2 + m2
D—-2
T)2n2 s
<D—3> S 1 T(s-2532) (@r)nd ? o1
-\ 280 7)2n2 ) 2n2 :
26[/ n1,N2=—00 (47T)D/2 F(S) < 5)22 L+ @ [i 2 4 m2
Definindo em termos de alguns parametros adimensionais, a; = 5%; ay = %; = (;f) 5,
sendo v = s — % — 1 e utilizando a propriedade I' (v + 1) = vI" (v), obtemos:
1 1 I'(v) 1 - an?
T = D —2)v !
BL (47)P=2/2 T'(s) (2m)% nlmz_oo ( ) (@2 + agnd + &)
(D=3) |D-2 1 vaini + vasni (95)
2 2 (anf+an3+c2)” " (an? + agnd + @)’

com a finalidade de reconhecermos as fungoes Zeta de Epstein-Hurwitz, fazemos a seguinte
dlgebra: ao primeiro termo da equagio acima somamos e subtraimos asn3+c? e no ultimo
termo somamos e subtraimos vc?. Portanto, a equacio fica da forma:

o 1 1 rv) 1 o
T = BL (4m)(P-2/2 T(s) (2m)% 2

n1,n2=—00

1 asns + ¢
—2)v 2 2 27 2 2 4 2Tl
(a1n? + asn3 + 2) (ayni + agns + c2)

(D -2 1 N v
2 (an?+ a3+’ (an? + agnd + 2)”
2

- = ,,H] } (96)

(a1n? + asn3 + ?)

sendo a funcao Zeta de Epstein-Hurwitz, com duas dimensoes compactadas, dada por:

2 > 1
Zy (viar,a2) = )

2 2 2 120}
o (and + agnj + @)

(97)

e sua derivada em relacdo a a, dada por:

o0

0
OCLQZ (I/;(ll,ag): Z

oo (@13 + asn3 + 2

—vn3

) 98
)V+1 ( )
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eliminando os termos ¢ que nao possuem dependéncia com a distancia entre as placas, a
eq.(96) pode ser escrita da seguinte forma:

o _ 1 (v 1 0
™ = T B, 2

n1,na=—00

{l D—3)4(D—2)+D2—3

V] Z§2 (v;aq,as)
-tz <v;a1,a2>} (99)

A funcao zeta de Epstein-Hurwitz, fazendo uma continuacao analitica, pode ser escrita
em termos de uma fungao de Bessel de segunda espécie,conforme a eq.(69). No caso de

d = 2 dimensoes compactadas, essa é dada por:

s I'v-—1 s g\ 2mwen
Z§2 (viar,a0) = {Q;V 1)) +2 Z ( : ) Kv—1< 1)

1/&1CLQF( ) = \eya Vaq
v—1
N9 27TCTL2
no=1 \/ \/a’2
v—1
0o 2 2 2 2
+22 Y (SR ) K [2me /22 (100)
n1,ma=1 C aq a9 ap a9

e sua derivada em relacao a ay sera:

0 _ 2 ol X1 27Ny
—Z5 (viaq,09) = ——<(1—v - K,
das* (v 1, 02) Varapl (v) {( )c’/ Lay? 5 nQX:I 1( \/a_2>

i 1 2mwen 2mwen
et 2 [ ( 2) (2>1
2205 ny=1 "2
2(1—v) (7r>”1 > [ni
a’% ni, n2 1
n?  n3
X K,_1|2mcy| — + —=
451 a2

n 2" (7?)”_
c’~2a3 \ ¢

2 2 2 2
X [K,,Q (27rc M + nQ) + K, (2#0 M + nQ) ] }
aq a9 a1 a2

(A 2
——75 (v : 101
CLQ\/MF (V) 2 (V7 ai, a2) ( )

c

+
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Substituindo a equagdo da fungao Zeta e sua respectiva derivada na eq.(99)e separando

em trés termos, cada um deles dependendo de um certo tipo de somatorio, obtemos que:

700 _ 1 1 1 1 2(3D —T)yv — (D —3)(D —2)
~ BLAm)P=ART(s) (2m)> 4
27 (v — 1) 27 (v — 1)
< — D - 2 - n ng ni,na- 102
X oo~ (D=2 | + T+ o+ T (102)
O termo B% = /ajay pode ser simplificado com os mesmos termos que aparecem dentro

do colchete. Dessa forma, podemos fazer uma renormalizacao por subtragao e desprezar
os termos que ndo dependem das separagoes e L das placas. Portanto, a eq.(102),

assume a forma:
7_00 == 7711 + 7712 + 7711%2' (103)

sendo 7,, a parte do tensor que possui termos com somatorio apenas em nq, 7T,, apenas
para termos com somatério em ngy e 7, », representa os termos cruzados que apresentam
somatorio duplo em n; e ny. Cada um desses termos gera uma contribuicdo para a
expressao geral do tensor energia momento. Trabalhando, separadamente, cada um deles,

obtemos que 7, sera:

B 1 1 1 (2BD—Tv—(D-3)(D-2)
T = @R TG) e ( i )

47" 2weng
C(V 1) V 1 Z 1 y ( \/a_l )) (104)

sendo v = s — % — 1 e fazendo o limite em que s — 1, obtemos:

1

T = (4m)(D-2)/2 (

27)P~2 (3D — 7)(2 - D) — (D — 3)(D — 2))

N © 1 2meny
K 105
c=DI2(fa;)~D/? ; nf/Q D/2 ( Jar ) J (105)

D/2
usando a aproximacao Kp s (mnL) ~ 3T (%) (ﬁ) / , a eq.(105) pode ser escrita como:

To = Grma®)” (B =72 D)~ (D-3)(D -2

00 m \ P2 s \P?{ ,p
% %: (27m15> (mnﬁ) §F (2) ’ (106)
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organizando os termos, temos:

1 _ 2-D
Tny = W(%)D (BD-7)(2—=D)—(D-3)(D—2))7 2
1. /D
I (5 ) RTRE) Z (107)
fazendo D = 4 e identificando 377 -5 = ((4) = ”—4 como a funcdo zeta de Riemann,

obtemos que o termo 7,, do tensor energla—momento sera:

71_2

s = 1534

(108)

O resultado acima corresponde a contribuicao da temperatura para a energia de Casimir.
O comportamento com o inverso da quarta poténcia da temperatura reproduz a lei de

Stefan-Boltzmann (Radiagdo de corpo negro).

Trabalhando agora com o termo 7,,, obtemos uma expressao andloga a eq.(105)com

termos adicionais referentes aos somatérios em no, dada por :

1 po(BD-T7(2~-D)—(D-3)(D-2) or 3
T = m(%) < i ) WA

2mens QW%CLQD/Q > 1 2mens
X KD 2 < ) — 2) KD 2| —/—
%ng/z / cD2(\/az)~D/? ~ n2D/2 /

4

© 1 2meny 27rcn2>]

+(D —2 — 52 Kby + Kbp- , 109
D=2 g s =D o (T2 ) s oo

simplificando alguns termos, organizando a equacao acima, e lembrando que os pardmtros

adimensionais sao dados por ¢ = 7> e ay = %, obtemos que:

m \P/2 ((3D —7)(2— D) — (D — 3)(D — 2) 1
T 2(yn) i 3 Kol
mL s 1
na Mo
mL & 1
+—-(D=2) > 1 Kby (mnal), (110)
no ’I’L2

colocando alguns termos comuns em evidéncia, temos:

m \DP/2 — — — — —
. — 2 (m) ((BD 7)(2 D)4 (D —3)(D 2)) ; n§/2 Kp s (mnyL)
RV ;i n;jﬂ (Kpja1 (mnaL) = Kpjass (mnal)). ()

utilizando a seguinte recorréncia da fungdo de Bessel K, i(x) — K, 11 = %”Ky(x), a
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equacao acima fica:

_(m\P2((BD-T)2-D)—(D-3)(D—2)+2(D—2)D
Toa = 2(27”:) ( 4 >
X i ng/ZKD/Q (mnaL) + L —22)D i n;/g Kpjs (mnyL) (112)

sendo a fungao de bessel commum a ambos os termos, podemos escrever como:

m \P/2 ((3D —7)(2— D) — (D —3)(D —2) +2(D — 2)D + 222
7o = 2(57) ( 4 )
X in;/zKDﬂ (mnoL). (113)

Fazendo D = 4 e utilizando e identificando a funcao zeta de Riemann, obtemos:

7T2

Too = —Z2 75 (114)

O resultado é idéntico ao encontrado na eq.(76), portanto representa a compactagao de

uma dimensao espacial.

Por fim, podemos trabalhar no termo, 7,,,,, correspondendo a contribuicao de

ambas as dimensoes compactadas. Desse modo,

1 pos [ ((BD=T7)(2—D) — (D —3)(D —2)\ 4n~ "/
Toins = m(?ﬂ) { ( . ) e

< ([, )" i
< S (VEL) K [2me /4 ™2

ai Q2

a1 a2

—D/2-1
4r2-D/2 = 2 2
Yy (D-2) 3 n%( nl+n2)

2 2
X KD/2 (27TC m+712)

—D/2—-1
a2€ / ny,n2=1

n? n2 n? n2
X [KD/2+1 (271'0 —L + 2) + KD/Q,I (271'0 —L + 2)
a  a a

2

}, (115)

escrevendo em termos das varidveis originais e simplificando alguns termos, a equacao
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acima pode ser escrita como:

T, = 4 <m>D/Q{<<SD ~7)(2-D) = (D =3)(D - 2))

21 4

. . D/2
X KD/2 (m\/ n%ﬁQ + n%[ﬂ)
m,nZQzl (y/n%@ + n%LQ)

D/2+2

prr &, 1 ——

+(D=2)—~ > n Kp» <m\/ nip? + ”2L2>
2 i \y/niB? +n3L?

12 e . D/2+1
+— > n
2 et \/n3p% + n3l?

Ky (my/mto+niL?) + Ky, (m/nie +niL2)| } (116)

usando a relagao de recorréncia da funcao de Bessel K, = K,,_1(x) + %K,,(x), organi-

X

zando e colocando em eviéncia um fator comum, obtemos:

D/2 . 1 D/2
Toin, = 4 (m> Z /
2m ni,na=1 n%@Z + n%L2

. l@D —@=D)-(D=3D-3) , ng?(fn_f) (3+) ]

F+1
> 1
X Kpj» (m\/n%ﬁz + n%[ﬂ) + mL*(D — 2) ns
nl,%2:1 ’ /3082 + n3L?

x Kp_, <m\/n%52 + n%L2> }, (117)

fazendo o limite em que m — 0, a equagao acima fica:

o \Djp oo ) D/2
7;L17L2 = 4 a_
(27T> nl,%;_l (\/n%ﬁz—l—n%[ﬂ)
BD—-T7)(2-D)—(D—-3)(D-2) n3L*D-2) D
% [ 4 n3 3% + n3L? < * 1>

2
X Kpo (my/n%ﬁQ + n%L2> : (118)

Considerando a dimensao como D = 4, utilizando a aproximacao da funcao de Bessel

para argumentos pequenos , e simplificando alguns termos, a eq.(118)assume a seguinte

forma
8 X nipB?—nil?

7:l1n2 =T 3 Z

3.
T ni,ne=1 (n%52 + n%LZ)

(119)
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Portanto, de acordo com a eq.(103), a energia de Casimir com efeitos térmicos, é dada
por:
2 2 8 00 n% 62 _ n% L2

o__ ™ = _°
T T BA W e A

(120)

onde o primeiro termo reproduz a radiagdo de corpo negro (compactagao da dimensao
temporal), o segundo termo expressa a contribuigao da energia de Casimir (compactagao
da dimensao espacial), e o ultimo termo representa a contribui¢ao mista das compactagoes
espacial e temporal. O resultado acima foi calculado utilizando condig¢oes de contorno
periddicas, podendo esse ser generalizado para as condi¢bes de Dirichlet, Neumann ou

mistas.
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4 CORRECOES RADIATIVAS AO EFEITO CASIMIR

4.1 Teorias de calibre

As simetrias ligadas as teorias fisicas desempenham um papel fundamental no
estudo de diversos fendmenos na natureza. O termo simetria em fisica refere-se ao fato
de algum parédmetro ser invariante na sua forma. Deste modo, dizemos que um sistema
é invariante sob um determinado grupo de transformacoes ou que ele apresenta uma
determinada simetria em algum pardmetro que o descreve. Em fisica, existem dois tipos
de simetria: as chamadas simetrias globais e as chamadas simetrias locais, essas tltimas
sendo de grande importancia no desenvolvimento da teoria de campos, conhecidas como
simetrias de calibre ou de gauge. Na década de 1960 a teoria quantica de campos passou
a ser estudada no contexto das chamadas teorias de calibre. Como exemplos dessas
teorias,temos: a eletrodinamica quantica (QED), que descreve essencialmente os processos
de interagao entre elétrons e fotons, classificada como uma teoria de calibre abeliana.
Além dessa, temos também a chamada cromodinamica quéntica (QCD), descrevendo a
interacao entre os quarks e glions no interior da matéria hadronica, sendo caracterizada
como uma teoria de calibre ndo abeliana. Nesse trabalho, o efeito Casimir é estudado no
contexto da eletrodinamica quantica, porém o mesmo pode ser aplicado a outros tipos de

campos, conforme descrito pela QCD.

4.2 Correcgoes radiativas na eletrodinamica

Até agora estudamos e ofeito Casimir, considerando apenas o campo livre, ou
seja, apenas o propagador do féton. Porém, para uma teoria quantica de campos que
descreve a natureza de uma forma mais precisa, é necessario consideramos a interagao
entre os campos. Quanto maior as ordens na teoria de perturbacdo mais proximo da
realidade serd descrito o fenémeno estudado. No caso particular, o estudo do efeito Ca-
simir. A partir desse momento, estendemos nosso estudo, considerando a interacao do
campo eletromagnético e do campo do elétron, de acordo com a eletrodinamica quantica
na aproximacgao de 1 loop. Obtém-se, assim, neste contexto, corregoes radiativas para
o efeito Casimir, bem como correcoes devidas a temperatura finita. O tratamento de
integrais relativas a amplitudes de Feynman é, novamente, realizado através do método
de Matsubara generalizado, delimitando entdo um determinado niimero de dimensoes.
Os resultados assim obtidos para a energia e a pressao de Casimir podem ser compa-

rados com os ja conhecidos na literatura, calculados por outros métodos (RAVNDAL;
THOMASSEN;, 2004);(BARONE; CAVALCANTT; FARINA, 2004);(BORDAG; SCHAR-
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NHORST, 1998)(CAVALCANTI; FARINA; BARONE, 2006). Os primeiros a calcularem
corregoes radiativas a energia de Casimir foram Bordag, Robaschik, e Wieczorek (BOR-
DAG; ROBASCHIK; WIECZOREK, 1985), encontrando AFy = %ggﬁ COMO a COrrecao
em primeira ordem da energia de vacuo, onde m corresponde a massa do elétron, a sendo a
separacao entre as placas. Tal correcao se origina como um efeito devido a polarizagao do
vacuo. O processo fisico de nosso interesse no presente trabalho corresponde aquele onde
ha dois fétons externos, representando portanto a propagacao do féton na presenca da
interacao. As contribuigdes perturbativas sao identificadas como a auto-energia do féton,
na qual o féton ao se propagar cria um par elétron-positron que interage com o campo
bosénico (ITZYKSON; ZUBER, 2005). Portanto, estamos interessados em calcular o
diagrama de loop fermionico que representa a auto-energia do féton, conforme mostra a

Fig.3. O tratamento aqui sera feito de forma analoga ao utilizado nos célculos para campo

Figura 3 - Auto-energia do f6ton

p

p-k

Legenda: Correcao ao propagador do féton
Fonte: O autor, 2020.

livre. Partindo da ideia de calcularmos a energia de Casimir pelo valor esperado no vacuo

do tensor energia-momento, representado pela eq.(52), podemos escrever que:

(] TAq () Ag (2) | Q)= (0| TAa (x) Ag (') | 0)+{Q| TAq () Ag (2/) | 2)1,
(121)

onde o primeiro termo na equacao acima corresponde ao campo livre do f6ton e o segundo

termo representa a corre¢ao a 1 loop ao propagador do féton, coforme representado pelos

Figura 4 - Representacao por diagramas

I RAVAVAVAY P o

Legenda: Propagaor livre e progador fermiénico a 1
loop
Fonte: O autor, 2020.
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diagrmas da Fig.4

Deste modo, de acordo com as regras de Feynman na QED), a correcao radiatava para a

energia de Casimir, pode ser calculado pelo diagrma de loop fermionico. Logo:

de etk (z—2a')

(2140 (0 45 ) 19 )9 = sy | 15

D (k2 +ig)?
X [(—1) X (—62)/(;)1)[,% <7p/p—nlz+z'570 = /c_lmﬂ.sﬂ : (122)

onde o fator —1 representa o loop fermiénico e e? corresponde a carga do elétron.

Fazendo as contragoes de g., € gop com o operador diferencial O*, o tensor energia-

momento pode ser escrito da forma:

1
THY (CL’) — lim [558#32) — gpagualu . (555;’8>\83\ + 55803/11 + §gm/ (gpoaAaS\ _ aa@/ﬂ)}

r—x!

/ de e—ik‘.(z—x’)
(

2m)P (k2 + ie)?
D

9 d”p p 1 - 1
e /(27T)DTT<7 ph—mtic p—}c—m+z’s>’ (123)

utilizando as propriedades do trago das matrizes gama, em um espaco de D dimensoes,

dadas por:

Tr (7{)’70) = Dgpa
Ir (7/)7047075) =D (gpagﬂﬁ ~ YpoGap T+ gpﬁgao) )
a equagao (123) assume a seguinte forma:

1
T (z) = lim [550#3; — 9o 00 = 815,00, + 50,0 + g (97700} - aﬂa'ﬂ)}

r—x’

dPk efik.(xfz’)

/ 2m)P (k2 4 ie)?
P ] Po(p = K)o + Ds(p = k)p = Goo(p-(p — k) — m?)
wbe / (02 —m?)((p— k)? — m?) ’

(124)
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ap6s uma certa algebra no numerador da integral em p, e passando para o espaco eucli-

diano, o tensor energia-momento fica:

v : v / /v v / /v 1 v o / o 9/,
T () = lim [5gaﬂap — G0 — SO, + 00,0 + g (9700, — 0 ap)}
ik.(z—1")

dPk e
X/( 2m)0 (k2 + m?)?
aP p 2ppDo — Dpkio — 000 (P* — p.k) + m?)
be / (p* +m2)((p — k)* + m?) '

(125)

Observando o numerador da integral em p, percebemos que esse representa um polinénimio
do segundo grau. Desse modo, podemos escrevé-lo como derivadas que atuam em uma
fungao exponencial (CARDOSO, ), portanto:

v : 14 14 14 14 1 v loa o
T (z) = lim [508”3; — Gpe 00" — 6;‘503A81\ —1—55808/ + 59“ (g” 904 — 0 8”’)}

r—x’
XDBZ/ de e—ik.(x—z’) / de
( P (k2 +m2)* J (2m)P
X 25 zpa7 - 0% - kﬂa% — 0po(V2 — kiaii +m?)
(p* +m?)((p — k) +m?)

(126)

z=0

Esse polinémio mencionado, pode ser interpretado como um operador, escrito da seguinte

forma:

0 o 0 0 0 0
- | P S S 2 f— 2 p-z
az) l 0zP 0z° kaazp kp@z" 00 (V" — ki 0z o )1 e

Y

z=0

P(k,

(127)

portanto, a parte da eq.(126) referente a integral em p, pode ser escrita com a seguinte

notacao:
I,y (k)=1limP(k 0 Tk 128
po ( ) - Zl_l;% ( ) &) ( 7Z) ) ( )

onde Z (k, z), é a parte remanescente da integral em p, dada por:

B de eb?
702 = | Gy G R )

(129)

Utilizando a prescricao de Matsubara para a compactacao de uma dimensao espacial, a
eq.(128) fica da forma:

r ] Al pL ) ep et
e ) = lim 1 5 [ P 5 e TR, R T T TR

onde p, e z, sdo as componentes ortogonais em relagao as componentes compactadas do

(130)
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momento e do parametro z, dadas respectivamente por [ e z’. O ntimero N corresponde
a dimensao do espago apds uma compactagao. Portanto, N = D — 1, correspondendo a

uma dimensao espacial compactada. Logo,

z—0

1 /
I,y (k) =lim 17 > PN (k,n, 2)e”, (131)

sendo 'V (k, n, 2), igual a:

deL eZJ_pJ_

2m)N (P2 +mi)((pr — k1)? +m3)’

¥ (k,n, 2) = / (132)

onde m? =m?+1* em3=m?*+ (I — k)%

Escrevendo o polindmio de derivadas P(k, %) junto com a integral acima, podemos defini-

los conforme abaixo:

. / Nk, P(L)emspe

2m)N (k3 +m3)((kL +pL)? +m3) (133)

Utilizando os pardmetros de Schwinger (ITZYKSON; ZUBER, 2005), podemos reescrever
denominador da integral como:

1

o0 _ 2 2
2 2 :/ daye~or(FLFmi)
k7 +mj 0

1
(kL +pr)? + m}

= [ dagemetsrarm (134)
0

sendo assim, a integral pode ser escrita na forma:

1= 2 17 dondens | EEL mar (2 +md)—as(hy +p.)24m3) 135
(32) )y dondon | oy | o

Desenvolvendo o expoente da integral acima, podemos escrevé-lo da seguinte maneira:
z
—FE = k% + ay (k:i—i—QkLpL —/q(j) —|—Zm?ai+a2pi (136)
2
ap6s uma certa algebra, obtemos:

Q9 21 \\ 2 o’ z1 \?2
—E = (u+a <k+ ( —)) —( —)
(s 2>[ S+ pL 200 (a1+a2)2 pL 200

+>_mia; + asp?, (137)

: . . s 2,
fazendo um deslocamento sem jacobiano, ou seja, k; — k, + P (p — E)’ o expoente



pode ser escrito como:

E = (a)+ay)k? o3 R I ) +
—F = (g +a« - — miq; + a
! i (o + az) = Qo 403 2t
Q10 1 Zi 2 2
= 24+ —= 52 = _ Y miay,
(o + ag) L+(a1+a2)pL a1+a2<4 a“zipl |+ ) mia

substituindo o expoente de volta na integral I, dada pela (eq.135), obtemos:

2
a oo de |:(a +a )k + aj+ta P a1 +ta (J__QZZ p >+mea,:|
I:P(a—)/ dOéldOég/ Le o errap?lare | 3 o )

(2m)"

Podemos, entao, resolver a integral em k; como:

N/2
/ deJ‘ e—(a1+a2)ki = 1 T
(2m)N 2m)N \ (a1 + az) ’

logo, a integral I assume a forma:

alﬂzpﬁ_

20— 1
L 6_ aptag +Zmial (a1 +ag)? <
N/2

Y
»b',[\g

—Q2p | ZL) .

Inserindo a seguinte relagdo de completeza dada pela delta de Dirac:

P(0/0z)

= (471- N/2 / dOéldOéQ

(061 —+ 062)

1:/0061)\6()\—041—042),
0

obtemos:
B ’P(a/az) 9] oo 1 7041112171
I = (4W)N/2/o d)\/D daldag—(al+a2)N/25()\—a1—a2)e s
+Z 2 # ﬁ
m; oy (a1+a2)2 4 P12y |,

fazendo um escalonamento, de forma que a; — Aq;, temos:

CP0)oz) e A2-N/2

2
@192P7 1 2]
{aﬁ-az 2o mi } R [4%‘%“]’
Xe

50

(138)

(139)

(140)

(141)

(142)

(143)

(144)

utilizando a propriedade da delta de Dirac 6 (A — My — a2)) = 50 (1 — ( — a2)), temos:

2-N/2—1

P@/02) [* . P
I= @m)N/?/o A [ dasday w720 (A = Alar — a2))

(061 + 052)

2
@192P7 1 2]
{@14—0‘2 2 mi } R [4—“‘%“]’
Xe

(145)
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integrando em «a; com a delta de Dirac, a integral I fica da forma:

_ P(a/az) o0 ! 2-N/2-1 —*[(1—@0@%2 m?]_% |:4_)‘O‘pJ_ZJ_:|

fazendo p — —k, a integral acima volta a ter o mesmo formato da integral TV (k, n, 2),

dada pela eq.(132). Portanto, temos que:

22
’]D(a/az> 0o 1 3 B —A[(l—a)ocki—f—z:mﬂ—% [i——)\akLzL]
FN:i/ d)\/d)\2N/21 . 147
(4m)N/2 Jo o ‘ ’ (147)
Substituindo a integral acima na expressao do tensor energia-momento, dado pela eq.(125),
obtemos:
dPk ek
wo_ 1
T = Jim Opuey [ 5 G (148)
onde I'), = lim,_,g % S Poo TN (kym, 2)e*! |y = —i(x — 2'). Sendo ©,,,,, um operador

de 4* ordem, definido por:

1
Ouizp = ~0u00u0y ~ 6pa 0Dy + 88000 — 80050 = 50y (800" + 0,05 ) (149)

— 0
onde 0, = By
De forma andloga ao que fizemos no inicio desse capitulo, vamos trabalhar agora com
o momento externo k do diagrama de loop. Logo, pela prescricao de Matsubara, temos
que: k =k, +K ey =y, +y, onde kK e 3/ representam as componentes compactadas
em relacao as componentes ortogonais k; e y,. Desse modo, o tensor energia-momento,

assume a seguinte forma:

: (150)

1 Z/ dN/{:J_ @uuap (eyl/uey’k’rpg)
w ) QN (R md)”

sendo m3 = k" + m?

Lembrando que I, possui um operador diferencial P,, escrito em termos de k. Portanto,

de forma andloga a eq.(127), podemos definir que:

Ppa = onek.y ’ (151)

y=0
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onde 2,,, representa um operador diferencial que atua em ekv, dado por:

o 0 o 0 o 0 o 0
Qpo = [20—— — — — 0o (V? = ===+ m?)|. 152
g [ 0zP 0z° aya 0zP ayp 0z° P ( ayz Ozt +m ) ( )
Portanto, reescrevemos o tensor energia-momento, dado pela eq.(150), da seguinte ma-
neira:
v deL 6’“‘3”‘1-‘ o 4y
T = “V L2 zhgo Z / g)Qek v l? (153)

onde ¥, = 0 ,,,5,{2,, representa um operador diferencial resultante da contracao dos dois

outros operadores de ordens diferentes.

Definindo a integral em £k, na expressao acima como:

A / deJ_ kLyLFN

yTeR— (154)

O denominador da integral acima esta elevado a uma poténcia, utilizando uma ideia
andloga a uma transformada de Laplace para escrever parametros de Schwinger, podemos

escrevé-lo como:

deste modo,
1 2
b= (4m)N2(2m)N /deleiﬁki7A(17a)akfaakﬁm“7 (155)

trabalhando no expoente, temos:

—-F = —Bki—)\(l—a)aki—azlijLkLyl

_ e |2y (er — )Ry

1 (21 —y1) )2 1 (az —y1)?
28+ M1 —a)a 48+ M1 —a)a)?

= B+ 21— o)) {(lﬁ + (156)

1 (az1—y1)

3B a)a’ & integral em k; pode ser escrita na

Fazendo o deslocamento k£, — k| +

forma:

1 N (B+A(1—-a)a)k? 1%
B:Mﬂ-)Nﬂ(Qﬂ-)N/d ke [ L1721 BrA(I—a)a) 7 (157)
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resolvendo a integral em k,, obtemos que:

T N/2 1 (azg -y )?
B = e *ERA-a)a)?
B+ A1 —a)a)

(158)
logo, a eq.(154) pode se escrita como:
1 o 2-N/2-1 e A am? [ —Bm2
A= o /0 A e /0 dae 2 oim: /0 dBBe""3
—N/2 T
X (B+ A1 —a)a)) e 1(ErAI-a)a)? (159)

fazendo 8 — A\3; [°dB — [y df3,obtemos que:

1

A= v SdBda (5 + (1 - a)a)) 2 [T aaxiv

2
2 21 1 (azg -y )?

Xe—/\(ZaimiJrﬁms)—ﬂ—zm' (160)

Substituindo na expressao do tensor energia-momento, dado pela eq.(153), temos:

1 1 . ! —Nj2 [ A-N—1
[ — —
™ - T Z’leom%njj { /0 dBda (B + (1 — a)a)) /0 U, dAN
A m2+8 2),%,;M Lo 4t
s M amitpm )~ 5 = (ﬂ+(1—a)a)2] kvl (161)

Lembrando que ¥,, = ©,,,,{,, ¢ 0o operador diferencial resultante da contragao dos
outros dois operadores. Contraindo cada um dos termos de O,,,,, dado pela eq.(149),

com cada termo de Q,,,dado pela eq.(152), obtemos que:

\Ij:82 [Qaa_aa_aa_(v2_88+m2)
B Oyroyr | T 0zp 02y Oyv 0zp  OyP Oz¥ P oyt 0z° |
- o [(Q—D) (VQ— o )—DmQ_

yroyP 0ytoz! |

+aal2a o 9 9 29 (v2_88+m2>'

Oy? |0z 0zv  OyvOzr  Oyrozr M Oyt 07 ]

s [288_88_88_(v2_88+m2>'
Oyody” | 0z 020  Oy° Oz¢  Oyndze M oyt 0z |

2 2 1

_;5#1/{;22 [(2 — D) <V2 - 3;3321‘) — Dm”

02 o 0 a 0 g 0 , 0 0 )
T ayeaye [282/’ 0 oy ow opor o\ Tgpan T >] } (162)

fazendo as devidas contragoes, simplificando alguns termos, e organizando esse operador
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diferencial resultante, obtemos:

0? 0? 9 , 0
Vo = 28y“82“ <82P8y/’ -V ) 2V 0zr0zY
82 82 82 82
— —1(2-D 2 —— | — Dm?
+8y“0y” <8z”8y“ 0zPOyP l( ) (V ay%azz> " D
0? 0?
_282“6@” 0z°0Y°
_Ls der (2 - i (1+(2—D))—m?*(D —1) (163)
2 M Oyioz '

Arrumando o operador ¥, e fazendo p = v, pois estamos interessados na componente

T do tensor energia-momento que representa energia de Casimir, podemos escrevé-lo

Como:
2 (3— D) ( 5 )1
v, = 9|2 ( - ) - v:o
H Y 0z 0y.0z, 2 0y,0%,
(D-1) , 0&? K 9 o? ) ]
+ m* + vi—-——|(2-D)|, (164)
2 oy 0y,0%,

esse operador ird atuar na fungao exponencial contida na eq.(161), dada por:
fz,y) = eVl tbyLz ezt +2/1+ky (165)

onde os paramtros acima sao identificados por:

B 1
4(8+ (1 - a)a)’

a =

T 28+ (1—a)a)’

T (4(6+ gz— ayay 41A>

Observando a eq.(164) podemos identificar 4 operadores distintos, dados por (Vg — ayf;zp );

02 P ). g2, 02 . ~
( 92 ~ 7, 8@), Vi € a7 Portanto, cada um desses termos ird atuar na funcao f(z,y)
descrita acima. Logo, temos que:

62 82 Z, 0 0 2 2 ’
Vif(@y) = Z ﬁf(%y) = 8];(azy) — g <azeayL+byLzL+ch+z3l+k y3> : (166)
7 7 i 97 7
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para ¢ = 0, 1, 2, obtemos:

86; ((byi - ZCzi)f(z,y)) = (2c5ij + (by' + 2¢2%) by + QCZJ)) fz,y) (167)

para ¢ = 3, temos g—; =12f(z,y).
3

Aplicando o outro termo do primeiro operador, temos que:

P f(z,y)

N (béij + (by" + 2c2") (b2" + Qayj)) f(z,y), (168)
U<

para i1 =7 = 0,1, 2, temos:

P f(z,y)

“ogi0m (b0 + (by' + 2c2") (b=" + 2ay") ) £(z, ), (169)

para i=j=3, temos que 8y§223 =FKlf(zy).

Tomando o limite de z — 0, obtemos que o primeiro operador sera:

92 )

2 — 0,y) = (0"(2¢c — b) + y*(b* — 2ba) + > — K'l) £(0 170
(72 505 ) £0.0) = (3%(2e =)+ 5207 = 200) 4.2 = 471) SO (170)
de forma analoga o termo <68; — ay%%)v pode ser escrito como:

LA (9"(2¢ = b)y"> (b — 2ba)) £(0,y) (171)
022 0y,.0%, e
Portanto, o operador diferencial ¥,,, dado pela eq.(164),pode ser reescrito da seguinte
maneira:
D -3 . 3—D
v,.Gy) = Wvg{ (26 = )(2+ =5 —0") — ( . ) ((8* = 2ba)y? + 17 — m)] G(y)}
D—-1
+(b* — 2ba)V; [y“%?(y)} + 6“”gm2G(y)
2
+i§y2 [ (5“(20 —b) 4+ 2= K1+ (0 — Qba)) (2 — D)G(y)] : (172)
o

onde G(y) = [(0.y) = e+,

Organizando os termos da equacao acima, obtemos:
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D D —3)

2

0,,Gl) = o [<2c—b><2+ .

(I — k’l)sz(y)

+ 5(62 — Qba)vi(yzG(y))} + (b* = 2ba) v} (y"*G(y))

2
TR 41 200) 5 PG)

+ [(5“‘(% —b)+ 1> = K1)

2
m

«(2= D)+ 5##(172_1%%:@). (173)

Observando a equacao acima, podemos identificar 5 tipos de derivadas: VzG (y); Vz(gﬂG(y));

Vi ("G (y)); azayéy); %(yZG(y)). Atuando cada uma dessas derivadas na fungao G(y) e

tomando o limite em que y — 0, temos que:

PGy) 0 Y .
2 o _ ays +K'y3\ __ 7 2 2
v,G(y) = o o (Qayie Y1 y3> = (2&5 + (2a)%y )G(y), (174)

para 1 = 0,1, 2.

Sendo i = 3, obtemos:

PG (y)

o7 K2G(y)

Desse modo:

V2G(0) = (206" + (2a) + k) . (175)

Y

Fazendo o processo analogo para os outros 4 tipos de derivadas restantes e substituindo
os resultados na expressdo do operador diferencial, dado pela eq.(173), e considerando
§% = (D — 1) e 6"* = 1, obtemos que:

v, - [(2c—b)(2+D;3(D—1))+(D2_3)

(1% — k’l)] (2a(D — 1) + ?)
+[(D —3)(D—-1)+2+2(2— D)] (b* — 2ba)

(Dz_ Y 2 (176)

+2a(2 — D) [(D —1)(2¢—b) + 1> - k’l] +

fazendo algumas manipulagoes algébricas, podemos reescrever essa equacao da forma:
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W, = a(2c—b)(D—1)((D=3)*+4)) + (b* — 2ba)(D — 3)°

+(2¢—b) l’; ((D—27+ 3)] +a((D - 3)* —2) (I - K1)

k/2

+2(52—k’l)(D—3)+(D_1) 2

5’ (177)

Lembrando que esse operador esta contido na expressao do tensor energia-momento, dada

por:
m 1 1 1 g [ o
T = (47]_)]\[[/2”27;/0 dﬂd&(ﬁ—i-(l—a)@)) /0 qjuud)‘)\
Xef)‘(z aimeerg), (178)

observando a equacao acima, podemos identificar 5 tipos de integrais que aparecem com
a atuagao do operador diferencial, dado pela eq.(177). Cada uma dessas integrais sao
nomeadas abaixo, como:

tipo 1: O1 = a(2c —b)

tipo 2: Oy = (b* — 2ba)

tipo 3: O3 = (2¢ — b)

tipo 4: Oy =a

tipo 5: O5 =1
Além disso, temos também 4 tipos de termos que influenciam o somatoério da equacao,
dados por:

tipo 1: S; = k"

tipo 2: Sy = (I — ')

tipo 3: Ss = Kk (12 — K'l)

tipo 4: Sy =1

Lembrando que os parametros a, b e ¢ sao:

o= L (179)
4+ (1 —a)a)

b= (180)

(=i ) e
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a partir dessas defini¢bes acima, conseguimos relacionar os parametros, conforme abaixo:

b= —2aa (182)

e tambem que:

1
2
=ao‘a— —. 1
c a m (183)

Desse modo, cada um dos 5 tipos de integrais ficam da forma:

O =2a <a2a - 41)\ + aa> (184)
O, = 2aa (a+1) — £ (185)
b 2\

De forma similar para Os:

O, = b(b — 2a) (186)

O, = 4a’afa +1). (187)

Analogamente para Oj:

1
O3 =2aa (a+1) — TR (188)

Portanto, ao reeorganizarmos, cada um dos tipos de integral fica:
tipo 1: Oy = 2d’a (o +1) — &
tipo 2: Oy = 4a’a(a + 1)
tipo 3: O3 = 2aa (@ + 1) — 5=
tipo 4: Oy = a
tipo 5: O5 = 1.

De maneira geral, esses diferentes tipos de integral sao da forma:

U; = / "dBdaB (B + (1 - a) )" / T NN O A (D 4imd), (189)
0 0

observando cada um dos tipos, percebemos que apenas as integrais U; e Us tem modi-
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ficacOes sobre as integrais em A. O restante das integrais tem apenas modificagoes nas

integrais sobre o e 3. Explicitamente, essas integrais sao da forma:

[]1 — 1/1 dBdCKBOé (Oé+ 1) (B_i_ (1 _ CK) CY)_N/Q_4 /oo d)\)\llfole—)\(Zaim?-&-ﬂmg)
8 Jo 0

= " dBdaf (B + (1— a)a) > ARGy S (190)
Uy =1 / " dpdas (B + (1 — a) a) N2 / ANV 1A (T e oms) (191)
4 Jo 0
Us = _; /01 dfdafa (a+1) (B + (1 —a)a) 72 /Ooo ANV 1o A (S eimi+oms)
_; /1 dBdaB (B + (1 — ) Oé)iN/2 /Oo AININ =2~ M(EZ eimi+hm3) (192)
0 0
Uy = —411 /01 dBdaf (B + (1 — a)a) N> /OOO AN e A eerm) (193)
Us = / " dBdaf (B+ (1 - a)a) ™" / YA (Do), (194)
0 0

As integrais que irao gerar as funcoes de Bessel modificadas de segunda especie sao as
integrais sobre A. A parte que interfere nas somas, referente aos termos 5;, podem ser

feitas facilmente transformamdo os termos de somatério S; em operadores diferenciais

. - im? 2 . ~
atuando sobre a exponencial e A imi+8 m?’),com algumas modificacoes da forma:

oM am?rpm3) A (D cimP+Bmi 112 +ook? ++oslk) (195)

Sr=dar=d3=0

Desta forma , qualquer polinémio pode ser substituido por operadores diferenciais.

2 — -1 0 M3 aim2+Bm3+¢1 12+ dok?++slk) 196

TN 09 © (196)
¢1 P1=p2=¢3=0

s  —1 d A im2+Bm3+¢112+pok?++¢s3lk) 197

TN 90y - ' (197)
P2 $1=¢2=¢3=0
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Ik — ii o~ M2 aim?+Bm3 112+ $ak> ++ 831k ) ' (198)
A O¢s p1=¢2=¢3=0

Atuando esses termos de somatorio, algumas integrais sobre A devem ser modificadas.

Porém, de um modo genérico:

R (199)
0

onde P sao os possiveis valores do expoente de A referente a cada uma das integrais cha-

madads de U.

Utilizando a identidade da funcao gama dada por:

Y (z+y) = F(ls) 3 /O i gpe e, (200)

a eq.(199) pode ser reescrita como:

T(4—N-P+1)

H— - 201
(X cum? + Bm3 + ¢il2 + dok? + galk)* =N (201)
Substituindo a fungdo H na eq.(178), obtemos:
[ 1 1 ! —N/2
TH = MﬂNBE:AdMaw+G—aMD U, 04— N = P4 1)
ni,n2
—(4-N-P
x (3D m? + Bl 4+ 610> + 6ak® + golk) (202)
o somatorio dessa equacao dado pelo termo
cim? + B2 + 6112 + dok® + gslk) 203
7 3

ni,n2

é identificado como um caso particular da funcao zeta de Epstein-Hurwitz. Trabalhando

nessa funcao, temos que:

—(4=N—P+1
S (cum? + aom3Bml + Gil® + ook + glk) (204)
ni,n2
lembrando que m? =m? 4+ [* ; m3 = m?* + (I — k')%; m3 = k.
Portanto, a fungao zeta pode ser escrita como:
(=3 (aa(m®+ 1) + as(m? + 12 = 20K + K2) + K2 + ¢ul® + oo + galkt) " (205)

ni,n2
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sendo | = 2“% e kK = 2”% a compactagao de uma dimensao dos momentos internos e

externos pela prescricao de Matsubara. Portanto, organizando os termos, obtemos

¢ = 3 [T+ ant gt + (65 — 2a)ma + (TP (as + 5+ )3

ni,no

+ m?(ay + 042)} S : (206)
escrevendo de uma forma mais compacta, temos:
(= (wm% + wanyns + wyn3 + q)_(4_N_P+1) , (207)

ni,n2

onde os parametros utilizados acima sao identificados como:

wy = (o + 03 + )
ws = (205 — 202)

2 9
ws = (f) (ag + B+ ¢2)

q=m*(a1 + ay).

Utilizando a férmula de Chowla-Selberg (ELIZALDE, 1995), essa fungao zeta pode ser
escrita como:
¢ (s;w1, wa,w359) = Y (wln% + waninag 4+ wsn3 + Q>_

ni,n2
228\ /rwi !
' (s) (dwyws — w3)s—1/2

=274(s,q/wy)w;® + I'(s—1/2) 2, (s —1/2, 4w q/ (4w ws — w3))

2$+5/27Ts ) . 4w q 1/4—s/2
s—1/2 d1—25 ( 4 a2 1 )
+7F BN nZIn cos (nmwsy /wy) d%n (Adwwz — wy) + 7
™ dunq
XK, 1) (m\/(4wlw3 —w3) + 7 ) (208)

onde o somatério duplo sobre ny e ny é reescrito como uma soma sobre o produto n = nins
e sobre os divisores desse produto dado por 3, d'~** (ELIZALDE, 1995). Os dois termos

de Zi(s,v) correspondem a fungio zeta de Epstein-Hurwitz no caso de uma dimensao
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compactada,definida como :

v AD(s—1/2) ., 2mSuT/EUA
Zi(8,0) = —— 4 2 T N2 (27m0/0) L (209)
2 2I°(s) [(s) nz::l ( )

onde v = q/w;.

Substituindo os parametros wy, we, ws e ¢ da eq.(207) na eq.(208), temos:

¢ (5501, w3 0) = 2105, afwn) [T Ve + @z +-60)]
s—1

227 [(5) (a1 + az+ ¢1)] T(s—1/2)

D (s) ()% [4(as + 0z + 61) (a2 + B + 62) — (95 — 200)])"
X 7y (s —1/2, 4w g/ (dwrws — w%))

+

. 9s+5/2 s f: 51208 (nm(p3 — 2a9) /(o1 + g + ¢1))
0 (0Pl 0+ 90 5

2\ 4
A O e R e 1)(e 2) — (3 — 2012)?
<3 {(L) (401 + 02+ 1) {0z + 5+ 62) — (95 — 202"

1/4—s/2
+q%ﬁmrum+@mﬂm+ag}

2
™m 2\ 4 9
S e [ T T

; (210)

AT (on + g + ¢1)m*(ay + 042)1 2 }
d2

observando a expressao acima, temos que L é um parametro analogo a distancia entre as
placas no efeito Casimir e m corresponde a massa do elétron. Ao compararmos essas duas
quantidades, podemos verificar que a ordem de grandeza da massa, em torno de 103!,

serd muito menor que a ordem de grandeza de L, dada por 107%. Portanto, sendo m < L,
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podemos tomar um limite em que m — 0, logo a equacao acima pode ser escrita como:

¢ (85w, wo, w35 q) = 2 <2£T>_ S (1 + s+ ¢1) " Zi(s, q/wr)
m\ "% a1 + ay D D(s —
V0% /r (2L> (1 + a2 +¢1)]" T'(s—1/2)
[4(o + a2 + ¢1) (a2 + B+ ¢2) — (3 — 2a2)2 |571/2T (s)

X 7 (3 —1/2, 4wy q/(4wws — w%))

() 2w

+ n* Y2 cos (nm(¢s — 2a2) /(a1 + a2 + ¢1))
T (s) /(o1 + s+ 1) &

||M8

X {4(% +as+¢1)(e+ B+ ¢2) — (¢3 — 2(12)2}1/4_8/2
™ e
X Ks-1/2 (o1 + az + d1) <4 (041 +ag + ¢1)(az + B+ ¢2) — (¢3 — 2a) ) ] . (211)

Lembrando que s =4 — N — P+ 1, sendo N = D — d o nimero de dimensoes apés
a compactacao, e P o expoente das integrais em \. Ao aplicarmos nas integrais U; os
termos que contribuem para a soma, dados pelas eqs.(196),(197) e (198), observamos que
o expoente P assume os valores 1, 2 e 3. Fazendo D = 4, e aplicando os valores de P,
obtemos s =1, s =0e s = —1. O valor de s = 1 corresponde a funcao de Bessel com
ordem v > 0, enquanto os valores s = 0 e s = —1 correspondem a uma ordem v < 0
que podem ser tratadas pela propriedade de reflexdo das fungoes de Bessel (WATSON,
2011). Utilizando a aproximacao da funcdo de Bessel K, (z) ~ 1T (v) (%)V de argumentos

pequenos,temos:

L
2\ 2 (g + g + ¢1)]S_1 ['(s—1/2)
225 =
2T ( L ) (ag + ag+ 1) (e + 5+ ¢2) — (3 — 2a2)2]5_1/2 '(s)
X Z (3 —1/2, 4w q/ (4w ws — w%))
() 2w

I (s) \/(Oé1+062+¢1
X {4(@1 + a9 + ¢1)(042 + 6 + ¢2) - (¢3 - 20[2)2

s—1/2
><1I‘(s—1/2)< 200 + a2 ¥ 61) 1/2)
2 ™ [4(r + ag + ¢1) (s + B+ da) — (¢35 — 209)?]

—2s
¢ (5301, wp, wi q) = 2 (2”) (n + s + é1) " Zu(s,q/a)

+

i 5=1/2 cog (nm(ps — 2a) /(a1 + ag + ¢1))

}1/4—5/2

(212)

Renomeando alguns termos da equacao acima de forma a limpar um pouco a notacao,
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temos:

27

—2s
C (s5w1, wa, w35 q) =2 < I ) Lf1 (a1, az, ¢1)]_s Z\(s,q/w1)

2s 2\ 7 [f1 (o, g, ¢1)]s_1 I'(s —1/2)
+2 T —
\/_(L> [f? (a17a27¢17¢27¢376)]S_1/2F(8)
%2y (s = 1/2,4wiq/ (4w — wf))

(2%)725 25+5/27TS . s
n® /% cos (nm f3 (a2, ¢3) / f1 (a1, a2, ¢1))
I'(s)\/fi (a1, 0, 01) n=1
X {f2 (o1, 2, P1, o, 3, B)] /41

95—3/2 ( [f1 (a1, ag, ¢1)] )5—1/2
—TI'(s—1/2 , 213
. (71'71)371/2 (S / ) [f2 (ab Qg, ¢17 ¢27 ¢37 6)]1/2 ( )

+

onde os termos renomeados sao identificados abaixo por:

fi(on, a0, 01) = aq + g +

fo (a1, 2, ¢1, G, @3, B) = 4(ay + g + ¢1) (s + B+ ¢2) — (93 — 2a2)°

fs (a2, 03) = ¢35 — 2000 (214)

Observando a eq.(213), identificamos os termos Z; (s, ¢/wy) e Z; (s — 1/2, 4wyq/ (4w ws — w3))

que sao fungdes zeta de Epstein-Hurwitz definidas coforme a eq.(209). Portanto, temos:

_ M _matay T
Z\(s,q/wy) = 2((2”)2(a1+042+¢1)>

VAT(s —1/2) ( m(an + ) )/
2I'(s) (%) (1 + a2 + ¢n)
27® m?(ay + o) —s/2+1/4
775 (o e 2am)

<SR (ZWnJ <(27r LA )) . (215)

| 7)1 + ag + é1)

+

De forma andloga ao que foi feito na eq.(211), devidos aos valores possiveis de s, temos

que nas fungoes de Bessel, para os valores de s — 1/2 < 0, utilizamos a propriedade de
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reflexao dessas fungoes. Portanto, K,_i/» = K /5_s.Logo, utilizando a aproximagao para
argumentos pequenos, obtemos, respectivamente, as expressoes de Z1(s, ¢/w;) correspon-
dente as ordens maiores que zero (s — 1/2 > 0) da funcao de Bessel e as ordens inferiores
a zero (s —1/2 < 0):

2\ L Ji (04170é2,¢1)
Val(s —1/2) (2m\ 2! [ fi (0, ) ]/
* (L) " fi (a1, ao, ¢1)

2I0(s)
I'(s —1/2) 5,4 25—1/2 7 —2s+1,  —2s+1 [ fa (o, a2)
['(s) ? " L " <(0) fi (o, a2, ¢1)

sty = b (2) e[ oo 1

+

—s+1/2
] (216)

onde fy(aq,e) = a3 + ay. Lembrando que a fungao zeta de Riemann é definida como

C(e) = X2, n~¢, podemos identificar na equacao acima no termo > °° %, sendo
portanto € = 0. Pela continuacao analitica da funcao zeta de Riemann, temos que
¢0) = —1/2.
Analogamente, a expressao para ordens inferiores a zero, é dada por
1 /2m\* falag,a9) 17°
o) = 4 (22) ] Sl
1, g/wn) 2\ L fi (o, g, ¢1)
R l fi (a1, a) 1/
2I(s) L fi (a1, g, ¢1)
ra/2 -
+Mw2s—1/%(1 — 25) (217)

I'(s)

onde ((1 — 2s) corresponde a fungao zeta de Riemann para os possiveis valores de s.

Aplicando os possiveis valores de s nas equagoes acima, obtemos:

_ 1 /2m\? fa(an, az) -
Z1(1,q/wr) = —35 <L) m* lﬁ(%()@,qﬁl)]

YL/ 2y [f<>]/
or(1) \L fi (o, 02, 1)
g [ Sl ] o
L lﬁ (@1,a27¢1) (218)
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Z1(0,q/w1) = vVl (= 1/2>(L> 1mlwr/g

2 21°(0) fi (o, a2, 01
+F1£1((/))2)w1/2é(1) (219)
ol am\T? L] falon,ag) N
Z-tafu) = —y (F) w2 | flenes
VAD(=3/2) 20\ [ falor,as) 17
i () e | flenen
?((3_/12)) 7T—5/2<<3) (220)

Trabalhando agora na funcao zeta Z; (s — 1/2, 4w1q/(4wiws — w3)), temos que:

71 (s —1/2, 4w, q/ (4w wz — w%)) =

1 ( A(Z)(an + 0 + d)m?(an + o) ) o
( ?

2\ (2)" [4len + s + é1) (o + B+ ) — (65 — 200)?

VAT ) ( 42201 + 00 + ) + a) )
(s = 1/2) | (2)" [4(c + @z + 1)z + B+ d) — (d5 — 202)?)

—s/2+1/2
2ms~1/2 A3 )2 (ar + oz + ¢1)m? (o + ) )
)2

TG 1727 | (%) o+ + 0n)(az + 6+ 0) — (05 — 200)

i K, 1| 2mn ( 4(25) (o1 + ag + ¢1)m?(a; + ay) ) : (221)
()" [ + s + 1) (e + 5+ ¢) — (65 — 200)?
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escrevendo de uma forma mais compacta e simplificando alguns termos:

7y (s = 1/2, 4wnq/ (wyws — w3)) =

_9—2s QI e —2s+1 lfl (a1, 0, 01) fa (0417042>]_s+1/2
2 (T) f2 (ar, 3, 61, 62, 3, B)
9—2s+1 ﬁF(s - 1) (277)25_2 m—25+2 lfl (0417 Q2, ¢1) Ja (0417 042)] -

F(S—1/2) L f2(a17&27¢17¢27¢376)

L
2y e [fl (1,02, 01) fi (041,042)] e

m L f2 (0417a27¢17¢27¢37ﬂ)
- 1/2

Z nsfle_l (2nmL lfl (ah Qo, ¢1) f4 (al? a2)‘| ) 7 (222)
n=1

+

+

fa (0417042,¢1,¢2,¢375)

como o argumento dessa funcao Zeta difere da outra, a funcao de Bessel assumira valores
diferentes. Substituindo os trés valores possiveis de s, encontramos Ky, K_ 1 e K_ .

Portanto, para as fun¢oes de Bessel de ordens menores que zero, temos:

A (s — 1/2, 4w q/ (dwws — w%)) =
o2 (2T 27 et lfl (o, 0, ¢1) fa (041,042)]_8“/2
’ <L) " fa (o, g, ¢1, G2, 03, B)
52501 VL (s — 1) (2”)28_2 242 [fl (a1, g, 1) fa (u, 042)] -
['(s—1/2) fa (a1, a2, ¢1, @2, 03, B)

L
9s-3/2 L(1—5)
/ =12 1/2)§(2 —25). (223)

+

—+7

Para obter a expressao da zeta correspondente a ordem zero da fungao de Bessel, vamos

fazer a seguinte manipulagao algébrica:

o~ - = L@ 2\ L), on o
EKE: e \"/ [ = — U 5 5’
(224)
tomando um limite em que £ — 0, temos:
X U= _ I(0)¢(0)
don Ka_g%r(e)c(Qg)QH_ 5 (225)

n=1

utilizando uma propriedade de todas as fungoes zeta, conhecida como féormula de reflexao
(ELIZALDE, 1995), dada por:

C(s) = zsws—l%m —§)C(1 - s) (226)
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obtemos para s = 1

¢(1) = 20(0)¢(0) (227)

substituindo na eq.(225), chegamos a conclusao que:

i nK, = C(j). (228)

n=1

Portanto, para a ordem zero da funcao de Bessel, a eq.(222) é reescrita como:

A (s —1/2,4w,q/(4w1ws — w%)) =

g2 (27 2 e lfl (a1, 00, P1) fa (al,o@)]_sﬂ/?
2 < ) m fa (aq, o, P1, P2, @3, )

L
o251 VT (s = 1) (27T)2S_2 - 25+2 lfl (a1, g, 1) fa (u, 042)1 -
I(s—1/2) \ L fa (au, g, @1, 92, 03, B)

P £ [fl (o1, 0, 1) fa (041,(12)]_5/2“/2
+F(S_1/2) (L> " f2 (&1,0&2,¢1,¢2,¢3,B>

+

c(). (229)
Substituindo os trés valores possiveis de s, temos:

Zy (1/2,4wng/ (dwnwg — w3)) =

Lo (2m\ Ly [filen e, ) filan,a0)] Y VAT(O) 2702
22 (T )m [fQ <a1,a2,¢1,¢2,¢3,@>1 2T T 250
A (—1/2, dwsq/ (dwyws — w%)) =
(2T ! f1(0417042,¢1)f4(041>042)r/2 val'(-1) 2m -
2(L> m[fz(a1,042,¢17¢2,¢375) +2F(_1/2) <L)
o [ f1(an, a0, ¢1) fa (o, az) -3/2 I'(1)
i l fa (o, a2, @1, @2, B3, B) ] o F(—1/2)C(2) (231)
Zl (—3/2, 4’[1)1(]/(411}1'11)3 — w%)) =
o (2T -3 3| f1 (o1, 0, 01) fa (1, a2) e 3\/7_TF(_2) 2\ !
—2 <L) " [f2<a17a27¢17¢27¢3aﬂ)] 2 F(_3/2) (L>
s [filon,as,00) fila,a0)]” | 7 T(2)
o [f2 (0417042,<Z51,¢2,<Z53>5)] I F(—3/2)<(4>' (252)

Substituindo as equacoes das funcoes Zeta de Epstein-Hurwitz na formula de formula de

Chowla-Selberg, dada pela eq.(213), obtemos para os valores de s que:
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fa (a1, az) ]_1/2
fi (a1, az, 1)

1
) m [ f1 (ou, s, b1) fa (0, )] 2

21\ !
¢ (L wr, wo, wz;q) = —m® f (an, ) + (L> m! l

_7'('1/2[ fa (o, an) ]1/2_ (27T
2L-1 f1 (06170[2,@51) T f

—92 -2
w2 (20) 00 £ (0, 0,00, 60, 65.8) + 20 (3) ()
Xf2_1/2 (a1, g, @1, P2, 03, )
2m\ 2 &
+-87 <L> Zcos(mrf3 (v, ¢3) [ f1 (a1, g, 01)) (233)
n=1
s = -1 - (3F) " T [ Saloe ]“ZQC(U
e L) 0" |filanané)] T
47 f4(011,0./2) ]1/2 21 -1 27TF(—1) 9 f4(a1,a2)
+F(O) [fl(alaa27¢1) <L> me ['(0) mf21/2(a1,a2,¢1,¢2,¢3,6)

7T fit (o, a9, 1) dr &=
OT0) 1577 (ars a1, s 9) T10) 2 0 (73 (02009) 11 00, 02,6))

% f21/2 (041,042#?1, ¢2,¢3,5)
fi (o, g, ¢1)

+

(234)

_f12 (o1, 00,01) Am 2m oy i (a1, o)
f4 (061,042) m SF(—l) (L) m f11/2 (al’QZ’(bl)
2 2m\? dmr 2m\ ! f1_5/2 (a1, g, ¢1) f4_1/2 (a1, )
Ay E)) (L) filar, a2, 01) ¢6) = 55 7 (L) 752 (a1, 02, b1, b2y 03, B)
2m\7?T(=2) fi (eu; a) ™ 2m\?
2 ( L ) F(—l)m f21/2 (a1, a, P1, b, B3, B) + 90I'(—1) ( L )
Ji2(ar, a0, 1) 21\? 27 &
T eman vt g T L) BT S 07 0069 /i s 0)
Xf23/2 (041,042>¢1,¢2,¢375)
fl2 (0417042#51)

C(_l;whwz,w:a;Q) =

™

L

(235)

Lembrando que as trés equagoes acima serdo multiplicadas por um fator global de I'(s)/L?

que vem da eq.(202) Portanto, temos que:
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I'(1 1
[(/Q)C (15w, wa, ws; q) = —ﬁm2f4—1 (a1, az) +

—1/2 ~1/2 .
W2L [fl%éfzjﬁl)] B 7T(27TL) m L [f1 (o, o, d1) f1 (an, 00)] 2

+(27T)71F(0)f271/2 (a1, 0, G1, B2, @3, B) + (27T)71C(1)f271/2 (a1, az, @1, ¢2, 03, )

(2m) ! A[ﬁmmm]*”
L o fi (a1,a27¢1)

+8m(2m) 2 i cos (nmfs (aa, ¢3) / f1 (au, a2, 61)) (236)
n=1

F(O)C(O- Lq) = I (277)712 filon,as) 12 I i2§(1)

e e Y el

fa (o, az) ]1/2 _1 1 5 fa(an, a2)
—Ar | = 2 —27l'(—
+L2 " [fl (0417042»¢1) ( W) e L? " ( 1)m f21/2 (041,042>¢1,¢27¢3,5)

1 fit (a1, a9, ¢ I
2L £ (Zﬂ,(j; ;i ¢21,)¢3, 5 2l s (nmfaon60) [fi (o, 02, )

» f"? (a1, g, 1, 02, 03, B)

fl (ala g, ¢1) (237)
(-1, . DY) o asd) Ly Ldw o (o, as)
po ) = T e T Y R o

1 —2 2 1 4m -1 fl_5/2 (a17 g, ¢1) f4_1/2 (041, 052)
+m (27m)% f1 (a1, o, 1) C(3) — zg(%) 752 (an, a2, b1, G2, b, B)

fi (e, @) + il( )2 fi2 (an, a9, ¢1)
21/2(a1,0427¢1,¢27¢3,5) L2190 f;3/2(017027¢1,¢27¢3,5)

f23/2 (0417 Qa, 1, P2, O3, 5)
fi (a1, g, P1)

+27(2m) 20 (—2)m*

1

+L4<27T>22; i cos (n7 f3 (v, ¢3) / f1 (o1, a2, 1))
n=1

. (238)

Estudando o regime assintético de cada equagao acima com seu valor especifico de s,
como L refere-se a distancia entre as placas no efeito Casimir, sendo L < 1, os termos
que mais contribuem sao aqueles com a maior poténcia de L no denominador. Além disso,
os termos que nao dependem da distancia entre as placas podem ser desprezados, pois nao
possuem nenhuma contribuicao fisica para a energia de Casimir. Podemos observar que
na eq.(236), todos os termos podem ser desprezados, pois possuem poténcias menores 4.
Os termos que contém divergéncias devido a I'(0) e ((1) nao possuem dependéncia em L,
podendo assim serem eliminados por uma renormalizacao por subtragao. Ja nas equacoes

(237) e (238), mantemos apenas as maiores poténcias de L e os termos de divergéncia
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com dependéncia em L. Portanto, as equacoes ficam reescritas como:

ro IN(0) 2 1 ,

L(Q)C (Oa W1, W2, W3; q) = - 122) + ﬁ (]') + ﬁQTrF(_]‘)mQ 1/2 f4 (Oél az)

f2 (O‘17a27¢17¢27¢37ﬁ>
(239)
colocando os termos comuns em evidéncia:
INQ) 2 INQ) D (—=1)m? fs (oq,
L(Q)C (0; w1, wa, ws; q) = 72 (_<2) +¢(1) + 72 (Fm’fa (@) ) (240)
f2 (a17a27¢17¢27¢376)

e a outra equagdo, para o caso de s = —1, fica:
F(_]') F<_1) f12 (a17a27¢1> -2 2

12 C (=15 wy, wy, ws;q) = — 12 1 (0, a2) m =+ ﬁfl (o, az, ¢1) €(3)
_i ffS/Q (a1, 2, $1) fzfl/Q (o1, a) Ar? fém (a1, a2, @1, P2, 93, )

3L f2_2 (o, g, @1, Pa, 93, 3) 90L* fi (a1, az,¢1)

87T3 = f23/2 (a17a27¢17¢27¢376)

— 241
+3L4 nZ::lCOS (nmfs (aa, ¢3) / f1 (an, 2, b1)) 2 (an, a9, 1) ; (241)
usando a regularizacao de Dirichlet, dada por:

: — ¢ 1

ll_{% <Z n~ ¢ cos (n f3 (ag, ¢3) / f1 (041,042>¢1))> = T (242)
n=1

podemos reescrever a eq.(241) conforme abaixo:

F(_1> F(_1> f12 ((117042,¢1> -2 2

12 C (=15 wy, wa, w35 q) = — 12 i (ar, o) m =+ ﬁfl (o, az, ¢1) €(3)
_ifl_g)/z (a1, 2, $1) f4_1/2 (a1, as) 4 A f23/2 (a1, 2, d1, P2, P3, B)

3L f2_2 (alaa2a¢17¢2a¢376) 90L* f12 <a1>a2a¢1)

A4r® 13 (a1, s, 61, 0, 63, B) (243)

3LA f12 (041,062,%) ’

organizando de forma a colocar os termos comuns em evidéncia, temos:

(-1 2 58 3f3/2 ) 7¢7¢7¢55)
(L? >C(_1;w1,w27w3;61) = T4 (fl (a1, g, 01) C(3) — QZ)T : (LO]% (0;21’&127;1) -
_F(—l) fi (o, a9,01) _ iffw (a1, g, $1) fzfl/Q (a1, an)
L* fy(on, o) " 3L fy % (au, o, 1, o, B3, 3) (244)

Como o operador V,,, dado pela eq.(177), gera 5 tipos de integrais (Uy, Us, Us, Uy, Us),
sendo cada uma delas com um expoente P especifico, que pode assumir valores 1, 2 ou

3. Lembrando que em algumas dessas integrais também atuam termos de somatorio,
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conforme definimos anteriormente (57, Sq, S5, S4). As integrais com expoente P = 1 sao

desprezadas devido ao termo ¢ (1;wy, wy, ws; ) que foi ignorado por possuir poténcias de

L abaixo de 4 e possuir termos sem sentido fisico. Atuando cada uma das integrais com

seus valores correspondentes de P, temos que:

S4U1

S1Us

52U4

S3U5

41;2 /01 dBdapf (B + (1 — «) a)_N/2_2

| ety T ek

(4(ay + o) (e + B) — 404%)1/2] (245)

;/ dBdefo(a+1) (B+ (1 —a)a) V*?

X _—;WF(—D (4(041 + o) (ag + B) — 4@3) —3/2 (on + a2>2:|

7ot -
+ Jp 48408 (B + (1= o))"

4 _
x| =31 (4(on + a2) (@2 + B) — 403) (a1 + az) 2

29
1514

(4(0(1 + 062)(062 + 5) — 40[%) 2 (Oél + 062)_1:| (246)

1o [ 4805 (54 (1 - a)a) V2
7D(~L)m? (4 + as)(as + B) — 4a3)

X (o1 + az) (g + ) (247)

|| dsdas 5+ (1 - a)a) ™"

X (4??4) {i (4(041 + ag)(ag + B) — 4043)71/2 (a1 + ag) (—3an + )

T (4(or + ) (s + B) — 403) " (a2 + B) = 3(ar + az) ™) }

a1+ an -1/2 9
2ot ) {(4<a1+a2><a2+ﬁ>—4a2)

3L
X (2 (a1 + 042)_5/2 (g + B) =5 (ay + 042)_3/2)

12 (o1 4 o) ¥ (g + B) + 4das) } (248)
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Da mesma forma feita anteriormente, dentre as integrais acima, mantemos apenas oS
termos de maior poténcia de L e aqueles termos que possuem algum tipo de divergéncia.
Lembrando que ay + g =1 ; a3 =1 —a e N = D — d. Portanto, para D = 4, essas

equagoes podem ser reescritas como:

S,Uy = 8L2/ dBdaB (B+ (1—a)a)
x [=T(0) +2¢(1) 4+ 7 (—=1)m? (a+a2+ﬂ)_m} (249)
S\U; = dgd 1 - 2 ap (1 21 5)
s =~ [ dBdagaa+1)(5+ (1 - a)a) "aT(~1) (a + o + )
—12502’4/0 dBdaB (B + (1 —a)a) ™ (a+a®+8)" (250)
SUs = g [ dBdaf (5 + (1 - a)a) 7 aT(~1)
x(a+a +5) i (=ba+ /5 —5) (251)
S3Us = 45L4/ dBdaf (B + (1 — o) )/

X (g(a—i-a +6> /(304—1—6—3)+2(oz—|—042+6>1/2(—04+5—2) (252)

Analisando cada umas das 4 equagoes acima, percebemos que aquelas que possuem conver-
géncia sao dadas pelas equagoes (250) e (252). Ambos os termos relevantes se comportam
com o inverso de L*. Podemos, entdo, resolver as integrais convergentes utilizando o
software Wolfram. Desse modo, a integral convergente em (250) é dada por

1/2

[ 4563+ (1~ a)a)2 (a+a” + )

1/2
.1 -1 [ (a—a?+B
2| =302 + 30+ 4 2@Q_Uﬁm'<<2”2 )
7 +C (253)
(a—a?+ 5)1/2 (a+a2+5)

«

(002 +5)

aplicando os limites de integragao, temos:
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a—a2)1/2

2(2ac — 1) sinh ™! <(2%>
da = 1,0236 (254)

/1 ( N 2)1/2 —3a? + 3a N
a+a
0 (a — a2)? (a+6(v;)1/2

o\ 1/2
2(2a — 1) sinh ™! <(1+a_a>

) da =2,01796

/1(1+a+a2>1/2 1—3a2+3? N _ 2120
0 (1+a—a2)'? (Ltate?) /2
(255)
Portanto, o valor da integral sera
/01 4BB (B +(1—a)a) ™% (a+a?+ 8)"" = 2,00796 — 1,0236 ~ 0,994. (256)

Trabalhando agora na resolugao da integral na eq.(252), percebemos que ela possui um
fator comum de (o + o + 3) com diferenca apenas no seu expoente. Portanto, a integral
pode ser dividida em duas integrais: uma com —1/2 no expoente do fator mencionado

e outra com expoente 1/2. Dessa forma, temos que para o expoente —1/2; essa integral

sera:

Fap= [(d5 [ dop(5+a(i-a) 2@ +a(1+a) " (Ga+5-3), (257)
dividindo esssa integral em 3 partes, conforme abaixo:

n= [lap [ dasa (s +a(t—a) (3 al b a) 259
b= ['ag [ dag (3 + o (- )PP E 4 a4 a) (250
b= [ a3 [ do (8 + o (1) P (5 + a1+ a) (260)

desse modo, a eq.(257), é escrita como:

I =31+ I, — 3. (261)



Para resolver as integrais acima, podemos utilizar a seguinte aproximacao:

a(l—a)=0

a(l+ a) = 2a,
portanto, cada uma das integrais assume a forma:

I = /01 43 /01 daBa (8)2 (B + 2a) /2
b= [ap [ dos (5 (5 +20)

1 1
Iy= [ dB [ daB (8)™* (8 +20)7%.

Integrando I e I3 em relacao a a:

[ da(5+20) 2 = (-3 4[5+ 2)

, de maneira analoga, a integral I; ao ser integrada em « sera:

1

/o docr (B + 2a) 72 = ; (53/2 —(B—-1)/2+ ﬁ) :

Integrando em [ cada uma delas, encontramos:

ho= [ (8 (5 1y ) = s
3 Jo 6 V2

L= [ d88" B+ B2 = = + V3 - sini” (;ﬁ)

= [ ags2 =B+ 3 +2) = 1+ V3 + 2sinh”! (;5) >

75

(262)

(263)

(264)

(265)

(266)

(267)

(268)

(269)

(270)

(271)
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substituindo Iy, I5 e I3 na eq.(261):

ap6s uma certa algebra, o resultado encontrado para essa integral sera:

1
I 13 =23-2V3—sinh™ (\@) ~ —1.12258. (273)

De forma andloga, podemos resolver a outra integral da eq.(252), correspondendo ao

expoente 1/2. Sendo assim, identificamos a integral como:

Lo = /01 i3 /01 daB(B+a(l—a) (B +a(l+a)’?(—20+25—6), (274)

fazendo as mesmas aproximagoes, dadas pelas equagoes (262) e (263),

L= [ d8 [ das 2 (54 20)"2 (<20 +25 ~ 6). (275)

dividindo a integral acima em trés tipos de integrais, temos:

Ly = =21, + 215 — 61, (276)

identificando cada uma delas, conforme abaixo

1 1

I = / dp / daB~2a (B + 2a)'? (277)
0 0
1 1 o

Is = / dp / doBY? (B + 2a)" (278)
0 0
1 1 s

Is = / dp / doB~Y2 (B + 2a)V2 (279)
0 0

Observando as equagoes acima, temos 2 tipos de integral em «. Para as integrais I5 e I,

temos:

1 1
/0 da (8 +20)"% = 2 (=8 + 2+ 8)""?) (280)

, enquanto para a integral I, a integracao em « nos fornece:

| " daa (B + 20)V? = 115 (82 = (8- 3)(2+ B)2). (281)
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Fazendo as integrais em relacdo a 3, encontramos:

1 rt 1 21 30 1
=g [l (7 - -9y ) = o BvEs Rt () s

I5 = ;/01 dBp'*(—B%* + (2 + B)*/?) = —; - 2\/5 - ;Sinh_l (%) (283)

I = ;/01 B~ (=B + (24 B)*?) = —é + V3 +sinh ™! <\}§> : (284)

Substituindo na eq.(276), obtemos:

2

I _Z
1/2 45

2 42 . 4 60 1
1—2— V34 -V3-6V3— —sinh™! | =
Flog o V3t gV3 - 6va - psin (ﬁ)

2 1 1
—Zsinh™ {—= | —6sinh ™ | —= | , 285
3 <\/§ ) (x/i ) (259
logo, o resultado para essa integral ¢ dado por:

11 28 1
Iijy=— — —+/3—8sinh ™' | —= | = —14.23398 286
/2795 7 5 V3~ 8sin <\/§> (286)

Substituindo os valores encontrados, dados pelas equagoes (273) e (286), na equagao (252),

encontramos:
58 3 18.8886
= — —1.12258 - — 14.2 ~ . 2
S3Us L ( 588 3398) iz ( 87)

Desse modo, as integrais que contribuem para a corre¢ao na energia de Casimir sdo dadas

por:

18. 2 4 4184
8.888599 03 0.994 — 0.43633418 .

(288)

Por fim, esse resultado é substituido na expressao geral do tensor energia-momento, dado
pela equagao (202). Lembrando ainda que, tal resultado deve ser multiplicado por um
fator global de De?, dado pela equacdo (125), que se refere a dimensdo total do espago
e a carga do elétron. Portanto, encontramos para a correcdo da energia de Casimir em

primeira ordem, um valor de:

4¢%)5.436334184 _ de’r

TOO ~ (
= (Am)L*  3603L4

(289)
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Esse resultado apresenta o mesmo comportamento daquele encontrado por (BORDAG;
ROBASCHIK; WIECZOREK, 1985).

O calculo de corregoes radiativas para a energia de Casimir, apresentado nessa tese, foi
feito utilizando o formalismo de topologias toroidais, tendo como base a compactacao
de uma dimensao espacial. O resultado encontrado, para a correcdo da energia, mostra
um comportamento que varia com o inverso da quarta poténcia da distancia entre as pla-
cas. Observamos que o tensor energia momento também forneceu quantidades divergentes
para essa corre¢ao, as quais nao conseguimos extrair algum significado fisico. De fato,
ao utilizarmos o método de topologias toroidais esperamos uma diminui¢ao no grau de
divergéncia que surge durante o calculo do diagrama de loop. Porém, para uma melhor
interpretacao dos resultados, precisamos aplicar a teoria de renormalizacao no calculo des-
ses diagramas de loop, na qual os contratermos que surgem da teoria perturbativa podem
absorver as contribui¢oes sem significado fisico nos parametros utilizados. Portanto, como
uma perspectiva futura seria necessario entender e aplicar a teoria de renormaliza¢ao nes-
ses espagos com parte de suas dimensoes compactadas, comparando assim a diferenca no
grau da divergéncia dos pardmetros em uma teoria quantica de campos convencional (tem-
peratura zero) com a teoria quantica de campos a temperatura finita, sendo esta tltima

descrita conforme realizado nessa tese, pelo formalismo de Matsubara generalizado.
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CONCLUSAO

Observa-se, entao, que o efeito Casimir é um fenémeno caracterizado por flutu-
acoes na energia de ponto zero de um determinado campo relativistico restrito a uma
certa regiao do espaco, a qual é feita de vacuo. Conforme discutido ao longo da tese, tal
vacuo é entendido como o estado de menor energia do campo em questao, sendo que essa
energia surge a partir das interagoes entre o campo e as particulas virtuais que sao criadas
a todo momento nesse vacuo, obedecendo assim ao principio de incerteza de Heisenberg.
Além disso, o efeito casimir nao é restrito apenas a um determinado tipo de geometria ou

campo. O mesmo pode ser descrito por placas esféricas, cilindricas, toroidais, entre outras.

Tal energia de vacuo, conforme mostrado por Casimir no fim dos anos 40, é definida
como a diferenca entre duas quantidades divergentes, sendo um termo dependente da se-
paracao entre as placas, impostas por um determinado conjunto de condi¢oes de contorno
utilizada. Enquanto isso, o outro termo nao depende das condigoes de contorno. Desse
modo, por se tratar de uma quantidade divergente, é necessario aplicar algum método
de regularizacao como forma de extrair um sentido fisico para essas quantidades diver-
gentes. Com a evolucao da teoria quantica de campos, novos métodos de regularizacao
foram sendo criados com o intuito de contornarmos tais quantidades sem sentido fisico,
a principio. Além disso, a escolha de qual método de regularizacao utilizar nao deve in-
fluenciar nos resultados que sdo fisicamente relevantes, podendo um método ou outro ser
mais eficiente de acordo com as caracteristicas a serem extraidas do fendémeno. Dentre
algumas dessas escolhas, podemos citar o método de corte nas frequéncias, o método da
funcao zeta generalizada, o método da funcao de Green, entre outros. Nesse trabalho,
escolhemos o método local para tratarmos essas divergéncias. Esse baseia-se em calcular
o valor esperado do tensor energia momento em termos dos propagadores de uma deter-

minada teoria, a qual fizemos no contexto da eletrodinamica quantica.

O estudo do efeito Casimir foi feito utilizando o formalismo de topologias toroi-
dais, o qual trata-se de uma generalizacao de formalismo de campos a temperatura finita,
desenvolvido por Matsubara em 1955. Em outras palavras, além de compactarmos a
dimensao temporal (interpretada como temperatura), podemos compactar também di-
mensoes espaciais. Portanto, as integrais nos momentos que variam de zero a infinito,
podem agora ser substituidas por somatorios com valores discretos dos momentos. Nesse
contexto, utilizamos o tensor energia-momento em termos do propagador livre do féton,
para calcular as expressoes da energia e da pressao entre as placas, chegando no mesmo
resultado previsto por Casimir em 1948. Posteriormente, esse calculo é feito incluindo os

efeitos térmicos na energia de Casimir, realizando uma compactacao dupla, sendo uma
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coordenada espacial e a outra temporal. No resultado encontrado, observa-se que o termo
referente a compactacao temporal reproduz a lei de Stefan-Boltzmann, a compactacao es-
pacial reproduz a energia encontrada por Casimir e o tltimo termo da equacao representa

a contribuicao mista de ambas as dimensoes citadas.

Por fim, a parte mais importante dessa tese, concentra-se em calcular as correcoes
radiativas na energia de Casimir na aproximacao a 1 loop. Dessa maneira, consideramos
a interacao do elétron com o campo eletromagnético, na qual calculamos o digrama de
loop fermidnico que representa a auto-energia do féton. O resultado obtido mostra um
comportamento com o inverso da quarta poténcia da distancia entre as placas no efeito
Casimir. Porém, alguns termos aparecem como quantidades divergentes ao fim desse cél-
culo. Tais divergéncias tém origem devido a alguns valores especificos da funcao gama
(pélos) e da funcao Zeta de Riemann. Como uma possivel solu¢ao futura para eliminar
as divergéncias desse calculo, precisamos fazer um estudo da renormalizacdo desses di-
agramas em um espago com dimensoes compactadas. Uma das maneiras de fazer essa
renormalizacdo, seria considerar os contratermos de maneira englobar esses termos de di-

vergéngia, restando apenas aqueles com algum significado fisico.

Como perspectiva futura, podemos estender esse estudo do efeito Casimir no con-
texto da cromodindmica quantica. Quarks e glions, como se sabe, sdo quanta de campos
completamente confinadas dentro dos hadrons. Ou seja, em todos os experimentos ja
realizados, utilizando niveis de energia cada vez mais elevados, os quarks nunca foram
observados de forma isolada. Por esse motivo, o confinamento é um dos aspectos mais
estudados desde a década de 1970 até os dias de hoje, buscando respostas para essa ca-
racteristica dos quarks. Uma solugao foi a criagdo do chamado modelo de sacola (bag
model). Neste modelo, os hadrons sdo interpretados como sacolas confinantes, na quais
os quarks e glions estao contidos. Assim, tornam-se relevantes as contribuigoes a energia
de Casimir dos campos em questao, nao apenas as de campos livres, mas também as das
interacoes entre eles, no contexto da cromodindmica quantica a 1 loop, a temperatura

zero e a temperatura finita.
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APENDICE A - Funcéo Zeta de Epstein-Hurwitz

A.1 Continuacao analitica da Funcgao Zeta de Epstein-Hurwitz

As funcgoes zeta inomogéneas de Epstein-Hurwitz, sao definidas da seguinte forma

o0

Zg (vyarariby, b) = Y [aa(nn —by)* + ag(ng — )’ + ¢ (290)

fazendo o caso particular de uma dimensao compactada, essa equacao é reduzida para:

Z5 wab) = Y fatn—b*+c] ", (291)
utilizando uma representacao da zeta de Epstein-Hurwitz pode ser representada, dada
por:

1 00
Z5 (v,a,b) = Y o) /0 dt 7~ e g%, (292)

n=—oo

Utilizando a identidade,

1/2
S -tz _ <D P e (203)
fazendo t — 1/t:
i o /tH2minb _ (Wt)l/Q i e—WZ(n—b)2t7 (294)

e definindo ¢ = %, obtemos

2 1 2\" o0 2 2, & 2 .
2% (v,a,b) = NG (7:1) Wfl/z/o dt 17-1/2—1 (7% [a)ct Z o2/t 2minb (295)

n=-—00
O somatoério na equacao acima pode ser reescrito como

00 -1 00 [e9)
Z e—n2/t+27rinb =14+ Z e—n2/t+27rinb + Z 6—n2/t+27rinb =142 Z cos(27rnb)e_"2/t,

n=—00 n=-—0oo0 n=1 n=1

(296)
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desta maneira, a eq.(295) torna-se

1 2\ Y 00 00
7 (v,a,b) = N <7;> /2 [/0 dt =12l (/a)t | o > cos(2mnb)
n=1
% /OO dt Z51/1/216(71'2/(1)02tn2/t:| ) (297)
0

A integral no primeiro termo de Zf2 pode ser obtida pela identidade

1 1 00
— = | dtt" e A 298
Av T (v) /0 ‘ (298)
Logo, obtemos que:

/OO di 1212 fa)ct _ I'(v—1/2) 172
0

(%262>u—1/2

(299)

Substituindo na eq. (297), obtemos que o primeiro termo de ZlC2 é

O segundo termo de Zf2 pode ser expresso em termos das fungoes de Bessel modificadas

de segunda espécie K, as quais possuem uma representacao integral dada por

A v/2 00
2 (B> K, (2VAB) = [~ drerte A (301)
0

Assim, podemos escrever como

- (1]/) (7T2>V4w1/2 S cos(2mnb) <”\/5>H/2 Ky 1 (2#\/50”)

a = me

1 47v - o 2me
=7 V) (\/E)VH/Q S cos(2mnb)nt VAR, <\/an> . (302)
n=1

Colocando v = s — (D — 1)/2, a expressao final para Z¢ é da forma

Z8 (s — (D —1)/2:a;b) = M (D”Q Ry

4s—(P=1)/2 cDf2=s 2 cog(2mnb) (27rc )
D/2—s ni.

2 Ve

_|_
(\/@S—D/%-l T (S . %) — npD/2-s
(303)
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