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Constrained by solutions of the continuum three-valence-body bound-state equations, we use pertur-
bation theory integral representations (PTIRs) to develop algebraic Ansätze for the Faddeev wave functions 
of the proton and its first radial excitation, delivering therewith a quantum field theory calculation 
of the pointwise behaviour of their leading-twist parton distribution amplitudes (PDAs). The proton’s 
PDA is a broad, concave function, with its maximum shifted relative to the peak in QCD’s conformal 
limit expression for this PDA. The size and direction of this shift signal the presence of both scalar and 
pseudovector diquark correlations in the nucleon, with the scalar generating around 60% of the proton’s 
normalisation. The radial-excitation is constituted similarly, and the pointwise form of its PDA, which 
is negative on a material domain, is the result of marked interferences between the contributions from 
both types of diquark; particularly, the locus of zeros that highlights its character as a radial excitation. 
These features originate with the emergent phenomenon of dynamical chiral-symmetry breaking in the 
Standard Model.

© 2018 Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Wave functions provide insights into composite systems, e.g.
they express the presence and extent of correlations between con-
stituents, and their signature in scattering processes; and thereby 
bridge experiment and theory. This is true within quantum chro-
modynamics (QCD), but there are difficulties. Everyday hadrons 
(p = proton, neutron, etc.) are constituted from up (u) and down 
(d) valence-quarks; but the Higgs boson generates current-masses 
for these fermions which are more than 100-times smaller than 
the scale associated with the composite systems: mu,d ≈ 2–4 MeV
cf. mp ≈ 1 GeV. Plainly, the interaction energy greatly exceeds the 
rest masses of the anticipated constituents, making inapplicable 
the wave functions typical of Schrödinger quantum mechanics.

The difficulties appear chiefly because particle-number is not 
conserved by boosts; and severe challenges are faced when con-
stituents are light, e.g. wave functions describing incoming and 
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outgoing scattering states then represent systems with different 
particle content, so a probability interpretation is lost. Such prob-
lems are circumvented by using a light-front formulation because 
eigenfunctions of the Hamiltonian are then independent of the sys-
tem’s four-momentum [1,2].

The light-front wave function of a hadron with momentum P
and spin λ, �(P , λ), is complicated. In terms of perturbation the-
ory’s partons, �(P , λ) has a countably-infinite Fock-space expan-
sion. Were it necessary to use this complete object in analyses of 
even the simplest processes, then little connection between experi-
ment and theory could be made. Fortunately, collinear factorisation 
in the treatment of hard exclusive processes entails that much can 
be gained merely by studying hadron leading-twist parton distri-
bution amplitudes (PDAs) [3]. Such a PDA is obtained from the 
simplest term in the Fock-space expansion.

Regarding S-wave ground-state light-meson leading-twist PDAs, 
the last decade has seen real progress, not concerning their con-
formal limit [3]: ϕ(x; ζ ) = 6x(1 − x), mp/ζ � 0; but on mp/ζ � 1, 
where they are now known to be broad, concave functions [4–12]. 
This resolves a longtime conflict, removing the possibility that such 
PDAs have a minimum at zero relative momentum [13].
ttp://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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Fig. 1. Poincaré covariant Faddeev equation. The shaded rectangle demarcates its 
kernel: single line, dressed-quark propagator; �, diquark correlation amplitude; and 
double line, diquark propagator. � is the Faddeev amplitude for a baryon of total 
momentum P = (p1 + p2) + p3 = pd + pq . The wave function, χ , is obtained by 
attaching the quark and diquark propagator legs to �.

Concerning the proton’s leading-twist PDA, however, the situ-
ation is as unsatisfactory today as it was previously for mesons. 
Estimates of low-order Mellin moments exist, obtained using sum 
rules [13,14] or lattice-QCD (lQCD) [15–17], but there are no quan-
tum field theory computations of this PDA’s pointwise behaviour; 
and nothing is known about the PDA of the proton’s radial excita-
tion.

2. Proton PDA: definition

In the isospin-symmetry limit, the proton possesses one in-
dependent leading-twist (twist-three) PDA [18], denoted ϕ([x]; ζ )

herein:

〈0|εabc ũa+(z1) C †/n ub−(z2) /n dc+(z3)|P ,+〉

=: 1
2 i f p n · P /n N+

1∫
0

[dx]ϕ([x]; ζ )e−in·P ∑
i xi zi , (1)

where n2 = 0; (a, b, c) are colour indices; q± = H±q := (1/2)(ID ±
γ5)q, /n = γ · n; q̃ indicates matrix transpose; C is the charge con-
jugation matrix, N = N(P ) is the proton’s Euclidean Dirac spinor; ∫ 1

0 [dx] f ([x]) = ∫ 1
0 dx1dx2dx3δ(1 − ∑

i xi) f ([x]); and f p measures 
the proton’s “wave function at the origin”.

ϕ([x]) can be computed once the proton’s Poincaré-covariant 
wave function is in hand, viz.

〈0|εabcũa(y1)ub(y2)d
c(y3)|P , λ〉 =∫ 3∏

i=1

(
d4 pi

(2π)4
e−ipi yi

)
δ(P − ∑3

i=1 pi)χ(p1, p2, p3, P ) . (2)

Following thirty years of study [19–23], a clear picture has ap-
peared. At an hadronic scale, the proton is a Borromean sys-
tem, bound by two effects [24]: one originates in non-Abelian 
facets of QCD, expressed in the effective charge [25] and generat-
ing confined, nonpointlike but strongly-correlated colour-antitriplet 
diquarks in both the isoscalar-scalar and isotriplet-pseudovector 
channels; and that attraction is magnified by quark exchange as-
sociated with diquark breakup and reformation. The presence and 
character of the diquarks owe to the mechanism that dynamically 
breaks chiral symmetry in the Standard Model [24]. This under-
standing transforms the proton bound-state problem into that of 
solving the linear, homogeneous matrix equation in Fig. 1, which 
has been studied extensively, e.g. Refs. [24,26–31], so that the char-
acter of the solution is well known.

Recapitulating only essential features of the Faddeev equation 
solution herein, because extensive discussions are presented else-
where, e.g. the appendices of Ref. [26], we recall that the proton 
Faddeev amplitude in Fig. 1 can be written:

�(P ) = ψ1 + ψ2 + ψ3 , (3)
where the subscript identifies the bystander quark, i.e. the quark 
not participating in a diquark, ψ3 gives ψ1,2 by cyclic permutation 
of all quark labels, and

ψ3({p}, {α}, {σ }) = N 0
3 + N 1

3, (4a)

N 0
3 = [

�0(k; K )
]α1α2

σ1σ2
�0(K )

[
S(�; P )N(P )

]α3

σ3
, (4b)

N 1
3 = [

�
1 j
μ (k; K )

]α1α2

σ1σ2
�1

μν(K )
[
A j

ν(�; P )N(P )
]α3

σ3
, (4c)

({p}, {α}, {σ }) are the momentum, isospin and spin labels of the 
dressed-quarks constituting the bound state; P = p1 + p2 + p3 is 
the total momentum of the baryon; k = p1, K = p1 + p2, � = −K +
(2/3)P ; and the j sum runs over the (1, 1) = +1 and (1, 0) = 0
isospin projections. The matrix-valued functions � in Eqs. (4) are 
the diquark correlation amplitudes in Fig. 1; �0, �1

μν are the as-

sociated dressed-propagators; and S , A j
μ are matrix-valued quark–

diquark amplitudes, describing the relative-momentum correlation 
between the diquark and bystander quark, viz. they are the objects 
returned by solving the Faddeev equation.

The proton’s Faddeev wave function, χ , is obtained from 
Eqs. (3), (4) by attaching the appropriate dressed-quark and 
-diquark propagators. All relevant quantities are known and we 
therefore proceed by using algebraic representations for every ele-
ment, with each form and their relative strengths, when combined, 
based on the results of modern analyses [24,26–31]. The dressed-
quark and -diquark propagators are:

S(p) = (−i/p + M)σM(p2) , σM(s) = 1/[s + M2] , (5a)

�0(K ) = σM0(K 2) , �1
μν(K ) = Tμν(K )σM1(K 2) , (5b)

σ̂M(s) = M2σM(s); Tμν(K ) = [δμν − KμKν/K 2];

n0�
0(k; K )C † = iγ5

1∫
−1

dz ρ(z) σ̂��(k2+K ) , (6a)

n1�
1
μ(k; K )C † = i(γ T

μ + r1f (k; K )[/k, γ T
μ])

×
1∫

−1

dz ρ(z) σ̂��(k2+K ) , (6b)

where ρ(z) = (3/4)(1 − z2), k+K = k + (z −1)K/2; γ T
μ = Tμν(K )γν , 

f (k; K ) = k · K/(k2 K 2(k − K )2)1/2; and r1 = 1/4, n0,1 are fixed by 
requiring that the zeroth Mellin moment of the leading-twist PDA 
of each diquark correlation is [n · K/n · P ], i.e. correctly normalised. 
The final elements are:

n S(�; P ) = i

1∫
−1

dz ρ(z) σ̂�0
p
(w+P ) , (7a)

n A j
ν(�; P ) = rA

1
6 o jγ5[γν − irP Pν ]

×
1∫

−1

dz ρ(z) σ̂�1
p
(w+P ) , (7b)

where w+P = [−�+P + (2/3)P ]2; o+ = √
2, o0 = −1; rP = 13/87; 

rA measures the relative 1+:0+ diquark strengths in the Faddeev 
amplitude; and n is that amplitude’s canonical normalisation con-
stant, whose value ensures the proton has unit charge [32].

We choose the parameters in Eqs. (6), (7) so as to emulate re-
alistic Faddeev wave functions [26,27,31,33]: M = 2/5, M0 = 2/3, 
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Fig. 2. Studies of the continuum three-body bound-state problem reveal that diquark correlations are an integral part of the proton’s Poincaré-covariant wave function, 
Eqs. (3), (4). Hence, Eq. (1) is the sum of three terms, with the spinor projection operators given in Eq. (8). The (dark blue) ovals represent the (S,A) elements in ψ1,2,3, 
the (green) circles are the diquark correlation amplitudes, and the single and double lines are dressed-quark and -diquark propagators, respectively. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)
M1 = 3/4, �� = 2/5, �0
p = 1, �1

p = 2/5, in units of mp ,1 with 
rA = 0.30 ± 0.03 ensuring that the scalar diquark contribution to 
the proton’s baryon number is 65 ± 5%.

Eqs. (6), (7) define a constrained spectral function Ansatz for χ , 
whose fidelity will subsequently be tested. It delivers considerable 
simplification, viz. with algebraic representations that approximate 
numerical solutions of all equations relating to the proton bound 
state, our subsequent analysis is largely algebraic. Moreover, in ad-
dition to this simplicity, the character of our approach is quite gen-
eral, being applicable to all cases in which one can use perturba-
tion theory integral representations (PTIRs) for the propagators and 
amplitudes that arise in solving the continuum bound-state prob-
lem [34–36]. (This feature is again being exploited, e.g. Refs. [5,10,
37–42].) Hence, our subsequent algebraic analysis is realistic and 
also establishes an archetype for the continuum computation of 
baryon PDAs.

3. Proton PDA: calculation

Whenever the proton’s Faddeev amplitude is as specified by 
Eqs. (3), (4), then Eq. (1) can be written as depicted in Fig. 2, where

O21
ϕ = H− C † /n H+ , O3

ϕ = /n H+ . (8)

As a concrete illustration, we consider the first diagram on the rhs, 
whose contribution to the proton’s PDA is fully determined by the 
following Mellin moments:

i
f p
2 n · P /n N+

∫
[dx] xl

1xm
2 ϕ([x]) =: i

f p
2 n · P /n N+〈xl

1xm
2 〉 (9a)

=
∫

[dx] xl
1xm

2

∫
d4�

(2π)4

d4k

(2π)4
δ

x1
n (� + P/3)δ

x2
n (k)

× χ1({p}, {α}, {σ })O21
ϕ O3

ϕ , (9b)

where δx
n(p) = δ(n · p − xn · P ); p1 = � + P/3, p2 = k, p3 = K − k.

Focusing on the proton’s 0+ diquark component, the second 
and third contributions in Fig. 2 vanish because this correlation is 
isoscalar-scalar. Hence the leading-twist part in Eq. (9b) is γ · L0+

,

L0+
μ = 1

4 trD

[
Sd(p3)�

0(k; K ) S̃u(p2)H−C †/n H+

× Su(p1)�
0(K )S(�; P )γμ/n H+

]
(10)

= 1
4 trD

[
γμ/n H+Su(p1)�

0(K )S(�; P )
]

× 1
2 trD

[
Sd(p3)�

0(k; K ) S̃u(p2)C †/nγ5

]
, (11)

1 The ordering of masses is determined by extant analyses; and their values and 
those of the widths are fixed through comparisons with numerical solutions of 
the Faddeev equation. We use simple fractions to highlight that the values are 
approximate. Nevertheless, our PDA results are qualitatively insensitive to character-
preserving variations in these values; and the quantitative comparisons are not 
markedly affected by 10% variations.
where we have used properties of trD, the projection operators 
H± , and nμ . Inserting Eq. (11) into Eq. (9b), one finds unsurpris-
ingly that the scalar diquark contribution to the proton’s PDA is 
obtained from a convolution of the diquark’s PDA with that of the 
bystander-quark in the quark+diquark Faddeev amplitude. The re-
sult generalises to the isotriplet-pseudovector component of the 
proton’s wave function, in which case all three diagrams in Fig. 2
contribute to the proton’s PDA.

Continuing our illustrative calculation, one first uses the meth-
ods described in Refs. [5,9] to compute all Mellin moments of the 
scalar diquark PDA, ϕ0, which are derived from the second line of 
Eq. (11):

Dm
0 (K 2) = 1

P · n

∫
d4k

(2π)4

(
k · n

P · n

)m

× trD

[
Sd(p3)�

0(k, K ) S̃u(p2)C †/nγ5

]
. (12)

Namely, in the k-integration of Eq. (12), use a Feynman parametri-
sation to rearrange the integrand such that there is a single de-
nominator, a k-quadratic form raised to some power; and employ 
a suitably chosen change of variables in order to evaluate the in-
tegral over this relative four-momentum using standard algebraic 
methods. This yields, with ū = 1 −u and z = −1 +2[ū −β]/[ū − v],

Dm
0 (K 2) = n ′

0(K 2)

[
n · K

n · P

]1+m

×
∫

du dv dβ βm ρ(z(u, v, β))2M

[β(v[β − 2] + β) + ū(v − β2)][K 2 + M 2] , (13a)

M 2 = [1 − ū + v]M2 + [ū − v]�2
�

β(v[β − 2] + β) + ū(v − β2)
[ū − v] . (13b)

In our case, one can straightforwardly obtain the following 
algebraic result when �� = M (x̂3 = 1 − x̂2, x̂2 = x2/[x2 + x3], 
y = M2/K 2):

n ′′
0 (K 2)ϕ0(x̂2, x̂3) = 12y(1 − y

x̂2 x̂3
ln[1 + x̂2 x̂3/y]) , (14)

where n ′′
0 (K 2) ensures 1 = ∫

dxϕ0(x, 1 − x) at each K 2. Notably, 
consistent with expectations and detailed calculations [5,43], when 
K 2 	 �2

� , ϕ0(x̂2, ̂x3) = 6x̂2 x̂3, viz. the two-body conformal-limit 
PDA, which describes a correlation-free system; whereas on K 2 

�2

� , ϕ0(x̂2, ̂x3) = 1, which is the PDA of a pointlike two-body com-
posite, the most highly-correlated system possible.

Using Eqs. (13), suppressing n in Eq. (7), one can rewrite 
Eq. (9b) in the form (p1 = � + P/3, K = −p1 + P ):

i
f p
2 [n · P ]2/n〈xl

1xm
2 〉 =

∫
d4�

(2π)4

[n · p1

n · P

]l

× 1
4γ μtrD

[
γμ/n H+ Su(p1)�

0(K )S(�; P )
]

Dm
0 (K 2) , (15)
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Fig. 3. Barycentric plots: left panel – conformal limit PDA, ϕcl
N ([x]) = 120x1x2x3; middle panel – computed proton PDA evolved to ζ = 2 GeV, which peaks at ([x]) =

(0.55, 0.23, 0.22); and right panel – Roper resonance PDA at ζ = 2 GeV. The white circle in each panel serves only to mark the centre of mass for the conformal PDA, 
whose peak lies at ([x]) = (1/3, 1/3, 1/3).
at which point the analysis leading to Eqs. (13) can be adapted 
to solve this final “two-body” (quark+diquark) convolution prob-
lem for the 0+-diquark component of ϕ([x]; ζ ). Namely, using a 
carefully chosen redefinition of Feynman parameters, as done to 
reach Eqs. (13) from Eq. (12), and making the change of variables 
β → (1 − α)β , with 0 < α < 1, one finds

〈xl
1xm

2 〉 =
1∫

0

dααl

1−α∫
0

dβ βm f (α,β) , (16)

where the function f (α, β) is an integral over five Feynman pa-
rameters in which the denominator is a single �-quadratic form. 
Given this structure, one immediately identifies f (x1 = α, x2 = β)

as the scalar diquark contribution to the proton PDA.
The complete result for ϕ([x]; ζ ) is obtained by adding the 

1+-diquark contributions. That is readily accomplished by employ-
ing the procedure sketched above. The addition is a sum of three 
integrals, two involving seven Feynman parameters, the third, nine, 
and each with a denominator that is an �-quadratic form. This 
verbal description is simple; and, albeit lengthy, so are the final 
expressions.

All integrals required to compute ϕ([x]; ζ ) are easily evaluated 
numerically. The distribution thus obtained is that associated with 
the hadronic scale ζ = ζH = 0.5 GeV [44]. We evolve ϕ([x]; ζH )

to ζ = ζ2 = 2 GeV by adapting the algorithm in Refs. [5,6] to the 
case of baryons, i.e. generalising the functional representation in 
Ref. [45] and using the leading-order evolution equation in Ref. [3]. 
The result is depicted in Fig. 3 and efficiently interpolated using 
(w00 = 1)

ϕ([x]) = nϕ xα−
1 (x2x3)

β−
2∑

j=0

j∑
i=0

wij P 2[i+β];α−
j−i (2x1 − 1)

×(x2 + x3)
iCβ

i ([x3 − x2]/[x2 + x3]) , (17)

where nϕ ensures 
∫ [dx]ϕ([x]) = 1; (α, β)− = (α, β) − 1/2; P is a 

Jacobi function, C a Gegenbauer polynomial; and the interpolation 
parameters are listed in Table 1A.

Table 1B lists the four lowest-order moments of our proton 
PDA. They reveal valuable insights, e.g. when the proton is drawn 
as solely a quark+scalar-diquark correlation, 〈x2〉u = 〈x3〉d , because 
these are the two participants of the scalar quark+quark correla-
tion; and the system is very skewed, with the PDA’s peak being 
shifted markedly in favour of 〈x1〉u > 〈x2〉u . This outcome conflicts 
with lQCD results [16,17].

On the other hand, as noted above, it is a longstanding pre-
diction of Faddeev equation calculations that pseudovector diquark 
correlations are an essential part of the proton’s wave function, 
e.g. Refs. [46–49]. Naturally, when these {uu} and {ud} correlations 
are included, momentum is shared more evenly, shifting from the 
Table 1
A – Eq. (17) interpolation parameters for the proton and Roper PDAs in Fig. 3. B
– Computed values of the first four moments of the PDAs. f N is listed in units of 
10−3 GeV2, and our error reflects a scalar diquark content of 65 ± 5%. Values in 
rows marked with “ �⊃ av” were obtained assuming the baryon is constituted solely 
from a scalar diquark. (All results listed at ζ = 2 GeV.)

A nϕ̂ α β w01 w11 w02 w12 w22

p 65.8 1.47 1.28 0.096 0.094 0.15 −0.053 0.11
R 14.4 1.42 0.78 −0.93 0.22 −0.21 −0.057 −1.24

B f N 〈x1〉u 〈x2〉u 〈x3〉d

conformal PDA 0.333 0.333 0.333

lQCD [16] 2.84(33) 0.372(7) 0.314(3) 0.314(7)
lQCD [17] 3.60(6) 0.358(6) 0.319(4) 0.323(6)

herein proton 3.78(14) 0.379(4) 0.302(1) 0.319(3)
herein proton �⊃ av 2.97 0.412 0.295 0.293

herein Roper 5.17(32) 0.245(13) 0.363(6) 0.392(6)

herein Roper �⊃ av 2.63 0.010 0.490 0.500

bystander u(x1) quark into u(x2), d(x3). Adding these correlations 
with the known weighting, the PDA’s peak moves back toward the 
centre and our computed values of the first moments align with 
those obtained using lQCD. As evident from the table, this result 
is quantitatively insensitive to realistic variations in the strength 
of the 1+-diquark component. Consequently, the confluence deliv-
ers a more complete understanding of the lQCD simulations, which 
are now seen to confirm the picture of a proton as a bound-state 
with both strong scalar and pseudovector diquark correlations, in 
which the scalar diquarks are responsible for ≈ 60% of the Fad-
deev amplitude’s canonical normalisation. Importantly, as found 
with ground-state S-wave mesons [5–8,10,11], the leading-twist 
PDA of the ground-state nucleon is both broader than ϕcl

N ([x]) and 
decreases monotonically away from its maximum in all directions.

4. Roper PDA

Our framework is readily extended to describe the quark core 
of the proton’s first radial excitation: mR = (3/2)mp [27,31]. The 
scalar functions in this system’s Faddeev amplitude possess a zero 
at quark–diquark relative momentum 

√
�2 ≈ 0.4 GeV ≈ 1/[0.5 fm], 

a property that can be expressed in our algebraic amplitude by 
modifying the spectral functions in Eqs. (7) following the pattern:

ρ(z) = (1 − z2) → ρR(z) = sqq
R (1 − z2)(z + zqq

R ) , (18)

where (sqq
R , zqq

R ) are parameters. Requiring that the amplitude 
obtained therewith is consistent with known Faddeev equation 
solutions for the first radial excitation, one obtains (sS

R , zS
R) =

(−1, 1/50) = (sA,γ
R , zA,γ

R ), (sA,P
R , zA,P

R ) = (1, 3/10) and, in Eq. (7a), 
�0

p → �0 = 4/5.
R
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This procedure yields the PDA in the rightmost panel of Fig. 3, 
which is efficiently interpolated using Eq. (17) with the param-
eters in Table 1A; and whose first four moments are listed in 
Table 1B. The prediction reveals some curious features, e.g.: the 
excitation’s PDA is not positive definite and there is a locus of ze-
ros in the lower-right corner of the barycentric plot, both of which 
echo features of the wave function for the first radial excitation 
of a quantum mechanical system and have also been seen in the 
leading-twist PDAs of radially excited mesons [50,51]; and the im-
pact of pseudovector correlations within this excitation is opposite 
to that in the ground-state, viz. they shift momentum into u(x1)

from u(x2), d(x3).

5. Epilogue

Using perturbation theory integral representations (PTIRs) for 
the proton and Roper resonance Faddeev wave functions, con-
strained by available solutions of the continuum three-valence-
body bound-state equations, we delivered a quantum field theory 
calculation of the pointwise behaviour of the PDAs of these sys-
tems, revealing novel features, e.g. the ground state’s PDA is a 
broad, concave function of its arguments whose structural features 
reveal the presence of large pseudovector diquark components in 
the proton’s wave function via comparison with lattice-QCD anal-
yses of its lowest-order moments; and the radial excitation’s PDA 
exhibits a locus of zeros.

The general character of our approach is also worth highlight-
ing: it can be used with any Poincaré-covariant bound-state wave 
function for which a PTIR exists. Hence, whilst our PDA predic-
tions may be called sketches, owing to the deliberate simplicity of 
our analysis, their veracity can straightforwardly be tested in fu-
ture studies. Moreover, they can readily be improved; but given the 
robust nature of the constraints we have employed, such improve-
ments will not qualitatively change the character of these PDAs, 
and any quantitative changes will be modest. It follows that the 
PDAs we have determined will, e.g. enable realistic assessments 
to be made of the scale at which exclusive experiments involv-
ing baryons may properly be compared with predictions based on 
perturbative-QCD hard scattering formulae and thereby assist ex-
isting and planned facilities to reach their full potential. The value 
of such estimates has recently been demonstrated in studies of 
mesons [8,40].
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