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Abstract This paper presents the measurement of the iso-
lated prompt photon inclusive production cross section in pp
and p–Pb collisions by the ALICE Collaboration at the LHC.
The measurement is performed in p–Pb collisions at centre-
of-mass energies per nucleon pair of

√
sNN = 5.02 TeV and

8.16 TeV, as well as in pp collisions at
√
s = 5.02 TeV

and 8 TeV. The cross section is obtained at midrapidity
(|y| < 0.7) using a charged-track based isolation momen-
tum piso, ch

T < 1.5 GeV/c in a cone with radius R = 0.4.
The data for both collision systems are well reproduced by
perturbative QCD (pQCD) calculations at next-to-leading
order (NLO) using recent parton distribution functions for
free (PDF) and bound (nPDF) nucleons. Furthermore, the
nuclear modification factor RpA for both collision energies
is consistent with unity for pT > 20 GeV/c. However, devia-
tions from unity (RpA < 1) of up to 20% are observed for pT

< 20 GeV/c with limited significance, indicating the possi-
ble presence of nuclear effects in the initial state of the col-
lision. The suppression increases with decreasing pT with a
significance of 2.3σ for a non-zero slope and yields RpA < 1
with a significance of 1.8σ at

√
sNN = 8.16 TeV for pT

< 20 GeV/c. In addition, a significance of 1.1σ is observed
for RpA < 1 at the lower collision energy

√
sNN = 5.02 TeV

for pT < 14 GeV/c. The magnitude and shape of the sup-
pression are consistent with pQCD predictions at NLO using
nPDFs that incorporate nuclear shadowing effects in the Pb
nucleus.

1 Introduction

Understanding the dynamics of partons in nuclear matter is
a key goal of nuclear physics. Measurements of inclusive
particle and jet production cross sections at large transverse
momenta in proton–proton (pp), proton–nucleus (pA), and
nucleus–nucleus (AA) collisions are important tools to study
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nuclear matter, as their production occurs early in the evolu-
tion of the collision, via hard scatterings of incoming partons
[1]. Modification of their production rates in pA and AA
collisions with respect to pp collisions are attributed to the
presence of nuclear matter, which can affect the initial- and
final-state of the collision. Initial state effects include changes
of the parton distributions inside the nucleus (e.g. gluon shad-
owing [2] and saturation [3]), isospin effects, and initial-state
energy loss [4] of the incoming partons. Final state effects
reflect strong interactions of the produced particles with the
hot [1,5] and cold [6] strongly-interacting medium. The mod-
ification of production rates is commonly quantified using
nuclear modification factors RpA (RAA), which is given by
the ratio of cross sections in pA (AA) collisions to those in
pp, scaled by an appropriate normalisation to account for
the number of nucleon–nucleon collisions occurring in the
considered pA (AA) collisions [7,8].

Since photons interact with other particles only through
the electromagnetic interaction, their scattering with the
strongly-interacting medium is rare and the photon mean free
path is large. This makes them a valuable probe for discrim-
inating initial and final state contributions to the yield mod-
ifications observed in nuclear collisions. Photons produced
directly in the hard scatterings are referred to as prompt pho-
tons. They are sensitive to the gluon densities in the colliding
hadrons at leading order through the quantum chromodynam-
ics (QCD) Compton scattering process (qg → γ q), which
is the dominant contribution to the prompt photon produc-
tion cross section at the Large Hadron Collider (LHC) [9].
Prompt photons are also produced by collinear fragmenta-
tion of an outgoing parton, which is the dominant source of
prompt photon production at low transverse momenta [10].
To probe the gluon density more precisely, it is necessary
to minimise fragmentation photon signals. Not only do they
obscure the direct relationship between the outgoing photon
and the incoming partons, they also require additional theo-
retical assumptions to describe their production [9], i.e. frag-
mentation functions or hadronisation models. This suppres-
sion is accomplished by applying an upper limit on the energy
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of particles produced in the vicinity of the photon and the
resulting observable is denoted “isolated photon”. Experi-
ments commonly employ a fixed-cone isolation [10], where
the summed energy in a cone of radius R around the photon
is required to be below a given threshold. The same isola-
tion criteria are implemented in both theoretical calculations
and experiment. In addition, requiring prompt photons to
be isolated allows suppressing the substantial decay photon
background (primarily from π0 → γ γ decays) in hadronic
collisions.

The unprecedented collision energies provided by the
LHC enable the study of prompt photon production at higher
Q2 and lower Bjorken-x than was previously accessible. Iso-
lated prompt photon production has been measured at the
LHC in pp [11–22], p–Pb [23], and Pb–Pb [21,22,24] colli-
sions, with the cross sections well described by perturbative
QCD (pQCD) calculations at next-to-leading order (NLO)
or next-to-next-to-leading order (NNLO). While a suppres-
sion of the prompt photon cross section at low Bjorken-
x is expected due to gluon shadowing in nuclear environ-
ments with respect to pp collisions, such suppression has
not been observed within the experimental uncertainties in
current data due to their limited low-x reach and precision
[21–24]. This consideration motivates the measurement of
prompt photon production in p–Pb collisions at lower trans-
verse momentum pT (lower x) than what was previously
accessible.

This paper presents new measurements of the isolated
prompt photon inclusive production cross section in pp and
p–Pb collisions with the ALICE detector. The measurement
for p–Pb collisions is carried out at centre-of-mass energies
per nucleon pair of

√
sNN = 5.02 TeV and 8.16 TeV in the

transverse momentum range of 12 < pT < 60 GeV/c and
12 < pT < 80 GeV/c, respectively. The low-pT reach at
midrapidity probes gluon densities down to x ≈ 2pT/

√
s ≈

2.9 × 10−3. This extends the low-x reach in Pb nuclei by
almost a factor of two relative to previous measurements
in p–Pb collisions [23], where nuclear shadowing effects
are expected to be sizeable (see Ref. [25] and calculations
below). The measurement for pp collisions is presented at√
s = 8 TeV. The inclusive production cross section mea-

surement in pp collisions at
√
s = 5.02 TeV has been pub-

lished by ALICE in Ref. [22].
This paper is structured as follows: Sect. 2 describes the

ALICE detector, followed by a description of the event selec-
tion and triggers in Sect. 3. The reconstruction and identi-
fication of photons, as well as the isolation requirements,
are discussed in Sects. 4 and 5, respectively. Efficiency and
purity corrections of the raw isolated prompt photon yields
are introduced in Sects. 6 and 7. After a detailed discussion of
the arising systematic uncertainties in Sect. 8, the results of
this paper are presented in Sect. 9, followed by the conclusion
in Sect. 10.

2 ALICE detector

A detailed description of the ALICE detector and its perfor-
mance is provided in Refs. [26,27]. We focus here only on
those detector subsystems relevant to this measurement, i.e.
the calorimeter and tracking systems which are essential for
photon reconstruction and isolation, and the determination
of the interaction vertex.

The Inner Tracking System (ITS) [28] is the subsystem
located closest to the interaction point and consists of six
layers of silicon detectors. The two innermost layers are Sil-
icon Pixel Detectors (SPD) positioned at radial distances of
3.9 cm and 7.6 cm from the beam axis, followed by two lay-
ers of Silicon Drift Detectors (SDD) at 15.0 cm and 23.9 cm,
and two layers of Silicon Strip Detectors (SSD) at 38.0 cm
and 43.0 cm. The SDD and SSD have a pseudorapidity cov-
erage of |η| < 0.9 and |η| < 1.0, respectively, while the two
SPD layers cover |η| < 2 and |η| < 1.4. The ITS is used
in this analysis for the tracking of charged particles and the
reconstruction of the primary collision vertex.

The Time Projection Chamber (TPC) [29] is a large cylin-
drical drift detector with a two-dimensional (rϕ) position
readout on the end plates, while the coordinate along the
longitudinal direction (z) is obtained from the measured drift
time. The TPC enables reconstruction of charged particles
and their identification via specific energy loss (dE

/
dx)

measurements. The TPC covers a pseudorapidity range of
|η| < 0.9 over the full azimuth and measures up to 159 indi-
vidual space points per track. A solenoid magnet surrounding
the central barrel detectors of ALICE provides a magnetic
field of B = 0.5 T, allowing to reconstruct tracks down to
pT ≈ 100 MeV/c. Combining the tracking capabilities of the
ITS and TPC, a transverse momentum resolution of about 1%
is achieved for pT ∼ 1 GeV/c, which decreases to about 3%
at 10 GeV/c [29]. For pp collisions at

√
s = 8 TeV and p–Pb

collisions at
√
sNN = 8.16 TeV, the TPC and ITS are used to

reconstruct charged particles required for photon isolation.
In p–Pb collisions at

√
sNN = 5.02 TeV, only the ITS is used,

resulting in reduced momentum resolution, which however
is sufficient for photon identification and isolation [30]. This
approach was taken to ensure consistency with the detector
configuration used in the pp reference at

√
s = 5.02 TeV,

where for part of the data taking the TPC was excluded from
readout to enhance the sampled luminosity [30].

The Electromagnetic Calorimeter (EMCal) [31,32] is a
Pb–scintillator sampling calorimeter composed of an alter-
nating stack of 76 lead absorber and 77 scintillation lay-
ers. Scintillation light is collected using wavelength-shifting
fibres and transported to Avalanche Photodiodes (APDs) for
amplification of the scintillation light signal. The EMCal is
located 4.5 m in radial distance from the interaction point
and covers |η| < 0.7 in pseudorapidity and 80◦ < ϕ < 187◦
in azimuthal angle. It consists of 12288 individual towers
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in total, each with a size of 6 × 6 cm2 corresponding to
roughly two times the Molière radius. Since 2015, an exten-
sion of the EMCal located on the opposite to the EMCal
in azimuth, referred to as the Dijet Calorimeter (DCal)
[33], provides additional calorimetric data. The DCal cov-
ers 0.22 < |η| < 0.7 for 260◦ < ϕ < 320◦ and |η| < 0.7
for 320◦ < ϕ < 327◦ with 5376 towers. From now on,
the full calorimeter, comprised of the previously mentioned
EMCal and DCal, will be referred to as EMCal and a dis-
tinction between the two regions is specified only where
required. The energy resolution of the EMCal is σE/E =
(1.4±0.1)%⊕ (9.5±0.2)%/

√
E ⊕ (2.9±0.9)%/E , where

the energy E is given in units of GeV [32]. In this analysis,
the EMCal is used to reconstruct and identify photon can-
didates. The EMCal also provides hardware triggers, which
are used in this analysis and discussed in Sect. 3.

The V0 detector [34] consists of two scintillator arrays,
V0A and V0C, located on opposite sides of the interac-
tion point at z = +340 cm and z = −90 cm and covering
2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. The V0
detector provides the minimum bias trigger and is used in
this analysis to identify background events originating from
beam–gas interactions and out-of-bunch pileup.

3 Event selection

The data used in this analysis were collected by the ALICE
experiment in the period 2012 to 2016. The data for pp
collisions at

√
s = 8 TeV and p–Pb collisions at

√
sNN =

5.02 TeV were recorded in 2012 and 2013, respectively. The
pp collisions data at

√
s = 5.02 TeV and p–Pb collision

data at
√
sNN = 8.16 TeV were recorded in 2017 and 2016,

respectively.
Events considered for analysis satisfy at least a mini-

mum bias (MB) trigger condition, which requires the coin-
cidence of signals in the two V0 scintillation arrays. The
cross section of the MB trigger was determined through
van der Meer scans to be σ

pp
MB = (55.8 ± 1.2) mb [35] for

pp collisions at
√
s = 8 TeV. For p–Pb and Pb–p colli-

sions at
√
sNN = 8.16 TeV the cross sections are σ

p–Pb
MB =

(2.09 ± 0.04) b and σ
Pb-p
MB = (2.10 ± 0.04) b, respectively

[36], where p–Pb denotes the proton beam travelling towards
the V0C detector (negative z) and Pb–p denotes the proton
travelling in the opposite direction. A similar cross section
is measured for p–Pb collisions at

√
sNN = 5.02 TeV where

σ
p–Pb
MB = (2.10 ± 0.06) b [37].

In addition, two EMCal Level 1 photon hardware trig-
gers (L1-γ ) are used to select events with energy depositions
above two configurable thresholds [32], which are referred
to as L1-γ -low and L1-γ -high. A trigger decision, based on
a sliding 4 × 4 tower window using dedicated Trigger Read-

out Units (TRUs), is issued approximately 6.5 μs after the
bunch crossing. The trigger thresholds are chosen differently
for each dataset, with values summarised in Table 1. The
rejection power of the EMCal triggers is determined using the
event-normalised energy spectra of clustered energy deposits
in the EMCal towers. The trigger rejection factor (RF) is
determined by fitting the ratio of the spectra in the triggered
sample and minimum bias baseline in the energy range well
above the trigger threshold. These rejection factors are cor-
rected via Monte Carlo (MC) simulations for inefficiencies
arising from masked TRUs to determine the true inspected
luminosity.

Following the trigger selection, timing information from
the V0 detectors and correlations between hit points and
track segments reconstructed with the SPD are used to
remove beam-induced background and out-of-bunch pileup.
In-bunch pileup is mitigated by requiring the reconstruction
of at most one primary collision vertex per event in the SPD.
Furthermore, primary vertices with a displacement of more
than 10 cm along the beam direction from the nominal colli-
sion point are rejected.

The nominal integrated luminosityLint = Nevt×RF/σMB

and trigger RF are given in Table 1. The prompt photon cross
section in p–Pb collisions at

√
sNN = 5.02 TeV is deter-

mined using both L1-γ triggered data samples, which are
combined using an inverse-variance weighting. Statistical
independence of the two samples is assured by assigning any
event fulfilling both L1-γ triggers to the low threshold sam-
ple. Only the high threshold L1-γ triggered samples are used
for the measurement in pp and p–Pb collisions at

√
sNN = 8

and 8.16 TeV, respectively.
Correction factors estimated by MC simulations utilise

simulated hard processes based on the PYTHIA 8.2 event
generator [38] using the 2013 Monash Tune [39]. In
PYTHIA 8, the signal events (γ –jet) are modelled through
2 → 2 matrix elements for gq → γ q and qq → γ g
hard scatterings at leading order, followed by the leading-
logarithm approximations of the parton shower and hadro-
nisation. In addition, a photon above a given threshold is
required to be produced within the EMCal acceptance. Back-
ground events (jet–jet) are simulated requiring hard scatter-
ings with two jets in the final state. To simulate p–Pb events,
the pp dijet and γ –jet events simulated with PYTHIA 8
are embedded into p–Pb inelastic collision events generated
by DPMJET [40] to reproduce the experimentally measured
global p–Pb event properties.

The transport of the generated particles in the detector
material is done using GEANT 3 [41]. Following Ref. [32],
additional corrections are incorporated into the simulation
to mimic the observed cross talk between calorimeter cells.
For the pp and p–Pb collision data at

√
sNN = 8 and 8.16

TeV, respectively, the simulation also included the trigger
response taking into account masked TRU’s as described in
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Table 1 Overview of the pp and p–Pb collision data used in this
work. For completeness, the data corresponding to pp collisions at√
s = 5.02 TeV [22] are also given. For each EMCal-triggered sample,

the trigger thresholds, rejection factors, and integrated luminosities are
specified. The given rejection factors and luminosities are corrected for

trigger inefficiencies as outlined in the text, except for the measurement
in p–Pb collisions at

√
sNN = 5.02 TeV (marked with a ‘†’ symbol)

where the efficiency correction has instead been applied on the level of
prompt photon yields and is not included in the given values

System
√
sNN Trigger Threshold (GeV) RF Int. luminosity Lint (nb−1) Year

pp 5.02 TeV [22] L1-γ -low 4 997 ± 10 265 ± 7 2017

pp 8.00 TeV L1-γ -high 10 16372 ± 476 497 ± 18 2012

p–Pb 5.02 TeV† L1-γ -low 7 1739 ± 56 0.76 ± 0.03 2013

L1-γ -high 11 6917 ± 245 6.3 ± 0.3 2013

p–Pb 8.16 TeV L1-γ -high 8 1231 ± 27 1.41 ± 0.04 2016

Refs. [20,22,32]. For the p–Pb data at
√
sNN = 5.02 TeV,

a data-driven evaluation of the acceptance correction arising
from the masked TRU’s is applied.

4 Photon reconstruction and identification

Electromagnetic showers in the EMCal are reconstructed
by combining energy depositions in adjacent EMCal tow-
ers (from here on referred to as EMCal cells) into clus-
ters, as described in Ref. [32]. The clustering algorithm
and the photon selection criteria, outlined below, are con-
sistent with what has been used in previous ALICE measure-
ments of isolated prompt photon production [19,20,22]. In
addition, the DCal is included in the analysis of the p–Pb
data at

√
sNN = 8.16 TeV. The clustering algorithm begins

with a seed cell with an energy of at least 500 MeV, sub-
sequently adding adjacent cells which have an energy of
at least 100 MeV, where the energy thresholds are chosen
to reduce sensitivity to detector electronic noise. Each clus-
ter is required to contain at least two cells in order to sup-
press the contribution of single neutrons hitting the read-
out electronics, which generate single cell clusters. These
neutron-induced spurious signals [32] are further suppressed
by excluding clusters in which cells adjacent to the leading
energy cell in a given cluster do not contribute significantly
to the total energy of the cluster. Background from hadronic
decays and shower overlaps is suppressed by requiring that
each cluster contains at most two local energy maxima. In
order to remove contributions from out-of-bunch pileup, the
difference in time between the main bunch crossing and the
detection of signal in the highest-energy cell in the cluster is
required to satisfy |�t | < 20 ns (−30 < �t < 35 ns) for the
analysis at

√
sNN = 5.02 TeV (8.16 TeV).

After these selections, which ensure the quality of the clus-
ter sample, photon clusters are identified using the cluster
shape and a charged-particle veto. The shape of a cluster is
quantified using the observable σ2

long which corresponds to
the length of the long axis of an ellipse characterising the

transverse shower shape [32]. It is defined as the square of
the larger eigenvalue of the energy distribution in the η–ϕ

plane as

σ2
long = (σ2

ϕϕ + σ2
ηη)/2 +

√
(σ2

ϕϕ − σ2
ηη)

2/4 + (σ2
ϕη)

2, (1)

where σ2
xz = 〈xz〉 − 〈x〉〈z〉 are the covariance matrix

elements with 〈x〉 = (1/wtot)
∑

wi xi that are weighted
over all cells in the cluster in η and ϕ directions. The
weights are determined for the i-th cell in the cluster as
wi = max

(
log(Ecell, i/Ecluster) − w0, 0

)
, where Ecell, i and

Ecluster are the cell and cluster energy, respectively. The cut-
off in the log-weighting is chosen to be w0 = −4.5 and cells
that contain less than e−4.5 = 1.1% of the total cluster energy
are not considered in the σ2

long calculation [32].

The discrimination of photon and π0 showers using
σ2

long was studied using a detailed simulation of the EMCal
response, including the effect of cross talk between adjacent
towers, which was found to affect the shower shape [32].
While single photons predominantly generate narrow show-
ers with σ2

long ≈ 0.25, high-pT photons from π0 and η decays
generate more elongated clusters due to cluster merging of the
decay photons that can no longer be separated on the EMCal
surface. Simulations show that over 90% of π0 → γ γ decays
will be reconstructed as a single cluster for pπ0

T > 10 GeV/c
[32]. Photon clusters from π0 and η decays are therefore sup-
pressed by requiring σ2

long < 0.3. Additionally, a threshold

of σ2
long > 0.1 is imposed to suppress residual background

contributions from spurious signals, such as neutrons hitting
the readout electronics. Overall, good agreement between
data and MC is found for the shower shape distributions
[20,22,30].

Clusters from charged particles are suppressed by utilising
a charged particle veto (CPV). Charged tracks are extrapo-
lated to the EMCal front surface, taking into account the
track curvature due to the magnetic field and interactions
in the traversed material. The distance between each cluster
and projected track position is calculated on the EMCal sur-
face, and clusters within |�ϕ| < 0.05 rad and |�η| < 0.05
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of a track are removed from the analysis. The ratio of clus-
ter energy and track momentum is required to be below 1.75,
which suppresses accidental cluster-track matches by remov-
ing matches in which the track momentum is significantly
lower than the energy of the matched cluster. No CPV is
used in the analysis of p–Pb collisions at

√
sNN = 5.02 TeV

to ensure a consistent photon identification procedure with
respect to the reference pp dataset, which lacks information
from the TPC. This results in a slight loss of signal purity,
which is taken into account in the data-driven purity deter-
mination outlined in Sect. 7.

5 Photon isolation

Prompt photon identification in this analysis uses the isola-
tion requirement that the transverse momentum deposited in
the vicinity of the photon is below a specified threshold. The
purpose of an isolation requirement is twofold: suppressing
the dominant decay photon background and suppressing the
contribution of photons produced in the fragmentation of an
outgoing parton. This analysis uses fixed-cone isolation, in
which the isolation variable is defined as the sum of the trans-
verse momenta of charged particles within an angular radius,

R =
√

(ϕγ − ϕch)2 + (ηγ − ηch)2 = 0.4, from the cluster
position, where ϕγ and ηγ denote the azimuthal angle and
pseudorapidity of the photon, respectively. Likewise, ϕch and
ηch denote the position of a given track within the isolation
cone. The isolation energy does not include that of neutral
particles, in order to benefit from the larger acceptance of the
TPC with respect to the EMCal and to reduce autocorrelation
with π0 showers. Charged particles are reconstructed in the
ITS and TPC in data sets where the TPC data are available.
Each track is required to fulfil a set of track quality require-
ments. The use of ITS-only tracking at

√
s = 5.02 TeV was

not found to introduce significant bias in the isolation selec-
tion criterion [22,30].

A candidate cluster is declared isolated when the isolation
momentum

piso, ch
T =

∑

track ∈ �R<0.4

ptrack
T − ρ × π × 0.42, (2)

fulfils piso, ch
T < 1.5 GeV/c. To account for the soft under-

lying event (UE) that may produce particles within the iso-
lation cone that do not arise from the hard scattering which
generates the EMCal cluster, the charged-particle transverse
momentum density ρ is calculated and subtracted in each
event. Two methods are used to estimate ρ. The first method,
known as the perpendicular cone method, estimates the UE
contribution from the energy in two cones of radius R = 0.4
located �ϕ = +90◦ and −90◦ in azimuth relative to the
EMCal cluster, and ρ is the average of the two cone energies

Fig. 1 Probability distribution of the charged isolation momentum
piso, ch

T (see Eq. 2) in pp collisions at
√
s = 8 TeV. The isolation thresh-

old piso, ch
T < 1.5 GeV/c is drawn as a dashed grey line. The piso, ch

T

distribution is shown for data (black) and PYTHIA 8 simulations for a
signal (γ -jet) and background (jet–jet) dominated population

divided by their area. The second method estimates ρ using
the kT jet-finding algorithm with R = 0.4 from the FASTJET
[42] package, where the median of all reconstructed jet trans-
verse momenta divided by the jet area is used, excluding the
two jets with the largest transverse momentum. The median
UE density ρ is less than 1 GeV/c and 1.5 GeV/c in pp and
p–Pb collisions, respectively. The UE estimation technique
was found to have a small impact on the isolated prompt pho-
ton cross section, the difference between the two methods is
used to assign the corresponding systematic uncertainty, as
discussed in Sect. 8.

Figure 1 shows the distribution of the isolation momen-
tum piso, ch

T defined in Eq. 2 for photon candidate clus-
ters in pp collisions at

√
s = 8 TeV. A requirement of

piso, ch
T < 1.5 GeV/c is used to select prompt photon can-

didates, which results in a signal efficiency of about 90%
and a background rejection of more than 70%. Discrimina-
tion of signal and background with this selection is shown
using PYTHIA 8 simulations for the signal dominated γ−jet
processes (red) and background photon dominated jet−jet
processes (blue).

An isolation cone with R = 0.4 for clusters with |η| > 0.5
does not fit entirely within the acceptance of the tracking
detectors, which is |η| < 0.9. This is accounted for by a
geometrical correction, in which the fraction of the isola-
tion cone that does not fall within the acceptance of the
tracking detectors is calculated. The magnitude of the cor-
rection is at most about 15% at the edges of the EMCal
acceptance.
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Fig. 2 Isolated prompt photon reconstruction efficiencies calculated
according to Eq. 3 using PYTHIA 8 simulations of γ -jet (signal) pro-
cesses

6 Efficiency correction

The efficiency was estimated using the γ –jet PYTHIA 8 sim-
ulation introduced in Sect. 3.

The reconstruction efficiency is defined as

ε(pT, rec) = dN sig
clus(pT, rec)

/
dpT, rec

dN sig
gen(p

γ
T )

/
dpγ

T

, (3)

where N sig
clus is the number of reconstructed clusters that fulfil

all the selection criteria and are matched to a signal photon,
and N sig

gen is the number of signal photons at the generator level
within the EMCal acceptance. A signal photon is defined as a
photon produced either directly in the hard scattering or in a
jet fragmentation that happens to fulfil the charged isolation
requirement on generator level with piso, gen

T < 1.5 GeV/c.
Clusters with a leading contribution from a signal photon are
considered true signal clusters. Bin migration effects due to
the finite pT resolution are included in Eq. 3 by using the
transverse momentum at reconstruction (pT, rec) and generator
level (pγ

T ) in numerator and denominator, respectively. Isola-

tion at the generator level piso, gen
T < 1.5 GeV/c is corrected

for UE contributions in order to allow a direct comparison of
the results to NLO calculations where no UE is present. Fig-
ure 2 shows the isolated prompt photon reconstruction effi-
ciency in pp collisions at

√
s = 8 TeV and p–Pb collisions

at
√
sNN = 5.02 TeV and 8.16 TeV. The efficiency increases

slightly with increasing pT mainly due to increasingly narrow
clusters that fulfil the shower shape selection. The efficiency
is a convolution of the efficiencies of the individual selec-
tion criteria. In the case of pp collisions at

√
s = 8 TeV, one

e.g. finds an isolation efficiency of more than 90%, a shower
shape selection efficiency between 80% and 90%, a track

matching efficiency of about 85% and a cluster reconstruc-
tion efficiency of about 70%.

Differences in the reconstruction efficiencies for the dif-
ferent datasets are attributable to (i) the differing number of
masked or dead EMCal channels per run period, (ii) material
budget in front of the EMCal, in particular, differences in the
number of installed TRD [43] modules from Run 1 to Run
2, (iii) sensitivity of cluster selections to higher multiplicity
in p–Pb with respect to pp collisions, and (iv) differences in
trigger efficiency, which is sensitive to the number of masked
EMCal TRUs.

7 Purity correction

The population of isolated prompt photon candidates still
contains a significant contribution from background pho-
tons, which originate primarily from neutral meson decays.
To account for this contamination, the purity of the mea-
surement is determined using two data-driven approaches,
known as the ABCD and template fit methods. Both meth-
ods utilise information from the shower shape σ2

long and the

isolation momentum piso, ch
T to determine the purity in a data-

driven way, exploiting the fact that prompt photons tend to
produce narrow and isolated clusters in the calorimeter. It
is important to point out that the extraction of the purity
in a data-driven way is crucial in order to suppress a model
dependence of the result, in particular, any dependence on the
absolute prompt photon cross section or signal to background
ratio. The ABCD method has been used in several previous
publications [11,12,20,22,44], and is the primary method in
this analysis for pp and p–Pb collisions at

√
sNN = 8 and

8.16 TeV, respectively. The template fit method used for the
purity estimate of the

√
sNN = 5.02 TeV data was used in a

previous publication of isolated photon-hadron correlations
in pp and p–Pb collisions at

√
sNN = 5.02 TeV [30].

7.1 The ABCD method

In the ABCD method, the prompt photon purity is determined
using the two-dimensional distribution of shower shape σ2

long

and the isolation momentum piso, ch
T , which is divided into

one signal and three control regions. Following the deriva-
tions given in Ref. [44], the purity P raw

ABCD in the signal region
can be defined as

P raw
ABCD = 1 −

(
N iso

n /N iso
n

N iso
w /N iso

w

)

data
(4)

where the indices “n” and “w” refer to narrow clusters
(0.1 < σ2

long < 0.3) and wide clusters (0.4 < σ2
long < 2.0),

respectively. The “iso” and “iso” notations refer to isolated
cluster regions (piso, ch

T < 1.5 GeV/c) and anti-isolated clus-
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ter regions (piso, ch
T > 4 GeV/c), respectively. The number

of clusters (N ) in each region is the sum of signal (S) +
background (B).

The relation in Eq. 4 holds if (i) the contributions of signal
to N iso

w , N iso
w , and N iso

n are negligible and (ii) the shower shape
and isolation momentum are uncorrelated. Both assumptions
are not fully fulfilled, as (i) there is percent-level leakage of
signal into the wide isolated cluster region and (ii) narrow
clusters are more likely to be isolated than wide clusters.
These effects are corrected using MC simulations with full
detector response to calculate the contribution of underlying
correlations via

αMC =
(
Biso

n /N iso
n

N iso
w /N iso

w

)

MC

, (5)

where Biso
n is the true cluster yield from background sources

in the signal region (isolated and narrow clusters). Typical
values of αMC range from about 1.1 to 1.4. The MC calcula-
tion contains both jet–jet and γ -jet events and the respective
yields are scaled with the corresponding cross sections. The
fully corrected purity is then calculated as

PABCD = 1 −
(
N iso

n /N iso
n

N iso
w /N iso

w

)

data
× αMC (6)

Finally, a bias may arise due to differences in the degree of
correlation in data and MC. This bias is evaluated using the
double ratio

f (σ2
long) = (N iso/N iso)data

(N iso/N iso)MC
, (7)

where N iso and N iso are the number of isolated and anti-
isolated clusters, respectively. This double ratio is stud-
ied for 0.4 < σ2

long < 2 where signal contributions are
expected to be negligible, and extrapolated into the signal
region (0.1 < σ2

long < 0.3) using a first-order polynomial. A
slope consistent with zero is observed within the uncertain-
ties, indicating that an accurate description of correlations is
achieved by the MC calculation. The magnitude of residual
mismatch is evaluated in Sect. 8 and taken into account as a
systematic uncertainty.

7.2 Template fit method

An alternative approach to determining the purity of the sig-
nal sample is a two-component template fit, following the
procedure outlined in Ref. [30]. The template fit is used for
the measurement in p–Pb collisions at

√
sNN = 5.02 TeV,

and found to yield compatible results with the purities
obtained using the ABCD method described above [45]. The
σ2

long distribution of the isolated cluster sample is fitted using
a linear combination of a self-normalised signal contribu-
tion,S(σ2

long), determined from γ -jet simulations, and a back-

ground distribution, B(σ2
long), determined from data using an

anti-isolated sideband (5 < piso, ch
T < 10 GeV/c). The two

templates are combined linearly via

Ntot(σ
2
long) = Nsig × S(σ2

long) + (Ndata − Nsig)

×B(σ2
long), (8)

where Nsig is the number of signal clusters in the population
and is the only free parameter of the fit. Ndata is the total
number of measured isolated clusters and serves as an over-
all normalisation, whereas Ntot denotes the sum of signal and
background clusters according to the template fit. The data
are fitted using the MINUIT package [46] using χ2 minimisa-
tion and the MIGRAD algorithm for uncertainty estimation.
The purity Ptmp in the signal region is then obtained through
the following integrals

Ptmp =
∫ 0.3

0.1 Nsig × S(σ2
long)dσ2

long
∫ 0.3

0.1 Ntot(σ
2
long)dσ2

long

. (9)

Underlying correlations between shower shape and isolation
momentum, as introduced in the previous section, are cor-
rected using a re-weighting of the background template via

B(σ2
long) → B(σ2

long) × ω(σ2
long) with ω

=
(
N iso(σ2

long)

N iso(σ2
long)

)

MC

(10)

A residual mismatch in the degree of correlation in MC with
respect to data is taken into account in the systematic uncer-
tainties, as described in Sect. 8.

7.3 Isolated photon purity

Figure 3 shows the purity obtained in pp and p–Pb collisions
using the methods described above for the different collision
energies. The signal purity at pT ∼ 12 GeV/c is approx-
imately 20%, increasing to 70% at the highest transverse
momentum measured in the analysis. The shape of the purity
distribution is driven by an interplay of physics and detector
effects. An overall increase in purity with increasing pT is
expected from pQCD calculations [47], where the γprompt/π

0

ratio increases. The magnitude of this ratio depends on the
isolation threshold, which impacts the size of the fragmenta-
tion contribution, especially at low-pT. The dominant detec-
tor effect in the prompt photon purity is the finite granular-
ity of the calorimeter and its response to the opening angle
of π0 and η decay photons. At low pT the opening angle
between the two decay photons is large, resulting in con-
tamination from single decay photons falsely identified as
(isolated) prompt photons. The opening angle decreases with
increasing meson pT, resulting in merged showers that are
rejected by the shower shape selection and increasing signal
purity. Above pT ∼ 20 GeV/c the purity is roughly constant
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because a large fraction of π0 decay clusters merge, leading
to contamination in the signal region (0.1 < σ2

long < 0.3) that

counteracts the increasing γprompt/π
0 ratio. Finally, the data

hint at a second rise of the purity for pT � 40 GeV/c when
almost all merged π0 decays produce narrow showers in the
signal region and the purity is dominated by the increase of
the γprompt/π

0 ratio.
The shape of the purity is well described by a sigmoid

function including a linear rise at high transverse momentum

P(pT) =
⎧
⎨

⎩

a0
1+exp(−a1×(pT−a2))

if pT < a4

a0
1+exp(−a1×(pT−a2))

+ a3(pT − p4) if pT ≥ a4

(11)

where a0...4 are parameters of the fit. Evaluation of the
purity using this parametrisation decreases sensitivity to sta-
tistical fluctuations and introduces systematic effects, which
are accounted for in Sect. 8. Due to the limited high-pT reach
of the purity estimate for p–Pb collisions at

√
sNN = 5.02, the

fit is performed with a3 = 0 instead. Comparable purities are
obtained in p–Pb collisions at

√
sNN = 5.02 and 8.16TeV,

where a slightly higher purity for
√
sNN = 8.16 TeV can

be attributed to the CPV selections. Furthermore, a slightly
lower purity in p–Pb collisions at

√
sNN = 8.16 TeV with

respect to pp collisions can be attributed to differences in the
datasets outlined in Sect. 6 as well as the larger underlying
event in p–Pb collisions.

While the high-pT reach of the purity extraction is lim-
ited by statistical uncertainties, the low-pT reach is limited
by the fact that a reliable purity extraction becomes increas-
ingly challenging with decreasing pT. This is in part due to
the low physical signal-to-background ratio as well as the
large opening angle of π0 decays, which highly reduces the
discriminatory power of the shower shape variable at low pT.

8 Systematic uncertainties

An overview of the systematic uncertainties of the measure-
ment is given in Table 2. Systematic uncertainties are spec-
ified for the isolated prompt photon cross section in pp and
p–Pb collisions across various collision energies, as well as
for the nuclear modification factor RpA (see Sect. 9). The
systematic uncertainties are evaluated using variations of the
selection criteria employed throughout the analysis. The vari-
ations are chosen to be sufficiently large to adequately sam-
ple the resulting changes of the cross section and RpA, which
are assumed to follow a Gaussian distribution. In order to
minimise the impact of statistical fluctuations, the resulting
deviations are fitted using an appropriate functional form that
captures the observed pT dependence of the respective sys-
tematic effect. Uncertainty sources are grouped into eight

categories, where the total uncertainty of a given category is
obtained by adding the individual uncertainties in quadrature.

Photon purity The uncertainty associated with the prompt
photon purity determination is the dominant source of sys-
tematic uncertainty of the measurement, ranging overall from
about 8% to 15% for the prompt photon cross section, where
the uncertainty is found to be largest for the lowest puri-
ties at low pT. The uncertainty is evaluated using varia-
tions of the isolation and shower shape selection for the
background regions/templates used for the purity estima-
tion. In addition, the template fit used for the measurement
at

√
sNN = 5.02 TeV is also performed using only the back-

ground template, in order to estimate the uncertainty aris-
ing from the signal template obtained from simulations. The
impact of residual correlations between the shower shape
and isolation momentum, quantified in Eq. 7, is evaluated
by applying an additional MC correction according to the
observed residual slopes in the ratio. The systematic uncer-
tainty associated with these correlations are largest at low pT

where the purity is low. The effect of varying the cluster selec-
tion criteria as well as the emulation of cross talk between
calorimeter cells are evaluated, where the latter was found to
be important as it directly affects the shower shape descrip-
tion in MC. For the ABCD method, the fraction of simu-
lated γ –jet events with respect to jet–jet events is varied to
account for systematic uncertainties arising from the correc-
tion denoted in Eq. 5. Variations of the assumed prompt pho-
ton spectral shape in the simulations have negligible impact
on the applied efficiency and purity corrections [22]. Finally,
the systematic uncertainty associated with the choice of the
functional form to describe the shape of the purity (see Eq. 11)
is evaluated through variations of the fit function as well as
applying the purity correction point-by-point instead of using
any fitting.

Trigger mimicking The efficiency of the EMCal L1 trig-
gers is considered in the measurement using either a full sim-
ulation of the TRU response in MC or a data-driven approach
using the η–ϕ distribution of clusters to identify misbehaving
TRUs. The systematic uncertainty associated with these cor-
rections is estimated conservatively by performing the mea-
surement with and without these corrections and considering
half the difference of the fully-corrected cross sections as a
systematic uncertainty. A larger trigger mimicking uncer-
tainty is observed for the RpA at

√
sNN = 5.02 TeV with

respect to
√
sNN = 8.16 TeV, which is mainly driven by the

pp reference [45].
Underlying event estimation Systematic uncertainties

associated with the underlying event estimation are evalu-
ated by calculating the UE density ρ using a kT jet finder
as well as the perpendicular cone method. The difference
between the methods on the fully-corrected cross sections is
taken as the systematic uncertainty.
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Fig. 3 Isolated prompt photon purity as a function of cluster pT. The
purity in p–Pb collisions at

√
sNN = 5.02 TeV (left) is calculated using

the template fit approach, whereas for
√
sNN = 8 and 8.16TeV (right)

the purity is obtained using the ABCD method. The purity is fitted

using a modified sigmoid function given in Eq. 11 and an error function
for

√
sNN = 5.02 TeV. Vertical lines and boxes denote statistical and

systematic uncertainties, respectively

Table 2 Systematic uncertainty sources of the isolated prompt pho-
ton inclusive production cross section in pp and p–Pb collisions and
of the nuclear modification factor RpA. The uncertainties are given for
the lowest and highest pT interval of the respective measurement. The

total uncertainty is given as the quadratic sum of all uncertainty sources,
except for the normalisation uncertainty, which is considered fully pT
correlated and denoted by a separate box in the respective figures

Name Cross section pp Cross section p–Pb RpA

8 TeV 8 TeV 5.02 TeV 5.02 TeV 8.16 TeV 8.16 TeV 5.02 TeV 5.02 TeV 8.16 TeV 8.16 TeV

pT interval (GeV/c) 12–14 60–80 12–14 40–60 12–14 60–80 12–14 40–60 12–14 60–80

Photon purity 10.3% 11.5% 12.0% 8.0% 15.2% 11.4% 13.0% 19.0% 8.8% 9.7%

Trigger mimicking 2.0% 2.0% 2.7% 2.7% 4.1% 4.1% 8.4% 8.4% 2.1% 2.1%

UE estimation 2.0% 2.0% 4.0% 4.0% 2.0% 2.0% 4.0% 4.0% 2.0% 2.0%

σ2
long signal range 5.0% 5.0% 1.4% 1.4% 5.0% 5.0% 2.0% 7.5% 4.0% 4.0%

CPV 1.0% 1.0% – – 1.0% 1.0% – – 1.0% 1.0%

Energy scale 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% < 0.5% < 0.5% < 0.5% < 0.5%

Material budget 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 3.0% 3.0% 3.0% 3.0%

Normalisation 3.6% 3.6% 6.4% 6.4% 2.9% 2.9% 6.8% 6.8% 4.7% 4.7%

Total 12.2% 13.2% 13.3% 11.5% 16.9% 13.6% 16.4% 22.7% 10.7% 11.5%

Signal shower shape selection and CPV Multiple varia-
tions of the signal selection according to the shower shape are
performed to estimate the associated systematic uncertainty.
Likewise, variations of the �ϕ and �η selections used for
the CPV are performed to estimate the systematic uncer-
tainty of this procedure, which is found to be about 1%. As
no CPV is used for the measurement in p–Pb collisions at√
sNN = 5.02 TeV, no corresponding uncertainty is assigned

for this measurement.
Energy scale & material budget The uncertainty on the

energy scale of the EMCal is about 0.5% [22,32], which

amounts to a 2% uncertainty on the steeply falling cross
section. In addition, the material budget uncertainty, which
accounts for potential inaccuracies in the MC description of
material the photon traverses before reaching the EMCal, has
been determined in Ref. [48] and amounts to 2.1%.

Normalisation uncertainty Following common conven-
tion, the normalisation uncertainty is denoted separately as
a small box for the reported cross sections and the RpA. It
accounts for the uncertainty of the minimum-bias cross sec-
tion σMB and the uncertainties of the trigger rejection factors.
Both uncertainties are added in quadrature, resulting in a nor-
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malisation uncertainty of the integrated luminosity given in
Table 1.

The systematic uncertainties on the RpA take into account
correlations of uncertainties between the p–Pb cross sec-
tion and the pp reference through a simultaneous variation
of selection criteria in both systems. As the pp reference
measurement in pp collisions at

√
s = 5.02 TeV has been

reported in Ref. [22] using the ABCD method, we also per-
formed the purity extraction in the same system using the
template fitting approach to allow for the cancellation of sys-
tematic uncertainties with the measurement in p–Pb colli-
sions at

√
sNN = 5.02 TeV. Consistency between both purity

estimation techniques is demonstrated in Ref. [45]. Overall,
the total systematic uncertainties of the cross sections are
less than 18% in all systems. Partial cancellation of the sys-
tematic uncertainties in the p–Pb data with respect to the pp
reference is observed, leading to systematic uncertainties of
less than 12% and 23% for the RpA at

√
sNN = 8.16 TeV and

5.02 TeV, respectively. Some systematic uncertainty sources,
such as e.g. the energy scale uncertainty and material budget
uncertainty, are found to be correlated as a function of pT,
amounting to about 65% of the systematic uncertainty of the
RpA.

9 Results

The isolated prompt photon production cross section is cal-
culated via

d2σγ

dpγ
T dy

= 1

Lint
× d2N iso

n

dpγ
T dy

× P

ε × Acc
, (12)

where N iso
n is the prompt photon candidate yield, Lint is the

integrated luminosity, P is the purity, ε is the reconstruction
efficiency and Acc is the acceptance of the measurement. The
acceptance is calculated from geometrical considerations and
given by the area covered by the calorimeter with respect to
the full azimuth at midrapidity (|y| < 0.7). Figure 4a shows
the isolated prompt photon inclusive production cross section
in pp and p–Pb collisions at

√
sNN = 5.02, 8, and 8.16 TeV.

The measurement in pp collisions at
√
s = 5.02 TeV was

reported in Ref. [22] and is shown for reference.
The cross sections are obtained at midrapidity (|y| < 0.7)

using a charged isolation momentum threshold piso, ch
T <

1.5 GeV/c in a cone with radius R = 0.4. Vertical bars
and boxes denote the statistical and systematic uncertainties,
respectively. The measurements at both centre-of-mass ener-
gies for pp collisions, and for p–Pb collisions at

√
sNN =

8.16 TeV, cover a photon transverse momentum range of
12 < pT < 80 GeV/c. For p–Pb collisions at

√
sNN =

5.02 TeV, a slightly lower high-pT coverage is reported, due
to limitations in the template fit purity determination at high
pT.

The measurement is compared to pQCD calculations at
NLO, which were performed using the JETPHOX 1.3.1 [9]
program with an isolation criterion of piso

T < 2 GeV/c in a
cone of R = 0.4. Since the isolation in JETPHOX corre-
sponds to a limit in final-state radiation within the specified
cone, a higher isolation threshold than applied on data is
chosen to enable comparison with the charged-only isolation
employed in the measurements. The threshold of 2 GeV/c
has been determined using the neutral energy fraction in the
isolation cone in PYTHIA 8 simulations. The pQCD calcu-
lation uses the recent NNPDF4.0 [49] proton PDF and the
nNNPDF3.0 [50] nuclear PDF to describe the proton and Pb
projectiles, respectively. The (n)PDF uncertainties are deter-
mined by performing the calculation for each member of
the PDF set and are shown as solid shaded bands. Prompt
photons produced in the fragmentation process are included
in the calculation using the BFG II [51] parton-to-photon
fragmentation function. The renormalisation scale μR , fac-
torisation scale μ, and fragmentation scale μF are chosen to
coincide with the photon pT. Scale uncertainties are denoted
by a dashed band and evaluated through a simultaneous two-
point variation of all scales according to 0.5pT ≤ μ ≤ 2pT.

The ratios of the pQCD calculations to the respective
measurement are shown in the bottom panels of Fig. 4 .
Agreement is observed for all systems and energies, cor-
roborating previous measurements by the ALICE Collabo-
ration of isolated prompt photon production in pp collisions
at

√
s = 5.02 TeV [22], 7 TeV [44], and 13 TeV [20] where

likewise agreement between data and theoretical predictions
was observed. Previous findings by the ATLAS Collabora-
tion on prompt photon production in pp and p–Pb collisions
at

√
sNN = 8 TeV and 8.16 TeV [52], respectively, show an

underestimation of the data by pQCD calculations at NLO of
10%–15% for pT > 25 GeV/c, indicating the need for higher
order corrections to accurately describe the data. While no
such discrepancies are observed in the presented measure-
ments within the uncertainties, we speculate that this dif-
ference might be due to the less strict isolation criterion of
ET < 4.8 GeV + 4.2 × 10−3Eγ

T in R = 0.4 employed in
the ATLAS analysis. This results in a larger contribution
from fragmentation photons to the isolated prompt photon
cross section, and increases the dependence of the calcula-
tions on poorly-constrained parton-to-photon fragmentation
functions.

The nuclear modification factor RpA is defined as

RpA = d2σ
γ
pA/dpTdy∗

APb × d2σ
γ
pp/dpTdy∗ , (13)

where d2σγ /dpTdy∗ is the double-differential isolated prompt
photon production cross sections in pp and p–Pb collisions,
evaluated at rapidity y∗ in the nucleon–nucleon centre-of-
mass frame and APb = 208 is the mass number of lead. Dif-
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Fig. 4 Isolated prompt photon
inclusive production cross
section in pp collisions at√
s = 5.02 [22] and 8 TeV, and

p–Pb collisions at
√
sNN = 5.02

and 8.16 TeV. Vertical bars and
boxes denote statistical and
systematic uncertainties,
respectively. Coloured lines
denote JETPHOX pQCD
calculations at NLO using the
recent NNPDF4.0 [49] proton
PDF and the nNNPDF3.0 [50]
nuclear PDF. The BFG II [51]
fragmentation function is used
to describe parton-to-photon
fragmentation. Dashed coloured
bands denote the theoretical
scale uncertainties, and solid
bands denote PDF uncertainties
at 90% CL

ferences in collision energy and the rapidity boost �y = 0.46
due to asymmetric p–Pb collisions in the LHC are taken
into account through a scaling of the pp reference. The scal-
ing is obtained from pQCD calculations at NLO using the
JETPHOX program, taking into account both the difference
in collision energy and the rapidity boost. The correspond-
ing correction is less than 2.4% in the measured transverse
momentum range.

Figure 5 shows the nuclear modification factor RpA for
isolated prompt photon inclusive production at

√
sNN =

5.02 TeV and 8.16 TeV. The vertical error bars and boxes
denote the statistical and systematic uncertainties, respec-
tively. As outlined in Sect. 8 and Ref. [45], the pp reference
for the RpA at

√
sNN = 5.02 TeV is obtained using the tem-

plate fit approach to allow for a cancellation of systematic
uncertainties. The statistical uncertainties of the measure-
ment in p–Pb collisions and the pp reference are uncorrelated
and therefore added in quadrature. Systematic uncertainties
between the systems are partially correlated, with consequent
partial cancellation of uncertainties as outlined in Sect. 8. The
measured values of RpA at the two collision energies are in
agreement with each other within the uncertainties and con-
sistent with unity for pT > 20 GeV.

For pT < 20 GeV/c, hints of suppression of the isolated
prompt photon production cross section by up to 20% are vis-
ible, indicating the influence of nuclear effects in the initial
state of the collision. These measurements probe parton den-
sities down to x1,2 ≈ 2pT/

√
s ≈ 2.9 × 10−3, extending the

low-x reach of previous prompt photon measurements in p–
Pb collisions [52] by about a factor of two. The significance

of the suppression and downward trend for pT < 20 GeV/c
are 1.8σ and 2.3σ for

√
sNN = 8.16 TeV, respectively, tak-

ing into account statistical and systematic uncertainties, and
their correlation as a function of pT. In particular, we define
a downward slope as the deviation from zero of the slope
parameter of a first order polynomial. A suppression RpA < 1
is quantified using a constant fit and its deviation from unity.
The significance of RpA < 1 at the lower collision energy of√
sNN = 5.02 TeV is found to be 1.1σ for pT < 14 GeV/c.
The measured nuclear modification factor is compared

to pQCD calculations at NLO calculated using JETPHOX
with the nNNPDF30 [50] and nCTEQ15HQ [53] nPDFs.
Predictions using nCTEQ15HQ are only shown in Fig. 5b
for

√
sNN = 8.16 TeV. The nPDF uncertainties are denoted

by a shaded band. The scale uncertainties are estimated by
simultaneously varying the scales in pp and p–Pb collisions,
and were found to fully cancel on the level of the RpA. Cal-
culations using both nPDFs likewise indicate an increasing
suppression of the RpA with decreasing pT, which can be
attributed to gluon shadowing in the lead nucleus. Good
agreement between the measurement and theoretical calcu-
lations is observed within the uncertainties.

A comparison to the RpA measured at
√
sNN = 8.16 TeV

by the ATLAS experiment [52] is shown in Fig. 6. The nor-
malisation uncertainty of the ATLAS data is given in Ref.
[52] as 2.4% for p–Pb and 1.9% in pp, which are added
in quadrature to obtain the normalisation uncertainty of the
RpA. Agreement between all measurements in the overlap-
ping transverse momentum interval of 25 < pT < 80 GeV/c
is observed. Furthermore, the figure demonstrates the capa-
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Fig. 5 Nuclear modification factor (RpA) of isolated prompt photon
production in p–Pb collisions at

√
sNN = 5.02 and 8.16TeV. For illus-

tration purposes, the data points at
√
sNN = 5.02 TeV are displaced

by �pT = +300 MeV/c. Vertical bars and boxes denote the statisti-
cal and systematic uncertainties, respectively. Coloured boxes around
unity denote the respective normalisation uncertainties. The measure-
ment is compared to pQCD calculations using recent (n)PDFs, where

the shaded band denotes the nPDF uncertainties. The nPDF uncertain-
ties of the prediction at

√
sNN = 5.02 coincide with those at 8.16 TeV

and are therefore omitted for visibility. Theoretical scale uncertainties
are fully correlated between both collision systems and are therefore
not shown. For improved visibility, the right panel shows only the RpA
at

√
sNN = 8.16 TeV compared to pQCD calculations at NLO using the

nNNPDF3.0 [50] and nCTEQ15HQ [53] nPDFs

Fig. 6 Nuclear modification factor (RpA) of isolated prompt photon
production in p–Pb collisions at

√
sNN = 5.02 and 8.16TeV shown

together with a measurement by the ATLAS collaboration in p–Pb col-
lisions at

√
sNN = 8.16 TeV [52]. For illustration purposes, the data

points at
√
sNN = 5.02 TeV are displaced by �pT = +300 MeV/c.

The normalisation uncertainties are denoted as coloured boxes around
unity

bilities of ALICE to measure low-pT photons with good
precision, due to its small material budget, which extends
the previously accessible range at low pT from 25 GeV/c to
12 GeV/c.

10 Conclusions

The isolated prompt photon production cross section is
reported for pp collisions at

√
s = 8 TeV and p–Pb col-

lisions at
√
sNN = 5.02 and 8.16 TeV by the ALICE

experiment. The measurements are performed at midrapidity
(|y| < 0.7) using an isolation criterion on charged particle
transverse momentum piso, ch

T < 1.5 GeV/c in a cone with
radius R = 0.4 and cover a transverse momentum range
from 12 up to 60 GeV/c (

√
sNN = 5.02 TeV) and 80 GeV/c

(
√
sNN = 8.16 TeV). These measurements probe gluon den-

sities down to x1,2 ≈ 2pT/
√
s ≈ 2.9 × 10−3, extending the

low-x reach of previous prompt photon measurements in p–
Pb collisions by about a factor of two. Good agreement of the
data with pQCD calculations at NLO is observed, demon-
strating the ability of theoretical calculations using recent
(n)PDFs to describe isolated prompt photon production in
both collision systems. The nuclear modification factor is
also presented, which agrees with unity and with measure-
ments by ATLAS for pT > 20 GeV/c. At lower transverse
momenta, a hint of suppression is observed in the isolated
prompt photon cross section in nuclear environments, of up
to 20% at pT ∼ 12 GeV/c. At

√
sNN = 8.16 TeV, the sup-

pression increases with decreasing pT with a significance of
2.3σ for a non-zero slope, and with a significance of 1.8σ

for RpA < 1. A suppression with a significance of 1.1σ is
observed for

√
sNN = 5.02 TeV at pT < 14 GeV/c. These

findings are compatible with pQCD calculations at NLO
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within uncertainties. The low-x reach of the measurement
and the demonstrated sensitivity of prompt photons to nuclear
effects offers promising possibilities for future constraints on
nuclear PDF fits, where isolated prompt photons provide an
important independent probe of the shadowing regime.
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L. Bianchi24 , J. Bielčík34 , J. Bielčíková85 , A. P. Bigot127 , A. Bilandzic94 , A. Binoy116 , G. Biro46 ,
S. Biswas4 , N. Bize102 , J. T. Blair107 , D. Blau139 , M. B. Blidaru96 , N. Bluhme38, C. Blume64 , F. Bock86 ,
T. Bodova20 , J. Bok16 , L. Boldizsár46 , M. Bombara36 , P. M. Bond32 , G. Bonomi55,132 , H. Borel128 ,
A. Borissov139 , A. G. Borquez Carcamo93 , E. Botta24 , Y. E. M. Bouziani64 , D. C. Brandibur63 , L. Bratrud64 ,
P. Braun-Munzinger96 , M. Bregant109 , M. Broz34 , G. E. Bruno31,95 , V. D. Buchakchiev35 , M. D. Buckland84 ,
D. Budnikov139 , H. Buesching64 , S. Bufalino29 , P. Buhler101 , N. Burmasov139 , Z. Buthelezi68,121 ,
A. Bylinkin20 , S. A. Bysiak106, J. C. Cabanillas Noris108 , M. F. T. Cabrera114 , H. Caines136 , A. Caliva28 ,
E. Calvo Villar100 , J. M. M. Camacho108 , P. Camerini23 , M. T. Camerlingo50 , F. D. M. Canedo109 , S. Cannito23,
S. L. Cantway136 , M. Carabas112 , F. Carnesecchi32 , L. A. D. Carvalho109 , J. Castillo Castellanos128 ,
M. Castoldi32 , F. Catalano32 , S. Cattaruzzi23 , R. Cerri24 , I. Chakaberia73 , P. Chakraborty134 , S. Chandra133 ,
S. Chapeland32 , M. Chartier117 , S. Chattopadhay133, M. Chen39 , T. Cheng6 , C. Cheshkov126 , D. Chiappara27 ,
V. Chibante Barroso32 , D. D. Chinellato101 , F. Chinu24 , E. S. Chizzali94a , J. Cho58 , S. Cho58 , P. Chochula32 ,
Z. A. Chochulska134, D. Choudhury41, S. Choudhury98, P. Christakoglou83 , C. H. Christensen82 , P. Christiansen74 ,
T. Chujo123 , M. Ciacco29 , C. Cicalo52 , G. Cimador24 , F. Cindolo51 , M. R. Ciupek96, G. Clai51b,
F. Colamaria50 , J. S. Colburn99, D. Colella31 , A. Colelli31, M. Colocci25 , M. Concas32 , G. Conesa Balbastre72 ,
Z. Conesa del Valle129 , G. Contin23 , J. G. Contreras34 , M. L. Coquet102 , P. Cortese56,131 , M. R. Cosentino111 ,
F. Costa32 , S. Costanza21 , P. Crochet125 , M. M. Czarnynoga134, A. Dainese54 , G. Dange38, M. C. Danisch93 ,
A. Danu63 , P. Das32,79 , S. Das4 , A. R. Dash124 , S. Dash47 , A. De Caro28 , G. de Cataldo50 ,
J. de Cuveland38 , A. De Falco22 , D. De Gruttola28 , N. De Marco56 , C. De Martin23 , S. De Pasquale28 ,
R. Deb132 , R. Del Grande94 , L. Dello Stritto32 , K. C. Devereaux18, G. G. A. de Souza109, P. Dhankher18 ,
D. Di Bari31 , M. Di Costanzo29 , A. Di Mauro32 , B. Di Ruzza130 , B. Diab128 , R. A. Diaz7,140 , Y. Ding6 ,

123

http://arxiv.org/abs/hep-ph/0311131
https://doi.org/10.1103/PhysRevC.99.024912
https://doi.org/10.1103/PhysRevC.99.024912
http://arxiv.org/abs/1803.09857
https://doi.org/10.1140/epjc/s10052-022-10328-7
https://doi.org/10.1140/epjc/s10052-022-10328-7
http://arxiv.org/abs/2109.02653
https://doi.org/10.1140/epjc/s10052-022-10417-7
https://doi.org/10.1140/epjc/s10052-022-10417-7
http://arxiv.org/abs/2201.12363
https://doi.org/10.1007/s100520050158
http://arxiv.org/abs/hep-ph/9704447
https://doi.org/10.1016/j.physletb.2019.07.031
https://doi.org/10.1016/j.physletb.2019.07.031
http://arxiv.org/abs/1903.02209
https://doi.org/10.1103/PhysRevD.105.114043
https://doi.org/10.1103/PhysRevD.105.114043
http://arxiv.org/abs/2204.09982
http://orcid.org/0000-0002-9213-5329
http://orcid.org/0000-0002-9611-3696
http://orcid.org/0009-0003-0763-6802
http://orcid.org/0000-0002-0760-5075
http://orcid.org/0000-0003-0348-9836
http://orcid.org/0000-0001-5241-7412
http://orcid.org/0000-0003-0497-5705
http://orcid.org/0000-0001-8847-489X
http://orcid.org/0000-0002-4417-1392
http://orcid.org/0000-0002-7388-3022
http://orcid.org/0000-0002-8071-4497
http://orcid.org/0000-0002-9719-7035
http://orcid.org/0000-0001-9680-4940
http://orcid.org/0000-0002-5659-2119
http://orcid.org/0000-0002-4713-7069
http://orcid.org/0000-0002-0877-7979
http://orcid.org/0000-0003-3618-4617
http://orcid.org/0009-0000-7365-1064
http://orcid.org/0000-0002-2205-5761
http://orcid.org/0000-0003-0177-0536
http://orcid.org/0000-0001-8910-9173
http://orcid.org/0009-0005-4862-5370
http://orcid.org/0000-0001-8048-5500
http://orcid.org/0000-0002-8079-7026
http://orcid.org/0000-0002-5038-1337
http://orcid.org/0000-0002-6180-4243
http://orcid.org/0000-0001-8535-0680
http://orcid.org/0009-0009-7457-6866
http://orcid.org/0000-0002-2372-6117
http://orcid.org/0000-0003-0437-9292
http://orcid.org/0009-0006-0236-2680
http://orcid.org/0000-0002-7366-8891
http://orcid.org/0000-0001-7516-3726
http://orcid.org/0000-0002-5478-6120
http://orcid.org/0000-0003-0614-7671
http://orcid.org/0009-0002-1990-7289
http://orcid.org/0000-0001-6367-9215
http://orcid.org/0000-0001-6698-9577
http://orcid.org/0000-0002-5194-2079
http://orcid.org/0000-0003-2316-9565
http://orcid.org/0000-0002-3888-8303
http://orcid.org/0009-0008-5460-6805
http://orcid.org/0000-0003-4277-4963
http://orcid.org/0000-0002-0027-4648
http://orcid.org/0000-0002-2501-6856
http://orcid.org/0000-0002-0569-4828
http://orcid.org/0009-0008-4806-8019
http://orcid.org/0009-0005-8079-6882
http://orcid.org/0000-0002-4343-4883
http://orcid.org/0009-0009-9085-079X
http://orcid.org/0000-0001-7987-4592
http://orcid.org/0000-0003-1172-0225
http://orcid.org/0000-0002-4116-2861
http://orcid.org/0000-0002-6186-289X
http://orcid.org/0000-0002-3082-4209
http://orcid.org/0000-0002-7178-3001
http://orcid.org/0009-0005-7211-970X
http://orcid.org/0000-0003-2088-1290
http://orcid.org/0000-0002-7328-9154
http://orcid.org/0000-0003-3090-9111
http://orcid.org/0000-0003-0251-9001
http://orcid.org/0000-0001-9223-6480
http://orcid.org/0000-0001-7357-9904
http://orcid.org/0009-0003-1533-0782
http://orcid.org/0000-0003-0611-9283
http://orcid.org/0000-0002-6454-0052
http://orcid.org/0000-0001-7633-1189
http://orcid.org/0009-0006-7928-4203
http://orcid.org/0000-0002-6905-8345
http://orcid.org/0000-0003-0687-8124
http://orcid.org/0000-0001-8638-6300
http://orcid.org/0009-0000-0199-3372
http://orcid.org/0009-0009-2974-6985
http://orcid.org/0000-0001-9148-9101
http://orcid.org/0000-0003-2784-3094
http://orcid.org/0000-0002-7908-3288
http://orcid.org/0000-0002-2599-7957
http://orcid.org/0009-0005-5922-8936
http://orcid.org/0000-0002-0442-6549
http://orcid.org/0000-0003-3498-4661
http://orcid.org/0000-0002-3156-0188
http://orcid.org/0000-0002-4862-3384
http://orcid.org/0000-0002-9413-6069
http://orcid.org/0009-0002-8212-4789
http://orcid.org/0000-0002-9040-5292
http://orcid.org/0000-0003-4673-8038
http://orcid.org/0000-0003-0309-5917
http://orcid.org/0000-0003-3705-7898
http://orcid.org/0009-0004-5511-2496
http://orcid.org/0000-0002-1373-1844
http://orcid.org/0000-0001-7883-3190
http://orcid.org/0000-0002-3687-8179
http://orcid.org/0000-0002-3755-0992
http://orcid.org/0000-0003-1664-8189
http://orcid.org/0000-0003-4940-2441
http://orcid.org/0000-0003-1659-0394
http://orcid.org/0009-0001-0415-8257
http://orcid.org/0000-0003-0002-4654
http://orcid.org/0009-0006-3115-1292
http://orcid.org/0000-0003-2849-0120
http://orcid.org/0000-0003-3578-5373
http://orcid.org/0009-0008-5850-0274
http://orcid.org/0000-0002-4681-3002
http://orcid.org/0000-0002-4266-8338
http://orcid.org/0000-0002-8085-8597
http://orcid.org/0000-0002-6800-3465
http://orcid.org/0000-0003-4185-2093
http://orcid.org/0009-0001-4479-0417
http://orcid.org/0000-0001-6283-2927
http://orcid.org/0009-0009-8669-3875
http://orcid.org/0000-0001-7333-224X
http://orcid.org/0009-0004-0514-1723
http://orcid.org/0000-0003-1618-9648
http://orcid.org/0000-0001-8879-6290
http://orcid.org/0000-0003-2881-9635
http://orcid.org/0009-0009-3727-3102
http://orcid.org/0000-0002-5054-1521
http://orcid.org/0000-0003-3468-3164
http://orcid.org/0009-0003-0393-7886
http://orcid.org/0000-0002-3069-5822
http://orcid.org/0000-0003-2527-0720
http://orcid.org/0000-0001-9610-5218
http://orcid.org/0000-0002-3075-1556
http://orcid.org/0000-0001-6247-9633
http://orcid.org/0000-0001-7504-2561
http://orcid.org/0009-0008-2547-0419
http://orcid.org/0009-0009-7215-3122
http://orcid.org/0009-0009-4284-8943
http://orcid.org/0000-0002-0413-9478
http://orcid.org/0000-0003-2049-1380
http://orcid.org/0000-0002-9962-1880
http://orcid.org/0000-0002-8880-1608
http://orcid.org/0000-0001-6286-120X
http://orcid.org/0000-0002-2253-165X
http://orcid.org/0000-0003-3202-6806
http://orcid.org/0000-0002-1595-411X
http://orcid.org/0000-0002-2543-0336
http://orcid.org/0000-0002-5269-9779
http://orcid.org/0000-0001-5945-3424
http://orcid.org/0000-0002-9261-9497
http://orcid.org/0000-0002-9417-8613
http://orcid.org/0000-0003-0604-2044
http://orcid.org/0000-0001-5405-3480
http://orcid.org/0000-0002-4008-9922
http://orcid.org/0000-0001-9981-7536
http://orcid.org/0000-0001-9822-0463
http://orcid.org/0000-0002-5187-2779
http://orcid.org/0009-0003-9141-4590
http://orcid.org/0000-0002-0722-7692
http://orcid.org/0009-0008-7385-1259
http://orcid.org/0009-0006-0432-2498
http://orcid.org/0000-0002-9614-4046
http://orcid.org/0000-0002-3311-1175
http://orcid.org/0000-0003-4238-2302
http://orcid.org/0000-0003-4511-4784
http://orcid.org/0000-0003-0578-5567
http://orcid.org/0009-0009-9518-2663
http://orcid.org/0009-0004-0724-7003
http://orcid.org/0009-0002-8368-9407
http://orcid.org/0009-0001-4783-0760
http://orcid.org/0000-0001-6837-3362
http://orcid.org/0000-0002-9982-9577
http://orcid.org/0009-0004-7092-1670
http://orcid.org/0009-0009-7059-0601
http://orcid.org/0009-0001-4181-8891
http://orcid.org/0000-0003-0000-2674
http://orcid.org/0009-0009-5292-9579
http://orcid.org/0000-0002-4325-0646
http://orcid.org/0000-0002-1850-0121
http://orcid.org/0000-0001-7066-3473
http://orcid.org/0000-0001-5433-969X
http://orcid.org/0000-0002-8804-1100
http://orcid.org/0000-0001-5129-1723
http://orcid.org/0009-0007-2954-8044
http://orcid.org/0000-0002-4255-7347
http://orcid.org/0000-0003-2677-7961
http://orcid.org/0000-0001-9102-9500
http://orcid.org/0000-0001-7804-0721
http://orcid.org/0000-0003-4167-9665
http://orcid.org/0000-0001-5283-3520
http://orcid.org/0000-0002-7602-2930
http://orcid.org/0000-0001-9504-2702
http://orcid.org/0000-0002-9677-5294
http://orcid.org/0000-0002-8343-8758
http://orcid.org/0000-0003-2778-6421
http://orcid.org/0000-0002-7880-8611
http://orcid.org/0000-0001-6955-3314
http://orcid.org/0000-0002-5860-585X
http://orcid.org/0000-0001-7528-6523
http://orcid.org/0000-0002-2166-1874
http://orcid.org/0000-0002-5165-6638
http://orcid.org/0000-0002-8899-3654
http://orcid.org/0009-0002-3904-8872
http://orcid.org/0000-0002-2678-6780
http://orcid.org/0000-0001-6632-7741
http://orcid.org/0000-0001-5008-6859
http://orcid.org/0000-0002-7865-4202
http://orcid.org/0000-0002-3220-4505
http://orcid.org/0000-0003-0455-1398
http://orcid.org/0000-0002-0830-4872
http://orcid.org/0000-0002-7055-6181
http://orcid.org/0000-0002-5884-4404
http://orcid.org/0000-0002-0711-4022
http://orcid.org/0000-0001-9236-0748
http://orcid.org/0009-0002-6200-0391
http://orcid.org/0000-0002-7599-2716
http://orcid.org/0000-0001-6700-7950
http://orcid.org/0000-0002-6562-5082
http://orcid.org/0000-0002-5559-8906
http://orcid.org/0009-0003-2737-7983
http://orcid.org/0000-0003-0348-092X
http://orcid.org/0000-0001-9925-5254
http://orcid.org/0000-0002-6669-1698
http://orcid.org/0000-0002-4886-6052
http://orcid.org/0009-0005-3775-1945


 1407 Page 16 of 21 Eur. Phys. J. C          (2025) 85:1407 

J. Ditzel64 , R. Divià32 , Ø.. Djuvsland20, U. Dmitrieva139 , A. Dobrin63 , B. Dönigus64 , J. M. Dubinski134 ,
A. Dubla96 , P. Dupieux125 , N. Dzalaiova13, T. M. Eder124 , R. J. Ehlers73 , F. Eisenhut64 , R. Ejima91 ,
D. Elia50 , B. Erazmus102 , F. Ercolessi25 , B. Espagnon129 , G. Eulisse32 , D. Evans99 , S. Evdokimov139 ,
L. Fabbietti94 , M. Faggin32 , J. Faivre72 , F. Fan6 , W. Fan73 , A. Fantoni49 , M. Fasel86 , G. Feofilov139 ,
A. Fernández Téllez44 , L. Ferrandi109 , M. B. Ferrer32 , A. Ferrero128 , C. Ferrero56c , A. Ferretti24 ,
V. J. G. Feuillard93 , V. Filova34 , D. Finogeev139 , F. M. Fionda52 , F. Flor136 , A. N. Flores107 , S. Foertsch68 ,
I. Fokin93 , S. Fokin139 , U. Follo56c , E. Fragiacomo57 , E. Frajna46 , H. Fribert94, U. Fuchs32 , N. Funicello28 ,
C. Furget72 , A. Furs139 , T. Fusayasu97 , J. J. Gaardhøje82 , M. Gagliardi24 , A. M. Gago100 , T. Gahlaut47,
C. D. Galvan108 , S. Gami79, D. R. Gangadharan114 , P. Ganoti77 , C. Garabatos96 , J. M. Garcia44 ,
T. García Chávez44 , E. Garcia-Solis9 , S. Garetti129, C. Gargiulo32 , P. Gasik96 , H. M. Gaur38, A. Gautam116 ,
M. B. Gay Ducati66 , M. Germain102 , R. A. Gernhaeuser94 , C. Ghosh133, M. Giacalone51 , G. Gioachin29 ,
S. K. Giri133 , P. Giubellino56,96 , P. Giubilato27 , A. M. C. Glaenzer128 , P. Glässel93 , E. Glimos120 ,
D. J. Q. Goh75, V. Gonzalez135 , P. Gordeev139 , M. Gorgon2 , K. Goswami48 , S. Gotovac33 , V. Grabski67 ,
L. K. Graczykowski134 , E. Grecka85 , A. Grelli59 , C. Grigoras32 , V. Grigoriev139 , S. Grigoryan1,140 ,
O. S. Groettvik32 , F. Grosa32 , J. F. Grosse-Oetringhaus32 , R. Grosso96 , D. Grund34 , N. A. Grunwald93,
R. Guernane72 , M. Guilbaud102 , K. Gulbrandsen82 , J. K. Gumprecht101 , T. Gündem64 , T. Gunji122 ,
J. Guo10, W. Guo6 , A. Gupta90 , R. Gupta90 , R. Gupta48 , K. Gwizdziel134 , L. Gyulai46 , C. Hadjidakis129 ,
F. U. Haider90 , S. Haidlova34 , M. Haldar4, H. Hamagaki75 , Y. Han138 , B. G. Hanley135 , R. Hannigan107 ,
J. Hansen74 , J. W. Harris136 , A. Harton9 , M. V. Hartung64 , H. Hassan115 , D. Hatzifotiadou51 , P. Hauer42 ,
L. B. Havener136 , E. Hellbär32 , H. Helstrup37 , M. Hemmer64 , T. Herman34 , S. G. Hernandez114,
G. Herrera Corral8 , S. Herrmann126 , K. F. Hetland37 , B. Heybeck64 , H. Hillemanns32 , B. Hippolyte127 ,
I. P. M. Hobus83 , F. W. Hoffmann70 , B. Hofman59 , M. Horst94 , A. Horzyk2 , Y. Hou6 , P. Hristov32 , P. Huhn64,
L. M. Huhta115 , T. J. Humanic87 , A. Hutson114 , D. Hutter38 , M. C. Hwang18 , R. Ilkaev139, M. Inaba123 ,
M. Ippolitov139 , A. Isakov83 , T. Isidori116 , M. S. Islam47,98 , S. Iurchenko139 , M. Ivanov13, M. Ivanov96 ,
V. Ivanov139 , K. E. Iversen74 , M. Jablonski2 , B. Jacak18,73 , N. Jacazio25 , P. M. Jacobs73 , S. Jadlovska105,
J. Jadlovsky105, S. Jaelani81 , C. Jahnke110 , M. J. Jakubowska134 , M. A. Janik134 , S. Ji16 , S. Jia10 , T. Jiang10 ,
A. A. P. Jimenez65 , F. Jonas73 , D. M. Jones117 , J. M. Jowett 32,96 , J. Jung64 , M. Jung64 , A. Junique32 ,
A. Jusko99 , J. Kaewjai104, P. Kalinak60 , A. Kalweit32 , A. Karasu Uysal137 , D. Karatovic88 , N. Karatzenis99,
O. Karavichev139 , T. Karavicheva139 , E. Karpechev139 , M. J. Karwowska134 , U. Kebschull70 , M. Keil32 ,
B. Ketzer42 , J. Keul64 , S. S. Khade48 , A. M. Khan118 , S. Khan15 , A. Khanzadeev139 , Y. Kharlov139 ,
A. Khatun116 , A. Khuntia34 , Z. Khuranova64 , B. Kileng37 , B. Kim103 , C. Kim16 , D. J. Kim115 , D. Kim103 ,
E. J. Kim69 , J. Kim138 , J. Kim58 , J. Kim32,69 , M. Kim18 , S. Kim17 , T. Kim138 , K. Kimura91 , S. Kirsch64 ,
I. Kisel38 , S. Kiselev139 , A. Kisiel134 , J. L. Klay5 , J. Klein32 , S. Klein73 , C. Klein-Bösing124 , M. Kleiner64 ,
T. Klemenz94 , A. Kluge32 , C. Kobdaj104 , R. Kohara122 , T. Kollegger96, A. Kondratyev140 , N. Kondratyeva139 ,
J. Konig64 , S. A. Konigstorfer94 , P. J. Konopka32 , G. Kornakov134 , M. Korwieser94 , S. D. Koryciak2 ,
C. Koster83 , A. Kotliarov85 , N. Kovacic88 , V. Kovalenko139 , M. Kowalski106 , V. Kozhuharov35 , G. Kozlov38,
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D. Miśkowiec96 , A. Modak57,132 , B. Mohanty79 , M. Mohisin Khan15d , M. A. Molander43 , M. M. Mondal79 ,
S. Monira134 , C. Mordasini115 , D. A. Moreira De Godoy124 , I. Morozov139 , A. Morsch32 , T. Mrnjavac32 ,
V. Muccifora49 , S. Muhuri133 , A. Mulliri22 , M. G. Munhoz109 , R. H. Munzer64 , H. Murakami122 ,
L. Musa32 , J. Musinsky60 , J. W. Myrcha134 , N. B. Sundstrom59, B. Naik121 , A. I. Nambrath18 , B. K. Nandi47 ,
R. Nania51 , E. Nappi50 , A. F. Nassirpour17 , V. Nastase112, A. Nath93 , N. F. Nathanson82, C. Nattrass120 ,
K. Naumov18, M. N. Naydenov35 , A. Neagu19, L. Nellen65 , R. Nepeivoda74 , S. Nese19 , N. Nicassio31 ,
B. S. Nielsen82 , E. G. Nielsen82 , S. Nikolaev139 , V. Nikulin139 , F. Noferini51 , S. Noh12 , P. Nomokonov140 ,
J. Norman117 , N. Novitzky86 , A. Nyanin139 , J. Nystrand20 , M. R. Ockleton117, M. Ogino75 , S. Oh17 ,
A. Ohlson74 , V. A. Okorokov139 , J. Oleniacz134 , A. Onnerstad115 , C. Oppedisano56 , A. Ortiz Velasquez65 ,
J. Otwinowski106 , M. Oya91, K. Oyama75 , S. Padhan47 , D. Pagano55,132 , G. Paić65 , S. Paisano-Guzmán44 ,
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86 Oak Ridge National Laboratory, Oak Ridge, TN, USA
87 Ohio State University, Columbus, OH, USA

123



 1407 Page 20 of 21 Eur. Phys. J. C          (2025) 85:1407 

88 Physics Department, Faculty of science, University of Zagreb, Zagreb, Croatia
89 Physics Department, Panjab University, Chandigarh, India
90 Physics Department, University of Jammu, Jammu, India
91 Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2),

Hiroshima University, Hiroshima, Japan
92 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
93 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
94 Physik Department, Technische Universität München, Munich, Germany
95 Politecnico di Bari and Sezione INFN, Bari, Italy
96 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH,

Darmstadt, Germany
97 Saga University, Saga, Japan
98 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
99 School of Physics and Astronomy, University of Birmingham, Birmingham, UK

100 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
101 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
102 SUBATECH, IMT Atlantique, CNRS-IN2P3, Nantes Université, Nantes, France
103 Sungkyunkwan University, Suwon City, Republic of Korea
104 Suranaree University of Technology, Nakhon Ratchasima, Thailand
105 Technical University of Košice, Košice, Slovak Republic
106 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
107 The University of Texas at Austin, Austin, TX, USA
108 Universidad Autónoma de Sinaloa, Culiacán, Mexico
109 Universidade de São Paulo (USP), São Paulo, Brazil
110 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
111 Universidade Federal do ABC, Santo Andre, Brazil
112 Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti, Bucharest, Romania
113 University of Derby, Derby, UK
114 University of Houston, Houston, TX, USA
115 University of Jyväskylä, Jyväskylä, Finland
116 University of Kansas, Lawrence, KS, USA
117 University of Liverpool, Liverpool, UK
118 University of Science and Technology of China, Hefei, China
119 University of South-Eastern Norway, Kongsberg, Norway
120 University of Tennessee, Knoxville, TN, USA
121 University of the Witwatersrand, Johannesburg, South Africa
122 University of Tokyo, Tokyo, Japan
123 University of Tsukuba, Tsukuba, Japan
124 Universität Münster, Institut für Kernphysik, Münster, Germany
125 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
126 Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
127 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
128 Université Paris-Saclay, Centre d’Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN), Saclay,

France
129 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
130 Università degli Studi di Foggia, Foggia, Italy
131 Università del Piemonte Orientale, Vercelli, Italy
132 Università di Brescia, Brescia, Italy
133 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
134 Warsaw University of Technology, Warsaw, Poland
135 Wayne State University, Detroit, MI, USA
136 Yale University, New Haven, CT, USA
137 Yildiz Technical University, Istanbul, Turkey

123



Eur. Phys. J. C          (2025) 85:1407 Page 21 of 21  1407 

138 Yonsei University, Seoul, Republic of Korea
139 Affiliated with an Institute Formerly Covered by a Cooperation Agreement with CERN, Geneva, Switzerland
140 Affiliated with an International Laboratory Covered by a Cooperation Agreement with CERN, Geneva, Switzerland

a Also at: Max-Planck-Institut fur Physik, Munich, Germany
b Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA),

Bologna, Italy
c Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
d Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
e Also at: Institute of Theoretical Physics, University of Wroclaw, Wrocław, Poland
f Also at: Facultad de Ciencias, Universidad Nacional Autónoma de M.éxico, Mexico City, Mexico

∗ Deceased

123


	Measurement of isolated prompt photon production in pp  and p–Pb collisions at the LHC
	Abstract 
	1 Introduction
	2 ALICE detector
	3 Event selection
	4 Photon reconstruction and identification
	5 Photon isolation
	6 Efficiency correction
	7 Purity correction
	7.1 The ABCD method
	7.2 Template fit method
	7.3 Isolated photon purity

	8 Systematic uncertainties
	9 Results
	10 Conclusions
	Acknowledgements
	References


