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We investigate the geometric measure of quantum discord of all possible bipartite divisions of a 
tripartite system of Dirac fields in noninertial frames. As a comparison, we calculate the geometric 
measure of entanglement. We discuss the properties of geometric measure of quantum discord and 
geometric measure of entanglement for three qubit–qubit subsystems with acceleration parameter and 
the parameter describing the degree of entanglement the system in detail. We have found a conservative 
relationship involving two of three geometric discords in some condition and another conservative 
relationship involving three geometric discords for initially maximally entangled states. By the way, we 
also report some conservative relationships of concurrence, mutual information and geometric measure 
of entanglement for two bipartite subsystems.
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1. Introduction

The theory of relativity and quantum theory form the corner-
stones of modern physics. In addition, the combination of quantum 
theory and information theory further yields quantum information 
theory. Furthermore, the integration of quantum information and 
relativity theory creates the theory of relativistic quantum informa-
tion [1–3], which combines general relativity, quantum field theory 
and quantum information theory. Evidently, the study on the the-
ory of quantum information in a relativistic framework is not only 
helpful for understanding some fundamental questions in quantum 
information theory, but also is practical, because many contempo-
rary experiments on quantum-information processing use photons 
or other particles that have relativistic velocities. In recent years, 
the theory of relativistic quantum information has become a focus 
of research in quantum information science for both conceptual 
and experimental reasons.

Recently, much effort has been made in the study of entan-
glement shared between inertial and noninertial observers by dis-
cussing how the Unruh effect and Hawking effect will influence 
the degree of entanglement. Following some seminal work per-
formed in this regard [4,5], many authors focus on the study of 
entanglement between quantum field modes as observed by rela-
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tively accelerating observers. For example, Q. Pan and J. Jing stud-
ied the degradation of non-maximal entanglement of scalar and 
Dirac fields in non-inertial frames [6]. Mi-Ra Hwang et al. stud-
ied tripartite entanglement in a noninertial frame using π -tangle 
[7]. J. Wang and J. Jing investigated multipartite entanglement of 
fermionic systems in noninertial frames also using π -tangle [8]. 
Due to the resemblance between the Unruh effect [9] and Hawk-
ing radiation [10], some authors also studied the degradation of 
entanglement occurred in black-hole physics. Q. Pan and J. Jing 
have investigated the effect of the Hawking temperature on the 
entanglement and teleportation for the scalar field in a most gen-
eral, static and asymptotically flat black hole with spherical sym-
metry [11]. They also studied entanglement redistribution in the 
Schwarzschild spacetime [12].

Though most studies in noninertial systems have focused on 
the entanglement, however, it has been found that the entangle-
ment is not the only characteristic of a quantum system, and it 
has no advantage for some quantum information tasks. In some 
cases [13–15], although there is no entanglement, certain quan-
tum information processing tasks can still be done efficiently by 
using quantum correlation [16–18], which is believed to be more 
workable than the entanglement. Quantum correlation may be 
quantified by quantum discord rather than by entanglement. The 
quantum discord, initially introduced by Ollivier and Zurek [16]
and by Henderson and Vedral [17], is a measure of quantum cor-
relations that extends beyond entanglement. M. Ali et al. found the 
Quantum discord for two-qubit X states [19]. J. Wang et al. studied 
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classical correlation and quantum discord sharing of Dirac fields in 
noninertial frames [20]. C.C. Rulli et al. studied the global quan-
tum discord in multipartite systems [21]. A. Datta investigated the 
quantum discord between relatively accelerated observers [22].

The above studies show the calculation of quantum discord in-
volves a difficult optimization procedure: it is difficult to obtain 
analytical results except for a few families of two-qubit states [19,
23,24]. Therefore, Dakić et al. proposed a geometric measure of 
quantum discord [25], which also was called a geometric discord 
[26–28].

Before we start discussing our subject, we notice that recently 
there was a debate on the geometric measure of quantum dis-
cord [29]. M. Piani argued that the geometric measure of quantum 
discord is not a good measure for the quantum correlations. A de-
tailed discussion about this issue in detail is beyond the scope of 
this paper. Here, we will still use the geometric discord to study 
bipartite correlations presented in three two-qubit subsystems of 
the tripartite system in a noninertial frame.

In this paper we are going to consider the following situation. 
Alice and Rob share an entangled state initially when they are not 
moving relatively. Subsequently, Rob moves with a uniform accel-
eration with respect to Alice. This system is a bipartite from an 
inertial perspective, but from a noninertial perspective an extra set 
of complementary modes in Rindler region II becomes relevant. 
Therefore, we calculate the geometric measure of quantum discord 
in all possible bipartite divisions of the tripartite system: the mode 
A described by Alice, the mode I in Rindler region I (described by 
Rob), and the complementary mode I I in Rindler region I I . For 
comparison, we also derived the analytic expressions of geometric 
measure of entanglement [30,31] as a function of Rob’s acceler-
ation for the same system. Our results revealed that geometric 
measure of quantum discord gives the similar global properties 
as geometric measure of entanglement does for the system under 
consideration, but in some respect, the description of the system 
using geometric discord are more detailed than using other mea-
sures. More important, we report some conservative relationship 
of geometric discord, concurrence and mutual information in non-
inertial frame.

This paper is organized as follows. In the next section, we 
give a short review of geometric measure of quantum discord and 
geometric measure of entanglement. In Section 3 we derive the 
analytic expressions of geometric discord. Section 4 devotes to cal-
culate the geometric measure of entanglement and compares two 
kinds of geometric measures. A detailed discussion and summary 
are given in Section 5.

2. Brief review of geometric measure of quantum discord and 
geometric measure of entanglement

For convenience of later use, we give a brief review of ge-
ometric measure of quantum discord and geometric measure of 
entanglement, respectively.

Quantum discord is a quantum-versus-classical paradigm for 
correlations [32–34] and is not in the entanglement-versus-
separability framework [35,36]. The quantum discord of a bipartite 
state ρ on a system Ha ⊗ Hb with marginals ρa and ρb can be 
expressed as

Q (ρ) = min
�a

{I(ρ) − I(�a(ρ))}. (1)

Here the minimum is over von Neumann measurements (one-
dimensional orthogonal projectors summing up to the identity) 
�a = {�a

k} on subsystem a, and

�a(ρ) =
∑

(�a
k ⊗ Ib)ρ(�a

k ⊗ Ib) (2)

k

is the resulting state after the measurement. I(ρ) = S(ρa) +
S(ρb) − S(ρ) is the quantum mutual information, S(ρ) = − trρ lnρ
is the von Neumann entropy, and Ib is the identity operator on 
Hb . Then, Dakić et al. proposed the following geometric measure 
of quantum discord [25]:

D(ρ) = min
χ

‖ρ − χ‖2
2, (3)

where the minimum is over the set of zero-discord states [i.e., 
Q (χ) = 0] and ‖A‖2 :=

√
tr(A† A) is the Frobenius or Hilbert–

Schmidt norm. The density operator of any two-qubit state can be 
expressed as

ρ = 1

4

⎛
⎝IA ⊗ IB +

3∑
i=1

(xiσi ⊗ IB + IA ⊗ yiσi) +
3∑

i, j=1

ti jσi ⊗ σ j

⎞
⎠ ,

(4)

where {σi, i = 1, 2, 3} denote the Pauli spin matrices. Then, the 
geometric measure of quantum discord of any two-qubit state is 
evaluated as

D(ρ) = 1

4
(‖x‖2 + ‖T‖2 − kmax), (5)

where x := (x1, x2, x3)
t is a column vector, ‖x‖2 := ∑

i x2
i , xi =

tr(ρ(σi ⊗ Ib)), T := (ti j) is a matrix and ti j = tr(ρ(σi ⊗σ j)), kmax is 
the largest eigenvalue of matrix xxt + TTt .

Since Dakić et al. proposed the geometric measure of quan-
tum discord, many authors extended Dakić’s results to the general 
bipartite states. Luo and Fu evaluated the geometric measure of 
quantum discord for an arbitrary state and obtained an explicit 
formula

D(ρ) = tr(CCt) − max
A

tr(ACCt At), (6)

where C = (ci j) is an m2 × n2 matrix, given by the expansion ρ =∑
ci j Xi ⊗ Y j in terms of orthonormal operators Xi ∈ L(Ha), Y j ∈

L(Hb) and A = (aki) is an m ×m2 matrix given by aki = tr |k〉〈k|Xi =
〈k|Xi |k〉 for any orthonormal basis |k〉 of Ha . They also gave a tight 
lower bound for geometric discord of arbitrary bipartite states [37]. 
Recently, a different tight lower bound for geometric discord of ar-
bitrary bipartite states was given by S. Rana et al. [26], and Ali 
Saif M. Hassan et al. [38] independently. Alternatively, D. Girolami 
et al. found an explicit expression of geometric discord for two-
qubit system and extended it to (2 

⊗
d)-dimensional systems [27]. 

T. Tufarelli et al. also gave another formula of geometric discord 
for qubit–qudit system, which is available to (2 

⊗
d)-dimensional

systems including d = ∞ [28].
On the other hand, geometric measure of entanglement was 

first proposed by T.C. Wei et al. [30,31]. For pure states it is de-
fined as follows:

E g(|ψ〉) = 1 − �2
max = 1 − max

φ
|〈ψ |φ〉|2 (7)

where |φ〉 is an arbitrary separable pure state and the maximiza-
tion is done over the set of |φ〉. For mixed states ρ , the geometric 
measure of entanglement was originally defined via the convex 
roof construction, in the same way as was done for the entan-
glement of formation:

E g(ρ) = min
∑

i

pi E g(|ψi〉) (8)

with minimization over all pure state decompositions of ρ . Cal-
culation of geometric measure needs to find the entanglement 
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eigenvalue �max . For bipartite pure states, this is a linear problem. 
However, generally speaking, for the case of three or more parts, 
the eigenproblem becomes nonlinear. Fortunately, using a theorem 
stating that any reduced (n − 1)-qubit state uniquely determines 
the geometric measure of the original n-qubit pure state [39], 
L. Tamaryan et al. obtained an analytic expressions for geomet-
ric measure of three-qubit pure states [40]. For arbitrary two-qubit 
mixed states, the following analytical expression has been obtained 
[30],

E g(ρ) = 1

2

[
1 −

√
1 − C(ρ)2

]
, (9)

here the concurrence C(ρ) is given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (10)

where λi are the square roots of the eigenvalues of ρ · ρ̃ in decreas-
ing order, and ρ̃ is defined as ρ̃ = (σy ⊗σy)ρ

∗(σy ⊗σy). For most 
quantum states, except for a few special cases, such as generalized 
Werner states, isotropic states [30], no exact expression for geo-
metric measure of entanglement is known. Therefore, A. Streltsov 
et al. developed a numerical algorithm to calculate the geometric 
measure of entanglement for any multipartite mixed state [41].

3. Geometric discord for Dirac fields in noninertial frames

We assume that Alice and Rob share initially the entangled 
state in an inertial frame,

|ψ〉AR = α|0A0R〉 +
√

1 − α2|1A1R〉. (11)

After sharing his own qubit, Rob moves with respect to Alice with 
a uniform acceleration a. Using the single-mode approximation, 
Rob’s vacuum and one-particle states |0R 〉 and |1R 〉 in Minkowski 
space are transformed into [5]

|0R〉 → cos r|0I 0I I 〉 + sin r|1I 1I I 〉,
|1R〉 → |1I 0I I 〉, (12)

where r is the acceleration parameter, which is in the range 0 ≤
r ≤ π/4 for 0 ≤ a ≤ ∞, |nI 〉 and |nI I 〉(n = 0, 1) are the mode de-
composition in the two causally disconnected regions in Rindler 
space. Using Eq. (12), we obtain

|ψ〉A,I,I I = α|0A〉 ⊗ (cos r|0I 0I I 〉 + sin r|1I 1I I 〉)
+

√
1 − α2|1A1I 0I I 〉, (13)

and corresponding density operator

ρA,I,I I = α2 cos2 r|0A0I 0I I 〉〈0A0I 0I I |
+ α2 sin2 r|0A1I 1I I 〉〈0A1I 1I I |
+ α

√
1 − α2[(cos r|0A0I 0I I 〉 + sin r|0A1I 1I I 〉)〈1A1I 0I I |

+ |1A1I 0I I 〉(cos r〈0A0I 0I I | + sin r〈0A1I 1I I |)]
+ α2 cos r sin r(|0A1I 1I I 〉〈0A0I 0I I |
+ |0A0I 0I I 〉〈0A1I 1I I |)
+ (1 − α2)|1A1I 0I I 〉〈1A1I 0I I |. (14)

Taking the trace over the mode in region I I , we obtain a mixed 
density operator between Alice and mode I ,

ρA,I = α2(cos2 r|0A0I 〉〈0A0I | + sin2 r|0A1I 〉〈0A1I |)
+ α

√
1 − α2 cos r(|1A1I 〉〈0A0I | + |0A0I 〉〈1A1I |)

+ (1 − α2)|1A1I 〉〈1A1I |. (15)
Recall that Pauli spin matrices can be expressed by Dirac nota-
tion,

σ a
x = |0a〉〈1a| + |1a〉〈0a|, (16a)

σ a
y = i(|1a〉〈0a| − |0a〉〈1a|), (16b)

σ a
z = |0a〉〈0a| − |1a〉〈1a|, (16c)

where σ a
x (x = 1, 2, 3) is Pauli spin matrix expressed by basis vec-

tors |0a〉 and |1a〉 of qubit a (a = A, I, I I). To calculate D(ρA,I ), we 
first calculate vector x and matrix T and obtain

x = (0,0,2α2 − 1)t (17)

and

T =
⎛
⎝ 2α

√
1 − α2 sin r 0 0

0 2α
√

1 − α2 sin r 0
0 0 2α2 cos2 r − 1

⎞
⎠ .

(18)

It is easy to find XXt + T T t has two eigenvalues {4α2(1 −
α2) cos2 r, (2α2 − 1)2 + (2α2 cos2 r − 1)2}. Substituting these and 
x as well as T into Eq. (5) and doing some simplification, we ob-
tain the geometric measure of quantum discord between mode A 
and mode I.

D(ρA,I ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2α2(1 − α2) cos2 r,
4 + α4[15 + cos(4r)] ≥ 16α2;

1
8 {4 + α4[7 + cos(4r)]

− 8α2[1 − (1 − α2) cos(2r)])},
otherwise.

(19)

To investigate quantum discord in this system in more detail we 
must further consider other two quantum correlations of bipartite 
mixed-state subsystems besides the quantum discord between the 
Minkowski mode A and Rindler mode I. In the following, we calcu-
late the geometric measure of quantum discord between mode A 
and mode II as well as between mode I and mode II. Tracing over 
the mode in region I(A), we obtain the density operators ρA,I I and 
ρI,I I

ρA,I I = α2 cos2 r|0A0I I 〉〈0A0I I |
+ [(1 − α2)|1A0I I 〉 + α

√
1 − α2 sin r|0A1I I 〉]〈1A0I I |

+ α sin r(
√

1 − α2|1A0I I 〉 + α sin r|0A1I I 〉)〈0A1I I |,
(20)

ρI,I I = α2 cos2 r|0I 0I I 〉〈0I 0I I | + α2 sin2 r|1I 1I I 〉〈1I 1I I |
+ α2 cos r sin r(|1I 1I I 〉〈0I 0I I | + |0I 0I I 〉〈1I 1I I |)
+ (1 − α2)|1I 0I I 〉〈1I 0I I |. (21)

Using the same procedure as calculating the geometric measure of 
quantum discord between mode A and mode I, we obtain geomet-
ric measure of quantum discord between mode A and mode II and 
one between mode I and mode II,

D(ρA,I I ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2α2(1 − α2) sin2 r,
4 + α4[15 + cos(4r)] ≥ 16α2;

1
8 {4 + α4[7 + cos(4r)]

− 8α2[1 + (1 − α2) cos(2r)]},
otherwise.

(22)
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Fig. 1. (Color online.) Plots of geometric measure of quantum discord and entangle-
ment D(ρA,I ) and E g (ρA,I ) as functions of r between Alice and Rob in region I for 
|α| = 1/2 (dashed and blue); |α| = 1/

√
2 (thick and red); |α| = √

7/8 (dotted and 
black).

Fig. 2. (Color online.) Plots of geometric measure of quantum discord and en-
tanglement D(ρA,I I ) and E g (ρA,I I ) as functions of r between Alice and anti-Rob 
in region II for |α| = 1/2 (dashed and blue); |α| = 1/

√
2 (thick and red); |α| =√

7/8 (dotted and black).

D(ρI,I I )

=

⎧⎪⎪⎨
⎪⎪⎩

1
2α4 sin2(2r),

α2{α2[5 + cos(4r)] − 2(1 − α2) cos(2r) − 6} ≥ −2;
1
2 {1 + α2[3α2 − 3 − (1 − α2) cos(2r)]},

otherwise.

(23)

For the special case that Alice and Rob shared initially the max-
imally entangled state, which means |α| = 1√

2
, Eqs. (19), (22), (23)

reduce to

D(ρA,I ) = 1

4
cos2 r

(
1 + cos2 r

)
; (24a)

D(ρA,I I ) = 1

4
sin2 r

(
1 + sin2 r

)
; (24b)

D(ρI,I I ) = 1

4
sin2 r. (24c)

To analyze the properties of D(ρA,I ), D(ρA,I I ) and D(ρI,I I ) we can 
calculate derivatives of them with respect to r and α2. We find 
that D(ρA,I ) is monotone decreasing function of r, but D(ρA,I I )

and D(ρI,I I ) are monotone increasing functions of r for all values 
of 0 ≤ |α| ≤ 1, respectively. The behaviors of D(ρA,I ), D(ρA,I I ) and 
D(ρI,I I ) with |α| are more complicated than that of them with r. 
D(ρA,I ), D(ρA,I I ), D(ρA,I I ) increase with increasing of |α| for some 
α and r, but otherwise they are decrease with increasing of |α|. To 
further demonstrate these properties, we plot D(ρx,y) (hereafter in 
this paper {x,y} = {A, I}, {A, II} and {I, II}) as functions of accelera-
tion parameter r for some typical values of |α| on the left sides in 
Figs. 1–3, and D(ρx,y) as functions of parameter α2 for some typi-
cal values of acceleration parameter r on the left sides in Figs. 4–6, 
respectively.

4. Comparison with geometric measure of entanglement

For further understanding the quantum discord of the sys-
tem consisted of Alice and Rob’s modes I and II, we shall calcu-
late the geometric measure of entanglement for the same sys-
tem and compare the results of two kind geometric measures. 
Fig. 3. (Color online.) Plots of geometric measure of quantum discord and entangle-
ment D(ρI,I I ) and E g (ρI,I I ) as functions of r between the modes in regions I and 
II for |α| = 1/2 (dashed and blue); |α| = 1/

√
2 (thick and red); |α| = √

7/8 (dotted 
and black).

Fig. 4. (Color online.) Plots of geometric measure of quantum discord and entangle-
ment D(ρA,I ) and E g(ρA,I ) as functions of α2 between Alice and Rob in region I for 
acceleration parameter r = 0 (dot-dashed and green); r = π/12 (dashed and blue); 
r = π/6 (thick and red); r = π/4 (dotted and black).

In the following, we calculate geometric measures of entangle-
ment for ρA,I , ρA,I I , ρI,I I , respectively. It is easy to find C(ρA,I ) =
2α

√
1 − α2 cos r, C(ρA,I I ) = 2α

√
1 − α2 sin r and C(ρI,I I ) =

α2 sin(2r). Substituting these concurrences into Eq. (9), we obtain 
E g for ρA,I , ρA,I I , ρI,I I , respectively,

E g(ρA,I ) = 1

2

(
1 −

√
1 − 4α2(1 − α2) cos2 r

)
, (25)

E g(ρA,I I ) = 1

2

(
1 −

√
1 − 4α2(1 − α2) sin2 r

)
, (26)

E g(ρI,I I ) = 1

2

(
1 −

√
1 − α4 sin2(2r)

)
. (27)

For the special case |α| = 1√
2

, Eqs. (25), (26), (27) reduce to

E g(ρA,I ) = 1

2
(1 − sin r); (28a)

E(ρA,I I ) = 1

2
(1 − cos r); (28b)

E g(ρI,I I ) = 1

2

(
1 −

√
1 − sin2 r cos2 r

)
. (28c)

To compare the geometric measure of the quantum discord 
with geometric measure of entanglement we also plot E g(ρx,y) as 
functions of acceleration parameter r for some typical values of α2

on the right sides in Figs. 1–3, and E g(ρx,y) as functions of param-
eter α2 for some typical values of acceleration parameter r on the 
right sides in Figs. 4–6, respectively. Figs. 1–3 show that E g(ρA,I )

is decreasing function of r, but E g(ρA,I I ) and E g(ρI,I I ) are increas-
ing functions of r for α2 ≤ 1, respectively. Meanwhile, Figs. 4–6
show that E g(ρA,I ) and E g(ρA,I I ) first increase to their maximum 
values at α = 1/

√
2, then decrease to 0 at |α| = 1, respectively, but 

E g(ρI,I I ) always increases with the increase of |α|.
As for the special case α2 = 1/2, we plot D(ρx,y) and E g(ρx,y)

as functions of an acceleration parameter r for |α| = 1√
2

on the 
left side and right side, respectively, in Fig. 7, which shows that 
D(ρx,y) and E|g(ρx,y) have similar behavior with r, and D(ρx,y) ≥
E g(ρx,y) always hold for the same ρx,y .
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Fig. 5. (Color online.) Plots of geometric measure of quantum discord and entan-
glement D(ρA,I I ) and E g(ρA,I I ) as functions of α2 between Alice and anti-Rob in 
region II for acceleration parameter r = 0 (dot-dashed and green); r = π/12 (dashed 
and blue); r = π/6 (thick and red); r = π/4 (dotted and black).

Fig. 6. (Color online.) Plots of geometric measure of quantum discord and entangle-
ment D(ρI,I I ) and E g (ρI,I I ) as functions of α2 between the modes in regions I and 
II for acceleration parameter r = 0 (dot-dashed and green); r = π/12 (dashed and 
blue); r = π/6 (thick and red); r = π/4 (dotted and black).

Fig. 7. (Color online.) Plots of geometric measure of quantum discord and entangle-
ment D(ρA,I ), D(ρA,I I ), D(ρI,I I ) and E g (ρA,I ), E g (ρA,I I ), E g (ρI,I I ) as functions of r. 
D(ρA,I ) and Eg(ρA,I ): thick and red; D(ρA,I I ) and Eg(ρA,I I ): dashed and blue; 
D(ρI,I I ) and Eg(ρI,I I ): dotted, black.

5. Discussion and summary

We now discuss D(ρx,y) and E g(ρx,y) obtained in Section 3
and Section 4 in detail. First, Figs. 1–3 show D(ρA,I ) is the de-
creasing function of an acceleration parameter r, while D(ρA,I I )

and D(ρI,I I ) are increasing functions of r for all α. D(ρA,I ) de-
creases from 2α2(1 − α2) when r = 0 to α2(1 − α2) for α ≤√

7(4 − √
2)/7 ≈ 0.675 or α ≥

√
7(4 + √

2)/7 ≈ 0.829, alterna-

tively to (2 − 4α2 + 3α4)/4 for other cases, respectively, when 

r = π/4. We noticed that for the case α ≤
√

7(4 − √
2)/7 or 

α ≥
√

7(4 + √
2)/7 and acceleration go to infinity, both D(ρA,I )

and D(ρA,I I ) equal the half of D(ρA,I ) at r = 0. D(ρA,I I ) increases 
from 0 when r = 0 to the same value of D(ρA,I ) at r = π/4. 
D(ρI,I I ) increases from 0 when r = 0 to α4/2 when |α| ≤ 1/

√
2, 

or (1 − 3α2 + 3α4)/2 for 1/
√

2 < |α| ≤ 1 at r = π/4.
Figs. 1–3 also show E g(ρx,y) as functions of r has the same 

properties of D(ρx,y). It means that E g(ρA,I ) is the decreas-
ing function of an acceleration parameter r, but E g(ρA,I I ) and 
E g(ρ1,I I ) are increasing functions of r for all α. E g(ρA,I ) decreases 
from (1 − |1 − 2α2|)/2 when r = 0 to (1 − √

1 − 2α2 + 2α4)/2
when r = π/4. E g(ρA,I I ) and E g(ρI,I I ) increase from 0 at r = 0 to 
(1 − √

1 − 2α2 + 2α4)/2 and (1 − √
1 − α4)/2, respectively, when 

r = π/4. We noticed D(ρA,I ) = D(ρA,I I ) and E g(ρA,I ) = E g(ρA,I I ), 
which are not zero, when r = π/4.
Fig. 8. (Color online.) The plot of the region (red) where conservative relation (31)
valids.

Second, we investigate how D(ρx,y) and E g(ρx,y) vary with 
parameter α for the same r. In this case, E g(ρx,y) have simpler 
relations with |α| than D(ρx,y) have. Figs. 4–6 show E g(ρA,I ) and 
E g(ρA,I I ) increase from 0 when α = 0 to their maximum values 
(1 − sin r)/2 and (1 − cos r)/2 at |α| = 1/

√
2, respectively, then de-

crease to 0 at |α| = 1 for all r. Meanwhile, E g(ρI,I I ) increases from 
0 at r = 0 to sin2 r at r = π/4. The global behavior of D(ρx,y) with 
|α| is similar to that of E g(ρx,y) with |α|, but it is more compli-
cated than that of E g(ρx,y) in the details, which can be seen from 
Figs. 4–6. When α varies from 0 to its maximum value 1, except 
for the case of r = 0, D(ρA,I ) and D(ρA,I I ) first increase from 0
to their first maximum, then decrease to their minimums, after-
wards increase to their second maximum again, finally reduce to 
0 for a fixed r. The positions of maximum and minimum points 
of D(ρA,I ) and D(ρA,I I ) for α depend on values of α and r. In 
contrast, D(ρI,I I ) increases to a maximum, then decreases to a 
minimum, finally increases to 2 sin2 r cos2 r when α increases form 
0 to 1.

Third, we find there are some conservative relations for con-
currence, mutual information, geometric measure of entanglement 
and geometric measure of quantum discord. We have obtained 
concurrences C(ρA,I ), C(ρA,I I ) and C(ρI,I I ) in Section 4. It is easy 
to check that C(ρA,I (r))2 + C(ρA,I I (r))2 = C(ρA,I (0))2. In the sim-
ilar way we have also found I(ρA,I (r)) + I(ρA,I I (r)) = I(ρA,I (0)), 
where I(ρx,y) = S(ρx) + S(ρy) − S(ρx,y) is the mutual information 
and S(ρ) = − Tr(ρ log2 ρ) is the entropy of the density matrix ρ . 
Refs. [5,6,12] have calculated the concurrence and the mutual in-
formation, but unfortunately, these two conservative relations were 
not presented. Using the conservative relation of the concurrence 
C(ρ) and Eq. (9) we can further find the conservative relation of 
geometric measure of entanglement:
[

E g(ρA,I (r)) − 1

2

]2

+
[

E g(ρA,I I (r)) − 1

2

]2

=
[

E g(ρA,I (0)) − 1

2

]2

+ 1

4
. (29)

Geometric measures of quantum discord D(ρA,I ) and D(ρA,I I )

have also a conservative relation under some conditions. From 
Eq. (19) and Eq. (22) we see when

α4[15 + cos(4r)] + 4 > 16α2, (30)

D(ρA,I (r)) + D(ρA,I I (r)) = D(ρA,I (0)). (31)

Unlike Eq. (29), which holds for all allowable r and α, Eq. (31)
is restricted by Eq. (30). Fortunately, Eq. (31) is valid in the most 
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of the region 0 ≤ α ≤ 1 and 0 ≤ r ≤ π/4. We have plotted the 
valid region of α and r for Eq. (31) in Fig. 8, which shows just in 
a very narrow strip area around α = 1/

√
2 Eq. (31) is not valid. 

Therefore, Eq. (31) is not applicable for α = 1/
√

2 except for r = 0. 
It is notable that above conservative relationships do not involve 
measurements related to ρI,I I (r). This can only be imputed to Un-
ruh effect that makes Rob causally disconnected from mode I I . 
Though, there is no conservative relation between geometric mea-
sures of quantum discord D(ρA,I ) and D(ρA,I I ) for α = 1/

√
2, but 

for this case, there exists a more general conservative relation. 
From Eqs. (24) we can easily obtain

D(ρA,I (r)) − D(ρA,I I (r)) + 4D(ρI,I I (r))

= D(ρA,I (0)) = 1

2
, for |α| = 1√

2
. (32)

We could understand why D(ρA,I ) is the decreasing function of an 
acceleration parameter r, while D(ρA,I I ) and D(ρI,I I ) are increas-
ing functions of r for all α’ partially from Eqs. (29), (31), (32).

Fourth, we noticed that the equation of dividing lines between 
the red region and the white region in Fig. 8 is

F (α, r) = α4[15 + cos(4r)] + 4 − 16α2 = 0, (33)

which is just the critical condition that makes D(ρA,I ) and 
D(ρA,I I ) take the different forms depending on α and r in Eq. (19)
and Eq. (22), respectively. It is easy to find: Fα(α, r) = Fr(α, r) =
0, where Fx = ∂ F/∂x, at points (α = 1/

√
2, r = 0) and (α =

2/
√

7, r = π/4). Therefore, these two points are singular points 
of the curve expressed by Eq. (33) [42]. We can further obtain 
Fαα(α, r) = 64, Frr(α, r) = 256/49 ≈ 5.22449, Fαr(α, r) = 0 and 
Fαα(α, r)Frr(α, r) − Fαr(α, r)2 = 16 384/49 ≈ 334.367 > 0 at the 
point (α = 2/

√
7, r = π/4), so, this point is an isolated point. On 

the other hand, Fαα(α, r) = 64, Frr(α, r) = −4, Fαr(α, r) = 0 and 
Fαα(α, r)Frr(α, r) − Fαr(α, r)2 = −256 < 0 at (α = 1/

√
2, r = 0), 

which show that the point (α = 1/
√

2, r = 0) is a node. The curve 
has two distinct tangents with the slopes ±4 at the node as shown 
in Fig. 8. Using the same procedure, we can also find that the curve 
expressed as α2{α2[5 + cos(4r)] − 2(1 − α2) cos(2r) − 6} + 2 = 0, 
which is the critical condition that makes D(ρI,I I ) take the differ-
ent forms depending on α and r, has two singular points: one is 
an isolated point at (2/

√
7, π/4); another is a node, which also 

at (1/
√

2, 0) and has two distinct tangents with the slopes ±4. 
Above analysis demonstrates that any bipartite states of the tri-
partite system, which initially maximally entangled, are singular 
points for the geometric discord. On the contrary, there are no sin-
gular points for geometrical measure of entanglement in the case 
considered here.

Summarizing, based on a general initially entangled state in-
stead of the maximally entangled state shared by Alice and Rob, 
we have derived analytical expressions of geometric measures of 
quantum discord for Dirac field in noninertial frames and dis-
cussed the behaviors of them with acceleration and entanglement 
parameter α. To have an insight into our results, we also calculated 
the geometric measure of entanglement for the same system and 
compared the results of two kinds of geometric measure. More-
over, we paid special attention to the case of initially maximally 
entangled state. We found: (1) Both D(ρA,I ) and E g(ρA,I ) are de-
creasing functions of acceleration, on the contrary, D(ρA,I I ) and 
D(ρI,I I ), E g(ρA,I I ) and E g(ρI,I I ) are increasing functions of ac-
celeration. These properties are independent of α and similar to 
other measurements, such as tangle and mutual information [5]. 
(2) D(ρA,I ) and D(ρA,I I ) simultaneously converged to the same 
non-zero values, which depends on α, when acceleration tends to 
infinity, so do E g(ρA,I ) and E g(ρA,I I ). (3) Even though D(ρx,y) and 
E g(ρx,y) globally have the similar trend with α for a given r, but 
the relation between D(ρx,y) and α is more complicated than that 
between E g(ρx,y) and α. (4) Besides conservative relationships of 
concurrence, mutual information and geometric measure of entan-
glement related to ρA,I and ρA,I I , which independent of α and 
acceleration, there also has a conservative relationship between 
D(ρA,I ) and D(ρA,I I ), which is valid in the most of the area in 
the α–r plane except for a strip region containing α = 1/

√
2. Ad-

ditionally, there is a general conservative relationship, as shown by 
Eq. (32), among D(ρA,I ), D(ρA,I I ) and D(ρI,I I ) for initially max-
imally entangled states. Furthermore, we have found that three 
bipartite states of the tripartite state generated by initially max-
imally entangled states are singular points for the geometric dis-
cord when r = 0. Though we cannot further give a deeper physi-
cal reasonable explanation for these conservative relationships and 
singularity at the moment, but with physical intuition, we have a 
premonition that these results certainly have some potential and 
important meanings. Therefore, they need to be further studied.
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