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Abstract: We present a quantum Otto engine model alternatively driven by a hot and a cold heat

reservoir and consisting of two isochoric and two adiabatic strokes, where the adiabatic expansion or

compression is realized by adiabatically changing the shape of the potential. Here, we show that such

an adiabatic deformation may alter operation mode and enhance machine performance by increasing

output work and efficiency, even with the advantage of decreasing work fluctuations. If the heat

engine in the sudden limit operates under maximal power by optimizing the control parameter, the

efficiency shows certain universal behavior, η∗ = ηC/2 + η2
C/8 + O(η3

C), where ηC = 1 − βr
h/βr

c is

the Carnot efficiency, with βr
h(βr

c) being the inverse temperature of the hot (cold) reservoir. However,

such efficiency under maximal power can be produced by our machine model in the regimes where

the machine without adiabatic deformation can only operate as a heater or a refrigerator.

Keywords: quantum Otto engine; adiabatic deformation; power; efficiency; fluctuations

1. Introduction

Heat engines should ideally have good performance in finite time [1–6], and operate
stably [7–10] by exhibiting small fluctuations. Quantum heat engines [11–29] were observed
to operate with novel performance beyond their classical counterparts. These devices
with a limited number of freedoms are exposed to not only thermal fluctuations, but
also quantum fluctuations related to discrete energy spectra [30–36]. Both fluctuation
mechanisms question the stable operation quantum heat engines [30,32,33]. Thermal
design and optimization of quantum heat engines [37–39] are, therefore, expected to be
considered in order for both good performance and stability, and they constitute one of the
central issues in quantum thermodynamics [40–42].

To describe the machine performance, there are usually two benchmark parame-
ters: [2,8,17,27,32]: the thermodynamic efficiency η = 〈w〉/〈qh〉, where 〈w〉 is the average
work output per cycle and 〈qh〉 is the average heat released from the hot reservoir, and
the power P = 〈w〉/τcyc, with the cycle period τcyc. Ideally, both these two quantities
should have large values for excellent performance, but there is always a power–efficiency
trade-off dilemma [43–49]. An important issue is, hence, that of optimizing the heat engines
by ensuring their efficiency under maximal power [1,2,7,11,20,50,51].

Discreteness of energy levels, due to quantization, may significantly improve the
performance of a quasi-static quantum Otto cycle [19,31,32,52–54] when an inhomogeneous
shift of energy levels occurs along an isentropic, adiabatic stroke [54,55]. However, the
question as to how such a shift (due to adiabatic deformation of potential) affects a quantum
heat engine in the finite-time cycle period, as hinted at in [54], has not previously been
answered. Moreover, the random transitions between discrete energy levels are responsi-
ble for quantum fluctuations, which dominate at low enough temperatures. A question
naturally arises: what is the influence of such adiabatic deformation of potential, related to
discrete energy spectra, on the relative power fluctuations that measure engine stability?
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As we demonstrate, machine efficiency can be improved via controlling the shape of the
potential, without sacrificing of machine stability.

In this paper, we study a quantum version of the Otto engine model, which consists
of a single particle confined in two different potentials and which works between two
heat reservoirs of constant inverse temperatures βr

h and βr
c (>βr

h). We analyze the engine
performance by determining the efficiency and power with respect to the times spent on
the two isochoric strokes and adiabatic deformation parameters. Assuming that only the
two lowest energy levels are populated, we show that the adiabatic shape deformation
of the potential operates as a heat engine in regions where its counterpart, without the
deformation, works as a heater or a refrigerator. We find that the adiabatic deformation
enhances performance, as well as stability, through appropriately selecting the forms of
the two trapping potentials. We highlight that, in the sudden limit where the total time
spent on the two adiabatic strokes is negligible, the efficiency at maximum power of our
model shows universal behavior: η∗ = ηC/2 + η2

C/8 + O(η3
C), with Carnot efficiency of

ηC = 1 − βr
h/βr

c. Yet, such optimized efficiency can be obtained in the regions where the
machine, in the absence of adiabatic deformation, cannot operate as a heat engine.

2. A Single Particle in a Power-Law Trap

We consider a single particle with mass m confined in a one-dimensional power-law
trapping potential V(x) along x direction with

V(x) ∼ x3/θ . (1)

This simple class of traps covers, for instance, harmonic (θ = 3/2), spherical–quadrupole
(θ = 3), and infinite potential (θ = 0) traps. The Hamiltonian system, Ĥ = p̂2/2m + V(x),
with momentum operator p̂, can be written in terms of a single particle energy spectrum εn,

Ĥ = ∑
n

εn â†
n ân, (2)

where â†
n (ân) is the creation (annihilation) operator, with single-particle quantum number n.

Thus, â†
n ân is the particle number operator with quantum number n. Throughout the paper

we set h̄ ≡ 1 for simplicity. The energy spectrum can be written as εn = 〈n|Ĥ|n〉 = ωnσ.
Here, ω is the energy gap between the ground state and the first excited state (which
we call the energy gap, for simplicity, in what follows), and σ (>0) is called the potential
exponent [56], which is determined by the parameter θ in Equation (1) (For the one-
dimensional trapped system in the x direction, the time-independent Schrödinger equation
may be written as [ p̂2/2m + V(x)]Ψn(x) = εnΨn(x), where εn are the energy eigenvalues
and Ψn are eigenfunctions. For example, for a single particle confined in a box trap which
reads V(x) = 0 for 0 ≤ x ≤ L and V(x) = ∞ [due to θ = 0 with θ defined in Equation (1)]
otherwise, the energy spectrum is obtained as εn = n2π2/(2mL2). When the single particle
is confined in a harmonic trap with θ = 2/3, the potential becomes V(x) = ωx2/2, leading
to εn = (1/2 + n)ω. The energy eigenvalues εn = ωnσ are determined by the trapping
potential V(x), and the shape of trapping potential associated with θ can be captured well
by the so-called trap exponent σ.) and is, thus, dependent on the shape of the external
potential. For example, for a one-dimensional harmonic trap σ = 1 and εn = nω , where
ω is the trap frequency, and for a one-dimensional infinite deep potential (also called a
one-dimensional box trap) with length L, σ = 2 and εn = n2ω, where ω ≡ π2/(2mL2).

The expressions for creation and annihilation operators (â†
n and ân) in Equation (2)

depend on the trapping potential under consideration. A typical example is that a single
particle is confined in a one-dimensional infinite potential well, which is given by V(x) = 0
for 0 ≤ x ≤ L and V(x) = ∞ otherwise. The state wave function of a trapped particle
reads Ψn(s) = |n〉 =

√
2/L sin(ns) with s = πx/L when 0 ≤ s ≤ π. The creation

and annihilation operators for the system should satisfy â†
n|n〉 ∼ |n + 1〉 and ân|n〉 ∼

|n − 1〉 [57]. In view of the fact that dψn(s)/ds =
√

2/L ncos(ns), we define the creation
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and annihilation operators as ân =
√

N̂cos(s)−
√

N̂−1sin(s) d
ds and â†

n =
√

N̂ + 1cos(s) +
√

N̂ + 1N̂−1sin(s) d
ds . Here, N̂ is the number operator defined by N̂|n〉 = √

n|n〉 and its
inverse N̂−1|n〉 = n−1|n〉. By using these definitions, we obtain ân|n〉 =

√
n|n − 1〉 and

â†
n|n〉 =

√
n + 1|n + 1〉. We then find that the commutator is [ân, â†

n] = 1 , and the system
energy becomes 〈Ĥ〉 = ∑n n2/(2mL2)〈â†

n ân〉, where 〈â†
n ân〉 corresponds to the occupation

probability at state n for the single-particle system.
The state of the system at thermal equilibrium with a heat bath of inverse temperature

β can be described by the canonical form ρ̂ = ∑n pn|n〉〈n| = Z−1 exp(−βĤ), where
pn = e−βεn /Z is the probability of finding the system in state |n〉, with the partition
function Z = Tr(e−βĤ). The system entropy reads S = −Tr(ρ̂ ln ρ̂), where ρ̂ = ρ̂(βω, σ),
and, thus, the entropy takes the form of S = S(βω, σ). For the gas in a given trap, the
entropy S merely depends on the parameter βω: S = S(βω), and in an adiabatic process
βω = constant. However, an adiabatic deformation of trap, by changing σ, leads to change
in the parameter ‘βω’ [54,55] to keep entropy S constant. That is, a quantum adiabatic
process where the entropy is kept constant can be realized via changing the shape of the
trapping potential.

3. General Expressions of Efficiency and Power for Quantum Otto Engines with
Deformation of Trapping Potential

In contrast to conventional quantum heat engines, where the working substance is
confined in a given form of trap, the quantum engine under consideration works, based on
two different forms of one-dimensional trapping potentials V(x), by adopting two different
values of θ in Equation (1). The quantum Otto engine, sketched in Figure 1, consists of four
consecutive strokes, as outlined in the following: (i) Hot isochoric stroke A → B. The single
particle is confined in a one-dimensional trap along the x direction with θ = θh, and the
trapped system is weakly coupled to a hot reservoir of constant inverse temperature βr

h in
time duration τh. Since the external field V(x) is frozen, the energy gap is kept constant
at ω = ωh; (ii) Adiabatic expansion B → C. The von Neumann entropy of the system is
constant along the adiabatic stroke in which the system evolution is unitary. While the
system is isolated from the heat reservoir in time τhc, and the form of the potential gradually
changes from the trap V(x) ∼ x3/θh to the trap V(x) ∼ x3/θc by tuning θ; (iii) Cold isochoric
stroke C → D. Both the trap configuration and the energy gap are kept fixed, namely,
ω = ωc and θ = θc. Within a time interval of τc, the trapped system is weakly coupled to
a cold reservoir with constant inverse temperature βr

c(> βr
h); (iv) Adiabatic compression

D → A. The system is again isolated from the heat reservoir in time duration τch, and the
trap configuration changes gradually from the trap V(x) ∼ x3/θc to the trap V(x) ∼ x3/θh .
During the hot or cold isochoric strokes, the system would relax to the thermal state at the
ending instant B(D) of the hot (cold) isochore, if τh(τc) is long enough . The times allocated
to the four strokes set the total cycle period, τcyc = τh + τc + τhc + τch.

For the Otto cycle, the work is produced only in the two adiabatic branches, with
heat produced alongside the isochoric processes. Initially, the time is assumed to be t = 0.
The Hamiltonian system changes from Ĥ(τh) to Ĥ(τh + τhc) along the adiabatic expansion
B → C, and it goes back to Ĥ(0) from Ĥ(τcyc − τch) after the adiabatic compression
D → A. The Hamiltonian system is kept constant along each isochoric stroke, namely,
Ĥ(0) = Ĥ(τh) and Ĥ(τh + τhc) = Ĥ(τcyc − τch). The stochastic work done by the system,
per cycle, is, thus, the total work output along the two adiabatic trajectories [32,58], which
reads w[Ĥ(τh)|n〉; Ĥ(τcyc − τch)|m〉] = [〈n|Ĥ(τh)|n〉 − 〈n|Ĥ(τh + τhc)|n〉] + [〈m|Ĥ(τcyc −
τch)|m〉 − 〈m|Ĥ(0)|m〉]. The stochastic work for the engine cycle is then given by

w[|n(τh)〉; |m(τcyc − τch)〉] = εh
n − εc

n + εc
m − εh

m. (3)

where we used εh
i = 〈i|Ĥ(0)|i〉 = 〈i|Ĥ(τh)|i〉, εc

i = 〈i|Ĥ(τh + τhc)|i〉 = 〈i|Ĥ(τcyc − τch)|i〉,
with i = m, n.
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During the adiabatic stroke, the level populations do not change, pn,B = pn,C and
pm,A = pm,D, and the probability density of the stochastic work w can then be determined
according to

p(w) = ∑
n,m

pn,B pm,Aδ{w − w[|n(τh)〉; |m(τcyc − τch)〉]}, (4)

where δ(·) is the Dirac’s δ function. The average work output per cycle, 〈w〉 =
∫

wp(w)dw,
can be obtained as

〈w〉 = 〈ĤB〉 − 〈ĤC〉+ 〈ĤD〉 − 〈ĤA〉. (5)

Here, and hereafter, we use the subscripts A, B, C, and D (in Figure 1) to indicate the
physical quantity at times t = 0, τh, τh + τhc, and t = τcyc − τc, respectively. We define
the dimensionless energy g as g ≡ Tr(ρ̂Ĥ)/(ω), which, according to Equation (2), can be
expressed as

g = g(βω, σ) = ∑
n

nσ〈â†
n ân〉. (6)

As emphasized, â†
n ân indicates the occupation number operator of a given state n, and,

thus, 〈â†
n ân〉 is the average occupation number at state n. While the trapping potentials

are V(x) ∼ x3/θh and V(x) ∼ x3/θc in the hot and cold isochoric strokes, respectively, we
use the trap exponents σh and σc (rather than θh and θc) to characterize the forms of the
trapping potential in what follows.

Figure 1. Illustration of a quantum Otto engine cycle with adiabatic deformation of the trap. The
engine model works with a single particle confined in the trap. It consists of two isochoric processes
A → B and C → D, where the system is weakly coupled to the hot and cold heat reservoirs of
constant inverse temperatures βr

h and βr
c(> βr

h), respectively, and two adiabatic processes B → C and
D → A, where the shape of the trap is adiabatically deformed by changing θ in Equation (1) from
θ = θh to θ = θc, or vice versa. In each cycle, the average work output (〈w〉) is the difference between
the heat absorbed from the hot bath (〈qh〉) and the heat released to the cold reservoir (〈qc〉); that is,
〈w〉 = 〈qh〉 − 〈qc〉.

To describe the degree of the shape deformation of the trapping potential, we introduce
the deformation parameters for adiabatic compression and expansion which are defined by

ξhc ≡
gC

gB
=

g(σc, βCωc)

g(σh, βBωh)
, ξch ≡ gA

gD
=

g(σh, βAωh)

g(σc, βDωc)
, (7)

respectively. Except in the special case when the shape of the potential is not changed
along the engine cycle with σc = σh and ξhc = ξch = 1, these parameters, ξhc and ξch,
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depend on the trap exponents σc and σh, and, thus, they capture all information about the
adiabatic deformation of trapping potential. We also note that, in the presence of adiabatic
deformation, the deformation parameters, ξch and ξhc, would be affected by the times, τc

and τh, since the so-called system temperatures, at instants A, B, C, and D in Figure 1, are
dependent on these times τc and τh.

Using Equations (5)–(7), we find that the average work takes the form of

〈w〉 =
(

ωh − ωc
ξhcgB − gD

gB − ξchgD

)

(gB − ξchgD). (8)

The work fluctuations can be determined according to

〈δ2w〉 = 〈w2〉 − 〈w〉2, (9)

where 〈w2〉 =
∫

w2 p(w)dw = ∑n,m pn,B pm,A(ε
h
n − εc

n + εc
m − εh

m)
2.

Based on the two-time measurement approach, the probability density function of
the stochastic heat qh along the hot isochoric stroke, where no work is produced, can be
determined by the conditional probability to arrive at

p(qh) = ∑
n,m

p
τh
m→n pm,Aδ[qh − (εh

n − εh
m)], (10)

where pm,A is the probability that the system is initially in state m at time t = 0, and p
τh
m→n

is the probability of the system collapsing into another state n after a time period τh. Here

p
τh
m→n

∣

∣

τh→∞
= p

eq
n (βr

h), where p
eq
n (βr

h) = e−βr
hεh

n /(e−βr
hεh

m + e−βr
hεh

n). For each cycle, heat is
transferred only in the isochore, while work is produced only along the adiabatic process.
The heat absorbed from the hot bath is given by 〈qh〉 = 〈ĤB〉 − 〈ĤA〉, or

〈qh〉 = ωh(gB − ξchgD). (11)

Due to energy conservation, the heat discharged to the cold reservoir along the cold isochoric
stroke can be directly calculated according to 〈qc〉 = 〈qh〉 − 〈w〉 (see also Figure 1).

In order to evaluate the average values of heat and work in a finite time cycle, we
should analyze the system dynamics along two isochoric strokes to derive average work and
heat. We use Γc(Γh) to denote the thermal conductivity between the system and cold (hot)
heat reservoir and introduce x = e−Γhτh and y = e−Γcτc . We show that these quantities, (8)
and (11), can be expressed as a function of x and y (see Appendix A for details),

〈w〉 =

(

1 − ξhcξchy

1 − y
ωh − ξhcωc

)

×



g
eq
h −

ξchωh − 1−ξhcξchx
1−x ωc

1−ξhcξchy
1−y ωh − ξhcωc

g
eq
c



G, (12)

and

〈qh〉 = ωh

(

1 − ξhcξchy

1 − y
g

eq
h − ξchg

eq
c

)

G, (13)

where we used G = (1−x)(1−y)
(1−ξhcξchxy)

. The heat quantity released into the cold bath can be

directly calculated by 〈qc〉 = 〈w〉 − 〈qh〉, due to the conservation of energy. In the ab-
sence of adiabatic deformation, these average values, (12) and (13), reduce to 〈w〉 =

(ωh − ωc)
(

g
eq
h − g

eq
c

)

G, and 〈qh〉 = ωh

(

g
eq
h − g

eq
c

)

G. In such a case, we present these for-

mulae in a broader context by considering a power-law trap in which g may not be the
mean population if σc,h 6= 1. We reproduce the result obtained from the harmonic trap,
where σc = σh = 1, and, thus, g denotes the average population.
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The thermodynamic efficiency, η = 〈w〉/〈qh〉, then follows as

η = 1 − ωc

ωh

ξhcg
eq
h − 1−ξhcξchx

1−x g
eq
c

1−ξhcξchy
1−y g

eq
h − ξchg

eq
c

, (14)

which simplifies to η = 1 − ωc
ωh

ξhcg
eq
h −g

eq
c

g
eq
h −ξchg

eq
c

in the quasi-static limit where τc → ∞ and τh → ∞.

In the case when the shape of the potential is adiabatically changed, an inhomogeneous
shift of energy levels is created, resulting in thermodynamic efficiency (14) that depends on
the shapes of the potentials along two isochoric strokes, excepting the case when the two
potentials are identical to each other, which would result in efficiency reducing to that of
the cycles without adiabatic shape deformation, η = 1 − ωc/ωh.

4. Performance and Stability of a Two-Level Machine

The efficiency may be enhanced by adiabatically changing the form of the potential.
To better understand the influence induced by adiabatic deformation on the performance
of thermal machine, we investigate how the adiabatic deformation affects the efficiency
and the power. In this section, we consider, as an example, the Otto engine working
in the low-temperature limit, by assuming that only the two lowest energy levels are
appreciably populated. We show in Appendix B that, for the two-level engine where the
system Hamiltonian (2) simplifies to Ĥ = ω(â†

1 â1 + 2σ â†
2 â2) and the system energy becomes

〈Ĥ〉 = ω ∑n=1,2 nσ〈â†
n ân〉, the deformation parameters ξch and ξhc defined by Equation (7)

take the forms of

ξhc =
γc − 1
γh − 1

+
γh − γc

γh − 1

× 1
[

g
eq
h +

(

γc−γh
γc−1 + γh−1

γc−1 g
eq
c − g

eq
h

)

(1−y)x
1−xy

] ,

ξch =
γh − 1
γc − 1

+
γc − γh

γc − 1

× 1
[

g
eq
c +

(

γh−γc
γh−1 + γc−1

γh−1 g
eq
h − g

eq
c

)

(1−x)y
1−xy

] , (15)

where g
eq
c = e−βr

cωc+γce−γc βr
cωc

e−βr
cωc+e−γc βr

cωc
, g

eq
h = e

−βr
h

ωh+γhe
−γh βr

h
ωh

e
−βr

h
ωh+e

−γh βr
h

ωh
, γh = 2σh , and γc = 2σc . Substituting

Equation (15) into Equations (12) and (14), it follows that the average work (12) and
thermodynamic efficiency (14) of the two-level machine in finite time are given by

〈w〉 =

(

g
eq
h − γh − 1

γc − 1
g

eq
c +

γh − γc

γc − 1

)

×
(

ωh −
γc − 1
γh − 1

ωc

)

G, (16)

and

η = 1 − ωc

ωh

γc − 1
γh − 1

. (17)
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Note that when γc < γh, the efficiency (17) is larger than the efficiency without adiabatic
deformation (η = 1 − ωc/ωh). For the two-level engine, the work fluctuation 〈δ2w〉 (9) can
be analytically obtained as

〈δ2w〉 = 〈w2〉 − 〈w〉2

=
γh − 1
γc − 1

[

ωh − ωc
γc − 1
γh − 1

]2

× [(gB − 1)(γc − gD) + (gD − 1)(γh − gB)]

−
{

1
γc − 1

[

ωh − ωc
γc − 1
γh − 1

]}2

× [(gB − 1)γc − (gD − 1)γh + (gD − gB)]
2, (18)

where gB and gD are gB = g
eq
h +

(

γc−γh
γc−1 + γh−1

γc−1 g
eq
c − g

eq
h

)

(1−y)x
1−xy and gD = g

eq
c +

(

γh−γc
γh−1 +

γc−1
γh−1 g

eq
h − g

eq
c

)

(1−x)y
1−xy . When adiabatic deformation is absent, the work fluctuations turn

out to be 〈δ2w〉 = (ωh − ωc)
2[(gB − 1)(γc − gD) + (gD − 1)(γh − gB)]

−
{

1
γc−1

[

ωh − ωc
γc−1
γh−1

]}2
× [(gB − 1)γc − (gD − 1)γh + (gD − gB)]

2,

The system reaches thermal equilibrium at the end of the hot or cold isochore when the

process is in the quasi-static limit. In this case, where x → 0, y → 0, and G = (1−x)(1−y)
1−xy → 1,

the work (16) and work fluctuations (18) turn out to be

〈w〉 =

(

g
eq
h − γh − 1

γc − 1
g

eq
c +

γh − γc

γc − 1

)

×
(

ωh −
γc − 1
γh − 1

ωc

)

, (19)

〈δ2w〉 =
γh − 1
γc − 1

(

ωh − ωc
γc − 1
γh − 1

)2

×
[

(g
eq
h − 1)(γc − g

eq
c ) + (g

eq
c − 1)(γh − g

eq
h )

]

−
{

1
γc − 1

(

ωh − ωc
γc − 1
γh − 1

)}2

× [(g
eq
h − 1)γc − (g

eq
c − 1)γh + (g

eq
c − g

eq
h )]2. (20)

The power output and power fluctuations are then determined according to P = 〈w〉/τcyc

and δ2P = 〈δ2w〉/τ2
cyc .

In Figure 2a we plot the normalized efficiency η/ηC at the quasi-static limit as a
function of the ratio r (with r ≡ √

ωh/ωc) in the presence of adiabatic shape deformation,
comparing the corresponding result for the Otto engine without deformation of trap. In
the absence of adiabatic deformation of trap (γc = γh), the three different conditions of
the compression ratio r correspond to the three modes of the machine: (1) for r ≤ 1, the
machine operates as a heater, (2) for 1 < r ≤ rC ≡ √

βr
c/βr

h, it works as a heat engine, and
(3) for r > rC, it becomes a refrigerator. However, when adiabatically changing the shape of
the trapping potential, the machine can operate as a heat engine even in boundaries (1) and
(3). Figure 2b–d show contour plots of the average work 〈w〉 versus ωh and ωc for different
values of γc,h. The color areas indicate the positive work of the thermal machine as a heat
engine, showing that the positive work condition changed due to adiabatic deformation of
trapping potential.
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Figure 2. (a) Efficiency in unit of ηC versus ratio r (=
√

ωh/ωc) for different values of γc,h, in
which the energy gap is ωc = 0.36. The contour maps of 〈w〉 about ωc and ωh in the three cases
γc = γh = 2, 2γc = γh = 4, and γc = 2γh = 4, are, respectively, drawn in (b–d). The other
parameters are βr

c = 10 and βr
h = 2 in (a–d). FL The pair values (γc, γh) = (2, 4) [or (γc, γh) = (2, 4)]

indicate switching from the harmonic potential in the cold isochore to the box trap in the hot isochore
(or vice versa), while the values of (γh, γc) = (2, 2) correspond to the case when the shape of the
trapping potential is always harmonic along each cycle.

For complete thermalization along each isochore, Figure 3a displays the average
work (19) and the work fluctuations (20) as a function of the compression ratio r, respec-
tively, for γc = γh = 2, 2γc = γh = 4, and γc = 2γh = 4. While the efficiency is improved
by increasing r for given γc and γh, the average work 〈w〉 first increases, and then decreases
as the ratio r increases. The behavior of curves for work fluctuations 〈δ2w〉 as a function of
r is dependent on γc and γh. It can be observed from Figure 3a that, while for γc ≤ γh the
curve of work fluctuations, as a function of r, is linear, it becomes parabolic when γc > γh.
Both the work fluctuations 〈δ2w〉 and average work 〈w〉 for γc > γh are much smaller
than those obtained from the case when γc ≤ γh. Figure 3a also shows that the regime of
positive work (〈w〉 > 0) is sensitively dependent on the values of the parameters γc and
γh, and the presence of adiabatic deformation changes the positive work condition for the
quantum engine.

Figure 3. Under quasi-static conditions, work fluctuations 〈δ2w〉 and work 〈w〉 versus ratio
r(=

√

ωh/ωc) for different values of γc,h in (a), where the parameter is ωc = 0.36. FL in (a), the
pair values of γc,h = (2, 4), (4, 2), (2, 2) correspond to three respective cases of the potential shapes
clarified in Figure 2. The efficiency and relative power fluctuations fP =

√

〈δ2w〉/〈w〉2 versus γh are
plotted in (b), where the parameters were set to ωc = 0.2 and ωh = 0.85. The other parameters were
βr

c = 10 and βr
h = 2 in all cases.

The coefficient of variation for power fP =
√

δ2P/P , equivalent to the square root of
the relative work fluctuations,

√

〈δ2w〉/〈w〉, is also called the relative power fluctuation.
This coefficient measures the dispersion of the probability distribution and, thus, can de-
scribe the machine stability [17]. Comparing the efficiency and relative power fluctuations
of the engine with γc = 2 (γc = 4) to each other, Figure 3b shows that optimization of
the quantum heat engine can be realized by selecting the appropriate form of trapping
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potential during the hot isochoric stroke. For example, the engine with γc = γh = 4
works at efficiency η = 0.76 and relative power fluctuation fP = 25.6, but the model with
γc = 4 and γh = 3.6 operates under η = 0.73 and fP = 12.7. That is, when γc = 4, the
relative power fluctuation fp for γh = 3.6 is halved as compared to its value in the absence
of adiabatic deformation, while efficiency only slightly decreased. Another example to
consider γc = 2 is comparing γh = 2 with γh = 1.84. In contrast to the former case, where
η = 0.76 and fP = 13.77, in the latter case η = 0.72 and fP = 6.9, showing again that the
relative power fluctuations can be significantly decreased with a particularly small decrease
in efficiency. More importantly, by suitably choosing the shapes of the trapping potential,
we may even design an engine model that runs more stably and effectively, as also shown
in Figure 3b. A typical example is that of the engine of γc = 4 and γh = 3.35, producing
efficiency η = 0.7 with fP = 9.15, but the model with γc = 2 and γh = 1.9 runs at η = 0.74
and fP = 8.53. By comparison, the latter model shows better overall performance than
the former, since it runs more stably by decreasing relative power fluctuations, even with
higher efficiency η. Hence, adiabatically changing the form of the trapping potential may
even contribute to a decrease in the relative power fluctuations with an increase in efficiency,
when compared with an engine without adiabatic deformation. So, for quantum engines,
having selected suitable machine parameters, adiabatic deformation along an engine cycle
may be an effective optimization approach to significantly improve engine stability.

Both Figures 2 and 3 show that the average work, work fluctuations, coefficient of
variation for power, and even positive work condition, are strongly affected by change in
the values of γc and γh. To further see clearly how the adiabatic deformation quantitatively
affects the performance and fluctuations for the engine, we plotted average work, work
fluctuations, and coefficient of variation for power as a function of Carnot efficiency in
Figure 4a–c, respectively, where the value of γc was kept fixed (γc = 2), and the value of
γh was slightly changed (γh = 2, 1.8, 2.2). Figure 4a demonstrates that, in the positive work
region, adiabatic deformation could increase the average work in the certain regime of ηC,
though it may decrease the work when ηC was relatively large. The fluctuations of the heat
engine, including the work fluctuations and the relative work fluctuations (coefficient of
variation for power), were always significantly decreased by the adiabatic deformation [as
per Figure 4b,c]. These figures show that the shape change of the trap may enhance the
average work, unless the difference between the two bath reservoirs is particularly large,
while it always enhances the machine stability captured by the fluctuations. As a specific
example, at ηC = 0.85, both the work and efficiency [see Equation (17)] could be enlarged,
but the fluctuations of work and relative power decreased. In the present case, the adiabatic
deformation was, thus, an essential ingredient in improving the engine performance and
stability in a certain regime.

Figure 4. Under quasi-static conditions, (a) average work 〈w〉, (b) work fluctuations 〈δ2w〉, and
(c) coefficient of variation for power, fP =

√

〈δ2w〉/〈w〉2, as a function of the Carnot efficiency ηC

for different values of γc and γh. The parameters were ωc = 0.12, ωh = 0.6 and βr
h = 2.
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5. The Engine under Maximal Power Output

Since the power output, P = 〈w〉/τcyc, would vanish if the cycle was quasi-static
and the cycle period approached infinity, the engine should operate, practically, in finite
time to produce finite power output. In this section we consider the efficiency and power
statistics for the two-level machine under maximum power by optimizing power with
respect to external degrees, and assuming that the two adiabatic strokes are realized in the
sudden limit [59,60]. It is not difficult to verify that the efficiency at maximum power η∗

can be determined by using the method shown in Appendix B to analytically obtain [11]
η∗

anal = η2
C/[ηC − (1 − ηC) ln(1 − ηC)] = ηC/2 + η2

C/8 + O(η3
C), which shows the same

universality with the CA efficiency [1,3,48] ηCA = ηC/2 + η2
C/8 + O(η3

C) .
In Figure 5 we plotted the analytical efficiency of maximum power η∗

anal as a function
of the ηC, comparing the exact numerical result for different values of γc,h and the CA
efficiency ηCA. These curves of the optimal efficiency for different γc,h, together with the
analytical expression of η∗

anal , collapse into a single line, and they are in nice agreement
with the CA efficiency ηCA. It was, therefore, shown that the efficiency at maximum
power, agreeing well with ηCA, is independent of the shapes of the two trapping potentials.
As emphasized, the heat engine under consideration can proceed at such efficiency in
regimes where the machine, without adiabatic deformation, may only operate as a heater
or a refrigerator.

Figure 5. Plots of analytical expression η∗
anal and exact numerical calculations for efficiency at

maximum power, and plot of the CA efficiency ηCA. We use η(γc ,γh) to denote the exact values of
optimal efficiency for given γc and γh. The inverse temperature of hot bath was βr

h = 2.

6. Conclusions

As a result of energy quantization, a quantum adiabatic process can be realized by
changing the shape of the trapping potential. Such a shape deformation causes the classical
limit, where the principle of the equipartition of energy holds, to vanish and is, therefore, of
purely quantum origin. Here, we investigated the performance and fluctuations in quantum
Otto engines in the presence of adiabatic deformation of one power-trap potential. We
started using stochastic thermodynamics and the quantum master equation to determine
heat and work statistics, and then presented general expressions for time-dependent
efficiency and work [cf. Equations (12) and (14)], in which adiabatic deformation parameters
of the two adiabatic strokes are involved.

We proposed an exact analytical description for the performance and fluctuations in
these quantum engines at the low-temperature limit where only the lowest two energy



Entropy 2023, 25, 484 11 of 16

levels are occupied. We showed that quantum heat engines, with adiabatic deformation,
can run in the extended regimes where their counterparts, without adiabatic deformation,
operate as heaters or refrigerators. Examining the efficiency and coefficient of variation of
power, we found that an appropriate selection of two trapping potentials enables engines
to be built that are capable of performing more stably and efficiently. We also showed that,
even for a given trap in an isochore, the relative power fluctuations in our engines are
significantly smaller than those of engines in the absence of adiabatic deformation, with
higher efficiency than that of engines without adiabatic deformation. By tuning the energy
gap between the ground and the first excited state, we found that the efficiency at maximum
power is independent of shape deformation and shares the same universality with the CA
efficiency. This optimized efficiency, however, can be realized in regions where engines
experiencing no change in the shape of the potentials cannot operate as heat engines.

Our approach can be directly used to describe an ensemble of many non-interacting
particles (with particle number N) confined in a d−dimensional power-law trap. In such
a case, the Hamiltonian system becomes Ĥ = ∑n εn â†

n ân,where εn = 〈n|Ĥ|n〉, with n =
n1, · · · , nd and N = ∑n â†

n ân. Following the approach adopted in this paper, we can
reproduce the same results and arrive at the same conclusions. Our results significantly
add to the study of quantum heat engines in finite time by taking advantage of adiabatic
deformation of trapping potential, facilitating the design of efficient and stable quantum
heat engines.
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Appendix A. Time Evolution for the System along an Isochoric Process

The quantum dynamics for a system in an isochoric process, where the Hamiltonian
system is kept constant, is generated by heat exchange between the system and a heat
reservoir of constant inverse temperature β. When the system–reservoir interaction is weak,
the change in time of an operator X̂ for the system with Hamiltonian Ĥ can be described
by the quantum master equation [11,13],

dX̂

dt
= i[Ĥ, X̂] + LD(X̂), (A1)

where LD(X̂) = ∑α kα(V̂†
α [X̂, V̂α] + [V̂†

α , X̂]V̂α), with [ ] being the commutator, representing
the Liouville dissipative generator and V̂α are operators in the Hilbert space of the system



Entropy 2023, 25, 484 12 of 16

with their Hermitian conjugates V̂†
α , and kα are phenomenological positive coefficients.

Substituting Ĥ = X̂ into Equation (A1), the first law of thermodynamics is obtained as,

〈

dĤ

dt

〉

=

〈

dw

dt

〉

+

〈

dq

dt

〉

=

〈

∂Ĥ

∂t

〉

+ 〈LD(Ĥ)〉, (A2)

where w is stochastic work and q is the stochastic heat. Thus, 〈dw/dt〉 = 〈∂Ĥ/∂t〉 and
〈dq/dt〉 = 〈LD(Ĥ)〉 are the identified instantaneous average power and average heat flux,
respectively. The Kraus operators V̂† and V̂ are chosen as V̂ = ∑n ân and V̂† = ∑n â†

n. By
inserting X̂ = Ĥ [with the Hamiltonian system (2)] into Equation (A2) and using [ân, â†

m] =
δmn, we then obtain LD(Ĥ) = ∑n εnku

n(ân[â†
n ân, â†

n] + [ân, â†
n ân]â†

n) + εnkd
n(â†

n[â
†
n ân, ân] +

[â†
n, â†

n ân]ân). Here, the phenomenological coefficients ku
n and kd

n can be parameterized
as ku

n = ñthΓ and kd
n = (ñth + 1)Γ, where ñth = 1/(eβεn − 1) is the excitation number

corresponding to the n-th energy level and Γ, as a constant, is associated with the system–
bath interaction strength. The detailed balance, ku

n/kd
n = e−βεn , is satisfied and the system

can be driven to reach a thermal state after an infinitely long time. It then follows that, in
the isochore with static Hamiltonian, Equation (A1) becomes

〈

dĤ

dt

〉

=

〈

dq

dt

〉

= −Γ(〈Ĥ〉 − 〈Ĥ〉eq). (A3)

where 〈Ĥ〉eq ≡ ∑n εnku
n/(kd

n − ku
n) = ∑n εnñth is the asymptotic value of 〈Ĥ〉 at thermal

equilibrium, and Γ denotes the heat conductance between the system and reservoir. Since
〈dĤ/dt〉 = d〈Ĥ〉/dt, where 〈Ĥ〉 = ωg with g defined by Equation (6) in the main text,
Equation (A3) can be simplified to

dg

dt
= −Γ[g(t)− geq], (A4)

where we used geq = 〈Ĥ〉eq/(ω).
Now we are in a position to discuss the evolution of the system during the system–bath

interaction interval. For the finite-time process, the system, assumed to be initially at time
tA = 0, evolves from the initial instant A to the final state B. On this branch, heat is absorbed
from the hot bath during a period τh while no work is done. The system would relax to the
thermal state after an infinitely long time, and then gB

∣

∣

τh→∞
= g

eq
h = g(βr

hωh, σh). From
Equation (A4), we obtain

gB = g
eq
h + (gA − g

eq
h )e−Γhτh , (A5)

where Γh is the heat conductivity between the working substance and the hot reservoir.
For the cold isochore C → D, the system is in contact with the cold reservoir at inverse
temperature βr

c for a time of τc. Based on an analogy with the hot isochore A → B, the
dimensionless system energy gD, as a function gC, is obtained,

gD = g
eq
c + (gC − g

eq
c )e−Γcτc , (A6)

where g
eq
c = g(βr

cωc, σc), and Γc represents the heat conductivity between the working
substance and the cold reservoir. Having these formulae [Equations (7), (A5) and (A6)], the
relationship between g(τh) [g(τcyc − τch)] and its asymptotic value g

eq
h (g

eq
c ) is easily obtained:

gB = g
eq
h − g

eq
h

(1 − ξhcξchy)x

1 − ξhcξchxy
+ g

eq
c

ξch(1 − y)x

1 − ξhcξchxy
,

gD = g
eq
c − g

eq
c
(1 − ξhcξchx)y

1 − ξhcξchxy
+ g

eq
h

ξhc(1 − x)y

1 − ξhcξchxy
, (A7)

where we used x = e−Γhτh and y = e−Γcτc . As expected, x, y → 0, gB

∣

∣

τh→∞
→ g

eq
h ,

gD

∣

∣

τc→∞
→ g

eq
c when τc,h → ∞. Inserting Equation (A7) into Equations (8) and (11)
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in the main text leads to the time-dependent expressions of work and heat injection [cf.
Equations (12) and (13)].

Appendix B. Work (Power) Statistics for a Two-Level System

For an ideal gas confined in a one-dimensional power-law potential, the single-particle
energy spectrum takes the form εn = ωnσ, where n = 1, 2, · · · , and σ is a positive index
depending on the form of the trapping potential. Several special case examples include the
following [56]: (i) σ = 2 for an infinite potential well; (ii) σ = 1 for a harmonic potential;
(iii) σ = 4/3 for a quartic potential. When only the first two levels are populated for one-
dimensional potential, the probabilities of these two levels at the end of the cold isochore
are given by

pg,D =
e−βDωc

ZD
, pe,D =

e−γc βDωc

ZD
, (A8)

where ZD = e−βDωc + e−γc βDωc with γc = 2σc , and these two-level probabilities at the end
of the hot isochore become

pg,B =
e−βBωh

ZB
, pe,B =

e−γh βBωh

ZB
, (A9)

where ZB = e−βBωh + e−γh βBωh with γh = 2σh . For example, when the harmonic trap in the
cold isochore to the one-dimensional infinite potential well, then σc = 1 and σh = 2, but if
the potential is one-dimensional box (harmonic) in the cold (hot) isochore, then σc = 2 and
σh = 1. In such a case, the dimensionless energies g [cf. Equation (6)] at the four instants
[in Figure 2a] can be written as

gA =
1 + γhχc

1 + χc
, gB =

1 + γhχh

1 + χh
,

gC =
1 + γcχh

1 + χh
, gD =

1 + γcχc

1 + χc
, (A10)

where we used χc = e−(γc−1)βDωc and χh = e−(γh−1)βBωh . Here, γc = γh, if, and only if,
σc = σh. Note that there is a relation:

gA =
(γh − 1)gD + γc − γh

γc − 1
,

gC =
(γc − 1)gB + γh − γc

γh − 1
. (A11)

At the times τc,h → ∞, the system reaches thermal equilibrium at the end of either
the hot or the cold isochore, indicating that βB → βr

h and βD → βr
c. We, therefore, obtain

g
eq
h and g

eq
c as g

eq
c = e−βr

cωc+γce−γc βr
cωc

e−βr
cωc+e−γc βr

cωc
, and g

eq
h = e

−βr
h

ωh+γhe
−γh βr

h
ωh

e
−βr

h
ωh+e

−γh βr
h

ωh
by using Equation (A10).

Combining Equation (A11) with Equations (A5), (A6) and Equation (7) , we then obtain
Equation (15) in the main text.

Inserting Equation (15) into Equations (12) and (14), we obtain the expressions of
average work and efficiency [Equations (16) and (17) in the main text], as well as the
power output

P =
[−(γh − 1)ωh + (γc − 1)ωc]

(

e−βr
hωh + e−γh βr

hωh

)

(

e−βr
cωc + e−γc βr

cωc
)

×
(

e−βr
hωh−γc βr

cωc − e−γh βr
hωh−βr

cωc

)

Gτ−1
cyc . (A12)



Entropy 2023, 25, 484 14 of 16

Taking into consideration Equations (A8) and (A9), the work fluctuations (9) in the main
text can be analytically expressed as

〈δ2w〉 = 〈w2〉 − 〈w〉2

=
(χc + χh)[ωc(γc − 1)− (γh − 1)ωh]

2

(χc + 1)(χh + 1)

−
[

(χc − χh)[ωc(γc − 1)− (γh − 1)ωh]

(χc + 1)(χh + 1)

]2

. (A13)

This, together with Equations (A10) (use gB and gD), (A7) and (15), gives rise to Equation (18)
in the main text. We are in a position to calculate the efficiency of the machine under
maximal power. Optimization of the finite time performance on the quantum Otto engine
would be more difficult via inclusion of the time spent on the quantum adiabatic process. To
proceed, these adiabatic processes are idealized as sudden jumps of the trapping potential.
while being isolated from the two heat baths [59,60], thereby indicating that the times τch

and τhc are negligible. Since the power in this sudden limit is still a complicated function of
the time-dependent protocols of the hot and cold strokes, we perform the optimization in
two steps. The first step is to maximize power with respect to times τc and τh, by fixing ωc

and ωh.
In this step, by setting ∂P/∂τc = ∂(Gτ−1

cyc )/∂τc = 0 and ∂P/∂τh = ∂(Gτ−1
cyc )/∂τh = 0

we reproduce the optimal relation: Γh[cosh(Γcτc)− 1] = Γc[cosh(Γhτh)− 1]. Second, we
maximize the power by tuning the external control parameters ωc and ωh (or γc and γh).
Using ∂P/∂ωc = ∂P/∂ωh = 0 (or ∂P/∂γc = ∂P/∂γh = 0), we obtain

χ′
cβr

c[ωc(γc − 1)− ωh(γh − 1)]
1 + χ′

c
=

χ′
c − χ′

h

1 + χ′
h

, (A14)

χ′
hβr

h[ωc(γc − 1)− ωh(γh − 1)]

1 + χ′
h

=
χ′

c − χ′
h

1 + χ′
c

, (A15)

where χ′
c = e−βr

cωc(γc−1) and χ′
h = e−βr

hωh(γh−1) . From Equations (A14) and (A15), we can

derive

√

χ′
h βr

h
χ′

c βr
c
=

1+χ′
h

1+χ′
c

and ωc(γc−1)
ωh(γh−1) =

βr
h

βr
c

lnχ′
c

lnχ′
h

obtain ωc(γc − 1)− ωh(γh − 1) =
χ′

c−χ′
h√

βr
c βr

hχ′
cχ′

h

.

With these, one can prove, after using simple algebra [23], that the efficiency at maximum
power can be written in terms of the Carnot efficiency ηC: η∗ = η2

C/[ηC − (1 − ηC) ln(1 − ηC)].
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