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Abstract. The Grothendieck theorem considers a ‘classical’ quadratic form C that uses complex
scalars in the unit disc, and the corresponding ‘quantum’ quadratic form Q that replaces the scalars
with vectors in the unit ball of a Hilbert space. It shows that when C ≤ 1 then Q might take values
greater than 1, up to the complex Grothendieck constant kG. Previous work in a quantum context,
used Grothendieck’s theorem with multipartite entangled systems, in contrast to the present work
which uses it for a single quantum system. The emphasis in the paper is in examples with Q ∈ (1, kG),
which is a classically forbidden region in the sense that C cannot take values in it.

1. Introduction
The Grothendieck inequality [1, 2, 3, 4] in pure mathematics, provides a ‘ceiling’ for the Hilbert
space formalism. The original formulation of the Grothendieck theorem [1] was in the context of a
tensor product of Banach spaces, and this leads to the impression that applications in a quantum
context should be for multipartite systems described by tensor products of Hilbert spaces. Indeed the
Grothendieck theorem has been used with multipartite entangled systems in refs [5, 6, 7, 8, 9, 10, 11, 12]
and has been linked to Bell-like inequalities.

All later mathematical work [2, 3, 4] emphasised that the Grothendieck theorem can also be
formulated outside the framework of tensor product theory. This motivated the work in ref[13] that
uses the Grothendieck bound in a single quantum system. In this paper we present these ideas in a
physical way, without the ‘destruction’ of mathematical proofs.

The Grothendieck theorem considers quadratic forms such that

C(θ) =

∣∣∣∣∣∣
d∑

r,s=1

θrsarbs

∣∣∣∣∣∣ ≤ 1; |ar| ≤ 1; |bs| ≤ 1. (1)

Here θ is a d× d complex matrix. C(θ) is a ‘classical quantity’ in the sense that the ar, bs are scalars
in the unit disc D = {|z| ≤ 1}.
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It also considers the corresponding quadratic forms where the scalars are replaced with vectors in
the unit ball in a d-dimensional Hilbert space H(d):

Q(θ) =

∣∣∣∣∣∑
r,s

θrsλrµs〈ur|vs〉

∣∣∣∣∣ ; λr, µr ≤ 1. (2)

Using the bra-ket notation for normalised vectors, the λr|ur〉, µs|vs〉 are vectors in the unit ball in
H(d). Q(θ) is a ‘quantum quantity’ in the sense that the scalars have been replaced with vectors.

The Grothendieck theorem states that

Q(θ) ≤ kG. (3)

kG is the complex Grothendieck constant, for which it is known that 1 < kG ≤ 1.4049. Its exact value
is not known and bounds for its exact value are discussed in [14, 15, 16].

The region (1, kG) is of special importance because it is classically forbidden in the sense that the
classical quantity C(θ) cannot take values in it, while the corresponding quantum quantity Q(θ) can
take values in it. In this paper we are particularly interested in examples where Q(θ) ∈ (1, kG). These
examples are deep into the quantum region, at the ‘edge’ of quantum mechanics. We note that there is
much work in the semiclassical region, between classical and quantum physics. In contrast the present
work is in the other end of the spectrum (ultra-quantum region).

We discuss the following:

• In section 2, we express Q(θ) as trace of a product of three arbitrary matrices, normalised
with prefactors. This is more appropriate than Eq.(2) for quantum mechanics. We also show (in
section 2.4) that many physically interesting examples give Q ≤ 1. In this sense examples where
Q ∈ (1, kG) are a new territory of quantum mechanics.

• In section 3, we give some necessary (but not sufficient) conditions for Q(θ) > 1.

• In section 4, we present families of coherent states that lead to Q(θ) > 1. These coherent states
are unrelated to Heisenberg-Weyl group, SU(2), etc. We discuss the properties of these states
that justify the name coherent states, and show that a matrix of their overlaps is a projector,
which gives Q > 1.

• In section 5, we present concluding remarks.

2. Grothendieck bound in a single quantum system
2.1. The sets Gd, G

′
d of matrices

For any d× d matrix θ,

g(θ) = sup


∣∣∣∣∣∣

d∑
r,s=1

θrsarbs

∣∣∣∣∣∣ ; |ar| ≤ 1; |bs| ≤ 1


g′(θ) = sup


∣∣∣∣∣∣

d∑
r,s=1

θrsarbs

∣∣∣∣∣∣ ;
∑
r

|ar|2 ≤ d;
∑
s

|bs|2 ≤ d

 (4)

It can be proved that

g(θ) ≤ g′(θ) = dsmax, (5)
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where smax is the largest singular value of θ. For normal matrices smax = emax, where emax is the
largest of the absolute values of the eigenvalues of θ (spectral radius of θ). Therefore for normal
matrices

g(θ) ≤ g′(θ) = demax. (6)

The following two sets of matrices play an important role in this paper:

• Gd is the set of d× d complex matrices with∣∣∣∣∣∑
r,s

θrsarbs

∣∣∣∣∣ ≤ 1; |ar| ≤ 1; |bs| ≤ 1.

By definition, matrices in Gd have C(θ) ≤ 1. If θ is an arbitrary matrix, then θ
g(θ) ∈ Gd.

• G′d is the set of d× d complex matrices with∣∣∣∣∣∑
r,s

θrsarbs

∣∣∣∣∣ ≤ 1;
∑
|ar|2 ≤ d;

∑
|bs|2 ≤ d.

If θ is an arbitrary matrix, then θ
g′(θ) = θ

dsmax
∈ G′d.

Clearly G′d ⊆ Gd. If the strict inequality g(θ) < dsmax holds, then G′d is a proper subset of Gd.
This is needed later.

2.2. The set Sd of matrices
For any d× d matrix M ,

N (M) = max
i

√∑
j

|Mij |2 = max
i

√
(MM †)ii (7)

Sd is the set of matrices M with N (M) ≤ 1. All unitary matrices belong in Sd.
If M is an arbitrary matrix, then M

N (M) ∈ Sd.

2.3. Q(θ) as trace of a product of matrices
The Grothendieck theorem is equivalent to the following statement[13]. If θ ∈ Gd and V,W ∈ Sd then

Q = |Tr(θV W †)| ≤ kG. (8)

The relationship of this expression to Eq.(2) is seen if we take V to be a d × d matrix that has the
components of µs|vs〉 in the s-row, and W to be a matrix that has the components of λr|ur〉 in the
r-row (therefore W † has the complex conjugates of the components of λr|ur〉 in the r-column).

For arbitrary matrices we can write this as

Q =

∣∣∣∣Tr

(
θ

g(θ)

V

N (V )

W †

N (W †)

)∣∣∣∣ ≤ kG. (9)
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2.4. Many physical examples give Q(θ) ≤ 1
Let |e〉, |f〉 be normalised states with components fr and es correspondingly, and U a unitary matrix.
We take

θrs =
fres

g(|f〉〈e|)
∈ Gd; V = U ∈ Sd; W = 1n ∈ Sd. (10)

We note that g(|f〉〈e|) > 1. Indeed for the matrix fre
∗
s and for any |ar| ≤ 1 and |bs| ≤ 1, we get

g(|f〉〈e|)) ≥

∣∣∣∣∣∑
r,s

fre
∗
sarbs

∣∣∣∣∣ . (11)

We choose ar, bs such that frar = |fr| and e∗sbs = |es|. Then

g(|f〉〈e|)) ≥
∑
r

|fr|
∑
s

|es| ≥ 1. (12)

Therefore

Q = |Tr(θV W †)| = |〈e|U |f〉|
g(|f〉〈e|)

≤ 1. (13)

Many physically interesting quantities can be written as 〈e|U |f〉 where U is some unitary operator
and they lead to Q ≤ 1. In this sense physical examples with Q > 1 seem to be rare. In this paper
we are interested in examples with Q ∈ (1, kG).

3. Necessary (but not sufficient) condition for Q(θ) > 1
For a normal matrix θ, a necessary (but not sufficient) condition for Q(θ) > 1 is that θ ∈ Gd \G′d[13].
We have seen earlier that if the strict inequality g(θ) < demax holds (for normal matrices smax = emax),
then G′d is a proper subset of Gd. It follows the following proposition.

Proposition 3.1. For a normal matrix θ, a necessary (but not sufficient) condition for Q(θ) > 1 is
that the strict inequality g(θ) < demax holds. In this case

λ ≤ 1

demax
⇒ λθ ∈ G′d ⇒ Q(λθ) < 1. (14)

Also

1

demax
< λ ≤ 1

g(θ)
⇒ λθ ∈ Gd \G′d ⇒ may be Q(λθ) > 1. (15)

4. Family of coherent states in H(3) with Q ≥ 1
In H(3) we consider the 6 states

|az(0)〉 =
1√
2

1
z
0

 ; |az(1)〉 =
1√
2

z0
1

 ; |az(2)〉 =
1√
2

0
1
z


|az(3)〉 =

1√
2

 1
−z
0

 ; |az(4)〉 =
1√
2

−z0
1

 ; |az(5)〉 =
1√
2

 0
1
−z

 (16)

z is constant with |z| = 1. They are coherent states in the sense that they have the following properties:
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• resolution of the identity: It is easily seen that

1

2

5∑
r=0

|az(r)〉〈az(r)| = 1. (17)

• The set of coherent states is invariant under transformations in the group G3: Let X
be the ‘upwards displacement’ matrix:

X =

0 1 0
0 0 1
1 0 0

 ; X3 = 1. (18)

G3 is the cyclic group {1, X,X2} with the operation of matrix multiplication (it is isomorphic to
Z3).
Action of G3 on the set of coherent states leaves it invariant. But we note that action of G3 on
the set of coherent states is not transitive. It leads to two orbits as follows:

|az(0)〉 X−→ |az(1)〉 X−→ |az(2)〉 X−→ |az(0)〉;

|az(3)〉 X−→ |az(4)〉 X−→ |az(5)〉 X−→ |az(3)〉. (19)

• discrete isotropy: The set of 6 probabilities

Ar = {|〈az(r)|az(s)〉|2 | s = 0, ...5}, (20)

is the same for all r. The following sum does not depend on r:

S(ν) =
5∑
s=0

|〈az(r)|az(s)〉|ν = 1 +
1

2ν−2
; ν = 1, 2, .... (21)

• Bargmann 6-tuple representation of states in H(3): We can define an analogue of the
Bargmann representation in the present context. Of course here there is no analyticity. Let |f〉
be an arbitrary state in H(3):

|f〉 =

f0f1
f2

 ;
2∑
i=0

|fi|2 = 1 (22)

Using the resolution of the identity, we can write it as

|f〉 =

√
1

2

5∑
r=0

f̃r|az(r)〉; f̃r =

√
1

2
〈az(r)|f〉;

5∑
r=0

|f̃r|2 = 1. (23)

Here we represent vectors in H(3) with the 6 components f̃r. There is merit in having this

redundancy in noisy situations. Adding noise to f̃r, will lead to a state |f ′〉 which is closer to |f〉,
than if we do the same process with an orthonormal basis.
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• The 6 × 6 projector of overlaps of coherent states: We consider the following matrix of
overlaps of coherent states:

Πrs =
1

2
〈ar|as〉 =

1

4


2 z z∗ 0 −z z∗

z∗ 2 z z∗ 0 −z
z z∗ 2 −z z∗ 0
0 z −z∗ 2 −z −z∗
−z∗ 0 z −z∗ 2 −z
z −z∗ 0 −z −z∗ 2

 (24)

Using the resolution of the identity we easily see that it is a projector. Its eigenvalues are 1 (with
multiplicity 3) and 0 (with multiplicity 3). Π acts on vectors in H(6) which can be written as

H(6) = H(3)⊕H(3)null. (25)

Here H(3)null is the null space of Π. A vector in H(6), can be written as f̃r + φ̃r, where

5∑
r=0

Πsrf̃r = f̃s; f̃r ∈ H(3)

5∑
r=0

Πsrφ̃r = 0; φ̃r ∈ H(3)null.

The first of these relations is the reproducing kernel relation in the present context.

For θ = Π the relation g(θ) ≤ demax gives g(Π) ≤ 6. It can be proved analytically[13] that for
z 6= ±i we get the strict inequality g(Π) < 6. According to Eq.(15) in this case we might get Q > 1.

Indeed we use Eq.(13) with the matrices

θ = λΠ; V = W =
√

2Π ∈ S6 (26)

Here N (Π) = 1√
2

and therefore
√

2Π ∈ S6. Since g(Π) < 6, we define

ε =
1

g(Π)
− 1

6
> 0. (27)

Therefore Eqs(14), (15) give

λ ≤ 1

6
→ λΠ ∈ G′6 → Q = |Tr(θV W †)| = 2λTr(Π) = 6λ ≤ 1

1

6
< λ ≤ 1

6
+ ε→ λΠ ∈ G6 \G′6 → Q = |Tr(θV W †)| = 2λTr(Π) = 6λ > 1 (28)

It is seen that for λ ≤ 1
6 (in which case θ = λΠ ∈ G′6) we get Q ∈ (0, 1), and for 1

6 ≤ λ ≤ 1
6 + ε (in

which case θ = λΠ ∈ G6 \G′6) we get Q ∈ (1, 1 + 6ε).
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5. Discussion
We have used the Grothendieck theorem in the context of a single quantum system, in contrast to
previous work that used it in the context of multipartite entangled systems. In this paper:

• We expressed Q(θ) as trace of products of arbitrary matrices normalised with prefactor. This
is more appropriate than Eq.(2) for quantum mechanics.

• We gave some necessary (but not sufficient) conditions for Q(θ) > 1.

• We presented a family coherent states. The overlap of these coherent states is a projector with
Q(Π) > 1.

The presentation emphasised the physical aspects, and the mathematical proof of many of the
statements is given in [13]. The work explores the Grothendieck theorem in the context of a single
quantum system. The emphasis is on examples with Q ∈ (1, kG) which is on the edge of the Hilbert
space formalism and the quantum formalism.
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