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Abstract: It is a fundamental problem in quantum information whether a particular quantum
state of a composite system is entangled. It has enormous potential in quantum error correction,
quantum cryptography, and quantum teleportation applications. This problem can be transferred
in the form of a mathematical conjecture called the distillation conjecture. In the first section of
this paper, relevant physical and mathematical information is presented, including basic linear
algebra knowledge, the statement, and concrete applications of multiple mathematical
knowledge like conjugate, eigenvalue, and singular value. Then, we introduce the distillation
conjecture in a mathematical version for a more precise mathematical analysis. In an effort to
make more significant headway in proving the conjecture, we selected some theories and
findings relating to the Kronecker product, Kronecker sum, eigenvalue, and singular value, then
evaluated and grouped them. In addition, we provided multiple proofs of the conjecture under
varying conditions and made numerous attempts and hypotheses regarding how to establish the
conjecture.

1. Introduction

1.1. Definition of leaner algebra

Linear algebra is the mathematical discipline concerned with linear equations and functions expressed
as matrices and vectors. Simply said, linear algebra enables readers to comprehend and conduct
mathematical operations on geometric notions, such as planes in higher-dimensional space.

1.2. Definition of matrix

A matrix is a container for a collection of vectors. A matrix operation entails performing a stretch and
rotation transformation on a collection of vectors. Because the vectors are described by their x and y
values, these two transformations alter the vectors' x and y values. The matrix was designed to explain
linear plane transformations.

1.3. The history of quantum physics
Quantum was initially explained using classical mechanics, atomic interpretation, and electromagnetism.
(The quantum is the smallest fundamental unit that is non-divisible). The thermal radiation and Planck
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energy quantum hypothesis were investigated in the 19" century. In the beginning, Kirchhoff conducted
experiments with black bodies, which demonstrated that the radiation was simply connected to the
temperature but not its density or characteristics. Then, Wien discovered the radiation energy formula.
Einstein recognized Planck's significance in physic disciplines at the close of the 19™ century and re-
established new hypotheses [1-10]. He believed that the quantum was unbroken and inseparable. In
certain circumstances, radiation particles can appear in the form of "light quantum." M physicists in the
19" century believed that the atom was the smallest undivided unit. The original theory was proposed
by Perrin, who believed that the atom was surrounded by charged particles, with electrons on the exterior
[1-10]. Thomson imagined charged particles encircled by an electron ring. Later, Marsden conducted
experiments disproving Thomson's idea [1-10]. Finally, Bohr demonstrated that only electrons emitted
or absorbed energy during the transition and demonstrated that atoms are stable. The middle twentieth
century saw the birth of quantum mechanics and matrix mechanics. At that time, electrons circled the
nucleus at distinct harmonic frequencies, exposing Bohr's theory of inherent inconsistencies. Mechanic
equations were set down as equations. The matrix form of quantum mechanics is thus established.
Inspired by Einstein, Bonn established that physics exclusively dealt with observable quantities and, in
cooperation with Jordan, published quantum mechanics with mathematical matrices as evidence.

2. Main Body

2.1. Basic definition
The conjugate, transpose, and conjugate transpose of the matrix A will be denoted by A*, At,and AT,
respectively.

2.1.1. Trace
A square matrix can have its sum of elements on the diagonal determined with the use of the trace
function.

The definition of the trace of a square matrix with dimensions n by n is as follows:

Tr(A) = Z?:l aii = all + azz + e, +ann (1)

Where a;; represents the entry that is located on the i-th row and i-th column of A, the values
entering A can be either real numbers or, more generally speaking, complex numbers. In other words,
the trace is the sum of all the entries on the main diagonal. When working with matrices that are not
square, the trace cannot be defined.

3 4 5
Example: Let A=[2 9 6]. The trace of A is Tr (A)=)}_,a;; =aj; +az +ag3=3+9+7=
1 8 7

19.

2.1.2. Transpose
When working with matrices, the transpose operation is analogous to the inverse one. In a more
straightforward explanation, the rows and columns of the initial matrix have been inverted. Tr(A)=Tr(AT)

3 45 3 2 1
Example: Let A=[2 9 6|. The transposition of Ais AT =4 9 8|.
1 8 7 5 6 7

2.1.3. Conjugate

Conjugate matrices are a notion that describes two matrices whose real numbers are the same, but their
imagery numbers are negative. This concept is based on the fact that conjugate matrices finish complex
values and divide them into real numbers and imagery numbers. Additionally, a few expressions can be
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3+i 4 5
found in the conjugate matrix. Example: Let A = 2 9+ 2i 6 |- The conjugate of A is A™ =
8 7+ 3i
3—i 4 5
2 9 —2i 6 |
1 8 7 — 3i

2.1.4. Eigenvalue and eigenvector

Assume A is an n by n matrix. For some scalar, an eigenvector of A is a nonzero vector v in Rn such
that Av = v. A scalar eigenvalue is one for which the equation Av = v has a nontrivial solution. If Av =
v for v is not equal to 0, we can say that is the eigenvalue for v and that v is an eigenvector for. The set
of all possible answers to the equation can be represented by the empty space in the matrix A — Al
Therefore, we can consider this to be a subspace of R™, which is referred to as the eigenspace of A
corresponding to A. The eigenspace is made up of the zero vector in addition to all of the eigenvectors
that are associated with A.

4 -1 6
Example: Let =2 1 6]. An eigenvalue of A is 2, and we need to find a basis for the
2 -1 8

4 -1 6 2 00 2 -1 6
eigenspace that it corresponds to. From A—2I=|2 1 6|—|0 2 0|=(2 -1 6| androw,
2 -1 8 0 0 2 2 -1 6

2 =1 6 0 2 -1 6 0
the augmented matrix is reduced for (A—2Dx=0: |12 -1 6 0[—|0 0 0 O0f.

2 -1 6 0 0 0 0 O
Because the equation (A — 2I)x = 0 contains free variables, it is now abundantly evident that the

_|_

X1 1/2
value 2 does, in fact, constitute one of the eigenvalues of A. The general solution is [le = X, ! 1
X3 0

-3
X3 [ 0 ] ,and X, and x3 are free. The eigenspace is a subspace of R3 that has two dimensions in size.
1

111-3
An example of a basis is {[2] [ 0 H
olL1

Application: The fundamental ideas of eigenvalues and eigenvectors are helpful in many areas of
pure and practical mathematics and the contexts in which they are found. Eigenvalues play an important
role in the engineering design process and the study of differential equations and continuous dynamical
systems. Additionally, eigenvalues naturally occur in a variety of scientific disciplines, including
physics and chemistry.

2.1.5. Singular value
Let A be an m X n matrix for the sake of this definition. If this is the case, ATA is symmetric and can
be diagonalized in an orthogonal fashion. Let {v;,...,v,} be an orthonormal basis for R™ that consists
of eigenvectors of ATA, and let Ay, ...,A, be the associated eigenvalues of ATA. In other words, let
{vi, ..., vp} be an orthonormal basis for R™. Then, for 1 <i < n,
IAvilI? = (Av;)TAv; = viTATAv; = vi"(4v;) = ) (2)

Therefore, there is not a single negative eigenvalue in the ATA matrix. It is possible for us to assume
that the eigenvalues are organized in such a way that A; = A, = --- = A, = 0 by simply renumbering
the terms if this turns out to be necessary. The singular values of A are the square roots of the eigenvalues
of ATA, and they are indicated by o5, ..., 5. These values are arranged in descending order. That is,

o; = \/T, for 1 <i < n. The singular values of A are the lengths of the vectors Avy, ..., Avy, according
to Equation 2.
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Application: Calculating the pseudoinverse, approximating matrices, and calculating a matrix's rank,
range, and null space are all examples of mathematical applications of the singular value decomposition
or SVD.

2.1.6. Kronecker product
The Kronecker product has a number of important features, two of which are
(A®B)*=A"®B*,and (A ® B)(C ® D) = AC ® BD. The second equality suggests that in the
case where x i is an eigenvector of A € C™™ with an eigenvalue of i, and y; is an eigenvector of
B € C™" with an eigenvalue of p;, then (A® B)(x; ® y]-) = (Ax; ® Byj) =(Ax ® ujy]-) =
Aipj(x; ® y;). Hence, Ay is an eigenvalue of A @ B with an eigenvector that looks like this: x; &
yj- In fact, the mn eigenvalues of A Q@ B are exactly Ajy;, with i=1,2,--,m and j=12,-,n,
respectively.

2.1.7. Vector operator
The vector operator concatenates the columns of a matrix into a single lengthy vector. Here's how it
works: if A = [a;,ay,...,any], then vec(A) = [a;Ta,T ...a;,T]T; The Kronecker product and the vector

operator have a fruitful interaction: for every A, X, and B, their product AXB is defined,
vec(AXB) = (BT ® A)vec(X) 3)

With the help of this relation, we are able to express a linear system AXB = C using the conventional
form "Ax=b".

2.1.8. Kronecker sum
The formula for calculating the Kronecker sum of A € C™™ and B € C™" is as follows: A@ B =
A® I, + 1, ® B. The eigenvalues of A€ B can be written as Aj; = A;(A) + A;(B) where i=1:m and
j=1:n. The eigenvalues of A are denoted by 2;(A), while the eigenvalues of B are denoted by A;(B).The
Kronecker sum is calculated by applying the vector operator to the matrix AX+XB, which results in the
following expression:

vec(AX + XB) = (I, ® A+ BT ® I, )vec(X) = (BT @ A)vec(X) 4)

Infinite difference discretization is done for partial differential equations, such as the case when
Poisson's equation is discretized on a square by the typical five-point operator, and the Kronecker sum
structure also manifests itself.

2.1.9. The eigenvalues and eigenvectors of A and AT

Our example demonstrated that Eigenvalues A and AT were identical, but Eigenvectors A and AT
were distinct (though in some ways linked), and that Eigenvalues B and BT were identical but they
were completely unrelated. Why is this the case?

It should not be too difficult for us to find the answer to the eigenvalue question because it is deduced
from the characteristics of both the determinant and the transpose. Remember the following two pieces
of information: (A + B)T = AT + BT; det(A) = det (AT). By computing the characteristic polynomial
of a matrix, we may determine its eigenvalues; more specifically, we can determine that det(A) =
det (AT). What polynomial best describes the characteristics of AT? Consider:

det(AT — AI) = det(AT —AIT) = det ((A — ADT = det (A — D) (5)

Therefore, it is plain to see that the characteristic polynomial for AT is the same as the one for A.
As a result, their eigenvalues are identical to one another.

Where do we stand with their individual eigenvectors? Is there any connection between the two? The
answer is a straightforward "No".

These are A and the trace's eigenvalues and eigenvectors.
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It is important to take note that the eigenvalues of A are -12 and 12, and that the trace is 6, whereas
the eigenvalues of B are -1, 2, and 3, and that the trace of B is 4, respectively. Is there a connection that
we can make?

It would appear that the trace is the same as the sum of the eigenvalues! Why does this happen to be
the case?

The response to this question is a little beyond the scope of this article; we can justify a portion of
this fact, and another portion of it, we'll just state as being true without providing any justification.

To begin, we are aware that tr(AB) = tr(BA). Second, we make the unsupported assertion that
given a square matrix A, we are able to locate a square matrix P such that P~YAP is an upper triangular
matrix with the eigenvalues of A on the diagonal. This assertion is made despite the absence of any
supporting evidence. Therefore, the total of the eigenvalues is denoted by tr(P~1AP); in addition, we
are aware that tr(P~1AP) = tr(P~1PA) = tr(A). Therefore, the total of the eigenvalues constitutes the
trace of A.

2.1.10. The eigenvalues and eigenvectors of A and the determinant
Once more, the eigenvalues of variable A are 6 and 12, and the determinant of variable A is 72. The
values -1, 2, and 3 are the eigenvalues of B, and the value -6 is the determinant of B. It would appear
that the determinant is the product of the eigenvalues.

This is absolutely correct, and the justification for this can be found in our argument presented earlier.
It is common knowledge that the product of a triangular matrix's diagonal elements constitutes the
determinant of such a matrix. Therefore, if we are given a matrix A, we may find P such that P"1AP is
an upper triangular shape with the eigenvalues of A along the diagonal. Therefore, the product of the
eigenvalues is denoted by the notation det(P~!AP). We know that det(P~!AP) = det(P~1PA) =
det(A). The product of the eigenvalues is hence the determinant of the variable A.

2.2. Distillability problem
The hypothesis for the distillability problem is as follows: A,B,I € C4%4,d > 4, with the matrix being:

X=AQI+I®B (6)
Where:
TrA = TrB = 0, TrATA + TrB'B = . 7)
Define the set xq, the elements of which are determined by both equations. The singular values of
X € xq are Oy, ...,042 indescending order. Therefore,
Sup(o? + 62) <= 3)
Xex 2
Here are some examples to further understand Equations (6) and (7):
0 a, 0 O 0 by
[ay 0 0 O (b, 0O 0 O
Let A= 0 0 0 a; and B= 0 0 0 b, . Then,
0 0 a4 O 0 0 by O
X=AQI+I1IQ®B
0 a 0 0 1000 100 0 0 by 0 0
a 0 0 0 0100 0100 b 0 0 0
00Oa3®0010+0010®0OOb3
0 0 a4 O 0 0 0 1 0 0 0 1 0 0 by, O
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0 b 0 0 a 0 00 0000000 0
b 0.0 0 0 a 00 0 0000GO0TO OO0
0 0 0 by 00 a O 000 0O0OTOTU OO
0 0 by 0 00 0 = 000 0O0O0UO0O
a, 0 0 0 O b, 0 0 000 0O0UOT 0O
0 a 0 0 b, 0 0 0 00000 OO0 O
00 a 0 0 0 0 by 0000O0O0O0O
| 00 0 a 0 0 by, O 0 00O O O0O0OTPO
0000O0GO0TO 0O t? by 00 a3 0 0 0
00000GO0TO 0O 2 00 0 0 a 0 0
000 0O0OTOTU OO 0 0 0 b; 0 0 az 0
0 000 O0OTU OO 0 0 by, 0 0 0 0 a3
00 00O OT 0O a, 0 0 0 O b, 0 0
000 0O0OT 0O 0 a, 00 b, 0 0 0
000 0O0OT 0O 00 a 0 0 0 0 by
000 0O0OTU 0O 00 0 a, 0 0 b, 0

0 a; 0 0\ /0 a 0 O aya, O 0 0
ata(3 0 0 0lfa, 0 0 0)_ [ 0 aa 0 0
0 0 0 a, 0 0 0 aj 0 0 Azay 0
0 0 a 0/\0 0 a, O 0 0 0 @zas
0 b, 0 0\/0 b, 0 O bb, 0 0 0
gtg—|P1 0 0 0 |fb, 0 0 0} _[ 0 b 0 0
0 0 0 b,\0 0 0 b3 0 0 b, 0
\0 0 b; 0/ \0 0 b, O \ 0 0 0 bsbs

Therefore, TrA = TrB = 0, TrAA + TrB'B = T, (&a; + b,by) = 5.
To examine the conjecture, we must first grasp the following theorems:

2.2.1. The theorem of Gershgorin's Circle:
R; is the absolute value sum of the non-diagonal items in the i-th row: R; = X4 |ajl

Let D(aj;, R;) € C be a closed disc with radius R; and centered at a;;. A Gershgorin disc is one
such disc.

Every eigenvalue of A is represented by at least one of the Gershgoin discs D(aj;, Ry).

Assume that is one of A's eigenvalues. Choose an eigenvector with the equation x = (x]-) where
one of the components, x;, has the value one, and the remaining components have absolute values that
are either less than or equal to 1: x; =1 and |X]-| <1 for j # i. When any eigenvector is divided by
the component of that eigenvector that has the highest modulus, there is always an x that can be
discovered. Since Ax=Ax, and notably Y;a;xj = Ax; = A.

As a result of splitting the total and remembering that x; = 1, we get Y ajjX; + aj; = A.

As a result, using the triangle inequality

A —ayl = | Tjwiaix; | < Tjilag|1xj] < Bjilas] = Ri. )

2.2.2. Theorem of Brauer
Let K be a field in which, for each integer r greater than 0, there exists an integer J(r) such that for n
greater than or equal to i(r), every equation is true.
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a;x; +-+axp=0,and a; €K i=1,..,n (10)
In K, there is a nontrivial solution. Then, given a homogeneous polynomial fj, ..., fi, of degrees
rq, ..., with coefficients in K, there exists a number w(ry, ..., ry, ) such that for n > w(ry, ..., 1y, D),
there exists an I-dimensional affine subspace M of K" (regarded as a vector space over K) fulfilling

f1 (X1, eoer Xp) = fie(Xq, oo, Xp) = 0,V (X4, .., Xp) EM (11)

2.2.3. Examples of proofs
Several proven examples of 4x4 monomial matrices are discussed.

0 a; 0 O 0 by, 0 0
[a; 0 0 O (b, 0O 0 O ) +
1. Let A= 0 0 0 as and B= 0 0 0 by If we discover that XTX can be
0 0 a, O 0 0 by, O

represented as Y;@DY,, it's simple to observe that Y; and Y, are nearly identical by changing a; with
ag and a,with a,, from Y; toY,. By combining Yi,(|a;|? + |b;|?) = i and det (A —Y;), we
discover that the sum of the two highest eigenvalues of Y; is not more than %, which can be derived by

TrA = TrB = 0, TrATA + TrBB = %

0 a; 0 O
a, 0 0 O . .

2. If we define A as 0 0 o0 and B as diag(bq, b,, b3, b,), we are able to discover that
0 0 a O

XTX may be represented as H;@H,. After going over several instances of the sum of the two largest
eigenvalues, we are able to demonstrate that the sum of the two largest eigenvalues cannot be greater
than half of the original value.

a, 0 0 0 / 0 by O 0
0 0 0 0 b 0
3. Let A= 0 302 1. 0 and B= 0 0 02 b.eifs | and then we will assume that
3 1
0 0 0 a \bzeiGZ 0 0 0

by, b, = 0and 8; = 0. It is then enough to show that XTX = @}, M;. If we start with a matrix of size
4 by 4, denoted as M; , then we can use the eigenvalues of M;" to determine the two greatest
eigenvalues of M, which will assist us in proving the assumption.

The proof that the conjecture is correct in the case where both A and B are monomial matrices have
already been carried out.

a, 0 0 0 0 b, 0 0 0 ¢ 0 O

' [0 -a, 0 0 [b, 0 0 O [0 0 ¢, O
Let's assume that V= 0 0 0 a, ) W= 0 0 0 by X= 0 0 0 c3/f If

0 0 a; O 0 0 b, O c, 0 0 O

either A or B is to be either of these three matrices, then the conjecture would be correct. We can use A
and B to figure out XTX, which is the primary tactic for proving them. PYXTXP and XX would be the
same for any unitary matrix P. PTXTXP can be conveniently written as the combination of four 4x4
positive semidefinite matrices by simply locating the appropriate P. In this case, it is sufficient to
determine either the sum of the maximum of two eigenvalues in each of the four matrices or the sum of
the maximum of two eigenvalues in any of the four matrices.

3. Conclusion

One of the most fundamental and fundamentally significant components of the theory of quantum
information processing is the concept of entanglement, which can be considered one of entanglement's
most fundamental features. Because of this, determining whether or not the quantum state of a composite
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system is entangled is of the utmost importance. We have shown that in order to prove the distillation
conjecture, it is a good idea to take into consideration the Gershgorin circle theorem, Brauer's theorem,
the properties of the Kronecker product, and some crucial conclusions on the Kronecker sum's trace,
eigenvalues, and singular values. We have also shown that in order to prove the distillation conjecture,
it is a good idea to take into consideration the properties of the Kronecker product. We have also
demonstrated that, in order to demonstrate that the distillation conjecture is true, it is necessary to take
into account the characteristics of the Kronecker apparatus. In addition, there exist proofs under three
different conditions that establish that the conjecture is right when both A and B are monomial matrices.
These proofs demonstrate that the conjecture holds true when both A and B are monomial matrices
(work that will be done in the future, detailed in greater detail).
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