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Abstract: It is a fundamental problem in quantum information whether a particular quantum 
state of a composite system is entangled. It has enormous potential in quantum error correction, 
quantum cryptography, and quantum teleportation applications. This problem can be transferred 
in the form of a mathematical conjecture called the distillation conjecture. In the first section of 
this paper, relevant physical and mathematical information is presented, including basic linear 
algebra knowledge, the statement, and concrete applications of multiple mathematical 
knowledge like conjugate, eigenvalue, and singular value. Then, we introduce the distillation 
conjecture in a mathematical version for a more precise mathematical analysis. In an effort to 
make more significant headway in proving the conjecture, we selected some theories and 
findings relating to the Kronecker product, Kronecker sum, eigenvalue, and singular value, then 
evaluated and grouped them. In addition, we provided multiple proofs of the conjecture under 
varying conditions and made numerous attempts and hypotheses regarding how to establish the 
conjecture. 

1. Introduction 

1.1. Definition of leaner algebra 
Linear algebra is the mathematical discipline concerned with linear equations and functions expressed 
as matrices and vectors. Simply said, linear algebra enables readers to comprehend and conduct 
mathematical operations on geometric notions, such as planes in higher-dimensional space. 

1.2. Definition of matrix 
A matrix is a container for a collection of vectors. A matrix operation entails performing a stretch and 
rotation transformation on a collection of vectors. Because the vectors are described by their x and y 
values, these two transformations alter the vectors' x and y values. The matrix was designed to explain 
linear plane transformations. 

1.3. The history of quantum physics 
Quantum was initially explained using classical mechanics, atomic interpretation, and electromagnetism. 
(The quantum is the smallest fundamental unit that is non-divisible). The thermal radiation and Planck 
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energy quantum hypothesis were investigated in the 19th century. In the beginning, Kirchhoff conducted 
experiments with black bodies, which demonstrated that the radiation was simply connected to the 
temperature but not its density or characteristics. Then, Wien discovered the radiation energy formula. 
Einstein recognized Planck's significance in physic disciplines at the close of the 19th century and re-
established new hypotheses [1-10]. He believed that the quantum was unbroken and inseparable. In 
certain circumstances, radiation particles can appear in the form of "light quantum." M physicists in the 
19th century believed that the atom was the smallest undivided unit. The original theory was proposed 
by Perrin, who believed that the atom was surrounded by charged particles, with electrons on the exterior 
[1-10]. Thomson imagined charged particles encircled by an electron ring. Later, Marsden conducted 
experiments disproving Thomson's idea [1-10]. Finally, Bohr demonstrated that only electrons emitted 
or absorbed energy during the transition and demonstrated that atoms are stable. The middle twentieth 
century saw the birth of quantum mechanics and matrix mechanics. At that time, electrons circled the 
nucleus at distinct harmonic frequencies, exposing Bohr's theory of inherent inconsistencies. Mechanic 
equations were set down as equations. The matrix form of quantum mechanics is thus established. 
Inspired by Einstein, Bonn established that physics exclusively dealt with observable quantities and, in 
cooperation with Jordan, published quantum mechanics with mathematical matrices as evidence. 

2. Main Body 

2.1. Basic definition 
The conjugate, transpose, and conjugate transpose of the matrix A will be denoted by A∗, A୲, and Aற, 
respectively. 

2.1.1. Trace 
A square matrix can have its sum of elements on the diagonal determined with the use of the trace 
function. 

The definition of the trace of a square matrix with dimensions n by n is as follows: 
 

                    Tr(A) = ∑ a୧୧ = aଵଵ + aଶଶ + ⋯ … . . +a୬୬୬୧ୀଵ                    (1)   
         

Where a୧୧  represents the entry that is located on the i-th row and i-th column of A, the values 
entering A can be either real numbers or, more generally speaking, complex numbers. In other words, 
the trace is the sum of all the entries on the main diagonal. When working with matrices that are not 
square, the trace cannot be defined. 

Example: Let A =൥3 4 52 9 61 8 7൩. The trace of A is Tr (A)=∑ a୧୧ = aଵଵ + aଶଶ + aଷଷ = 3 + 9 + 7 =ଷ୧ୀଵ19. 

2.1.2. Transpose 
When working with matrices, the transpose operation is analogous to the inverse one. In a more 
straightforward explanation, the rows and columns of the initial matrix have been inverted. Tr(A)=Tr(A୘) 

Example: Let A =൥3 4 52 9 61 8 7൩. The transposition of A is A୘ = ൥3 2 14 9 85 6 7൩. 

2.1.3. Conjugate 
Conjugate matrices are a notion that describes two matrices whose real numbers are the same, but their 
imagery numbers are negative. This concept is based on the fact that conjugate matrices finish complex 
values and divide them into real numbers and imagery numbers. Additionally, a few expressions can be 
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found in the conjugate matrix. Example: Let A =൥3 + i 4 52 9 + 2i 61 8 7 + 3i൩. The conjugate of A is A∗ =
൥3 − i 4 52 9 − 2i 61 8 7 − 3i൩. 

2.1.4. Eigenvalue and eigenvector 
Assume A is an n by n matrix. For some scalar, an eigenvector of A is a nonzero vector v in Rn such 
that Av = v. A scalar eigenvalue is one for which the equation Av = v has a nontrivial solution. If Av = 
v for v is not equal to 0, we can say that is the eigenvalue for v and that v is an eigenvector for. The set 
of all possible answers to the equation can be represented by the empty space in the matrix A − λI. 
Therefore, we can consider this to be a subspace of ℝ୬, which is referred to as the eigenspace of A 
corresponding to λ. The eigenspace is made up of the zero vector in addition to all of the eigenvectors 
that are associated with λ. 

Example: Let = ൥4 −1 62 1 62 −1 8൩ . An eigenvalue of A is 2, and we need to find a basis for the 

eigenspace that it corresponds to. From A − 2I = ൥4 −1 62 1 62 −1 8൩ − ൥2 0 00 2 00 0 2൩ = ൥2 −1 62 −1 62 −1 6൩ and row, 

the augmented matrix is reduced for (A − 2I)x = 0: ൥2 −12 −12 −1     6 06 06 0൩ − ൥2 −10 00 0      6 00 00 0൩. 

Because the equation (A − 2I)x = 0 contains free variables, it is now abundantly evident that the 

value 2 does, in fact, constitute one of the eigenvalues of A. The general solution is ൥xଵxଶxଷ൩ = xଶ ൥1/210 ൩ +
xଷ ൥−301 ൩ , and xଶ and xଷ are free. The eigenspace is a subspace of R3 that has two dimensions in size. 

An example of a basis is ൝൥120൩ ൥−301 ൩ൡ. 

Application: The fundamental ideas of eigenvalues and eigenvectors are helpful in many areas of 
pure and practical mathematics and the contexts in which they are found. Eigenvalues play an important 
role in the engineering design process and the study of differential equations and continuous dynamical 
systems. Additionally, eigenvalues naturally occur in a variety of scientific disciplines, including 
physics and chemistry. 

2.1.5. Singular value 
Let A be an m × n matrix for the sake of this definition. If this is the case, A୘A is symmetric and can 
be diagonalized in an orthogonal fashion. Let ሼvଵ, … , v୬ሽ be an orthonormal basis for ℝ୬ that consists 
of eigenvectors of A୘A, and let λଵ, … , λ୬ be the associated eigenvalues of A୘A. In other words, let ሼvଵ, … , v୬ሽ be an orthonormal basis for ℝ୬. Then, for 1 ≤ i ≤ n,                                        ‖Av୧‖ଶ = (Av୧)୘Av୧ = v୧୘A୘Av୧ = v୧୘(λ୧v୧) = λ୍                  (2) 

Therefore, there is not a single negative eigenvalue in the A୘A matrix. It is possible for us to assume 
that the eigenvalues are organized in such a way that λଵ ≥ λଶ ≥ ⋯ ≥ λ୬ ≥ 0 by simply renumbering 
the terms if this turns out to be necessary. The singular values of A are the square roots of the eigenvalues 
of A୘A, and they are indicated by σଵ, … , σ୬. These values are arranged in descending order. That is, σ୧ = ඥλ୧ for 1 ≤ i ≤ n. The singular values of A are the lengths of the vectors Avଵ, … , Av୬, according 
to Equation 2. 
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Application: Calculating the pseudoinverse, approximating matrices, and calculating a matrix's rank, 
range, and null space are all examples of mathematical applications of the singular value decomposition 
or SVD. 

2.1.6. Kronecker product 
The Kronecker product has a number of important features, two of which are (A ⊗ B)∗ = A∗ ⊗ B∗, and (A ⊗ B)(C ⊗ D) = AC ⊗ BD. The second equality suggests that in the 
case where x i is an eigenvector of A ∈ ℂ୫×୫ with an eigenvalue of i, and y୨ is an eigenvector of B ∈ ℂ୬×୬ with an eigenvalue of μ୨ , then (A ⊗ B)൫x୧ ⊗ y୨൯ = ൫Ax୧ ⊗ By୨൯ = ൫λ୧x୧ ⊗ μ୨y୨൯ =λ୧μ୨(x୧ ⊗ y୨). Hence, λ୧μ୨ is an eigenvalue of A ⊗ B with an eigenvector that looks like this: x୧ ⊗y୨ . In fact, the mn eigenvalues of A ⊗ B are exactly λ୧μ୨ , with i = 1,2, ⋯ , m and j = 1,2, ⋯ , n, 
respectively. 

2.1.7. Vector operator 
The vector operator concatenates the columns of a matrix into a single lengthy vector. Here's how it 
works: if A = [aଵ, aଶ, … , a୫], then vec(A) = [aଵ୘aଶ୘ … a୫୘]୘; The Kronecker product and the vector 
operator have a fruitful interaction: for every A, X, and B, their product AXB is defined,                                                         vec(AXB) = ൫B୘ ⊗ A൯vec(X)                         (3) 

With the help of this relation, we are able to express a linear system AXB = C using the conventional 
form "Ax=b". 

2.1.8. Kronecker sum 
The formula for calculating the Kronecker sum of A ∈ ℂ୫×୫ and B ∈ ℂ୬×୬ is as follows: A ⊕ B =A ⊗ I୬ + I୫ ⊗ B. The eigenvalues of A ⊕ B can be written as λ୧୨ = λ୧(A) + λ୨(B) where i=1:m and 
j=1:n. The eigenvalues of A are denoted by λ୧(A), while the eigenvalues of B are denoted by λ୨(B).The 
Kronecker sum is calculated by applying the vector operator to the matrix AX+XB, which results in the 
following expression:                        vec(AX + XB) = ൫I୫ ⊗ A + B୘ ⊗ I୬൯vec(X) = ൫B୘ ⊕ A൯vec(X)          (4) 

Infinite difference discretization is done for partial differential equations, such as the case when 
Poisson's equation is discretized on a square by the typical five-point operator, and the Kronecker sum 
structure also manifests itself. 

2.1.9. The eigenvalues and eigenvectors of A and 𝐴் 
Our example demonstrated that Eigenvalues A and A୘ were identical, but Eigenvectors A and A୘ 
were distinct (though in some ways linked), and that Eigenvalues B and B୘ were identical but they 
were completely unrelated. Why is this the case? 

It should not be too difficult for us to find the answer to the eigenvalue question because it is deduced 
from the characteristics of both the determinant and the transpose. Remember the following two pieces 
of information: (A + B)୘ = A୘ + B୘; det(A) = det (A୘). By computing the characteristic polynomial 
of a matrix, we may determine its eigenvalues; more specifically, we can determine that det(A) =det (A୘). What polynomial best describes the characteristics of A୘? Consider:                           det൫A୘ − λI൯ = det൫A୘ − λI୘൯ = det ((A − λI)୘ = det (A − λI)            (5) 

Therefore, it is plain to see that the characteristic polynomial for A୘ is the same as the one for A. 
As a result, their eigenvalues are identical to one another. 

Where do we stand with their individual eigenvectors? Is there any connection between the two? The 
answer is a straightforward "No". 

These are A and the trace's eigenvalues and eigenvectors. 
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It is important to take note that the eigenvalues of A are -12 and 12, and that the trace is 6, whereas 
the eigenvalues of B are -1, 2, and 3, and that the trace of B is 4, respectively. Is there a connection that 
we can make? 

It would appear that the trace is the same as the sum of the eigenvalues! Why does this happen to be 
the case? 

The response to this question is a little beyond the scope of this article; we can justify a portion of 
this fact, and another portion of it, we'll just state as being true without providing any justification. 

To begin, we are aware that tr(AB) = tr(BA). Second, we make the unsupported assertion that 
given a square matrix A, we are able to locate a square matrix P such that PିଵAP is an upper triangular 
matrix with the eigenvalues of A on the diagonal. This assertion is made despite the absence of any 
supporting evidence. Therefore, the total of the eigenvalues is denoted by tr(PିଵAP); in addition, we 
are aware that tr(PିଵAP) = tr(PିଵPA) = tr(A). Therefore, the total of the eigenvalues constitutes the 
trace of A. 

2.1.10. The eigenvalues and eigenvectors of 𝐴 and the determinant 
Once more, the eigenvalues of variable A are 6 and 12, and the determinant of variable A is 72. The 
values -1, 2, and 3 are the eigenvalues of B, and the value -6 is the determinant of B. It would appear 
that the determinant is the product of the eigenvalues. 

This is absolutely correct, and the justification for this can be found in our argument presented earlier. 
It is common knowledge that the product of a triangular matrix's diagonal elements constitutes the 
determinant of such a matrix. Therefore, if we are given a matrix A, we may find P such that PିଵAP is 
an upper triangular shape with the eigenvalues of A along the diagonal. Therefore, the product of the 
eigenvalues is denoted by the notation det(PିଵAP). We know that det(PିଵAP) = det(PିଵPA) =det(A). The product of the eigenvalues is hence the determinant of the variable A. 

2.2. Distillability problem 
The hypothesis for the distillability problem is as follows: A, B, I ∈ ℂୢ×ୢ, d ≥ 4, with the matrix being:                                                                       X = A ⊗ I + I ⊗ B                            (6)                

Where:                                                    TrA = TrB = 0, TrAறA + TrBறB = ଵୢ .                     (7)                
Define the set χୢ, the elements of which are determined by both equations. The singular values of X ∈ χୢ are  σଵ, … . , σୢమ  in descending order. Therefore,                                                                        Supଡ଼஫஧ (σଵଶ + σଶଶ) ≤ ଵଶ                             (8) 

Here are some examples to further understand Equations (6) and (7): 

Let A=൮ 0 aଵ 0 0aଶ 0 0 00 0 0 aଷ0 0 aସ 0 ൲  and B=൮ 0 bଵ 0 0bଶ 0 0 00 0 0 bଷ0 0 bସ 0 ൲. Then, 

 X = A ⊗ I + I ⊗ B 

= ൮ 0 aଵ 0 0aଶ 0 0 00 0 0 aଷ0 0 aସ 0 ൲ ⊗ ൮1 0 0 00 1 0 00 0 1 00 0 0 1൲ + ൮1 0 0 00 1 0 00 0 1 00 0 0 1൲ ⊗ ൮ 0 bଵ 0 0bଶ 0 0 00 0 0 bଷ0 0 bସ 0 ൲ 
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=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 0 bଵ 0 0bଶ 0 0 00 0 0 bଷ0 0 bସ 0

aଵ 00 aଵ 0 00 00 00 0 aଵ 00 aଵaଶ 00 aଶ 0 00 00 00 0 aଶ 00 aଶ
0 bଵ 0 0bଶ 0 0 00 0 0 bଷ0 0 bସ 0

0 00 0 0 00 00 00 0 0 00 0
0 00 0 0 00 00 00 0 0 00 00 00 0 0 00 00 00 0 0 00 0
0 00 0 0 00 00 00 0 0 00 00 00 0 0 00 00 00 0 0 00 0

0 00 0 0 00 00 00 0 0 00 00 00 0 0 00 00 00 0 0 00 0
0 00 0 0 00 00 00 0 0 00 0

0 bଵ 0 0bଶ 0 0 00 0 0 bଷ0 0 bସ 0
aଷ 00 aଷ 0 00 00 00 0 aଷ 00 aଷaସ 00 aସ 0 00 00 00 0 aସ 00 aସ
0 bଵ 0 0bଶ 0 0 00 0 0 bଷ0 0 bସ 0 ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 

 

AறA = ൮ 0 aଶതതത 0 0aଵതതത 0 0 00 0 0 aସതതത0 0 aଷതതത 0 ൲ ൮ 0 aଵ 0 0aଶ 0 0 00 0 0 aଷ0 0 aସ 0 ൲ = ൮aଶതതതaଶ 0 0 00 aଵതതതaଵ 0 00 0 aସതതതaସ 00 0 0 aଷതതതaଷ൲ 

BறB = ⎝⎜
⎛ 0 bଶതതത 0 0bଵതതത 0 0 00 0 0 bସതതത0 0 bଷതതത 0 ⎠⎟

⎞ ൮ 0 bଵ 0 0bଶ 0 0 00 0 0 bଷ0 0 bସ 0 ൲ = ⎝⎜
⎛bଶതതതbଶ 0 0 00 bଵതതതbଵ 0 00 0 bସതതതbସ 00 0 0 bଷതതതbଷ⎠⎟

⎞
 

Therefore, TrA = TrB = 0, TrAறA + TrBறB = ∑ (aనഥ a୧ + bనഥ b୧ସ୧ୀଵ ) = ଵସ. 
To examine the conjecture, we must first grasp the following theorems: 

2.2.1. The theorem of Gershgorin's Circle: R୧ is the absolute value sum of the non-diagonal items in the i-th row: R୧ =  ∑ |a୧୨|୨ஷ୧  
Let D(a୧୧, R୧) ⊆ ℂ be a closed disc with radius R୧ and centered at a୧୧. A Gershgorin disc is one 

such disc. 
Every eigenvalue of A is represented by at least one of the Gershgoin discs D(a୧୧, R୧). 
Assume that is one of A's eigenvalues. Choose an eigenvector with the equation x = ൫x୨൯ where 

one of the components, x୧, has the value one, and the remaining components have absolute values that 
are either less than or equal to 1: x୧ = 1 and หx୨ห ≤ 1 for j ≠ i. When any eigenvector is divided by 
the component of that eigenvector that has the highest modulus, there is always an x that can be 
discovered. Since Ax=λx, and notably ∑ a୧୨x୨ = λx୧ = λ.୨  

As a result of splitting the total and remembering that x୧ = 1, we get ∑ a୧୨x୨ + a୧୧ = λ.୨ஷ୧  
As a result, using the triangle inequality                                      |λ − a୧୧| = | ∑ a୧୨x୨୨ஷ୧ | ≤ ∑ หa୧୨ห|x୨| ≤ ∑ หa୧୨ห = R୧.୨ஷ୧୨ஷ୧              (9)                

2.2.2. Theorem of Brauer 
Let K be a field in which, for each integer r greater than 0, there exists an integer ψ(r) such that for n 
greater than or equal to ψ(r), every equation is true. 
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                                             aଵxଵ୰ + ⋯ + a୬x୬୰ = 0, and  a୧ ∈ K, i = 1, … , n                 (10)                
In K, there is a nontrivial solution. Then, given a homogeneous polynomial fଵ, … , f୩ of degrees rଵ, … , r୩ with coefficients in K, there exists a number ω(rଵ, … , r୩, I) such that for n ≥  ω(rଵ, … , r୩, I), 

there exists an I-dimensional affine subspace M of K୬ (regarded as a vector space over K) fulfilling                                        fଵ(xଵ, … , x୬) = f୩(xଵ, … , x୬) = 0, ∀(xଵ, … , x୬) ∈ M               (11)                

2.2.3. Examples of proofs 
Several proven examples of 4×4 monomial matrices are discussed. 

1. Let A=൮ 0 aଵ 0 0aଶ 0 0 00 0 0 aଷ0 0 aସ 0 ൲   and B=൮ 0 bଵ 0 0bଶ 0 0 00 0 0 bଷ0 0 bସ 0 ൲ . If we discover that XறX  can be 

represented as Yଵ⨁Yଶ, it's simple to observe that Yଵ and  Yଶ are nearly identical by changing aଵ with aଷ  and aଶwith aସ , from Yଵ to Yଶ . By combining  ∑ (|a୧|ଶସ୧ୀଵ + |b୧|ଶ) = ଵସ and det (λI − Yଵ), we 

discover that the sum of the two highest eigenvalues of Yଵ is not more than ଵଶ, which can be derived by TrA = TrB = 0, TrAறA + TrBறB = ଵସ .  

2. If we define A as ൮ 0 aଵ 0 0aଶ 0 0 00 0 0 aଷ0 0 aସ 0 ൲ and B as diag(bଵ, bଶ, bଷ, bସ), we are able to discover that 

XறX may be represented as Hଵ⨁Hଶ. After going over several instances of the sum of the two largest 
eigenvalues, we are able to demonstrate that the sum of the two largest eigenvalues cannot be greater 
than half of the original value. 

3. Let A=൮aଵ 0 0 00 aଶ 0 00 0 aଷ 00 0 0 aସ൲ and B=⎝⎛
0 bଵ 0 00 0 bଶ 00 0 0 bଵe୧஘భbଶe୧஘మ 0 0 0 ⎠⎞, and then we will assume that 

bଵ, bଶ ≥ 0 and θଵ = 0. It is then enough to show that XறX = ⨁୧ୀଵସ M୧. If we start with a matrix of size 
4 by 4, denoted as M୧∼ , then we can use the eigenvalues of M୧∼  to determine the two greatest 
eigenvalues of M୧∼, which will assist us in proving the assumption. 

 
The proof that the conjecture is correct in the case where both A and B are monomial matrices have 

already been carried out. 

Let's assume that V=൮aଵ 0 0 00 −aଵ 0 00 0 0 aଶ0 0 aଷ 0 ൲, W=൮ 0 bଵ 0 0bଶ 0 0 00 0 0 bଷ0 0 bସ 0 ൲, X=൮ 0 cଵ 0 00 0 cଶ 00 0 0 cଷcସ 0 0 0 ൲. If 

either A or B is to be either of these three matrices, then the conjecture would be correct. We can use A 
and B to figure out XறX, which is the primary tactic for proving them. PறXறXP and XறX would be the 
same for any unitary matrix P. PறXறXP can be conveniently written as the combination of four 4×4 
positive semidefinite matrices by simply locating the appropriate P. In this case, it is sufficient to 
determine either the sum of the maximum of two eigenvalues in each of the four matrices or the sum of 
the maximum of two eigenvalues in any of the four matrices. 

3. Conclusion 
One of the most fundamental and fundamentally significant components of the theory of quantum 
information processing is the concept of entanglement, which can be considered one of entanglement's 
most fundamental features. Because of this, determining whether or not the quantum state of a composite 



ICMMAP-2022
Journal of Physics: Conference Series 2381 (2022) 012014

IOP Publishing
doi:10.1088/1742-6596/2381/1/012014

8

system is entangled is of the utmost importance. We have shown that in order to prove the distillation 
conjecture, it is a good idea to take into consideration the Gershgorin circle theorem, Brauer's theorem, 
the properties of the Kronecker product, and some crucial conclusions on the Kronecker sum's trace, 
eigenvalues, and singular values. We have also shown that in order to prove the distillation conjecture, 
it is a good idea to take into consideration the properties of the Kronecker product. We have also 
demonstrated that, in order to demonstrate that the distillation conjecture is true, it is necessary to take 
into account the characteristics of the Kronecker apparatus. In addition, there exist proofs under three 
different conditions that establish that the conjecture is right when both A and B are monomial matrices. 
These proofs demonstrate that the conjecture holds true when both A and B are monomial matrices 
(work that will be done in the future, detailed in greater detail). 
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