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Abstract

Given our understanding of renormalizable quantum field theories, in which cou-

pling constants vary under Renormalization Group (RG) flow, it is natural to ask

whether there exist any underlying principles governing such changes. The a-

theorem [1] is conjectured to be one such principle: the existence of a function of

the couplings in a theory, satisfying a gradient-flow equation with positive-definite

metric on the space of couplings, places constraints on RG flow. Furthermore, at

RG fixed points, this “a-function” reduces to the coefficient of the Euler density in

the trace anomaly of the corresponding conformal field theory, suggesting a way

of counting the degrees of freedom in a quantum theory. In [8], the strongest ver-

sion of the a-theorem was shown to hold perturbatively, the associated a-function

was constructed for general scalar-fermion theories, and the resulting constraints

on RG functions were derived. Progress has also been made on formulating an

analogous function in six dimensions, and equivalent statements are expected to

hold for any even number of spacetime dimensions [36].

In this thesis, our principal aim is to investigate the consequences of such

gradient-flow equations, and their associated a-function, in various spacetime di-

mensions. We extend the results of [9] to general gauge theories, and deduce

the implications of a conjectured all-orders expression for the a-function, valid

for supersymmetric gauge theories. We then turn to six dimensions and find, as

in four dimensions, that a modification in the formulation of the a-function is

required due to the presence of a global symmetry. We also reveal some puzzling

implications regarding the presence of one-particle-reducible contributions to RG

functions, and comment on a proposed solution. Finally, we turn to three dimen-

sions, where there is no trace anomaly, and hence no natural candidate quantity

to which the a-function may be related. Nevertheless, we show that one may still

construct a function, satisfying the same gradient-flow equation, for both non-

supersymmetric and supersymmetric theories; we then show how this function

gives new relations between the underlying Feynman integrals.
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Chapter 1

Introduction

To date, our most successful attempt at describing the universe posits that all

physical phenomena are consequences of four fundamental interactions: gravity,

electromagnetism, the weak interaction and the strong interaction. The theo-

retical framework for gravity is General Relativity (GR), in which gravitational

attraction is a consequence of spacetime curvature caused by a distribution of

matter and energy, with the precise relation being described by the Einstein

Field Equations. The theoretical framework for the other three interactions is

Quantum Field Theory (QFT), in which one constructs a Lagrangian density

consisting of derivatives and products of fields, such that the various terms are

invariant under certain transformations, and then substitutes into a Path inte-

gral over the classical fields; the fields then describe quantized particles, and each

transformation is associated with an interaction. While GR may also be for-

mulated in terms of a Lagrangian density, the corresponding Path integral leads

to a non-renormalizable QFT, and so gravitational effects must be treated as a

low-energy effective description.

Historically, the most confusing and objectionable feature introduced into

the QFT framework was renormalization, as the procedure seemed little more

than an ad hoc method of subtracting infinity from a divergent quantity to yield

a finite answer. Such concerns were laid to rest with the introduction of the

Renormalization Group (RG), whereby it was realised that one may relate a

QFT at a particular energy scale Λ to a self-similar description at another energy

scale Λ̄, in such a way that the parameters of the theory at Λ are functions

of the parameters at Λ̄, and depend on the scaling parameter relating the two

descriptions. From this perspective, renormalization is simply the modification

required to ensure that a theory is indeed self-similar under such rescaling.

The most striking physical consequence of the renormalization procedure is

1



CHAPTER 1. INTRODUCTION 2

the scale-dependent behaviour of the parameters in the theory, known (ironically,

in retrospect) as coupling constants. Each interaction in the Lagrangian density

has an associated coupling constant, and these couplings govern the rate at which

particles interact. Since these couplings depend on the renormalization scale, the

rate of particle interaction changes as one performs the same collisions at different

energy scales, leading to different experimental measurements of the couplings.

QFT predicts the value of the coupling at a new energy scale by solving the

Renormalization Group Equation (RGE), in which a particular function β encodes

the rate of change of the coupling as one varies the scaling parameter. Crucially,

this β-function does not itself explicitly depend on the scaling parameter, as this

would spoil the self-similarity of the theory.

Given the relations between couplings at different energy scales, it is possible

to interpret QFTs as points on a manifold, with couplings {gI} acting as coordi-

nates; the β-functions of the couplings βI are then said to induce a flow on the

coupling space, known as RG flow. An RG fixed point is defined as a point on the

manifold where βI = 0; at such points, RG flow ceases and one obtains a QFT

with the additional property of scale-invariance.1 The coupling-space manifold

can therefore be viewed as a collection of scale-invariant QFTs, connected via

RG flow and acting as endpoints for the flow of general QFTs. One may then

ask, do there exist restrictions on how RG flow may occur, and what are the

consequences of such restrictions?

Constraints on RG flow were investigated by Zamolodchikov [2], who was able

to show that the RG flow of two-dimensional QFTs is an irreversible process. To

demonstrate this, Zamolodchikov constructed a function C of the couplings, which

decreases monotonically under RG flow; at RG fixed points, C is stationary, and

equals the central charge of a corresponding Conformal Field Theory (CFT). Since

contributions to the central charge from any field in a unitary CFT are manifestly

positive, C can be said to count the massless degrees of freedom in the theory, and

the monotonic behaviour of C under RG flow establishes the empirically-intuitive

result that lower-energy descriptions of physical processes have fewer degrees of

freedom than do higher-energy descriptions. Furthermore, since RG fixed points

define scale-invariant QFTs (SFTs) and C always equals the central charge of a

CFT at a fixed point, the existence of C provides evidence that scale invariance

in fact implies conformal invariance, at least for two-dimensional QFTs.

1Intriguingly, all Lorentz-invariant, unitary, scale-invariant QFTs appear to also be invariant
under special conformal transformations, and hence one may speculate as to whether scale
invariance automatically implies conformal invariance. This question shall be addressed in
chapter 2, where we draw attention to the relevance of the a-theorem in excluding RG flows
that end with scale- but not conformally-invariant QFTs.
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Zamolodchikov’s results, which came to be known as the c-theorem, can be

summarised as follows2:

Theorem (c-theorem). For any two-dimensional Quantum Field Theory, there

exists a function C of the couplings such that

• at RG fixed points, C is equal to the central charge c of the corresponding

Conformal Field Theory;

• C is monotonically decreasing under RG flow.

As suggested, this theorem can indeed be used to demonstrate the coarse-graining

of degrees of freedom in lower-energy physical descriptions [3], as well as the

equivalence of scale- and conformal-invariance [4], for two-dimensional QFTs.

One would therefore hope that attempting to reformulate Zamolodchikov’s argu-

ment for four-dimensional QFTs would lead to proofs for analogous statements.

Unfortunately, a crucial step in the argument relies on the positivity of the two-

point function for the trace of the Energy-Momentum tensor and its relation to

the “c-function” C. To see how this affects attempts to derive a four-dimensional

version of the c-theorem, it is useful to follow a re-derivation of the c-theorem

using QFT in curved spacetime (QFTCS).

Despite the difficulties inherent in attempting to combine gravity with the

Standard Model, or even to simply describe gravity using QFT methods, formu-

lating QFT in a curved spacetime background has proven to be an extremely

useful first step. QFTCS has many highly non-trivial consequences, from the

prediction of black hole radiation [5] to the inability to consider field quanta as

definite, observer-independent particles [6]. The non-trivial Riemann tensor asso-

ciated with a general spacetime also results in new curvature anomalies: a sym-

metry unbroken by quantization may instead be broken by a general curved back-

ground. The most relevant such anomaly for our purposes is the trace anomaly,

where the expectation value of the trace of the energy-momentum tensor for a

CFT acquires terms proportional to various curvature scalars3. It turns out that

the coefficient of the trace anomaly for a two-dimensional CFT is proportional

to the central charge, suggesting that there is a connection between QFTCS and

the c-theorem.

2Zamolodchikov also showed that near RG fixed points, C is not only monotonically de-
creasing, but in fact obeys a gradient-flow equation with positive-definite metric; in [11], the
gradient-flow behaviour was proven true non-perturbatively along the whole RG flow, and so
the c-theorem is sometimes implicitly extended to include this.

3There is extensive literature on the computation of the trace anomaly for various theories,
which may be found in [64], [65], and references therein.
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When working with QFTCS, the RG can be extended by promoting the RG

scale and the couplings of the theory to spacetime-dependent fields in their own

right; the resulting Local Renormalization Group (LRG) then specifies a rela-

tion between local Weyl rescalings, running couplings, and curvature anomalies,

reducing to the standard RG when one instead considers global Weyl rescaling

and non-spacetime-dependent couplings. The idea of using spacetime-dependent

couplings and RG scale was first introduced by Drummond and Shore [10], after

which the consistency of the LRG (and reinterpretation in terms of Weyl rescal-

ings) was established by Osborn [7, 8], requiring local counterterms proportional

to derivatives of the couplings. It was also shown that since Weyl rescalings form

an Abelian group, the commutator of two Weyl rescalings must vanish, and so

one can derive relations between the various terms in the LRG, known as Weyl

consistency conditions. The counterterms related to derivatives of the couplings

then lead to highly non-trivial consistency conditions, one of which is a gradient-

flow equation relating the derivatives of some function of the couplings to the

β-functions of the theory.4

The symmetric part of the tensor that appears in this gradient-flow equation

acts as a metric on coupling space. In the case of a two-dimensional QFT, one

can then use Ward identities for the two-point function of the trace of the energy-

momentum tensor to express the metric in terms of manifestly positive-definite

quantities; furthermore, one can derive the existence of a function of the couplings,

the total derivative of which is given by contracting the gradient-flow equation

with the β-functions. This function is then equivalent to Zamolodchikov’s c-

function, up to a term related to an arbitrary local contribution to the action

that vanishes at fixed points. The metric is the same as the Zamolodchikov

metric, completing the re-derivation of the c-theorem and establishing a further

interpretation of C as a monotonic interpolation between the trace anomalies of

CFTs.

The shift in perspective from the central charge to the coefficient in the trace

anomaly is what facilitates the search for higher-dimensional analogues of the

c-theorem. In four dimensions, the trace anomaly contains four curvature terms,

corresponding to the Euler density (a-anomaly), the square of the Ricci scalar

(b-anomaly), the square of the Weyl tensor (c-anomaly), and the d’Alembertian

of the Ricci scalar. The final anomaly can be removed simply by adding a local

counterterm to the Lagrangian density [68], and hence can be dropped from our

4Strictly speaking, the β-function appearing in the gradient-flow equation is a modified
β-function, containing an additional contribution from global symmetries in the Lagrangian
density; we shall see the importance of such a modification in perturbative calculations at three
loops and beyond.
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considerations. Näıvely, there are then three potential candidates for a four-

dimensional analogue of the c-theorem, however the Weyl consistency condition

for the b-anomaly leads to a function that vanishes at fixed points, and it can

be directly shown that the c-anomaly does not decrease monotonically under RG

flow [67]. By this reasoning, Cardy conjectured [1] that the remaining a-anomaly

may be the correct quantity for establishing a four-dimensional analogue of the

c-theorem; this is in fact a straightforward generalisation, since the Euler density

in two dimensions is simply a multiple of the Ricci scalar. This conjecture, known

as the a-theorem, has three progressively stronger formulations:

Conjecture (a-theorem). For any four-dimensional Quantum Field Theory, there

exists a function A of the couplings such that

• at RG fixed points, A is equal to the coefficient a of the Euler density in the

trace anomaly of the corresponding Conformal Field Theory.

Furthermore,

• (weak) given two RG fixed points at energy scales µUV > µIR, the function

A satisfies aUV − aIR > 0;

• (stronger) A is monotonically decreasing under RG flow;

• (strong) A obeys a gradient-flow equation with positive-definite metric.

The Weyl consistency condition for the a-anomaly is a four-dimensional gener-

alization of the previous two-dimensional gradient-flow equation, and hence to

prove the a-theorem one only need establish the positive-definiteness of the met-

ric. Unfortunately, the Ward identities involving the metric include terms related

to three-point functions for which there is no guarantee of positivity - this is the

crucial difference compared to the two-dimensional version, where we had only

manifestly-positive two-point functions. It is at least possible to salvage a pertur-

bative proof of the strong a-theorem, valid near RG fixed points: since the terms

related to the three-point function are proportional to the β-functions, they must

be sufficiently small near an RG fixed point that the metric is dominated by the

positive two-point terms.

Proof of the strong a-theorem aside, the gradient-flow equation and associated

“a-function” are sufficiently interesting in their own right due to the constraints

they place on RG quantities for general QFTs. In this thesis, our main objective

is to calculate the a-function and investigate the associated constraints, in the
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manner of Jack and Osborn [8,9]. The calculation is facilitated by a further prop-

erty of the gradient-flow equation: the a-function and metric may be expanded

perturbatively, and their values inferred from RG quantities in flat spacetime,

rather than the curved spacetime counterparts. By expressing RG quantities in

a schematic way, we may derive the a-function for a general QFT in a given

number of spacetime dimensions, then relate it to any particular QFT by insert-

ing the required fields and couplings into the general field multiplets and tensor

couplings.

The thesis is structured as follows. After a detailed exposition of the back-

ground material in chapter 2, we start chapter 3 by extending the known four-

dimensional results to include gauge interactions, and compare the constraints

on the general three-loop gauge β-function to the explicit calculation by Gracey,

Jones and Pickering [23]. In chapter 4, we test the equivalent conjecture in higher

even-dimensional spacetime by moving on to six dimensions and calculating the

a-function for a general φ3 theory up to terms involving the three-loop β-function;

this calculation allows us to verify that the β-function in the gradient-flow equa-

tion must be modified in a way analogous to the four-dimensional case. In chapter

5, despite the lack of trace anomaly and associated Weyl consistency condition in

three dimensions [42], we posit that a gradient-flow equation of the same form will

produce consistency conditions for general three-dimensional QFTs. Throughout

all chapters, the question of scheme-dependence is addressed, and we ensure that

every consistency condition imposed by the gradient-flow equation is a scheme-

independent result. We also find that the calculations in each chapter lead to

unexpected consequences, such as the manifest symmetry of the metric beyond

leading order (chapter 3), the apparent existence of one-particle-reducible (1PR)

contributions to the β-function for general theories (chapter 4), and new rela-

tions between Feynman integrals beyond what one may derive using traditional

reduction techniques such as integration by parts (chapter 5). The thesis will

conclude with a summary of the results in each chapter, a outline of the solution

to the 1PR issue, and a tentative connection to other proposed odd-dimensional

analogues of the a-theorem. For completeness, we include an appendix listing the

equations derived from the gradient-flow equation in each chapter.



Chapter 2

Background

Essentially, every result contained in this thesis is predicated on the existence,

for a general QFT, of a function A(g) of the couplings, satisfying a gradient-flow

equation of the form

∂IA = TIJβ
J ⇐⇒ dA = dgITIJβ

J , (2.1)

where the upper-case Latin indices I, J run over all marginal couplings in the

theory. The gradient-flow equation lies at the intersection of several QFT topics,

the most prominent being Renormalization, Conformal Field Theory, and Quan-

tum Field Theory in Curved Spacetime. Due to the copious quantity of literature

that has accrued in each of these topics over the last 40-50 years, it would be im-

practical to give a truly comprehensive introduction. Instead, we opt to provide

a streamlined path through each topic in turn, attempting to highlight the neces-

sary features, and culminating in a self-contained derivation of the gradient-flow

equation in two- and four-dimensional spacetime.1 We begin with the Path inte-

gral formulation of QFT in four-dimensional spacetime, defining the generating

functional and Green function first for a free scalar theory, then extending the

formulation to introduce fermions and gauge fields. We then show how inter-

actions may be considered using perturbation theory and derive the associated

momentum-space Feynman rules, before moving on to dimensional regulariza-

tion and renormalization. After introducing the RG equation and associated RG

quantities, we discuss the concept of RG flow and fixed points, making connec-

tions to scale invariance, conformal invariance and CFTs. From here, we again

extend the Path integral formulation to curved spacetime and derive the local

1The extension to higher even-dimensional spacetime is completely analogous, though the
complexity of deriving the Weyl consistency conditions rapidly increases due to the number of
curvature terms present in the action.

7
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RG equation; finally, after an aside on two-dimensional spacetime, we may derive

the gradient-flow equations that form the basis of our calculations in subsequent

chapters.

2.1 Quantum Field Theory

In this section, we primarily follow the treatment of QFT found in Bailin and

Love [59], with supplementary material on Dimensional Regularization found in

Collins [61].

2.1.1 Prelude: Quantum Mechanics

The Path integral formulation of QFT is defined by analogy with Feynman’s

Path integral formulation of standard Quantum Mechanics (QM), where one be-

gins with time-dependent operators Q̂(t) and P̂ (t) in the Heisenberg picture,

corresponding to a generalised coordinate and conjugate momentum. These

operators define eigenstates |q, t〉 and corresponding eigenvalues q according to

Q̂(t) |q, t〉 = q |q, t〉. For a system with Hamiltonian operator H(P̂ , Q̂), the prob-

ability amplitude of an initial state |q, t〉 transitioning to a final state |q′, t′〉 is
given (up to a normalization factor) by the functional integral

〈q′, t′|q, t〉 ∼
∫

Dq
∫

Dp e i~
∫ t′

t
dt (pq̇−H(p,q)),

known as the Path integral, where H(p, q) is the classical Hamiltonian corre-

sponding to the operator H. The Path integral is taken over all functions p(t),

and all functions q(t) satisfying q(t) = q, q(t′) = q′. For a system with Hamil-

tonian of the form H(P̂ , Q̂) = 1
2m
P̂ 2 + V (Q̂), one may formally carry out the

p-integral to obtain

〈q′, t′|q, t〉 ∼
∫

Dq e i~
∫ t′

t
dt L(q,q̇),

recasting QM in terms of a (classical) Lagrangian L(q, q̇) = 1
2
mq̇2 − V (q) rather

than a Hamiltonian. By including a source term2 −J(t)Q̂(t) in the Hamiltonian

operator, the Path integral is modified to

〈q′, t′|q, t〉J ∼
∫

Dq
∫

Dp e i~
∫ t′

t
dt (pq̇−H(p,q)+Jq),

2So called because in classical mechanics, the presence of such a term generates a current
contribution to the equations of motion.
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where H(p, q) is now the Hamiltonian without source. Finally, one defines the

generating functional W [J ] according to

W [J ] ∼ lim
t→−∞
t′→∞

〈q′, t′|q, t〉J ∼
∫

Dq
∫

Dp e i~
∫

∞

−∞
dt (pq̇−H(p,q)+Jq),

with the functional integrals again taken over all functions p(t), and all functions

q(t) satisfying lim
t→−∞

q(t) = q, lim
t′→∞

q(t′) = q′. Attempting to carry out the p

integration when the Hamiltonian (with source) takes the restricted form above

no longer works, since the integral cannot be transformed into a Gaussian; nev-

ertheless, we may analytically continue the time variable to imaginary values in

order to define a convergent functional in Euclidean space, before carrying out

the integration and reverting back to real time. This analytic continuation is

known as a Wick rotation, and is used to unambiguously define the generating

functional as

W [J ] ∼
∫

Dq e i~
∫

∞

−∞
dt (L(q,q̇)+Jq)

for a Hamiltonian of the restricted form with a source term. From here, we

may obtain an expression for the ground-state expectation value of a product of

operators in the presence of sources3. By the completeness relation,

〈q′, t′|q, t〉 =
n
∏

j=1

∫

dqj 〈q′, t′|qn, tn〉 〈qn, tn|qn−1, tn−1〉 . . . 〈q1, t1|q, t〉 ,

where we have employed a time-ordering t′ > tn > tn−1 > · · · > t1 > t. Inserting

two operators Q̂(ta), Q̂(tb) with tb > ta, we find

〈q′, t′|Q̂(tb)Q̂(ta)|q, t〉 =
n
∏

j=1

∫

dqj qbqa 〈q′, t′|qn, tn〉 〈qn, tn|qn−1, tn−1〉 . . . 〈q1, t1|q, t〉 .

Since the eigenvalues qa, qb are just commuting numbers, the expression for ta > tb

is the same. Taking the limit n→∞, we define the Path integral representation

for the Time-ordered product of two operators as

〈q′, t′|T{Q̂(tb)Q̂(ta)}|q, t〉 ∼
∫

Dq
∫

Dp qaqb e
i
~

∫ t′

t
dt (pq̇−H(p,q)),

3Justified by a touch of foresight - the vacuum expectation value of Time-ordered operators
in a QFT is of paramount importance.
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where the Time-ordering operation is defined by

T{Q̂(tb)Q̂(ta)} =







Q̂(tb)Q̂(ta) tb > ta,

Q̂(ta)Q̂(tb) ta > tb.

The Time-ordered expectation value of any number of operators Q̂(tk) is then

given by the obvious generalisation

〈q′, t′|T{
n
∏

k=1

Q̂(tk)}|q, t〉 ∼
∫

Dq
∫

Dp
(

n
∏

k=1

qk

)

e
i
~

∫ t′

t
dt (pq̇−H(p,q))

This expression can then be connected to the generating functional W [J ] via

functional differentiation. Given a functional of the form

F [J(t)] = e
∫

g(t)J(t)

the functional derivative is

δF [J(t)]

δJ [t′]
= g(t′)e

∫

g(t)J(t) = g(t′)F [J(t)].

Applying this to the generating functional, we find that

δnW [J(t)]

δJ [tn] · · · δJ [t1]
∼
∫

Dq
∫

Dp
(

n
∏

k=1

qk

)

e
i
~

∫ t′

t
dt (pq̇−H(p,q)+Jq),

and so setting the source term to zero gives an expression for Time-ordered ex-

pectation values in terms of the generating functional,

〈0|T{
n
∏

k=1

Q̂(tk)}|0〉 =
δnW [J(t)]

δJ [tn] · · · δJ [t1]

∣

∣

∣

∣

J(t)=0

where |0〉 denotes the asymptotic ground state. For a Hamiltonian of the special

form above, the p integral can again be evaluated, yielding analogous formulae

with the replacement (pq̇ −H(p, q))→ L(q, q̇).

2.1.2 Extending to Quantum Field Theory

The intent of QFT is to describe special-relativistic particles and their interac-

tions using the language of field theory, in which a function f , known as a field,

assigns a certain quantity to every spacetime event. Different types of field are

typically indicated by various letters and indices, such as scalar fields φ, vector
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fields Aµ, tensor fields Fµν , and spinor fields ψa. Classically, such relativistic

field theories are most conveniently described by a manifestly Lorentz-invariant

Lagrangian density L ≡ L (f, ∂µf), defined such that L =
∫

d3xL , motivating

the Lagrangian description provided by the Path integral. One may of course

define conjugate momenta as the derivative of L with respect to generalised field

velocity, πf =
∂L

∂(∂0f)
, then define a Hamiltonian density H for the classical theory

as the Legendre transform of the Lagrangian density,

H ≡ πf (∂0f)−L .

Not only will the Hamiltonian density facilitate the definition of Path integrals

in QFT, it allows one to address fundamental questions of consistency, such as

whether the energy spectrum of the theory is bounded below.

Having established the Path integral formulation of QM, QFT is obtained

by generalising the QM expressions to the case of fields. The generalised co-

ordinate operators Q̂(t) in QM are replaced by operator-valued distributions

f̂(x, t) ≡ f̂(xµ) obeying certain commutation relations. After quantization (that

is, specifying commutation relations for the fields and substituting into the Path

integral), the excitations of these quantized fields will then correspond to various

types of particle. The field operators in QFT are again taken to be in the Heisen-

berg picture, and so we again define eigenstates according to f̂(x, t) |f(x), t〉 =
f(x) |f(x), t〉. Unfortunately, defining the Path integral contribution for each

type of field is sufficiently subtle that we must consider them separately; never-

theless, the goal is to define a generating functional for each field, such that the

total generating functional takes the form

W [Jf ] ∼
(

∏

f

∫

Df
)

e
i
~

∫

d4x (L (f,∂µf)+
∑

f Jff). (2.2)

Once obtained, we may specialise to the case of a free field theory and obtain

the vacuum expectation value of a Time-ordered product of fields by functional

differentiation of the generating functional, where the generating functional is

understood as being defined via Wick rotation from the corresponding Euclidean

theory. In a free theory, the only Time-ordered product with a non-zero vacuum

expectation value is the product of two fields. This ”two-point function” may

then be identified as a Green function: a fundamental solution to the differential

equation

DxG (x, x′) + δ(x− x′) = 0, (2.3)

where the linear differential operator D taken at spacetime point xµ is the differ-
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ential operator appearing in the corresponding classical equation of motion. By

extension, the vacuum expectation value of a Time-ordered product of n fields is

referred to as an n-point Green function. Later, we shall refine the construction

of the generating functional to isolate the so-called connected and one-particle-

irreducible (1PI) Green functions, which play a crucial rôle in the renormalization

of the theory.

Scalar fields

Scalar fields offer the most straightforward generalisation of the QM Path inte-

gral, since the field operators obey simple canonical commutation relations and

the eigenvalues are commuting numbers (c-numbers). By direct analogy, we de-

fine the generating functional in the presence of a source, up to a normalisation

constant, as

W [J ] ∼ lim
t→−∞
t′→∞

〈φ′, t′|φ, t〉J ∼
∫

Dφ
∫

Dπe i~
∫

d4x(π∂0φ−H +Jφ),

where the functional integrals are taken over all functions π(x, t) and all func-

tions φ(x, t) obeying lim
t→−∞

φ(x, t) = φ(x), lim
t′→∞

φ(x′, t′) = φ(x′). The generating

functional is normalised so that W [0] = 1, and we define the asymptotic ground

state as |0〉 ≡ lim
t→−∞

|φ, t〉4. Since the classical Lagrangian density for a scalar field

is

Lscalar =
~
2

2
∂µφ∂

µφ+ F̄ (φ) ≡ ~
2

2
(∂0φ)

2 + F (φ,∇φ),

the corresponding Hamiltonian density takes the form

Hscalar =
1

2~2
π2 − F (φ,∇φ),

and so we may perform the π integral to obtain the desired form for the QFT

generating functional,

W [J ] ∼
∫

Dφ e i~
∫

d4x(Lscalar+Jφ), (2.4)

again normalised so that W [0] = 1. As with the QM Path integral, ambiguities

in the oscillatory functional integral in Minkowski spacetime are resolved by ana-

lytic continuation to the exponentially dampened functional integral in Euclidean

spacetime.

4The state |0〉 is also called the vacuum state, and is the unique Lorentz-invariant state of
a QFT such that it is annihilated by all field annihilation operators.
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Continuing the analogy with standard QM, the Time-ordered vacuum expec-

tation value of n scalar fields (n-point Green functions) are given by

(

i

~

)n

〈0|T{φ̂(x1) . . . φ̂(xn)}|0〉 =
δnW [J ]

δJ(x1) · · · δJ(xn)

∣

∣

∣

∣

J(x)=0

; (2.5)

these n-point functions can be evaluated exactly for a free scalar theory with

Lagrangian density

LScalar =
~
2

2
∂µφ∂

µφ− 1

2
m2φ2.

For the free theory, we may use integration by parts to rewrite (2.4) in the form

W [J ] ∼
∫

Dφ ei
∫

d4x′
∫

d4x(− 1
2
φ(x′)A(x′,x)φ(x))+ i

~

∫

d4xJ(x)φ(x),

where we have introduced the bilinear differential operator

A(x′, x) =
1

~

(

~
2ηµν∂x

′

µ ∂
x
ν +m2

)

δ(x′ − x).

One may now ”complete the square” (in analogy with the discrete case) and

introduce a field redefinition φ→ φ−A−1J to obtain

W [J ] ∼ det(iA) e
i

~2
1
2

∫

d4x′
∫

d4xJ(x′)A−1(x′,x)J(x)

= e
i

~2
1
2

∫

d4x′
∫

d4xJ(x′)A−1(x′,x)J(x),

where the equality in the last line follows from absorbing the determinant into

the overall normalization. By using an integral representation of the δ-function,

we may also rewrite A as

A(x′, x) =
1

~

(

~
2ηµν∂x

′

µ ∂
x
ν +m2

)

∫

d4p

(2π~)4
e
i
~
pµ(x′−x)µ

=

∫

d4p

(2π~)4
e
i
~
pµ(x′−x)µ

−p2 +m2

~
,

and so the inverse operator A−1 is given by

A−1(x′, x) =

∫

d4p

(2π~)4
e
i
~
pµ(x′−x)µ

~

−p2 +m2
.

The final form of the generating functional for a free scalar theory is then

W [J ] = e−
i
~

1
2

∫

d4x′
∫

d4xJ(x′)∆F (x
′−x)J(x), (2.6)
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where the Feynman propagator ∆F = −1
~
A−1 is given by5

∆F (x
′ − x) =

∫

d4p

(2π~)4
e
i
~
pµ(x′−x)µ∆̃F (p), ∆̃F (p) =

1

p2 −m2
. (2.7)

Spinor fields

Spinor fields are multiple-component complex-valued fields that describe fermions,

first introduced by Dirac in his attempts at generalising the Schrödinger equa-

tion to include special relativistic effects. Unlike scalar fields, spinor fields obey

anticommutation relations, and consequently our reformulation in terms of a Path

integral must be modified to account for anticommuting (Grassmann) complex-

valued variables θi. To define the Path integral for spinors, we do so first for real

Grassmann variables, generalise to Grassmann fields, then extend to the complex

case.

Any collection of n Grassmann variables satisfies

{θi, θj} = 0 ∀ i, j = 1, . . . , n.

Integration over Grassmann variables is defined (without summation over i) by

Berezin integration,
∫

dθi = 0,

∫

dθiθi = 1,

one consequence of which is that integration and differentiation are effectively the

same operation, and so one must integrate with respect to every variable in order

to yield a non-zero quantity. Since the Path integral is fundamentally based on

Gaussian integrals, we need to evaluate

In ≡
∫

dθ1 . . . dθn e
− 1

2
ΘTAΘ,

where Θ is a column vector with entries (θ1, . . . , θn), and A is (necessarily) an

antisymmetric n× n matrix with n even6. By Taylor-expanding the exponential,

5The Feynman propagator in Minkowski spacetime is conventionally defined as including
a small imaginary contribution +iǫ in the denominator in order to circumvent the poles at
p2 = m2; this term is implicit throughout.

6Consider the expression ΘTAΘ, where A is an arbitrary matrix. Decomposing A into its
respective symmetric and antisymmetric parts As and Aa, we have Θ

TAΘ = ΘTAsΘ+ΘTAaΘ;
expanding ΘTAsΘ gives a sum of terms of the form θ2i and θiθj + θjθi, which vanish by the
anticommutation relations. If n is odd, detA vanishes and In = 0.
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we see that all contributions vanish except

In =

∫

dθ1 . . . dθn
1
(

n
2

)

!

(

−1
2
ΘTAΘ

)
n
2

= (detA)
1
2 .

Since the Berezin integral vanishes when n is odd, this identity holds for any n,

and can therefore be used to define a Path integral over spinor fields ρ(x) as a

Grassmann-valued Gaussian integral, by analogy with the procedure for scalar

fields:
∫

Dρ e− 1
2

∫

dx′
∫

dx (ρ(x′)A(x′,x)ρ(x)) = (detA)
1
2 .

The extension to complex Grassmann variables is straightforward: defining new

variables

θi ≡ θ̃j + iθ̃k, θ∗i ≡ θ̃j − iθ̃k, θ̃j,k ∈ R,

we introduce integration over independent complex Grassmann variables, with

real and imaginary parts ℜ(θi) and ℑ(θi) respectively, as
∫

dθ∗i dθi = 2

∫

dℜ(θi)dℑ(θi),

and the Gaussian integral with complex vectors Θ becomes

∫

dθ∗1dθ1 . . .

∫

dθ∗ndθn e
−ΘTAΘ = detA,

for a skew-Hermitian matrix A, with the corresponding complex functional inte-

gral
∫

Dρ∗Dρ e−
∫

dx′
∫

dx(ρ∗(x′)A(x′,x)ρ(x)) = detA.

Therefore, we define the generating functional over spinors ψ, ψ̄ in Minkowski

spacetime, with Grassmann-valued source terms σ̄, σ respectively, by direct anal-

ogy with the scalar case,

W [σ, σ̄] ∼
∫

Dψ̄Dψ e i~
∫

d4x(Lfermion+ψ̄σ+σ̄ψ), (2.8)

again normalised such thatW [0, 0] = 1. Due to the presence of Grassmann fields,

the definition of the Time-ordered vacuum expectation value is slightly different.

Similar to the scalar case, the Time-ordering operation for spinors is defined as

T{ψ̂(xa)ψ̂(xb)} =







ψ̂(xa)ψ̂(xb) ta > tb,

−ψ̂(xb)ψ̂(xa) tb > ta,
(2.9)
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where the extra minus sign accounts for anticommutation. The Time-ordered

vacuum expectation value is then

〈0|T{ψ̂(x1) · · · ψ̂(xn) ˆ̄ψ(y1) · · · ˆ̄ψ(yn)}|0〉 =
δ2nW [σ, σ̄]

δσ̄(x1) · · · δσ̄(xn)δσ(y1) · · · δσ(yn)
.

As with ordinary Grassmann differentiation, the functional derivatives also anti-

commute.

In the case of a free theory with

Lfermion = ψ̄a (i~γ
µ
ab∂µ −mδab)ψb ≡ ψ̄aAabψb,

we may proceed by introducing a linear term into the complex Grassmann integral

and completing the square to obtain

W [σ, σ̄] = e−
i
~

∫

d4x′
∫

d4x(σ̄(x′)A−1(x′,x)σ(x)),

where in the fermion case we have

A(x′, x) = −
(

iγµ∂xµ +m
)

δ(x′ − x).

Making use of the integral representation of δ, we obtain the generating functional

W [σ, σ̄] = e−
i
~

∫

d4x′
∫

d4x(σ̄(x′)SF (x′−x)σ(x)), (2.10)

where the Feynman propagator for fermions is

SF (x
′ − x) =

∫

d4p

(2π~)4
e
i
~
pµ(x′−x)µS̃F (p), S̃F (p) =

/p+m

p2 −m2
. (2.11)

Gauge fields

Classical electromagnetism, summarised by Maxwell’s equations, exhibits Lorentz

invariance rather than Galilean invariance, and is hence automatically consis-

tent with special relativity. By defining the electromagnetic four-potential Aµ =

(ϕ,A) and electromagnetic field strength tensor Fµν = ∂µAν − ∂νAµ, one may

describe Maxwell’s (source-free) equations of electromagnetism in a manifestly

Lorentz-invariant way using the Lagrangian density

LMaxwell = −
1

4
FµνF

µν .
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Since only the derivative of the vector field Aµ appears, the theory is invariant

under redefinitions Aµ → Aµ + ∂µΛ, for any arbitrary function Λ ≡ Λ(x); the

vector field is then referred to as a gauge field, and the Lagrangian density is said

to be invariant under the gauge transformation Aµ → Aµ + ∂µΛ. Since electrons

act as sources of electromagnetic fields, we can attempt to augment the Maxwell

Lagrangian density with fermions:

Lsource = ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν .

For constant Λ, the spinor field terms are also invariant under a gauge trans-

formation ψ → e−igΛψ, and since e−igΛ represents an element of the symmetry

group U(1), Lsource is said to be invariant under global U(1) gauge transforma-

tions. Unlike LMaxwell, Lsource is not invariant for functions Λ(x), but can be

made so by introducing the gauge-covariant derivative Dµ = ∂µ + igAµ, yielding

the QED Lagrangian density

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν

= ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν − gψ̄γµψAµ.

LQED is said to be invariant under local U(1) gauge transformations, and we see

that the Lagrangian density necessarily includes a contribution to the potential,

indicating an interaction between the spinor ψ and the gauge field A. It is the suc-

cess of QED that established the philosophical principle of attempting to describe

fundamental interactions using a Lagrangian density that is invariant under local

gauge transformations, as the concept of local gauge invariance (plus renormal-

izability) fixes the possible interaction terms. Extending gauge transformations

to the more general case ψ → e−igT
aΛaψ, Aaµ → Aaµ + ∂µΛ

a + gfabcΛbAcµ, where

the generators T a satisfy the commutation relations
[

T a, T b
]

= ifabcT c and fabc

is a totally antisymmetric tensor, the generators T a then form a representation

of the Lie algebra corresponding to a non-Abelian symmetry group, and we may

construct a Lagrangian density that is invariant under local non-Abelian gauge

transformations,

LNA = ψ̄(iγµDµ −m)ψ − 1

4
Ga
µνG

µν
a ,

with gauge-covariant derivative Dµ = ∂µ + igT aAaµ and field strength tensor

Ga
µν = ∂µA

a
ν −∂νAaµ− gfabcAbµAcν . The purely-gauge part of LNA is known as the



CHAPTER 2. BACKGROUND 18

Yang-Mills Lagrangian density,

LYM = −1
4
Ga
µνG

µν
a ,

and is sufficient to define the Path integral over gauge fields. However, attempting

to simply define the generating functional as

W [Jµa ]
?∼
∫

DAe i~
∫

d4x(LYM+JµaA
a
µ) (2.12)

leads to divergent results, so the Path integral must be further modified.

The selection of a particular function Λ when computing physical results is

known as gauge-fixing, and it is this procedure which causes the most significant

differences in formulating a Path integral for gauge fields. The functional integral

is intended to sum over all inequivalent fields, a criterion that is trivially satis-

fied for scalars and spinors, but not gauge fields due to the existence of gauge

transformations. For QED, or indeed any Abelian gauge theory with symme-

try group U(1)n, one can simply introduce a gauge-fixing term − 1
2ξ
(∂µA

µ
a)

2 to

the Lagrangian density; different values of the parameter ξ then correspond to

different constraints on the four-potential Aµa , for example the limit ξ → 0 (the

Landau gauge) is classically equivalent to the Lorenz gauge ∂µA
µ
a = 0 7. The pro-

cedure for non-Abelian gauge theories is more complicated: since the Jacobian of

the transformation to gauge-fixed fields is non-trivial for non-Abelian symmetry

groups, there is no unique correspondence between the gauge-fixed fields Aaµ and

physical states, hence using LYM plus the gauge-fixing term will still over-count

the fields. This is solved by the Fadeev-Popov method8, in which the Jacobian

is converted to an exponential and expressed as a new Path integral over an-

ticommuting scalar fields, known as ghosts. Ghosts do not appear in physical

states (as they would violate the Spin-Statistics theorem), but appear as part of

a perturbative expansion, where the ghosts systematically remove contributions

associated with the over-counting of gauge field configurations.

Applying the Fadeev-Popov method, we define a gauge-fixing procedure ac-

cording to

Fa(A
µ
b ) ≡ ∂µA

µ
a − fa(x) = 0,

7Technically, this term does not entirely fix the gauge. Classically, two solutions to Maxwell’s
equations in the Lorenz gauge are related by a shift Bµ satisfying ∂2Bµ = 0. However, Maxwell’s
equations automatically imply the continuity equation ∂µj

µ = 0, which forces ∂µB
µ = 0,

completely fixing the gauge. QED, the quantum version of electromagnetism, is similar: the
gauge is completely fixed as a consequence of the Ward-Takahashi identity.

8The Fadeev-Popov method in fact only completes the gauge-fixing of non-Abelian theories
locally. Globally, one encounters the Gribov ambiguity, which we shall neglect.
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and an associated functional integral over elements of the gauge group U,

∆[Aµa ] =

∫

DU
∏

a

δ
[

Fa(A
µU
b )
]

,

such that it is invariant under gauge transformations. We can also define an

inverse functional ∆−1 such that ∆−1[Aaµ]∆[Aaµ] = 1, then introduce this factor

into the Path integral (2.12), giving

∫

DA∆−1[Aaµ]

∫

DU
∏

a

δ
[

Fa(A
µU
b )
]

e
i
~

∫

d4x(LYM ).

By gauge invariance, we obtain

∫

DAe i~
∫

d4x(LYM ) =

∫

DU
∫

DA∆−1[Aaµ]
∏

a

δ [Fa(A
µ
b )] e

i
~

∫

d4x(LYM ),

and should be able to absorb the U integral into the overall normalization. Since

the functional δ-function restricts U to an infinitesimal region around the identity

operator, we may parametrise DU =
∏

cDΛc and perform a change of variables

to obtain
∫

DU =

∫

∏

c

DΛc =
∫

∏

c

DFc det
(

δΛb(x)

δFc(x′)

)

,

hence the functional integral over gauge transformations becomes

∆[Aµa ] =

∫

∏

c

DFc det
(

δΛb(x)

δFc(x′)

)

∏

a

δ [Fa]

= det

(

δΛb(x)

δFa(x′)

) ∣

∣

∣

∣

Fa=0

,

and the inverse functional appearing in the Path integral is therefore

∆−1[Aaµ] = det

(

δFa(x
′)

δΛb(x)

) ∣

∣

∣

∣

Fa=0

.

The Path integral can be multiplied by another constant term,

∫

(

∏

c

Dfc
)

e−
i

2ξ~

∫

d4xf2a(x),

which imposes the gauge-fixing term via the functional δ:

∫

DAe i~
∫

d4x(LYM ) ∼
∫

DA det

(

δFa(x
′)

δΛb(x)

)

e
i
~

∫

d4x(LYM− 1
2ξ

(∂µA
µ
a )

2).
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Finally, the determinant itself can be rewritten as a functional over Grassmann

variables (similar to the case of spinors),

det

(

δFa(x
′)

δΛb(x)

)

∼
∫

Dη∗Dη e−
i
~

(

∫

d4x
∫

d4x′η∗a(x
′)
δFa(x

′)
δΛb(x)

ηa(x)
)

,

so by evaluating the functional derivative of the gauge-fixing condition and in-

tegrating by parts, we obtain the correct Path integral over inequivalent gauge

field configurations,

∫

DAe i~
∫

d4x(LYM ) ∼
∫

DA
∫

Dη∗Dη e i~
∫

d4x(LYM+LFP−
1
2ξ

(∂µA
µ
a)

2), (2.13)

where the Fadeev-Popov ghost term is given by

LFP = ∂µη
∗
a (∂

µηa + gfabcηbA
µ
c ) .

For general non-Abelian gauge theories, we therefore define the generating func-

tional as

W [Jaµ ] ∼
∫

DA
∫

Dη∗Dη e i~
∫

d4x(LYM+LFP−
1
2ξ

(∂µA
µ
a)

2+JaµA
µ
a), (2.14)

again normalized so that W [0] = 1. We immediately see that for Abelian gauge

theories with fabc = 0, LFP can be factored out and the ghost integral absorbed

into the normalization constant, hence there are no ghost contributions and the

gauge-fixing term alone is sufficient to define the Path integral.

It is worth noting that while the generating functional constructed using the

Fadeev-Popov method is manifestly Lorentz-invariant, the gauge-fixing term hides

the manifest gauge-independence, making it difficult to prove that the renormal-

izability of the theory to all orders is a gauge-independent result. This difficulty

was circumvented by the discovery of BRST symmetry, a type of supersymmetry

under which the action (but not the Lagrangian density) of a non-Abelian gauge

theory is invariant. Requiring that a non-Abelian gauge theory be invariant under

BRST transformations is in fact sufficient to determine the correct Lagrangian

density, and an extension of the BRST idea enables one to prove renormalizabil-

ity of non-Abelian gauge theories in a gauge-independent way. Details of this

procedure, along with associated references, may be found in Weinberg [60].

Having finally defined the Path integral over general gauge fields, and defining

the Time-ordered product of gauge fields to be the same as for scalar fields, the
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time-ordered vacuum expectation value is given by

(

i

~

)n

〈0|T{Aa1µ1(x1) · · ·Aanµn(xn)}|0〉 =
δnW [Jaµ]

δJa1µ1 · · · δJanµn

∣

∣

∣

∣

Jaµ=0

. (2.15)

Specialising once again to the free theory, we find that the ghost sector of (2.14)

decouples and simply corresponds to a free massless complex-valued scalar field;

that is, the Feynman propagator for the ghost field is

∆Ghost
F (x′ − x) =

∫

d4p

(2π~)4
e
i
~
pµ(x′−x)

µ

∆̃Ghost
F (p), ∆̃Ghost

F (p) =
1

p2
(2.16)

For the gauge sector, we proceed as before in rewriting the generating functional

in the form

W [Jaµ] ∼
∫

DAe i~
∫

d4x′
∫

d4x( 1
2
Aaµ(x

′)Cµνab (x
′,x)Abν(x))+ i

~

∫

d4xJaµA
µ
a ,

where

Cµν
ab (x

′, x) = δab

[

ηµνηρσ +

(

1

ξ
− 1

)

ηµρηνσ
]

∂x
′

ρ ∂
x
σ δ(x

′ − x),

and so after completing the square once again we are left with the exact expression

for the free generating functional,

W [Jaµ] = e−
1
2
i
~

∫

d4x′
∫

d4xJaµ(x
′)(C−1)

µν

ab
Jbν(x).

To find C−1, we use the integral representation of δ, giving

C̃µν
ab = δabC̃

µν , C̃µν =

[(

1− 1

ξ

)

pµpν − ηµνp2
]

.

Defining the transverse and longitudinal projection operators C̃T , C̃L as

C̃µν
T = ηµν − pµpν

p2
, C̃µν

L =
pµpν

p2
,

we see that

C̃µν =

[

−p2C̃µν
T −

1

ξ
p2C̃µν

L

]

,

and can invert this by finding a tensor of the form

C̃−1
µν =

[

α

p2
C̃T
µν +

β

p2
C̃L
µν

]

such that C̃µνC̃−1
µν = d, the number of spacetime dimensions. Consequently, we



CHAPTER 2. BACKGROUND 22

find α = −1, β = −ξ, and so

D̃µν ≡ C̃−1
µν =

1

p2

[

−C̃T
µν − ξC̃L

µν

]

=
1

p2

[

(1− ξ) pµpν
p2
− ηµν

]

.

Therefore, the exact expression for the gauge sector of the free-theory generating

functional is given by

W [Jaµ ] = e−
1
2
i
~

∫

d4x′
∫

d4xJaµ(x
′)Dµν

ab
(x′,x)Jbν(x), (2.17)

where the Feynman propagator for the gauge field, Dµν
ab , is given by

Dµν
Fab(x

′, x) =

∫

d4p

(2π~)4
e−ipµ(x

′−x)µD̃µν
Fab(p), (2.18)

D̃µν
Fab(p) =

δab
p2

[

(1− ξ) p
µpν

p2
− ηµν

]

. (2.19)

2.1.3 Perturbation Theory and Feynman Rules

So far, we have defined a suitable Path integral for scalars (2.4), spinors (2.8), and

gauge fields (2.14), permitting a description of quantum-mechanical phenomena

that is consistent with Special Relativity. For each field type, there exists an

exact expression for the generating functional of the corresponding free theory,

given by (2.6), (2.10), and (2.17) respectively. This is of course insufficient, as the

intent of QFT is to describe particles and their interactions. In order to study

theories with interactions, we may use Perturbation Theory: the Path integral is

split into free and interacting parts, then the interaction term is Taylor-expanded

in powers of the couplings, and the full theory is treated as a small perturbation

away from the free theory. As long as the couplings in the interaction terms are

relatively small, this perturbative description of the theory will provide a good

approximation, and the calculation of physical processes should be in excellent

agreement with experimental results.

Applying perturbation theory to QFT is not a straightforward matter. The

n-point Green functions G n(x1, . . . , xn) of a theory are given by functional deriva-

tives of the generating functional W [J ], and describe the propagation of fields

between separated spacetime events; the Green functions therefore become sin-

gular if one attempts to functionally differentiate more than once with respect to

a source at any spacetime event xi. When using perturbation theory, we shall see

that the formal expressions attempt to do exactly this, and so we immediately

encounter singularities. After introducing the Feynman diagram representation

of the Taylor expansion, we shall see that these divergences occur whenever a
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diagram contains a loop, and that the divergences may be regularised in order

to continue formal manipulations. The easiest way of isolating these divergences

is to introduce the notion of one-particle-irreducible diagrams and reformulate

the Feynman rules in momentum space; the divergences may then be regularized

using Dimensional Regularization.

We begin with the so-called φ4 theory:

Lscalar =
~
2

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4

Recall the definition of the Path integral for a scalar field,

W [J ] ∼
∫

Dφ e i~
∫

d4x(Lscalar+Jφ).

Since δW [J ]
δJ(x)

= i
~
φ(x)W [J ], we can identify the field operator with the functional

derivative

φ(x) ≡ −i~ δ

δJ(x)
.

Now, if we split the Lagrangian density into free and interacting parts,

Lscalar ≡ Lfree + Lint, Lint = −
λ

4!
φ4,

the Path integral may be split accordingly,

W [J ] ∼
∫

Dφ e i~
∫

d4x(Lscalar+Jφ)

∼
∫

Dφ e i~
∫

d4x(Lfree+Jφ) e
i
~

∫

d4x(Lint).

After replacing φ by the functional derivative, the interaction term no longer

depends on φ, and so may be factored out of the Path integral to give

W [J ] ∼ e
i
~

∫

d4xLint(−i~ δ
δJ(x))W0[J ], (2.20)

where W0[J ] is the generating functional for the free theory. The exponential

operator may now be Taylor-expanded as

e
i
~

∫

d4xLint(−i~ δ
δJ(x)) = 1+

i

~

∫

d4xLint

(

−i~ δ

δJ(x)

)

+

(

i

~

)2 ∫

d4xd4yLint

(

−i~ δ

δJ(x)

)

Lint

(

−i~ δ

δJ(y)

)

+ . . .
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and so the perturbative expansion of the generating functional for the interacting

theory is

W [J ] ∼
{

1+
i

~

∫

d4xLint

(

−i~ δ

δJ(x)

)

+ . . .

}

W0[J ],

where the φ4 interaction term becomes

Lint = −
λ

4!

(

−i~ δ

δJ(x)

)4

= −λ~
4

4!

δ4

(δJ(x))4
.

Since perturbation theory is constructed for all QFTs in this manner, the only

functional derivatives that are ever required in perturbative QFT are of the fol-

lowing two forms,

δ

δJ(x)

∫

dy f(y)J(y) = f(x),
δ

δJ(x)
e
∫

dy f(y)J(y) = f(x) e
∫

dy f(y)J(y),

where the required derivatives depend on the type of interaction. Applying these

expressions to the generating functional for φ4 theory, we find

W [J ] ∼
{

1− i

~

λ

4!

∫

d4x

[

3 (i~∆F (0))
2 (2.21)

− 6i~∆F (0)

∫

d4y1d
4y2 i∆F (x− y1)i∆F (x− y2)J(y1)J(y2) (2.22)

+

∫

d4y1d
4y2d

4y3d
4y4i∆F (x− y1)i∆F (x− y2)i∆F (x− y3) (2.23)

i∆F (x− y4)J(y1)J(y2)J(y3)J(y4)
]

+O(λ2)
}

W0[J ], (2.24)

where the ∆F (0) terms arise from taking multiple functional derivatives at the

same spacetime point x. We see that the leading-order effects due to interactions

of quantum fields are now present, represented by terms proportional to the

coupling λ. By setting J = 0, we find

G
(0) ≡W [0] ∼ 1− i

~

λ

8

∫

d4x (i~∆F (0))
2 +O(λ2),

The terms proportional to λ are known as vacuum bubbles9, and represent fluc-

tuations of the vacuum state due to the presence of interacting quantum fields.

Their contribution to W [0] is clearly non-zero (and is in fact infinite due to the

divergent quantity ∆F (0)), but recall that there is a normalization constant N

9The reason being obvious once we introduce Feynman diagram notation.
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implicit in the definition of W [J ]. Writing this explicitly, we have

G
(0) ≡W [0] = N

(

1− i

~

λ

8

∫

d4x (i~∆F (0))
2 +O(λ2)

)

, (2.25)

and so if W [0] is normalized to be 1, the normalization constant is

N =

(

1− i

~

λ

8

∫

d4x (i~∆F (0))
2 +O(λ2)

)−1

(2.26)

= 1 +
i

~

λ

8

∫

d4x (i~∆F (0))
2 +O(λ2). (2.27)

If we continue to calculate the n-point Green functions for the interacting theory,

for example

G
(2)(x1, x2) = N

[

i~∆F (x1 − x2)−
i

~

λ

8

∫

d4x (i~∆F (0))
2 i~∆F (x1 − x2)

− i

~

λ

2

∫

d4x i~∆F (x1 − x) i~∆F (0) i~∆F (x− x2) +O(λ2)
]

= i~∆F (x1 − x2)

− i

~

λ

2

∫

d4x i~∆F (x1 − x) i~∆F (0) i~∆F (x− x2) +O(λ2)

we see that the effect of the normalization constant N is to remove vacuum

bubble contributions to the Green functions. This effect continues to all orders

of perturbation theory: by expressing the Green functions in the form

G
(n)(x1, . . . , xn) =

〈0|T
{

φ(x1) · · ·φ(xn)e
i
~

∫

d4xLint(−i~ δ
δJ(x))

}

|0〉

〈0|T
{

e
i
~

∫

d4xLint(φ)
}

|0〉
,

one can apply Wick’s theorem [62] to the numerator, showing that it may be

rewritten as

〈0|T
{

φ(x1) · · ·φ(xn)e
i
~

∫

d4xLint(−i~ δ
δJ(x))

}

|0〉

= 〈0|T
{

e
i
~

∫

d4xLint(φ)
}

|0〉 G̃ (n)(x1, . . . , xn),

where G̃ (n)(x1, . . . , xn) are the Green functions with all vacuum bubble contribu-

tions removed. The extra factor now cancels the denominator, and so we have

G
(n)(x1, . . . , xn) = G̃

(n)(x1, . . . , xn).

It is possible to develop a diagrammatical representation of the terms appear-
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ing in the Green functions. These diagrams are known as Feynman diagrams,

and the implied correspondence between contributions to the Green functions

and Feynman diagrams are known as Feynman rules. The most basic Feynman

rule is that for the propagator ∆F (x1 − x2),

x1 x2
←→ i~∆F (x2 − x1)

and can be thought of as representing the propagation of a scalar field from x1

to x2; indeed, this is exactly the meaning of the 2-point Green function for the

free scalar theory. We may also specify the Feynman rule for a φ4 interaction:

←→ − i
~

λ
4!

∫

d4x

For φ4 theory, these are the only required rules, and suffice to construct the n-

point Green functions to any order of perturbation theory, where the combinatoric

factors that appear in G and N are given by the Wick expansion of the Time-

ordered product. The vacuum bubbles appearing in the normalization factor N

are therefore Feynman diagrams that form completely closed loops, such as

←→ − i
~

λ
4!

∫

d4xi~∆F (x− x) i~∆F (x− x),

and the 2-point Green function for an interacting theory includes a correction

with a loop,

x1 x2
←→ − i

~

λ
4!

∫

d4x i~∆F (x1 − x) i~∆F (x− x) i~∆F (x− x2).

Hence, the divergent quantity ∆F (0) = ∆F (x − x) occurs once for each loop in

the corresponding Feynman diagram.

We now wish to isolate these divergences by restricting our attention to One-

Particle-Irreducible (1PI) Green functions. The full Green function G (n) can be

reconstructed from the so-called connected Green functions G(n) [62]. By defining

a new generating functional X [J ] such that

W [J ] ≡ e
i
~
X[J ]



CHAPTER 2. BACKGROUND 27

and expressing X [J ] as a functional expansion

i

~
X [J ] ≡

∞
∑

n=1

(

i

~

)n
1

n!

∫

d4x1 . . . d
4xnG

(n)(x1, . . . , xn)J(x1) · · ·J(xn),

we see that the functions G(n) are given by

(

i

~

)n

G(n)(x1, . . . , xn) =
i

~

δnX [J ]

δJ(x1) · · · δJ(xn)

∣

∣

∣

∣

J=0

. (2.28)

G(n) are known as n-point connected Green functions, and are comprised of all

terms in the full n-point Green functions whose Feynman diagram representation

connects all n points via propagators and interaction vertices; consequently, it

is easy to construct the connected Green functions to any order of perturbation

theory by simply using the Feynman rules for the theory. The connected Green

functions G(n) may in turn be reconstructed from the 1PI Green functions Γ(n),

defined as the functional expansion of the effective action.

To define Γ(n), we start with the so-called classical field,

φc(x) ≡
δX [J ]

δJ(x)
. (2.29)

If one considers the free scalar theory, the generating functional X [J ] is simply

X [J ] = −1
2

∫

d4x′d4x J(x′)∆F (x
′ − x)J(x).

Functionally differentiating gives

φc(x) = −
∫

d4y ∆F (x− y)J(y),

and so by definition of a Green function (2.3) we have

(

~
2∂2 +m2

)

φc(x) =

∫

d4y δ(x− y)J(y) = J(x), (2.30)

that is, the quantity φc(x) satisfies the classical equation of motion for a free

scalar field with source. In a general interacting theory, the one-point Green

function is given by

i

~
G

(1)(x) =
i

~
〈0|φ(x)|0〉 =

δW [J ]

δJ(x)

∣

∣

∣

∣

J=0

,



CHAPTER 2. BACKGROUND 28

so using the chain rule for functional differentiation we find

δW [J ]

δJ(x)
=

(

i

~

δX [J ]

δJ(x)

)

W [J ] =
i

~
φc(x)W [J ],

and hence the classical field is the normalized vacuum expectation value of the

corresponding quantum field,

φc(x) =
〈0|φ(x)|0〉J

W [0]
=
〈0|φ(x)|0〉J
〈0|0〉J

.

We now define the effective action Γ as

Γ[φc] ≡ X [J ]−
∫

d4x J(x)φc(x), (2.31)

with the intent of expressing Γ solely in terms of the classical field φc
10. Taking

again the case of a free scalar field, where the source is related to the classical

field by the classical equation of motion, one can easily manipulate the effective

action to give

Γ[φc] = −
1

2

∫

d4x′d4x J(x′)∆F (x
′ − x)J(x)−

∫

d4x J(x)φc(x)

= −1
2

∫

d4x J(x)φc(x)

= −1
2

∫

d4x φc(x)~
2∂2φc(x)−

1

2

∫

d4x m2φ2
c(x)

=

∫

d4x

[

~
2

2
∂µφc(x)∂

µφc(x)−
1

2
m2φ2

c(x)

]

,

reproducing the action for a classical free scalar field theory. For an interacting

theory, the relation between φc and J must be evaluated perturbatively. From

the perturbative expansion of the generating functional W [J ], and using the

approximations ln(1 + x) = x+O(x2) and N = 1 +O(λ), we find

X [J ] ≡ −i~ lnW [J ]

= lnN − 1

2

∫

d4x′d4x J(x′)∆F (x
′ − x)J(x)

− λ

4!

∫

d4x

[

3 (i~∆F (0))
2

− 6i~∆F (0)

∫

d4y1d
4y2 i∆F (x− y1)i∆F (x− y2)J(y1)J(y2)

10It is easy to see that this should be possible, since δΓ[φc]
δJ(x) = 0; that is, the variation of the

functional depends only on the classical field.
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+

∫

d4y1d
4y2d

4y3d
4y4i∆F (x− y1)i∆F (x− y2)

i∆F (x− y3)i∆F (x− y4)J(y1)J(y2)J(y3)J(y4)
]

+O(λ2),

so the classical field in the interacting theory becomes

φc(x) ≡
δX [J ]

δJ(x)

= −
∫

d4x ∆F (x− y)J(y)

+
λ

2
i~∆F (0)

∫

d4y1d
4y2 i~∆F (x− y1) i~∆F (y1 − y2)J(y1)J(y2)

− λ

6

∫

d4y1d
4y2d

4y3d
4y4i~∆F (x− y1) i~∆F (y1 − y2)

i~∆F (y1 − y3) i~∆F (y1 − y4)J(y2)J(y3)J(y4) +O(λ2),

hence we may apply the Klein-Gordon operator to obtain

(

~
2∂2x +m2

)

φc(x) = J(x)− λ

2
i~∆F (0)

∫

d4y i~∆F (x− y)J(y)

+
λ

6

∫ 3
∏

k=1

d4yk i~∆F (x− yk)J(yk) +O(λ2).

Since J(x) = (~2∂2x +m2)φc(x) +O(λ), we can substitute and integrate by parts

to find

J(x) =
(

~
2∂2x +m2

)

φc(x)−
λ

2
i~∆F (0)φc(x) +

λ

6
φ3
c(x) +O(λ2)

Now, from the definitions of the effective action and the classical field, we find

Γ[φc] = −i~ lnN +
1

2

∫

d4y1d
4y2 J(y1)∆F (y1 − y2)J(y2)−

λ

8

∫

d4x (i~∆F (0))
2

− 1

2
i~∆F (0)

∫

d4xd4y1d
4(y2) i~∆F (y1 − x) i~∆F (x− y2)J(y1)J(y2)

+
λ

8

∫

d4xd4y1d
4(y2)d

4y3d
4(y4) i~∆F (y1 − x) i~∆F (y2 − x)

i~∆F (y3 − x) i~∆F (y4 − x) J(y1)J(y2)J(y3)J(y4) +O(λ2),

which can now be rewritten in terms of φc as

Γ[φc] = −i~ lnN −
1

2

∫

d4xφc(x)
(

~
2∂2 +m2

)

φc(x)

− λ

8

∫

d4x (i~∆F (0))
2 +

λ

4
i~∆F (0)

∫

d4xφ2
c(x)−

λ

24

∫

d4xφ4
c(x)
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+O(λ2). (2.32)

Finally, we obtain the desired 1PI Green functions Γ(n) from the functional ex-

pansion

Γ[φc] ≡
∞
∑

n=1

in

n!

∫

d4x1 · · ·
∫

d4xn Γ
(n)(x1, . . . , xn)φc(x1) · · ·φc(xn),

that is,

Γ(n)(x1, . . . , xn) =
inδnΓ[φc]

δφc(x1) · · · δφc(xn)

∣

∣

∣

∣

φc=0

. (2.33)

The first non-trivial 1PI Green functions are therefore

Γ(2)(x1, x2) =

(

~
2∂2x2 +m2 − λ

2
i~∆F (0)

)

δ(x1 − x2),

Γ(4)(x1, . . . , x4) = −λ
∫

d4x δ(x1 − x)δ(x2 − x)δ(x3 − x)δ(x4 − x). (2.34)

In terms of Feynman diagrams (given by iΓ(n)), it can be shown that the n-point

1PI Green functions consist of all n-point connected Green functions that:

• have all external propagators removed;

• can be constructed using Feynman rules such that each diagram cannot be

separated into two diagrams by cutting a single line.

Furthermore, we see that one of the leading-order effects associated with interac-

tions is a shift in the effective mass of the scalar field,

m2 → m2 − λ

2
i~∆F (0) +O(λ2).

This is a quantum correction to the mass of a classical self-interacting scalar

field theory, as indicated by the presence of ~, and is formally infinite due to

the divergent term ∆F (0) associated with a loop. By extending to higher orders

of perturbation theory, we also find that the scalar coupling λ receives diver-

gent quantum corrections from loop diagrams. Having established that quantum

corrections are associated with increasing powers of ~
11, we may now adopt the

standard convention of setting ~ = 1 in order to simplify expressions.

By constructing the 1PI Green functions, we have successfully isolated the di-

vergences that arise in the perturbative expansion of an interacting scalar QFT.

The case of spinors and gauge theories proceeds analogously, by replacing the

11Equivalently, higher loop orders in the 1PI Green functions.
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corresponding interaction term with functional derivatives and Taylor-expanding

the exponential operator that acts on the generating functional for the free theory.

One can then define Feynman rules for the associated propagators and interac-

tions, and the n-point, l-loop, 1PI Green functions for the interacting theory can

be systematically constructed by connecting propagators and vertices to make all

possible diagrams with n external lines and l loops, such that the diagram cannot

be split into two disconnected pieces by cutting a single line.

The final step in our construction is to reformulate the Feynman rules in

momentum space: not only are the rules more simple (as can be seen by comparing

the position- and momentum-space Feynman propagators), but they allow one

to immediately apply dimensional regularization to the corresponding integrals.

Using the standard shorthand a · b = aµb
µ, we define

Γ̃(n)(p1, . . . , pn) (2π)
4 δ(p1+. . .+pn) =

∫

d4x1 · · · d4xn ei(p1·x1+...+pn·xn)Γ(n)(x1, . . . , xn),

hence by using Fourier transforms of ∆F (x
′ − x) and δ(x′ − x), we find

iΓ̃(2)(p,−p) =
(

i

p2 −m2

)−1

+
1

2
(−iλ)

∫

d4k

(2π)4
i

k2 −m2
+O(λ2),

iΓ̃(4)(p1, . . . , p4) = −iλ +O(λ2). (2.35)

The associated momentum-space Feynman rules for a scalar theory are then

• i
p2−m2 for each scalar propagator with momentum p,

• −iλ for each quartic vertex, plus conservation of momentum entering the

vertex,

•
∫

d4k
(2π)4

for every closed scalar loop.

By comparison with the original Lagrangian density, the Feynman rules can be

”read off” by simply multiplying the corresponding quantities by i. For the

scalar case, the Feynman rule for a scalar propagator is i∆̃F (p), and the rule for

a scalar vertex is −iλ; this extends to spinors and gauge fields, so that we have

the following momentum-space rules:

• iS̃F (p) =
i(/p+m)
p2−m2 for each fermion propagator with momentum p,

• iD̃µν
F (p) = i

p2

[

(1− ξ)pµpν
p2
− ηµν

]

for each gauge propagator with momen-

tum p,

• ig̃ for each (symmetrised) interaction term with factor g̃,
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• an additional factor −1 for every closed fermion loop,

• an additional factor −1 for every closed ghost loop.

g̃ may contain additional matrices, for example the QED interaction −eψ̄ /Aψ
leads to the Feynman rule −ieγµ. The factor −1 for fermion and ghost loops

arises from their anticommuting nature.

2.1.4 Regularization and Renormalization

Having defined the 1PI Green functions and momentum-space Feynman rules,

we may now regulate the divergences that arise in any perturbative QFT, then

remove the divergences via renormalization. In principle one should be able to

use any regularization method, renormalize, then recover the same result after re-

moving the regulator. However, certain regulators violate the symmetries present

in the original theory, and so we must compensate for these violations before re-

moving the regulator. By far the most commonly used regularization method is

Dimensional Regularization, since it preserves both gauge invariance and Poincaré

invariance, and hence is convenient for regulating non-Abelian gauge theories; fur-

thermore, Dimensional Regularization acts very much like standard integration,

via a series of identities proven in [61].

Regularization

Dimensional Regularization is an analytic continuation of the usual notion of

integration, defined by extending the dimension of a Euclidean (Wick-rotated)

momentum integral to a complex-valued parameter d. This is motivated by notic-

ing that a divergent integral in a certain number of spacetime dimensions would

be convergent in a lower number of spacetime dimensions, for example the four-

dimensional Euclidean integral

∫

E

d4p

(2π)4
1

p2 −m2
∼ O(|p|2)

diverges quadratically for large Euclidean momentum p, but the corresponding

two-dimensional integral

∫

E

d2p

(2π)2
1

p2 −m2
∼ O(ln |p|)

only diverges logarithmically, and the integral converges for any dimension d < 2.

Dimensional Regularization extends d to a complex number, defines the integral
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in a convergent region, then extends this definition to a meromorphic function of

d with poles when d is a positive integer greater than some number.

Given a Euclidean vector pE and function f(pE), we define d-dimensional

integration as the functional

Id[f(pE)] ≡
∫

ddpE f(pE) (2.36)

such that the functional I obeys linearity, translation and rotation invariance,

and is homogeneous of degree −d. By expanding f(p) in terms of a set of basis

functions

fs,q(p) ≡ e−s
2(p+q)2 ,

we may apply translation invariance and scaling to obtain

∫

ddp fs,q(p) = s−d
∫

ddp e−p
2

,

expressing every basis function in terms of one integral. If we require that

this integral can be converted to a spherical integral analogous to the integer-

dimensional Gaussian, we find

∫

dd1pdd2q e−(p2+q2) =

∫

dd1+d2r

∣

∣

∣

∣

∂(r, θ1, . . . , θd1+d2−1)

∂(p1, . . . , pd1 , q1, . . . , qd2)

∣

∣

∣

∣

e−r
2

= S(d1+d2−1)

∫ ∞

0

d|r| |r|d1+d2−1e−|r|2

=
2π

d1+d2
2

Γ(d1+d2
2

)

Γ(d1+d2
2

)

2

= π
d1+d2

2 ,

hence we may set the overall normalization of I according to

∫

ddp e−p
2

= π
d
2 . (2.37)

The functions we are required to integrate are tensor functions involving the loop

momentum p and a finite number of external momenta q1, . . . , qJ . The tensor

functions can be decomposed into products of vectors with scalar function coeffi-

cients, then each component of the tensor function can be separately evaluated;

consequently, we need to define the integral of a scalar function f(p, q1, . . . , qJ) ≡
f(p2, p · qk, q2k). By isolating a finite, J-dimensional subspace spanned by qk,

we may split p into parallel and orthogonal components pP ∈ Span{qk}, pO /∈
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Span{qk}, then define

∫

ddp f(p) =

∫

dp1 · · · dpJ
∫

dd−JpO f(p)

such that the J-dimensional integral is a standard, finite-dimensional integral.

The orthogonal integral may be performed first by changing to spherical coordi-

nates,
∫

dd−JpO f(p) = Sd−J−1

∫ ∞

0

d|pO| |pO|d−J−1f(p)

and so we may define the d-dimensional integral of a scalar function in terms of

ordinary, finite-dimensional integration:

∫

ddp f(p) ≡ Id,J [f(p)] =
2π

d−J
2

Γ
(

d−J
2

)

∫

dp1 · · · dpJ
∫ ∞

0

d|pO| |pO|d−J−1f(p). (2.38)

The orthogonal integral diverges at 0 when d ≤ J , and diverges at∞ when d ≥ J .

The divergence at 0 is more critical, since it is guaranteed to occur for d ≤ 0,

independent of the function f(p).

To extend the definition to d ≤ 0, consider the integral

∫

ddp f(p2) ≡ Id,0[f(p
2)] =

2π
d
2

Γ
(

d
2

)

∫ ∞

0

d|p| |p|d−1f(p2),

where f(p2) decays sufficiently rapidly as |p| → ∞. This may be split into two

regions at some arbitrary value C,

Id,0[f(p
2)] =

2π
d
2

Γ
(

d
2

)

{
∫ ∞

C

d|p| |p|d−1f(p2) +

∫ C

0

d|p| |p|d−1f(p2)

}

,

in which the integral over [C,∞) is finite. By adding and subtracting the function

at 0, we find

Id,0[f(p
2)] =

2π
d
2

Γ
(

d
2

)

{
∫ ∞

C

d|p| |p|d−1f(p2) +

∫ C

0

d|p| |p|d−1
[

f(p2)− f(0) + f(0)
]

}

=
2π

d
2

Γ
(

d
2

)

{∫ ∞

C

d|p| |p|d−1f(p2) +

∫ C

0

d|p| |p|d−1
[

f(p2)− f(0)
]

+ f(0)
Cd

d

}

=
2π

d
2

Γ
(

d
2

)

{
∫ ∞

C

d|p| |p|d−1f(p2) +

∫ C

0

d|p| |p|d−1
[

f(p2)− f(0)
]

}

+
π
d
2

Γ(d
2
+ 1)

f(0)Cd.
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Taking the limit C →∞, we find that for −2 < Re(d) < 0

∫

ddp f(p2) =
2π

d
2

Γ
(

d
2

)

{
∫ ∞

0

d|p| |p|d−1
[

f(p2)− f(0)
]

}

,

and for d = 0
∫

d0p f(p2) = f(0).

This procedure can be extended to any region Re(d) ∈ (−2l − 2,−2l) by contin-

uing to isolate and subtract the p = 0 divergences that arise when d = −2l, l ∈ N.

This gives

∫

ddp f(p2) =
2π

d
2

Γ
(

d
2

)

{

∫ ∞

0

d|p| |p|d−1

[

f(p2)−
l
∑

k=0

(p2)k

k!
f (k)(0)

]}

(2.39)

for Re(d) ∈ (−2l − 2,−2l), and
∫

d−2lp f(p2) = (−π)−lf (l)(0) (2.40)

for d = −2l. These definitions form the crux of the method of Dimensional Reg-

ularization: the d-dimensional integral of any scalar function is defined by the

analytic continuation from a region Re(d) ∈ (−2l − 2,−2l) in which the integral

converges, and the integral of any tensor function is defined by decomposing each

component of the tensor into a basis of terms with scalar function coefficients,

then integrating the associated scalar functions. While this derivation assumes

f(0) is analytic, one may treat functions with power-law singularities in the same

manner, systematically subtracting the singular behaviour to yield a finite inte-

gral. A noteworthy example is the case

f(p2) =
(p2)α

(p2 +m2)
,

which diverges as p→ 0 if m = 0. Repeatedly differentiating f eventually gives

f (α)(p2) =
α!

p2 +m2
+O(p2),

so by definition we have

∫

ddp f(p2) =
2π

d
2

Γ
(

d
2

)

{
∫ ∞

0

d|p| |p|d−1

[

f(p2)− (p2)α

m2

]}

, (2.41)

for some region of convergence Re(d) ∈ (−2α− 2,−2α). Recall that the d-

dimensional integral is defined to obey linearity, so when m 6= 0 we may rewrite
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(2.41) as
∫

ddp f(p2) =

∫

ddp f(p2)− 1

m2

∫

ddp (p2)α.

We therefore obtain the necessary identity

∫

ddp (p2)α = 0. (2.42)

We may now use Dimensional Regularization to regulate the divergent inte-

grals that appear in Feynman diagrams. Consider the first quantum correction

to iΓ̃(2) for an interacting scalar theory,

∫

d4k

(2π)4
i∆̃f (0) =

∫

d4k

(2π)4
i

k2 −m2
. (2.43)

There is an implicit factor iǫ in the denominator, which shifts the poles to k0 =

±
(
√

~k2 +m2 − iǫ
)

and allows one to Wick rotate the k0 integral anticlockwise

so that it lies on the imaginary axis. Having done this, we define the Euclidean

momentum p according to k0 = ip0, ~k = ~p, giving

∫

d4k

(2π)4
i

k2 −m2
=

∫

d4p

(2π)4
1

p2 +m2
.

Extending to d dimensions, we see that the Euclidean integral is a special case of

(2.41), which may be evaluated by a change of variables |p|2 = m2q:

∫

ddp
(p2)α

(p2 +m2)
=

2π
d
2

Γ
(

d
2

)

{∫ ∞

0

d|p| |p|d−1

[

(p2)α

(p2 +m2)
− (p2)α

m2

]}

=
2π

d
2

Γ
(

d
2

)

∫ ∞

0

d|p|
[

−1
m2

|p|2( d2+α)
|p|2 +m2

]

=
π
d
2

Γ
(

d
2

)(−1)(m2)
d
2
+α−1

∫ ∞

0

dq
q
d
2
+α

1 + q
.

The q-integral takes the form of the Euler beta function,

B(x, y) ≡
∫ z

0

dq
qx−1

(1 + q)x+y
,

specifically B(d
2
+α+1,−d

2
−α). Since the Euler beta function satisfies B(x, y) =

Γ(x)Γ(y)
Γ(x+y)

, we have

∫

ddp
(p2)α

(p2 +m2)
=

π
d
2

Γ
(

d
2

)(−1)(m2)
d
2
+α−1B

(

d

2
+ α + 1,−d

2
− α

)
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=
π
d
2

Γ
(

d
2

)(−1)(m2)
d
2
+α−1Γ

(

d

2
+ α + 1

)

Γ

(

−d
2
− α

)

=
π
d
2

Γ
(

d
2

)(m2)
d
2
+α−1Γ

(

d

2
+ α

)

Γ

(

1− d

2
− α

)

.

The dimensionally regularized version of the quantum correction is therefore given

by the α = 0 case of the above integral12:

∫

ddk

(2π)d
i

k2 −m2
=
md−2

(4π)
d
2

Γ

(

1− d

2

)

. (2.44)

We wish to analyse the behaviour of this integral near d = 4, corresponding to the

four-dimensional Minkowski spacetime in which our QFT is formulated. Since

the mass parameterm is not a dimensionless quantity, we may not yet expand the

integral to extract its singular behaviour: first, we must introduce an arbitrary

mass scale µ such that

md−2 = m2(m2)
d
2
−2 = m2(µ2)

d
2
−2

(

m2

µ2

)
d
2
−2

.

The d-dimensional integral is now

∫

ddk

(2π)d
i

k2 −m2
=

m2

(4π)2
(µ2)

d
2
−2

(

m2

4πµ2

)
d
2
−2

Γ

(

1− d

2

)

,

the last two terms of which may be expanded to give

∫

ddk

(2π)d
i

k2 −m2
= − m2

(4π)2
(µ2)

d
2
−2

[

1

2− d
2

+ γ + 1− ln

(

m2

4πµ2

)

+O
(

d

2
− 2

)

]

,

(2.45)

indicating the presence of a simple pole at d = 4. As a foreshadowing of the

renormalization procedure, we also see that the classical mass parameter m2

appears multiplying the singular expression.

This particular integral is relatively straightforward to evaluate, as it contains

only one propagator; moreover, it leads directly to more general expressions by

utilizing various properties of d-dimensional integration. In general, a Feynman

diagram will contain integration over multiple propagators, and the resulting

integral cannot be evaluated in the same manner. There are various methods one

may use to evaluate such diagrams, of which a conceptually simple method is the

12Note also that when m = 0, this result is consistent with (2.42).
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technique of Feynman parametrization. By using the identity

1

AB
=

∫ 1

0

du
1

[uA+ (1− u)B]2
,

one may convert a product of propagators into a single integral, the result of

which may be obtained from the one-propagator integral (2.44)13. As an example,

consider now the first quantum correction to iΓ̃(4),

p1

k + p

k

p4

p3

p2

←→ λ2
∫

d4k
(2π)4

1
k2−m2

1
(k+p)2−m2 ,

where local conservation of momentum sets p ≡ p1 + p2 = −(p3 + p4). Applying

dimensional regularization and Feynman parametrization to the integral, we find

∫

ddk

(2π)d
1

k2 −m2

1

(k + p)2 −m2

=

∫

ddk

(2π)d

∫ 1

0

du
1

[u(k2 −m2) + (1− u){(k + p)2 −m2}]2

=

∫

ddk

(2π)d

∫ 1

0

du
1

[k2 + 2k · p(1− u) + p2(1− u)−m2]2

=

∫

ddk

(2π)d

∫ 1

0

du
1

[(k + (1− u)p)2 − m̃2]2
,

where m̃ = m2 − u(1− u)p2. From (2.44), we may derive that

∫

ddk

(2π)d
1

(k2 −m2)2
= −i ∂

∂m2

∫

ddk

(2π)d
i

k2 −m2
= i

(m2)
d
2
−2

(4π)
d
2

Γ

(

2− d

2

)

,

and so by first performing the momentum integral we find

∫

ddk

(2π)d
1

k2 −m2

1

(k + p)2 −m2
=

∫ 1

0

du

∫

ddk

(2π)d
1

[(k + (1− u)p)2 − m̃2]2

(2.46)

=

∫ 1

0

du

∫

ddk

(2π)d
1

[k2 − m̃2]2
(2.47)

=

∫ 1

0

du i
Γ
(

2− d
2

)

(4π)
d
2

(m̃2)
d
2
−2 (2.48)

13Relating multiple-propagator integrals to the one-propagator integral automatically im-
plies that the resulting dimensionally regularized integrals are well-defined and obey the usual
properties.
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= i
Γ
(

2− d
2

)

(4π)
d
2

∫ 1

0

du
[

m2 − u(1− u)p2
]
d
2
−2
.

(2.49)

By again introducing an arbitrary mass scale, we may expand the u integral

around d = 4 to obtain

∫

ddk

(2π)d
1

k2 −m2

1

(k + p)2 −m2

= i
Γ
(

2− d
2

)

(4π)2
(µ2)

d
2
−2

∫ 1

0

du

[

m2 − u(1− u)p2
4πµ2

]
d
2
−2

= i
Γ
(

2− d
2

)

(4π)2
(µ2)

d
2
−2

{

1 +

(

d

2
− 2

)
∫ 1

0

du ln

(

m2 − u(1− u)p2
4πµ2

)

+O
(

d

2
− 2

)2
}

.

The logarithmic integral contributes to the finite part of the Feynman diagram,

and its precise value depends on the relation between m2 and p2. Since we are

concerned only with the singular part of the diagram, we simply expand Γ
(

2− d
2

)

,

giving

λ2
∫

ddk

(2π)d
1

k2 −m2

1

(k + p)2 −m2
=

iλ2

(4π)2
(µ2)

d
2
−2

{

1

2− d
2

+ finite

}

. (2.50)

This is the dimensionally-regularized value of the first quantum correction to the

classical interaction between four scalar fields. We again see that a parameter

from the classical Lagrangian density, in this case the coupling constant λ, appears

multiplying the singular expression.

Conceptually, this procedure should allow one to regularize any integral that

appears in the Feynman diagram expansion of a perturbative QFT. Practically,

the ability to evaluate such integrals depends on the ability to perform the in-

tegral over the Feynman parameter; this is difficult at higher loop orders, where

one must introduce multiple Feynman parameters via generalized versions of the

identity above, and even more difficult for more general QFTs where there are

(for example) multiple scalar fields with different masses.

There is one final issue present in the definition of Dimensional Regulariza-

tion, which is how to correctly handle the γ-matrices present when performing

integrals over fermion propagators. While one may define spinor fields in any

integer number of spacetime dimensions, their definition is predicated on the cor-

responding representation of the Dirac algebra, generated by matrices γ obeying
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the anticommutation and Hermiticity relations

{γµ, γν} = 2ηµν1, (γµ)† = γ0γµγ0 =







γ0, µ = 0

−γi, µ = i 6= 0
(2.51)

In order to correctly apply Dimensional Regularization to integrals containing

γ-matrices, we must extend the anticommutation relation to d dimensions, and

provide a definition of the trace operation. Since d-dimensional vectors and ma-

trices formally contain an infinite number of components, the γ-matrices can

first be constructed inductively for finite components, then extended to infinite

components.

Assume there exists a 2
d
2 ≡ 2ω-dimensional representation γµω, satisfying (2.51)

for all 0 ≤ µ ≤ 2ω − 1. If we define matrices γµω+1 by the matrix direct sum

γµω+1 = γµω ⊕ γµω ≡
(

γµω 0

0 γµω

)

,

then we see that for 0 ≤ µ, ν ≤ 2ω − 1,

{

γµω+1, γ
ν
ω+1

}

= {γµω, γνω} ⊕ {γµω , γνω} = 2ηµν
(

1ω ⊕ 1ω
)

= 2ηµν1ω+1

and

(

γµω+1

)†
= γ0ω+1γ

µ
ω+1γ

0
ω+1

= γ0ωγ
µ
ωγ

0
ω ⊕ γ0ωγµωγ0ω

=







γ0ω ⊕ γ0ω = γ0ω+1, µ = 0

− (γiω ⊕ γiω) = −γiω+1, 1 ≤ µ = i ≤ ω − 1

Generally, γµω+1 has two more entries than γµω , so we must define these new entries

in such a way that γµω+1 satisfies the anticommutation and Hermiticity relations

for 0 ≤ µ ≤ 2ω + 1. By noting that we may define an additional matrix

γ̂ω = iω−1γ0ω · · · γ2ω−1
ω

satisfying

(γ̂ω)
† = γ̂ω, (γ̂ω)

2 = 1ω, {γ̂ω, γµω} = 0,

we find that if the new entries in γµω+1 are given by

γ2ωω+1 =

(

0 γ̂ω

−γ̂ω 0

)

, γ2ω+1
ω+1 =

(

0 iγ̂ω

iγ̂ω 0

)

,
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then γµω+1 is a representation of the Dirac algebra, satisfying

{

γµω+1, γ
ν
ω+1

}

= 2ηµν1ω+1,
(

γµω+1

)†
= γ0ω+1γ

µ
ω+1γ

0
ω+1

for all 0 ≤ µ, ν ≤ 2ω+1. To complete the construction, we simply need to define

a base case for ω = 1; that is, a basis of two-dimensional matrices satisfying the

Dirac algebra, such as the Pauli matrices. The infinite-dimensional γ-matrices

are then given by the limit ω →∞:

γµ =

∞
⊕

k=0

γµω =









γµω 0

0 γµω
. . .









. (2.52)

By construction, these matrices satisfy the Dirac algebra, and hence the d-

dimensional γ-matrices may simply be manipulated in the same manner as their

finite-dimensional counterparts. The final step is to define the trace over γµ,

which is done by imposing linearity and cyclicity14:

tr (aγµ + bγν) = atr (γµ) + btr (γν) , tr (γµγν) = tr (γνγµ) .

By imposing these conditions, we find

tr (γµγν) = tr
(

2ηµν1d − γνγµ
)

= 2ηµνtr
(

1d

)

− tr (γνγµ)

= 2ηµνtr
(

1d

)

− tr (γµγν) ,

and so

tr (γµγν) = ηµνtr
(

1d

)

.

Since we require that the d-dimensional trace coincide with the corresponding

result in integer dimensions, we define

tr
(

1d

)

≡ 2
d
2 , (2.53)

completing the treatment of γ-matrices in Dimensional Regularization15.

14Imposing both linearity and cyclicity for all products of γ-matrices in d dimensions is in
fact too strict a requirement, as it implies tr(γ5γµγνγργσ . . .) = 0, where the trace contains a
product of γ5 with 4, 6, 8, . . . other γ-matrices. In order for such a product to be non-zero, and
expressible in terms of a totally antisymmetric tensor ǫµνρσ, the cyclicity condition must be
relaxed.

15As indicated above, this treatment does not lead to a Lorentz-invariant, d-dimensional
definition of γ5, nor by extension the ǫ-tensor. The conventional resolution is to define γ5 as
usual, then restrict its anticommutation relation to the desired finite-dimensional subspace.
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Renormalization

We have seen how to extract the divergent behaviour of the integrals arising in

a perturbative QFT, using the method of Dimensional Regularization. We have

also seen that each regularized integral is accompanied by a parameter from the

classical Lagrangian density; specifically, the first divergence in iΓ̃(2) includes a

factor m2, and the first divergence in iΓ̃(4) includes a factor λ2. Consequently, if

the quantum versions of these parameters were to differ from the classical param-

eters, it may be possible to cancel the divergences. The idea behind Renormal-

ization is that it is indeed possible to define new ”renormalized” parameters, such

that when the 1PI Green functions are expressed in terms of the renormalized

parameters, the divergences disappear.

The parameters that appear in the classical Lagrangian density are referred

to as bare parameters16, representing the associated quantity in a theory with-

out quantum fluctuations. Since these fluctuations cannot be ”switched off”, one

never actually measures the bare parameters: one in fact only measures quan-

tities at some particular energy scale µR. Our aim is therefore to redefine the

bare fields and couplings in the Lagrangian density in terms of new fields and

couplings multiplied by renormalization factors Z, such that physical results are

given in terms of these new parameters at the scale µR. When working in per-

turbation theory, defining Z = 1 + δZ allows one to rewrite the new Lagrangian

density such that it takes the same form as the bare Lagrangian density, plus new

potential contributions called counterterms; by deriving new Feynman rules for

these counterterms, δZ =
∞
∑

n=1

δZ(n) can be computed order-by-order, by requiring

that the sum of all diagrams and counterterms at n-loops be finite.

As a quick example of this procedure, we can again consider φ4 theory. We

now refer to the classical Lagrangian density as the bare Lagrangian density,

LB =
1

2
∂µφB∂

µφB −
1

2
m2
Bφ

2
B −

λB
4!
φ4
B,

and define renormalized quantities according to17

φB = Z
1
2
φ φ, mB = Z

1
2
mZ

− 1
2

φ m, λB = ZλZ
−2
φ λ. (2.54)

16The name ”bare parameter” originates from the probing of an electron at different energy
scales. Due to quantum fluctuations in the electromagnetic field, an electron will appear to
be surrounded by a cloud of particles that are rapidly created and annihilated, which partially
screen the electron and affect measurements of the electric charge. If interactions do not occur,
then no particles are created and the electron is left unscreened, or bare.

17The form of these quantities is chosen purely to simplify the counterterm Lagrangian den-
sity, and hence simplify the Feynman rules for counterterms.
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Taking Z = 1 + δZ and expanding LB, we find

LB =
1

2
∂µ

(

Z
1
2
φ φ
)

∂µ
(

Z
1
2
φ φ
)

− 1

2

(

Z
1
2
mZ

− 1
2

φ m
)2 (

Z
1
2
φ φ
)2

− 1

4!
ZλZ

−2
φ λ

(

Z
1
2
φ φ
)4

=

(

1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4

)

+

(

1

2
δZφ∂µφ∂

µφ− 1

2
δZmm

2φ2 − λ

4!
δZλφ

4

)

= L + δL , (2.55)

where we have defined the renormalized Lagrangian density L to take the same

form as LB. By calculating again the Green functions of this theory, we may

derive Feynman rules for the terms in the counterterm Lagrangian density δL :

• ←→ i (δZφp
2 − δZmm2), a new vertex connecting two propagators;

• ←→ −iδZλλ, a new vertex connecting four propagators.

Using these new rules, we wish to calculate the renormalized n-point 1PI Green

functions iΓ̃(n) as before, by summing over all possible 1PI Feynman diagrams

including diagrams containing counterterms, with the additional constraint that

iΓ̃(n) is finite for all n. At one-loop level, and using (2.45), we therefore find that

iΓ̃(2) = −i
(

p2 −m2
)

− iλ

2

(∫

ddk

(2π)d
i

k2 −m2

)

+ i
(

δZφp
2 − δZmm2

)

+O(λ2)

= −ip2 (1− δZφ) + im2

(

1− δZm +
λ (µ2)

d
2
−2

2(4π)2
1

2− d
2

+ finite

)

+O(λ2).

From this expression, we see that if we take

δZ
(1)
φ = finite, δZ(1)

m =
λ (µ2)

d
2
−2

32π2

1

2− d
2

+ finite, (2.56)

where the finite parts of δZ are as-yet-unspecified, then

lim
d→4

iΓ̃(2) = finite +O(λ2),

and hence is finite to first order in perturbation theory. Likewise, using (2.50),

we find

iΓ̃(4) = −iλ+
3

2
(−iλ)2

∫

ddk

(2π)d
i

k2 −m2

i

(k + p)2 −m2
+ (−iδZλ) +O(λ3)

= −iλ
(

1 + δZλ −
3

2

λ(µ2)
d
2
−2

(4π)2
1

2− d
2

+ finite

)

+O(λ3),
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and so if we take

δZ
(1)
λ =

3λ(µ2)
d
2
−2

32π2

1

2− d
2

+ finite, (2.57)

then

lim
d→4

Γ̃(4) = finite +O(λ3).

It is worth noting that we defined the renormalization factors Z to be simple

(albeit divergent) numerical coefficients, yet δZ
(1)
m , δZ

(1)
λ appear to have non-zero

mass dimension when analytically continued to d dimensions. We have neglected

to ensure that the coupling λ in the d-dimensional theory is in fact a dimensionless

coupling, as is required to perform a perturbative expansion. Since the action S

of a theory must be dimensionless, and the action is defined as

S[L ] =

∫

ddxL ,

with the measure having mass dimension
[

ddx
]

= −d, each term in L must have

mass dimension [L ] = d. Since the mass dimension of a mass term is simply 1

by definition, we can read off the mass dimensions of each term in L :

d =



















[m2φ2] = 2 [m] + 2 [φ] = 2 + 2 [φ] =⇒ [φ] = d−2
2

[∂µφ∂
µφ] = 2 [∂] + 2 [φ] = 2 [∂] + d− 2 =⇒ [∂] = 1

[λφ4] = [λ] + 4 [φ] = [λ] + 2d− 4 =⇒ [λ] = 4− d

We may therefore define a coupling λ̂ = λµd−4 that is dimensionless in d dimen-

sions, in terms of which δZ
(1)
m , δZ

(1)
λ are then themselves explicitly dimensionless:

δZ(1)
m =

λ̂

32π2

1

2− d
2

+ finite, δZ
(1)
λ =

3λ̂

32π2

1

2− d
2

+ finite. (2.58)

In general, a QFT is considered perturbatively renormalizable if its 1PI Green

functions can be rendered finite by a suitable choice of renormalization factors Z.

Each factor Z = 1+ δZ leads to a counterterm in the Lagrangian density propor-

tional to δZ, which may then be computed order-by-order. The renormalizability

of a theory is then classified as follows:

• Finite - no counterterms are required.

• Super-renormalizable - a finite number of Feynman diagrams require coun-

terterms.

• Strictly Renormalizable - infinitely many Feynman diagrams require coun-
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terterms, but all counterterms are determined by a finite set of renormal-

ization factors.

• Non-renormalizable - infinitely many Feynman diagrams require countert-

erms, and infinitely many renormalization factors are required to generate

all counterterms.

One can determine if a particular n-point 1PI Green function Γ̃(n) is divergent

by power-counting18. Each basic d-dimensional integration measure raises the

large-momentum behaviour by a power d, and each scalar propagator lowers the

large-momentum behaviour by a power 2, hence we may denote the superficial

degree of divergence, D, as

D = dL− 2I,

where L is the number of independent loop momenta and I the number of internal

lines (propagators). Each Feynman diagram is made of L loops, V vertices, I

internal lines, and n external lines, with local momentum conservation at each

vertex and overall momentum conservation for the external lines. Each vertex

therefore constrains one of the internal momenta by momentum conservation,

while overall momentum conservation reduces the number of constraints by one,

leaving

L = I − V + 1.

Each Γ̃(n) has n external lines; since the vertices of a φk theory have k lines and

each propagator connects two of these lines, the number of external lines obeys

n = kV − 2I.

Combining these three relations, we may express the superficial degree of diver-

gence of graphs in Γ̃(n) as

D = d− d− 2

2
n+

k(d− 2)− 2d

2
V.

The sign of the term in front of V then determines how D grows as one includes

more vertices. For a φk theory to be renormalizable, we therefore require

k ≤ 2d

d− 2
.

When this inequality is saturated, D becomes independent of the number of

18Power-counting is an extension of our analysis of the divergent scalar integrals at large
momenta, combining dimensional analysis with basic graph theory.
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vertices in a particular Feynman diagram, and one finds that

D ≥ 0 ∀a =
E

2
≤ k, a ∈ N.

In the four-dimensional φ4 case where d = k = 4, the superficially divergent 1PI

Green functions are therefore Γ̃(0), Γ̃(2) and Γ̃(4), which we have seen are rendered

finite (at one loop) by the normalization condition on the generating functional,

plus the renormalization of the mass m and quartic coupling λ. When n ≥ 6,

Γ̃(n) may still contain subgraphs that diverge, but these graphs must take the

form of terms that occur in Γ̃(2) and Γ̃(4), and so the renormalization of such

terms is predetermined. The important point here is that there are only finitely

many superficially divergent 1PI Green functions, and there are sufficiently many

parameters in the Lagrangian density such that these functions (and by extension

all n-point Green functions) may be rendered finite by renormalization.

This power-counting method extends readily to general scalar-fermion theo-

ries, simply by analysing interaction terms that contain s scalars and f fermions.

A fermion propagator has high-momentum behaviour ∼ |p|−1, so the superficial

degree of divergence of a graph with Is internal scalar lines and If internal fermion

lines is now

D = dL− 2Is − If ,

while momentum conservation implies

L = Is + If − V + 1

as before. A 1PI Green function Γ̃(E) has E = Es + Ef external lines, obeying

Es + Ef + 2 (Is + If ) = (s+ f)V,

so in order to correctly reduce to a theory of only scalars or fermions, there exists

a manifestly positive V (s, f) such that

Es + 2Is = sV (s, f), Ef + 2If = fV (s, f).

We may therefore rewrite D as

D = d− d− 2

2
Es −

d− 1

2
Ef +

[

s

(

d− 2

2

)

+ f

(

d− 1

2

)

− d
]

V (s, f),
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and so a renormalizable scalar-fermion interaction must satisfy

s

(

d− 2

2

)

+ f

(

d− 1

2

)

≤ d. (2.59)

In four dimensions, this inequality is saturated by the cases s = 4, f = 0 (φ4

theory), and s = 1, f = 2 (the Yukawa interaction). Note however that there are

valid solutions to the inequality with f = 1; such solutions are not compatible

with conservation of angular momentum, and so one cannot merely apply power-

counting to deduce all renormalizable interaction terms that obey the desired

symmetries of the Lagrangian density. This becomes crucial when considering

non-Abelian gauge theories, where one must ensure that all interactions and

counterterms also obey gauge invariance.

As a final comment on the calculation of δZ in perturbation theory, note that

the finite parts have so far been treated schematically. Since the purpose of renor-

malization is merely to render the Green functions finite, any choice of finite part

in δZ is valid. A prescription for choosing the finite parts of renormalization fac-

tors is known as a renormalization scheme; there exist various commonly-chosen

schemes, each designed to satisfy a particular theoretical preference. For higher-

order perturbative calculations, the most commonly chosen scheme is Minimal

Subtraction (MS), and is defined such that the finite part of any δZ is simply

zero, hence one only subtracts the divergent part of Γ̃(n). There is also modi-

fied Minimal Subtraction (MS), motivated by noticing that the appearance of a

(relatively large) term γ − ln(4π) in all one-loop calculations is simply a numeri-

cal artefact of the Taylor expansion of (4π)2−
d
2 Γ
(

2− d
2

)

. Such artefacts may be

systematically removed by rescaling µ → µ
(

eγ

4π

)− 1
2 , and serves to simplify per-

turbative calculations even further. The notion of a change in renormalization

scheme and its relation to the couplings in a QFT will be illustrated below, and

is of paramount importance throughout the results presented in this thesis.

2.1.5 The Renormalization Group

We have successfully constructed a perturbative expansion for interacting QFTs,

regularized by analytic continuation of the number of spacetime dimensions d,

and renormalized by adding counterterm interactions that cancel the divergences

when d→ 4. The physical content of the theory is summarised by the renormal-

ized 1PI Green functions Γ̃(n) (φ, ψ, A, g, ξ;µ), evaluated at a particular energy



CHAPTER 2. BACKGROUND 48

scale µ = µR
19. This fixing raises one final issue in our construction of a QFT:

what happens to Γ̃(n) as one varies the energy scale? By first relating the bare

Green functions Γ̃B to the renormalized Green functions Γ̃ at some arbitrary

scale µ, and noting that Γ̃B is independent of this scale, we may derive a differ-

ential equation for Γ̃ that is itself invariant under changes in µ. This equation is

called the Renormalization Group equation (RGE), and implicitly defines various

functions that describe how certain quantities change as one varies µ.

To derive the RGE, recall the definition of the scalar generating functional

(2.4), and the relation between the bare and renormalized Lagrangian density,

LB + JBφB = L + δL + Jφ.

To ensure that the bare and renormalized generating functionals WB and W

maintain the same form, we require that their respective source terms are related

by

JB = Z− 1
2J.

It then follows that, since

φB = Z
1
2φ

and
δ

δJ(x)

∫

Dφ f(φ)ei
∫

d4x J(x)φ(x) = iφ(x)

∫

Dφ f(φ)ei
∫

d4x J(x)φ(x),

the bare and renormalized Green functions GB and G , derived from WB and W

respectively, are related by

G
(n)
B (x1, . . . , xn) = Z

n
2 G

(n)(x1, . . . , xn).

In direct analogy, we find

XB[JB] = −i ln (WB[JB]) = −i ln (W [J ]) = X [J ],

and so

(φc)B =
δXB[JB]

δJB
= Z

1
2
δX [J ]

δJ
= Z

1
2φc,

therefore the effective action satisfies

ΓB [(φc)B] = Γ[φc].

19Since Dimensional Regularization introduces an arbitrary mass scale µ, and Γ̃(n) includes

terms of the form g ln
(

m2

µ2

)

, the perturbation series for small g will still contain large coefficients

unless we set µ ≡ µR ∼ m.
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Applying the functional expansion, we see that this imposes the desired connec-

tion between bare and renormalized 1PI Green functions,

Γ̃(n) = Z
n
2 Γ̃

(n)
B .

This expression generalises easily to fermions and gauge fields in exactly the same

manner, hence a theory with all three field types will have 1PI Green functions

satisfying

Γ̃(n) (ĝ, ξ,m, µ) = Z
nφ
2

φ Z
nψ
2

ψ Z
nA
2
A Γ̃

(n)
B (gB, ξB, mb) , (2.60)

where the n = nφ+nψ+nA external legs are comprised of nφ scalars, nψ fermions,

and nA gauge fields, and there is an implicit sum over all dimensionless couplings ĝ

in the theory. We may now act on both sides of this equation with the differential

operator µ d
dµ
, with the understanding that all bare quantities are independent of

µ and the renormalization factors depend on µ implicitly: the left-hand-side gives

µ
d

dµ
Γ̃(n) (ĝ, ξ,m, µ) =

(

µ
∂

∂µ
+ µ

∂ĝ

∂µ

∂

∂ĝ
+ µ

∂ξ

∂µ

∂

∂ξ
+ µ

∂m

∂µ

∂

∂m

)

Γ̃(n),

while the right-hand-side gives

µ
d

dµ

(

Z
nφ
2
φ Z

nψ
2
ψ Z

nA
2
A Γ̃

(n)
B

)

=

(

µ
∂Zφ
∂µ

∂

∂Zφ
+ µ

∂Zψ
∂µ

∂

∂Zψ
+ µ

∂ZA
∂µ

∂

∂ZA

)(

Z
nφ
2
φ Z

nψ
2
ψ Z

nA
2
A Γ̃

(n)
B

)

=

(

nφ
1

2
µ
∂Zφ
∂µ

Z−1
φ + nψ

1

2
µ
∂Zψ
∂µ

Z−1
ψ + nA

1

2
µ
∂ZA
∂µ

Z−1
A

)

Γ̃(n).

Rearranging, we obtain the Renormalization Group Equation,

(

µ
∂

∂µ
+ β(ĝ)

∂

∂ĝ
+ β(ξ)

∂

∂ξ
− γmm

∂

∂m
− nφγφ − nψγψ − nAγA

)

Γ̃(n) = 0,

(2.61)

where we have defined the β-functions, mass anomalous dimension, and field

anomalous dimensions as

β(ĝ) = µ
∂ĝ

∂µ
, β(ξ) = µ

∂ξ

∂µ
, γm = − µ

m

∂m

∂µ
,

γφ =
1

2
µ
∂Zφ
∂µ

Z−1
φ , γψ =

1

2
µ
∂Zψ
∂µ

Z−1
ψ , γA =

1

2
µ
∂ZA
∂µ

Z−1
A . (2.62)

These functions are known as RG functions, quantities, or coefficients, and de-

scribe the effects of a change in the RG scale on the couplings, gauge-fixing

parameter, and canonical scaling dimensions as a result of interactions. By con-

sidering the behaviour of Γ̃(n) as one scales the external momenta, one may relate
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Γ̃(n)(p1, . . . , pn) at some scale p to Γ̃(n)(sp1, . . . , spn) at the new scale sp, such that

any change in the couplings and scaling dimensions is given by the RG quantities.

Since we have already calculated the one-loop renormalization factors for a

φ4 theory, we can easily demonstrate how to calculate the RG quantities. Recall

that, at one loop, the renormalization constants in the MS scheme are

Zφ = 1 +O
(

δZ
(2)
φ

)

, Zm = 1 +
λ̂

16π2

1

4− d, Zλ = 1 +
3λ̂

16π2

1

4− d.

We may use the µ-independence of the bare parameters to generate relations

between the Zs and the RG quantities, then keep only terms up to a particular

order of λ̂. Beginning with the bare coupling, we have

0 = µ
dλB
dµ

= µ
d

dµ

(

ZλZ
−2
φ µ4−dλ̂

)

= (4− d)ZλZ−2
φ µ4−dλ̂+ ZλZ

−2
φ µ4−dβλ̂ +

(

βλ̂
∂Zλ

∂λ̂

)

Z−2
φ µ4−dλ̂

− 2ZλZ
−3
φ

(

βλ̂
∂Zφ

∂λ̂

)

µ4−dλ̂

= µ4−dZλZ
−2
φ

[

(4− d)λ̂+ βλ̂ + Z−1
λ

(

βλ̂
∂Zλ

∂λ̂

)

λ̂− 2Z−1
φ

(

βλ̂
∂Zφ

∂λ̂

)

λ̂

]

.

The terms involving Zs are at least of order λ̂2, so by postulating

βλ̂ = (d− 4)λ̂+ b1λ̂
2 +O(λ̂3),

substituting in the one-loop expressions for Zλ, Zφ, and keeping terms only up

to λ̂2, we find

b1 = (4− d)δZ(1)
λ λ̂ =

3

16π2
λ̂2,

therefore the one-loop β-function for λ in d = 4 dimensions is

βλ = 3

(

λ

4π

)2

+O(λ3). (2.63)

Next we use the bare mass, giving

0 = µ
dmB

dµ
= µ

d

dµ

(

Z
1
2
mZ

− 1
2

φ m
)

=
1

2
Z

− 1
2

m

(

βλ̂
∂Zm

∂λ̂

)

Z
− 1

2
φ m− 1

2
Z

1
2
mZ

− 3
2

φ

(

βλ̂
∂Zφ

∂λ̂

)

m+ Z
1
2
mZ

− 1
2

φ µ
∂m

∂µ

= m−1Z
− 1

2
m Z

1
2
φ

[

1

2
Z−1
m βλ̂

∂Zm

∂λ̂
− 1

2
Z−1
φ βλ̂

∂Zφ

∂λ̂
− γm

]

.
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The terms involving Zs are at least of order λ̂, so we find that the one-loop mass

anomalous dimension in d = 4 dimensions is given by20

γm =

[

−1
2
(4− d)δZ(1)

m +O(λ̂2)
] ∣

∣

∣

∣

d=4

= − 1

8π

(

λ

4π

)

+O(λ2). (2.64)

Finally, the field anomalous dimension is easily calculable from its definition.

Since Zφ has no one-loop coefficient in φ4 theory, the field anomalous dimension

at one loop is simply

γφ =
1

2

(

βλ̂
∂Zφ

∂λ̂

)

Z−1
φ = O(λ2). (2.65)

Having determined the β-function for the scalar coupling λ, we may approxi-

mate the change in λ from the current scale λ̂(µ) to a new energy scale λ̂(sµ) by

solving the partial differential equation

s
∂λ̄(s)

∂s
= βλ̂

(

λ̄(s)
)

,







λ̄(1) = λ̂(µ) = λ̂,

λ̄(s) = λ̂(sµ).

This can be solved at one loop by simple separation of variables, giving

λ̄(s)
∣

∣

1−loop
=

λ̂

1− λ̂b1 ln s
, b1 =

3

16π2
.

Due to the positive sign of b1, we see that the coupling decreases as one reduces

the energy scale, with the limit

lim
s→0

λ̄(s) = 0.

We say that the coupling decreases under RG flow from the UV (high energy) to

the IR (low energy). The coupling flows to an RG fixed point at λ = 0, where

βλ = 0 and the coupling no longer changes. In the simple φ4 case this is the

only RG fixed point, but in theories with various interactions it is possible to find

non-trivial fixed points where gI 6= 0. In general, a QFT with multiple couplings

gI ∈ {g1, g2, . . .} satisfying β(gI) = 0 is referred to as a scale-invariant QFT

20If we also keep track of the O(λ̂2) terms, we find that there is a simple pole in γm, the
coefficient of which is a combination of simple- and double-pole coefficients in δZ; since γ is
finite, this combination of terms must vanish, imposing relations between the simple pole at a
particular loop order and the double pole at the next loop order.
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(SFT); since RG flow ends at fixed points21, we may interpret general QFTs as

points on a manifold in coupling space, parametrised by RG flows between SFTs.

21There is a subtlety here, based on the effects of global symmetries in a QFT, which shall
be clarified in the next section.
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2.2 Constraints on Renormalization-Group flow

In this section, we follow the basic treatment of Quantum Field Theory in Curved

Spacetime found in Parker and Toms [65], supplemented by Shore’s pedagogical

review of the c-theorem, the a-theorem, and the Local Renormalization Group

[67]; we also use Osborn’s original paper on Weyl consistency conditions [7].

We have finally arrived at the central topic of this thesis: do there exist con-

straints on RG flows, and what are the consequences of such constraints? There

is no a priori reason to think that the only possible behaviour of an RG flow is to

approach a fixed point; it is conceivable that an RG flow could instead approach

a closed trajectory in coupling space (a limit cycle), or indeed display no asymp-

totic behaviour at all (ergodic, or chaotic, flow). Physically, such behaviour would

be highly unusual, as it would suggest that the high-energy limit of a physical

system could be described completely in terms of low-energy properties, akin to

describing the small-scale electromagnetic interactions between water molecules

purely in terms of the flow velocity, density and pressure of the large-scale water

continuum.

Constraints on the possible RG flows of general two-dimensional QFTs were

first established by Zamolodchikov [2]. By interpreting the β-functions of a theory

as components of a vector field βI on the space of couplings
{

gI
}

, Zamolodchikov

reasoned that since βI generates RG flow in coupling space, and RG flow relates

the correlation functions of a theory at two different energy scales, there should

be an inherent irreversibility to RG flow. Heuristically, this is because the correla-

tion functions are defined at a particular energy scale µ, and it is not meaningful

to then attempt to measure correlations at any energy scale µ′ > µ: some in-

formation about the UV theory must therefore be lost under RG flow to the

IR.

To establish the irreversibility of RG flow, Zamolodchikov defined various

functions, based on two-point correlation functions of the energy-momentum ten-

sor. Given a two-dimensional Euclidean QFT and introducing complex coordi-

nates z = x+ iy, z̄ = x− iy, if one defines a function C as the linear combination

C = 2F −H − 3

8
G,

where

F = (2π)2z4 〈Tzz(x)Tz̄z̄(0)〉 ,
G = (2π)2x4 〈Tzz̄(x)Tzz̄(0)〉 ,
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H = (2π)2z2x2 〈Tzz(x)Tzz̄(0)〉 ,

then C satisfies

|z| ∂C
∂|z| = −

3

2
G,

that is, C decreases as one increases the distance scale |z|. Since the trace of

the energy-momentum tensor for a general QFT (see (2.66) below) contains an

operator anomaly

〈T µµ〉 = 4 〈Tzz̄〉 = βIOI ,

we may define a new tensor structure (up to some arbitrary constant of propor-

tionality)

GIJ ∼ (2π)2z2z̄2 〈OI(x)OJ (0)〉 ,

then by fixing |z| = µ−1, we may use the RG equation to reformulate the con-

straint on C as

βI∂IC ≡ βI
∂C

∂gI
= βIGIJβ

J ≥ 0.

Since GIJ is manifestly positive-definite, C is stationary only at RG fixed points,

where βI = 0 and hence 〈T µµ〉 = 0. Consequently, at a fixed point g∗ we have

C(g∗) = 2F , and so by using the Operator Product Expansion (OPE) for the

energy-momentum tensor of a CFT

〈Tzz(x)Tz̄z̄(0)〉 =
1

(2π)2
c

2z4
+O(|z|−2),

we find that the function C is equal to the central charge of the corresponding

CFT,

C(g∗) = c.

Finally, near a fixed point, expanding C and βI gives

GIJ = 12δIJ +O(g2),

βI = ǫ(gI)gI − 1

2
CIJKg

JgK +O(g3),

C(g) = C(g∗) + 6ǫ(gI)gIg
I − 2CIJKg

IgJgK +O(g4).

C, βI and GIJ are then related by the gradient-flow equation,

∂C

∂gI
= GIJβ

J .

As outlined in the introduction, the existence of the function C satisfying
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these properties is known as the c-theorem22, and provides a strict constraint

on the possible RG flows of a two-dimensional QFT: the couplings of the theory

must run in such a way that a particular function C of the couplings decreases

monotonically under RG flow. The consequences of the c-theorem have been

investigated by numerous others, of which two key results are:

• Polchinski [4] demonstrated that, for a general two-dimensional QFT, one

may always redefine Tµν so that it has a canonical scaling dimension. The c-

theorem then implies T µµ = 0 as an operator identity, hence scale invariance

implies conformal invariance in two dimensions.

• Friedan and Konechny [11] demonstrated that the gradient-flow equation

in fact holds non-perturbatively, away from RG fixed points.

Unfortunately, Zamolodchikov’s argument does not generalize beyond two di-

mensions. It was shown by Cardy that, for any theory in dimension d > 2, the

standard assumptions of renormalizability, reflection-positivity, translation and

rotation invariance are insufficient to construct a function C whose derivative is

determined entirely by the two-point function 〈T µµT νν〉, and so is not guaranteed

to be monotonic. Instead, Cardy considered the idea of interpreting C in terms

of the trace anomaly of a QFT in curved spacetime (QFTCS), which for a QFT

in two dimensions is

〈T µµ〉 = −
c

24π
R,

where R is the Ricci scalar of the spacetime and c is again the central charge of

the corresponding CFT. In general, the d-dimensional trace anomaly takes the

form

〈T µµ〉 = βI 〈OI〉+ c̃ (C)
d
2 − ã Ed +

∑

i

bifi (φ, gµν) , (2.66)

where we have the usual operator anomaly, plus new gravitational anomalies

proportional to powers of the Weyl tensor,

Cµνρσ = Rµνρσ −
2

(d− 2)

(

gµ[ρRσ]ν − gν[ρRσ]µ

)

+
2

(d− 1)(d− 2)
Rgµ[ρgσ]ν ,

the Euler density,

Ed =







1

2n
ǫµ1ν1...µnνnǫρ1σ1...ρnσnRµ1ν1ρ1σ1 · · ·Rµnνnρnσn d = 2n, n ∈ Z+

0 d = 2n+ 1, n ∈ Z+

22Specifically, Zamolodchikov’s construction proves the monotonicity of C and the relation
C(g∗) = c non-perturbatively, while the gradient-flow equation is only valid near RG fixed
points.
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and a number of other scalars fi of dimension d, such as Rφ2. The gravitational

anomalies are independent of the interactions in the theory, and hence could

be related to a c-theorem for general QFTs. When d = 2, the Weyl tensor

vanishes identically, the Euler density is exactly the Ricci scalar, and the only

other possible contribution (fi ∼ ξR) vanishes identically23, hence at an RG fixed

point we must have

ã ∼ c.

Cardy therefore conjectured [1] that a suitable generalization of the c-theorem

should involve a function A (hereafter referred to as the a-function), satisfying the

same properties as the two-dimensional c-function, such that at RG fixed points

A(g∗) = ã, the coefficient of the Euler density in the trace anomaly. The existence

of this function is known as the a-theorem, and would be a valid generalization

of the c-theorem to any even-dimensional spacetime.

There have been several attempts to prove the a-theorem, or at least one of

the progressively-stronger formulations outlined in the introduction:

• Jack and Osborn showed [8] that the desired a-function exists, decreases

monotonically under RG flow, is equal to the coefficient ã of the Euler den-

sity at RG fixed points, and obeys a gradient-flow equation near RG fixed

points, with a metric that is positive-definite at leading order in perturba-

tion theory.

• Anselmi, Freedman, Grisaru and Johansen provided a non-perturbative

proof of the weak a-theorem for N = 1 supersymmetric theories [12]. The

argument was dramatically simplified by Intriligator and Wecht [13], with

refinements by Kutasov [14], using the idea of a-maximization.

• Komargodski and Schwimmer provided a non-perturbative proof of the

weak a-theorem for general four-dimensional QFTs [16], by coupling the

QFT to a dilaton and analysing the four-point function of T µµ.

Progress has also been made on various corollaries and implications of the a-

theorem, for example Luty, Polchinski and Rattazzi proved that the weak a-

theorem is sufficient to rule out limit cycles and ergodic RG flow, as well as

guaranteeing that scale-invariance implies conformal invariance in four dimen-

sions [17]; Jack and Osborn also derived a consistency condition that, if true,

leads to an all-orders expression for the a-function in four-dimensional N = 1

23The Lagrangian density of any d-dimensional QFTCS with scalar fields contains a contri-
bution ξRφ2; a minimally-coupled theory is one with ξ = 0, whereas a conformally-coupled

theory is one with ξ = (d−2)
4(d−1) . In two dimensions, the two are therefore equivalent.
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supersymmetric theories without gauge interactions [9]. Further work has been

done on explicitly constructing an a-function in six dimensions [37, 38], in order

to verify that the metric is positive-definite at leading order, and attempts have

been made to find an equivalent function for odd-dimensional QFTs [43–45].24

The constraints on RG flows provided by Jack and Osborn’s construction are

sufficiently powerful to derive highly non-trivial consistency conditions amongst

the various β-functions of a general four-dimensional QFT, and it is these con-

straints which form our primary interest. The constraints are derived by consider-

ing the effects of an infinitesimal Weyl transformation on the QFTCS, then using

the commutativity of Weyl transformations to derive relations between RG quan-

tities; consequently, these constraints are known as Weyl consistency conditions.

Key to this method is the idea of extending couplings to spacetime-dependent

functions gI → gI(x), leading to an extension of the usual RG formulation known

as the Local Renormalization Group (LRG). This chapter, therefore, shall con-

clude with a summary on the extension of QFT to an arbitrary curved spacetime,

followed by a re-derivation of the Weyl consistency conditions.

2.2.1 Extending to curved spacetime

It is relatively straightforward to define a classical field theory in a general curved

spacetime: one need only identify those features in the action S (φ, ∂µφ) that

correspond to a flat background and replace them with the associated covari-

ant quantities, such that the resulting curved spacetime action S (φ,∇µφ, gµν)

is invariant under general coordinate transformations. Assuming that the usual

variational principle applies to the new curved spacetime action, we then obtain

generally covariant equations of motion from the variation of S with respect to

the fields φ. A new feature is that the total variation δS also contains variations

with respect to the metric,

δS =

∫

ddx

(

δS

δφi
δφi +

δS

δgµν
δgµν

)

,

and so there should also be a corresponding equation of motion from varying the

metric. To see what this represents for a general theory, consider the Einstein-

Hilbert action with matter,

S ≡ SEH + SM =

∫

ddx
√

|g|
[

1

2κ
(2Λ−R) + LM

]

. (2.67)

24See chapters 4 and 5 respectively.
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Under variations of the metric, we have

δ
√

|g|
δgµν

= −1
2

√

|g|gµν ,
δR

δgµν
= Rµν +∇λA

λ
µν ,

hence (dropping the total derivative)

δS =

∫

ddx
√

|g| 1
2κ



Rµν −
1

2
Rgµν + Λgµν −

2κ
√

|g|
δ
(

√

|g|LM

)

δgµν



 δgµν.

Varying the action with respect to the metric therefore yields the Einstein field

equations,

Rµν −
1

2
Rgµν + Λgµν = κTµν ,

where we define the energy-momentum tensor as

Tµν ≡
2
√

|g|
δSM
δgµν

, T µν ≡ − 2
√

|g|
δSM
δgµν

. (2.68)

This definition of Tµν is manifestly covariant and symmetric, hence we shall adopt

it as our definition for any classical field theory in curved spacetime with action

SM . Variation of SM with respect to the metric in a general curved spacetime will

therefore not necessarily vanish, but requiring diffeomorphism invariance of the

action ensures that the variation with respect to an infinitesimal coordinate trans-

formation δ0gµν must vanish. Given an infinitesimal coordinate transformation

of the form

x′µ = xµ − ǫµ(x),

and expanding the tensor transformation law

g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x),

we find that

δ0gµν = g′µν(x)− gµν(x) = ǫρ∂ρgµν + gµρ∂νǫ
ρ + gνρ∂µǫ

ρ.

After some algebraic manipulation, this is equivalent to

δ0gµν ≡ Lǫgµν = ∇µǫν +∇νǫµ,
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so the variation of SM with respect to the metric, assuming ǫµ and ∇νǫ
µ vanish

sufficiently rapidly, becomes

0 = δS =

∫

ddx
δS

δgµν
δ0gµν

= −
∫

ddx
√

|g|T µν∇µǫν

=

∫

ddx
√

|g| (∇µT
µν) ǫν ,

and so the equation of motion for variation with respect to the metric is simply

the covariant analogue of local conservation of energy,

∇µT
µν = 0. (2.69)

Furthermore, a classical theory in curved spacetime is conformally invariant if

the theory is invariant under local Weyl transformations25, given by

gµν → Ω2(x)gµν ≡ e2σ(x)gµν

with some associated transformation of the fields. An infinitesimal Weyl trans-

formation corresponds to

δgµν = 2σ(x)gµν ,

hence

0 = δS = −1
2

∫

ddx
√

|g|T µνδgµν = −
∫

ddx
√

|g|σ(x)T µµ.

A conformally invariant classical field theory in curved spacetime therefore has a

traceless energy-momentum tensor,

T µµ = 0. (2.70)

When considering a quantum theory in curved spacetime, we follow the same

philosophy as for a classical theory; that is, to take the Path integral formulation

of a QFT, extend the classical action as above, define a suitable Path integral

measure for curved spacetime, and then define operators and Green functions

25There is a slight subtlety in what is meant when a theory is said to be conformally invari-
ant. A conformal transformation is a coordinate transformation that preserves angles, hence a
theory invariant under general coordinate transformations (diffeomorphisms) is automatically
invariant under conformal transformations. However, conformal transformations do not pre-
serve distances, so the action of a theory will differ by a local scale transformation. Therefore,
the action of the theory will take the same form if and only if the theory is also invariant under
local Weyl transformations; such a theory is then called a conformal theory.
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using covariant functional derivatives,

δ

δf(x)
→ 1
√

|g|
δ

δf(x)

This procedure is facilitated by using an equivalent formulation of the Path inte-

gral known as the Schwinger action principle, which is more easily adaptable to

a general spacetime. Succinctly, for a theory in a region of curved spacetime Ω12

bounded by two constant-time hypersurfaces ∂Ω1, ∂Ω2, if the classical action

S12 =

∫

Ω12

ddx
√

|g|L

for some Hermitian Lagrangian density L has a variation given by

δS12 =

∫

Ω12

ddx
√

|g| (δL +∇µA
µ) ,

where

A =

∫

∂Ω

dσx nµA
µ

is the generator of unitary transformations on ∂Ω, then the Schwinger action

principle states that the variation of the transition amplitude between a state |1〉
on ∂Ω1 and a state |2〉 on ∂Ω2 is given by

δ 〈2|1〉 = i 〈2| δS12 |1〉 . (2.71)

By including source terms, one may recover the usual definitions of Green func-

tions, classical fields, the effective action, etc, valid now for a general curved

spacetime. Applying this to the generating functional of a QFT, where we take

|1〉 = |in〉 and |2〉 = |out〉 to be the asymptotic vacuum states of some particular

observer26, we find that a variation in the vacuum-to-vacuum amplitude is given

by

δW = δ 〈out|in〉 = i 〈out| δS |in〉 ,

and hence the variation in the generator of connected Green functions, X =

−i lnW , is27

δX = −iW−1δW =
〈out| δS |in〉

W
≡ 〈δS〉 . (2.72)

26Recall that in a general curved spacetime, there is no uniquely-defined, observer-
independent state that one may identify as the vacuum: the particle number operator is not
invariant under Bogolyubov transformations relating different observers.

27Note here that we follow the notation of [65], in which the curved spacetime vacuum
expectation value is defined with an explicit factor W in the denominator.
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By considering variations with respect to the metric, we find

δX =

∫

ddx
δX

δgµν
δgµν =

1

2

∫

ddx
√

|g| 2
√

|g|
δX

δgµν
δgµν ,

and since

〈δS〉 =W−1

∫

Dφ δSeiS =
1

2

∫

ddx
√

|g|
(
∫

Dφ TµνeiS
W

)

δgµν ,

we may define the expectation value of the energy-momentum tensor for a QFTCS

as

〈Tµν〉 =
2

√

|g|
δX

δgµν
, 〈T µν〉 = − 2

√

|g|
δX

δgµν
(2.73)

which again by diffeomorphism invariance implies the equation of motion

∇µ 〈T µν〉 = 0.

This definition is again manifestly covariant and symmetric, and one may easily

extend to an n-point correlator by repeated functional differentiation:

〈Tµν(x1) · · ·Tαβ(xn)〉 =
2

√

|gx1|
· · · 2
√

|gxn|
δnX

δgµν(x1) · · · gαβ(xn)
. (2.74)

By analogy with the classical case, one might expect that 〈Tµν〉 is traceless for

a conformally invariant theory, but this would only be true if the Path integral

measure were conformally invariant. The effects of a Weyl transformation on the

measure may be established by using the one-loop effective action of a QFTCS.

The one-loop effective action and the trace anomaly

As usual, we begin our discussion with the classical theory. The action of a free

scalar field may be extended to curved spacetime by the minimal substitution

procedure outlined above, giving

S =

∫

ddx
√

|g|
(

1

2
gµν∇µφ∇νφ−

1

2
m2φ2

)

. (2.75)

However, if we were to apply a Weyl transformation of the form

gµν → g′µν = Ω2(x)gµν , φ→ φ′ = Ωk(x)φ, (2.76)
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we would find that

S ′ =

∫

ddx
√

|g′|
(

1

2
g′µν∇′

µφ
′∇′

νφ
′ − 1

2
m2φ′2

)

=

∫

ddx
√

|g|Ωd−2+2k 1

2
gµν
(

∂µφ∂νφ+ k∂µ ln Ω ∂ν(φ
2) + k2φ2∂µ ln Ω ∂ν ln Ω

)

+

∫

ddx
√

|g|Ωd+2k 1

2
m2φ2.

The action cannot be invariant, since the kinetic and mass terms scale differently,

and the additional terms in the second line cannot be expressed as a total deriva-

tive. This may be remedied by the introduction of a new term in the action,

consistent with diffeomorphism invariance:

S =

∫

ddx
√

|g|
(

1

2
gµν∇µφ∇νφ−

1

2
m2φ2 − 1

2
ξRφ2

)

. (2.77)

The effect of a Weyl transformation on the Ricci scalar may be deduced from

seeing how the Christoffel symbols transform, then constructing the Riemann

tensor and contracting indices as usual. The final result is [65]

R′ =Ω−2
(

R + 2(d− 1)gµν
[

∂µ∂ν ln Ω− Γλµν∂λ ln Ω
]

+ (d− 1)(d− 2)gµν∂µ ln Ω∂ν lnΩ) ,

which may then be substituted into the transformed action, giving

S ′ =

∫

ddx
√

|g′|
(

1

2
g′µν∇′

µφ
′∇′

νφ
′ − 1

2
m2φ′2 − 1

2
ξR′φ′2

)

=

∫

ddx
√

|g|Ωd−2+2k

(

1

2
gµν∇µφ∇νφ−

1

2
ξRφ2

)

−
∫

ddx
√

|g|Ωd+2k 1

2
m2φ2

+

∫

ddx
√

|g|Ωd−2+2k

(

1

2
kgµν∂µ ln Ω ∂ν(φ

2)

− ξ(d− 1)φ2gµν
[

∂µ∂ν ln Ω− Γλµν∂λ lnΩ
]

+
1

2

[

k2 − ξ(d− 1)(d− 2)
]

φ2gµν∂µ ln Ω ∂ν ln Ω

)

.

We see immediately that we require m = 0 and k = 2−d
2
, if the theory is to be

conformally invariant. Finally, if we choose ξ = d−2
4(d−1)

, the (∂ ln Ω)2 term drops

out, leaving

S ′ =

∫

ddx
√

|g|
(

1

2
gµν∇µφ∇νφ−

1

2
ξRφ2

)
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+

∫

ddx
√

|g|
(

2− d
4

gµν∂µ ln Ω ∂ν(φ
2)

− d− 2

4
φ2gµν

[

∂µ∂ν ln Ω− Γλµν∂λ ln Ω
]

)

= S − d− 2

4

∫

ddx ∂µ

(

√

|g|gµνφ2∂ν ln Ω
)

.

Therefore, the action for a classical conformally-invariant scalar field in a general

curved spacetime is

S =

∫

ddx
√

|g| 1
2

(

gµν∇µφ∇νφ−
d− 2

4(d− 1)
Rφ2

)

, (2.78)

given a Weyl transformation of the form

gµν → g′µν = Ω2(x)gµν , φ→ φ′ = Ω
2−d
2 (x)φ. (2.79)

Consider now the action for a classical, conformally-invariant, multi-component

scalar field φi(x) in curved spacetime with source Ji(x),

SJ = S +

∫

ddx
√

|g|Ji(x)φi(x)

=

∫

ddx
√

|g|
(

1

2
∇µφ

i(x)∇µφj(x)δij −
1

2
ξRφiφjδij + Ji(x)φ

i(x)

)

= −1
2

∫

ddxddx′
√

|g|
√

|g′|φi(x)Dij(x, x
′)φj(x′) +

∫

ddx
√

|g|Ji(x)φi(x),

(2.80)

where

Dij(x, x
′) ≡ δ(x, x′)Dij = δ(x, x′) (�x + ξR(x)) δij,

and

ξ =
(d− 2)

4(d− 1)
, �x = ∇µ(x)∇µ(x), δ(x, x′) =

1
√

|g|
δ(x− x′).

The action is quadratic in φ, hence the Path integral can be written in an exact

form, as in the flat spacetime case. Introducing a length factor l so that l2Dij is

dimensionless, we find

W [J ] =

∫

Dφ eiSJ =
(

det l2Dij(x, x
′)
)− 1

2 e−
i
2

∫

ddxddx′
√

|g|
√

|g′|Ji(x)(D
−1)ij(x,x′)Jj(x

′),
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and so the connected generating functional is

X [J ] =
1

2

∫

ddxddx′
√

|g|
√

|g′|Ji(x)(D−1)ij(x, x′)Jj(x
′) +

i

2
ln det

(

l2Dij(x, x
′)
)

.

Since quantities defined by covariant functional derivatives of the Path integral

in curved spacetime take the same form as in flat spacetime, we may immediately

write the effective action as

Γ[φc] = X [J ]−
∫

ddx
√

|g|Ji(x)φic(x).

The classical field φic(x) is

φic(x) =
1
√

|g|
δX

δJi(x)
= −

∫

ddx′
√

|g′|
(

D−1
)ij

(x, x′)Jj(x
′) = −

(

D−1
)ij
Jj(x),

so pre-multiplying by Dij gives the source

Ji(x) = −Dijφ
j
c(x),

which may be substituted into the effective action to obtain

Γ[φic(x)] = S +
i

2
ln det

(

l2Dij(x, x
′)
)

.

The first term is the usual classical action for the conformally-invariant scalar

field in curved spacetime, whereas the second term is a quantum correction (as

could be seen immediately by restoring factors of ~). The second term is known

as the one-loop effective action,

Γ(1) ≡ i

2
ln det

(

l2Dij(x, x
′)
)

, (2.81)

and should contain all leading-order quantum effects for the conformally-invariant

scalar field in curved spacetime. In particular, we may isolate the contribution

to 〈T µµ〉 from the one-loop effective action simply by choosing X = Γ(1). Under

an infinitesimal Weyl transformation, we therefore have

δΓ(1) =
i

2
δ
[

ln det
(

l2Dij(x, x
′)
)]

= −
∫

ddx
√

|g|σ(x) 〈T µµ〉 . (2.82)

In solving the Path integral, we have implicitly assumed that the measure

Dφ is such that, as in flat spacetime, the integral reduces to a product of Gaus-

sian integrals when Dij is a diagonalizable operator. This can be justified by
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considering a set of eigenfunctions fN(x) of the operator D, satisfying

DfN(x) = (�x + ξR(x)) fN (x) = λNfN (x).

If the eigenfunctions are orthonormal and complete, satisfying the relations

∫

ddx
√

|g|f ∗
N(x)fN ′(x) = l2δNN ′ ,

∑

N

f ∗
N (x)fN(x

′) = l2δ(x, x′), (2.83)

then the set of eigenfunctions forms a basis, and we may express the scalar field

as

φ(x) =
∑

N

φNfN(x)

for some dimensionless coefficients φN . The action of the classical theory then

becomes

S = −1
2

∫

ddxddx′
√

|g|
√

|g′|φ(x)δ(x, x′) (�x + ξR(x))φ(x′)

= −1
2

∫

ddxddx′
√

|g|
√

|g′|
(

∑

N

φ∗
Nf

∗
N (x)

)

(�x + ξR(x))

(

∑

M

φMfM (x)

)

= −1
2

∑

N

∑

M

λM (φ∗
NφM)

∫

ddx
√

|g| f ∗
N (x)fM(x)

= −1
2

∑

N

l2λNφ
2
N .

If we define the measure as

Dφ ≡
∏

N

dφN√
−2πi , (2.84)

then the Path integral becomes

W =

∫

Dφ eiS =

∫

∏

N

dφN√
−2πi e

− i
2

∑

N

l2λNφ
2
N

=
∏

N

∫

dφN√
−2πi e

− i
2
l2λNφ

2
N =

∏

N

(

l2λN
)− 1

2

=
(

det l2D
)− 1

2

as expected; the field theory is then recovered in the formal limit N → ∞.

Considering now the effects of a local Weyl transformation, the massless scalar

action is invariant if the scalar field transforms as

φ(x)→ e
d−2
2
σ(x)φ(x)
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hence the conformally-transformed field may be expanded in the form

φ̃(x) =
∑

N

φN f̃N (x), f̃N(x) = e
d−2
2
σ(x)fN(x). (2.85)

The functions f̃ do not satisfy the orthonormality and completeness relations,

and hence do not form a basis. However, since

∑

N

f̃ ∗
N(x)f̃N (x

′) = e
d−2
2
σ(x)e

d−2
2
σ(x′)

∑

N

f ∗
N(x)fN (x

′)

= l2eσ(x)eσ(x
′)δ̃(x, x′)

and

∫

ddx
√

|g̃| f̃ ∗
N(x)f̃N ′(x) =

∫

ddx
√

|g| edσ(x)e d−2
2
σ(x)f ∗

N (x)e
d−2
2
σ(x)fN ′(x)

=

∫

ddx
√

|g| e2σ(x)f ∗
N (x)fN ′(x),

it is easy to see that we may instead define a new set of basis functions for the

conformally-transformed spacetime, gN(x), such that

f̃N(x) = eσ(x)gN(x). (2.86)

Consequently, the conformally-transformed field may be expressed as

φ̃(x) =
∑

N

φN f̃N(x) =
∑

N

φ̃NgN(x),

and so the expansion coefficients φ, φ̃ are related by

∑

N

φNgN(x) =
∑

N

e−σ(x)φ̃NgN(x).

Using the orthonormality relation, we may apply the integral operator
∫

ddx
√

|g̃| g∗N(x)
to relate φN and φ̃N :

∫

ddx
√

|g̃| g∗N(x)
(

∑

N ′

φN ′gN ′(x)

)

=
∑

N ′

φN ′

∫

ddx
√

|g̃| g∗N(x)gN ′(x)

= l2
∑

N ′

φN ′δNN ′

= l2φN ;
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∫

ddx
√

|g̃| g∗N(x)
(

∑

N ′

e−σ(x)φ̃N ′gN ′(x)

)

=
∑

N ′

∫

ddx
√

|g̃| e−σ(x)g∗N(x)gN ′(x);

therefore

φN =
∑

N ′

CNN ′φ̃N ′ , CNN ′ ≡ l−2

∫

ddx
√

|g̃| e−σ(x)g∗N(x)gN ′(x). (2.87)

Under a local Weyl transformation, the measure for the Path integral therefore

transforms as
∏

N

dφN = (detCNN ′)
∏

N ′

dφ̃N ′,

where conformal invariance requires detCNN ′ = 1. Converting this determinant

to an exponential in the generating functional, we find

W̃ =

∫

Dφ̃ ei(S−i ln detCNN′ ),

and so the associated variation in the one loop effective action is

δΓ(1) = −i ln detCNN ′ .

Reverting back to the original basis fN and expanding the infinitesimal Weyl

variation to first order, we find

CNN ′ = l−2

∫

ddx
√

|g| (1− σ(x)) f ∗
N(x)fN ′(x)

= δNN ′ − l−2

∫

ddx
√

|g|σ(x)f ∗
N (x)fN ′(x)

=⇒ δΓ(1) = −i ln detCNN ′ =

∫

ddx
√

|g|σ(x)
(

il−2
∑

N

f ∗
N(x)fN (x)

)

,

hence the trace of the energy momentum tensor for a conformally-invariant scalar

field in curved spacetime is

〈T µµ〉 = −il−2
∑

N

f ∗
N(x)fN (x). (2.88)

The sum on the right-hand-side is a divergent quantity, and therefore requires

regularization. The most convenient method for our purposes is Heat Kernel

regularization, of which a comprehensive treatment is given by DeWitt in [66]. If
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we define the Heat kernel K(τ ; x, x′) as

K(τ ; x, x′) ≡ l−2
∑

N

e−iτλNf ∗
N(x)fN (x

′),

then the sum corresponds to K(0; x, x). The Heat kernel satisfies the partial

differential equation

i
∂

∂τ
Ki

j(τ ; x, x
′) = Di

kK
k
j(τ ; x, x

′)

lim
τ→0

Ki
j(τ ; x, x

′) = δijδ(x, x
′),

and in a general curved spacetime has the solution

K(τ ; x, x′) =
i

(4πiτ)
d
2

e
s(x,x′)

2iτ ∆
1
2 (x, x′)

∞
∑

k=0

(iτ)k Ek(x, x
′),

where

s(x, x′) =
1

2
gµν(x− x′)µ(x− x′)ν

is the geodetic interval, and ∆
1
2 is the operator square-root of the Van Vleck-

Morette determinant,

∆(x, x′) = (−1)d det (∇µ∇ν′s(x, x
′))

√

|gx|
√

|gx′|
.

For small τ , and in the coincidence limit x′ → x, the Heat kernel has the asymp-

totic expansion

K(τ ; x, x) ∼ i

(4πiτ)
d
2

∞
∑

k=0

(iτ)k Ek(x), Ek(x) ≡ lim
x′→x

Ek(x, x
′),

hence the regularized trace of the energy-momentum tensor is

〈T µµ〉 = lim
τ→0
−i trK(τ ; x, x) = O

(

τ−
d
2

)

+
1

(4π)
d
2

trE d
2
(x), (2.89)

where O
(

τ−
d
2

)

are singular contributions that should be removed after renormal-

ization. The functions Ek(x) are generated as coincidence limits of a recurrence

relation for Ek(x, x
′), derived by substituting the Heat kernel into the heat equa-

tion. Given a differential operator of the form

Dij = δij�x +Qij(x), i, j = 1, . . . , k
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where Q(x) contains no spacetime derivatives, the recurrence relation is

−∆ 1
2 [(k + 1)Ek+1 +∇µs] = �

(

∆
1
2Ek

)

+∆
1
2QEk,

hence the first three functions E0(x), E1(x) and E2(x) are given by

E0(x) = lim
x′→x

E0(x, x
′) = 1,

E1(x) = lim
x′→x
−
(

�∆
1
2 +Q

)

,

E2(x) = lim
x′→x

1

6

(

�
2∆

1
2 + 2(�∆

1
2 )2 + 6(�∆

1
2 )Q +�Q+ 3Q2

)

.

Utilising relations for covariant derivatives of s and ∆
1
2 ,

s =
1

2
∇µs∇µs, d∆

1
2 = 2∇µ∆

1
2∇µs+∆

1
2�s,

and after extensive use of the Riemann tensor defined as a commutation relations

for covariant derivatives,

[∇ν ,∇ρ]Aµ = Rλ
µνρAλ,

we find

lim
x′→x

�∆
1
2 = −1

6
R,

lim
x′→x

�
2∆

1
2 =

1

30
RµνρσR

µνρσ − 1

30
RµνR

µν +
1

36
R2 − 1

5
�R,

hence

E0(x) = 1,

E1(x) =
1

6
R1k −Q,

E2(x) =

(

1

180
RµνρσR

µνρσ − 1

180
RµνR

µν +
1

72
R2 − 1

30
�R

)

1k

+
1

6
�Q− 1

6
RQ+

1

2
Q2.

We can therefore read off the trace anomaly for a two-dimensional scalar CFT,

with Q = ξR1k|d=2 = 0, as

〈T µµ〉
∣

∣

d=2
=

1

4π
trE1(x) =

k

24π
R, (2.90)
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and for a four-dimensional scalar CFT, with Q = ξR1k|d=4 =
1
6
R1k, as

〈T µµ〉
∣

∣

d=4
=

1

16π2
trE2(x)

=
k

16π2

(

1

180
RµνρσR

µνρσ − 1

180
RµνR

µν − 1

180
�R

)

(2.91)

Since 〈T µµ〉 for a classically conformally invariant theory is a function of curvature

scalars that are non-zero in a general curved spacetime, we see that the associated

QFTCS cannot be conformally invariant: this is the trace anomaly, and is in

fact only non-zero in even-dimensional spacetime. Fermion contributions to the

trace anomaly may be calculated in a similar manner, by extending spinors and

γ-matrices to curved spacetime and constructing the effective action for a free

Dirac spinor; gauge contributions may be calculated by extending a Yang-Mills

theory to curved spacetime, then constructing an effective action that is invariant

under gauge transformations. In both cases, the intent is to derive the analogous

operator Dij that appears in (2.81), then calculate the associated Heat kernel

coefficient E2(x); full details are given in [65].

2.2.2 Weyl consistency conditions

We have seen that extending a CFT to curved spacetime introduces a gravita-

tional anomaly in the trace of the energy-momentum tensor, as a consequence of

the measure transforming non-trivially under a local Weyl transformation. Gen-

erally, the gravitational part of the trace anomaly of a QFT in d dimensions is a

linear combination of curvature invariants with dimension d, for example in two

dimensions the anomaly is simply proportional to R, while in four dimensions

the anomaly may contain terms proportional to R2, RµνR
µν , RµνρσR

µνρσ and

�R. Such terms can be rewritten using a basis of curvature scalars that includes

the Euler density and powers of the Weyl tensor; we shall see that the coefficients

of terms in such a basis have more convenient behaviour under RG flow.

Recall that the gravitational contribution to the trace anomaly is derived by

considering the effects of a Weyl rescaling on the vacuum generating functional

of a classically conformal theory, and consequently takes the form of a functional

derivative. It is in fact possible to express the operational contribution βI 〈OI〉
in the same way, by allowing the couplings to be spacetime-dependent functions,

gI ≡ gI(x): the couplings act as source terms
∫

ddx
√

|g| gI(x)OI for the com-

posite operators OI , and so the composite operator is given by the functional
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derivative

OI ≡
1
√

|g|
δS

δgI
. (2.92)

Considering now a variation of the vacuum generating functional X with respect

to the “local” couplings, we find

δX =

∫

ddx
δX

δgI
δgI =

∫

ddx
√

|g|
(

1
√

|g|
δX

δgI

)

δgI ,

so by making use of (2.72), the expectation value of the composite operator may

be defined as

〈OI〉 =
1
√

|g|
δX

δgI
, (2.93)

and pre-multiplying the functional derivative by βI yields the operational contri-

bution. We would (näıvely) expect that acting on the vacuum generating func-

tional with these functional derivatives would give precisely the trace anomaly in

the form

〈T µµ〉 = βI 〈OI〉+A, (2.94)

but this neglects the effect local couplings may have on the finiteness of n-point

correlation functions, and hence the renormalization of the theory. In order to

maintain renormalizability, the action of the original theory must be augmented

with additional terms corresponding to derivatives of the couplings; this is in

keeping with the general philosophy of renormalization, where one includes all

operators of the correct dimension.

There is a deep relation between a consistent theory in curved spacetime with

local couplings (from which one can extract the trace anomaly) and the Renor-

malization Group. The classical action of such a theory may be parametrised

as

S = Scon +

∫

ddx
√

|g|
(

gIOI + B
α
Rα + ∂µσZ

µ
)

, (2.95)

where Scon is classically conformally-invariant, and BαRα, ∂µσZ µ are understood

as containing all curvature scalars and coupling-derivatives of the correct dimen-

sion, multiplied by some appropriate tensor structure. Defining new functional

derivative operators

∆g
σ ≡

∫

ddx
√

|g| (σ(x)gµν) 2
√

|g|
δ

δgµν
,

∆β
σ ≡

∫

ddx
√

|g|
(

σ(x)βI
) 1
√

|g|
δ

δgI
, (2.96)
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there should exist a quantity A∂ satisfying

[

∆g
σ −∆β

σ

]

X =

∫

ddx
√

|g|A∂, (2.97)

where X is understood to be derived from a suitably renormalized (2.95). A∂
contains the gravitational contribution A, as well as extra contributions propor-

tional to derivatives of the local couplings gI(x) and Weyl rescaling function σ(x);

in the limit where the couplings are constant, (2.97) should reduce to an inte-

gral version of (2.94). If, however, one instead considers a global Weyl rescaling

σ(x) ≡ σ, the ∂µσ term vanishes and we may rewrite (2.97) as

∫

ddx
√

|g|
(

gµν
2

√

|g|
δ

δgµν
− βI 1

√

|g|
δ

δgI
−B

α 1
√

|g|
δ

δBα

)

X = 0,

Assuming all operators in (2.95) are marginal, so that the bare couplings may be

expressed in the form

gIB = µ−ǫZI
Jg

J , B
α
B = µ−ǫZα

βB
β , (2.98)

we find that the associated vacuum generating functional obeys

[

µ
∂

∂µ
+

∫

ddx
√

|g| gµν 2
√

|g|
δ

δgµν

]

X = 0; (2.99)

that is, a global Weyl rescaling is effectively an inverse RG scaling28. We therefore

find that, for a global Weyl rescaling, (2.97) is in fact a generalization of the

standard RG equation for the vacuum generating functional, extended to local

couplings:

µ
d

dµ
X =

[

µ
∂

∂µ
+

∫

ddx

(

βI
δ

δgI
+ B

α δ

δBα

)]

X = 0. (2.100)

Consequently, (2.97) is referred to as the Local Renormalization Group (LRG)

equation: it contains all information on the RG flow of the theory in a curved

spacetime with local couplings, and this information may be obtained by appro-

priate functional differentiation.

The LRG, and its definition in terms of Weyl transformations, underpins

our attempts to impose constraints on RG flow. A crucial property of Weyl

28Heuristically, this makes sense. Recall that RG flow is usually depicted as a “zooming out”
process, in which one describes the higher-energy theory in terms of lower-energy degrees of
freedom. Conversely, a Weyl rescaling is a “zooming in” process, in which one describes the
larger-length theory in terms of shorter lengths.
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transformations is that they form an Abelian group, and so the commutator of two

Weyl rescaling operations must vanish. Since the LRG describes the behaviour

of a theory under a Weyl transformation, imposing that the commutator of two

such transformations must be zero leads to highly non-trivial relations between

the various terms present in A∂. These relations are known as Weyl consistency

conditions, and the key equation (2.1) stated at the very beginning of this chapter

is precisely one such condition. In the case of two spacetime dimensions, the

Weyl consistency conditions may be combined with relations between the tensor

structures in A∂ and the two-point functions; the end result is a re-derivation of

Zamolodchikov’s c-theorem, outlined at the beginning of this section.

To see how this works, consider the action (2.95) with d = 2. We must include

all curvature scalars and coupling-derivatives of the correct dimension, hence in

this case we have (up to total derivatives)

B
α
Rα = cR + 1

2
χIJ∂µg

I∂µgJ , (2.101)

where c ≡ c(g) may be a function of the couplings. (2.97) then takes the form

[

∆g
σ −∆β

σ

]

X =

∫

ddx
√

|g|
[

σ(x)
(

cR + 1
2
χIJ∂µg

I∂µgJ
)

+ ∂µσ
(

ωI∂
µgI
)]

,

(2.102)

having defined a new tensor structure ωI according to

Z
µ ≡ ωI∂

µgI .

If we apply another Weyl rescaling, using the functional derivatives (2.96) with

a new infinitesimal transformation σ′(x), we find

∆g
σ′

[

∆g
σ −∆β

σ

]

X =

∫

ddx
√

|g|
{

σ′σ(2− d)
[

cR + 1
2
χIJ∂µg

I∂µgJ
]

+ σ′∇µσ
[

(2− d)ωI∂µgI − 2(d− 1)∂µc
]

−∇µσ
′∇µσ [2(d− 1)c]

}

;

∆β
σ′

[

∆g
σ −∆β

σ

]

X =

∫

ddx
√

|g|
{

σ′σ
[

βI∂KχIJ∂µg
J∂µgK + βIχIJ∇2gJ

]

+ σ′∇µσ
[

βI (∂IωJ − χIJ − ∂JωI) ∂µgJ +∇µ(βIωI)
]

−∇µσ
′∇µσ

[

βIωI
]

}

;

Setting d = 2, and using that the variation of the Ricci scalar under an infinites-

imal Weyl transformation is δR = −2σR − 2∇2σ, the commutator of two Weyl
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rescaling operations with parameters σ(x), σ′(x) is given by

[

∆g
σ −∆β

σ,∆
g
σ′ −∆β

σ′

]

X =

∫

ddx
√

|g| (σ′∇µσ − σ∇µσ
′)X

µ, (2.103)

where

Xµ ≡ ∂µc− χIJβJ∂µgI + βJ∂JωI∂
µgI − βJ∂IωJ∂µgI +∇µ(βIωI). (2.104)

Imposing the vanishing of (2.103) in a curved spacetime for arbitrary Weyl rescal-

ing σ then imposes that Xµ = 0. Factoring out the ∂µg
I term, Xµ will vanish

for arbitrary spacetime-dependent coupling gI(x) if

∂Ic = χIJβ
J −

(

βJ∂JωI + ∂Iβ
JωJ

)

. (2.105)

Finally, defining a new quantity c̃ ≡ c+ωIβ
I , this condition may be rewritten as

∂I c̃ = χIJβ
J + (∂IωJ − ∂JωI)βJ , (2.106)

which then satisfies

βI∂I c̃ = βIχIJβ
J . (2.107)

We see immediately that (2.106) is in the form (2.1), with A = c̃, TIJ =

χIJ + 2∂[I ωJ ], and that c̃ is stationary when βI = 0; if χIJ is positive-definite,

c̃ satisfies the required properties of the c-function for two-dimensional theories.

This may indeed be shown by calculating anomalous Ward identity for the two-

point function of the composite operator OI , making use of the commutation

relations

[

δ

δgµν
,∆g

σ −∆β
σ

]

= 0,

[

δ

δgI
,∆g

σ −∆β
σ

]

= ∂Iβ
J δ

δgJ
. (2.108)

Using the LRG (2.97) and the commutators (2.108), and returning to flat space-

time with non-position-dependant couplings, we find that [7]

[

∆g
σ −∆β

σ

]

〈OI(x)OJ (y)〉+ ∂Iβ
K 〈OK(x)OJ (y)〉

+ ∂Jβ
K 〈OI(x)OK(y)〉+ ∂I∂Jβ

K 〈OK(x)〉 δ(x, y) = χIJ∇2δ(x, y) (2.109)

and so χIJ is proportional to the manifestly-positive two-point function 〈OI(x)OJ(y)〉;
c̃ is therefore a suitable function of the couplings in the theory, completing the

derivation of the c-theorem. There is in fact an arbitrariness present in this
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derivation, in that if one adds a local functional to the action,

δS =

∫

ddx
√

|g|
(

1
2
bR − 1

2
aIJ∂µg

I∂µgJ
)

, (2.110)

then the derivation goes through as before, with the corresponding shifts

c̃→ c̃+ βIaIJβ
J , ωI → ωI − ∂Ib+ aIJβ

J , (2.111)

under which (2.107) is invariant. The effects of these shifts vanish when βI = 0,

and hence serve to parametrize the scheme-dependence of c̃ between RG fixed

points.

The importance of the approach using Weyl consistency conditions is that

the method may be applied to higher-dimensional theories, and hence facilitates

the search for a proof of the a-theorem. When d = 4, (2.95) contains more

curvature terms, coupling-derivatives, and mixed terms such as RXIJ∂µg
I∂µgJ ,

but the derivation of the Weyl consistency conditions is otherwise the same as

in d = 2. In (2.97), A∂ is now understood as containing derivatives up to ∇2σ,

and so the right-hand-side of (2.103) has several contributions proportional to

σ′∂µσ − σ∂µσ
′, ∂µσ

′∂νσ − ∂νσ
′∂µσ, and ∂µσ

′∇2σ − ∇2σ′∂µσ; requiring each of

these terms to vanish separately imposes a large number of relations, from which

one may derive a four-dimensional analogue of (2.106).

Again, we begin with the action (2.95) with d = 4. A suitable basis of

dimension-four operators is

B
α
Rα = c CµνρσC

µνρσ − aE4 + bR2 + 1
2
AIJ∇2gI∇2gJ

+ 1
2
BIJK∂µg

I∂µg
J∇2gK + 1

2
CIJKL∂µg

I∂µgJ∂νg
K∂νgL

+ 1
3
EI∂µR∂

µgI + 1
6
FIJR∂µg

I∂µgJ + 1
2
GIJG

µν∂µg
I∂νg

J , (2.112)

and so (2.97) takes the form

[

∆g
σ −∆β

σ

]

X =

∫

ddx
√

|g|
{

σ(x)Bα
Rα

+ ∂µσ
(

GµνWI∂νg
I +RHI∂

µgI + Z
µ
)

+∇2σ (RD + Y )
}

, (2.113)

where we define

Z
µ = SIJ∂µg

I∇2gJ + TIJK∂
µgI∂νg

J∂νgK,

Y = UI∇2gI + VIJ∂µg
I∂µgJ . (2.114)
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Making use of the variations under Weyl rescaling

δCµνρσC
µνρσ = −4σCµνρσCµνρσ, δGµν = −4σGµν − 2

(

∇µ∇ν − gµν∇2
)

σ,

δ∇2 = −2σ∇2 + 2∂µσ∇µ, δE4 = −4σE4 + 8Gµν∇µ∇νσ,

δR = −2σR − 6∇2σ,

the derivation of Weyl consistency conditions then proceeds as before; full details

of the calculation can be found in [7–9]. Most importantly, we find the following

two conditions:

8∂Ia = GIJβ
J −

(

βJ∂JωI + ∂Iβ
JωJ

)

,

GIJ + 2AIJ + 2∂Iβ
KAKJ + βKBIJK = ∂Iβ

KSKJ + ∂Jβ
KSIK + βK∂KSIJ .

(2.115)

Hence, we see that the quantity ã = 8a+ωIβ
I satisfies four-dimensional versions

of (2.106),

∂I ã = GIJβ
J + (∂IωJ − ∂JωI) βJ , (2.116)

and (2.107),

βI∂I ã = βIGIJβ
J , (2.117)

which are again in the desired form (2.1). Unfortunately, we cannot immediately

prove the a-theorem in the same manner as the c-theorem: the second consistency

condition relates GIJ to BIJK , and since the latter is related to the three-point

function 〈OIOJOK〉, GIJ cannot be manifestly positive-definite.

Before we begin our investigations into the constraints placed on RG flow by

(2.1), there is one final aspect of the LRG that must be taken into account. For

a general theory with field multiplets φi, i = 1, . . . , n, there is a global O(n)
symmetry29 corresponding to the permutation of these fields. In order for the

operator term gIOI to be invariant under such permutations, the coupling gI

must acquire some compensating transformation; that is, for some field variation

δφ = −ǫφ, there is an associated coupling variation δgI = −(ǫg)I , where ǫ is an
element of the Lie algebra o(n). There is an anomalous current 〈Jµ〉 induced by

such a symmetry, which may be derived from the classical action by promoting

the symmetry to a local symmetry ǫ → ǫ(x), and introducing a local auxiliary

term Aµ(x) that acts as a source. Aµ may then be treated as another local

29While this argument holds when the symmetry group is a general Lie group, the only case
we consider in this thesis is that of permuting field multiplets in six-dimensional φ3 theory: see
chapter 4.
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coupling, so that the current is defined via the usual variation

〈Jµ(x)〉 = −
1

√

|g|
δX

δAµ(x)
.

There is then an associated contribution to (2.97), generated by a new operator

∆A
σ =

∫

ddx
√

|g|
(

σ(x)βAµ
δ

δAµ
− ∂µσS

δ

δAµ

)

, (2.118)

where βAµ ≡ ρIDµg
I , and Dµg

I ≡ ∂µg
I + Aµg

I is the gauge-covariant derivative.

The trace anomaly then acquires new terms of the form

〈T µµ〉 → 〈T µµ〉+ 1
4
F µν ·κ ·Fµν + 1

2
F µν · ζIJ∂µgI∂νgJ +∇µ

(

F µν · ηI∂νgI
)

, (2.119)

where Fµν is the field-strength tensor associated with Aµ(x). The presence of this

extra operation modifies the Weyl consistency conditions, which should now take

the form
[

∆g
σ −∆β

σ −∆A
σ ,∆

g
σ′ −∆β

σ′ −∆A
σ′

]

X = 0. (2.120)

By defining shifted functions

BI = βI − (Sg)I , P I = ρI + ∂IS, BA
µ = βAµ +DµS, (2.121)

the S contributions may in fact be absorbed into other terms, so that the LRG

takes its usual form, with the β-functions βI replaced by their gauge-covariant

analogues BI . The Weyl consistency conditions are then modified, such that

8∂Ia = GIJB
J −

(

βJ∂JωI + ∂Iβ
JωJ

)

− (PIg)
J ωJ , BIPI = 0, (2.122)

so by again introducing ã = 8a+BIωI , we have an equation in the form (2.1),

BI∂I ã = BIGIJB
J . (2.123)

The presence of global symmetries is intimately connected to the existence of

limit cycles in RG flows, and the question of whether scale-invariance implies

conformal-invariance. Since the β-functions in the LRG are replaced by corre-

sponding B-functions, the trace anomaly becomes

〈T µµ〉 = BI 〈OI〉+BA
µ 〈Jµ〉+ (curvature) + (∂g) , (2.124)

and so in the limit of flat spacetime with non-position-dependant couplings, the

vanishing of 〈T µµ〉 is governed by the B-functions, rather than the β-functions
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as expected. In [15], it was shown that for a QFT with a limit cycle (so that

βI 6= 0), the theory necessarily has BI = 0 along the limit cycle, and satisfies

BI = βI at RG fixed points; combined with (2.123), this demonstrates that the

question of scale- implying conformal-invariance can be generalised to include

theories with limit cycles, by identifying couplings related by a global symmetry

transformation, such that the RG flows are instead generated by BI .



Chapter 3

Four Dimensions

The four-dimensional a-theorem, as originally conjectured by Cardy [1], is the

most phenomenologically relevant case that we consider in this thesis, since any

derived constraints on RG flow can be applied directly to the Standard Model

of particle physics. The Standard Model is a four-dimensional, perturbatively

renormalizable quantum field theory, based on the spontaneously broken symme-

try group SU(3)c × SU(2)L × U(1)Y , and contains a scalar, fermions, and gauge

bosons; the Standard Model Lagrangian therefore contains each possible marginal

coupling in four dimensions, associated with gauge interactions, Yukawa interac-

tions and scalar self-interactions. Recent work on the a-theorem by Komargodski

and Schwimmer has led to a proof [16] of the weak formulation, subject to cer-

tain assumptions on the four-point function 〈T µµT ννT ρρT σσ〉 highlighted in [67].

In [17], it was shown that the weak formulation is in fact sufficient to rule out

the existence of theories that are scale-invariant but not conformally-invariant,

extending the result of [4] to four dimensions.

We are interested in the strong a-theorem, hence the starting point of our

investigations is the existence [8] of a function A(g) of the couplings, which at

RG fixed points is proportional to the Euler density coefficient a in the trace

anomaly, and which obeys the gradient-flow equation (2.1). The definitions,

calculation methods and results in this chapter are a slight generalization of those

found in our published version [19], with more emphasis placed on completely

arbitrary renormalization schemes (most noticeably in section 3.2). Our method

is essentially that of Wallace and Zia [18], suitably generalized and adapted to the

case of multiple fields and couplings. We shall reproduce the perturbative proof

of the strong a-theorem, by showing the metric GIJ = T(IJ) is positive-definite at

leading order, as a byproduct of our consistency condition calculations.

79
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3.1 General gauge theories

We begin by considering a general renormalizable gauge theory, with a simple

gauge group G ⊂ [U(nψ) ∩ O(nφ)], and containing nφ real scalars and nψ two-

component Weyl fermions ψi. The basic set of couplings for the theory is then

{g, Ya, Ȳa, λabcd}, where Ȳa = Y ∗
a and Y T

a = Ya; the couplings correspond to

the gauge interactions, the Yukawa interaction 1
2
ψTi C(Ya)ijψjφa + h.c., and the

quartic scalar interaction 1
4!
λabcdφaφbφcφd. The hermitian gauge generators for

the scalar and fermion fields are denoted tφA, t
ψ
A respectively, where A = 1, . . . , nv

and nv = dim G is the dimension of the representation; the generators satisfy

[tA, tB] = ifABCtC , and gauge invariance requires the identities

Yat
ψ
A + tψTA Ya = (tφA)abYb, (tφA)aeλebcdφaφbφcφd = 0.

The form of our results may be simplified by assembling the Yukawa couplings

and gauge generators into matrices:

ya =

(

Ya 0

0 Ȳa

)

, ŷa =

(

Ȳa 0

0 Ya

)

= σ1yaσ1 ,

TA =

(

tψA 0

0 −tψ∗A

)

, T̂A = σ1TAσ1 = −TAT .

Here, σ1 is the first Pauli matrix. To realise this form of the Yukawa coupling and

gauge generators, the Weyl fermions are consequently assembled into Majorana

spinors Ψ =

(

ψi

−C−1ψ̄iT

)

. Finally, to remove factors of 1
16π2 that appear in the

β-functions at each loop order, we perform a trivial rescaling of the couplings

according to

λabcd → 16π2λabcd , Ya → 4πYa, g → 4πg .

3.1.1 Leading and Next-to-leading order

To evaluate the A-function perturbatively at lowest order, we require only the

one-loop gauge β-function, since (as we shall see) all terms generated by the one-

loop Yukawa and scalar β-functions are of higher loop order.1 The one-loop gauge

β-function is simply

β(1)
g = e

(1)
1 g3, (3.1)

1The precise ordering of contributions is gauge-Yukawa-scalar, for example the three-loop
gauge, two-loop Yukawa and one-loop scalar β-functions all give contributions to the A-function
at the same loop order. This is referred to as the ”3-2-1” phenomenon, as detailed in [20].
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where e
(1)
1 = −1

3
(11CG − 2Rψ − 1

2
Rφ), and the various invariants are defined by

tr[tψAt
ψ
B] = RψδAB, tr[tφAt

φ
B] = RφδAB, fACDfBCD = CGδAB. (3.2)

The only terms of the correct loop order that may contribute to A are of the form

g2tr[tata], hence we may define

A(2) = a
(2)
1 nvg

2. (3.3)

Expanding (2.1), we wish to solve

dA(2) = dgT (1)
gg β

(1)
g . (3.4)

Substituting in (3.1) and (3.3), we find

2a
(2)
1 nvg dg = e

(1)
1 T (1)

gg g
3 dg,

hence to ensure the coefficients match, T
(1)
gg must take the form

T (1)
gg = σ

(1)
1

nv
g2
. (3.5)

It is easy to see that for the metric GIJ = T(IJ) to be positive-definite, σ
(1)
1 > 0 is

a necessary condition; we shall soon find that it is in fact a sufficient condition.

Having found T
(1)
gg , the A-function coefficient is therefore given by

a
(2)
1 = 1

2
e
(1)
1 σ

(1)
1 , (3.6)

and hence the leading-order A-function for a general four-dimensional gauge the-

ory is

A(2) = 1
2
e
(1)
1 σ

(1)
1 nvg

2. (3.7)

While one may substitute in the exact values of the β-function coefficients as

calculated in a particular renormalization scheme, one can just as easily leave

the coefficients arbitrary. By doing so, it becomes possible to investigate the

scheme-dependence of the coefficients in the A-function, as well as any consistency

conditions on β-function coefficients that arise as a consequence of (2.1).

We now turn to the next-to-leading order A-function. Expanding (2.1) to this

order, and recalling that y and ŷ are not independent, we now wish to solve

dyA
(3) ≡ d(ya)ij

∂

∂(ya)ij
A(3) = dyT (2)

yy β
(1)
y ,
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dgA
(3) ≡ dg

∂

∂g
A(3) = dgT (1)

gg β
(2)
g + dgT (2)

gg β
(1)
g , (3.8)

where we define
∂

∂(ya)ij
(yb)kl ≡ 1

2
δab (δikδjl + δilδjk) , (3.9)

and the Yukawa metric term takes the form

T (2)
yy = µ δyy (3.10)

such that

dyT (2)
yy β

(1)
y = µ d(ya)ij(β

(1)
y a)ij . (3.11)

At this order, there exist potential mixed Yukawa-gauge terms, and so this is the

first order at which one may find non-trivial constraints on the β-functions; we

shall see that this is indeed the case.

In addition to the one-loop gauge β-function, we now require the one-loop Yukawa

β-function2,

β(1)
y a =

5
∑

i=1

c
(1)
i (C

(1)
i )a

= c
(1)
1 ybŷayb + c

(1)
2 (yaŷbyb + ybŷbya) + c

(1)
3 tr[yaŷb]yb

+ c
(1)
4 g2(yaC

ψ + Ĉψya) + c
(1)
5 g2Cφ

abyb, (3.12)

and the two-loop gauge β-function,

β(2)
g = e

(2)
1 g5 + e

(2)
2

g5

nv
tr[(Cψ)2] + e

(2)
3

g5

nv
tr[(Cφ)2]

+ e
(2)
4

g3

nv
tr[Cψŷaya] + e

(2)
5

g3

nv
tr[ŷaC

φ
abyb]. (3.13)

Given the terms that arise in each β-function, we may express A(3) in the form

A(3) =

8
∑

i=1

a
(3)
i A

(3)
i +

(

βIgIJβ
J
)(3)

=
8
∑

i=1

a
(3)
i A

(3)
i + α

nv
g2
β(1)
g β(1)

g , (3.14)

2Here and elsewhere, we adopt the convention of dropping explicit fermion indices, with
the understanding that products of Yukawa couplings read left-to-right, for example ybŷayb ≡
(yb)ik(ŷa)kl(yb)lj . Fully contracted fermion indices are implied by a trace, i.e. tr[yaŷa] ≡
(ya)ij(ŷa)ji.
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where

A
(3)
1 = tr[yaŷbyaŷb], A

(3)
2 = tr[yaŷaybŷb], A

(3)
3 = tr[yaŷb]tr[yaŷb],

A
(3)
4 = g2tr[yaŷaĈ

ψ], A
(3)
5 = g2tr[ŷaC

φ
abyb], A

(3)
6 = g4tr[(Cψ)2],

A
(3)
7 = g4tr[(Cφ)2], A

(3)
8 = nvg

4. (3.15)

The additional term with coefficient α represents the arbitrariness A → A +

βIgIJβ
J present in solutions to (2.1), where gIJ is itself an arbitrary tensor struc-

ture. Substituting (3.1), (3.5), (3.10), (3.12), (3.13) and (3.14) into (3.8) gives a

system of ten equations:

4a
(3)
1 = µc

(1)
1 , 4a

(3)
2 = 2µc

(1)
2 , 4a

(3)
3 = µc

(1)
3 ,

2a
(3)
4 g2 = 2µc

(1)
4 g2, 2a

(3)
5 g2 = µc

(1)
5 g2, 2a

(3)
4 g dg = σ

(1)
1 e

(2)
4 g dg,

2a
(3)
5 g dg = σ

(1)
1 e

(2)
5 g dg, 4a

(3)
6 g3 dg = σ

(1)
1 e

(2)
2 g3 dg, 4a

(3)
7 g3 dg = σ

(1)
1 e

(2)
3 g3 dg,

4(a
(3)
8 + α(e

(1)
1 )2)g3 dg = σ

(1)
1 e

(2)
1 nvg

3 dg + e
(1)
1 T

(2)
gg g3 dg.

(3.16)

From these equations, we see that T
(2)
gg takes the form

T (2)
gg = σ

(2)
1 nv, (3.17)

and so the coefficients of the next-to-leading order A-function are:

a
(3)
1 = 1

4
µc

(1)
1 , a

(3)
2 = 1

2
µc

(1)
2 ,

a
(3)
3 = 1

4
µc

(1)
3 , a

(3)
4 = µc

(1)
4 = 1

2
σ
(1)
1 e

(2)
4 ,

a
(3)
5 = 1

2
µc

(1)
5 = 1

2
σ
(1)
1 e

(2)
5 , a

(3)
6 = 1

4
σ
(1)
1 e

(2)
2 ,

a
(3)
7 = 1

4
σ
(1)
1 e

(2)
3 , a

(3)
8 = 1

4
(σ

(1)
1 e

(2)
1 + σ

(2)
1 e

(1)
1 )− α(e(1)1 )2. (3.18)

We now see how consistency conditions may arise: both a
(3)
4 and a

(3)
5 are given

by two equations, each equation expressed in terms of a particular β-function

coefficient. Consequently, in deducing the function A satisfying (2.1), we have

found that there exist two extra equalities:

2µc
(1)
4 = σ

(1)
1 e

(2)
4 , µc

(1)
5 = σ

(1)
1 e

(2)
5 . (3.19)

These equations hold regardless of the explicit values of the A-function or metric

coefficients. We may now go further and eliminate the metric coefficients, leaving
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behind a consistency condition on the β-function coefficients themselves,

e
(2)
4 c

(1)
5 = 2e

(2)
5 c

(1)
4 . (3.20)

Since β
(1)
y , β

(1)
g and β

(2)
g are all scheme-independent, this consistency condition

holds independent of renormalization scheme. While this scheme-independence is

trivial, we shall later demonstrate that more complicated consistency conditions

are also scheme-independent, by constructing the effects of a coupling redefinition

(corresponding to a change in renormalization scheme) and showing that the

consistency conditions are invariant under such changes. Finally, we may easily

see that this consistency condition is indeed satisfied by the β-function coefficients

[21],

c
(1)
1 = 2, c

(1)
2 = 1

2
, c

(1)
3 = 1

2
, c

(1)
4 = −3, c

(1)
5 = 0, (3.21)

e
(2)
1 = −1

3
CG(34CG−10Rψ−Rφ), e

(2)
2 = −1, e(2)3 = −4, e(2)4 = −1

2
, e

(2)
5 = 0. (3.22)

Substituting these values into (3.19) then fixes the ratio of the coefficients in T
(1)
gg

and T
(2)
yy ,

µ =
e
(2)
4

2c
(1)
4

σ
(1)
1 =

1

12
σ
(1)
1 (3.23)

and so the leading-order positivity of Gyy is determined by that of Ggg.

It is worth noting that had we neglected the tensor structures with coefficients

c
(1)
5 , e

(2)
5 , justified solely by the vanishing of the coefficients in MS, we would not

have deduced the existence of this consistency condition. Consequently, at higher

loop orders we shall retain all diagrams whose contributions do not manifestly

vanish, for example by being one-particle-reducible, as the vanishing of such di-

agrams may be a scheme-dependent result.

3.1.2 Next-to-next-to-leading order

So far, the leading order A-function required the one-loop gauge β-function, and

the next-to-leading order A-function required the two-loop gauge and one-loop

Yukawa β-functions. Following the ”3-2-1” phenomenon [20], at next-to-next-

to-leading order, we shall require the three-loop gauge, two-loop Yukawa and

one-loop scalar β-functions. This is also the first order at which there exist

potential off-diagonal terms in the expansion of (2.1), namely T
(3)
gy and T

(3)
yg .3 For

simplicity, we shall therefore neglect β
(3)
g initially, deducing first the Yukawa- and

scalar-dependant terms in A(4), before augmenting the system of equations with

3Below this order, the lack of such off-diagonal terms justifies the use of the term “metric”
to refer to TIJ directly, rather than the symmetric part GIJ = T(IJ).
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scalar/Yukawa contributions from dgA
(4). Expanding (2.1) to the required order,

we therefore wish to solve

dλA
(4) = dλT

(3)
λλ β

(1)
λ , (3.24)

dyA
(4) = dyT (2)

yy β
(2)
y + dyT (3)

yy β
(1)
y + dyT (3)

yg β
(1)
g , (3.25)

emphasising again the first occurrence of off-diagonal contributions.

The general two-loop Yukawa β-function was calculated in [22], and takes the

form

β(2)
y a =

30
∑

i=1

c
(2)
i (C

(2)
i )a, (3.26)

where the tensor structures C
(2)
i (with (C

(2)
i )a implied) are given by

C
(2)
1 = ybŷcyaŷbyc, C

(2)
2 = ybŷayctr[ŷbyc],

C
(2)
3 = ybŷcyaŷcyb, C

(2)
4 = λabcdybŷcyd,

C
(2)
5 = (Cφ

abycŷbyc)g
2, C

(2)
6 = (ybŷaycC

φ
bc)g

2,

C
(2)
7 = (Cφ

abtr[ybŷc]yc)g
2, C

(2)
8 = yaŷbycŷcyb + ybŷcycŷbya,

C
(2)
9 = yaŷbycŷbyc + ycŷbycŷbya, C

(2)
10 = yaŷbtr[ybŷc]yc + yctr[ŷcyb]ŷbya,

C
(2)
11 = ybŷaycŷcyb + ybŷcycŷayb, C

(2)
12 = (Ĉψyaŷbyb + ybŷbyaC

ψ)g2,

C
(2)
13 = (yaC

ψŷbyb + ybŷbĈ
ψya)g

2, C
(2)
14 = (yaŷbĈ

ψyb + ybC
ψŷbya)g

2,

C
(2)
15 = (T̂cyaŷbT̂cyb + ybTcŷbyaTc)g

2, C
(2)
16 = (yaŷbC

φ
bcyc + ycC

φ
cbŷbya)g

2,

C
(2)
17 = Cφ

ab(ybŷcyc + ycŷcyb)g
2, C

(2)
18 = (ybŷaybC

ψ + Ĉψybŷayb)g
2,

C
(2)
19 = (ybŷaĈ

ψyb + ybC
ψŷayb)g

2, C
(2)
20 = (yaC

ψ + Ĉψya)g
4,

C
(2)
21 = ĈψyaC

ψg4, C
(2)
22 = (ya(C

ψ)2 + (Ĉψ)2ya)g
4,

C
(2)
23 = Cφ

ab(ybC
ψ + Ĉψyb), C

(2)
24 = tr[yaŷbycŷc]yb,

C
(2)
25 = tr[yaŷcybŷc]yb, C

(2)
26 = tr[Ĉψyaŷb]ybg

2,

C
(2)
27 = Cφ

abC
φ
bcycg

4, C
(2)
28 = Cφ

abybg
4,

C
(2)
29 = λacdeλcdebyb, C

(2)
30 = ybŷaycŷbyc + ycŷbycŷayb. (3.27)

Note that the coefficients c
(2)
20 , c

(2)
28 may in principle have three contributions,

proportional to each of the group-theoretic constants CG, R
ψ, Rφ. Similarly, the

one-loop scalar β-function is given by

β
(1)
λ abcd =

5
∑

i=1

d
(1)
i (D

(1)
i )abcd, (3.28)
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where (again with (D
(1)
i )abcd implied)

D
(1)
1 = λabefλefcd + λacefλefbd + λadefλefbc,

D
(1)
2 = λebcdtr[yeŷa] + λaecdtr[yeŷb] + λabedtr[yeŷc] + λabcetr[yeŷd],

D
(1)
3 = tr[yaŷbycŷd],

D
(1)
4 = (λebcdC

φ
ea + λaecdC

φ
eb + λabedC

φ
ec + λabceC

φ
ed)g

2,

D
(1)
5 = ((tφAt

φ
B)ab(t

φ
At

φ
B)cd + (tφAt

φ
B)ac(t

φ
At
φ
B)bd + (tφAt

φ
B)ad(t

φ
At
φ
B)bc)g

4, (3.29)

and the coefficients may easily be calculated in MS:

d
(1)
1 = 1, d

(1)
2 = 1

2
, d

(1)
3 = −12, d

(1)
4 = −3, d

(1)
5 = 12. (3.30)

As mentioned previously, the metric at this order becomes more complex;

consequently, the contributions to the A-function itself also become more com-

plex, to the point where writing the explicit tensor structures is cumbersome and

uninformative. To alleviate this, we shall employ a diagrammatic notation, based

on traditional Feynman diagrams. Each tensor coupling is represented by its as-

sociated Feynman diagram vertex representation, with the indices labelling each

leg:

(ya)ij →
i

a

j

λabcd →

a

db

c

The gauge generators tφA, TA and quadratic Casimir operators Cφ, Cψ are repre-

sented as

(tφA)ab →
a bA

, (TA)ij → i jA
,

Cφ
ab →

a b
, Cψ

ij →
i j

,

and contracted lines represent contracted indices,

(ya)ik(ŷb)kl(yb)lj ≡ yaŷbyb →
i j

a

b

lk
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(T
(3)
1 )yy (T

(3)
2 )yy (T

(3)
3 )yy (T

(3)
4 )yy (T

(3)
5 )yy

(T
(3)
6 )yy (T

(3)
7 )yy (T

(3)
8 )yy (T

(3)
9 )yy (T

(3)
10 )yy

Table 3.1: Contributions to T
(3)
yy

Using this notation, we may now express the “metric” term T
(3)
yy as

T (3)
yy =

10
∑

i=1

t
(3)
i (T

(3)
i )yy; (3.31)

the individual tensor structures (T
(3)
i )yy are then given in Table 3.1, contracted

in the form dyT
(3)
yy β

(1)
y , where a cross represents dy and a diamond β

(1)
y . As an

example, according to the notation discussed above, the diagram labelled (T
(3)
1 )yy

corresponds to d(ya)ij(β
(1)
y a )jk(yb)kl(ŷb)li, and so the tensor structure (T

(3)
1 )yy itself

(contracting d(ya)ij and (β
(1)
y b )kl) would be

(T
(3)
1 )yy = δabδjk(yc)lm(ŷc)mi.

Similarly, we may express the potential off-diagonal terms in the form

T (3)
yg =

2
∑

i=1

τ
(3)
i (T

(3)
i )yg, (3.32)

where the tensor structures (T
(3)
1 )yg, (T

(3)
2 )yg are inferred from Table 3.2.

Finally, at next-to-next-to-leading order, we may parametrize the A-function as

A(4) =
27
∑

i=1

a
(4)
i A

(4)
i + (βIgIJβ

J)(4) +O(g6), (3.33)

where the pure-gauge terms O(g6) have not been considered fully, and there may

now be multiple arbitrary contributions subsumed in the βIgIJβ
J term. The
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(T
(3)
1 )yg (T

(3)
2 )yg

Table 3.2: Contributions to T
(3)
yg

tensor structures A
(4)
i are listed in Table 3.3,4 and the explicit expressions may

be reconstructed from the diagrammatic representation. The arbitrary terms

with which we shall be concerned are

β(1)
y g(2)yy β

(1)
y = a(β(1)

y a )ij(β
(1)
y a )ij,

β(2)
g g(1)gg β

(1)
g + β(1)

g g(1)gg β
(2)
g = 2e

(1)
1 αnvgβ

(2)
g (y), (3.34)

considering only the Yukawa-dependent parts of β
(2)
g .

We many now solve (3.24), (3.25). Like the lowest-order Yukawa metric term,

the lowest-order scalar metric term T
(3)
λλ is simply

T
(3)
λλ = λ δλλ, (3.35)

so substituting (3.28), (3.33) and (3.35) into (3.24) gives five simple linear equa-

tions,

3a
(4)
1 = 3λd

(1)
1 , 2a

(4)
2 = 4λd

(1)
2 , a

(4)
3 = λd

(1)
3 ,

2a
(4)
12 g

2 = 4λd
(1)
4 g2, a

(4)
21 g

4 = 3λd
(1)
5 g4. (3.36)

These equations clearly provide solutions to the coefficients a
(4)
1−3, a

(4)
12 , a

(4)
21 ; since

the tensor structures A
(4)
2 , A

(4)
3 also contain Yukawa couplings, there may exist

a consistency condition relating the respective scalar and Yukawa β-functions,

obtained by also solving (3.25). Substituting (3.1), (3.10), (3.12), (3.26), (3.31),

(3.32) and (3.33) into (3.25) gives a complex system of 37 equations (A.1), with

solution

a
(4)
1 = − µ

48
c
(2)
4 , a

(4)
2 = − µ

48
c
(2)
4 ,

a
(4)
3 =

µ

4
c
(2)
4 , a

(4)
4 =

µ

6
c
(2)
1 ,

a
(4)
5 = −µ

3
c
(2)
8 , a

(4)
6 = 0,

a
(4)
7 = µ (c

(2)
10 − c(2)8 ), a

(4)
8 =

µ

12
(4c

(2)
10 − 4c

(2)
8 − c(2)24 ),

4Note that A
(4)
4 is a non-planar diagram.
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A
(4)
1 A

(4)
2 A

(4)
3 A

(4)
4 A

(4)
5 A

(4)
6

A
(4)
7 A

(4)
8 A

(4)
9 A

(4)
10 A

(4)
11 A

(4)
12

A A

A
(4)
13 A

(4)
14 A

(4)
15 A

(4)
16 A

(4)
17 A

(4)
18

AA

B B

A
(4)
19 A

(4)
20 A

(4)
21 A

(4)
22 A

(4)
23 A

(4)
24

A
(4)
25 A

(4)
26 A

(4)
27

Table 3.3: Contributions to A(4), neglecting pure-gauge terms

a
(4)
9 = µ (c

(2)
9 − 4c

(2)
8 ), a

(4)
10 =

µ

2
(c

(2)
3 − 4c

(2)
11 ),

a
(4)
11 =

µ

2
(4c

(2)
10 − 4c

(2)
8 − c(2)11 ), a

(4)
12 =

µ

8
c
(2)
4 ,

a
(4)
13 =

µ

2
(12c

(2)
8 − c(2)12 + c

(2)
13 + c

(2)
14 ), a

(4)
14 = µ (6c

(2)
8 + c

(2)
14 ),

a
(4)
15 = µ c

(2)
16 , a

(4)
16 = µ (24c

(2)
8 − 6c

(2)
9 + 6c

(2)
11 + c

(2)
19 ),

a
(4)
17 =

µ

2
c
(2)
6 , a

(4)
18 =

µ

2
c
(2)
15 ,

a
(4)
19 = µ (12c

(2)
8 − 6c

(2)
10 − c(2)12 + c

(2)
14 ), a

(4)
20 =

µ

4
(c

(2)
7 + c

(2)
16 − c(2)17 ),

a
(4)
21 = −3µ

4
c
(2)
4 , a

(4)
22 = µ (6c

(2)
12 − 36c

(2)
8 − 6c

(2)
14 + c

(2)
22 ),

a
(4)
23 =

µ

2
(12c

(2)
12 − 72c

(2)
8 − 12c

(2)
14 + c

(2)
21 ), a

(4)
24 =

µ

2
c
(2)
27 ,

a
(4)
25 = µ (6c

(2)
17 − 6c

(2)
16 + c

(2)
23 ), a

(4)
26 = µ c

(2)
20 +

τ
(3)
1

2
e
(1)
1 ,
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a
(4)
27 =

µ

2
c
(2)
28 +

τ
(3)
2

2
e
(1)
1 , (3.37)

λ = − µ

48
c
(2)
4 (3.38)

t
(3)
1 = 2a, t

(3)
2 + t

(3)
3 = −4µc(2)8 + 4a,

t
(3)
4 = 2µ (c

(2)
10 − c(2)8 ) + a, t

(3)
5 + t

(3)
6 = µ (2c

(2)
10 − 2c

(2)
8 − c(2)24 ) + 2a,

t
(3)
7 = −2µc(2)11 + 4a, t

(3)
8 = 4µ(c

(2)
9 − 4c

(2)
8 ) + 8a,

t
(3)
9 = 4µ(6c

(2)
8 − c(2)12 + c

(2)
14 )− 12a, t

(3)
10 = 2µ(c

(2)
16 − c(2)17 ). (3.39)

One can again eliminate all A-function and metric coefficients to leave behind a

system of six consistency conditions,

4c
(2)
2 + c

(2)
3 + 4c

(2)
9 − 16c

(2)
10 − c(2)30 = 0

c
(2)
3 + 16c

(2)
8 − 4c

(2)
9 − 4c

(2)
11 − c(2)30 = 0

c
(2)
11 − 2c

(2)
24 + c

(2)
25 = 0

12c
(2)
8 − 2c

(2)
12 + 2c

(2)
14 − 6c

(2)
24 − c(2)26 = 0

c
(2)
5 − c(2)6 + 4c

(2)
16 − 4c

(2)
17 = 0

c
(2)
18 − c(2)19 + 6c

(2)
25 + 2c

(2)
26 = 0 (3.40)

where the first three conditions do not involve gauge terms, and are equivalent

to those derived in [9] for a scalar/fermion theory. Combining with the solution

of (3.24) gives one extra condition relating the scalar and Yukawa β-function

coefficients,

d
(1)
2 c

(2)
4 = d

(1)
3 c

(2)
29 . (3.41)

It is worth noting that, as indicated in the previous section, we have retained

all potential non-vanishing terms in our system of equations. Nevertheless, for

presentation purposes, we have opted to substitute in the explicit values of the

one-loop Yukawa coefficients, listed in (3.21); we stress that the number of derived

consistency conditions has not been reduced.

To verify these consistency conditions, we first check that they are satisfied by

the MS values of the coefficients, then deduce the effects of a change of renormal-

ization scheme and ensure any induced changes in the coefficients cancel when

substituted in to the conditions; this demonstrates that the conditions are cor-

rect, and hold in an arbitrary renormalization scheme. The MS values of the
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two-loop Yukawa β-function coefficients are [22]

c
(2)
1 = 2, c

(2)
2 = −1, c

(2)
3 = −2, c

(2)
4 = −2, c

(2)
5 = −12, c

(2)
6 = 6,

c
(2)
7 = 0, c

(2)
8 = −1

8
, c

(2)
9 = 0, c

(2)
10 = −3

8
, c

(2)
11 = −1, c

(2)
12 = 0,

c
(2)
13 = −7

4
, c

(2)
14 = −1

4
, c

(2)
15 = 6, c

(2)
16 = 9

2
, c

(2)
17 = 0, c

(2)
18 = 3,

c
(2)
19 = 5,

c
(2)
20 = − 1

12
(194CG − 20Rψ − 11Rφ),

c
(2)
21 = 0, c

(2)
22 = −3

2
, c

(2)
23 = 6, c

(2)
24 = −3

4
, c

(2)
25 = −1

2
, c

(2)
26 = 5

2
,

c
(2)
27 = −21

2
,

c
(2)
28 = 1

12
(147CG − 12Rψ − 3Rφ),

c
(2)
29 = 1

12
, c

(2)
30 = 0, (3.42)

and combined with the β
(1)
λ coefficients (3.30), we see that all seven consistency

conditions are indeed satisfied.

To derive the effects of a coupling redefinition, we begin with the vector β-

function βI ≡ βI(g), where g ≡ gI contains all couplings in the theory. βI(g)

therefore represents the β-functions of a theory evaluated in a particular scheme,

for example MS. By definition,

βI(g) = µ
∂

∂µ
gI ,

hence if we were to consider a new β-function β
′I as a function of new couplings

g
′I , related to the original couplings by some finite shift of the form g

′I = gI+δgI ,

we may write

β
′I(g

′

) = µ
∂

∂µ
g

′I = µ
∂

∂µ
(gI + δgI) = µ

∂gJ

∂µ

∂

∂gJ
(gI + δgI)

= βJ
∂

∂gJ
(gI + δgI) = βI + βJ

∂

∂gJ
δgI .

We may also perform a Taylor expansion of β
′I as a function of the new couplings,

β
′I(g

′

) = β
′I(g + δg) =

[

1+ δgJ
∂

∂gJ
+

1

2

(

δgJ
∂

∂gJ

)2

+ . . .

]

β
′I(g),

where β
′I(g) = βI(g) + δβI(g) therefore defines the effects of a coupling redefi-
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nition on the β-function, δβI(g). Comparing the two expressions, we obtain the

effect of a coupling redefinition on the β-functions:

δβI(g) = βJ
∂

∂gJ
δgI − δgJ ∂

∂gJ
βI

− 1

2

(

δgJ
∂

∂gJ

)2

βI − δgJ ∂

∂gJ
(δβI)− . . . (3.43)

Finally, following [61], it is possible to identify a finite shift in the couplings with

a change in the finite part of the renormalization constants, hence (3.43) gives the

result of a change in renormalization scheme. It is to be understood that (3.43) is

a somewhat schematic result, that in principle contains higher order corrections;

the precise effects of a scheme change at a particular order are given by extracting

from (3.43) all contributions of the correct loop order. We may also immediately

see that the lowest possible order of change expressed in (3.43) is (δβI)(2), hence

all one-loop β-function results are scheme-independent.

From (3.43), given a change of couplings of the form y
′

= y + (δy)(1), g
′

=

g + (δg)(1), we may extract the effects of a coupling redefinition on the two-loop

gauge β-function,

δβ(2)
g = β(1)

g

∂

∂g
(δg)(1) − (δg)(1)

∂

∂g
β(1)
g , (3.44)

and the two-loop Yukawa β-function,

δβ(2)
y =

(

β(1)
y

∂

∂y
+ β(1)

g

∂

∂g

)

(δy)(1) −
(

(δy)(1)
∂

∂y
+ (δg)(1)

∂

∂g

)

β(1)
y . (3.45)

The most general possible coupling redefinition may then be parametrised as

(δg)(1) = δ
(1)
1 g3, (δy)(1) =

5
∑

i=1

ǫ
(1)
i C

(1)
i , (3.46)

with C
(1)
i defined in (3.12). Consequently, there is no change in β

(2)
g (establishing

its scheme-independence), and the corresponding changes in β
(2)
y are given by

δc
(2)
2 = 2(c

(1)
3 ǫ

(1)
1 − c(1)1 ǫ

(1)
3 ), δc

(2)
6 = 2(c

(1)
5 ǫ

(1)
1 − c(1)1 ǫ

(1)
5 ),

δc
(2)
7 = 2(c

(1)
5 ǫ

(1)
3 − c(1)3 ǫ

(1)
5 ), δc

(2)
9 = 2(c

(1)
1 ǫ

(1)
2 − c(1)2 ǫ

(1)
1 ),

δc
(2)
10 = 2(c

(1)
3 ǫ

(1)
2 − c(1)2 ǫ

(1)
3 ), δc

(2)
11 = 2(c

(1)
2 ǫ

(1)
1 − c(1)1 ǫ

(1)
2 ),

δc
(2)
13 = 2(c

(1)
4 ǫ

(1)
2 − c(1)2 ǫ

(1)
4 ), δc

(2)
14 = 2(c

(1)
4 ǫ

(1)
2 − c(1)2 ǫ

(1)
4 ),

δc
(2)
16 = 2(c

(1)
5 ǫ

(1)
2 − c(1)2 ǫ

(1)
5 ), δc

(2)
19 = 2(c

(1)
4 ǫ

(1)
1 − c(1)1 ǫ

(1)
4 ),

δc
(2)
20 = 2(e

(1)
1 ǫ

(1)
4 − c(1)4 δ

(1)
1 ), δc

(2)
24 = 4(c

(1)
2 ǫ

(1)
3 − c(1)3 ǫ

(1)
2 ),
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δc
(2)
25 = 2(c

(1)
1 ǫ

(1)
3 − c(1)3 ǫ

(1)
1 ) δc

(2)
26 = 4(c

(1)
4 ǫ

(1)
3 − c(1)3 ǫ

(1)
4 ),

δc
(2)
28 = 2(e

(1)
1 ǫ

(1)
5 − c(1)5 δ

(1)
1 ), (3.47)

with δc
(2)
i = 0 implied for any coefficient not in this list. These changes may now

be substituted into (3.40), (3.41), and we see that the consistency conditions are

indeed scheme-independent. Crucially, since c
(2)
4 is scheme-independent, we may

substitute its value into (3.38), and combining with (3.19) we find

λ = 1
24
µ = 1

288
σ
(1)
1 , (3.48)

verifying that the positivity of σ
(1)
1 is indeed a sufficient condition for the leading-

order positive-definiteness of GIJ . The leading-order metric coefficients were orig-

inally calculated separately in [8], and in our conventions are given by

σ
(1)
1 = 2, µ = 1

6
, λ = 1

144
, (3.49)

in accordance with our consistency conditions.

Having investigated the construction of A(4) using the scalar and Yukawa β-

functions, we now turn to contributions from the gauge β-function. Expanding

(2.1) to this order gives, in addition to (3.24), (3.25),

dg A
(4) = dg T (1)

gg β
(3)
g + dg T (2)

gg β
(2)
g + dg T (3)

gg βg + dg T (3)
gy β

(1)
y . (3.50)

We now wish to answer three questions:

• Are we free to impose that TIJ be symmetric at this order; that is, are we

free to choose T
(3)
yg = T

(3)
gy ?

• Does the A-function (3.33) satisfy (3.50), and what consistency conditions

are therefore imposed on the coefficients of β
(3)
g ?

• Does knowledge of the one-loop scalar and two-loop Yukawa β-function co-

efficients provide enough information to determine the scalar- and Yukawa-

dependent parts of β
(3)
g , in conjunction with the A-function (3.33)?

The third question is of particular note, as it implies that the constraints on

renormalization group flow provided by a function satisfying (2.1) are sufficient to

determine higher-order β-functions without having to perform ever-more-complex

loop integrals. Depending on the consistency conditions and the underlying Feyn-

man integrals of the associated β-function contributions, it may even be possible

to predict the simple poles of highly non-trivial integrals at higher loop orders

without any integration at all.
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Since we are concerned with the terms in A(4) that are not pure-gauge, we

may express the three-loop gauge β-function in the form

β(3)
g = g

16
∑

i=1

e
(3)
i A

(4)
i+11 +O(g7), (3.51)

the contributions to T
(3)
gg as

T (3)
gg = σ

(3)
1 tr

[

Cψŷaya
]

+ σ
(3)
2 tr

[

ŷaC
φ
abyb

]

+O(g2), (3.52)

and the potential off-diagonal metric terms T
(3)
gy as

T (3)
gy =

2
∑

i=1

τ̃
(3)
i (T

(3)
i )gy, (3.53)

where the tensor structures (T
(3)
i )gy are obtained from (T

(3)
i )yg, by replacing the

derivatives in Table 3.2 with β-functions; imposing symmetry at this order would

therefore simply require τ
(3)
i = τ̃

(3)
i . Substituting the A-function (3.33), metric

terms (3.5), (3.17), (3.52), (3.53), and β-functions (3.1), (3.12), (3.13), (3.51) into

(3.50) then gives a new set of 16 equations (see (A.2)), leading to 12 additional

consistency conditions:

c
(2)
4 + 4e

(3)
10 = 0,

12e
(3)
1 + e

(3)
10 = 0,

c
(2)
15 − 12e

(3)
7 = 0,

c
(2)
27 − 6e

(3)
13 = 0,

c
(2)
5 − 4c

(2)
17 + 24e

(3)
4 − 12e

(3)
6 = 0,

c
(2)
21 − 2c

(2)
22 + 6e

(3)
11 − 6e

(3)
12 = 0,

c
(2)
5 + c

(2)
6 − 4c

(2)
7 − 24e

(3)
6 + 96e

(3)
9 = 0,

6c
(2)
5 − 3c

(2)
6 + 4c

(2)
23 − 36e

(3)
6 − 12e

(3)
14 = 0,

c
(2)
12 − c(2)13 + c

(2)
14 + 12e

(3)
2 − 12e

(3)
3 = 0,

6c
(2)
9 − 6c

(2)
11 + 4c

(2)
14 − c(2)19 − 24e

(3)
3 + 6e

(3)
5 = 0,

18c
(2)
10 − 3c

(2)
12 + 3c

(2)
14 − c(2)22 + 18e

(3)
8 − 3e

(3)
11 = 0,

18c
(2)
8 + 3c

(2)
14 + c

(2)
22 − 18c

(2)
24 − 3c

(2)
26 − 18e

(3)
3 − 3e

(3)
11 = 0. (3.54)

To simplify these conditions, we have used the relations between leading-order

metric coefficients (3.48), and inserted the (scheme-independent) one-loop β-

function coefficients. We see immediately that these consistency conditions do
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indeed relate the coefficients of β
(3)
g to the lower-order β

(2)
y , allowing one to deduce

some higher-order β-function coefficients using the existence of an A-function sat-

isfying (2.1).

We may again verify that these conditions hold in MS by using the β
(2)
y coef-

ficients in (3.42), and the β
(3)
g coefficients (first calculated in [23]) listed below,

e
(3)
1 = − 1

24
, e

(3)
2 = 1

16
, e

(3)
3 = 3

16
, e

(3)
4 = 1

4
,

e
(3)
5 = 3

4
, e

(3)
6 = −1

2
, e

(3)
7 = 1

2
, e

(3)
8 = 7

16
,

e
(3)
9 = − 1

16
, e

(3)
10 = 1

2
, e

(3)
11 = −5

8
, e

(3)
12 = −1

8
,

e
(3)
13 = −7

4
, e

(3)
14 = −4, e

(3)
15 = −3CG, e

(3)
16 = 9

8
CG, (3.55)

and can therefore check that they hold in arbitrary schemes by deducing the

effects of a coupling redefinition, then showing that the consistency conditions

are invariant under such changes. Discarding purely-gauge terms, the effects of a

coupling redefinition of the form (3.46), plus

(δg)(2) = O(g5) + δ
(2)
4

g3

nv
tr
[

Cψŷaya
]

+ δ
(2)
5

g3

nv
tr
[

ŷaC
φ
abyb

]

, (3.56)

on (3.51) is

δe
(3)
2 = 2

(

c
(1)
2 δ

(2)
4 − e(2)4 ǫ

(1)
2

)

, δe
(3)
3 = 2

(

c
(1)
2 δ

(2)
4 − e(2)4 ǫ

(1)
2

)

,

δe
(3)
4 = 4

(

c
(1)
2 δ

(2)
5 − e(2)5 ǫ

(1)
2

)

, δe
(3)
5 = 2

(

c
(1)
1 δ

(2)
4 − e(2)4 ǫ

(1)
1

)

,

δe
(3)
6 = 2

(

c
(1)
1 δ

(2)
5 − e(2)5 ǫ

(1)
1

)

, δe
(3)
8 = 2

(

c
(1)
3 δ

(2)
4 − e(2)4 ǫ

(1)
3

)

,

δe
(3)
9 = 2

(

c
(1)
3 δ

(2)
5 − e(2)5 ǫ

(1)
3

)

, δe
(3)
11 = 2

(

c
(1)
4 δ

(2)
4 − e(2)4 ǫ

(1)
4

)

,

δe
(3)
12 = 2

(

c
(1)
4 δ

(2)
4 − e(2)4 ǫ

(1)
4

)

, δe
(3)
13 = 2

(

c
(1)
5 δ

(2)
5 − e(2)5 ǫ

(1)
5

)

,

δe
(3)
14 = 2

(

c
(1)
5 δ

(2)
4 + 2c

(1)
4 δ

(2)
5 − e(2)4 ǫ

(1)
5 − 2e

(2)
5 ǫ

(1)
4

)

,

(3.57)

and δe
(3)
i = 0 otherwise; upon substituting into (3.54), we find that the condi-

tions are indeed invariant. Furthermore, upon attempting to fix the off-diagonal

metric as symmetric, no additional consistency conditions are generated: there is

sufficient freedom in both A(4) and T
(3)
IJ to impose symmetry.
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3.2 N = 1 supersymmetric gauge theory

We now turn to the case of a general N = 1 supersymmetric gauge theory. In

a supersymmetric theory, the Lagrangian density exhibits additional symmetry

under exchange of bosonic and fermionic fields; a theory possessing k such sets of

transformations is then referred to as an N = k supersymmetric theory. Using

the superspace formalism, the component fields of such theories may be assembled

into supermultiplets, and their possible interactions then described by the super-

potential. Attempting to construct an interacting supersymmetric QFT places

strong constraints on the masses and couplings in the theory, for example the

quartic scalar coupling in an N = 1 gauge theory must satisfy

λ kl
ij = Y ijmȲmkl − g2

[

(RA)
i
k(RA)

j
l + (RA)

i
l(RA)

j
k

]

(3.58)

effectively reducing the number of couplings. Furthermore, the renormalization

of supersymmetric theories is constrained to the extent that there exist non-

renormalization theorems [63], in which some terms undergo no renormalization

at all. The form of certain RG functions is then dramatically simplified, and we

shall make use of two key results:

• The Yukawa β-function is determined entirely by the chiral superfield anoma-

lous dimension γ: βijkY = Y ljkγ i
l + Y ilkγ j

l + Y ijlγ k
l .

• There exists, in a particular renormalization scheme, an exact expression

for the gauge β-function, known as the NSV Z β-function.

If we define the general gauge β-function according to

βg = f(g)β̃g, β̃g ≡
(

Q− 2

nv
tr [γC(R)]

)

, (3.59)

with Q = TR − 3CG, then the NSV Z β-function is given by

(βg)NSV Z = f(g)|NSV Z β̃g, f(g)|NSV Z =
g3

1− 2g2CG
. (3.60)

This result was first derived in [24], for the special case with no chiral superfields,

and then extended to a general theory in [25]. One final, crucial difference in

the supersymmetric case is the regularization method. Supersymmetry imposes

the equality of bosonic and fermionic degrees of freedom, and requires the in-

troduction of auxiliary fields to ensure that this remains the case off-shell (that

is, without imposing the equations of motion). Since the number of fermionic
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degrees of freedom, and hence the form of the auxiliary fields, depends on the

dimensionality of the gamma matrices, supersymmetry transformations require

a fixed number of spacetime dimensions, and so one cannot use Dimensional

Regularization without manifestly breaking supersymmetry. Consequently, the

preferred regularization method for supersymmetric theories is Dimensional Re-

duction [26], in which one extends momentum integrals to d dimensions as usual,

but keeps all other tensors in the intended number of dimensions, preserving

supersymmetry5. After performing any required tensor manipulations, the fi-

nal scalar integrals may also be evaluated d-dimensionally to yield the required

n-point contributions; the theory may then be renormalized as usual.

In principle, the results for N = 1 are contained in the general solution (3.33)

with coefficients (3.37), given the appropriate choice of fields and couplings6; how-

ever, there are some interesting theoretical developments in the supersymmetric

case that demand attention. Firstly, there is a proposed all-orders expression

for A [12–14], which when perturbatively expanded should reproduce the result

obtained by specialising (3.33) to the supersymmetric case. Secondly, in [9] a

sufficient condition on the chiral superfield anomalous dimension γ was derived,

which guarantees the validity of the all-orders expression, and which can be used

to derive constraints on the anomalous dimension. We shall consider each of these

points in turn.

3.2.1 An all-orders expression for A

The couplings in a general N = 1 theory are gI =
{

g, Y ijk, Ȳijk
}

, where Ȳijk =

(Y ijk)∗, hence (2.1) can be written as

dYA = dY TY Ȳ βȲ + dY T̃Y g β̃g,

dYA = dȲ TȲ Y βY + dȲ T̃Ȳ g β̃g,

dgA = dg TgY βY + dg TgȲ βȲ + dg T̃ggβ̃g, (3.61)

where we have used the definition of βg in (3.59), and absorbed the f(g) pre-factor

into the tensor T . These equations can, of course, be solved perturbatively as in

the non-supersymmetric case. Alternatively, by introducing the gaugino field λA,

5The extent to which Dimensional Reduction actually preserves supersymmetry is debated,
as one may still encounter a supercurrent anomaly at sufficiently-high loop order [63].

6When performing this reduction, one must ensure that the choice of regularization method
used for the non-supersymmetric theory is compatible with supersymmetry.
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choosing the non-supersymmetric field multiplets to be

φa →
(

ϕi

ϕ̄i

)

, ϕ̄i = (ϕi)
∗ , ψi →

(

ψi

λA

)

, i = 1 . . . nC , (3.62)

and expanding the Yukawa couplings yaφa = yiϕi + ȳiϕ̄
i according to

yi →













Y ijk 0 0 0

0 0 0 0

0 0 0
√
2g(RB)j

i

0 0
√
2g(RT

A)
i
k 0













,

ȳi →













0
√
2g(RT

B)
j
i 0 0√

2g(RA)i
k 0 0 0

0 0 Ȳijk 0

0 0 0 0













, (3.63)

where the non-supersymmetric gauge generators are given by

tϕA →
(

RA 0

0 −RT
A

)

, tψA →
(

RA 0

0 Rad
A

)

, (Rad
A )BC = −ifABC , (3.64)

then we may simply expand our non-supersymmetric A-function (3.33) and sim-

plify to obtain the supersymmetric result (again neglecting purely-gauge contri-

butions). Expressing the supersymmetric A-function in the form

A
(4)
SUSY =

8
∑

i=1

s
(4)
i S

(4)
i + αβijkY βȲijk, (3.65)

where the tensor structures S
(4)
i are given in Table 3.4, and expanding out the

non-supersymmetric tensor structures in Table 3.3 using (3.62 – 3.64), we find

A
(4)
1 → 2S

(4)
1 − 18S

(4)
3 + 12S

(4)
4 + 12S

(4)
5 − 24S

(4)
6 − 6(CG − 2TR)S

(4)
7 + 8S

(4)
8 +O(g6),

A
(4)
2 → 6S

(4)
2 + 12S

(4)
3 − 24S

(4)
4 − 36S

(4)
5 + 6(CG − 2TR)S

(4)
7 +O(g6),

A
(4)
3 → −5S(4)

3 + 16S
(4)
5 − 16S

(4)
6 + 4CGS

(4)
7 + 2S

(4)
8 +O(g6),

A
(4)
4 → 18S

(4)
5 − 12S

(4)
6 + 6CGS

(4)
7 + 2S

(4)
8 +O(g6),

A
(4)
5 → 2S

(4)
1 − 12S

(4)
3 + 24S

(4)
5 +O(g6),

A
(4)
6 → 2S

(4)
2 − 8S

(4)
4 + 8S

(4)
6 − 16TRS

(4)
7 +O(g6),

A
(4)
7 → 2S2 − 4S

(4)
3 − 12S

(4)
4 + 24S

(4)
5 + 16S

(4)
6 − 8TRS

(4)
7 +O(g6),

A
(4)
8 → 2S

(4)
1 − 24S

(4)
3 + 96S

(4)
5 +O(g6),
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S
(4)
1 S

(4)
2 S

(4)
3 S

(4)
4

S
(4)
5 S

(4)
6 S

(4)
7 S

(4)
8

Table 3.4: Contributions to A
(4)
SUSY

A
(4)
9 → 2S

(4)
3 + 4S

(4)
4 − 4S

(4)
5 − 8S

(4)
6 + 4TRS

(4)
7 +O(g6),

A
(4)
10 → −2S(4)

3 + 8S
(4)
5 +O(g6),

A
(4)
11 → 8S

(4)
3 − 32S

(4)
5 +O(g6),

A
(4)
12 → −6S(4)

4 − 12S
(4)
5 +O(g6),

A
(4)
13 → −2S(4)

3 + 8S
(4)
5 +O(g6),

A
(4)
14 → −2S(4)

4 + 4S
(4)
6 − 4CGS

(4)
7 +O(g6),

A
(4)
15 → −2S(4)

4 + 4S
(4)
5 + 4S

(4)
6 +O(g6),

A
(4)
16 → −2S(4)

5 − 4S
(4)
6 + 2CGS

(4)
7 +O(g6),

A
(4)
17 → −8S(4)

5 +O(g6),
A

(4)
18 → −1

2
S
(4)
3 − 2CGS

(4)
7 +O(g6),

A
(4)
19 → −2S(4)

4 + 4S
(4)
5 + 8S

(4)
6 − 4CGS

(4)
7 +O(g6),

A
(4)
20 → −2S(4)

3 + 16S
(4)
5 +O(g6),

A
(4)
21 → 3S

(4)
5 − 2S

(4)
6 + 1

2
CGS

(4)
7 +O(g6),

A
(4)
22 → 2S

(4)
5 +O(g6),

A
(4)
23 → 2S

(4)
6 +O(g6),

A
(4)
24 → 2S

(4)
5 +O(g6),

A
(4)
25 → 2S

(4)
6 +O(g6),

A
(4)
26 → −2S(4)

7 +O(g6),
A

(4)
27 → −2S(4)

7 +O(g6),
A

(4)
28 → 3

2
S
(4)
1 + 3S

(4)
2 + 12S

(4)
3 + 24S

(4)
4 + 24S

(4)
5 + 48S

(4)
6 +O(g6). (3.66)

Using (3.37), the A
(4)
SUSY coefficients s

(4)
i are therefore

s
(4)
1 = − 1

24
µc

(2)
4 −

4

3
µc

(2)
8 +

2

3
µc

(2)
10 −

1

6
µc

(2)
24 +

3

2
a,
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s
(4)
2 = −1

8
µc

(2)
4 − 2µc

(2)
8 + 2µc

(2)
10 + 3a,

s
(4)
3 = −µc(2)3 −

9

8
µc

(2)
4 −

1

2
µc

(2)
7 − 20µc

(2)
8 + 2µc

(2)
9 + 4µc

(2)
10 + µc

(2)
12 − µc(2)13

− µc(2)14 −
1

4
µc

(2)
15 −

1

2
µc

(2)
16 +

1

2
µc

(2)
17 + 2µc

(2)
24 + 12a,

s
(4)
4 = −1

2
µc

(2)
4 − 40µc

(2)
8 + 4µc

(2)
9 + 2µc

(2)
12 − 4µc

(2)
14 − 2µc

(2)
16 + 24a,

s
(4)
5 = 3µc

(2)
1 + 4µc

(2)
3 +

3

4
µc

(2)
4 − 4µc

(2)
6 + 4µc

(2)
7 − 8µc

(2)
8 + 8µc

(2)
9

− 32µc
(2)
10 − 12µc

(2)
11 + 4µc

(2)
12 + 4µc

(2)
13 − 4µc

(2)
14 + 8µc

(2)
16

− 4µc
(2)
17 − 2µc

(2)
19 + 2µc

(2)
22 − 8µc

(2)
24 + µc

(2)
27 + 24a,

s
(4)
6 = −2µc(2)1 − 2µc

(2)
4 − 32µc

(2)
8 + 16µc

(2)
9 − 32µc

(2)
10 − 24µc

(2)
11 + 4µc

(2)
12

− 8µc
(2)
16 + 12µc

(2)
17 − 4µc

(2)
19 + µc

(2)
21 + 2µc

(2)
23 + 48a,

s
(4)
7 = (−8µc(2)8 + 4µc

(2)
9 − 8µc

(2)
10 )TR + (µc

(2)
1 +

5

8
µc

(2)
4 − 24µc

(2)
8 − 12µc

(2)
9

+ 24µc
(2)
10 + 12µc

(2)
11 + 4µc

(2)
12 − 8µc

(2)
14 − µc(2)15 + 2µc

(2)
19 )CG

− 2µc
(2)
20 |SUSY − µc(2)28 |SUSY ,

s
(4)
8 =

1

3
µc

(2)
1 +

1

3
µc

(2)
4 , (3.67)

where c
(2)
i |SUSY indicates that the Casimir invariants in c

(2)
20 , c

(2)
28 are replaced by

their supersymmetric counterparts, according to

Rφ → 2TR, Rψ → TR + CG. (3.68)

We may now compare with the exact form for the a-function of an N =

1 supersymmetric theory, first proposed in [12]. For a theory with nc chiral

superfields, the a-function is conjectured to be

A =
1

12
(nc + 9nv)−

1

2
tr(γ2) +

1

3
tr(γ3) + Λ ◦ βY + nvλβ̃g + βY ◦H ◦ βY , (3.69)

where Λ and λ are a tensor structure and scalar respectively. This proposal

was shown to be consistent with the two-loop anomalous dimension for a general

gauge theory [27]7, and with the three-loop anomalous dimension for the Wess-

Zumino model [9]. In order to match the coefficients of our reduction (3.67) with

a perturbative expansion of (3.69), we must first ensure that the regularization

method and renormalization scheme are suitable for supersymmetric theories.

In [28], it was shown that one may in fact use Dimensional Reduction to regularize

non-supersymmetric theories, settling earlier conjectures about its validity [29];

7Our result is essentially a verification of this calculation, beginning instead from a com-
pletely general four-dimensional a-function, valid in arbitrary renormalization schemes.
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the MS renormalization of this theory is then related by a coupling redefinition

to the corresponding dimensionally-regularized theory [30], again renormalized in

MS. The β
(2)
y coefficients in Dimensional Reduction are given [31] by a coupling

redefinition of the form (3.46), with non-zero variations

δ
(1)
1 =

1

6
CG, ǫ

(2)
4 = −1

2
, ǫ

(2)
5 = 1. (3.70)

The Dimensional Reduction coefficients that differ from the Dimensional Regu-

larization results in (3.37) are therefore

c
(2)
6 = 2 c

(2)
7 = −1, c

(2)
13 = −5

4
, c

(2)
14 = 1

4
, c

(2)
16 = 7

2
,

c
(2)
19 = 7, c

(2)
20 = − 1

12

(

138CG − 12Rψ − 9Rφ
)

,

c
(2)
26 = 7

2
, c

(2)
28 = 1

12
(59CG + 4Rψ +Rφ), (3.71)

hence the A
(4)
SUSY coefficients become

s
(4)
1 = 1

8
µ+ 3

2
a, s

(4)
2 = −1

4
µ+ 3a, s

(4)
3 = 2µ+ 12a, s

(4)
4 = −2µ+ 24a,

s
(4)
5 = 10µ+ 24a, s

(4)
6 = −4µ+ 48a, s

(4)
7 = −3

2
µQ, s

(4)
8 = 0. (3.72)

Expanding out the all-orders expression (3.69), using the anomalous dimension

coefficients

γ(1) = 1
2
ȲiklY

klj − 2g2C(R) j
i ,

γ(2) = −1
2
ȲiklY

kmnȲmnpY
lpj + 2g2ȲiklC(R)

k
m Y

mlj − g2ȲiklY klmC(R) j
m

+ 4g4C(R) k
i C(R)

j
k + 2Qg4C(R) j

i , (3.73)

calculated with Dimensional Reduction and MS [32], and the NSV Z formula for

βg
8, we see that (3.69) and (3.72) are indeed consistent, up to the purely-gauge

terms that we have neglected. Two consistency checks in this result are:

• s(4)8 = 0 identically, consistent with the absence of non-planar terms in

(3.69) at this order;

• s(4)7 is proportional to Q, consistent with the expansion of the λβ̃g term in

(3.69).

8Recall that the NSV Z formula is predicated on a particular renormalization scheme, but
since the gauge β-function is scheme-independent at two loops we are free to use it at this
order [33].



CHAPTER 3. FOUR DIMENSIONS 102

3.2.2 The Λ-equation

We have seen that the conjectured all-orders expression for A, (3.69), is consistent

with the reduction of (3.33) to the supersymmetric case, modulo purely-gauge

terms that have been ignored throughout, where RG quantities are calculated

using Dimensional Reduction with minimal subtraction, and we make use of the

NSV Z form of the gauge β-function. While this afford some comfort in the

validity of (3.69), there is in fact a more promising approach, which serves to

establish (3.69) to all orders.

In [9], it was shown that, subject to the constraint Λ ◦ βȲ = βY ◦ Λ̄, applying
the chain rule to (3.69) gives9

dYA = tr

[

(dY γ)

(

1

2
Ȳ · Λ− 2λC(R)− γ + γ2

)]

+ (dYΛ) ◦ βȲ + nv(dY λ)β̃g,

dȲA = tr

[

(dȲ γ)

(

1

2
Λ̄ · Y − 2λC(R)− γ + γ2

)]

+ βY ◦ (dȲ Λ̄) + nv(dȲ λ)β̃g,

dgA = tr

[

(dgγ)

(

1

2
Ȳ · Λ− 2λC(R)− γ + γ2

)]

+ (dgΛ) ◦ βȲ + nv(dgλ)β̃g.

(3.74)

Substituting these equations into (3.61), we see that if Λ, λ are required to satisfy

1

2
Y · Λ− 2λC(R)g2 = γ − γ2 +Θ · βY + Φβ̃g, (3.75)

then (3.69) will satisfy (3.61) with TIJ satisfying

dY TY Ȳ βȲ = tr [(dY γ)Θ · βȲ ] + (dYΛ) ◦ βȲ ,
dȲ TȲ Y βY = tr

[

(dȲ γ)βY · Θ̄
]

+ βY ◦ (dȲΛ),
dY T̃Y g β̃g = tr

[

(dY γ)θβ̃g

]

+ nv(dY λ)β̃g,

dȲ T̃Ȳ g β̃g = tr
[

(dȲ γ)θβ̃g

]

+ nv(dȲ λ)β̃g,

dg TgY β̃Y = 0,

dg TgȲ β̃Ȳ = tr [(dgγ) Θ · βȲ ] + (dgΛ) ◦ βȲ ,
dg T̃gg β̃g = tr

[

(dgγ)θβ̃g

]

+ nv(dgλ)β̃g. (3.76)

and therefore will provide a proof of the strong a-theorem for a general supersym-

metric gauge theory, to all orders of perturbation theory. Note also that there is

9Note that there is a normalization factor Λ→ 1
6Λ, for ease of comparison with [9, 19].
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some freedom in TIJ : by using the identity

tr

[

(dgγ)
1

2
Ȳ · Λ

]

− tr

[

(dgγ)
1

2
Λ̄ · Y

]

= βY ◦ (dgΛ̄)− (dgΛ) ◦ βȲ (3.77)

T may be rewritten such that

dg TgY βY =
1

2
tr
[

(dgγ) Θ̄ · βY
]

+
1

2
βY ◦ (dgΛ̄)

dg TgȲ βȲ =
1

2
tr [(dgγ) Θ · βȲ ] +

1

2
(dgΛ) ◦ βȲ , (3.78)

and one may again investigate imposing symmetry at non-trivial loop orders.

(3.75) shall henceforth be referred to as the “Λ-equation”.

In much the same way that the gradient-flow equation (2.1) places restric-

tions on the form of the β-functions of a theory, the Λ-equation may be used to

derive constraints on the form of the anomalous dimension. These constraints

have already been derived in [9], for a general non-gauge N = 1 theory up to

three loops, and it was shown that the constraints were satisfied by the three-

loop anomalous dimension, calculated in Dimensional Reduction with minimal

subtraction [34]. Here, we wish to extend these results to the gauge case, and to

arbitrary renormalization schemes.

At leading order, we may perturbatively expand (3.75) as

1

2
Y · Λ(1) − 2λ(1)C(R)g2 = γ(1). (3.79)

Given that the lowest possible order contribution to Λ ◦ βY in (3.69) is simply

(Λ ◦ βY )(3) = Λ
(1)
1 Y ijk(β

(1)

Y
)ijk, (3.80)

we find that

Y · Λ(1) = Λ
(1)
1 Y iklY

klj. (3.81)

Parametrising the one-loop anomalous dimension as

γ(1) = γ
(1)
1 Y iklY

klj + γ
(1)
2 C(R) j

i g
2, (3.82)

the solution to (3.75) at leading order is

Λ
(1)
1 = 2γ

(1)
1 , λ(1) = −1

2
γ
(1)
2 , (3.83)

with no consistency conditions on γ(1).
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At next-to-leading order, we may expand (3.75) as

1

2
Y · Λ(2) − 2λ(2)C(R)g2 = γ(2) − (γ(1))2 +Θ(1) · β(1)

Y
+ Φ(1)β̃(1)

g . (3.84)

The next-to-leading contributions to Λ ◦ βY may be parametrized as

(Λ ◦ βY )(4) = Λ
(2)
1 Y iklY imnY

mnj(β
(1)

Y
)jkl + Λ

(2)
2 g2Y ijkC(R) l

k (β
(1)

Y
)ijl, (3.85)

hence

Y · Λ(2) = Λ
(2)
1

(

2
3
Y iklY

lmnY mnpY
pkj + 1

3
Y iklY

klmY mpqY
pqj
)

+ Λ
(2)
2

(

2
3
Y iklC(R)

l
mY

kmj + 1
3
Y iklY

klmC(R) j
m

)

. (3.86)

Recalling that λ is a scalar quantity, the most general possible contribution to

the λ-term at this order is simply

(

λC(R)g2
)(2)

= λ(2)C(R)g4. (3.87)

The two-loop anomalous dimension is parametrised as

γ(2) =
5
∑

i=1

γ
(2)
i Γ

(2)
i , (3.88)

where

Γ
(2)
1 = Y iklY

lmnY mnpY
pkj, Γ

(2)
2 = g2 Y iklC(R)

l
mY

kmj,

Γ
(2)
3 = g2 Y iklY

klmC(R) j
m , Γ

(2)
4 = g4C(R) k

i C(R)
j
k ,

Γ
(2)
5 = g4C(R) j

i , (3.89)

and the first contribution from Θ · βY is

Θ(1) · β(1)

Y
= θ

(1)
1 (β

(1)

Y
)iklY

klj. (3.90)

At this order, we also have the first contribution from Φβ̃g. Recall β̃g is defined

relative to the gauge β-function as

βg = f(g) β̃g, f(g) = g3 +O(g5),

where

β̃g = Q− tr[γ C(R)], Q = TR − 3CG,
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and the NSV Z β-function corresponds to

f(g) =
g3

1− 2g2CG
.

We may therefore simply parametrise β̃g and Φ(1) as

β̃(1)
g = d̃

(1)
1 , Φ(1) = φ

(1)
1 g4C(R) j

i , (3.91)

where d̃
(1)
1 |NSV Z = Q. Consequently, the first contribution from Φβ̃g is

Φ(1)β̃(1)
g = φ

(1)
1 d̃

(1)
1 g4C(R) j

i . (3.92)

With these parametrizations, we obtain from (3.84) a system of six equations,

1
3
Λ

(2)
1 = γ

(2)
1 + 2γ

(1)
1 θ

(1)
1 , 1

6
Λ

(2)
1 = γ

(1)
1 θ

(1)
1 −

(

γ
(1)
1

)2

,

1
3
Λ

(2)
2 = γ22 + 2γ

(1)
2 θ

(1)
1 , 1

6
Λ

(2)
2 = γ

(2)
3 − 2γ

(1)
1 γ

(1)
2 + γ

(1)
2 θ

(1)
1 ,

0 = γ
(2)
4 −

(

γ
(1)
2

)2

, −2λ(2) = γ
(2)
5 + φ

(1)
1 d̃

(1)
1 , (3.93)

from which we obtain three consistency conditions on the anomalous dimension,

γ
(2)
1 + 2

(

γ
(1)
1

)2

= 0,

γ
(2)
2 − 2γ

(2)
3 + 4γ

(1)
1 γ

(1)
2 = 0,

γ
(2)
4 −

(

γ
(1)
2

)2

= 0. (3.94)

To check whether these conditions are scheme-independent, we must deduce the

effects of a coupling redefinition on the anomalous dimension. Once again, this

may be obtained by expanding out (3.43), where βijkY = Y ljkγ i
l +Y

ilkγ j
l +Y ijlγ k

l

by the non-renormalization theorem; the change in the β-function coefficient δβ is

then equal to the change δγ in the corresponding anomalous dimension coefficient.

Given a redefinition of the form

(δY )(1) = ǫ
(1)
1 ȲiklY

klj + ǫ
(1)
2 g2C(R) j

i , (δg)(1) = δ
(1)
1 g3, (3.95)

the change in the two-loop anomalous dimension is

δγ
(2)
2 = 4(γ

(1)
2 ǫ

(1)
1 − γ(1)1 ǫ

(1)
2 ), δγ

(2)
3 = 2(γ

(1)
2 ǫ

(1)
1 − γ(1)1 ǫ

(1)
2 ),

δγ
(2)
5 = 2(d

(1)
1 ǫ

(1)
2 − γ(1)2 δ

(1)
1 ). (3.96)

Since δγ
(2)
2 = 2

(

δγ
(2)
3

)

, we see that the consistency conditions are indeed scheme-



CHAPTER 3. FOUR DIMENSIONS 106

independent.

Finally, at next-to-next-to-leading order, we may perturbatively expand (3.75)

as

1

2
Y · Λ(3) − 2λ(3)C(R)g2 = γ(3) − γ(2)γ(1) − γ(1)γ(2) +Θ(2) · β(1)

Y

+ Θ(1) · β(2)

Y
+ Φ(2)β̃(1)

g + Φ(1)β̃(2)
g . (3.97)

To facilitate the perturbative expansion of the right-hand-side of (3.75), we first

define the tensor structures appearing in the anomalous dimension. The three-

loop anomalous dimension takes the form

γ(3) =
19
∑

i=1

γ
(3)
i Γ

(3)
i , (3.98)

where the tensor structures Γ
(3)
i are given by

Γ
(3)
1 = Y iklY

lmnY mnpY
pqrY qrsY

skj, Γ
(3)
2 = Y iklY

kmnY mnpY
lqrY qrsY

psj,

Γ
(3)
3 = Y iklY

kmnY mpqY
pqrY rnsY

slj, Γ
(3)
4 = Y iklY

kmnY mpqY
lqrY nrsY

psj,

Γ
(3)
5 = g2Y iklY

kmnY mnpC(R)
p
qY

qlj, Γ
(3)
6 = g2Y iklY

kmnY mnpC(R)
l
qY

pqj,

Γ
(3)
7 = g2Y iklY

kmnC(R) p
mY npqY

qlj, Γ
(3)
8 = g2Y iklY

kmnY mnpY
lpqC(R) j

q ,

Γ
(3)
9 = g4Y iklC(R)

k
mC(R)

m
nY

nlj , Γ
(3)
10 = g4Y iklC(R)

k
mC(R)

l
nY

mnj ,

Γ
(3)
11 = g4Y iklC(R)

k
mY

mlnC(R) j
n , Γ

(3)
12 = g4Y iklY

klmC(R) n
m C(R)

j
n ,

Γ
(3)
13 = g4tr[Y Y C(R)]C(R) j

i , Γ
(3)
14 = g4Y iklC(R)

k
mY

mlj ,

Γ
(3)
15 = g4Y iklY

klmC(R) j
m , Γ

(3)
16 = g6C(R) k

i C(R)
l
k C(R)

j
l ,

Γ
(3)
17 = g6tr[C(R)C(R)]C(R) j

i , Γ
(3)
18 = g6C(R) k

i C(R)
j
k ,

Γ
(3)
19 = g6C(R) j

i .

(3.99)

Additionally, the following six one-particle-reducible tensor structures also ap-

pear:

Γ(3)
α = Y iklY

kmnY mnpY
lpqY qrsY

rsj, Γ
(3)
β = Y iklY

klmY mnpY
pqrY qrsY

snj,

Γ(3)
γ = g2Y iklC(R)

k
mY

lmnY npqY
pqj, Γ

(3)
δ = g2Y iklY

klmY mnpC(R)
p
qY

nqj,

Γ(3)
ǫ = Y iklY

klmY mnpY
npqY qrsY

rsj, Γ
(3)
ζ = g2Y iklY

klmY mpqY
pqnC(R) j

n .

(3.100)
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L
(5)
1 L

(5)
2 L

(5)
3 L

(5)
4 L

(5)
5

L
(5)
6 L

(5)
7 L

(5)
8 L

(5)
9 L

(5)
10

Table 3.5: Next-to-next-to-leading order contributions to Λ ◦ βY

At this order, the contributions to Λ ◦ βY may be expressed as

(Λ ◦ βY )(5) =
10
∑

i=1

Λ
(3)
i L

(5)
i , (3.101)

where the tensor structures L
(5)
i are depicted diagrammatically in Table 3.5, with

vertices representing Y , Y in an alternating manner, a diamond representing

β
(1)

Y
, and a box representing g2C(R); for example, the diagram L

(5)
5 represents

the tensor structure

L
(5)
5 → g2(β

(1)

Y
)ijkY

jklY lmnY
mnpC(R) i

p .

Consequently, Y · Λ(3) is given by

Y · Λ(3) = Λ
(3)
1

(

2
3
Γ
(3)
1 + 1

3
Γ(3)
ǫ

)

+ Λ
(3)
2

(

1
3
Γ
(3)
2 + 2

3
Γ(3)
α

)

+ Λ
(3)
3

(

2
3
Γ
(3)
3 + 1

3
Γ
(3)
β

)

+ Λ
(3)
4 Γ

(3)
4

+ Λ
(3)
5

(

2
3
Γ
(3)
5 + 1

3
Γ
(3)
ζ

)

+ Λ
(3)
6

(

1
3
Γ
(3)
6 + 1

3
Γ
(3)
8 + 1

3
Γ(3)
γ

)

+ Λ
(3)
7

(

2
3
Γ
(3)
7 + 1

3
Γ
(3)
δ

)

+ Λ
(3)
8

(

2
3
Γ
(3)
9 + 1

3
Γ
(3)
12

)

+ Λ
(3)
9

(

2
3
Γ
(3)
10 + 1

3
Γ
(3)
11

)

+ Λ
(3)
10

(

2
3
Γ
(3)
14 + 1

3
Γ
(3)
15

)

. (3.102)

The most general contribution from the λ-term is given by

(

λC(R)g2
)(3)

= λ
(3)
1 Γ

(3)
13 + λ

(3)
2 Γ

(3)
17 + λ

(3)
3 C(R)g6, (3.103)

and the contributions from Θ · βY are

(Θ · βY )(3) = Θ(1) · β(2)

Y
+Θ(2) · β(1)

Y
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= θ
(1)
1

(

2γ
(2)
1 Γ

(3)
3 + 2γ

(2)
3 Γ

(3)
5 + 2γ

(2)
2 Γ

(3)
7 + 2γ

(2)
4 Γ

(3)
9 + γ

(2)
4 Γ

(3)
12

+ 2γ
(2)
5 Γ

(3)
14 + γ

(2)
5 Γ

(3)
15 + γ

(2)
1 Γ(3)

α + γ
(2)
2 Γ(3)

γ + γ
(2)
3 Γ

(3)
ζ

)

+ θ
(2)
1

(

2γ
(1)
1 Γ(3)

α + 2γ
(1)
2 Γ(3)

γ + γ
(1)
1 Γ(3)

ǫ + γ
(1)
2 Γ

(3)
ζ

)

+ θ
(2)
2

(

2γ
(1)
1 Γ

(3)
β + 2γ

(1)
2 Γ

(3)
δ + γ

(1)
1 Γ(3)

ǫ + γ
(1)
2 Γ

(3)
ζ

)

+ θ
(2)
3

(

γ
(1)
1 Γ

(3)
1 + γ

(1)
1 Γ

(3)
2 + γ

(1)
2 Γ

(3)
5 + γ

(1)
2 Γ

(3)
6 + γ

(1)
2 Γ

(3)
8 + γ

(1)
1 Γ

(3)
β

)

+ θ
(2)
4

(

γ
(1)
1 Γ

(3)
1 + 2γ

(1)
1 Γ

(3)
3 + γ

(1)
2 Γ

(3)
5 + 2γ

(1)
2 Γ

(3)
7

)

+ θ
(2)
5

(

2γ
(1)
1 Γ

(3)
8 + 2γ

(1)
2 Γ

(3)
11 + γ

(1)
2 Γ

(3)
12 + γ

(1)
1 Γ

(3)
ζ

)

+ θ
(2)
6

(

γ
(1)
1 Γ

(3)
5 + γ

(1)
1 Γ

(3)
6 + γ

(1)
2 Γ

(3)
9 + γ

(1)
2 Γ

(3)
10 + γ

(1)
2 Γ

(3)
11 + γ

(1)
2 Γ

(3)
δ

)

.

(3.104)

The last contributions are from Φβ̃g, and take the form

(

Φβ̃g

)(3)

= Φ(1)β̃(2)
g + Φ(2)β̃(1)

g

= φ
(1)
1

(

d̃
(2)
1 Γ

(3)
19 + d̃

(2)
2 Γ

(3)
18 + d̃

(2)
3 Γ

(3)
17

)

+ φ
(2)
1 d̃

(1)
1 Γ

(3)
14 + φ

(2)
2 d̃

(1)
1 Γ

(3)
15 + φ

(2)
3 d̃

(1)
1 Γ

(3)
18 + φ

(2)
4 d̃

(1)
1 Γ

(3)
19 . (3.105)

Given these parametrizations, we obtain from (3.97) a system of 25 equations,

listed in (A.3), which impose the following consistency conditions:

γ
(3)
16 + 2(γ

(1)
1 )2 = 0,

2γ
(3)
1 − 4γ

(3)
2 − γ(3)3 + 8(γ

(1)
1 )3 = 0,

2γ
(1)
2 γ

(3)
1 − 2γ

(1)
1 γ

(3)
6 − γ(1)1 γ

(3)
7 − 4(γ

(1)
1 )2γ

(2)
2 = 0,

γ
(1)
2 γ

(3)
1 − γ(1)1 γ

(3)
5 + γ

(1)
1 γ

(3)
6 − γ(1)1 γ

(3)
8 − 2(γ

(1)
1 )2γ

(2)
2 − 12(γ

(1)
1 )3γ

(1)
2 = 0,

γ
(1)
2 γ

(3)
6 − γ(1)2 γ

(3)
8 − γ(1)1 γ

(3)
9 + 2γ

(1)
1 γ

(3)
12 − 2γ

(1)
1 γ

(1)
2 γ

(2)
2 − 16(γ

(1)
1 )2(γ

(1)
2 )2 = 0.

(3.106)

The scheme-independence of the consistency conditions may again be verified

by expanding (3.43) to third order, albeit with some subtleties. The two-loop

redefinition of the gauge coupling may simply be parametrised as

(δg)(2) = δ
(2)
1 g5 + δ

(2)
2 g5tr [C(R)C(R)] + δ

(2)
3 tr

[

Ȳ Y C(R)
]

, (3.107)
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and part of the two-loop redefinition for the Yukawa coupling as

(δY )(2) =

5
∑

i=1

ǫ
(2)
i

(

Y ∗ Γ(2)
i

)

+ . . . , (3.108)

where (Y ∗ a)ijk ≡ Y ljka i
l + Y ilka j

l + Y ijla k
l , and Γ

(2)
i are defined in (3.89).

However, including only these terms leads to nineteen β
(3)
Y contributions of the

form Y ilma j
l b

k
m , which are not determined solely by the anomalous dimension,

violating the non-renormalization theorem. This may be corrected by including

extra terms in (δY )(2), such that

(δY )(2) =
5
∑

i=1

ǫ
(2)
i

(

Y ∗ Γ(2)
i

)

+
5
∑

i=1

ρ
(2)
i Γ

(2)
Ri , (3.109)

where

Γ
(2)
R1 = Y ijlȲlmnY

mnpȲpqrY
qrj, Γ

(2)
R2 = Y ilpȲlmnY

mnj ȲpqrY
qrk,

Γ
(2)
R3 = g2 Y ilpȲlmnY

mnjC(R) k
p , Γ

(2)
R4 = g2 Y ilmC(R) j

l ȲmpqY
pqk,

Γ
(2)
R5 = g4 Y ilmC(R) j

l C(R)
k
m , (3.110)

and each Γ
(2)
Ri is understood as being symmetrised over the three indices. The

coefficients ρ
(2)
2−5 may then be chosen to cancel off the unwanted contributions to

β
(3)
Y , preserving the non-renormalization theorem under a change of renormaliza-

tion scheme. We also expect that the anomalous dimension will consist only of

1PI contributions, allowing us to fix ρ
(2)
1 . Given these criteria, the coefficients ρ

(2)
i

must take the form

ρ
(2)
1 = 3

2
(ǫ

(1)
1 )2, ρ

(2)
2 = (ǫ

(1)
1 )2, ρ

(2)
3 = ǫ

(1)
1 ǫ

(1)
2 ,

ρ
(2)
4 = ǫ

(1)
1 ǫ

(1)
2 , ρ

(2)
5 = (ǫ

(1)
2 )2, (3.111)

and the anomalous dimension coefficients transform as

δγ
(3)
1 = 4γ

(1)
1 ǫ

(2)
1 − 4γ

(2)
1 ǫ

(1)
1 − 8γ

(1)
1 (ǫ

(1)
1 )2,

δγ
(3)
2 = 2γ

(1)
1 ǫ

(2)
1 − 2γ

(2)
1 ǫ

(1)
1 − 4γ

(1)
1 (ǫ

(1)
1 )2,

δγ
(3)
3 = 0,

δγ
(3)
4 = 0,

δγ
(3)
5 = 4γ

(2)
3 ǫ

(1)
1 − 4γ

(1)
1 ǫ

(2)
3 + 4γ

(1)
2 ǫ

(2)
1 − 4γ

(2)
1 ǫ

(1)
2 + 2γ

(1)
1 ǫ

(2)
2 − 2γ

(2)
2 ǫ

(1)
1

+ 4γ
(1)
1 ǫ

(1)
1 ǫ

(1)
2 − 8γ

(1)
2 (ǫ

(1)
1 )2,

δγ
(3)
6 = 2γ

(1)
2 ǫ

(2)
1 − 2γ

(2)
1 ǫ

(1)
2 + 2γ

(1)
1 ǫ

(2)
2 − 2γ

(2)
2 ǫ

(1)
1 − 8γ

(1)
2 (ǫ

(1)
1 )2,
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δγ
(3)
7 = 4γ

(2)
2 ǫ

(1)
1 − 4γ

(1)
1 ǫ

(2)
2 + 4γ

(1)
2 ǫ

(2)
1 − 4γ

(2)
1 ǫ

(1)
2 ,

δγ
(3)
8 = 2γ

(1)
2 ǫ

(2)
1 − 2γ

(2)
1 ǫ

(1)
2 + 4γ

(1)
1 ǫ

(2)
3 − 4γ

(2)
3 ǫ

(1)
1 − 4γ

(1)
1 ǫ

(1)
1 ǫ

(1)
2

− 8γ
(1)
2 (ǫ

(1)
1 )2,

δγ
(3)
9 = 4γ

(2)
4 ǫ

(1)
1 − 4γ

(1)
1 ǫ

(2)
4 + 2γ

(1)
2 ǫ

(2)
2 − 2γ

(2)
2 ǫ

(1)
2 − 8γ

(1)
2 ǫ

(1)
1 ǫ

(1)
2

+ 6γ
(1)
1 (ǫ

(1)
2 )2,

δγ
(3)
10 = 2γ

(1)
2 ǫ

(2)
2 − 2γ

(2)
2 ǫ

(1)
2 − 8γ

(1)
2 ǫ

(1)
1 ǫ

(1)
2 + 4γ

(1)
1 (ǫ

(1)
2 )2,

δγ
(3)
11 = 2γ

(1)
2 ǫ

(2)
2 − 2γ

(2)
2 ǫ

(1)
2 + 4γ

(1)
2 ǫ

(2)
3 − 4γ

(2)
3 ǫ

(1)
2 − 20γ

(1)
2 ǫ

(1)
1 ǫ

(1)
2

− 10γ
(1)
1 (ǫ

(1)
2 )2,

δγ
(3)
12 = 2γ

(2)
4 ǫ

(1)
1 − 2γ

(1)
1 ǫ

(2)
4 + 2γ

(1)
2 ǫ

(2)
3 − 2γ

(2)
3 ǫ

(1)
2 − 6γ

(1)
2 ǫ

(1)
1 ǫ

(1)
2

+ 3γ
(1)
1 (ǫ

(1)
2 )2,

δγ
(3)
13 = 2d

(2)
3 ǫ

(1)
2 − 2γ

(1)
2 δ

(2)
3 ,

δγ
(3)
14 = 4γ

(2)
5 ǫ

(1)
1 − 4γ

(1)
1 ǫ

(2)
5 + 2d

(1)
1 ǫ

(2)
2 − 2γ

(2)
2 δ

(1)
1 + 8γ

(1)
1 δ

(1)
1 ǫ

(1)
2

− 8γ
(1)
2 δ

(1)
1 ǫ

(1)
1 ,

δγ
(3)
15 = 2γ

(2)
5 ǫ

(1)
1 − 2γ

(1)
1 ǫ

(2)
5 + 2d

(1)
1 ǫ

(2)
3 − 2γ

(2)
3 δ

(1)
1 + 4γ

(1)
1 δ

(1)
1 ǫ

(1)
2

− 4γ
(1)
2 δ

(1)
1 ǫ

(1)
1 − 2d

(1)
1 ǫ

(1)
1 ǫ

(1)
2 ,

δγ
(3)
16 = 0,

δγ
(3)
17 = 2d

(2)
2 ǫ

(1)
2 − 2γ

(1)
2 δ

(2)
2 ,

δγ
(3)
18 = 4d

(1)
1 ǫ

(2)
4 − 4γ

(2)
4 δ

(1)
1 − 2d

(1)
1 (ǫ

(1)
2 )2,

δγ
(3)
19 = 2d

(2)
1 ǫ

(1)
2 − 2γ

(1)
2 δ

(2)
1 + 4d

(1)
2 ǫ

(2)
5 − 4γ

(2)
5 δ

(1)
1 − 8d

(1)
1 δ

(1)
1 ǫ

(1)
2

+ 7γ
(1)
2 (δ

(1)
1 )2, (3.112)

from which we can see that the consistency conditions (3.106) are scheme-independent.

Strangely, although the 1PR contributions proportional to Γ
(3)
ǫ and Γ

(3)
ζ vanish,

we are in fact left with two antisymmetric 1PR contributions to the anomalous

dimension,

(δγ(3)) ∋ γ(3)R1

(

Γ(3)
α − Γ

(3)
β

)

+ γ
(3)
R2

(

Γ(3)
γ − Γ

(3)
δ

)

(3.113)

where

γ
(3)
R1 = γ

(2)
1 ǫ

(1)
1 − γ(1)1 ǫ

(2)
1 + 2γ

(1)
1 (ǫ

(1)
1 )2, γ

(3)
R2 = γ

(2)
2 ǫ

(1)
1 − γ(1)1 ǫ

(2)
2 + 2γ

(1)
2 (ǫ

(1)
1 )2.

(3.114)

While the presence of such 1PR contributions does not affect our consistency

conditions, it is nonetheless unexpected. We shall defer further discussion of

1PR contributions arising from a coupling redefinition until the end of the next

chapter.
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3.3 Summary

In this chapter, our intent was to extend the work of [9] to the case of a general

gauge theory; that is, we wished to calculate the A-function, deduce the associated

consistency conditions, and show that these conditions are independent of the

chosen renormalization scheme. We have calculated the A-function (3.33, 3.37)

up to four loops, as well as the associated tensor TIJ (3.1, 3.2, 3.39), using gauge,

Yukawa and scalar β-functions with arbitrary coefficients, up to three, two and

one loop respectively. At this order, the first off-diagonal tensor components T
(3)
yg ,

T
(3)
gy appear, and we have shown that one is free to impose that these terms be

equal, fixing the tensor T
(3)
IJ to be equal to the coupling-space metric G

(3)
IJ for a

general gauge theory in an arbitrary renormalization scheme. This is in contrast

to [9], where attempting to fix T
(4)
IJ = G

(4)
IJ for a general scalar-fermion theory at

the first non-trivial order appeared to be valid only in particular schemes, and is

in fact not valid for MS; we shall re-visit the question of imposing symmetry in

the next chapter.

As well as calculating the A-function and metric, we have deduced all as-

sociated consistency conditions. The majority of these conditions are relations

between the coefficients of various β-functions at different loop orders, which

we have shown are all satisfied in MS. It is therefore possible to determine

some higher-order β-function coefficients purely using lower-order calculations,

and we demonstrated this by matching our predictions for β
(3)
g to the explicit

MS calculations of [23]. Furthermore, we have shown that these conditions are

invariant under general changes in the β-functions as a consequence of varying

the couplings. Such variations correspond to a change in renormalization scheme,

hence the consistency conditions are scheme-independent. Interestingly, we also

found scheme-independent consistency conditions between the leading-order met-

ric coefficients, such that they must appear in a fixed ratio. Consequently, the

leading-order positive-definiteness of the metric TIJ = GIJ is in fact determined

entirely by the positivity of any one of these coefficients. The three leading-order

coefficients were of course calculated in [8], but it is pleasing to discover that in

fact only one of these calculations was necessary.

The final part of our work in this chapter involved extending the Λ-equation

to general gauge theories, providing evidence that a conjectured all-orders ex-

pression for A in an N = 1 supersymmetric gauge theory is correct. This can

in fact be accomplished by simply including an additional gauge-dependent ten-

sor structure, and we have again demonstrated that the existence of a function

Λ satisfying this equation leads to consistency conditions between coefficients of
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the chiral superfield anomalous dimension γ at different loop orders, up to three

loops. We have verified that these consistency conditions are satisfied by γ, as

computed using Dimensional Reduction with MS, and we have again shown that

the conditions are invariant under changes in γ induced by a coupling redefinition,

hence hold in an arbitrary renormalization scheme. One unexpected feature of

this calculation is the prediction of 1PR contributions to the anomalous dimension

in a non-minimal renormalization scheme; we stress that such terms do not affect

the consistency of the conjectured all-order a-function for supersymmetric theo-

ries, but are nevertheless troublesome. As mentioned, we shall comment further

on such apparent contributions in the next chapter, where a similar phenomenon

arises.

Since our work has been a purely perturbative analysis, we have made no

comment on attempts to prove the all-orders positive-definiteness of the metric

for general gauge theories, nor the all-orders validity of the Λ-equation for super-

symmetric gauge theories. Progress on proving positive-definiteness of the metric

is still lacking, and more recent techniques used to prove the weak a-theorem [16]

appear insufficient in demonstrating the existence of a monotonically-decreasing

A-function that is valid away from RG fixed points. However, a full superspace

LRG analysis of a general N = 1 supersymmetric theory was conducted in [35],

and one of the Weyl consistency conditions appears to be of the same form as

the Λ-equation, up to some as-yet-undetermined function; it would therefore be

of interest to elucidate the precise connection between the two.



Chapter 4

Six Dimensions

In chapter 3, we investigated the phenomenologically-relevant case of four dimen-

sions, following on from the work initiated in [8] and extended in [9]. This work

was based on extending a theory to curved spacetime with position-dependent

couplings, then using Weyl consistency conditions in order to derive constraints

on renormalization group quantities; the approach was earlier used in [7] to re-

derive the two-dimensional c-theorem and provide a potential answer to Cardy’s

conjecture [1]. As it happens, a similar approach can be applied to theories in six

dimensions [36], demonstrating the existence of a function A satisfying (2.1). The

precise definitions of A and TIJ differ from those in two and four dimensions, but

the structure is nevertheless the same: there exists a function that, for sufficiently

weak coupling, behaves monotonically under renormalization group flow, and at

RG fixed points is proportional to the coefficient of the Euler density in the six-

dimensional trace anomaly. In [36, 37], an attempt was made to calculate A and

TIJ to leading order, and it was found that the metric was negative-definite, in

contrast to the two- and four-dimensional cases. This was later remedied in [38],

by instead constructing a one-parameter family of functions satisfying (2.1) with

a metric that is positive-definite at leading order.

In [39], we endeavoured to derive the consequences of an a-function satisfy-

ing (2.1), by calculating the a-function and all required β-functions for a general

six-dimensional scalar theory; an extensive list of further references regarding the

β-function calculations may be found there. Unlike the four-dimensional calcula-

tions of the previous chapter, the results of this chapter are essentially identical to

the published counterpart. Irrespective of questions regarding the leading-order

metric, we shall proceed in the six-dimensional case as in the four-dimensional

case, constructing the A-function order by order. We shall continue up to five-

113
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loop contributions A(5), requiring knowledge of the β-function up to three loops.

At this order, we will be able to test the effects of a global symmetry on the

construction of A, namely whether the β-functions in (2.1) must be modified as

in four dimensions.

4.1 φ 3 theory

We begin with the lagrangian for a general φ 3 theory in six dimensions,

L = 1
2
∂µφ

i∂µφi − 1
3!
gijkφiφjφk, (4.1)

containing a scalar field multiplet φi and tensor coupling gijk with β-function

β(gijk) ≡ βijk
1. We shall denote various 3-index tensor structures using lower-case

labelling, for example gijk(1a) = gilmgjmngknl, and various 2-index tensor structures

using upper-case labelling, for example gij(1A) = giklgjkl. From the 2-index struc-

tures we also define associated 3-index structures according to gijk(1A) = gil(1A)g
ljk.

In this way, we may easily identify anomalous dimension contributions to βijk

by their upper-case label, and non-anomalous dimension contributions by their

lower-case label. While this may seem an unnecessary distinction, it will be of

use when considering potential contributions to a v-term2 as in four dimensions,

resulting from the presence of a global symmetry, and first introduced at three

loops.

The various L-loop β-functions take the form

β
(L)
ijk = c(La)g

ijk
(La) + · · ·+ c(LA)g

ijk
(LA) + . . . (4.2)

Any tensor structures that are not totally symmetric under exchange of their

indices are implicitly accompanied by their symmetrised partners, for example

β
(L)
ijk ∋ gijk(1A) = gil(1A)g

ljk implies−−−−→ gijk(1A) = gil(1A)g
ljk + gjl(1A)g

ilk + gkl(1A)g
ijl. (4.3)

1Throughout this chapter, we shall be somewhat imprecise about the position of indices: all
β-functions are to be understood as contravariant β-functions βI .

2The name v-term is a reference to the notation of [9], in which elements of the Lie algebra
corresponding to the global symmetry S are denoted by v, such that BI = βI − (vg)I .
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As in the previous chapter, we shall make use of a diagrammatic notation, in

which the scalar coupling is depicted thus:

gijk →
i

kj

A corresponding term in the leading order A-function can hence be represented

as

gijkgjklglmngmni → ,

where contracted lines represent contracted indices.

4.1.1 The A-function at leading- and next-to-leading or-

der

Since there is only one tensor coupling, and hence only one β-function, the con-

struction of A is much simpler than in four dimensions. The one-loop β-function

β
(1)
ijk is given by

β
(1)
ijk = c(1a)g

ijk
(1a) + c(1A)g

ijk
(1A), (4.4)

where the tensor structures are given by

gijk(1a) = gilmgjmngknl, gij(1A) = giklgjkl. (4.5)

Expanding (2.1) at lowest order, we wish to solve

dA(3) = dgT (2)
gg β

(1)
g , (4.6)

after defining

∂

∂gijk
gi

′j′k′ = 1
6
[ δii′(δjj′δkk′ + δjk′δkj′)

+ δij′(δji′δkk′ + δjk′δki′)

+ δik′(δji′δkj′ + δjj′δki′) ] . (4.7)
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A
(3)
1 A

(3)
2

Table 4.1: Leading order terms in 6D A-function

and parametrising the leading order A(3) (shown diagrammatically in Table 4.1)

as

A(3) = a
(3)
1 A

(3)
1 + a

(3)
2 A

(3)
2

= a
(3)
1 (gklmgknpglpqgmqn) + a

(3)
2 (gklmglmngnpqgpqk). (4.8)

With this normalization, the lowest order metric is simply T
(2)
IJ = λ δIJ , and the

coefficients a
(3)
i are given by

a
(3)
1 = λ

4
c(1a), a

(3)
1 = 3λ

4
c(1A). (4.9)

As expected, the construction of A at leading order is trivial, giving no consistency

conditions on the β-function coefficients. From here, we shall use the actual values

of the one-loop β-function coefficients,

c(1a) = −1, c(1A) =
1
12

(4.10)

valid in any renormalization scheme, in order to reduce the number of explicit

coefficients that appear in various expressions and consistency conditions; note

we have suppressed a factor of 1
64π3 at each loop order. By doing so, the leading

order A-function can be expressed as

A(3) = −λ
4

(

A
(3)
1 − 1

4
A

(3)
2

)

. (4.11)

At next-to-leading order, the construction becomes slightly more complex.

As in four dimensions, there is an arbitrariness in the definition of a function A

satisfying (2.1), namely A → A + βIgIJβ
J for any gIJ . At this order, the most

general arbitrary term is g
(2)
IJ = α(4)δIJ .

Expanding (2.1) at next-to-leading order, we wish to solve

dA(4) = dgT (2)
gg β

(2)
g + dgT (3)

gg β
(1)
g , (4.12)
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(1)

(1)

A
(4)
1 A

(4)
2 A

(4)
3 A

(4)
4 A

(4)
5 β

(1)
ijkβ

(1)
ijk

(1)
(1) (1)

(1)

T
(3)
1 T

(3)
2 T

(3)
3 T

(3)
4

Table 4.2: Contributions to A(4) and T
(3)
IJ

where

A(4) =

5
∑

i=1

a
(4)
i A

(4)
i + α(4)βijkβijk (4.13)

and

T (3)
gg =

4
∑

i=1

t
(3)
i (T

(3)
i )gg. (4.14)

The relevant tensor structures are depicted in Table 4.2. As in four dimensions, it

is easiest to depict the tensor structures (T
(4)
i )gg as contractions between dg and

βijk; that is, each metric diagram in Table 4.2 is of the form (dg)abc(T
(4)
i ) def

abc β
(1)
def .

The two-loop β-function is given by

β
(2)
ijk = c(2b)g

ijk
(2b) + c(2c)g

ijk
(2c) + c(2d)g

ijk
(2d) + c(2B)g

ijk
(2B) + c(2C)g

ijk
(2C), (4.15)

where

gijk(2b) = gjpqgkprgiqr(1a), gijk(2c) = giprgjpqgqs1Ag
ksr, gijk(2d) = gimngjpqgkrsgnqsgmpr,

(4.16)

and

gij(2B) = gipqgjpq(1a), gij(2C) = gimngjmqgnq(1A). (4.17)

Substituting A(4), T
(3)
IJ and β

(2)
ijk into (4.12), we obtain the A-function coeffi-

cients

a
(4)
1 = λ

6
c(2d), a

(4)
2 = λ

2
c(2b) + α(4), a

(4)
3 = 3λ

2
c(2c) − 1

2
α(4),

a
(4)
4 = −λ

4
c(2c) +

1
24
α(4), a

(4)
5 = − λ

24
(2c(2c) − c(2B)) +

1
48
α(4),

(4.18)
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and metric coefficients

t
(3)
1 = −6α(4), t

(3)
2 = −3λc(2c) + 1

2
α(4), t

(3)
3 + t

(3)
4 = −3λ(c(2c) − c(2B)) + α(4),

(4.19)

subject to the consistency condition

6c(2C) + c(2c) + c(2B) = 0. (4.20)

It is easy to see that this consistency condition is satisfied for the MS values of

the β
(2)
ijk coefficients,

c(2b) = −1
4
, c(2c) =

7
72
, c(2d) = −1

2
, c(2B) =

1
18
, c(2C) = − 11

432
, (4.21)

and we shall see later that (4.20) is in fact scheme-independent. Interestingly, the

scheme-independence of this condition will be crucial for answering the question

of whether TIJ is symmetric beyond the manifest symmetry displayed at leading

order and next-to-leading order.

Substituting in the MS values of c(2i), the next-to-leading order A-function

can therefore be expressed as

A(4) = λ
(

− 1
12
A

(4)
1 − 1

8
A

(4)
2 + 7

48
A

(4)
3 − 7

288
A

(4)
4 − 5

864
A

(4)
5

)

+ α(4)βijkβijk. (4.22)

4.1.2 The A-function at next-to-next-to-leading order

Despite the conceptual simplicity of solving the required equation, the construc-

tion of A beyond next-to-leading order is highly non-trivial. As mentioned at the

beginning of this chapter, we must investigate whether the β appearing in (2.1)

must be modified as in four dimensions; the work of [38] strongly suggests that

such a modification should indeed take place, as their construction is analogous

to the two- and four-dimensional cases.

It was shown in [8] that for a four-dimensional theory with general couplings

gI and a global symmetry in the kinetic term of the lagrangian density L , the

βI in (2.1) must be replaced by a generalization,

βI → BI = βI − (vg)I , (4.23)

where v is an element of the Lie algebra of the global symmetry group. The
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analogous case in six dimensions, where the kinetic term in (4.1) is invariant

under O(N) transformations of the scalar fields φi, is a shift in the β-function

defined by

βijk → Bijk = βijk − vl(i g jk)l (4.24)

for some antisymmetric tensor vij. The only tensor structures present in the the-

ory that can give such contributions to Bijk are antisymmetric combinations of

structures that appear in the anomalous dimension; such antisymmetric contri-

butions are first possible only at three loops.

Expanding (2.1) and taking the modification (4.24) into account, we therefore

wish to solve

dA(5) = dgT (2)
gg B

(3)
g + dgT (3)

gg β
(2)
g + dgT (4)

gg β
(1)
g . (4.25)

In what follows, we shall again use the explicit values for scheme-independent β-

function coefficients in order to simplify the consistency conditions derived from

(4.25). The scheme-independent coefficients are

c(1a) = −1, c(1A) =
1
12
, c(2b) = −1

4
, c(2d) = −1

2
, c(2C) = − 11

432
, (4.26)

and we shall postpone the derivation of their scheme-independence until the next

section.

The three-loop β-function is given by

β
(3)
ijk = c(3e)g

ijk
(3e) + . . .+ c(3u)g

ijk
(3u) + c(3D)g

ijk
(3D) + . . .+ c(3L)g

ijk
(3L). (4.27)

Defining two new useful tensor structures

gijkl22 = gijmgklm, gij(2D) = gim(1A)g
mj
(1A), (4.28)

we may express the non-anomalous dimension terms as

gijk(3e) = gilm(2b)g
jlkm
22 , gijk(3f) = glmi(2b)g

jlkm
22 , gijk(3g) = gipqgjpr(1a)g

kqr
(1a),

gijk(3h) = gilm(1a)g
nq
(1A)g

jlngkmq, gijk(3i) = gpq(1A)g
ipr
(1a)g

jqkr
22 , gijk(3j) = gilmgjlngkmqgnq(2B),

gijk(3k) = gmil(2c)g
jlkm
22 , gijk(3l) = gilm(2c)g

jlkm
22 , gijk(3m) = gilngjmqgklmgnq(2C),

gijk(3n) = gilngjmqgklmgnq(2D), gijk(3o) = gpq(1A)g
rs
(1A)g

jpkr
22 giqs, gijk(3p) = gistgqt(1A)g

jrps
22 gkpqr22 ,

gijk(3q) = girs(1a)g
jqps
22 gkpqr22 , gijk(3r) = gipqgjrsgknps22 grnq(1a), gijk(3s) = gilm(2d)g

jlkm
22 ,

gijk(3t) = gipqgjrps22 gknrl22 gnqls22 , gijk(3u) = gkpqgjrsn22 gispl22 g
rlqn
22 , (4.29)
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and the anomalous dimension terms as

gij(3D) = gipqgqjp(2b), gij(3E) = gipqgjpq(2b), gij(3F ) = gipqgjpq(2c),

gij(3G) = gimngmp(1A)g
pnj
(1a), gij(3G′) = ginp(1a)g

mp
(1A)g

jmn, gij(3H) = gipjq22 gpq(2B),

gij(3I) = gipqgjpq(2d), gij(3J) = gimngmp(1A)g
nq
(1A)g

jpq, gij(3K) = gipjq22 gpq(2C),

gij(3L) = ginjq22 gnq(2D). (4.30)

Note that gij(3G) = gji(3G′) are the only non-symmetric tensor structures that con-

tribute to the anomalous dimension, hence we postulate that the antisymmetric

tensor v defined by (4.24) takes the form

vij = cv(3G)

(

g(3G) − g(3G′)

)ij
. (4.31)

Finally, it is possible that in general non-minimal renormalization schemes one

may obtain contributions to β
(3)
ijk from one-particle-reducible (1PR) diagrams that

are not present in MS. We shall therefore introduce four new anomalous dimen-

sion contributions,

gij(3M) = gil(2B)g
lj
(1A), gij(3M ′) = gil(1A)g

lj
(2B),

gij(3N) = gil(2C)g
lj
(1A), gij(3N ′) = gil(1A)g

lj
(2C), (4.32)

with associated β-function contributions

β
(3)
ijk → β

(3)
ijk + c(3M)g

ijk
(3M) + c(3M ′)g

ijk
(3M ′) + c(3N)g

ijk
(3N) + c(3N ′)g

ijk
(3N ′). (4.33)

The reason for including these four terms in particular will become clear when we

discuss scheme dependence. Since the new tensor structures satisfy gij(3M) = gji(3M ′)

and gij(3N) = gji(3N ′), there may also be new contributions to v in the non-minimal

scheme:

vij → vij + cv(3M)

(

g(3M) − g(3M ′)

)ij
+ cv(3N)

(

g(3N) − g(3N ′)

)ij
. (4.34)

At next-to-next-to leading order, the arbitrariness implicit in the definition of

A must itself be expanded beyond leading order. By doing so, we find the most

general possible arbitrariness to be

(

βIgIJβ
J
)(5)

= 2β(1)
g g(2)gg β

(2)
g + β(1)

g g(3)gg β
(1)
g , (4.35)

where

g(2)gg = α(4), g(3)gg = α
(5)
1 T

(3)
1 + α

(5)
2 T

(3)
2 + α

(5)
3 T

(3)
3 . (4.36)
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A
(5)
1 A

(5)
2 A

(5)
3 A

(5)
4 A

(5)
5 A

(5)
6

A
(5)
7 A

(5)
8 A

(5)
9 A

(5)
10 A

(5)
11 A

(5)
12

A
(5)
13 A

(5)
14 A

(5)
15 A

(5)
16

Table 4.3: Contributions to A(5)

Diagrammatically, the three3 new arbitrary terms correspond to replacing the

derivatives dgijk, displayed on the metric terms in Table 4.2, with β
(1)
ijk. The

next-to-next-to leading order contribution to A may therefore be parametrised as

A(5) =
16
∑

i=1

a
(5)
i A

(5)
i + 2α(4)β

(1)
ijkβ

(2)
ijk

+

3
∑

j=1

α
(5)
i β

(1)
abc(T

(3)
i ) def

abc β
(1)
def , (4.37)

where

A
(5)
1 = gijkgijk(3I), A

(5)
9 = gijkgijk(3n),

A
(5)
2 = gijkgijk(3s), A

(5)
10 = gijkgijk(3j),

A
(5)
3 = gijkgijk(3u), A

(5)
11 = gijkgijk(3m),

A
(5)
4 = gij(1A)g

jk
(1A)g

kl
(1A)g

li
(1A), A

(5)
12 = gijkgijk(3e),

A
(5)
5 = gijkgijk(3L), A

(5)
13 = gijkgijk(3l),

A
(5)
6 = gijkgijk(3K), A

(5)
14 = gijkgijk(3E),

A
(5)
7 = gijkgijk(3J), A

(5)
15 = gijkgijk(3o),

A
(5)
8 = gijkgijk(3t), A

(5)
16 = gijkgijk(3F ), (4.38)

3Three arbitrary terms is sufficient, because β
(1)
abc(T

(3)
3 ) def

abc β
(1)
def = β

(1)
abc(T

(3)
4 ) def

abc β
(1)
def ; ob-

viously, this may not hold at higher orders.
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(1) (1)

(1)

(1)

(1)

(1)

T
(4)
1 T

(4)
2 T

(4)
3 T

(4)
4 T

(4)
5 T

(4)
6

(1) (1)

(1)

(1) (1)

(1)

T
(4)
7 T

(4)
8 T

(4)
9 T

(4)
10 T

(4)
11 T

(4)
12

(1)

(1)

(1)

(1)

(1)

(1)

T
(4)
13 T

(4)
14 T

(4)
15 T

(4)
16 T

(4)
17 T

(4)
18

(1) (1)

(1)

(1)

(1) (1)

T
(4)
19 T

(4)
20 T

(4)
21 T

(4)
22 T

(4)
23 T

(4)
24

(1)

(1) (1)
(1)

(1) (1)

T
(4)
25 T

(4)
26 T

(4)
27 T

(4)
28 T

(4)
29 T

(4)
30

Table 4.4: Next-to-next-to-leading-order metric terms T
(4)
IJ

as shown in Table 4.3. The metric T
(4)
gg may likewise be expressed as

T (4)
gg =

30
∑

i=1

t
(4)
i (T

(4)
i )gg, (4.39)

shown in Table 4.4, and again depicted most efficiently as a contraction between

dg and βg.

Substituting the three-loop β-function (4.27), v term (4.31), 1PR contribu-

tions (4.32) and (4.34), A-function contributions (4.37) and metric terms (4.39),

plus the relevant lower-order contributions, into the next-to-next-to-leading or-

der equation (4.25), we obtain a very large system of linear equations, detailed in

(B.1). After eliminating all A-function and metric coefficients, we obtain several

consistency conditions:

c(3q) − c(3s) − 12c(3I) + 6c(2B) = 0,

c(3r) − 2c(3s) + 12c(3p) − 12c(2c) = 0,
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c(3e) − c(3g) − 24c(3h) − 144c(3o) − 72Z + 3(c(2B) + 2c(2c)) = 0,

c(3e) − c(3g) − 6c(3i) + 6c(3k) + 72Z − 3c(2B) − 144c2(2c) = 0,

2c(3h) + 6c(3m) − 12c(3n) + 18c(3o) + c(3D) + 12c(3F ) + 72c(3J)

+36c(3K) − 72c(3L) − 11
144

[1 + 24(c(2B) − c(2c))] = 0,

c(3e) − 1
2
c(3f) + 6c(3k) − 12c(3l) = 0,

c(3j) + 6c(3m) + 6c(3H) + 36c(3K) − 12c(2B)c(2c) = 0,

c(3h) − c(3i) + c(3l) − c(3D) − 12c(3F ) + 12Z − 12c(2c)(c(2B) + 2c(2c)) = 0, (4.40)

and

12cv(3G) + 24cv(3M) + 144cv(3N) = 6(c(3G) − c(3G′)) + 12(c(3M) − c(3M ′))

+ 72(c(3N) − c(3N ′))− c(3j) − 6c(3m) − 12c2(2c),

(4.41)

where

Z = c(3G) + c(3G′) − c(3o) + 1
6
c(3E) − 2c(3F ) + 12c(3J). (4.42)

The conditions (4.40) are satisfied by the MS values of the β-function coefficients,

where the two-loop results were given earlier in (4.21) and the three-loop results

are given by

c(3e) = −3
8
, c(3f) =

1
4
, c(3g) =

5
16
, c(3h) = − 47

864
,

c(3i) = − 47
432
, c(3j) =

23
288
, c(3k) =

5
27
, c(3l) =

11
216
,

c(3m) = − 19
324
, c(3n) =

11
1728

, c(3o) =
11

1728
, c(3p) =

11
144
,

c(3q) = − 1
16
, c(3r) = −23

24
+ ζ(3), c(3s) = −29

48
+ 1

2
ζ(3), c(3t) = −1,

c(3u) =
1
3
− ζ(3), (4.43)

and

c(3D) =
7

864
, c(3E) =

71
1728

, c(3F ) = − 103
10368

, c(3G) = c(3G′) = − 1
108
,

c(3H) = − 121
5184

, c(3I) =
7
96
− 1

24
ζ(3), c(3J) =

23
62208

, c(3K) =
103
7776

,

c(3L) = − 13
31104

, c(3M) = c(3M ′) = 0, c(3N) = c(3N ′) = 0. (4.44)

Here, ζ(z) is the Riemann ζ-function.

The isolated condition (4.41) is in some sense the most important consistency

condition derived from (4.25): we see that the only occurrence of the 1PR terms

in the consistency conditions is in (4.41), alongside the v term contributions.
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Furthermore, we will show in the next section that while the rest of the conditions

are scheme-independent, the RHS of (4.41) is only scheme-independent if we

include precisely these 1PR terms. In addition, by substituting in the MS values

of the β-function coefficients, we see that (4.41) is only satisfied if

cv(3G) + 2cv(3M) + 12cv(3N) =
137

10368
. (4.45)

Since the 1PR coefficients vanish in MS, it seems natural to assume that the

associated 1PR contributions to v also vanish, and hence we predict

(

cv(3G)

)

MS
= 137

10368
. (4.46)

This prediction may, in principle, be verified by direct calculation, using the

methods in [15, 40].

Given that the consistency conditions are satisfied in MS, we may list the

explicit values for the coefficients a
(5)
i ,

a
(5)
1 =

(

9
64
− 1

16
ζ(3)

)

λ, a
(5)
9 = 47

1152
λ,

a
(5)
2 =

(

−29
48

+ 1
2
ζ(3)

)

λ, a
(5)
10 = − 23

576
λ,

a
(5)
3 =

(

1
8
− 3

8
ζ(3)

)

λ, a
(5)
11 = − 7

128
λ,

a
(5)
4 = − 145

82944
λ, a

(5)
12 = 107

96
λ,

a
(5)
5 = − 5

41472
λ, a

(5)
13 = − 5

32
λ,

a
(5)
6 = 29

2304
λ, a

(5)
14 = − 35

128
λ,

a
(5)
7 = 0, a

(5)
15 = 101

3456
λ,

a
(5)
8 = −1

8
λ, a

(5)
16 = − 5

2304
λ, (4.47)

up to the arbitrariness defined in (4.35). Before giving the MS values for the met-

ric coefficients, we shall discuss the issues regarding symmetry. As can be seen

from the diagrams in Table 4.4, at this order the metric T
(4)
IJ is not manifestly sym-

metric; symmetry of T
(4)
IJ requires each pair of terms {T (4)

17 , T
(4)
18 }, . . . {T (4)

29 , T
(4)
30 }

to have equal coefficients:

t
(4)
17 = t

(4)
18 , t

(4)
19 = t

(4)
20 , t

(4)
21 = t

(4)
22 , t

(4)
23 = t

(4)
24 ,

t
(4)
25 = t

(4)
26 , t

(4)
27 = t

(4)
28 , t

(4)
29 = t

(4)
30 . (4.48)

It turns out that due to the arbitrariness present in the solution of the equations

derived from (4.25), it is in fact possible to impose that these coefficients be equal,
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subject to an additional consistency condition,

c(3m) − 2c(3n) +
1
6
c(3E) − c(3H) − 12c(3L) − Z

+2(c(3ρ) + c(3σ)) + 12(c(3τ) + c(3χ)) =
11
36
(c(2B) − 2c(2c)). (4.49)

This condition is indeed satisfied by the MS values of the β-function coefficients,

and hence one is free to impose that TIJ be symmetric up to this order. With

symmetry imposed, the MS values of the metric coefficients are

t
(4)
1 = 13

8
λ− 3

2
λζ(3)− 3α

(4)
1 − t(4)3 ,

t
(4)
2 = 1

4
λ− 2α

(4)
1 ,

t
(4)
4 = −161

48
λ+ 11

2
α
(4)
1 + 24α

(5)
2 ,

t
(4)
5 = −89

24
λ+ 11α

(4)
1 + 48α

(5)
2 ,

t
(4)
6 = −31

24
λ+ 4α

(4)
1 + 24α

(5)
2 ,

t
(4)
7 = −13

24
λ+ 1

3
α
(4)
1 − 2α

(5)
2 ,

t
(4)
8 = 49

144
λ− 7

12
α
(4)
1 − 4α

(5)
2 ,

t
(4)
9 = −11

96
λ− 2α

(5)
2 ,

t
(4)
10 = 1

3
α
(5)
2 ,

t
(4)
11 = 391

1728
λ− 11

72
α
(4)
1 + 1

3
α
(5)
2 ,

t
(4)
12 = 11

432
λ+ 4

3
α
(5)
2 − t(4)13 ,

t
(4)
14 = 1

192
λ+ 1

3
α
(5)
2 ,

t
(4)
15 = − 299

1728
λ− t(4)16 − 2t

(4)
17 + 11

36
α
(4)
1 + 5

3
α
(5)
2 ,

t
(4)
17 = t

(4)
18 ,

t
(4)
19 = t

(4)
20 = −59

72
λ+ 2

3
t
(3)
4 − 12(t

(4)
16 + t

(4)
17 ) +

11
12
α
(4)
1 + 6α

(5)
2 ,

t
(4)
21 = t

(4)
22 = 115

288
λ− 7

6
α
(4)
1 − 8α

(5)
2 ,

t
(4)
23 = t

(4)
24 = 73

48
λ− 2

3
t
(3)
4 + 12(t

(4)
16 + t

(4)
17 )− 25

12
α
(4)
1 − 12α

(5)
2 ,

t
(4)
25 = t

(4)
26 = 101

288
λ− 7

12
α
(4)
1 − 6α

(5)
2 ,

t
(4)
27 = t

(4)
28 = 373

1728
λ− 11

36
t
(3)
4 + 2(t

(4)
16 + t

(4)
17 )− 11

72
α
(4)
1 − α(5)

2 ,

t
(4)
29 = t

(4)
30 = −11

48
λ+ 11

36
t
(3)
4 − 2(t

(4)
16 + t

(4)
17 ) +

11
72
α
(4)
1 + 2α

(5)
2 . (4.50)

In (4.19), we saw that the next-to-leading order metric T
(3)
IJ had two free pa-

rameters t
(3)
1 and t

(3)
4 , of which t

(3)
1 was identified with the freedom α(4) in A,

leaving one new free parameter. At next-to-next-to-leading order we find similar

behaviour, in that the freedom in A corresponds to various linear combinations
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of t
(3)
1 and t

(4)
10 ,

α
(5)
1 = 7

12
t
(3)
1 − 36t

(4)
10 , α

(5)
2 = 3t

(4)
10 , α

(5)
3 = − 11

144
t
(3)
1 + 6t

(4)
10 , (4.51)

and there is additional arbitrariness introduced by the free parameters t
(4)
3 , t

(4)
13 ,

t
(4)
16 , t

(4)
17 . If symmetry is not imposed on the metric, then the coefficients (4.50)

would also display the full arbitrariness in A as given in (4.35), however after im-

posing symmetry we are left with two free parameters α(4) and α
(5)
2 , corresponding

to choosing

α
(5)
1 = −12α(5)

2 − 7
2
α(4), α

(5)
3 = 2α

(5)
2 + 11

24
α(4). (4.52)

In [9], an attempt to impose symmetry for four-dimensional scalar/fermion theo-

ries was made, but there did not appear to be enough freedom in the A-function

to allow this for arbitrary schemes. Given our success at the equivalent loop order

in six dimensions, and our ability to impose symmetry in four dimensions for the

off-diagonal terms T
(3)
yg , T

(3)
gy , we feel that there is some support for the idea of

revisiting the four-dimensional case.

4.2 Scheme-dependence and one-particle-reducible

contributions

We now turn to the question of scheme-dependence, specifically the effects of a

coupling redefinition on the β-function coefficients, and hence whether the consis-

tency conditions are scheme-independent as expected. The coupling redefinition

takes the form

gijk → ḡijk ≡ ḡijk(g), (4.53)

and its effect on the β-function can be deduced (as in four dimensions, see (3.43))

from the identity

β̄ijk(ḡ) = µ
d

dµ
ḡijk = β · ∂

∂g
ḡijk(g), (4.54)

where we have introduced the shorthand notation a · b ≡ aijkbijk. Our investiga-

tions into scheme-dependence have revealed some rather surprising and counter-

intuitive results regarding potential 1PR contributions to the β-function in non-

minimal schemes.

At lowest order, expressing the coupling in the new scheme as a shift of the
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form ḡ = g + δg, (4.54) can be expanded to give

δβ
(2)
ijk = β(1) · ∂

∂g
(δg)

(1)
ijk − (δg)(1) · ∂

∂g
β
(1)
ijk. (4.55)

The most general one-loop redefinition that can be made is

(δg)
(1)
ijk = δ1g

ijk
(1a) + δ2g

ijk
(1A), (4.56)

where the non-symmetric tensor structures are again to be understood as being

accompanied by their symmetrised partners. Substituting this redefinition and

the one-loop β-function into (4.55) gives the following changes at two loops:

δc(2B) = −1
6
∆, δc(2c) =

1
6
∆, ∆ = δ1 + 12δ2. (4.57)

We can now see that the two-loop consistency condition (4.20) is invariant under

the most general possible coupling redefinition, and is hence scheme-independent.

At the next order, we must track not only two-loop redefinitions of g, but also

the higher-order effects of one-loop redefinitions. Consequently, expanding (4.54)

and using a coupling redefinition ḡ = gijk + (δg)
(1)
ijk + (δg)

(2)
ijk, we find

δβ
(3)
ijk = β(1) · ∂

∂g
(δg)

(2)
ijk − (δg)(2) · ∂

∂g
β
(1)
ijk

+ β(2) · ∂
∂g

(δg)
(1)
ijk − (δg)(1) · ∂

∂g
β
(2)
ijk −

1

2

(

δg(1) · ∂
∂g

)2

β
(1)
ijk

− δg(1) · ∂
∂g

[

β(1) · ∂
∂g

(δg)
(1)
ijk − (δg)(1) · ∂

∂g
β
(1)
ijk

]

. (4.58)

The general one-loop redefinition is given above in (4.56), and the general two-

loop redefinition is

(δg)
(2)
ijk = ǫ1g

ijk
(2b) + ǫ2g

ijk
(2c) + ǫ3g

ijk
(2d) + ǫ4g

ijk
(2e)

+ ǫ5g
ijk
(2f) + ǫ6g

ijk
(2B) + ǫ7g

ijk
(2C) + ǫ8g

ijk
(2D). (4.59)

Note that the general two-loop redefinition allows for three 1PR structures, de-

fined by

gijk(2e) = gilmglj(1A)g
mk
(1A), gijk(2f) = gijl(1a)g

lk
(1A), gij(2D) = gik(1A)g

kj
(1A). (4.60)

These redefinitions will generate the 1PR diagrams gijk(3M), g
ijk
(3M ′), g

ijk
(3N), g

ijk
(3N ′) spec-
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ified earlier, as well as 11 additional three-loop 1PR diagrams,

gijk(3α) = gil(1A)g
klj
(2b), gijk(3β) = gjl(1A)g

lik
(2c), gijk(3γ) = gil(1A)g

jlk
(2c),

gijk(3δ) = gil(2B)g
ljk
(1a), gijk(3ǫ) = gil(2C)g

ljk
(1a), gijk(3ζ) = gil(1A)g

jm
(1A)g

lmk
(1a),

gijk(3η) = gil(2D)g
ljk
(1a), gijk(3κ) = gil(1A)g

jm
(2B)g

lmk, gijk(3λ) = gim(1A)g
jl
(2C)g

lmk,

gijk(3µ) = gil(1A)g
jm
(2D)g

lmk, gijk(3ν) = gil(1A)g
lm
(2D)g

mjk, (4.61)

with associated β-function coefficients c(3α), . . . , c(3ν).

Substituting (4.4), (4.15), (4.56) and (4.59) into (4.58), we obtain the effects

of a general coupling redefinition on βg at three loops. The changes in β-function

coefficients are

δc(3e) = 0,

δc(3f) = 0,

δc(3g) = −2ǫ1 − 2c(2b)δ1 + δ21 ,

δc(3h) =
1
6
ǫ1 − ǫ2 − c(2c)δ1 − 2c(2b)δ2 − 1

6
δ21,

δc(3i) =
1
3
ǫ1 − 2ǫ2 + 2ǫ5 − 2c(2c)δ1 − 4c(2b)δ2 − 1

3
δ21 − 2δ1δ2,

δc(3j) = −2ǫ2 + 2ǫ6 − 2c(2c)δ1 + 2c(2B)δ1 − 1
3
δ21 − 4δ1δ2,

δc(3k) =
1
3
ǫ1 + 2ǫ2 + 2c(2c)δ1 − 4c(2b)δ2,

δc(3l) =
1
6
ǫ1 + ǫ2 + c(2c)δ1 − 2c(2b)δ2,

δc(3m) =
1
3
ǫ2 + 2ǫ7 − 4c(2c)δ2 + 2c(2C)δ1 − 2(1

3
δ1δ2 + 4δ22),

δc(3n) =
1
3
ǫ2 + 2ǫ8 − 4c(2c)δ2 − 2

3
δ1δ2 − 7δ22,

δc(3o) =
1
3
ǫ2 + ǫ4 − 4c(2c)δ2 − 2

3
δ1δ2 − 5δ22 ,

δc(3p) =
1
3
ǫ3 − 4c(2d)δ2,

δc(3q) = −ǫ3 − c(2d)δ1,
δc(3r) = −2ǫ3 − 2c(2d)δ1,

δc(3s) = ǫ3 + c(2d)δ1,

δc(3t) = 0,

δc(3u) = 0,

(4.62)

δc(3D) = −1
3
ǫ1 − 2ǫ6 + 4c(2b)δ2 − 2c(2B)δ1 + 4δ1δ2 +

1
3
δ21 ,

δc(3E) = −1
6
ǫ1 − 2ǫ6 + 2c(2b)δ2 − 2c(2B)δ1 +

1
4
δ21 + 4δ1δ2,

δc(3F ) = −1
6
ǫ2 +

1
6
ǫ6 + 2c(2c)δ2 − 2c(2B)δ2 + 4δ22 +

1
3
δ1δ2,
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δc(3G) = δc(3G′) = −1
6
ǫ2 +

1
3
ǫ6 − ǫ7 − 1

6
ǫ5 + 2c(2c)δ2

− 4c(2B)δ2 − c(2C)δ1 +
1
2
δ1δ2 + 8δ22 ,

δc(3H) = −1
3
ǫ6 − 2ǫ7 + 4c(2B)δ2 − 2c(2C)δ1,

δc(3I) = −1
6
ǫ3 + 2c(2d)δ2,

δc(3J) = −1
6
ǫ4 +

1
6
ǫ7 − 2c(2C)δ2 − 1

6
δ22,

δc(3K) = 0,

δc(3L) =
1
3
ǫ7 − 1

3
ǫ8 − 4c(2C)δ2 − 1

6
δ22,

δc(3M) = − 1
12
ǫ5 +

1
12
ǫ6 − 2ǫ8 − c(2B)δ2 + 4δ22 +

1
12
δ1δ2,

δc(3M ′) = − 1
12
ǫ5 − 1

12
ǫ6 − 2ǫ8 + c(2B)δ2 + 2δ22 +

1
12
δ1δ2,

δc(3N) = −1
6
ǫ4 +

1
12
ǫ7 +

1
3
ǫ8 − c(2C)δ2 − 1

2
δ22

δc(3N ′) = −1
6
ǫ4 − 1

12
ǫ7 +

1
3
ǫ8 + c(2C)δ2 − 1

6
δ22 (4.63)

and for the other 1PR coefficients

δc(3α) = −2ǫ5 + 2δ1δ2, δc(3β) =
1
6
ǫ5 − 1

6
δ1δ2, δc(3γ) = 2ǫ4 +

1
3
ǫ5 − 1

3
δ1δ2 − 2δ22,

δc(3δ) = −2ǫ5 + 2δ1δ2, δc(3ǫ) =
1
3
ǫ5 − 1

3
δ1δ2, δc(3ζ) = −ǫ4 + δ22 ,

δc(3η) =
1
6
ǫ5 − 1

6
δ1δ2, δc(3κ) = −4ǫ4 + 4δ22 , δc(3λ) =

2
3
ǫ4 − 2

3
δ22,

δc(3µ) =
1
3
ǫ4 − 1

3
δ22, δc(3ν) =

1
6
ǫ8 − 1

4
δ22 . (4.64)

Using these changes, we see that the consistency conditions in (4.40) are scheme-

independent; more interestingly, the extra condition (4.49), required for imposing

symmetry of T
(4)
IJ , is also scheme-independent if the two-loop consistency condi-

tions is satisfied, and hence we may always impose symmetry of T
(4)
IJ .

The last consistency condition, (4.41), is somewhat surprising. Substituting in

the results of a scheme change, we see that the RHS is indeed scheme-independent,

and hence the MS result in (4.45),

cv(3G) + 2cv(3M) + 12cv(3N) =
137

10368
, (4.65)

is in fact a scheme-independent result. However, the invariance of the RHS relies

on the changes to the 1PR coefficients c(3M), etc. Consequently, we find that in a

general renormalization scheme, these particular 1PR coefficients may in fact be

non-zero. One may suppose that this is fine for a completely general renormal-

ization scheme, but for any practical non-minimal renormalization schemes, such

as momentum subtraction (MOM), the required coupling redefinitions δi, ǫi will

be such that all 1PR coefficients vanish regardless. By looking at the results of
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a coupling redefinition on the 11 extra 1PR terms listed in (4.64), it is obvious

that these terms only vanish if

ǫ4 = δ22, ǫ5 = δ1δ2, ǫ8 =
3
2
δ22 . (4.66)

However, these relations also impose

δc(3M) = −δc(3M ′) =
1
12
ǫ6 + δ22 − c(2B)δ2,

δc(3N) = −δc(3N ′) =
1
12
ǫ7 − 1

6
δ22 − c(2C)δ2, (4.67)

which may not necessarily vanish. One is of course free to impose values of δ2,

ǫ6, ǫ7 such that these coefficient changes do vanish, but such a choice of coupling

redefinition may not correspond to any natural renormalization prescription.

To test whether these 1PR terms are likely to vanish in a standard non-

minimal scheme, we shall use the example of MOM. We know already that there

should be no issues at two loops: the MOM β-function coefficients that differ from

the MS coefficients are

cMOM
(2B) = 1

36
− 2

81
π2 + 1

27
ψ′
(

1
3

)

, cMOM
(2c) = 1

8
+ 2

81
π2 − 1

27
ψ′
(

1
3

)

, (4.68)

where ψ(z) is the Euler ψ-function defined by

ψ(z) ≡ d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
, (4.69)

and Γ(z) is the usual Euler Γ-function. This corresponds to coupling redefinitions

(4.57) such that

∆ = 1
6
+ 4

27
π2 − 2

9
ψ′
(

1
3

)

. (4.70)

The exact one-loop redefinitions required have been calculated as

δ1 =
3
2
+ 4

27
π2 − 2

9
ψ′
(

1
3

)

, δ2 = −1
9
. (4.71)

Similarly, the two-loop redefinitions required to obtain the three-loop MOM coef-

ficients are

ǫ1 =
51
32

+ 11
54
π2 − 11

36
ψ′
(

1
3

)

,

ǫ2 = − 703
1728
− 41

972
π2 + 41

648
ψ′
(

1
3

)

,

ǫ3 =
59
48
− 1

2
ζ(3)− 7

27
π2 + 1

144
ln(3)2

√
3π

− 1
12
ln(3)

√
3π − 29

3888

√
3π3 + 3s2

(

π
6

)

− 6s2
(

π
2

)
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− 5s3
(

π
6

)

+ 4s3
(

π
2

)

+ 7
18
ψ′
(

1
3

)

,

ǫ4 =
1
81
,

ǫ5 = −1
6
− 4

243
π2 + 2

81
ψ′
(

1
3

)

,

ǫ6 = −215
864
,

ǫ7 =
791

10368
,

ǫ8 =
1
54
, (4.72)

where sn(z) is defined by

sn(z) =
1√
3
I
[

Lin

(

eiz√
3

)]

, (4.73)

and Lin(z) is the polylogarithm function. We can see immediately that the one-

and two-loop redefinitions required to obtain the MOM results satisfy (4.66), hence

the extra 1PR terms c(3α−3ν) vanish. However, given these redefinitions, the re-

maining contributions to δc(3M), etc do not vanish. Consequently, there exist

1PR contributions to β
(3)
g in a well-understood and commonly-used non-minimal

renormalization scheme; until now, it was expected that all such 1PR contribu-

tions should vanish. One may suppose that there could be different values of the

two-loop redefinitions that reproduce the MOM β-function coefficients and allow

δc(3M), etc to vanish, however ǫ6 may be fixed by directly calculating cMOM
(3L) , and

ǫ7 by calculating cMOM
(3J) , forcing the non-zero values

c(3M) = −c(3M ′) = − 23
10368

,

c(3N) = −c(3N ′) =
61

41472
. (4.74)

4.3 Summary

In this chapter, we have done a perturbative analysis of the A-function for a

general six-dimensional φ3 theory, prompted by the recent work of [36–38]. We

have calculated A up to five loops, and the associated tensor TIJ up to four loops,

using the scalar β-function up to three loops; this has allowed us to test various

non-trivial aspects of the a-theorem in six dimensions, such as the ability to

impose symmetry of TIJ , and the expected modification β → B in the gradient-

flow equation due to the global O(N) symmetry of the theory. We have deduced

the associated consistency conditions relating the various β-function coefficients,

and verified that they are satisfied in MS. One of these conditions allows us to

predict the coefficient of the shift β → B, which first appears at three loops, and
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we have shown that it is indeed non-zero. While symmetry of TIJ up to three

loops is manifest, we have found that we may impose that T
(4)
IJ = G

(4)
IJ , as long as

an additional consistency condition is satisfied; this too has been shown to hold

in MS. We have again deduced the effects of a coupling redefinition on β, and

demonstrated that the consistency conditions are invariant under such changes,

including the extra condition required to impose symmetry of T
(4)
IJ , hence we are

free to impose symmetry in an arbitrary renormalization scheme. This is again in

contrast to the scheme-dependence found in the four-dimensional scalar-fermion

calculations of [9].

When attempting to investigate the effects of a coupling redefinition on the

β-function, we encountered an unexpected issue: a completely general coupling

redefinition appears to lead to 1PR contributions to β(3), arising as antisymmetric

terms in the anomalous dimension. Unlike the earlier four-dimensional N = 1

case, the non-zero redefinitions in a six-dimensional φ3 theory are crucial to the

scheme-independence of one of the consistency conditions, and we have verified

that the β-function coefficients of these terms are non-zero in a well-known and

commonly-utilised non-minimal renormalization scheme, MOM. The existence

of such terms was eventually resolved in [41], where it was noticed that in the

context of RG flow, the anomalous dimension possesses an arbitrariness corre-

sponding to antisymmetric contributions. The authors showed how to define the

anomalous dimension for a general theory, such that any antisymmetric contri-

butions are automatically absorbed into this arbitrariness, hence removing the

1PR contributions to the β-function. The authors also explicitly demonstrated

that the anomalous dimension remains symmetric in the case of four-dimensional

N = 1 supersymmetry, the graphs of which are topologically equivalent to those

in a chiral φ3 theory. It remains to be seen what effect this new formalism has on

the v term, and hence on the required shift to the B-function. It is quite remark-

able that, while it is comparatively straightforward to construct a six-dimensional

analogue of the A-function for a φ3 theory, pursuing its consequences has led to

a necessary clarification in the definition of an anomalous dimension for general

quantum field theories, and how it transforms under a coupling redefinition.



Chapter 5

Three Dimensions

So far, we have considered even-dimensional quantum field theories, in which the

trace anomaly contains various curvature invariants. The most critical of these

invariants, common to all dimensions, is the Euler density, as the A-function sat-

isfying the a-theorem in even dimensions reduces to the coefficient of the Euler

density at fixed points of the renormalization group (RG) flow. Unfortunately, the

Euler density for an odd-dimensional spacetime vanishes identically [65], hence

it would seem that there is no candidate quantity for an a-theorem in three

dimensions. Furthermore, attempts to derive a gradient-flow equation in three

dimensions using local renormalization group (LRG) methods have so far been

unsuccessful, though it was shown that some of the same restrictions on the form

of RG quantities do hold [42]. A different approach was proposed in [43], in which

evidence was given that for N = 2 theories, a function F , related to the free en-

ergy of the corresponding Euclidean CFT, may satisfy the weak a-theorem. This

was formalised in [44], and extended to non-supersymmetric theories in [45], at

least for non-interacting theories; the “F -function” was then shown to obey a

gradient-flow equation in the vicinity of an RG fixed point. However, as of yet

there are very few perturbative calculations of F for interacting theories, and

there is no direct analogue of the a-function defined (up to the usual arbitrari-

ness) away from RG fixed points.

Despite this lack of theoretical justification, we were (surprisingly) able to

construct such a function, obeying the same gradient-flow equation as in even

dimensions. The results in this chapter are based on the work carried out in

three papers, [46–48], in which we investigate such constructions in full gener-

ality, valid (as usual) for arbitrary renormalization schemes, for a wide range of

three-dimensional theories. The possibility of constructing such a function, at

133
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least for particular theories, was first investigated using the two-loop β-function

calculations in [49], and the four-loop β-function contributions containing more

than one type of coupling [46]; the theories considered were abelian Chern-Simons

theory, non-abelian SU(N) Chern-Simons theory, and non-abelian N = 1 super-

symmetric Chern-Simons theory (the third being a special case of the second).

Each theory is, of course, perturbatively renormalizable, with n pairs of scalars

and fermions (φi, ψi) transforming according to the fundamental representation

of a global SU(n) symmetry (in the supersymmetric example the field pairs are

contained in complex supermultiplets). Furthermore, the gauge coupling g in

Chern-Simons theories is a topological quantity with β(g) ≡ 0 [50], and hence

the gauge β-function plays no rôle in our construction.

5.1 Evidence for the existence of an A-function

5.1.1 Leading order

We begin with the abelian Chern-Simons lagrangian

L = 1
2
ǫµνρAµ∂νAρ + |Dµφj|2 + iψj /Dψj + αψjψjφ

∗
kφk + βψjψkφ

∗
kφj

+ 1
4
γ(ψjψ

∗
kφjφk + ψ

∗

jψkφ
∗
jφ

∗
k)− h(φ∗

jφj)
3, (5.1)

where Dµ = ∂µ−igAµ and /D = γµDµ. The n pairs of scalars and fermions (φi, ψi)

have charge g, and there are five dimensionless couplings {α, β, γ, h, g}. By ob-

serving the powers of couplings that appear in the respective β-functions, it is

clear that the ”3-2-1” phenomenon will once again occur1, and hence to construct

the lowest order A-function we need only concern ourselves with {βα, ββ, βγ}, re-
ferred to collectively as Yukawa β-functions.

The two-loop Yukawa β-functions are [49]:

β(2)
α =

(

8
3
n + 2

)

α3 + 16
3
α2β +

(

8
3
n + 3

)

αβ2 + (n + 2)β3 + 1
4

(

8
3
n + 17

3

)

αγ2

+ 3
4
(n+ 2)βγ2 + 3β2g2 + 1

4
γ2g2 − 2

3
(20n+ 31)αg4 − 8βg4 − 8(n+ 2)g6,

β
(2)
β =

(

8
3
n + 6

)

α2β +
(

3n+ 16
3

)

αβ2 +
(

2
3
n+ 1

)

β3 + 3
4
(n+ 2)αγ2

+ 1
4

(

8
3
n+ 17

3

)

βγ2 − 3nβ2g2 + 1
4
(n+ 2)γ2g2 − 2

3
(8n+ 31)βg4,

1Strictly speaking, due to the absence of odd-loop contributions in three dimensions, this
would more correctly be a “6-4-2” phenomenon, or even more strictly speaking a “4-2” phe-
nomenon due to the lack of gauge β-function.
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β(2)
γ =

(

8
3
n + 6

)

α2γ +
(

6n+ 34
3

)

αβγ +
(

8
3
n+ 6

)

β2γ + 1
6
(n+ 1)γ3

+ 4αγg2 + 2(n+ 1)βγg2 − 2
3
(2n− 5)γg4. (5.2)

Note, a factor of 1
8π

for each loop order is supressed. We are attempting to find

a function A ≡ A(α, β, γ, h, g) satisfying the gradient-flow equation (2.1), hence

at lowest order A must satisfy







∂αA
(5)

∂βA
(5)

∂γA
(5)






=







T
(3)
αα T

(3)
αβ T

(3)
αγ

T
(3)
βα T

(3)
ββ T

(3)
βγ

T
(3)
γα T

(3)
γβ T

(3)
γγ













β
(2)
α

β
(2)
β

β
(2)
γ






. (5.3)

This can be solved as in even dimensions by postulating terms that may appear in

A and substituting into (5.3). The solution (up to irrelevant purely-gauge terms

∼ g8) is

A(5) = n
4

(

8
3
n + 2

)

α4 + 1
6

(

n2 + 3n + 3
)

β4 + 1
96
(n + 1)2γ4 +

(

8
3
n + 2

)

α3β

+ 1
3
(3n2 + 8n+ 3)β3α + 1

3
(4n2 + 9n+ 8)α2β2

+ 1
12
(4n+ 9)(n+ 1)(α2 + β2)γ2 + 1

12
(9n+ 17)(n+ 1)αβγ2

+ (1− n2)β3g2 + 1
2
(n+ 1)αγ2g2 + 1

4
(n+ 1)2βγ2g2

− n
3
(20n+ 31)α2g4 − 1

3
(8n2 + 31n+ 12)β2g4

− n
3
(2n− 5)γ2g4 − 2

3
(20n+ 31)αβg4 − 8n(n + 2)αg6, (5.4)

with corresponding lowest-order metric

T
(3)
IJ =







n 1 0

1 n 0

0 0 1
4
(n+ 1)






. (5.5)

A and TIJ are in fact only determined up to an overall scale, and the lack of

Euler density prevents this scale being fixed. Nonetheless, we have found a func-

tion A of the couplings in the theory, obeying the gradient-flow equation (2.1)

and with a positive-definite metric for n 6= 1 (the case n = 1 is where α and β

are equivalent, and can be treated separately with the same conclusion).

Next, we consider the non-abelian SU(N) Chern-Simons lagrangian

L = 1
2
ǫµνρAAµ∂νA

A
ρ + 1

6
gfABCǫµνρAAµA

B
ν A

C
ρ + |Dµφj|2 + iψj /Dψj
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+ αψjψjφ
∗
kφk + βψjψkφ

∗
kφj +

1
4
γ(ψjψ

∗
kφjφk + ψ

∗

jψkφ
∗
jφ

∗
k)− h(φ∗

jφj)
3,

(5.6)

with

Dµφi = ∂µφi − igTAjkAAµφk, Dµψi = ∂µψi − igTAjkAAµψk,

where TAij are generators for the fundamental representation of SU(N) satisfying
[

TA, TB
]

= ifABCTC . As in the abelian case, we need only consider the Yukawa

β-functions at lowest order:

β(2)
α =

(

8
3
n+ 2

)

α3 + 16
3
α2β +

(

8
3
n+ 3

)

αβ2 + (n+ 2)β3 + 1
4

(

8
3
n+ 17

3

)

αγ2

+ 3
4
(n + 2)βγ2 − αβg2 + n2 − 3

2n
β2g2 +

n2 − 1

8n
γ2g2

− 40n3 − 17n2 − 40n+ 62

12n2
αg4 − 5n3 + 6n2 − 18n+ 8

4n2
βg4

+
3n4 − 4n3 + 5n2 − 8n+ 16

8n3
g6,

β
(2)
β =

(

8
3
n+ 6

)

α2β +
(

3n+ 16
3

)

αβ2 +
(

2
3
n + 1

)

β3 + 3
4
(n+ 2)αγ2

+ 1
4

(

8
3
n+ 17

3

)

βγ2 + nαβg2 + β2g2 +
n2 − 1

4n
γ2g2 − 5(n2 − 4)

4n
αg4

− 22n3 − 23n2 − 64n+ 62

12n2
βg4 − (n2 − 4)(n− 2)

2n2
g6,

β(2)
γ =

(

8
3
n+ 6

)

α2γ +
(

6n+ 34
3

)

αβγ +
(

8
3
n + 6

)

β2γ + 1
6
(n+ 1)γ3

+
(n− 1)(n+ 2)

n
αγg2 +

(n− 1)(2n+ 1)

n
βγg2

− (n− 1)(2n2 − 2n+ 5)

6n2
γg4. (5.7)

Postulating a form for A and substituting into (5.3) then gives

A(5) = n
4

(

8
3
n + 2

)

α4 + 1
6

(

n2 + 3n+ 3
)

β4 + 1
96
(n+ 1)2γ4

+
(

8
3
n+ 2

)

α3β + 1
3
(3n2 + 8n+ 3)β3α + 1

3
(4n2 + 9n+ 8)α2β2

+ 1
12
(4n+ 9)(n+ 1)(α2 + β2)γ2 + 1

12
(9n+ 17)(n+ 1)αβγ2

+ (n2 − 1)
[n + 2

8n
αγ2g2 +

2n + 1

8n
βγ2g2 + 1

2
αβ2g2 +

1

2n
β3g2

− 20n− 1

12n
α2g4 − 11n2 − 4n− 12

12n2
β2g4 − 2n2 − 2n+ 5

48n2
γ2g4

− 15n2 + 40n− 62

12n2
αβg4 +

3n2 − 8n+ 16

8n2
αg6

− 4n3 − 11n2 − 8n+ 16

8n3
βg6
]

. (5.8)
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with the same metric (5.5) as in the abelian case. A quick consistency check

between the two cases is that the non-gauge terms are necessarily identical, since

both cases should reduce to the same non-gauge theory when g → 0.

The final case we shall consider at leading order is non-abelian N = 1 super-

symmetry, with action

S =

∫

d3xd2θ
[

−1
4
(DαΓAβ)(DβΓ

A
α )− 1

6
gfABC(DαΓAβ)ΓBαΓ

C
β

− 1
24
g2fABCfADEΓBαΓCβΓDα Γ

E
β

− 1
2
(DαΦj + igΦkT

A
kjΓ

α
A)(DαΦj − igΓBαTBjlΦl)

+ 1
4
η0(ΦjΦj)

2 + 1
4
η1(ΦjT

A
jkΦk)

2
]

, (5.9)

where ΓAα is a real gauge superfield and Φ is a complex supermultiplet. This ac-

tion contains couplings {η0, η1, g}, of which g is again irrelevant for our purposes;

a full notational discussion is given in [49]. In principle, since we are dealing with

supersymmetry, one should now consider regularization by dimensional reduction

rather than dimensional regularization, however at lowest order the two methods

will of course give identical results. The abelian and non-abelian SU(N) cases

could therefore be derived from the earlier non-supersymmetric results by an ap-

propriate choice of fields and couplings.

The β-functions for a general non-abelian theory are given by [49]

β(2)
η1 =

[

(R31 +
1
2
Rt1 + TRCR + 2C2

R)η1 +
1
4
TRCAg

2 − 1
2
Rf1(η1 + g2)

− 1
4
CRCA(5η1 − 3g2) + 1

8
C2
A(η1 − 3g2)

]

(η21 − g4)
+ [TR(η

2
1 + η1g

2 + g4) + CR(3η
2
1 + 4η1g

2 + 3g4)

− 1
4
CA(5η

2
1 + 8η1g

2 + 7g4)]R21(η1 − g2)
+
[

(6R21 + 10CR + 3TR − 3
2
CA)η

2
1 + (2n+ 11)η1η0

+ 2CRη1g
2 − (2R21 +

1
2
CA)g

4
]

η0,

β(2)
η0 =

[

(R30 +
1
2
Rt0)η1 − 1

2
Rf0(η1 + g2)

]

(η21 − g4)
+ [TR(η

2
1 + η1g

2 + g4) + CR(3η
2
1 + 4η1g

2 + 3g4)

− 1
4
CA(5η

2
1 + 8η1g

2 + 7g4)]R20(η1 − g2)
+ [7CRη1η0 + 3(n+ 2)η20 + CRη0g

2

+ 2R20(3η
2
1 − g4) + (2CR + 2TR − CA)CR(η21 − g4)]η0, (5.10)
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where the coefficients RXi are defined by

TX = RX0T0 +RX1T1, (5.11)

and

T0 = (ΦΦ)2, T3 = (ΦTATBTCΦ)2,

T1 = (ΦTAΦ)2, Tt = (ΦTAΦ)(ΦTBTCΦ)tr(TA{TB, TC}),
T2 = (ΦTATBΦ)2, Tf = fEACfEDB(ΦTATBΦ)(ΦTCTDΦ). (5.12)

Finally, group-theoretic invariants are defined as usual by

CR 1 = TATA, TRδ
AB = tr(TATB), CAδ

AB = fACDfBCD (5.13)

If one takes the symmetry group to be SU(N) or Sp(N), there exist relations

between T0 and T1, such that the matter couplings η0, η1 may be replaced by a

single coupling. These cases are therefore trivial: the A-function is simply the in-

tegral of the new β-function with respect to its coupling, and the metric TIJ ∼ δIJ

is positive-definite to all orders of perturbation theory. The simplest supersym-

metric theory with a potentially non-trivial A-function is therefore SO(N).

The group-theoretic invariants and coefficients RXi for SO(N) are given by

CR = 1
2
(n− 1)TR, CA = (n− 2)TR

R20 =
1
4
(n− 1)T 2

R, R30 = Rf0 = − 1
8
T 3
R(n− 1)(n− 2),

R21 = −1
2
TR(n− 2), R31 =

1
4
T 2
R(n

2 − 3n+ 3),

Rt0 = Rt1 = 0, Rf1 =
1
4
T 2
R(n− 2)(n− 3), (5.14)

where the precise value of TR depends on a choice of scale parameter for the

representation matrices and structure constants [51]. Hence, the β-functions are

β(2)
η0

= (n− 1)
[

1
8
T 3
R(5η

2
1 + 6η1g

2 + 5g4)(η1 − g2) + T 2
R(3η

2
1 − 2g4)η0

+ 1
2
TR(7η1 + g2)η20

]

+ 3(n+ 2)η30,

β(2)
η1

= T 2
R

[

5
4
η31 +

1
2
(n− 2)η21g

2 + 1
4
(3− 4n)η1g

4 + 1
2
(n− 2)g6

]

+
[

1
2
(n + 14)η21 + (n− 1)η1g

2 + 1
2
(n− 2)g4

]

TRη0 + (2n+ 11)η1η
2
0 .

(5.15)
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By the same method, we therefore find an A-function

A(5) =
3(n+ 1)(n+ 2)

n− 1
η40 +

2
3
(n + 1)TRg

2η30 − 1
2
(7n+ 10)T 2

Rg
4η20

− 3
2
(n+ 3)T 3

Rg
6η0 + 6(n+ 2)TRη

3
0η1 +

13
2
(n + 2)T 2

Rη
2
0η

2
1

+ (n− 1)T 2
Rg

2η20η1 − 1
2
(5n− 2)T 3

Rg
4η0η1 +

3
2
(n− 1)T 3

Rg
2η0η

2
1

+ 5
2
(n + 2)T 3

Rη0η
3
1 +

5
16
(n+ 2)T 4

Rη
4
1 +

1
12
(7n− 13)T 4

Rg
2η31

− 1
8
(13n− 10)T 4

Rg
4η21 +

1
4
(n− 7)T 4

Rg
6η1. (5.16)

with associated positive-definite metric

T (3) =

(

4(n+1)
(n−1)

2TR

2TR 3T 2
R

)

(5.17)

at lowest order.

5.1.2 Next-to-leading order

We have so far shown that an A-function satisfying (2.1) exists at lowest order,

with positive-definite metric, for a range of three-dimensional theories. Due to

the simplicity of the construction at lowest order, we have no guarantee that

A can be constructed at next-to-leading order, where the hitherto-unconsidered

scalar β-function βh must be taken into account.

To investigate whether it is possible in three dimensions for (2.1) to hold

beyond leading order, we return to the abelian case described by lagrangian (5.1).

The two-loop scalar β-function is given by [49]

β
(2)
h = 12(3n+ 11)h2 + 4h[4nα2 + 8αβ + (n+ 3)β2]

+ (n+ 4)hγ2 − 4(5n+ 16)hg4

− [4nα4 + 16α3β + 4(n+ 5)α2β2 + 4(n+ 3)αβ3 + (n+ 3)β4]

− [(n+ 6)α2 + (3n+ 11)(αβ + 1
2
β2)]γ2 − 1

16
(n+ 3)γ4 − 2(α + β)γ2g2

+ 4(nα2 + 2αβ + β2)g4 − γ2g4 + 8(nα + β)g6 + 4(2n+ 7)g8, (5.18)

and the A-function must in principle satisfy a differential equation of the form

∂hA
(7) = T

(5)
hh β

(2)
h +

∑

Y=α,β,γ

T
(5)
hY β

(2)
Y +

∑

Y=α,β,γ

T
(3)
hY β

(4)
Y . (5.19)
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However, it turns out that extra terms involving Yukawa β-functions are not

necessary. Keeping only the term T
(5)
hh β

(2)
h , we see that the A-function will acquire

the additional contribution A→ A+ Ah, where

Ah = T
(5)
hh

[

4(3n+ 11)h3 + 2h2[4nα2 + 8αβ + (n+ 3)β2]

+ 1
2
(n + 4)h2γ2 − 2(5n+ 16)h2g4

− h[4nα4 + 16α3β + 4(n+ 5)α2β2 + 4(n+ 3)αβ3 + (n+ 3)β4]

− h[(n+ 6)α2 + (3n+ 11)(αβ + 1
2
β2)]γ2 − 1

16
(n + 3)hγ4 − 2h(α+ β)γ2g2

+ 4h(nα2 + 2αβ + β2)g4 − hγ2g4 + 8h(nα + β)g6 + 4h(2n+ 7)g8
]

.

(5.20)

If Ah is correct, then differentiating with respect to the Yukawa couplings and

using (2.1) at next-to-leading order should produce the correct coefficients for the

mixed Yukawa-scalar terms αh2, α3h, etc. We have computed the relevant terms

in the four-loop Yukawa β-functions,

β(4)
α = h2[8

3
(n+ 1)(n+ 2)α+ 2(n + 2)β]

− 2
3
(n+ 2)h

{

4(n+ 1)α3 + 10(n+ 2)α2β + (2n+ 9)αβ2 + (n + 3)β3

+ 1
4
[(2n+ 11)α + (3n+ 11)β]γ2

}

+ . . . ,

β
(4)
β = 2

3
(n+ 2)(n+ 4)h2β

− 2
3
(n+ 2)h

{

2(n+ 6)α2β + (3n+ 10)αβ2 + (n + 3)β3

+ 1
4
[3(n+ 4)α + (3n+ 11)β]γ2

}

+ . . . ,

β(4)
γ = 2

3
(n+ 2)(n+ 4)h2γ

− 4
3
(n+ 2)hγ

[

(n+ 6)α2 + (3n+ 11)(αβ + 1
2
β2)
]

+ . . . , (5.21)

where the ellipses indicate pure-Yukawa terms. We can now see that Ah is indeed

correct, provided T
(5)
hh = 1

6
(n + 1)(n + 2). Given this value of T

(5)
hh , we also see

that






∂αA
(7)
h

∂βA
(7)
h

∂γA
(7)
h






=







n 1 0

1 n 0

0 0 1
4
(n+ 1)













β
(4)
α

β
(4)
β

β
(4)
γ






, (5.22)

hence higher-order metric contributions such as T
(5)
αα do not contribute to Ah.

In summary, we have shown that the A-function can be extended consistently
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beyond leading order, with positive-definite lowest-order metric

T
(3)
IJ =













n 1 0 0

1 n 0 0

0 0 1
4
(n+ 1) 0

0 0 0 1
6
(n + 1)(n+ 2)













. (5.23)

5.2 Leading order construction for general abelian

Chern-Simons theory

The preceding examples all provide reasonable evidence that an A-function sat-

isfying (2.1) can be constructed for a general three-dimensional theory. We shall

therefore consider a general abelian Chern-Simons theory, with lagrangian

L =1
2
[ǫµνρAµ∂νAρ + (Dµφi)

2 + iψaDψa]

+ 1
4
Yabijψaψbφiφj − 1

6!
hijklmnφiφjφkφlφmφn (5.24)

Here and throughout the remainder of the chapter, fermion contractions are rep-

resented by letters near the beginning of the alphabet, {a, b, c, . . . }, and scalar

contractions by letters near the middle, {i, j, k, . . . }. Recall that in three di-

mensions, ψ = ψ∗T , therefore there is no obstacle to decomposing ψ into real

Majorana fields, and so we are free to choose a real basis for both scalar and

fermion fields. As usual, Dµ = ∂µ − iEAµ where E is a charge matrix, denoted

Eφ, Eψ for scalars and fermions respectively. Finally, gauge invariance implies

Eψ
acYcbij + Eψ

bcYacij + Eφ
imYabmj + Eφ

jmYabim = 0,

Eφ
iphpjklmn + perms = 0. (5.25)

The L-loop Yukawa β-function takes the form

(β
(L)
Y )abij =

nL
∑

p=1

c(L)p (U (L)
p )abij , (5.26)

where each U
(L)
p denotes one of the nL possible L-loop tensor structures; note that

we introduce here the convention of symmetrizing over inequivalent external lines,

and include a weighting factor such that each tensor structure has a “weight” of

one. To construct A for this theory, we begin with β
(2)
Y , in which there are

n2 = 29 tensor structures. The gauge identities in (5.25) relate some of the
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possible tensor structures; it is therefore necessary to select a basis of structures

that include gauge terms. We have done so for the tensor structures containing

two gauge insertions, but not for those with four or six gauge insertions, as the

latter have a one-to-one correspondence with potential A-function contributions

and are hence somewhat trivial. The two-loop tensor structures with no gauge

insertions are

(U
(2)
1 )abij =

1
4
[YacilYcdjmYdblm + YaclmYcdjmYdbil + YacjlYcdimYdblm + YaclmYcdimYdbjl],

(U
(2)
2 )abij = YaclmYcdijYdblm,

(U
(2)
3 )abij = YcdikYabklYcdlj,

(U
(2)
4 )abij =

1
2
[YacijYcdlmYdblm + YadlmYdclmYcbij],

(U
(2)
5 )abij =

1
2
[YabikYcdklYdclj + YcdilYdclkYabkj], (5.27)

those with two gauge insertions are

(U
(2)
6 )abij =

1
4
[Yacil(E

ψ2)cdYdblj + (a↔ b, i↔ j)],

(U
(2)
7 )abij =

1
4
[YacilE

ψ
cdE

φ
lmYdbmj + (a↔ b, i↔ j)],

(U
(2)
8 )abij =

1
4
[Eψ

acYcdilYdeljE
ψ
be + (a↔ b, i↔ j)],

(U
(2)
9 )abij =

1
4
[Eψ

acYcdilE
φ
mlYdbmj + (a↔ b, i↔ j)],

(U
(2)
10 )abij =

1
4
[Eψ

acYcdilE
ψ
deYeblj + (a↔ b, i↔ j)],

(U
(2)
11 )abij =

1
4
[(Eφ2)imYacmlYcblj + (a↔ b, i↔ j)],

(U
(2)
12 )abij =

1
4
[Eψ

acE
φ
imYdemlYeblj + (a↔ b, i↔ j)], (5.28)

and those with either four or six insertions are

(U
(2)
13 )abij =

1
2
[(Eψ3)acYcdijE

ψ
bd + (a↔ b)],

(U
(2)
14 )abij =

1
2
[(Eψ2)acYcdij(E

ψ2)db + (a↔ b)],

(U
(2)
15 )abij =

1
4
[(Eφ2)ikE

ψ
acYcdkjE

ψ
bd + (a↔ b, i↔ j)],

(U
(2)
16 )abij =

1
4
[(Eφ2)ik(E

ψ2)acYcbkj + (a↔ b, i↔ j)],

(U
(2)
17 )abij = (Eφ2)ik(E

φ2)jlYabkl,

(U
(2)
18 )abij = (Eφ2)ij(E

φ2)klYabkl,

(U
(2)
19 )abij = (Eψ2)ab(E

ψ2)cdYcdij,

(U
(2)
20 )abij = tr(Eφ2)Eψ

acYcdijE
ψ
bd,

(U
(2)
21 )abij = tr(Eψ2)Eψ

acYcdijE
ψ
bd,

(U
(2)
22 )abij =

1
2
[(Eφ4)ikYabkj + (i↔ j)],

(U
(2)
23 )abij =

1
2
[(Eψ4)acYcbij + (a↔ b)],
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(U
(2)
24 )abij =

1
2
[tr(Eφ2) + tr(Eψ2)][(Eφ2)ikYabkj + (i↔ j)],

(U
(2)
25 )abij =

1
2
[tr(Eφ2) + tr(Eψ2)][(Eψ2)acYcbij + (a↔ b)],

(U
(2)
26 )abij = (Eφ2)ij(E

ψ4)ab,

(U
(2)
27 )abij = (Eφ4)ij(E

ψ2)ab,

(U
(2)
28 )abij = tr(Eφ2)(Eφ2)ij(E

ψ2)ab,

(U
(2)
29 )abij = tr(Eψ2)(Eφ2)ij(E

ψ2)ab. (5.29)

As mentioned above, we have selected a basis of terms with two gauge in-

sertions. There are in fact thirteen such terms, most of which manifestly give

no contribution to βY . Due to each diagram being logarithmically divergent, we

may set external momentum to zero, after which there are three circumstances

in which a diagram gives no contribution:

• The diagram is one-particle-reducible.

• The diagram is proportional to a trace over a single γ matrix.

• The diagram has a charge matrix Eφ on an external scalar line.

The first is guaranteed in MS, the second follows since tr(γµ) = 0 by Lorentz in-

variance, and the third follows since such diagrams contain the term ǫµνρpνpρ = 0,

arising from the gauge propagator. Consequently, we have removed as many

of these terms as possible from our chosen basis. Furthermore, the four non-

vanishing contributions in the basis each correspond to a single Feynman dia-

gram, simplifying our results as much as possible.

Now that we have a complete list of the tensor structures that appear in

β
(2)
Y , we may construct the lowest order contributions to the A-function. As in

the previous chapters, we once again introduce our diagrammatic notation. The

Yukawa and scalar couplings will be represented by vertices, with the fermion

and scalar legs indicated thus:

Yabij →

i

ba

j

hijklmn →

i

n
m

l

k
j

A corresponding term in the lowest order a-function can hence be represented as
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YacijYcbijYbdlmYdalm → ,

where contracted lines indicate contracted indices. Differentiating the terms in

A with respect to each coupling corresponds to removing each associated vertex,

leaving a structure that may appear in the β-functions:

→ → YacijYcdklYdbkl ∈ β(2)
Y

The lowest-order A-function can be parametrised by

A(5) =

9
∑

r=1

a(5)r A(5)
r +

29
∑

r=13

a(5)r A(5)
r , (5.30)

where diagrams constructed using U
(2)
10−12 have been removed from the correspond-

ing basis of gauge-dependent A-function terms, as they give no contribution to

β
(2)
Y . The remaining terms have been split into contributions with up to two gauge

insertions (1− 9) and four or six gauge insertions (13− 29). The first nine terms

are given by

A
(5)
1 = YabijYbcklYcdikYdajl, A

(5)
2 = YabijYbcklYcdijYdakl,

A
(5)
3 = YabijYcdjkYabklYcdli, A

(5)
4 = YacijYcbijYbdlmYdalm,

A
(5)
5 = YabikYbakjYcdilYdclj, A

(5)
6 = Yabij(E

ψ2)bcYcdjkYdaki,

A
(5)
7 = Yabij(E

φ2)jkYbcklYcali, A
(5)
8 = YabijE

ψ
bcE

φ
jkYcdklYdali,

A
(5)
9 = YabijE

ψ
bcYcdjkE

ψ
deYeaki, (5.31)

and are depicted diagrammatically in Table (5.1), where insertions of a single

gauge matrix are indicated by a blob on the corresponding scalar or fermion line.

The remaining A-function terms are given by

A
(5)
i = (U

(2)
i )abijYabij , i = 13, . . . , 29. (5.32)

We now deduce the coefficients a
(5)
r in terms of c

(5)
r by using equation (2.1) in
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A
(5)
1 A

(5)
2 A

(5)
3 A

(5)
4 A

(5)
5

A
(5)
6 A

(5)
7 A

(5)
8 A

(5)
9

Table 5.1: Contributions to 3D A-function from β
(2)
Y

the form
∂A(5)

∂Yabij
= µ β

(2)
abij , (5.33)

where we define

∂

∂Yabij
Ya′b′i′j′ =

1
4
(δaa′δbb′ + δab′δba′)(δii′δjj′ + δij′δji′). (5.34)

With this normalization, the lowest order metric is simply T
(3)
IJ = µ δIJ , and the

first five A-function coefficients are2

a(5)r = 1
4
µc(2)r , r = 1, . . . 5. (5.35)

From this, we can see immediately that for a general non-gauge theory in three

dimensions (in which one only has the first five terms in β
(2)
Y ), the lowest order

A-function is in fact trivial: there is a simple one-to-one correspondence between

the tensor structures U
(2)
1−5 and the A-function contributions A

(5)
1−5. Despite the

apparent non-triviality displayed in the non-gauge parts of examples (5.1) and

(5.6), the coefficients in β
(2)
α , β

(2)
β , β

(2)
γ were in fact guaranteed to appear in ratios

that allow the existence of an A-function.

The next four coefficients involve the terms with two gauge insertions, and

their evaluation is non-trivial. The four A-function terms A
(5)
6−9 form a basis for

terms involving two gauge insertions, but upon differentiating lead to eight tensor

structures, one more than the seven structures listed in (5.28). We are therefore

required to substitute in the expression for this eighth tensor structure in terms of

the basis, then rewrite the differentiated A-function term as a linear combination

2Recall that A and TIJ are determined only up to the overall scale µ.
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of the other seven. Having done so, the system of equations can be solved, giving

a
(5)
6 = µc

(2)
6 , a

(5)
7 = 0, a

(5)
8 = µc

(2)
6 , a

(5)
9 = µc

(2)
8 , (5.36)

plus the consistency conditions

c
(2)
6 = c

(2)
7 = −1

2
c
(2)
9 , c

(2)
8 = c

(2)
7 + 1

2
c
(2)
10 . (5.37)

The existence of consistency conditions shows that unlike the non-gauge terms,

the gauge parts of the A-functions were not guaranteed to work. We shall see

shortly that the consistency conditions (5.37) are indeed satisfied; that this is the

case for a general theory shows that the existence of an A function for the specific

theories considered previously is in fact non-trivial.

The final coefficients in the general A-function are simply given by

a(5)r = 1
2
µc(2)r , r = 13, . . . 25,

a(5)r = µc(2)r , r = 26, . . . 29, (5.38)

due to the one-to-one correspondence between the remaining tensor structures

(5.29) and the A-function contributions. The general solution to the A-function

parametrised as (5.30) is therefore given by (5.35), (5.36) and (5.38), subject to

the consistency conditions (5.37).

Since the existence of A is predicated on the consistency conditions (5.37) being

satisfied, we must of course calculate the actual values of the coefficients c
(2)
p in

β
(2)
Y . The coefficients have each been calculated using dimensional regularisation

with MS, and are given by

c
(2)
1 = 8, c

(2)
2 = 2, c

(2)
3 = 2, c

(2)
4 = 2

3
, c

(2)
5 = 2

3
, c

(2)
6 = 8,

c
(2)
7 = 8, c

(2)
8 = 8, c

(2)
9 = −16, c

(2)
10 = 0, c

(2)
11 = 0, c

(2)
12 = 0,

c
(2)
13 = 24, c

(2)
14 = 4, c

(2)
15 = 24, c

(2)
16 = −16, c

(2)
17 = −8, c

(2)
18 = −8,

c
(2)
19 = −8, c

(2)
20 = 2, c

(2)
21 = 2, c

(2)
22 = −40

3
, c

(2)
23 = −4

3
, c

(2)
24 = −8

3
,

c
(2)
25 = −2

3
, c

(2)
26 = −32, c

(2)
27 = −32, c

(2)
28 = −8, c

(2)
29 = −8. (5.39)

These coefficients are of course scheme-independent. We can clearly see that

the consistency conditions (5.37) are therefore satisfied in any renormalization

scheme, and hence we have constructed the A-function at leading order for a

general abelian Chern-Simons theory in three dimensions, with positive-definite

metric.
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5.3 Next-to-leading-order construction for gen-

eral scalar-fermion theory

In section 5.1, the A-function constructed for each example considered was shown

to hold beyond leading order, at least when considering β
(2)
h and the mixed scalar-

Yukawa terms in β
(4)
Y . Having constructed the general leading-order A-function,

we shall now endeavour to show that a general construction holds beyond leading

order. The next-to-leading order A-function, A(7), can be split into multiple

contributions:

A(7) = A
(7)
h + A

(7)
hY + A

(7)
Y + a(β

(2)
Y )abij(β

(2)
Y )abij . (5.40)

A
(7)
h , A

(7)
hY and A

(7)
Y are the pure scalar, mixed scalar-Yukawa and pure Yukawa

contributions respectively, and the last term is the expected arbitrariness in the

definition of a function satisfying (2.1), analogous to the case in even dimensions.

5.3.1 Scalar and mixed scalar-Yukawa terms

To test the viability of constructing A for a general abelian theory beyond leading

order, we can again look at β
(2)
h and the scalar-Yukawa parts of β

(4)
Y . This enables

us to construct the first two terms in (5.40), which may be parametrised as

A
(7)
h = a

(7)
h1
A

(7)
h1
, A

(7)
hY =

14
∑

i=2

a
(7)
hi
A

(7)
hi
, (5.41)

and are depicted in Table 5.2. The explicit expressions for each term in A(7) are

rather unwieldy, containing many index contractions, but if desired can easily be

reconstructed from the diagrams.

The scalar-Yukawa part of β
(4)
Y takes the form

β
(4)
Y (h) =

13
∑

i=1

cHiU
(4)
Hi
. (5.42)

Rather than explicitly listing each tensor structure in β
(4)
Y , we have simply labelled

the vertices of the terms in A(7), such that when each labelled vertex is removed

one obtains the relevant tensor structure U
(4)
Hi

3. Calculating the coefficients c
(4)
H1−13

3Again, the tensor structures are implied to have a weight of one, and be symmetrized over
inequivalent external lines.
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H1 H1

H2

H2

H3 H3

H4 H4

H5

H5

H6 H6

A
(7)
h1

A
(7)
h2

A
(7)
h3

A
(7)
h4

A
(7)
h5

H7

H8 H8

A
(7)
h6

A
(7)
h7

A
(7)
h8

A
(7)
h9

A
(7)
h10

H9

H10 H10H11 H11

H12 H12

H13

A
(7)
h11

A
(7)
h12

A
(7)
h13

A
(7)
h14

Table 5.2: A
(7)
h and A

(7)
hY parts of 3D A-function

in MS, we find that [47]

c
(4)
H1

= 1
3
, c

(4)
H2

= 2
45
, c

(4)
H3

= −8, c
(4)
H4

= −8, c
(4)
H5

= −8, c
(4)
H6

= −8,
c
(4)
H7

= 4, c
(4)
H8

= 8, c
(4)
H9

= −4, c
(4)
H10

= −8, c
(4)
H11

= 0, c
(4)
H12

= 16,

c
(4)
H13

= 16.

(5.43)

The L-loop scalar β-function takes the form

(β
(L)
h )ijklmn =

mL
∑

p=1

d(L)p (V (L)
p )ijklmn, (5.44)

where each V
(L)
p denotes one of the mL possible L-loop tensor structures. The

m2 = 14 structures in β
(2)
h are

(V
(2)
1 )ijklmn = 1

6!
(hijkpqrhlmnpqr + perms),

(V
(2)
2 )ijklmn = 1

6!
(hijklpqYabmpYabnq + perms),

(V
(2)
3 )ijklmn = 1

6!
(hijklmpYabpqYabnq + perms),

(V
(2)
4 )ijklmn = 1

6!
(YabijYbcklYcdmpYdapn + perms),

(V
(2)
5 )ijklmn = 1

6!
(YabijYbcmpYcdklYdapn + perms),
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(V
(2)
6 )ijklmn = 1

6!
(hijklpq(E

φ2)pm(E
φ2)qn + perms),

(V
(2)
7 )ijklmn = 1

6!
(hijklmp(E

φ4)pm + perms),

(V
(2)
8 )ijklmn = 1

6!
(hijklmp(E

φ2)pm[tr(E
φ2) + tr(Eψ2)] + perms),

(V
(2)
9 )ijklmn = 1

6!
(hijklpq(E

φ2)qp(E
φ2)mn + perms),

(V
(2)
10 )ijklmn = 1

6!
(YabijE

ψ2
bc YcdklYdamn + perms),

(V
(2)
11 )ijklmn = 1

6!
(YabijE

ψ
bcYcdklE

ψ
deYeamn + perms),

(V
(2)
12 )ijklmn = 1

6!
(Eφ2

ij YabklE
ψ2
bc Ycamn + perms),

(V
(2)
13 )ijklmn = 1

6!
(Eφ2

ij YabklE
ψ
bcYcdmnE

ψ
da + perms),

(V
(2)
14 )ijklmn = 1

6!
(Eφ2

ij E
φ2
kl YabmnE

ψ2
ba + perms), (5.45)

where, as with the tensor structures in β
(2)
Y containing four or six gauge insertions,

we have simply listed all structures that correspond to non-manifestly-vanishing

contributions from Feynman diagrams. We have again calculated the coefficients

in MS [47]:

d
(2)
1 = 20

3
, d

(2)
2 = 30, d

(2)
3 = 4, d

(2)
4 = −360, d

(2)
5 = −360,

d
(2)
6 = −120, d

(2)
7 = −40, d

(2)
8 = −8, d

(2)
9 = −120, d

(2)
10 = 360,

d
(2)
11 = −360, d

(2)
12 = 0, d

(2)
13 = 720, d

(2)
14 = 1440. (5.46)

We may now attempt to construct part of A beyond leading order. The key

equation (2.1) takes the form

dhA
(7) = dh T

(5)
hh β

(2)
h (5.47)

dYA
(7) = dY T

(5)
Y Y β

(2)
Y + dY T

(3)
Y Y β

(4)
Y . (5.48)

Recall that T
(3)
IJ = µ δIJ , and T

(5)
hh will likewise be found to be proportional to the

unit tensor with some coefficient λ. Working with a general theory, it now be-

comes obvious why no mixed terms in the metric were required in order to solve

(5.19): any such mixed metric terms of the correct loop order must necessar-

ily contain “pinched loops”4, which vanish in dimensionally regularised theories.

Solving (5.47) therefore gives the A-function coefficients

a
(7)
h1

= 1
3
λd

(2)
1 ,

a
(7)
hi

= 1
2
λd

(2)
i , i = 2–3, 6–9,

a
(7)
hi

= λd
(2)
i , i = 4–5, 10–14, (5.49)

4By pinched loops, we mean diagrams that may be separated into two disconnected regions
by cutting at a vertex - such diagrams must contain a factor of the form

∫

ddp (p2)α ≡ 0.
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with T
(5)
hh = λ. These values, together with the schematic form of β

(4)
Y (h), can be

substituted into (5.48), and the existence of a solution then predicts the following

relations between coefficients in β
(2)
h and β

(4)
Y :

µc
(4)
H1

= λd
(2)
2 , µc

(4)
H2

= λd
(2)
3 , µc

(4)
H3

= 2λd
(2)
4 , µc

(4)
H4

= 2λd
(2)
4 ,

µc
(4)
H5

= 2λd
(2)
5 , µc

(4)
H6

= 2λd
(2)
5 , µc

(4)
H7

= λd
(2)
10 , µc

(4)
H8

= 2λd
(2)
10 ,

µc
(4)
H9

= λd
(2)
11 , µc

(4)
H10

= 2λd
(2)
11 , µc

(4)
H11

= 2λd
(2)
12 , µc

(4)
H12

= 2λd
(2)
13 ,

µc
(4)
H13

= λd
(2)
14 . (5.50)

Comparing the β
(4)
Y (h) coefficients in (5.43) and the β

(2)
h coefficients in (5.46),

we see that the predictions are indeed correct, provided we have λ = µ
90
. This

linear relation between metric coefficients demonstrates that A continues to exist

beyond leading order, up to an overall scale µ, with positive-definite metric

T
(3)
IJ =

(

1 0

0 1
90

)

. (5.51)

The existence of a solution to the scalar-dependent part (5.41) of A(7), up to the

overall scale µ and with correctly-predicted relations between β-function coeffi-

cients, therefore provides very strong evidence that the construction of A(7) will

hold for the general theory beyond leading order, involving the full β
(4)
Y .

5.3.2 Pure Yukawa terms

From here, due to the complexity of the calculation, we shall drop gauge inter-

actions. Despite the non-gauge case being trivial at leading order, we shall see

that at next-to-leading order there are a large number of consistency conditions

that must be satisfied in order for A to exist, and we shall check each condition

via direct computation. Combining the non-gauge terms in (5.41) with our re-

sults for A
(7)
Y below will give a complete calculation of the next-to-leading order

A-function for a completely general scalar-fermion theory.

The pure Yukawa contributions lead to a highly non-trivial system of linear

equations, listed in Appendix (C.1–C.5). The pure Yukawa terms in A can be

parametrised as

A
(7)
Y =

52
∑

i=1

a
(7)
i A

(7)
i , (5.52)
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depicted in Tables 5.3 and 5.4, and the pure Yukawa terms in β
(4)
Y as

β
(4)
Y (Y ) =

105
∑

p=1

c(4)p (U (4)
p )abij , (5.53)

where the tensor structures U
(4)
abij are again understood to be symmetrised over

their external legs and to have an overall weight of one. As with (5.41), rather

than attempting to list all 105 possible β-function terms, we have simply labelled

the corresponding vertices in the tables of tensor structures A
(7)
Y . Any vertex

denoted by an X indicates that there is no associated tensor structure in β
(4)
Y (Y ),

according to the usual criteria. Finally, the next-to-leading order metric T
(5)
Y Y

takes the form

T
(5)
Y Y =

18
∑

i=1

t
(5)
i (T

(5)
i )Y Y , (5.54)

with the corresponding tensor structures depicted in Table 5.5. As in the four-

and six-dimensional cases, the tensor structures are most easily depicted as con-

tractions between dY and βY , denoted by a cross and diamond respectively.

While the leading order metric T
(3)
IJ was trivially symmetric, we can see from the

diagrams in Table 5.5 that T
(5)
IJ is also symmetric, confirming our intuition that

the three-dimensional A-function has exactly the same behaviour as in four and

six dimensions.

The A-function terms have been arranged such that substituting into (5.48)

produces consistency conditions in the following order:

• Diagrams 1-6 simply relate the A-function coefficients a
(7)
1−6 to the β

(4)
Y co-

efficients, and give no consistency conditions.

• Diagrams 7 and 8 relate tensor structures that appear in β
(4)
Y to tensor

structures that do not appear in β
(4)
Y , hence setting the corresponding β-

function coefficients to zero.

• Diagrams 9-21 relate tensor structures that appear in β
(4)
Y but not in any

higher-order metric contributions, giving simple consistency conditions.

• Diagrams 22-47 relate tensor structures which appear both in β
(4)
Y and in

metric contributions, giving non-trivial consistency conditions.

• Diagrams 48-52, along with metric terms (T
(5)
16−18)Y Y form a closed set of

equations independent of the rest of the system.

For convenience, we shall set the scale parameter µ = 1, so that T
(3)
Y Y = 1;

recall that the consequence of the scale factor is simply an overall factor of µ
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pre-multiplying A and TIJ . Examples of equations from the first four categories

are:

• Substituting A
(7)
1 gives 6a

(7)
1 = c

(4)
1 , so that a

(7)
1 = 1

6
c
(4)
1 in a similar manner

to the lowest-order calculation.

• Substituting A
(7)
7 gives 2a

(7)
7 = c

(4)
5 and 4a

(7)
7 = 0, hence c

(4)
5 = 0.

• Substituting A
(7)
9 gives 2a

(7)
7 = c

(4)
7 , 2a

(7)
7 = c

(4)
8 and 2a

(7)
7 = c

(4)
9 , hence

c
(4)
7 = c

(4)
8 = c

(4)
9 .

• Substituting A
(7)
25 and A

(7)
28 gives a set of nine equations:

a
(7)
25 = c

(4)
45 , a

(7)
25 = c

(4)
46 , a

(7)
25 = c

(4)
47 ,

a
(7)
25 = 1

4
c
(2)
1 t

(5)
5 , a

(7)
25 = 1

2
c
(2)
1 t

(5)
4 + c

(4)
48 , a

(7)
25 = 1

4
c
(2)
1 t

(5)
5 ,

2a
(7)
28 = c

(4)
58 , 2a

(7)
28 = 1

4
c
(2)
1 t

(5)
5 , 2a

(7)
28 = 1

2
c
(2)
1 t

(5)
4 + 1

4
c
(2)
1 t

(5)
5 ,

(5.55)

leading to the consistency conditions t
(5)
4 = 0 and c

(4)
45 = c

(4)
46 = c

(4)
47 = c

(4)
48 =

c
(4)
58 .
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1

11

11

1
2

2

2

2

2

2

3

33

33

3

4

4

44

44

X X

X

XX

X

A
(7)
1 A

(7)
2 A

(7)
3 A

(7)
4 A

(7)
5

X

X

X

X
X

X

5

5

X

X X

X

6

6

X

X X

X

7 7

8 8

9 9

10 10

11 11

12 12

A
(7)
6 A

(7)
7 A

(7)
8 A

(7)
9 A

(7)
10

13 13

14 14

13 13

15 15

16 16

17 17

18

18

19

19 19

19

20

20

21

21 21

21

22

22

23

23 23

23

A
(7)
11 A

(7)
12 A

(7)
13 A

(7)
14 A

(7)
15

24

24 24

24

25 25

26

26 26

26

27

27

28

28 28

28

29

29

31

31 31

3130

30 32

32

33

33 33

33

A
(7)
16 A

(7)
17 A

(7)
18 A

(7)
19 A

(7)
20

34

34 34

34

35 35

36

38

XX

3737 39 39

41

40 40

41

42

4443

44 43

42

45

46

X

48

X47

A
(7)
21 A

(7)
22 A

(7)
23 A

(7)
24 A

(7)
25

49

50

49

50

5151

52

53

57

56

5554

58

X

58

X

XX

59

X

59

X

6060

61

62

61

62

6161

A
(7)
26 A

(7)
27 A

(7)
28 A

(7)
29 A

(7)
30

Table 5.3: Contributions to A
(7)
Y - terms 1 to 30
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63

X

63

X

6464

65

X

65

X

6666

67

67

68

6868

68

X

X

69

6969

69
70

70

X

X

71

71

A
(7)
31 A

(7)
32 A

(7)
33 A

(7)
34 A

(7)
35

72

X

X

72

73

73

74

X X

74

75

75
76

76

X

X

77 77

78

78

X

X

79

79

80

X X

80

81
81

A
(7)
36 A

(7)
37 A

(7)
38 A

(7)
39 A

(7)
40

82

X

X

82 82

82

X

X

X

X

8383

84 84

X

X X

X 85

86

88

87

90

89

91

9292

93

XX

A
(7)
41 A

(7)
42 A

(7)
43 A

(7)
44 A

(7)
45

94

94

95 95

9595

X

97

X 97

96

96

X

98

100
99

X

101

102

102

X

X

X

X

X

X

103 103

X

X

A
(7)
46 A

(7)
47 A

(7)
48 A

(7)
49 A

(7)
50

X

X

104

104

X

X

X

X

105105

X

X

A
(7)
51 A

(7)
52

Table 5.4: Contributions to A
(7)
Y - terms 31 to 52
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(2) (2) (2) (2) (2)

(T
(5)
1 )Y Y (T

(5)
2 )Y Y (T

(5)
3 )Y Y (T

(5)
4 )Y Y (T

(5)
5 )Y Y

(2) (2) (2) (2) (2)

(T
(5)
6 )Y Y (T

(5)
7 )Y Y (T

(5)
8 )Y Y (T

(5)
9 )Y Y (T

(5)
10 )Y Y

(2) (2) (2) (2) (2)

(T
(5)
11 )Y Y (T

(5)
12 )Y Y (T

(5)
13 )Y Y (T

(5)
14 )Y Y (T

(5)
15 )Y Y

(2) (2) (2)

(T
(5)
16 )Y Y (T

(5)
17 )Y Y (T

(5)
18 )Y Y

Table 5.5: Contributions to T
(5)
Y Y
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The full list of consistency conditions is given below. In the interest of easily

verifying that these consistency conditions hold, we have rewritten certain condi-

tions such that we have expressed as many anomalous dimension type coefficients

as possible in terms of non-anomalous dimension coefficients. Our reason for do-

ing so is that the anomalous dimension terms are typically harder to evaluate, as

the diagrams are linearly or quadratically divergent, whereas the rest of the terms

are logarithmically divergent, and (using integration by parts) can be calculated

from the master integrals in [52]. We therefore have a list of consistency con-

ditions relating terms originating from logarithmically divergent diagrams, and

twelve predictions for anomalous dimension contributions.

The simple consistency conditions obtained from A
(7)
9 -A

(7)
21 are

c
(4)
5 = 0, c

(4)
6 = 0, c

(4)
7 = c

(4)
8 = c

(4)
9 ,

c
(4)
10 = c

(4)
11 = c

(4)
12 , c

(4)
13 = 2c

(4)
14 , c

(4)
15 = c

(4)
16 = c

(4)
17 ,

2c
(4)
18 = c

(4)
19 , 2c

(4)
20 = c

(4)
21 , 2c

(4)
22 = c

(4)
23 ,

c
(4)
24 = 2c

(4)
25 , 2c

(4)
26 = c

(4)
27 , c

(4)
28 = c

(4)
29 ,

2c
(4)
30 = c

(4)
31 , 2c

(4)
32 = c

(4)
33 , c

(4)
34 = 2c

(4)
35 ,

c
(4)
54 = c

(4)
56 , c

(4)
89 = c

(4)
90 , (5.56)

while those resulting from A
(7)
22 -A

(7)
47 are

c
(4)
40 − c(4)39 = c

(4)
42 − c(4)44 = c

(4)
50 − c(4)49

= c
(4)
52 − c(4)57 = 3(c

(4)
70 − c(4)72 ) = c

(4)
87 − c(4)86 ,

c
(4)
40 − c(4)41 = c

(4)
42 − c(4)43 = c

(4)
50 − c(4)51 = c

(4)
52 − c(4)53

= 6(c
(4)
70 − c(4)72 )− c(4)61 + c

(4)
62 = c

(4)
87 − c(4)88 ,

c
(4)
55 − 4c

(4)
67 = 1

2
(c

(4)
56 − 2c

(4)
68 ), 3(c

(4)
70 + c

(4)
72 ) + c

(4)
85 = c

(4)
88 + 12c

(4)
97 ,

c
(4)
75 = 12(c

(4)
80 − c(4)97 ), c

(4)
85 − c(4)89 = 2(2c

(4)
94 − c(4)95 ), (5.57)

and

c
(4)
52 − c(4)55 − 6c

(4)
63 + 12c

(4)
65 + 6c

(4)
70 + c

(4)
85 − c(4)87 − 12c

(4)
97 = 0,

3c
(4)
59 + 3c

(4)
70 − 6c

(4)
77 − c(4)87 + c

(4)
89 − 6c

(4)
97 = 0,

6c
(4)
63 − 3c

(4)
70 + 3c

(4)
72 − 12c

(4)
77 − c(4)85 − c(4)88 + 2c

(4)
89 = 0,

3c
(4)
65 + c

(4)
74 − 3c

(4)
77 = 0,

4c
(4)
67 − c(4)68 + 2c

(4)
74 + 6c

(4)
80 + 4c

(4)
94 − 2c

(4)
95 − 6c

(4)
97 = 0,

2c
(4)
36 = c

(4)
37 = 2c

(4)
38 = c

(4)
45 = c

(4)
46 = c

(4)
47 = c

(4)
48 = c

(4)
58 = 2c

(4)
91 = c

(4)
92 = 2c

(4)
93 . (5.58)
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Integral for c
(4)
69 Integral for c

(4)
82

Table 5.6: Feynman integrals for terms undetermined by (5.48)

The condition resulting from A
(7)
48 -A

(7)
52 is

c
(4)
98 = c

(4)
99 = c

(4)
100 = c

(4)
101 = 6c

(4)
102 = 4c

(4)
103 = 6c

(4)
104 = 4c

(4)
105, (5.59)

and the predictions for twelve out of fourteen anomalous dimension type coeffi-

cients are

c
(4)
60 = c

(4)
59 − 2c

(4)
63 + 12c

(4)
69 + 2c

(4)
70 − 1

6
c
(4)
86 − 1

6
c
(4)
87 + 1

3
c
(4)
90 + 4

3
c
(4)
94 − 2

3
c
(4)
95 − 4c

(4)
97 ,

c
(4)
64 = −c(4)63 + 12c

(4)
69 + c

(4)
70 − 1

6
c
(4)
86 + 1

6
c
(4)
90 + 2

3
c
(4)
94 − 1

3
c
(4)
95 − 2c

(4)
97 ,

c
(4)
66 = −1

2
c
(4)
63 + 6c

(4)
69 + 1

2
c
(4)
70 + 1

6
c
(4)
74 − 1

2
c
(4)
80 + 1

3
c
(4)
94 − 1

6
c
(4)
95 − 1

2
c
(4)
97 ,

c
(4)
71 = 12c

(4)
82 − 1

6
c
(4)
86 + 1

6
c
(4)
90 + 2

3
c
(4)
94 − 1

3
c
(4)
95 − 2c

(4)
97 ,

c
(4)
73 = 12c

(4)
82 − 1

6
c
(4)
87 + 1

6
c
(4)
90 + 2

3
c
(4)
94 − 1

3
c
(4)
95 − 2c

(4)
97 ,

c
(4)
76 = −c(4)63 + 6c

(4)
69 + c

(4)
70 + c

(4)
77 + 2

3
c
(4)
94 − 1

3
c
(4)
95 − 2c

(4)
97 ,

c
(4)
78 = −1

6
c
(4)
63 + 2c

(4)
69 + 1

6
c
(4)
70 ,

c
(4)
79 = 1

6
c
(4)
63 − 1

6
c
(4)
70 + 2c

(4)
82 ,

c
(4)
81 = 1

3
c
(4)
74 + 6c

(4)
82 + 2

3
c
(4)
94 − 1

3
c
(4)
95 − c(4)97 ,

c
(4)
83 = 1

6
c
(4)
92 ,

c
(4)
84 = 1

6
c
(4)
92 ,

c
(4)
96 = 6c

(4)
82 + 1

3
c
(4)
94 − 1

6
c
(4)
95 − c(4)97 , (5.60)

the undetermined coefficients being c
(4)
69 and c

(4)
82 . To obtain all fourteen anomalous

dimension coefficients, we therefore need only evaluate the two Feynman integrals

in Table 5.6, then deduce their associated β-function coefficients.

We have calculated the non-anomalous dimension terms in MS via integration

by parts, using [52]5:

c
(4)
1 = −8, c

(4)
2 = 32, c

(4)
3 = −4, c

(4)
4 = −2,

5With the exception of five integrals involving double propagators that must instead be
calculated directly. We shall discuss new relations between these remaining integrals shortly.
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c
(4)
5 = 0, c

(4)
6 = 0, c

(4)
7 = 4(π2 − 8), c

(4)
8 = 4(π2 − 8),

c
(4)
9 = 4(π2 − 8), c

(4)
10 = 16, c

(4)
11 = 16, c

(4)
12 = 16,

c
(4)
13 = −8, c

(4)
14 = −4, c

(4)
15 = 4π2, c

(4)
16 = 4π2,

c
(4)
17 = 4π2, c

(4)
18 = 2(π2 − 8), c

(4)
19 = 4(π2 − 8), c

(4)
20 = 16

(

π2

3
− 2
)

,

c
(4)
21 = 32

(

π2

3
− 2
)

, c
(4)
22 = π2, c

(4)
23 = 2π2, c

(4)
24 = 16,

c
(4)
25 = 8, c

(4)
26 = 32, c

(4)
27 = 64, c

(4)
28 = 0,

c
(4)
29 = 0, c

(4)
30 = π2, c

(4)
31 = 2π2, c

(4)
32 = 2π2,

c
(4)
33 = 4π2, c

(4)
34 = 8, c

(4)
35 = 4, c

(4)
36 = π2,

c
(4)
37 = 2π2, c

(4)
38 = π2, c

(4)
39 = 8, c

(4)
40 = 16,

c
(4)
41 = 0, c

(4)
42 = 8, c

(4)
43 = −8, c

(4)
44 = 0,

c
(4)
45 = 2π2, c

(4)
46 = 2π2, c

(4)
47 = 2π2, c

(4)
48 = 2π2,

c
(4)
49 = 16, c

(4)
50 = 24, c

(4)
51 = 8, c

(4)
52 = 8,

c
(4)
53 = −8, c

(4)
54 = 0, c

(4)
55 = 16, c

(4)
56 = 0,

c
(4)
57 = 0, c

(4)
58 = 2π2, c

(4)
59 = 16

3
, c

(4)
61 = 0,

c
(4)
62 = 0, c

(4)
63 = 8

3
, c

(4)
65 = 8

3
, c

(4)
67 = 4,

c
(4)
68 = 0, c

(4)
70 = 8, c

(4)
72 = 16

3
, c

(4)
74 = 4,

c
(4)
75 = 0, c

(4)
77 = 4, c

(4)
80 = 8

3
, c

(4)
85 = 0,

c
(4)
86 = 16, c

(4)
87 = 24, c

(4)
88 = 8, c

(4)
89 = 24,

c
(4)
90 = 24, c

(4)
91 = π2, c

(4)
92 = 2π2, c

(4)
93 = π2,

c
(4)
94 = −2, c

(4)
95 = 8, c

(4)
97 = 8

3
, c

(4)
98 = 2π2,

c
(4)
99 = 2π2, c

(4)
100 = 2π2, c

(4)
101 = 2π2, c

(4)
103 =

π2

2
,

c
(4)
105 =

π2

2
. (5.61)

From these results, one can verify that (5.56 – 5.59) are all satisfied. After evalu-

ating the integrals in Table 5.6, subtracting the central two-loop subdivergences

and deducing the associated β-function coefficients, we find

c
(4)
69 = 4

27
, c

(4)
82 = 22

27
, (5.62)

hence the other anomalous dimension coefficients are predicted by (5.60) to be

c
(4)
60 = 4

9
, c

(4)
64 = −8

9
, c

(4)
66 = −4

9
, c

(4)
71 = 16

9

c
(4)
73 = 4

9
c
(4)
76 = 8

9
, c

(4)
78 = 32

27
, c

(4)
79 = 20

27
,

c
(4)
81 = −4

9
, c

(4)
83 = π2

3
c
(4)
84 = π2

3
, c

(4)
96 = 2

9
,

c
(4)
102 =

π2

3
, c

(4)
104 =

π2

3
. (5.63)
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We have checked the majority of these predictions by explicit computation, and

found them to be correct.

A final check on the consistency conditions is that they should be scheme-

independent. This can be verified (as in even dimensions) by deducing the changes

in coefficients under a coupling redefinition, corresponding to a change in renor-

malization scheme, and checking that all consistency conditions are invariant

under such changes. The change in β
(4)
Y (Y ) is given by

δβ
(4)
Y = β

(2)
Y ·

∂

∂Y
δY (2) − δY (2) · ∂

∂Y
β
(2)
Y , (5.64)

so writing

δY (2) =

5
∑

1

δiU
(2)
i , (5.65)

we see that the induced changes are

δc
(4)
52 = 2(δ1 − 4δ2) δc

(4)
53 = 2(δ1 − 4δ2) δc

(4)
54 = 4(4δ2 − δ1) δc

(4)
55 = 2(4δ2 − δ1)

δc
(4)
56 = 4(4δ2 − δ1) δc

(4)
57 = 2(δ1 − 4δ2) δc

(4)
59 = 2

3
δ1 − 8δ4 δc

(4)
60 = 8δ4 − 2

3
δ1

δc
(4)
63 = 2

3
δ1 − 8δ4 δc

(4)
64 = 8δ4 − 2

3
δ1 δc

(4)
65 = 4

3
δ2 − 4δ4 δc

(4)
66 = 4δ4 − 4

3
δ2

δc
(4)
70 = 2

3
δ1 − 8δ5 δc

(4)
71 = 8δ5 − 2

3
δ1 δc

(4)
72 = 2

3
δ1 − 8δ5 δc

(4)
73 = 8δ5 − 2

3
δ1

δc
(4)
74 = 4(δ3 − δ2) δc

(4)
75 = 16(δ2 − δ3) δc

(4)
76 = 4δ4 − 4

3
δ3 δc

(4)
77 = 4

3
δ3 − 4δ4

δc
(4)
78 = 4

3
(δ4 − δ5) δc

(4)
79 = 4

3
(δ5 − δ4) δc

(4)
80 = 4

3
δ2 − 4δ5 δc

(4)
81 = 4δ5 − 4

3
δ2

δc
(4)
85 = 2(4δ3 − δ1) δc

(4)
86 = 2(δ1 − 4δ3) δc

(4)
87 = 2(δ1 − 4δ3) δc

(4)
88 = 2(δ1 − 4δ3)

δc
(4)
89 = 2(4δ3 − δ1) δc

(4)
90 = 2(4δ3 − δ1) δc

(4)
96 = 4δ5 − 4

3
δ3 δc

(4)
97 = 4

3
δ3 − 4δ5,

(5.66)

while all other coefficients are scheme-independent. One can then verify that

(5.56 – 5.60) are invariant under these changes, and hence hold in any renormal-

ization scheme.

By verifying all consistency conditions deduced from (5.48), and checking

their scheme-independence, we have verified that it is possible to construct an A-

function satisfying (2.1) at next-to-leading order for a general three dimensional

scalar-fermion theory, with very strong evidence that the construction exists be-

yond leading order for a general abelian gauge theory. This function takes the

form (5.40), with the scalar terms expressed as (5.41) and the purely Yukawa parts

expressed as (5.52). The coefficients for the scalar-dependant part are given by

(5.49), with MS values deduced from (5.46) and leading order metric given by
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(5.51), while the MS coefficients of the pure Yukawa part are

a
(7)
1 = −4

3
, a

(7)
2 = 16

3
, a

(7)
3 = −2

3
, a

(7)
4 = −1

3
,

a
(7)
5 = − 7

162
+ 1

24
a, a

(7)
6 = 11

162
+ 1

24
a, a

(7)
7 = 0, a

(7)
8 = 0,

a
(7)
9 = 2π2 − 16, a

(7)
10 = 8, a

(7)
11 = −2, a

(7)
12 = 2π2,

a
(7)
13 = π2 − 8, a

(7)
14 = 8

3
− 16π2, a

(7)
15 = π2

2
a
(7)
16 = 4,

a
(7)
17 = 8, a

(7)
18 = 0 a

(7)
19 = π2

2
, a

(7)
20 = π2,

a
(7)
21 = 2, a

(7)
22 = π2, a

(7)
23 = −16

2
+ 3a, a

(7)
24 = −28

3
+ 3a,

a
(7)
25 = 2π2, a

(7)
26 = −4

3
+ 3a, a

(7)
27 = −56

3
+ 6a, a

(7)
28 = π2,

a
(7)
29 = −10

9
+ a, a

(7)
30 = −28

3
+ 3a, a

(7)
31 = −16

9
+ a, a

(7)
32 = −8

9
+ 1

2
a,

a
(7)
33 = −7

3
+ 3

4
a, a

(7)
34 = − 1

54
+ 1

24
a, a

(7)
35 = 8

9
+ a, a

(7)
36 = 2

9
+ a,

a
(7)
37 = −14

3
+ 3

2
a, a

(7)
38 = −2

9
+ 1

2
a, a

(7)
39 = 10

27
+ 1

6
a, a

(7)
40 = −2

9
+ 1

2
a,

a
(7)
41 = 11

54
+ 1

24
a, a

(7)
42 = π2

6
, a

(7)
43 = π2

6
, a

(7)
44 = −8

3
+ 6a,

a
(7)
45 = π2, a

(7)
46 = −4

3
+ 3

4
a, a

(7)
47 = 1

9
+ 1

2
a, a

(7)
48 = 2π2,

a
(7)
49 = π2

12
, a

(7)
50 = π2

4
, a

(7)
51 = π2

12
, a

(7)
52 = π2

4
, (5.67)

and the next-to-leading order metric coefficients in (5.54) are

t
(5)
1 = −28

3
+ 3a, t

(5)
2 = −40

3
+ 3a, t

(5)
3 = −16

3
+ 3a,

t
(5)
4 = 0, t

(5)
5 = π2, t

(5)
6 = −1

9
+ 1

4
a,

t
(5)
7 + t

(5)
8 = −2

3
+ 1

2
a, t

(5)
9 = −13

3
+ 3

4
a, t

(5)
10 = −14

3
+ 3

2
a,

t
(5)
11 = −1

3
+ 3

4
a, t

(5)
12 = −20

3
+ 1

2
a, t

(5)
13 = 11

9
+ 3

4
a,

t
(5)
14 + t

(5)
15 = 1

2
a, t

(5)
16 = π2

4
, t

(5)
17 = 0,

t
(5)
18 = π2

4
. (5.68)

As was found in even dimensions, A and T are determined up to the arbitrariness

a present in (5.40); there is also some additional arbitrariness in the definition of

T
(5)
Y Y , since only the sums t

(5)
7 + t

(5)
8 , t

(5)
14 + t

(5)
15 are determined. Finally, it is worth

noting that t
(5)
i is scheme-independent for i = {4, 5, 13, 14, 15, 16, 17, 18}, hence

t
(5)
4 and t

(5)
17 are both zero in an arbitrary scheme.

5.3.3 Relations between Feynman integrals

As mentioned previously, with the exception of five integrals involving double

propagators, the non-anomalous dimension contributions to β
(4)
Y (Y ) were all de-

termined from the master integrals in [52], using integration by parts. By this

method alone, one can reduce the basis of Feynman diagrams to ten, shown in



CHAPTER 5. THREE DIMENSIONS 161

I4 I22 I4bbb I42bbc I42bb1de

1 4
32 2 3

4

1

V W X Y Z

Table 5.7: Feynman integrals that appear in the non-anomalous dimension con-
tributions to β

(4)
Y (Y )

Table 5.7. The first five integrals are named following the conventions of [52],

while the latter five require new labels. As far as we can tell, there is no simple

process of integration by parts that will further reduce this basis of integrals.

Having constructed an A-function in three dimensions beyond leading order,

an intriguing consequence is that such a function can not only be used to predict

the coefficients of various terms in βY , as seen in (5.60), but can also be used

to derive relations between the Feynman diagrams from which these β-function

terms originate. The consistency conditions (5.56) are all derived from equations

containing no higher-order metric coefficients, hence for these relations to hold

there must exist analogous relations between the Feynman diagrams.

To derive the relations between the Feynman diagrams, one need only express

the β-function coefficients as multiples of the simple poles in the Feynman dia-

grams, then use the consistency conditions (5.56). By doing so, we obtain the

following conditions:

I4 − 1
2
I22 = I42bbc = −2V = −2W,
I4bbb = −2I42bb1de = 4X = −8Y,
Z = 0 (5.69)

We see that all Feynman integrals used to deduce the non-anomalous dimension

terms in β
(4)
Y (Y ) have now been reduced to three simple integrals with no momen-

tum running through. These relations appear to be completely new, and appear

to showcase a rather remarkable feature: the existence of a function restricting

the behaviour of renormalization-group flow can infer new relations between the

divergences encountered in Feynman integrals. The conditions for diagrams X

and Y are predicated on the vanishing of t
(5)
4 , but as was noted at the end of the
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last subsection t
(5)
4 = 0 is a scheme-independent result.

Combined with the deduction of the anomalous dimension terms using (5.60),

one can summarise the situation as follows: to derive the pure Yukawa part of

β
(4)
Y for a general theory, one may construct the next-to-leading order A-function

and evaluate a total of five simple Feynman integrals; the rest follows from simple

integration by parts.

5.4 General N = 2 supersymmetric gauge the-

ory

Throughout this chapter, we have attempted to construct, for three-dimensional

quantum field theories, an A-function satisfying (2.1). After explicitly demon-

strating the existence of such a function for particular theories, we showed that

the A-function exists to leading order for a general Abelian theory in three di-

mensions, and to next-to-leading order for a scalar-Yukawa theory. Clearly, the

obvious next step is to include gauge interactions and attempt to construct A for

a completely general theory at next-to-leading order, but this would be a very

involved calculation. We may instead attempt to demonstrate that A does in-

deed exist for a general N = 2 supersymmetric gauge theory,6 providing evidence

that it may then be possible to construct A for a general non-supersymmetric

gauge theory. In a supersymmetric theory, one may take advantage of the non-

renormalization theorem to significantly reduce the number of potential contri-

butions to β
(4)
Y ; furthermore, we need only consider Yukawa-dependent terms,

as any Yukawa-independent contributions may easily be shown to satisfy (2.1)

without imposing any consistency conditions.

The action for a general N = 2 supersymmetric gauge theory takes the form

[54]

S = SSUSY + SGF + SGH , (5.70)

where SSUSY is the supersymmetric action

SSUSY =

∫

d3x

∫

d4θ

(

k

∫ 1

0

dtTr[D
α
(e−tVDαe

tV )] + Φj(eVARA)ijΦi

)

+

(∫

d3x

∫

d2θW (Φ) + h.c.

)

, (5.71)

6The required four-loop β-function, β
(4)
Y , was calculated in [53], with the exception of one

term corresponding to a non-planar integral. We shall comment on this integral at the end of
this section.
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SGF the gauge-fixing term (with gauge-fixing parameter ξ) [55]

SGF = − k
2ξ

∫

d3xd2θ tr[ff ]− k
2ξ

∫

d3xd2θ tr[ff ], (5.72)

and SGH the ghost action [69], which we omit as we do need to consider dia-

grams with ghost propagators. In the action, V = VATA is a vector superfield

in the adjoint representation, with TA being the generators of the fundamental

representation satisfying

[TA, TB] = ifABCTC ,

T r (TATB) = δAB. (5.73)

Φ is a chiral matter superfield (with the convention Φi = Φi
∗) that may be in a

general representation, with gauge matrices RA satisfying

[RA, RB] = ifABCRC ,

T r (RARB) = TRδAB. (5.74)

W (Φ) is the superpotential, which for renormalizability must be quartic in three

dimensions, and takes the form

W (Φ) = 1
4!
Y ijklΦiΦjΦkΦl. (5.75)

The Yukawa coupling Y ijkl is dimensionless in three dimensions, and we introduce

the further convention Y ijkl = (Y ijkl)∗. Finally, to satisfy gauge invariance, the

gauge coupling k is quantized such that 2πk is an integer.

We shall now attempt to construct A. As mentioned previously, the only

β-functions in a general N = 2 theory are those corresponding to the Yukawa

coupling and its conjugate; therefore, at leading order, we may expand (2.1) as

dY A
(5) = dY T

(3)

Y Y
β
(2)

Y
,

dY A
(5) = dY T

(3)

Y Y
β
(2)
Y . (5.76)

Both β-functions are given (as described above) by the chiral superfield anomalous

dimension, which at two loops takes the form

γΦ = γ
(2)
1 Y iklmY

klmj + γ
(2)
2 C(R) ki C(R)

j
k + γ

(2)
3 C(R) ji . (5.77)

Since γΦ = γΦ, we see that the coefficients of the corresponding tensor structures

appearing in β
(2)
Y , β

(2)

Y
will be equal. The two-loop β-functions may therefore be
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expressed as

β
(2)
Y = (γ

(2)
Φ ) (i

m Y
jkl)m =

3
∑

i=1

c
(2)
i C

(2)
i ,

β
(2)

Y
= Y m(ijk (γ

(2)
Φ ) ml) =

3
∑

i=1

c
(2)
i C

(2)

i , (5.78)

with tensor structures

C
(2)
1 = Y ijkmY mpqrY

pqrl + Y ijmlY mpqrY
pqrk

+ Y imklY mpqrY
pqrj + Y mjklY mpqrY

pqri,

C
(2)
2 = Y ijkmC(R) n

m C(R)
l
n + Y ijmlC(R) n

m C(R)
k
n

+ Y imklC(R) n
m C(R)

j
n + Y mjklC(R) n

m C(R)
i
n ,

C
(2)
3 = Y ijkmC(R) l

m + Y ijmlC(R) k
m

+ Y imklC(R) j
m + Y mjklC(R) i

m. (5.79)

Similarly, we may parametrise the leading order A-function as

A(5) = a
(5)
1 Y ijklY ijkmY

mpqrY pqrl + a
(5)
2 Y ijklC(R) m

l C(R) n
m Y ijkn

+ a
(5)
3 Y ijklC(R) m

l Y ijkm, (5.80)

and the lowest order metric T
(3)
IJ such that

dY T
(3)

Y Y
β
(2)

Y
= µ (dY )ijkl(β

(2)

Y
)ijkl,

dY T
(3)

Y Y
β
(2)
Y = µ (dY )ijkl(β

(2)
Y )ijkl. (5.81)

Given that the leading order metric in the non-supersymmetric theory is simply

proportional to the unit matrix, we would expect to find that µ = µ. Substituting

(5.78), (5.80) and (5.81) into (5.76) then gives the solution

a
(5)
1 = 2c

(2)
1 µ a

(5)
2 = 4c

(2)
2 µ a

(5)
3 = 4c

(2)
3 µ

= 2c
(2)
1 µ, = 4c

(2)
2 µ, = 4c

(2)
3 µ, (5.82)

so we see immediately that indeed µ = µ, and therefore the leading order metric

is proportional to the unit matrix as expected. Due to the simplicity of the

construction, the terms in A(5) and β
(2)
Y are in one-to-one correspondence, hence

there are no consistency conditions.

We now turn to the next order. The Yukawa-dependant part of the four-loop
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chiral superfield anomalous dimension can be expressed as

γ
(4)
Φ =

12
∑

i=1

γ
(4)
i Γ

(4)
i + . . . , (5.83)

where the tensor structures

(Γ
(4)
1 ) ji = Y iklm(Y Y )

m
nY

klnj, (Γ
(4)
2 ) ji = Y iklmY

lmpqY pqrsY
rskj,

(Γ
(4)
3 ) ji = Y iklmY

klmp(C(R)C(R)) j
p , (Γ

(4)
4 ) ji = Y iklm(C(R)C(R))

m
pY

klpj,

(Γ
(4)
5 ) ji = Y iklmC(R)

m
nY

klnpC(R) j
p , (Γ

(4)
6 ) ji = Y ikmnC(R)

m
pC(R)

n
qY

kpqj,

(Γ
(4)
7 ) ji = Y iklm(RARB)

m
nY

klnp(RBRA)
j
p , (Γ

(4)
8 ) ji = Y ikmn(RARB)

m
p(RARB)

n
qY

kpqj,

(Γ
(4)
9 ) ji = (Y Y ) k

i C(R)
j
k , (Γ

(4)
10 )

j
i = Y iklmC(R)

m
nY

klnj,

(Γ
(4)
11 )

j
i = 1

2
tr[Y Y RARB]({RA, RB}) j

i , (Γ
(4)
12 )

j
i = Y ikmn(RA)

m
p(RA)

n
qC(R)

q
rY

kprj,

(5.84)

form a basis of terms with four gauge matrices, and we have defined

(Y Y )i j = Y iklmY klmj, (Y Y ) j
i = Y iklmY

klmj,

(C(R)C(R))i j = C(R)i kC(R)
k
j , (RARB)

i
j = (RA)

i
k(RB)

k
j . (5.85)

Strictly speaking, Γ
(4)
12 is superfluous as it can be expressed as

Γ
(4)
12 = 1

24
Γ
(4)
3 − 1

8
Γ
(4)
4 − 1

4
Γ
(4)
6 − 1

2
Γ
(4)
8 − 1

12
CGΓ

(4)
9 , (5.86)

but it appears naturally in several diagrammatic calculations and gives a van-

ishing contribution to γ(4), hence its presence does not affect our calculation of

A.

Expanding (2.1), we wish to solve

dYA
(7) = dY T

(3)

Y Y
β
(4)

Y
+ dY T

(5)

Y Y
β
(2)

Y
+ dY T

(5)
Y Y β

(2)
Y ,

dYA
(7) = dY T

(3)

Y Y
β
(4)
Y + dY T

(5)

Y Y
β
(2)
Y + dY T

(5)

Y Y
β
(2)

Y
, (5.87)

where again the β-functions are given by

β
(4)
Y = (γ

(4)
Φ ) (i

m Y
jkl)m =

12
∑

i=1

c
(4)
i C

(4)
i ,

β
(4)

Y
= Y m(ijk (γ

(4)
Φ ) ml) =

12
∑

i=1

c
(4)
i C

(4)

i . (5.88)
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A
(7)
1 A

(7)
2 A

(7)
3 A

(7)
4 A

(7)
5

B
A

A B

A
B

A
B

A
(7)
6 A

(7)
7 A

(7)
8 A

(7)
9 A

(7)
10

A
(7)
11 A

(7)
12 A

(7)
13

Table 5.8: Contributions to A(7) for N = 2

The A-function at this order takes the form

A(7) =

14
∑

i=1

a
(7)
i A

(7)
i + a(β

(2)
Y )ijkl(β

(2)

Y
)ijkl + . . . , (5.89)

where A
(7)
1−13 are depicted in Table 5.8, A

(7)
14 is given by

A
(7)
14 = 1

4
tr[Y Y {RA, RB}] tr[Y Y {RA, RB}],

and we neglect terms that originate from Yukawa-independent contributions to

γΦ. As previously alluded, for any Yukawa-independent contribution x(4)X j
i ∈

γ
(4)
Φ , one may simply add to A(7) a term a(7)Y ijklX m

(i Y jk l)m, and substituting into

(5.87) gives a(7) = 4µx(4) with no further consistency conditions. Diagrammati-

cally, Yukawa couplings are represented by the four-point vertices; the convention

for chirality is that arrows always point from a Y to a Y . CR insertions are rep-

resented by boxes, and insertions of gauge matrices RA, RB are represented by

labels A, B respectively. As an example, diagram A
(7)
9 corresponds to the tensor

structure

A
(7)
9 = Y ijklY jklmY

mnpr(RBRA)
q
p (RBRA)

s
r Y nqsi.

The leading order metric was shown to be proportional to the unit matrix, T
(3)
IJ =
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T
(5)
1 T

(5)
2 T

(5)
3 T

(5)
4 T

(5)
5

A

B

A

B

T
(5)
6 T

(5)
7 K

(5)
1 K

(5)
2

Table 5.9: Contributions to T (5), K(5) for N = 2

µδIJ . The next-to-leading order metric may be expressed as

T
(5)

Y Y
=

7
∑

i=1

t
(5)
i T

(5)
i , T

(5)
Y Y =

2
∑

i=1

k
(5)
i K

(5)
i ,

T
(5)

Y Y
=

7
∑

i=1

t
(5)
i T

(5)

i , T
(5)

Y Y
=

2
∑

i=1

k
(5)

i K
(5)

i , (5.90)

with the tensor structures T
(5)
i , K

(5)
i depicted in Table 5.9, again contracted in the

form dY T
(5)

Y Y
β
(2)

Y
, etc. The corresponding tensor structures T

(5)

i , K
(5)

i , contracted

in the form dY T
(5)

Y Y
β
(2)
Y , etc may be obtained by reversing the arrows of each term

in Table 5.9.

Substituting (5.78), (5.81), (5.88), (5.89) and (5.90) into (5.87) gives a large

system of equations (C.6), from which one can deduce the consistency conditions

c
(4)
5 = c

(4)
6 , c

(4)
7 = c

(4)
8 , (5.91)

and the metric constraints

t
(5)
i = t

(5)
i ∀i 6= 2,

(t
(5)
2 − t

(5)
2 ) + (k

(5)
1 − k

(5)

1 ) = 0,

k
(5)
2 = k

(5)

2 = 0. (5.92)

The coefficients t
(5)
2 , t

(5)
2 , k

(5)
1 , k

(5)

1 , while constrained to satisfy the above equality,

are otherwise arbitrary. Consequently, we are free to choose that the metric be

symmetric by imposing t
(5)
2 = t

(5)
2 , which then forces k

(5)
1 = k

(5)

1 . Having imposed
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symmetry, we obtain the following solution for the A-function coefficients,

a
(7)
1 = 2µc

(4)
1 , a

(7)
2 = 4µc

(4)
2 , a

(7)
3 = 2

9
µc

(4)
3 ,

a
(7)
4 = 2

3
µ(3c

(4)
3 + c

(4)
4 ), a

(7)
5 = 4µc

(4)
4 , a

(7)
6 = 4µc

(4)
5 ,

a
(7)
7 = 4µc

(4)
5 , a

(7)
8 = 4µc

(4)
7 , a

(7)
9 = 4µc

(4)
7 ,

a
(7)
10 = 4

c
(2)
2

c
(2)
1

µc
(4)
2 , a

(7)
11 = 4

c
(2)
3

c
(2)
1

µc
(4)
2 , a

(7)
12 = 2

3
µ(3c

(4)
9 + c

(4)
10 ),

a
(7)
13 = 4µc

(4)
10 , a

(7)
14 = 2µc

(4)
11 , (5.93)

and metric coefficients

t
(5)
1 = 2

3c
(2)
1

µc
(4)
1 + 4b1a, t

(5)
2 + k

(5)
1 = 8c

(2)
1 a,

t
(5)
3 = 2

c
(2)
1

µc
(4)
2 , t

(5)
4 = 2

3c
(2)
1

µ(2c
(4)
4 − c

(2)
2

c
(2)
1

c
(4)
1 ) + 4c

(2)
2 a, t

(5)
5 = 2

c
(2)
1

µc
(4)
5 ,

t
(5)
6 = 2

c
(2)
1

µc
(4)
7 , t

(5)
7 = 2

3c
(2)
1

µ(2c
(4)
10 − c

(2)
3

c
(2)
1

c
(4)
1 ) + 4c

(2)
3 a, k

(5)
2 = 0, (5.94)

where t
(5)
i = t

(5)
i , k

(5)

i = k
(5)
i . We see that, as in four and six dimensions, there is

a correspondence between the freedom in the definition of A and an arbitrariness

in the metric.

As always, due to the method of construction, we expect the consistency con-

ditions (5.91) on the β-function coefficients to be scheme-independent. Given a

coupling redefinition (δY )(2), the induced change in β
(4)
Y is

δβ
(4)
Y =

(

β
(2)
Y ·

∂

∂Y
+ β

(2)

Y
· ∂
∂Y

)

(δY )(2)

−
(

(δY )(2) · ∂
∂Y

+ (δY )(2) · ∂
∂Y

)

β
(2)

Y
(5.95)

hence given a two-loop redefinition of the form

(δY )(2) =
3
∑

i=1

δiY
m(jkl (C

(2)
i ) i)

m , (5.96)

we obtain the following changes in the coefficients of β
(4)
Y ,

δc
(4)
3 = 2(b2δ1 − b1δ2), δc

(4)
4 = 6(b2δ1 − b1δ2),

δc
(4)
9 = 2(b3δ1 − b1δ3), δc

(4)
10 = 6(b3δ1 − b1δ3), (5.97)

and so we see immediately that (5.91) are indeed scheme-independent.

To verify that the consistency conditions hold, we therefore need only evalu-
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ate the MS values of the β-function coefficients.7 Table 5.10 shows all diagrams

that may contribute to the Yukawa-dependent part of γ(4), and their individual

contributions are listed in Table 5.11. The results are presented such that to

obtain the contributions from a particular diagram, one sums the weighted con-

tribution from each master integral (columns I4, I22, I4bbb, W ), then multiples by

the symmetry factor and overall group factor; for example, diagram (a) gives a

contribution

(a)→ − 1
12
I4 Γ

(4)
1

to γ(4), while diagram (l) gives

(l)→ (−2I4 + 4
3
I4bbb)

(

1
6
Γ
(4)
3 − 1

2
Γ
(4)
7

)

.

7For a detailed exposition, see chapter four of [48].
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

(s) (t) (u) (v)

Table 5.10: Four-loop diagrams contributing to the Yukawa-dependent part of
the N = 2 superfield anomalous dimension
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symm I4 I22 I4bbb W overall group factor

(a) − 1
12

1 0 0 0 Γ
(4)
1

(b) −1
8

0 0 1 0 Γ
(4)
2

(c) −1
4

−2 0 0 0 Γ
(4)
4 − 1

4
CGΓ

(4)
10

(d) −1
2

0 0 1 0 Γ
(4)
4 − 1

2
CGΓ

(4)
10

(e) −1 0 0 2
3

0 −1
2
Γ
(4)
4 − 1

2
Γ
(4)
12 − 1

12
CGΓ

(4)
9 + 1

4
CGΓ

(4)
10

(f) 1 0 0 −2
3

0 Γ
(4)
8 + 1

12
CGΓ

(4)
9 − 1

4
CGΓ

(4)
10

(g) −1
4

0 0 −2 0 Γ
(4)
8 + 1

12
CGΓ

(4)
9 − 1

4
CGΓ

(4)
10

(i) 1
2

0 0 −2
3

0 1
2
Γ
(4)
4 + 1

2
Γ
(4)
7 − Γ

(4)
8 + Γ

(4)
12

(j) 1 −2 0 1 0 Γ
(4)
7 − 1

12
CGΓ

(4)
9

(k) −1
2

−2 0 0 0 Γ
(4)
7 − 1

12
CGΓ

(4)
9

(l) 1 −2 0 4
3

0 1
6
Γ
(4)
3 − 1

2
Γ
(4)
7

(m) − 1
12

−2 0 0 0 Γ
(4)
3 − 1

4
CGΓ

(4)
9

(n) −1
2

1 0 −1
2

0
(

T̃ + 1
2
CG

)(

1
6
Γ
(4)
9 − 1

2
Γ
(4)
10

)

(o) −1
2

0 1
2

0 0
(

T̃ + 1
2
CG

)

Γ
(4)
10

(p) 1
2

0 1
2

0 0
(

T̃ + 1
2
CG

)

Γ
(4)
10

(q) − 1
12

0 1 0 −2 Γ
(4)
11

(r) 1
6

1 0 0 −1 Γ
(4)
11

Table 5.11: Results for diagrams listed in Table 5.10 in terms of master integrals
(see Table 5.7) and invariants involving Yukawa couplings of Eq. (5.84)

.

(a) (b)

Table 5.12: Classes of diagrams that do not contribute to γ(4)
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Table 5.12 shows diagrams that do not contribute to γ [56]: any diagram

of the form 5.12(a) is finite by power counting, whereas the diagrams of the

form 5.12(b) contain fewer than two Ds and two D̄s and hence give a vanishing

contribution. Summing all contributions, we therefore find the MS results for the

Yukawa-dependent part of γ(4), and hence the corresponding coefficients of β
(4)
Y :

c
(4)
1 = 2

3
, c

(4)
2 = π2

4
, c

(4)
3 = 4

3
(1− π2

3
), c

(4)
4 = 2π2

3
− 4,

c
(4)
5 = 0, c

(4)
6 = 0, c

(4)
7 = −π2

3
, c

(4)
8 = −π2

3
,

c
(4)
9 = 2

3
(TR − CG)− π2

12
TR + π2

8
CG,

c
(4)
10 = −2(TR − CG) + π2

4
TR − 3π2

8
CG,

c
(4)
11 = −4

3
. (5.98)

It is worth noting here that the calculation of contributions from diagram (h) is

very involved, requiring the evaluation of a new master integral at three loops

(shown below in Figure 5.1). Nevertheless, it is possible to do, and was rather

surprisingly found to be finite.

Figure 5.1: Ω - the new non-

planar Feynman integral for

N = 2 gauge theory

Finally, as in the non-supersymmetric case,

one may attempt to derive relations between

the underlying Feynman integrals. The ba-

sis of Feynman integrals for the β-function of

the general N = 2 gauge theory is in fact

the same as that of the non-supersymmetric

scalar-fermion theory (see Table 5.7), with the

addition of one new non-planar diagram Ω,

shown in Figure 5.1. This integral has an im-

plied spinor trace over the six outer propaga-

tors, where the arrows indicate a factor /k in the numerator, and we use three-

dimensional gamma matrices with tr(1) = 2. Expressing the β-function coeffi-

cients in terms of the underlying integrals, one has

c
(4)
5 = 0, c

(4)
6 = 0, c

(4)
7 = 1

6
I4bbb, c

(4)
8 = 1

6
I4bbb + kω,

where ω is the singular part of the new integral Ω, and k is some non-zero con-

stant.8 As a consequence of the consistency conditions (5.91), we see immediately

8Specifically, k is the product of the symmetry factor for (h), the ”weight” factor from the

master integral Ω, and the group-theoretic factor proportional to Γ
(4)
8 .
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that we must have

ω = 0, (5.99)

and hence our A-function predicts that the new integral Ω must be finite. It is

somewhat remarkable that a simple first-order differential equation with (as of

yet) no theoretical justification is sufficiently powerful to determine that a highly

non-trivial three-loop integral must in fact be finite.

5.5 Summary

In this chapter, we have investigated the possibility of constructing an A-function

for general three-dimensional QFTs, satisfying the same gradient-flow equation

as in even dimensions. Generically, such a function is determined only up to

an overall multiplication constant, since the Euler density conventionally used

to fix this scale in even dimensions vanishes identically in odd dimensions. We

first calculated A explicitly for a range of theories, showing in each case that

the leading-order metric is positive-definite, up to the overall constant. Next

we considered general theories, finding that while the leading-order A-function

for a general scalar-fermion theory is somewhat trivial to construct, the Abelian

gauge theory leads to a number of simple consistency conditions, which are triv-

ially scheme-independent and satisfied in MS. We then demonstrated that the

three-dimensional A-function may be constructed beyond leading order, in direct

analogy with the even-dimensional case, by deducing the mixed scalar-Yukawa

contributions to A(7), and deriving the associated consistency conditions. These

conditions were again automatically scheme-independent, and (as in four dimen-

sions) fixed a ratio between the leading-order metric coefficients such that if either

coefficient is positive, then the leading-order metric is positive-definite.

Having shown that the A-function continues to exist beyond leading order,

we completed the calculation of the next-to-leading order A-function for a gen-

eral scalar-fermion theory by deducing all purely-Yukawa contributions to A(7).

This required determining all possible terms in the A-function, four-loop Yukawa

β-function, and next-to-leading-order metric, leading to a very large set of consis-

tency conditions. To verify these conditions, we first calculated all non-anomalous

dimension contributions to β
(4)
Y in MS using integration by parts, and found that

each condition was indeed satisfied. While we did not calculate all anomalous

dimension contributions, we did calculate two out of the fourteen possible terms,

then deduced the remaining twelve using the consistency conditions; we were

later able to independently verify most of these predictions. We then ensured
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that each condition was scheme-independent, again by deducing the effects of a

coupling redefinition. Since there were so many simple consistency conditions, it

was possible to deduce the relations between the poles of the underlying Feyn-

man integrals; by doing so, we found that the existence of an A-function for a

three-dimensional scalar-fermion theory was sufficient to reduce the basis of mas-

ter integrals, up to four loops, to just five very simple diagrams. Given that there

are 105 pure Yukawa terms and a further 6 scalar terms in β
(4)
Y , this is a truly

dramatic simplification.

Finally, in order to provide more evidence for the existence of an A-function

for general three-dimensional gauge theories beyond leading order, we consid-

ered a general N = 2 supersymmetric gauge theory. This was again trivial at

leading order, but at next-to-leading order resulted in a number of consistency

conditions. The conditions relating β-function coefficients were again satisfied in

MS and shown to be scheme-independent via calculating the effects of a coupling

redefinition, whereas the conditions on the tensor TIJ automatically imposed sym-

metry for all but two terms. It is easy to see that these last terms may indeed

be chosen so that TIJ = GIJ , without imposing any extra consistency conditions.

We then again deduced the relations between the required Feynman integrals, of

which all but one had been calculated in [53], and found that the required basis of

integrals was the same as for the non-supersymmetric scalar-fermion theory, plus

the extra integral not previously calculated. Our relations required that this final

integral be finite: a rather powerful statement, given that the integral in question

is a highly non-trivial, three loop, non-planar integral. The result is even more

surprising given that it is ultimately predicated on the as-yet-unjustified existence

of an A-function in three dimensions, satisfying the same gradient-flow equation

as in even dimensions.
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Conclusions

Throughout this thesis, our aim has been to construct a function satisfying (2.1),

then deduce consequences of the existence of such a function, for a range of general

QFTs in various numbers of spacetime dimensions. In each case, the existence of

this function led to consistency conditions, relating coefficients of the β-functions

of each theory across multiple loop orders. By expressing all β-functions as sums

of general tensor structures with arbitrary coefficients, and using the equivalence

of a coupling redefinition and a change in renormalization scheme, we have been

able to show that all such consistency conditions are invariant under the changes

induced by a coupling redefinition, and hence hold in arbitrary renormalization

schemes. We have also addressed the question of whether the tensor TIJ that

appears in (2.1) may in fact be chosen to be symmetric, reducing to the metric

GIJ ; we have explicitly shown this to be possible in each theory considered. For

the six-dimensional φ3 theory, this possibility was contingent on a new consistency

condition being satisfied, and we have shown that this is the case.

We have also considered less obvious consequences of the existence of a func-

tion satisfying (2.1). In the case of four-dimensional N = 1 supersymmetry, we

have extended a proposed all-orders expression for the a-function to a general

gauge theory. This proposal is reliant on a new equation being satisfied, the

Λ-equation, and we have deduced the implied consistency conditions for the co-

efficients of the chiral superfield anomalous dimension. In six dimensions, we

have shown that the existence of an a-function is sufficient to determine the first

non-trivial contribution to B, the shifted β-function that determines whether a

theory is conformally invariant. Finally, in three dimensions, we have shown that

the consistency conditions are of a simple enough form that one can derive rela-

tions between the underlying Feynman integrals themselves, rather than just the

coefficients of the β-functions. The power of these conditions was demonstrated

175
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by considering a general three-dimensional N = 2 supersymmetric gauge the-

ory, and showing that the final non-planar Feynman integral, left undetermined

by [53], must in fact be finite. Since our three-dimensional work was carried out

last, we have not gone back and re-assessed whether the consistency conditions

of our four- and six-dimensional theories also lead to relations between Feynman

integrals; such an undertaking would therefore be a straightforward line of further

inquiry.

Throughout our investigations, we have encountered several obvious questions

that we feel merit further study. As mentioned above, in each example we have

shown that one may impose symmetry of the tensor TIJ up to the order consid-

ered, and that this imposition is renormalization scheme-independent. However,

it was claimed in [9] that, in the case of a four-dimensional scalar-fermion theory,

imposing symmetry at the first non-trivial order is only possible for particular

schemes. The first question is therefore, is it always possible to choose TIJ = GIJ ,

and if not, why not? While symmetry of TIJ in our calculations was manifest

at lower orders of perturbation theory, and imposed with no consequence in all

four- and three-dimensional theories considered, the six-dimensional φ3 theory

essentially relied on fixing some of the arbitrariness present in the definition of

the a-function away from RG fixed points. It is possible that there is simply

insufficient arbitrariness in the a-function for the four-dimensional scalar-fermion

theory, but nevertheless we feel that this particular case should be revisited, using

the completely general perspective employed in this thesis; at the very least, if

the conclusions of [9] are upheld, then the four-dimensional scalar-fermion case

would form a concrete counterexample to the suggestion of always being able to

impose symmetry of TIJ .

The next question raised was the potential for 1PR contributions to the β-

function of six-dimensional φ3 theory in general non-minimal renormalization

schemes, arising specifically from antisymmetric contributions to the anomalous

dimension. By construction, these 1PR contributions are of the same form as the

tensor structures present in the “v-term” (that is, the shift to the B function),

and hence would be expected to arise for any theory with a global symmetry,

in any number of spacetime dimensions. The work of [41] demonstrated how

to remove these antisymmetric contributions, but made no mention of whether

this has an effect on the potential 1PR contributions to the v-term. One can

therefore ask, after re-defining the anomalous dimension to remove antisymmetric

contributions, what effect (if any) does this have on 1PR contributions to the v-

term? Our prediction for the coefficient of the 1PI contribution to the v-term

was predicated on the vanishing of 1PR contributions in MS, hence we cannot
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make any statement regarding their presence in non-minimal schemes.

Further questions that one may ask are of a much more general nature. We

have provided perturbative calculations supporting an extension of the Λ-equation

to supersymmetric gauge theories, but this obviously does not address whether

the Λ-equation is actually true. As mentioned in the summary of chapter 3,

the authors of [35] used Weyl consistency conditions to derive an equation that

appears very similar to the Λ-equation. Is their equation precisely the Λ-equation?

If so, then the conjectured all-orders expression for the a-function in N = 1

supersymmetric gauge theories will have been established.

A glaring issue is, of course, the question of what we are calculating in three

dimensions. There is no Euler anomaly in three-dimensional theories, and so

the function we have constructed cannot reduce to the usual coefficient a at

RG fixed points. The most promising notion is that we are in fact construct-

ing the F -function proposed by [44, 45]. The F -function is intended to satisfy a

three-dimensional analogue of the a-theorem known as the F -theorem, and for

free theories has indeed been shown to satisfy the equivalent weak formulation

FUV > FIR. As noted by the authors of [44, 45], it is difficult to calculate the F -

function for interacting theories, or even to evaluate it numerically, and so if our

construction is indeed reproducing the F -function, then we have a method of cal-

culating F perturbatively for a completely general, interacting, three-dimensional

QFT.

Broadening scope beyond immediate questions, the existence of an a-function

may be of use in constructing asymptotically safe theories; that is, theories that

possess a non-trivial interacting RG fixed point, rendering them finite at high

energy. Classes of such theories have been constructed by [57], and rely on can-

cellations between β-functions at different loop orders in exactly the same per-

turbative ordering used to construct an a-function. Given that our consistency

conditions are valid for general four-dimensional theories, and are independent

of renormalization scheme, one may ask: is it possible to utilize such relations

between β-function coefficients to demonstrate that a more general theory is

asymptotically safe? If so, it may be possible to entertain the notion of asymp-

totic safety for theories in spacetime dimensions other than four, using similar

consistency conditions.

Finally, we return to the use of the basic consistency conditions that we de-

rive for each case. A major weakness of our approach is that there appears to

be no predictive quality to the generation of consistency conditions; although

we know that the conditions will relate some β-function coefficients, there is no

indication of which coefficients will appear in any one condition. Furthermore,



CHAPTER 6. CONCLUSIONS 178

with present understanding, there does not seem to be any way to determine

the number of conditions generated at any loop order. As an intermediate step,

instead of counting consistency conditions, one could hope to count the number

of combinations of β-function coefficients that are scheme-invariant, of which the

consistency conditions are simply linear combinations. Unfortunately, even at-

tempting to count such invariants is counter-intuitive: for example, one might

suppose that the number of invariants is simply the number of independent β-

function coefficients minus the number of parameters present in the variations

induced by a coupling redefinition. However, in chapter 4, we found that φ3

theory has five independent two-loop β-function coefficients and two redefinition

parameters, but four independent combinations (including scheme-independent

coefficients). It has been noticed that, while there are two independent redefini-

tion parameters, the induced changes in the β-function are given in terms of only

one linear combination of the parameters. It would be tempting to speculate that

the correct counting method is therefore the number of independent coefficients

minus the number of independent linear combinations of redefinition parameters,

but one would need to conduct a much deeper analysis of the invariants to provide

evidence that this would be the case.

A potential way forward in counting the number of consistency conditions may

lie in treating the problem more mathematically. Some predictions for scheme-

independent combinations of β-function coefficients were noted in the PhD thesis

of [58], as a consequence of treating Feynman integrals and their subdivergences

from the perspective of a Hopf algebra. In particular, Panzer demonstrated that

given a Feynman graph Gi with subgraphs gj and associated β-function contri-

bution biGi ∈ β, there will exist scheme-independent combinations of coefficients

bi according to the following criteria:

• If a graph G has a subgraph g such that G ∼= g, then its associated β-

function coefficient is scheme-independent;

• If two graphs G1, G2 have corresponding subgraphs g1, g2 such that the

quotient graphs satisfy G1/g1 ∼= g2 and G2/g2 ∼= g1, then xb1 + yb2 is

scheme-independent for some x, y > 0;

• If two graphs G1, G2 have the same subgraph g, such that the quotient

graphs satisfy G1/g ∼= G2/g, then xb1−yb2 is scheme-independent for some

x, y > 0.

One will immediately notice that our consistency conditions are, in many cases,

substantially more complex than these pairwise invariants, and so provide ample
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opportunity to generalise these criteria. If we were to sufficiently generalize the

criteria to encompass our consistency conditions, then we would have a new sys-

tematic method of deducing scheme-independent combinations of β-function co-

efficients for general theories; furthermore, combined with the potential relations

between the Feynman integrals, it may be possible to develop a novel approach to

integral reduction that extends beyond methods reliant on integration by parts.



A: Four-dimensional equations

Here we list the systems of linear equations generated when solving (2.1) for a

general four-dimensional gauge theory.

Equations for A(4)

2a
(4)
2 = µc

(2)
29

4a
(4)
3 = µc

(2)
4

6a
(4)
4 = µc

(2)
1

6a
(4)
5 + 12(c

(1)
2 )2a = c

(1)
2 (t

(3)
1 + t

(3)
2 + t

(3)
3 )

2a
(4)
6 + 4(c

(1)
2 )2a = c

(1)
2 t

(3)
1

4a
(4)
6 + 8(c

(1)
2 )2a = 2µc

(2)
8 + c

(1)
2 (t

(3)
2 + t

(3)
3 )

2a
(4)
7 + 8c

(1)
2 c

(1)
3 a = 2µc

(2)
10 + c

(1)
3 (t

(3)
2 + t

(3)
3 )

2a
(4)
7 + 8c

(1)
2 c

(1)
3 a = c

(1)
3 t

(3)
1 + 2c

(1)
2 t

(3)
4

2a
(4)
7 + 8c

(1)
2 c

(1)
3 a = µc

(2)
24 + 2c

(1)
2 (t

(3)
5 + t

(3)
6 )

6a
(4)
8 + 6(c

(1)
3 )2a = c

(1)
3 (t

(3)
4 + t

(3)
5 + t

(3)
6 )

2a
(4)
9 + 8c

(1)
1 c

(1)
2 a = c

(1)
1 t

(3)
1 + c

(1)
2 t

(3)
8

2a
(4)
9 + 8c

(1)
1 c

(1)
2 a = 2µc

(2)
11 + c

(1)
2 (2t

(3)
7 + t

(3)
8 )

2a
(4)
9 + 8c

(1)
1 c

(1)
2 a = 2µc

(2)
9 + c

(1)
1 (t

(3)
2 + t

(3)
3 )

4a
(4)
10 + 4(c

(1)
1 )2a = 2µc

(2)
30 + c

(1)
1 t

(3)
8

2a
(4)
10 + 2(c

(1)
1 )2a = µc

(2)
3 + c

(1)
1 t

(3)
7

2a
(4)
11 + 4c

(1)
1 c

(1)
3 a = µc

(2)
25 + c

(1)
1 (t

(3)
5 + t

(3)
6 )

2a
(4)
11 + 4c

(1)
1 c

(1)
3 a = c

(1)
1 t

(3)
4 + c

(1)
3 t

(3)
7

2a
(4)
11 + 4c

(1)
1 c

(1)
3 a = µc

(2)
2 + c

(1)
3 t

(3)
8

4a
(4)
13 + 16c

(1)
2 c

(1)
4 a = 2µc

(2)
13 + c

(1)
4 (t

(3)
1 + t

(3)
2 + t

(3)
3 ) + c

(1)
2 t

(3)
9

2a
(4)
14 + 8c

(1)
2 c

(1)
4 a = 2µc

(2)
14 + c

(1)
4 (t

(3)
2 + t

(3)
3 )

180
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2a
(4)
14 + 8c

(1)
2 c

(1)
4 a = 2µc

(2)
12 + c

(1)
4 t

(3)
1 + c

(1)
2 t

(3)
9

2a
(4)
15 + 8c

(1)
2 c

(1)
5 a = 2µc

(2)
16 + c

(1)
5 (t

(3)
2 + t

(3)
3 )

2a
(4)
15 + 8c

(1)
2 c

(1)
5 a = 2µc

(2)
17 + c

(1)
5 t

(3)
1 + 2c

(1)
2 t

(3)
10

2a
(4)
16 + 8c

(1)
1 c

(1)
4 a = 2µc

(2)
18 + c

(1)
4 t

(3)
8 + c

(1)
1 t

(3)
9

2a
(4)
16 + 8c

(1)
1 c

(1)
4 a = 2µc

(2)
19 + c

(1)
4 (2t

(3)
7 + t

(3)
8 )

2a
(4)
17 + 4c

(1)
1 c

(1)
5 a = µc

(2)
5 + c

(1)
5 t

(3)
7 + c

(1)
1 t

(3)
10

2a
(4)
17 + 4c

(1)
1 c

(1)
5 a = µc

(2)
6 + c

(1)
5 t

(3)
8

4a
(4)
18 = 2µc

(2)
15

2a
(4)
19 + 8c

(1)
3 c

(1)
4 a = 2c

(1)
4 t

(3)
4 + c

(1)
3 t

(3)
9

2a
(4)
19 + 8c

(1)
3 c

(1)
4 a = µc

(2)
26 + 2c

(1)
4 (t

(3)
5 + t

(3)
6 )

4a
(4)
20 + 8c

(1)
3 c

(1)
5 a = µc

(2)
7 + c

(1)
5 (t

(3)
4 + t

(3)
5 + t

(3)
6 ) + c

(1)
3 t

(3)
10

2a
(4)
22 + 4(c

(1)
4 )2a = 2µc

(2)
22 + c

(1)
4 t

(3)
9

2a
(4)
23 + 4(c

(1)
4 )2a = µc

(2)
21 + c

(1)
4 t

(3)
9

2a
(4)
24 + 2(c

(1)
5 )2a = µc

(2)
27 + c

(1)
5 t

(3)
10

2a
(4)
25 + 8c

(1)
4 c

(1)
5 a = 2µc

(2)
23 + c

(1)
5 t

(3)
9 + 2c

(1)
4 t

(3)
10

2a
(4)
26 = 2µc

(2)
20 + e

(1)
1 τ

(3)
1

2a
(4)
27 = µc

(2)
28 + e

(1)
1 τ

(3)
2 (A.1)

Additional equations for constraints on β
(3)
g

2a
(4)
12 = σ

(1)
1 e

(3)
1

2a
(4)
13 + 8c

(1)
2 c

(1)
4 a = σ

(1)
1 e

(3)
2 + τ̃

(3)
1 c

(1)
2

2a
(4)
14 + 8c

(1)
2 c

(1)
4 a = σ

(1)
1 e

(3)
3 + τ̃

(3)
1 c

(1)
2

2a
(4)
15 + 8c

(1)
2 c

(1)
5 a = σ

(1)
1 e

(3)
4 + 2τ̃

(3)
2 c

(1)
2

2a
(4)
16 + 8c

(1)
1 c

(1)
4 a = σ

(1)
1 e

(3)
5 + τ̃

(3)
1 c

(1)
1

2a
(4)
17 + 4c

(1)
1 c

(1)
5 a = σ

(1)
1 e

(3)
6 + τ̃

(3)
2 c

(1)
1

2a
(4)
18 = σ

(1)
1 e

(3)
7

2a
(4)
19 + 8c

(1)
3 c

(1)
4 a = σ

(1)
1 e

(3)
8 + τ̃

(3)
1 c

(1)
3

2a
(4)
20 + 4c

(1)
3 c

(1)
5 a = σ

(1)
1 e

(3)
9 + τ̃

(3)
2 c

(1)
3

4a
(4)
21 = σ

(1)
1 e

(3)
10

4a
(4)
22 + 8(c

(1)
4 )2a = σ

(1)
1 e

(3)
11 + τ̃

(3)
1 c

(1)
4

4a
(4)
23 + 8(c

(1)
4 )2a = σ

(1)
1 e

(3)
12 + τ̃

(3)
1 c

(1)
4
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4a
(4)
24 + 4(c

(1)
5 )2a = σ

(1)
1 e

(3)
13 + τ̃

(3)
2 c

(1)
5

4a
(4)
25 + 16c

(1)
4 c

(1)
5 a = σ

(1)
1 e

(3)
14 + τ̃

(3)
1 c

(1)
5 + 2τ̃

(3)
2 c

(1)
4

4a
(4)
26 + 8e

(1)
1 e

(2)
4 ã = σ

(1)
1 e

(3)
15 + σ

(2)
1 e

(2)
4 + σ

(3)
1 e

(1)
1

4a
(4)
27 + 8e

(1)
1 e

(2)
5 ã = σ

(1)
1 e

(3)
16 + σ

(2)
1 e

(2)
5 + σ

(3)
2 e

(1)
1 (A.2)

Equations for Λ(3)

1
3
Λ

(3)
1 = γ

(3)
1 + θ

(2)
3 γ

(1)
1 + θ

(2)
4 γ

(1)
1

1
6
Λ

(3)
2 = γ

(3)
2 + θ

(2)
3 γ

(1)
1

1
3
Λ

(3)
3 = γ

(3)
3 + θ

(1)
1 γ

(2)
1 + θ

(2)
4 γ

(1)
1

1
2
Λ

(3)
4 = γ

(3)
4

1
3
Λ

(3)
5 = γ

(3)
5 + 2θ

(1)
1 γ

(2)
3 + θ

(2)
3 γ

(1)
2 + θ

(2)
4 γ

(1)
2 + θ

(2)
6 γ

(1)
1

1
6
Λ

(3)
6 = γ

(3)
6 + θ

(2)
3 γ

(1)
2 + θ

(2)
6 γ

(1)
1

1
3
Λ

(3)
7 = γ

(3)
7 + θ

(1)
1 γ

(2)
2 + 2θ

(2)
4 γ

(1)
2

1
6
Λ

(3)
6 = γ

(3)
8 + θ

(2)
3 γ

(1)
2 + θ

(2)
5 γ

(1)
1 − 2γ

(2)
1 γ

(1)
2

1
3
Λ

(3)
8 = γ

(3)
9 + θ

(1)
1 γ

(2)
4 + θ

(2)
6 γ

(1)
2

1
3
Λ

(3)
9 = γ

(3)
10 + θ

(2)
6 γ

(1)
2

1
6
Λ

(3)
9 = γ

(3)
11 + 2θ

(2)
5 γ

(1)
2 + θ

(2)
6 γ

(1)
2 − 2γ

(2)
2 γ

(1)
2

1
6
Λ

(3)
8 = γ

(3)
12 + θ

(1)
1 γ

(2)
4 + θ

(2)
5 γ

(1)
2 − 2γ

(2)
3 γ

(1)
2 − 2γ

(2)
4 γ

(1)
1

0 = γ
(3)
13 + 2λ

(3)
1 + φ

(1)
1 d

(2)
3

1
3
Λ

(3)
10 = γ

(3)
14 + 2θ

(1)
1 γ

(2)
5 + φ

(2)
1 d

(1)
1

1
6
Λ

(3)
10 = γ

(3)
15 + θ

(1)
1 γ

(2)
5 + φ

(2)
2 d

(1)
1 − 2γ

(2)
5 γ

(1)
1

0 = γ
(3)
16 − 2γ

(2)
4 γ

(1)
2

0 = γ
(3)
17 + 2λ

(3)
2 + φ

(1)
1 d

(2)
2

0 = γ
(3)
18 + φ

(2)
3 d

(1)
1 − 2γ

(2)
5 γ

(1)
2

0 = γ
(3)
19 + 2λ

(3)
3 + φ

(2)
4 d̃

(1)
1 + φ

(1)
1 d̃

(2)
1

1
6
Λ

(3)
1 = θ

(2)
1 γ

(1)
1 + θ

(2)
2 γ

(1)
1

1
6
Λ

(3)
5 = θ

(1)
1 γ

(2)
3 + θ

(2)
1 γ

(1)
2 + θ

(2)
2 γ

(1)
2 + θ

(2)
5 γ

(1)
1 − 2γ

(2)
3 γ

(1)
1

1
3
Λ

(3)
2 = θ

(1)
1 γ

(2)
1 + 2θ

(2)
1 γ

(1)
1 − γ(2)1 γ

(1)
1

1
6
Λ

(3)
6 = 2θ

(2)
2 γ

(1)
1 + θ

(2)
3 γ

(1)
1 − γ(2)1 γ

(1)
1

1
6
Λ

(3)
3 = θ

(1)
1 γ

(2)
2 + 2θ

(2)
1 γ

(1)
2 − γ(2)2 γ

(1)
1

1
6
Λ

(3)
7 = 2θ

(2)
2 γ

(1)
2 + θ

(2)
6 γ

(1)
1 − γ(2)2 γ

(1)
1 (A.3)



B: Six-dimensional equations

Here we list the systems of linear equations generated when solving (2.1) for a

six-dimensional φ3 theory.

Equations for A(5)

2a
(5)
1 + 12α(4)c(1A)c(2d) = c(1A)t

(4)
1 + c(1A)t

(4)
3 + c(2d)t

(3)
2

2a
(5)
1 + 12α(4)c(1A)c(2d) = c(2d)t

(3)
3 + c(2d)t

(3)
4 + 3λc(3I)

4a
(5)
1 + 24α(4)c(1A)c(2d) = 2c(1A)t

(4)
1 + 3c(1A)t

(4)
2 + 2c(1A)t

(4)
3 + 3λc(3p)

3a
(5)
2 + 6α(4)c(1a)c(2d) = c(1a)t

(4)
1 + c(1a)t

(4)
3 + 3λc(3q)

3a
(5)
2 + 6α(4)c(1a)c(2d) = c(2d)t

(3)
1 + 3λc(3s)

2a
(5)
2 + 4α(4)c(1a)c(2d) = c(1a)t

(4)
2 + λc(3r)

8a
(5)
3 = 3λc(3u)

8a
(5)
4 + 8c(1A)c(1A)α

(5)
2 + 8c(1A)c(1A)α

(5)
3

= c(1A)t
(4)
14 + c(1A)t

(4)
18 + c(1A)t

(4)
15 + c(1A)t

(4)
17 + c(1A)t

(4)
16

2a
(5)
5 + 12α(4)c(1A)c(2C) + 12c(1A)c(1A)α

(5)
2 + 8c(1A)c(1A)α

(5)
3

= c(1A)t
(4)
28 + 2c(1A)t

(4)
18 + 2c(1A)t

(4)
15 + c(2C)t

(3)
2 + c(2C)t

(3)
3 + 3λc(3N ′) − 3λcv(3N)

2a
(5)
5 + 12α(4)c(1A)c(2C) + 12c(1A)c(1A)α

(5)
2 + 8c(1A)c(1A)α

(5)
3

= c(1A)t
(4)
11 + c(1A)t

(4)
30 + 2c(1A)t

(4)
17 + 2c(1A)t

(4)
16 + c(2C)t

(3)
4 + 3λc(3N) + 3λcv(3N)

2a
(5)
5 + 12α(4)c(1A)c(2C) + 12c(1A)c(1A)α

(5)
2 + 8c(1A)c(1A)α

(5)
3

= c(1A)t
(4)
27 + c(1A)t

(4)
29 + 2c(1A)t

(4)
10 + 2c(1A)t

(4)
14

2a
(5)
5 + 12α(4)c(1A)c(2C) + 12c(1A)c(1A)α

(5)
2 + 8c(1A)c(1A)α

(5)
3

= c(1A)t
(4)
28 + c(1A)t

(4)
30 + c(1A)t

(4)
12 + c(1A)t

(4)
13 + 3λc(3L)

4a
(5)
6 + 48α(4)c(1A)c(2C) + 16c(1A)c(1A)α

(5)
3

= 2c(1A)t
(4)
12 + 2c(1A)t

(4)
13 + 2c(2C)t

(3)
3 + 2c(2C)t

(3)
4 + 3λc(3K)

4a
(5)
6 + 48α(4)c(1A)c(2C) + 16c(1A)c(1A)α

(5)
3

183
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= 2c(1A)t
(4)
27 + 2c(1A)t

(4)
29 + 2c(1A)t

(4)
11 + 2c(2C)t

(3)
2

6a
(5)
7 + 12c(1A)c(1A)α

(5)
2 = c(1A)t

(4)
28 + c(1A)t

(4)
30 + 3λc(3J)

2a
(5)
7 + 4c(1A)c(1A)α

(5)
2 = c(1A)t

(4)
10

8a
(5)
8 = 3λc(3t)

2a
(5)
9 + 12α(4)c(1A)c(2B) + 2c(1A)c(1A)α

(5)
1 + 4c(1A)c(1a)α

(5)
2 + 4c(1a)c(1A)α

(5)
3

= c(1A)t
(4)
19 + c(1a)t

(4)
18 + c(1a)t

(4)
15 + c(2B)t

(3)
2 + c(2B)t

(3)
3 + 3λc(3M ′) − 3λcv(3M)

2a
(5)
9 + 12α(4)c(1A)c(2B) + 2c(1A)c(1A)α

(5)
1 + 4c(1A)c(1a)α

(5)
2 + 4c(1a)c(1A)α

(5)
3

= c(1A)t
(4)
7 + c(1A)t

(4)
23 + c(1a)t

(4)
17 + c(1a)t

(4)
16 + c(2B)t

(3)
4 + 3λc(3M) + 3λcv(3M)

2a
(5)
9 + 12α(4)c(1A)c(2B) + 2c(1A)c(1A)α

(5)
1 + 4c(1A)c(1a)α

(5)
2 + 4c(1a)c(1A)α

(5)
3

= c(1A)t
(4)
20 + c(1A)t

(4)
24 + c(1A)t

(4)
8 + c(1a)t

(4)
14

2a
(5)
9 + 12α(4)c(1A)c(2B) + 2c(1A)c(1A)α

(5)
1 + 4c(1A)c(1a)α

(5)
2 + 4c(1a)c(1A)α

(5)
3

= c(1A)t
(4)
22 + c(1A)t

(4)
26 + 3λc(3n)

4a
(5)
10 + 24α(4)c(1a)c(2B) + 4c(1a)c(1a)α

(5)
3

= c(1a)t
(4)
7 + c(1a)t

(4)
20 + c(1a)t

(4)
24 + c(2B)t

(3)
1

4a
(5)
10 + 24α(4)c(1a)c(2B) + 4c(1a)c(1a)α

(5)
3

= c(1a)t
(4)
22 + 2c(2B)t

(3)
1 + 3λc(3j)

2a
(5)
11 + 12α(4)c(1a)c(2C) + 24α(4)c(1A)c(2B) + 8c(1a)c(1A)α

(5)
3

= 2c(1A)t
(4)
7 + c(1a)t

(4)
27 + c(1a)t

(4)
29 + 2c(2B)t

(3)
2

2a
(5)
11 + 12α(4)c(1a)c(2C) + 24α(4)c(1A)c(2B) + 8c(1a)c(1A)α

(5)
3

= 2c(1A)t
(4)
20 + 2c(1A)t

(4)
24 + c(1a)t

(4)
11 + c(2C)t

(3)
1

2a
(5)
11 + 12α(4)c(1a)c(2C) + 24α(4)c(1A)c(2B) + 8c(1a)c(1A)α

(5)
3

= c(1a)t
(4)
12 + c(1a)t

(4)
13 + 2c(2B)t

(3)
3 + 2c(2B)t

(3)
4 + 3λc(3H)

2a
(5)
11 + 12α(4)c(1a)c(2C) + 24α(4)c(1A)c(2B) + 8c(1a)c(1A)α

(5)
3

= 2c(1A)t
(4)
22 + 2c(2C)t

(3)
1 + 3λc(3m)

2a
(5)
12 + 12α(4)c(1a)c(2b) + 2c(1a)c(1a)α

(5)
1 = c(1a)t

(4)
4 + c(2b)t

(3)
1 + 3λc(3e)

2a
(5)
12 + 12α(4)c(1a)c(2b) + 2c(1a)c(1a)α

(5)
1 = c(1a)t

(4)
6 + 3λc(3g)

4a
(5)
12 + 24α(4)c(1a)c(2b) + 4c(1a)c(1a)α

(5)
1 = c(1a)t

(4)
5 + 2c(2b)t

(3)
1 + 6λc(3f)

a
(5)
13 + 6α(4)c(1a)c(2c) + 12α(4)c(1A)c(2b) + 4c(1a)c(1A)α

(5)
1

= c(1A)t
(4)
6 + c(1a)t

(4)
9 + 3λc(3h)

a
(5)
13 + 6α(4)c(1a)c(2c) + 12α(4)c(1A)c(2b) + 4c(1a)c(1A)α

(5)
1

= c(1A)t
(4)
5 + c(2c)t

(3)
1 + 3λc(3l)

2a
(5)
13 + 12α(4)c(1a)c(2c) + 24α(4)c(1A)c(2b) + 8c(1a)c(1A)α

(5)
1

= 2c(1A)t
(4)
4 + c(1A)t

(4)
5 + 2c(2c)t

(3)
1 + 6λc(3k)
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2a
(5)
13 + 12α(4)c(1a)c(2c) + 24α(4)c(1A)c(2b) + 8c(1a)c(1A)α

(5)
1

= c(1A)t
(4)
6 + c(1a)t

(4)
25 + 2c(2b)t

(3)
2

2a
(5)
13 + 12α(4)c(1a)c(2c) + 24α(4)c(1A)c(2b) + 8c(1a)c(1A)α

(5)
1

= c(1a)t
(4)
21 + 2c(2b)t

(3)
3 + 2c(2b)t

(3)
4 + 3λc(3D)

2a
(5)
14 + 12α(4)c(1A)c(2b) + 4c(1a)c(1A)α

(5)
1 + 2c(1a)c(1a)α

(5)
2

= c(1A)t
(4)
4 + c(1a)t

(4)
8 + c(2b)t

(3)
2

2a
(5)
14 + 12α(4)c(1A)c(2b) + 4c(1a)c(1A)α

(5)
1 + 2c(1a)c(1a)α

(5)
2

= c(1a)t
(4)
19 + c(1a)t

(4)
23 + c(2b)t

(3)
3 + c(2b)t

(3)
4 + 3λc(3E)

4a
(5)
14 + 24α(4)c(1A)c(2b) + 8c(1a)c(1A)α

(5)
1 + 4c(1a)c(1a)α

(5)
2

= c(1A)t
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C: Three-dimensional equations

Here we list the systems of linear equations generated when solving (2.1) for a

general three-dimensional Abelian gauge theory.

Equations for A(7) - Pure Yukawa terms
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