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Quantum reservoir computing with a single nonlinear oscillator
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Realizing the promise of quantum information processing remains a daunting task given the omnipresence
of noise and error. Adapting noise-resilient classical computing modalities to quantum mechanics may be
a viable path towards near-term applications in the noisy intermediate-scale quantum era. Here, we propose
continuous variable quantum reservoir computing in a single nonlinear oscillator. Through numerical simulation

of our model we demonstrate quantum-classical performance improvement and identify its likely source:
the nonlinearity of quantum measurement. Beyond quantum reservoir computing, this result may impact the
interpretation of results across quantum machine learning. We study how the performance of our quantum
reservoir depends on Hilbert space dimension, how it is impacted by injected noise, and briefly comment on its

experimental implementation. Our results show that quantum reservoir computing in a single nonlinear oscillator
is an attractive modality for quantum computing on near-term hardware.
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I. INTRODUCTION

Over the last several decades, quantum information science
has emerged as a transformative framework for information
processing, from high-performance computing to commu-
nication and cryptography [1]. Despite the tremendous
potential, only recently has a computational task that is pro-
hibitively difficult on a classical computer been demonstrated
on quantum hardware [2]. Intrinsic noise and spurious er-
ror remain the roadblock to widespread quantum advantage,
and the full power of quantum information processing awaits
the demonstration of logical error correction and fault toler-
ance [3,4]. In the near term, while we remain in the noisy
intermediate-scale quantum (NISQ) era [5], open questions
remain as to what, if any, quantum advantage can be expected
from current technologies, and how to design noise-resilient
computational methodologies that best take advantage of the
quantum resources available [6].

In the high-performance computing frontier, neuromor-
phic, or brain-inspired, computing modalities [7] show
considerable promise, with the canonical example being the
widespread success of neural network approaches to machine
learning. A particularly attractive neuromorphic computing
approach is reservoir computing [8—10], which harnesses
the computational power of a disordered, sparsely-connected,
nonlinear network. The network connections are untrained
and remain fixed, which both drastically reduces the cost of
training and removes the susceptibility to error in the assign-
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ment of flexible network connections as in traditional neural
networks. Recently, this approach to neuromorphic computing
has been expanded to include quantum mechanical systems
as the reservoir, defining so-called quantum reservoir com-
puting [11,12]. Theoretical studies have shown application
to problems in classical computing [13-17] as well as quan-
tum computing [18,19], and first experimental demonstrations
have been reported [20-22].

In this work, we present quantum reservoir computing
(QRC) in a continuous-variable system, with a reservoir
formed by a single nonlinear oscillator, and contrast to
classical reservoir computing (CRC) with the equivalent clas-
sical reservoir. By using a continuous-variable system, we
reduce the costly repetitions necessary to obtain accurate
measurement of expectation values, an issue that affects
the run time of discrete-variable quantum machine learn-
ing approaches [17]. We expect this to be an advantage
that continuous-variable reservoirs will show over discrete-
variable ones in practical implementation. We demonstrate
via numerical simulation an improvement in performance of
QRC compared to CRC for the same classical task of sine
phase estimation. This improvement is both in average error
for small training set sizes and a reduction in performance
spread across reservoir parameters. We isolate the main cause
of this quantum improvement, presenting compelling evi-
dence that it is due to the intrinsic nonlinearity of quantum
measurement.

This paper is organized as follows. In Sec. II we briefly
review reservoir computing, and in Sec. III we introduce quan-
tum and classical reservoir computing with a single nonlinear
oscillator. We describe our chosen task in Sec. IV and present
the results of our numerical simulations in Sec. V, studying
the quantum improvement and its origin, as well as the effects
of Hilbert space dimension and injected noise. Finally, we
present our concluding remarks and a discussion of experi-
mental implementations in Sec. VI.
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II. RESERVOIR COMPUTING

The simplest implementation of a reservoir computer con-
sists of a network of N sparsely-connected nonlinear nodes,
into which data is fed in a time series manner. If the N x 1
vector ii(t) defines the input signal at time ¢, then the input
to the reservoir nodes is given by Wj,ii(t), where Wj, is the
N x N input weight matrix. In practice, Wy, is fixed for a
given task, and N can be replaced by N, if data is input to
only a restricted number of reservoir nodes.

Without loss of generality we are free to assume each node
in the reservoir has a single degree of freedom, and the full
state of the reservoir at time ¢ is described by the vector x(z).
The time evolution of the reservoir is given by the nonlinear
differential equation

X = f(WiesX(7), Winii(t), WpX(1 — 7)), ey

where f(a, l;, ¢) is a nonlinear function. Its first argument
describes the internal interaction between reservoir nodes with
corresponding internal weight matrix W that includes decay
of the state in each node. Its second describes the input signal
to the reservoir, as previously discussed. The final input to
f describes time-delay feedback in the reservoir interaction,
with weight matrix Wy, In this work we will not consider any
explicit time-delay feedback and rely on the internal reservoir
dynamics to serve as short-term “memory.”

We label the output signal of the reservoir as s(¢), which
in many cases is simply the internal state X(z). In order to
compute with the reservoir, we discretize the time-dependent
output signals of all N reservoir nodes into P time steps and
collect them into an N x P matrix s,. For our purposes we
column stack this to form a NP x 1 vector s;. The final step
in a reservoir computing architecture is application of the
L x NP output weight matrix to the output signal, to obtain
the computed output

)_; = Woutgz ) (2)

where y is the L x 1 task output vector and (ideally) is the
answer to the problem the reservoir computer aims to solve.
As with the input weight matrix, if the output signal is only
recorded from a subset of nodes Ny, then the output weight
matrix can be reduced to L x (N, P) in size.

In reservoir computing, only the values of the output
weight matrix are trained in a supervised learning fashion. We
use the standard approach for training (see, e.g., Ref. [23])

Wou = YST(S,S] +»1) ", 3)

where Y and S; are L x M and (N, P) X M matrices that con-
tain the data for M training instances of the task. Y contains
the correct output of the task and S, the reservoir output sig-
nals ;, for each training instance. Here, y is a ridge-regression
parameter used to prevent overfitting.

As the training phase for a reservoir computer requires only
a single matrix inversion, it offers considerable computational
savings over traditional neural networks. Note that the way
we have designed our training procedure allows it to access
both correlations in the output signal between nodes at a given
instance of time, and across time steps, which stems from the
fact that we train using the full output signal s;. We find that

this gives the best performance. To further reduce the compu-
tational cost of training, one can introduce a block-diagonal
W,u that does not mix reservoir output signals at different
time steps.

III. A SINGLE NONLINEAR OSCILLATOR
AS A RESERVOIR

An appealing aspect of reservoir computing is that, in prin-
ciple, any nonlinear system can be used as the reservoir. For
the model of quantum reservoir computing we consider here,
the input and output from the reservoir will be a classical data
stream, and the reservoir consists of a single nonlinear oscil-
lator [23-26]. While it might appear that a single oscillator is
a reservoir with only one node, this is in fact not the case. In
our formalism, the number of nodes in the reservoir map to the
number of independent degrees of freedom in the oscillator.

In a classical nonlinear oscillator, there are two indepen-
dent degrees of freedom and thus two computational nodes;
we choose these to be the position X and momentum P
quadratures. In a quantum nonlinear oscillator, the compu-
tational nodes are formed by the complex amplitudes of the
system state p expressed in some basis. Equivalently, one
can think of the computational nodes as the real-valued ex-
pectation values of a complete basis of observables, such as
the Fock state projectors. We will describe the computational
nodes by a specification of expectation values of the form

Enm = Tf[Panm] (4)

for integers n, m > 0, where
f= @i p="ta—a) 5)
V2

are the usual canonical quadratures, with a the lowering op-
erator. Each E,, is an independent parameter, so given the
infinite dimension of a quantum oscillator’s Hilbert space, it
is tempting to assume that such a quantum reservoir is infinite
in size.

However, for many realistic states of the oscillator the total
number of independent E,, is finite. An extreme example
is Gaussian states, which are fully described by the set of
expectation values with n 4+ m < 2, but even an input power
restriction will set a limit to the largest occupied Fock state,
which in turn implies only a finite number of independent E,,,,,.
Nevertheless, a quantum nonlinear oscillator can have more
degrees of freedom than its classical analog, and the exponen-
tial growth of Hilbert space for oscillators is analogous to the
arguments used to motivate the power of quantum reservoirs
built from qubit networks [11].

Throughout this work, we consider a Kerr nonlinear os-
cillator as our reservoir. The quantum version of this system
is described by the Hamiltonian (in a frame rotating at the
oscillators’ frequency)

H@t)=Ka'aata + au@t)(@ + ab), ©6)

where K is the Kerr nonlinearity, and « is an overall amplitude
to the scalar input u(f). As can be seen, we choose a linear
input coupling that drives a single degree of freedom of the
reservoir, namely the P quadrature. As output we measure the
expectation value of the X quadrature (again only one degree
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FIG. 1. Input-output scheme for nonlinear oscillator RC. A si-
nusoidal input signal u(¢) at frequency w, is up-converted to a
double-sideband modulation of a carrier tone centered at the nonlin-
ear oscillator resonance frequency €2, where Q2 > w,. This is input
to the P quadrature of the oscillator, and the X quadrature is con-
tinuously measured by monitoring the output field of the oscillator.
The circulator at the input/output port of the nonlinear oscillator
separates the propagation of the input and output signals.

of freedom)
s(t) = Eip = Tr[p(H)X], @)

as a function of time. At the beginning of each new input
to the nonlinear oscillator, we reinitialize the system in a
deterministic state, in this case vacuum.

The input-output diagram for our setup is shown in Fig. 1.
Under driving by an input field in the P quadrature at a
carrier frequency resonant with the zero-photon frequency of
the nonlinear oscillator, labeled P, in Fig. 1, the dynamical
evolution of the internal degrees of freedom of the nonlinear
oscillator is generated by the Hamiltonian of Eq. (6). Using
input-output theory [27], the output field in the X quadrature,
labeled X, in Fig. 1, is given by

Kout(t) = Xin(t) + V& X (). ®)

Since the input is entirely in the P quadrature, we have that
(Xin(r)) = 0, and so the expectation value of the output field
is given by

Xouw@®)) = VK (X (@) = s(t), ©)

which is exactly the signal we have chosen as our reservoir
output. Thus, our chosen signal can be continuously measured
in practice by monitoring the output field of the nonlinear
oscillator.

In simulation, we can directly access the internal degrees
of freedom and evaluate s(t). However, we need to account
for the impact of the experimentally relevant open-system
measurement setup on the system dynamics. To do so, we
model the evolution of the quantum reservoir using a Lindblad

master equation [28]
p = —ilH (), p] + kDlalp, (10)

where D[%]p = xpi" — (&7, p}/2 is the usual dissipator that
describes evolution due to interaction with the environment;
in this case, decay of oscillator photons into the output port
at a rate «. By following this approach, our simulated s(¢) is
generated by a model for open-system evolution that accounts
for the effects of input/output on the reservoir, including
measurement-induced back action. Further, considering open-
system evolution is useful as it can reduce susceptibility to
overfitting, thereby improving performance.

As a model of the classical reservoir, we use the equation
of motion for a single nonlinear oscillator given by

i = —iK(1 +2la)a — %a — iau(t), (11

where a = (X + iP)/~/2 is the complex scalar amplitude of
the classical oscillator, with a* its complex conjugate. Note
that for the quantum model of Eq. (10), due to the Kerr nonlin-
earity and the noncommuting nature of the X and P operators,
there are many classical models that can be derived from it.
We have found that the choice of the specific classical model
does not qualitatively affect the reservoirs’ performances, and
the classical model we have chosen gives good dynamical
agreement with the quantum model in parameter regimes
where this is expected (K < «, k).

IV. SINE WAVE PHASE ESTIMATION

The task we consider for our reservoirs is the estimation
of the phase of an oscillatory signal. This fundamental task
in signal processing is challenging as it embodies a nonlinear,
nonconvex optimization problem [29]. Explicitly, the input to
the reservoir is

u(t) = sin(w,t + @), 12)

for a fixed, known frequency w, and an unknown phase ¢ in
the interval [0, 7 /2] [30]. This input signal corresponds to a
double-sideband modulation of a single frequency carrier tone
centered at the nonlinear oscillator resonance frequency €2, as
shown in Fig. 1. In practice, such an input can be implemented
in many modalities, e.g., at microwave frequencies it can be
achieved using a microwave mixer, as depicted in Fig. 1.

The task is to estimate the numerical value of this unknown
phase using the reservoir computer. As such, the output weight
“matrix” is a 1 x Ny P vector, and the reservoir phase esti-
mate is given by

(pest = Woul§t- (13)

The optimal weight matrix is determined by training on a set
of known phases, and throughout this work we use a set of
M equidistantly spaced phases in the interval [0, 7 /2] as our
training set.

We measure the performance of the reservoir at the sine
wave phase estimation task via the root mean square (RMS)
error of the estimated phases for a test set of size T, given by

2
9

T
1
r= |72 lest - e (14)
j=0
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where d)';“ is the actual value of the phase for the jth element
of the test set. The test set consists of uniformly random
phases from the interval [0, 7 /2].

V. RESULTS

We compare the performance of quantum and classical
reservoirs with Gaussian distributed parameters K, «, o, and
w,, with average values K /i = —2, @, /k = 10,a&/k = 6, and
i = 1 in arbitrary units. Each parameter’s Gaussian distribu-
tion has a standard deviation that is 10% of its average value.
Simulation of the reservoir evolution, Egs. (10) and (11), is
done in Julia [31], and the quantum reservoir simulation
uses the master equation solver package MESolve.jl [32].
Each input signal lasts for a time duration of 2/k, and we
measure the output at a uniformly distributed set of P = 100
points across this time, i.e., an output sample rate of 50k.

For the classical reservoirs, the number of computational
nodes is N = 2, corresponding to the two quadratures X and
P, or alternatively the real and imaginary parts of the com-
plex amplitude a. For the quantum reservoirs, the maximum
number of computational nodes scales as the Hilbert space
dimension. While formally infinite for an oscillator, for our
simulations we must truncate this to some finite value d, and
a density matrix on such a space has d> — 1 real parameters.
Thus, N < d% — 1, since we are not guaranteed that all E,,,
will be independent of one another for the given quantum
state. In both cases, we have Ny, = 1 since we only use the
expectation value of the X quadrature for output.

For all the results presented in the following, training is
done on an equidistantly spaced grid of M training phases
on the interval [0, 7 /2]. We find this improves performance
compared to training with uniformly random phases from
[0, T /2], as the equidistant grid ensures that the reservoir is
trained with phases that span the full interval and are rep-
resentative of all possible inputs. Further, we do not fix the
ridge regression parameter of Eq. (3) but find an optimal value
in each unique case (quantum vs classical, training size M,
Hilbert space dimension, etc.) by searching over values from
y = 1072 to y = 1 in powers of ten, and report the smallest
value of the RMS error found.

A. Quantum-classical improvement

We first compare the performance of the quantum and
classical reservoirs as a function of training set size, as shown
in Fig. 2, with a Hilbert space dimension of d = 12 used for
the QRC simulations. For smaller training set sizes, especially
at intermediate scale around 30, there is a multiple order-
of-magnitude smaller average RMS error for the quantum
reservoirs compared to the classical reservoirs. This is the
first example of an improvement for QRC compared to the
equivalent CRC model. This improvement exists for specific
QRC/CRC parameter sets, and is true on average, but is
not a universal property for all parameter values. There are
parameter sets (K, w, o, k) where CRC outperforms QRC, as
is shown in Fig. 2 by the best case performance curves for
CRC and QRC. Each point on these curves is the lowest RMS
error for the RC model, and this best case performance does
not occur for the same parameters at each training set size.

1004
_____ - —e— QRC, avg.
T v QRC, worst
RANE A QRC, best
10715 ~ Q
\\ —&— CRC, avg.
worst
_ 102
o
=
W
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1A o o NG e
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_ N
1075 5 \L\
- Ah-———— - ————hA
10-6 T T T T
100 10t 102 103

Training Set Size

FIG. 2. Quantum and classical reservoir performance. As a func-
tion of training set size, average root mean square (RMS) error on the
test set for the quantum nonlinear oscillator reservoirs (QRC) with
Hilbert space dimension d = 12, and the classical nonlinear oscilla-
tor reservoirs (CRC). The average results are for 101 reservoirs with
Gaussian distributed parameters around the mean values described in
the main text. The reservoir output is sampled at 100 equally spaced
points in time, and the test set size is 5000. One standard deviation for
the QRC performance is shown in the shaded blue region. The RMS
error for the QRC and CRC with best and worst case performance
(determined independently for each training set size) is also shown.

Nevertheless, there is a demonstrable improvement for QRC
over CRC for many specific parameter sets and on average,
even if there is no improvement for QRC over all CRC in
nonlinear oscillators.

The second important point highlighted in Fig. 2 is the
performance spread of the QRC and CRC models, which we
quantify by the RMS error spread factor

Best case — Worst case
RMSE Spread Factor = . (15
Average

The QRC spread is at worst less than a factor of 2, as
highlighted by the narrow shadowed region representing one
standard deviation in RMS error. By comparison, the CRC
spread is typically around a factor of 10 and can be as much
as a factor of 30.

This demonstrates the second improvement of QRC over
CRC nonlinear oscillators at sine phase estimation: reliability.
As we have shown, the performance of the quantum reservoirs
is not highly dependent on the specific oscillator parameters,
while the performance of a given classical reservoir cannot
be inferred from the performance of a different classical
reservoir, even one with very similar oscillator parameters.
This is important in simulation and design, where the QRC
requires far less parameter optimization to find an effective
reservoir [33-35], as well as in practical implementation,
which will naturally have a spread in parameters due to errors
in device fabrication, control, and measurement.
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FIG. 3. Hilbert space dimension effect on QRC performance. (a) Average RMS error as a function of training set size for quantum nonlinear
oscillator reservoirs with various Hilbert space dimension. One standard deviation for 101 reservoirs with Gaussian distributed parameters is
shown in the shaded regions. (b),(c) Average RMS error as a function of Hilbert space dimension, for (b) various training set sizes and (c) for
a training set size of 30, which is near optimal. In (c) one standard deviation is shown in the shaded area.

B. Hilbert space dimension dependence

To elucidate the source of the quantum-classical improve-
ments, we begin by studying how the performance of the
quantum reservoirs depends on the Hilbert space dimension of
the simulations. The results shown in the previous subsection
are for a dimension chosen such that the simulations are a
good approximation to the infinite dimensional oscillator. This
is quantified by the fact that for the quantum state p(¢) in
the oscillator during our simulations, the higher Fock states
are minimally occupied, and the canonical commutation re-
lation Tr([a, a"1p(t)) =1 is valid with less than 1% error
at all times. As we decrease Hilbert space dimension in our
study, the quantum model stops being a valid description of a
nonlinear oscillator but remains a valid description of a qudit,
of which many physical examples exist [36,37].

Figure 3 shows results for QRC models ranging from a
qubit, d = 2, to the approximate nonlinear oscillator of the
previous subsection, d = 12. In all cases, we continue to use
measurements of the X operator as the output, which in the
qubit case becomes the Pauli operator &,. As Fig. 3(a) shows,
the average RMS error depends on Hilbert space dimension
in a nonmonotonic fashion, while the spread remains roughly
consistent. This is further demonstrated in Fig. 3(b), with the
RMS error showing a local minimum around d =5 for all
training set sizes. Focusing on a training set size of 30 in
Fig. 3(c), we see that the best performance occurs at d = 5
and d = 6, which is almost a factor of 4 better than the worst
performance at d = 2.

The increase in performance as Hilbert space dimension
increases is to be expected in QRC, as an increase in Hilbert
space dimension implies an increase in the number of degrees
of freedom of the reservoir, and thus, its computational power.
The nonlinearity of the system dynamics is key in this regard,
as it can create non-Gaussian states in the oscillator. Only
for such states can the expectation values E,, of Eq. (4) for
n, m > 2 be independent of lower order E,,, and thus expand
the computational space of the reservoir.

The existence of a local minimum, and the saturation of
performance for d > 8, is likely explained by a combination
of effects. Firstly, due to the finite decay rate «, the expectation
values E,,,, or equivalently the Fock state populations, decay
exponentially with a rate that is linearly proportional to photon

number. As such, while higher Hilbert space dimension offers
more computational variables, information is lost from them
at a faster rate.

Secondly, even without finite «, information can be lost
in the higher order E,, by an information scrambling argu-
ment. Since we only measure Ejy = (X), it is possible that
information relevant to sine phase estimation is spread into
other E,,, and is not accessible in E;y during the finite times
at which we measure. Finally, the ratio of the drive amplitude
«a to the drive frequency w determines how much energy can
enter the oscillator, and as higher Fock states are occupied, the
nonlinearity K plays a role as well. This further restricts how
much of the computational space of the reservoir is accessible.

While we have good heuristic explanations for the weak
dependence of QRC performance on Hilbert space dimen-
sion, these cannot explain the significant quantum-classical
improvement in both average performance and reliability for
intermediate training set sizes seen in Fig. 2. These im-
provements persist even when the QRC is a qubit. This is
particularly intriguing as a single qubit is a classical sys-
tem, as discussed below, and we would not have expected
any improvement in this case. In the following subsection
we delve into this surprising result further and show how
it highlights the likely explanation for the majority of the
quantum-classical improvement seen for any Hilbert space
dimension.

C. Origin of the quantum-classical improvement

When we say that a single qubit is a classical system, we
mean that there is a local hidden variable model that can
completely describe the state space and dynamical evolution
of a single qubit. For our purposes, we will consider the
Kochen-Specker model [38], which maps a density matrix
p for a single qubit to the three classical variables (r, 6, ¢)
that parametrize a unit sphere in spherical coordinates. We
consider this hidden variable model for a qubit as a reser-
voir (HVRC) and simulate its performance at the sine phase
estimation task. The dynamical evolution of the HVRC is
described by a set of transcendental differential equations, so
for simplicity we use the results of the quantum simulations
for a qubit and convert to the HV model parameters using the
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FIG. 4. Reservoir performance for qubit and classical models. As
a function of training set size, average root mean square (RMS) error
on the test set for a qubit reservoir, either with a single measured
expectation value (QRC) or full tomography (full QRC), the hidden
variable model for a qubit as a reservoir (HVRC), and classical
nonlinear oscillator reservoirs with single quadrature (CRC) or both
quadrature (full CRC) measurements. Reservoir parameter set, mea-
surement sampling, and test set size are the same as in Fig. 2. One
standard deviation for the QRC and full QRC performance is shown
in the shaded regions.

relationships
(xa y9 Z) = (Tr[6xp]a Tr[é\'yp]’ Tr[ﬁzp])a
(r,0,¢) = <x2 + y2 + zz, arccos (Z), arctan (X»,
X

’
which one may recognize as the familiar coordinate transfor-
mation from Cartesian to spherical coordinates.

We simulate the performance of the HVRC under the same
conditions (parameter sets, training and test sets) as for the
QRC and CRC presented previously and use all three vari-
ables as the output. Figure 4 shows the average performance
of the various RC models, and as can be seen, there is consid-
erable performance improvement for the QRC compared to
the HVRC at intermediate training set size. There is an even
larger improvement for what we call full QRC, which uses full
tomographic data on the qubit state (expectation values for all
three Pauli operators) as the output, as opposed to QRC which
uses only Tr[6,p].

We emphasize that all models considered in this subsection
describe reservoir dynamics that are purely classical physics.
The only difference between the QRC models and the HVRC
model is that the HVRC model uses the output variables
(r,0, ¢), while the QRC models use the output variables
(x,y,z) = (rsinfcos ¢, rsin@ sin¢, rcosf), which are a
nonlinear transformation of the HVRC output. As such, the
average performance improvement between QRC and HVRC
can only be attributed to this nonlinear transformation. Such a
nonlinear transformation cannot be implemented by the linear
processing of output data that occurs in the typical operation
of a reservoir computer, see Eq. (2). Nevertheless, previous
work has shown that appending nonlinear post-processing
to the output of a reservoir can have significant impact on
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FIG. 5. Performance spread for qubit and classical models. As a
function of training set size, spread in root mean square (RMS) error,
cf. Eq. (15), on the test set for a qubit reservoir, either with a single
measured expectation value (QRC) or full tomography (full QRC),
the hidden variable model for a qubit as a reservoir (HVRC), and
classical nonlinear oscillator reservoirs with single quadrature (CRC)
or both quadrature (full CRC) measurements. Output sampling and
test set size the same as in Figs. 2 and 4.

performance [39], though one may argue that this is costly
to implement.

This nonlinear processing of data occurs intrinsically for
the quantum reservoir due to quantum measurement and
is therefore part of QRC itself, being responsible for the
generation of output data. As in all RC, standard linear post-
processing of the output still occurs, but we essentially get
an otherwise costly nonlinear processing stage “for free”
in QRC. We note that performance improvement due to
measurement-induced nonlinearity has also been observed in
classical hardware reservoirs, see, e.g., Refs. [24,40,41].

As we have shown, the nonlinearity of quantum measure-
ment is the source of performance improvement between the
QRC models and the HVRC for a qubit, from which we infer
that it is also the main source of improvement of the qubit
QRC compared to the CRC models (see Fig. 4, where full
CRC uses both quadrature measurements as output). How-
ever, the average HVRC performance is better than that for
CRC, which implies it is a better reservoir for the sine phase
estimation task. Thus, part of the performance improvement
of qubit QRC over CRC is also due to the fact that the HVRC
underlying the QRC is better suited for the task at hand.

While we cannot make definitive statements for QRC be-
yond d = 2, as no local hidden variable models exist, the
results for the qubit QRC indicate that the quantum-classical
performance improvement seen in Fig. 2 is likely due to the
nonlinearity of quantum measurement. Similarly, as shown in
Fig. 5, which plots the RMS error spread factor of Eq. (15),
we see that HVRC has a large spread in performance, similar
to CRC. This indicates that the reliability of QRC (at all
Hilbert space dimensions) also stems from the nonlinearity of
quantum measurement. Thus, due to the improvement in both
average performance and reliability, we believe the nonlinear
oscillator QRC possesses an advantage over CRC due to the
intrinsic nonlinearity of quantum measurement.
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D. Input and output noise

As a final consideration for the performance of the
nonlinear oscillator RC models, we examine the impact
of noise in the both the output data and the input signal.
Noise can have a variety of sources, such as thermal noise
in the control and readout chains of the device, and will
inevitably plague hardware implementations of our models.
In particular, output noise is unavoidable for QRC due to the
intrinsic uncertainty of quantum measurement. QRC uses the
expectation value of an operator as its output variable, which,
in a single-shot measurement, can only be estimated up
to quantum uncertainty, often characterized by the standard
deviation of the operator expectation value. For the X operator
we have chosen, this is given by

AEgu = |/ Tr[pR?] — TR . (16)

For a quantum system with a large (infinite) Hilbert space,
such as a nonlinear oscillator, the system can be in a state
(e.g., a coherent state) such that |Ep;| > |AEp,|. In this case,
single-shot measurements give a good estimate of the output
variable.

The situation is very different for low-dimensional sys-
tems. In the extreme case of a qubit, each measurement gives
a binary output, and for most quantum states the standard
deviation of a Pauli operator measurement is of the same order
of magnitude as the expectation value. Thus, it is necessary
to average over repeated runs of the same training/test case,
to produce can estimate of the output variable E, with the
standard error of this estimate scaling as
AEou

TR
where R is the number of repeated runs. The slow improve-
ment with /R is unfavorable in practice, and importantly, is
a feature of all quantum neuromorphic and machine learning
protocols that use qubits and rely on real-valued (as opposed
to binary) output data. Recently, it was pointed out that one
must include the cost of these repetitions when accessing
algorithm run time and scaling [17].

Returning to the nonlinear oscillator models, it should be
clear that we use such models in part to reduce the necessity
for repetition and keep R as small as possible. We artificially
introduce output noise by adding a Gaussian random variable
with zero mean and standard deviation o to each sampled
time point of the output from the reservoir. We do this for
the training set, before calculating the weights using Eq. (3),
and for the test set. Due to numerical simulation constraints,
we consider a single set of reservoir parameters given by the
mean values discussed at the beginning of Sec. V.

The dependence of QRC performance on output noise is
shown in Fig. 6. As is to be expected, the RMS error increases
monotonically as a function of the output noise. We measure
the output noise in units of the input signal amplitude «, since
the output signal expectation value will be a function of «. The
results of Fig. 6 indicate that some repetition will be required
for high performance in an experimental implementation of
this nonlinear oscillator QRC, as it is unlikely that the com-
bination of quantum measurement noise and other classical
output noise sources can be brought below 1073 (in units of
the signal amplitude).

AE‘out =
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FIG. 6. Quantum and classical reservoir performance with noise.
Root mean square (RMS) error on the test set for the quantum
nonlinear oscillator reservoirs (QRC) with Hilbert space dimension
d = 12, and the classical nonlinear oscillator reservoirs (CRC), as
a function of noise standard deviation in units of the input drive
amplitude (o /) for noise injected in either the output or the input.
These results are for a single set of reservoir parameters described in
the main text. Output sampling is as in Fig. 2, the training set size
is 10, and the test set size is 5000 for output noise and 100 for input
noise.

However, numerical simulation resources limit the max-
imum input signal amplitude we can consider for our
reservoirs. It is likely that by increasing input signal ampli-
tude, and therefore output signal amplitude, we can improve
the performance of QRC in the presence of output noise, as
the output noise would become a diminishing fraction of the
output signal. An alternative approach would be to consider
nonlinear oscillators with in situ parametric driving, such
that they act as both a self-amplifier of their output signal
and reduce quantum measurement noise by squeezing. The
study of both these routes towards output noise insensitivity in
QRC will be the subject of future theoretical and experimental
effort.

Now turning to input noise, we artificially inject noise
into the input signal to our quantum reservoir. To ensure that
our simulations observe causality, we cannot use the high-
performance adaptive time-step differential equation solvers
that are default in MESolve. j1, but must switch to a con-
siderably slower fixed time-step solver. We use a time-step
8t < 1/(50k), 1/ that is much smaller than the output sam-
ple time step, the oscillator lifetime, and the input signal
oscillation period to ensure the noise closely mimics white
noise with no temporal correlations. We add independent
Gaussian random noise with zero mean and standard deviation
o = s4/6t at each time step, such that our simulations closely
approximate the effects of Gaussian white noise in the input
signal, where s is a scale factor describing the noise spectral
amplitude.

Figure 6 also shows the results of our input noise simu-
lations, which as can be seen, are much more favorable than
for output noise. In particular, we do not observe an increase
in RMS error until o/« reaches a level comparable to the
RMS error with no noise, after which the RMS error increases
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roughly linearly. This indicates that the internal reservoir dy-
namics do not appear to amplify the effect of input noise and
that training is less disrupted by small amounts of input noise
compared to output noise. A detailed understanding of the
mechanisms behind these observations is the subject of future
study, but we do not expect input noise at experimentally
accessible levels to have a limiting impact on QRC for our
chosen task.

VI. CONCLUSION

In this work, we have introduced an approach to quantum
reservoir computing that uses a single nonlinear oscillator
as the reservoir. The computational nodes are formed by the
complex amplitudes of the eigendecomposition of the system
state, or equivalently, the expectation values of a complete
basis of observables. We have demonstrated that this quan-
tum reservoir has improved performance compared to the
equivalent classical one at sine phase estimation, both in
terms of average estimation error and in reliability of per-
formance across reservoirs with different internal parameters.
Sine phase estimation is a foundational task in signal process-
ing and a pragmatic example of an estimation task. Given the
performance demonstrated by our QRC model at this task, it
is likely that it or a similar QRC model will perform well at
other signal processing or estimation tasks.

By studying the performance dependence on Hilbert space
dimension down to the single qubit level, and comparing to the
fully-classical hidden variable theory describing the dynami-
cal evolution of a qubit, we have determined that the main
source of the quantum-classical improvement is the nonlin-
earity inherent to quantum measurement. The impact of this
extends beyond reservoir computing, and to our knowledge
this has not previously been identified as a beneficial feature
intrinsic to all quantum neuromorphic computing approaches.
We believe this further divides quantum and classical neu-
romorphic and machine learning methodologies, strengthens
the case for potential (heuristic) quantum advantage, and may
shed new light on previous results [42].

With an eye towards experimental implementation, we
studied the impact of injected input or output noise on per-
formance and have found that output noise is the more
detrimental. While we have proposed several mitigation
strategies, it appears that some repetition of experiments
will be necessary to obtain accurate expectation values, as
is the case in most proposed implementations of quantum
neuromorphic computing or quantum machine learning. Nev-
ertheless, we expect the required number of repetitions to
scale more favorably for our continuous variable reservoir
than for discrete variable approaches.

The nonlinear oscillator reservoir we have proposed is
well suited to an implementation in realistic experiments.
In particular, the tools and techniques of circuit quantum
electrodynamics (cQED) [43] that have been developed to
build conventional quantum processors provide an attractive
realization of the building blocks needed for QRC. cQED ex-
periments revolve around the control of the quantum degrees
of freedom of well-isolated nonlinear oscillators (e.g., super-
conducting qubits), and their basic ingredient, the Josephson
junction, affords a high degree of control over circuit param-
eters [37,44], as well as strong intrinsic nonlinearity. Further,
both nonlinear opto- or electromechanical resonators [45-47]
and nonlinear photonic systems [48,49] are attractive test beds
for continuous variable QRC. We expect that experimental im-
plementations of the ideas presented in this work will provide
a promising area of applications for devices heretofore used
in quantum information research.
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