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FIRST- AND SECOND-ORDER ABERRATION COEFFICIENTS
oF
WEDGE MAGNETS

During the year 1958-59 vhile in Frauce#,the occasion arose when it
was necessary t0 calculate the second-order ﬁagnetia opbical properties of
several beam travsport systems the author h;ad proposed for use with the
Orsay Linear Accelerator. Having extensively studied the availsble litera-
turs, it was evident that the existing mathematical techniques were tobally
insdequate to bandle the problems at hand. The {2X2) metrix methods had been
used exbensively by the albernating gradient synchrotrons' designers at
CERN and Brookhaven; and at the suggestion of W. Chinowsky of the Brockhaven
Hetionael Laboratory, the momentip teim was added to the matrix formalism by
Sem Penner, thereby evolving the {3X3) matrix formalism as later reported by
Perner in the Review of Scientifis Instruments¥l It oeccurred to the author
{in late 1958) that the mebrix technigues could be extended 1to include the
second~ and higher-order gberration terms. As & consequsnce, the basic second
order matrices for uniform field wedge msgnets as well as non-uniform (n-value
gradient focusing wedge magnets were derived in collaboration with Roger Belbe
and Paul Bounin.of the Orsay Laboratory. Some of the results of this work
was issued last year in TN-62-16, and it is the purpose of %lis technical note
to tabulate further results relating to szcond-crder besm transpert mabrix
algebra. The notation used hers for the first- and second-order terms will
be that introduced by J.F. Streib in E.E.P.L. Report Ho. 104,
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%Ecole Normale Supérieure, Orsay {Seine-et-Oise), France.
/’S Penner, Calculations of Properties of Magnetic Deflection Systems, Hev.Sei
Instr., Vol. 32, No. 2, 150-160, February, 1961.
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Tabulated below are the beise matrix elements of the various focusing
elements commonly encounberad in practice including the patrix for a free
drift of the charged particles. The key mabrix €lements of Mﬂp} for particles

/

ane
drifting s distance £ “4s as follows:
xgxo 1 (elxo)
(x] eo> 4 (e]eo}

where x is the displacement of a particle from the opbtic axis {normalized
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to the mean bending radius oy) end © is the angle the yarticle makes with
respect to the optiec sxis. All second-order terms are zero. © 1s considered
positive if the ray is diverging from the optic axis and negative 1f the ray
is converging toward the optic sxis. The matrix M(x for a uniform field

wedge magnet with normael entry and exit of the optic axis is as follows:

¥ = %E ¢ = the bending angle

{x]xo} = cog (¥ (elxo) =~ sin g

{x] 90.) = gin O (6[60) = cog O

(x|7’) =1 - cos O (e!f}'} = gin &

x]xg =—%ain20¢ G!xg = Q

] eg _ cos a{é - o8 O) (e!eg) = sig. =
'

(xltfg) iz (9172) el d
(leix060)= 0

(x! x060}= Si’? Ges . (e]xo‘r) = gin O

{xleY) = gin® & (eieQV) =0

(x].eo')") = sin 0{1 - cos )
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Often it is convenient to transform the reference planes of a magpet from

the entrance and exit boundaries to the prinecipal planes. This is accomplished by tt

-

2 1 .
the magnet Tace to the prineipel plenes. For the wuniforn field wedge magnet

trapsformaticn EC: = ¥ g i‘»‘iG}é 2, where ’&i and &2 are the distances from

baving normal entry and normal exid '&l = «&2 = 4 = Tan % in which case,
the calculatios of M, yields
{xlx()) = 1 {Gj}x@) = - sin O
i
'(xleo} =0 (eje,] =1
7] o o] - ema
1
2 i.,.2 2
(xS:cG} =~ 3 sin” O (Géxg =0
2 2 Lo
(xleg) = {Gi%} = - = 5in O
(x}yz} = %- {1wcos ) ( 9172} = - gin ¢
i
(xi X8| = 8in @ ( 91x066)= 0
x| %57 | = cos a{l - cos O} { 9]3&07’) = gin ¢
; A2
(Kle?,) :(lmcos o) [eie y) = gog O - 1
» O . { 0
gin &

The mabrix M.R for a curved boundary abt seither the entmnce or exit of
a wedge megnet has the same form and is dependent upon the angle £ bebween
the opbic axis and the normel to the face of the magnet {see Fig. 1). M.
consists of the unity matrix plus one off-diagonal term -~ namely,
( elxg) = m-—l 3
28 cos” B
vhere R is the z_‘adius of curvature of the entrance or exit boundary as the
cage way be. This mabiix as given is also valid for an n-type magnet.
The matrix for a robated input face of a wedge megnet is ae follows:
vhere ﬁl = the angle the opbic axis mskes wibth respect to the
normal to the input face of the magnet and {31 is taken as
positive as shown in Fig. 1.
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(xlz] =1 (e]xo) = Tan B,
(x]xg) = - % Tan® B, lele,) =2
(G[xg) = -n Tan B
EECARE S )
o]} = -Tane,

All other x and © Yterms are zerc. HNote that MB as given here is
) 1
valid for an n-type gradient magnet as well as for a uniform field n =0

wedge magnet. For s rotated ocubtput face, the result M is similar bub nct

B
symmetrical with M.Bl. Mﬁe is given by :
{x!xo) =1 feixg) = Ten B,
(x}xg) = ?Jé"- Ten” B, (6; 60} = 1
(elxg) m-nTanﬂg-'%-‘l’fanB’BE
{e;xaeﬁ) « - Tan® By
(elxoy) = -~ Tan B2

all other slements are zero.

Given the basic matrix elements Mcz R MR > M B it is now possible to
derive any combipation thereof, provided the order of multiplication is as

follows:

=M M M
o 52"32}40}“31 By

The result M‘l‘ ie in agreement with TN-62-16¥% the results of which are

reproduced below for convenlsnce.
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#lote: Page numbers that follow will be as for THN-62-16; they will then continue
as TN-63-12, pp. 5, 6, etc. -4 .
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SECOND ORDER ABERRATION CCEFFICIENTS OF A MAGNET*

We have calculated the sberrations for a uniform field magnet with
curved rotated faces and for an "n" masgnet with perpendicular input and
output. We have neglected the fringe field effect. In other words, these
coefficients correspond to a theoretical megnet without fringe field. 'The
parameters which appear in the formlss (/a, Bys Bos Rys By n) are differ-
ent from the corresponding parsmeters of the real magnet. The relation
between these two magnets will depend on the fringe field configuration,
and it is impoasible to give some general rules to calculate the perture
bation of the coefficient.

We give only the coefficients of the mid-plane trajectories.

TLaveratoire de 1'Accélérateur Iineaire, ORSAY {France)

#
This work wes done at ORSAY (Laboratoire de 1'Acceélérateur Lineaire)
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CONSTANT FIELD MAGNET

M
cztBlBaRlRa

P =1

Bl R Ra’ '3.1. and 152 are positive on

the flgure
\\
(x fxo) = cos @ + sin Q tan B,
(x ‘60) = gin O
< I8P
<"cpo>=-*l~ cos O
1 2 ta.naB 2 sin o
(xx2>=_~’s1na~cosa'banﬁ + cosa«!-sinatansj) +
© 2 * 2

3
2R1, cos Bl
(xleoxo) = 53-’35%&% tan B, |cos O (1 - cos @) + sin & tan BJ

+ sin @ tan® Be (cos a + 8in & tan Bl)

cos @ {1 - cos @) sin® & tan282

(%) - :
2 2
2 2
xi{%g_j) . aing o, (1- gos ) o 5,
Po



e % = a ’0 3y
(xlxo Po> sin o (sin Q@ ~ cos O tan Bx) ™ B (1 - cos @) (208 @ + sin @ tan B,)

sin o (1 - cos Q)
(x ls‘o %S) =

2
08
Q {32

-sina+cosa<tan‘f31+tansa) + sin o tan B, tan B,

— T
< L]
D ad

L . 0
# %

coaa-!-sinatansa

sina-!—(l—coscx)ta:nﬁa

/’;\
=]
LS
L}

tanB2 2
[«sina+coscz(tanﬁl+tanﬁe> + sin @ tan B, tanazj

D
o
L]

2

cos & + 8in @ tan B, (cosa-i-sinatanﬁ)a
+ + S

3 3
2R1 cog Bl 2R2 cos” B 2

(91903:0) = E— sin @ + cos O (ta.n B, +ta.nﬁe) + 8in @ tan B, ten ﬁ2]

sin ¢ (cos @ + sin @ tan Bl)

[tanﬁl-tanﬁa cosa+sinatanszzl +

’ Re‘ccs"’ B,
. sina cos @ tan 8, 2 8in®
(9 ’9‘:‘;) = - + tan Ba - <cos o 4+ sin & tan Ba) + 5
2 2 2 ZR_ cos” B
2 2

B , ten B, -2 (1 - cos )
ekm)z-l}ina-r(l—cosa)tanﬁa]— [sina‘i-(l«cosa)tanﬁeg-;-
Po ' 2 L R, cos” B,




@’xoﬁf’):_ &sina+cosa{tanﬁl+tanﬂg + sin @ tan B, tanﬁ%

N

- (1 - cos a){cos @ + sin O tan Bx)
E.+sinatan62+(l—coacx)tan25_’+ :
2 R, cos” B,

~ sina (1 - cos q)
(e o, A") = - tan B_ |cos @ + sin @ tan 32] [sin @+ (1 - cos @) tan B, *

Po R, coe” B,



N MAGNET (perpendicular input and output)

B = B, <1~nx+ﬂx2>‘. &’=\/1-na Py = 1

o
b
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42}
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(x ‘xo) = cos. &'

i
o
o]
VU!

log - 222 ele)

x!..a l-cosal - |8\ _ sinar
PO l-n ’ PO Jl -1n

égt;% =3n~25-1_3(1£—6 cos@’—w——(-—-—T5n'25"3 cos 20"

#1 - n) “ 1) 12{(1 -~ nj
, 2 n-8 ’ Sn -~ 28 -3
KB XY = o s .msma'u@mm‘sm?ﬂ’
( o O) 3 3(1 - n}3!’-f- _ 6(1 - 3)375
Mm~2-1 Ta-ip-3 5n - 28 ~ 3 _
(x {eﬁ) = - ; CO8 QY & el 00O 20!
1 - n)? é(1 - n)® S 12(1 - n)®
o2\ T™m-68-1 4 n-p 50~ 28 - 3 ¥+ n - 2p
;!f—-) 0 s n ot st QOS] w008 QA o i (01 8401 (OF
Po 41 - n)® 3 (1 - n) 12{(1 -~ n)® 2(1 - n)’
[ ap -M+28+1 2 n-f 5n - 28 - 3 n? +n - 2B
:zc}x.o =L\ = d - COE (' 4 moemrcimee COF Y e O3 g4 OFF
VI®2) -0  3(1-anf 6(1 - n)? 2(1 - n)?
! Ag N - T -284+6 5n - 28 ~ 3 o® +n - 28
xiB, ==\ = gin Q° 4+ sin 20 - ¢ cos O
P 0) 6(1 - n)?/2 6(1 - n)5E 2(1 - a)o2




ROTE: Eand of TN-62-16, continuation of > TN-63-12

The matrix elements of o non-uniform field wedge magnet havi ng nomal

entry and normal ex;u, may be derived di c{;l;y’ from the ‘St*'elb formal .Lsm< )

. s e oF [(2) ; .
or by g;enerallzmg the resulis of Tkegami ©o include all momenta particles.
Again, we normalize all dimensions to the ceﬂ ral orbii po y 3.2., let

Py = 1l . As before x is ‘L‘ne radisl deviaticn of a ray from the central
orbit as projected on the magnebic wldplane and © is thé corresponding
angle of the ray vwith respect to the optic exis. y and ¢ are the corres-
ponding projections on the vertical midplane. The magnetic field expansions
are assured to have the form

r

- 2, |n
Hy(x,y) = Hyil - nx + Bx (2

b

i
™
[ —
e
2
| S }

-

Hx{z,y) o oy + Bxy + . . . }

]
54
'

consistent with Maxwell's equation to second-order in x and y . It

qnt A Y 6—7 A J‘,L 2 p-) o oy “ v e Lo
cheould be noted that Lhe £1e1d expancicn used here is generally ccnsictent

with the available literature but differs with that adopted by S’crelb(}}

The resulting matrix elements for the radial motica are then as Follows:

1/gx 1/2

aﬂ:n a ?’-__

<

= {1-n)

= ¢cog O

o
&

«1/2

x]@o) = (1-n) sin O°

(iwn)'l(l-cos ar)

X
~2
li

2\ _ 3n-28-1  (a-B) 28-3)
x]xo = “Win) - 3(i-n) cos Qf - 12 l 3 cos X’

5 3n-2B-1  To-48-3 5n-2B-3
xleo = - 5 - 5 Co8 o+ =5 OB 20t
4{1-n) 6{1-n) 12(1-n)
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I 2) Tn-68-1  4{n-B) | on-28-3
Xy = - cos &' - 3 COS Dyt
( h(l-n}3 3(1~n}3 12(1-11)3
n2+n~2{3
- o Q' gin QI
. 2(1~n)”
! . 2(n-p) 5n-28-3
xlx T e Bin @ « s g D
( 0 0) 3(1-n)3/2 6(1-n)3/%
v 1e3n+28 2(n-p) 5n-28-3
xjx 7yl = + cos Q' + cos 20°
{ ’xo } 2(1-n)? 3{1-n)2 6{1-n)
n2r+n-25
P — o gin Q!
2(1-n)
( } 30°-Tn-2B+6 Sn-gp-3
%67 | = o sin Q' + sin 20!
1% 6(1-n)>/2 6(1-n)"/ 2
n2+n-2f3

- Ser— (o4l (o3l
2{ l-n:)“7‘5 2“ o8

S5n-1 |(1-n) D
2 __ éﬁ_ }}:P_ - n-p ! g i}
(XI(PO - il_n- {l-n - 51} l} ‘eos O - ) cos 20:}

The matrix elements for © are given by noting that

60x _13x
~ ey T o

but o = 14x since we have normalized to pO = 1



TH-63-12

ox e <
Henne B = 55 7 40 ylel s The first~ and second-order mstrix elemants for O
as follows:

#
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|
€ sin ot

] 5 n - fg, .
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Ta-if-3 n-p
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v = 75 iem o
£ . [ ¥
3 6{"\1-"‘13-/ - A
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P
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LS
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1 o 2{n-£;
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1/2

; nSn»l sin 208
/ e 2B cos 2o
;‘ey‘f?\)': = 208 O w ————,
RUDX gy (5n-1)n}/2
' 1 n-f E(l-n)l/g]
| el q:)g } = 1/2 - J
i (-2 " (5n-1)

A1l other terms are zero.

sin ¢% 4

2;33'1}'/2
sin 2
5n-1

The first-order coefficients in the ¥y plane are as follows:

( vl .yo) = cos OF

1

{‘P]}b)-’«“ - nl/e sin Q"

(Y‘(ﬁ'}o) = ;17‘5 gin O

(Q’]@O}= cos OF

The second-order coefficients in the y plane have not been caleulated

since all of the applications that I have encountered have not required this

result. However,_ this may readily be done from the Streib resulte » and again,

noting that

Sy
¥ = 3loa)

9
or CP=‘5“§J-%
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Occasicnally, it is necessary to répfesent the trajectory through &

magnet that bends the particles in an opposite sense to that shown in Fig. 1.

It 1s easy to s@e that this is eguivalent to changing the gign of the variables

x and © as the particle enters and exits from the inverted magmet. This

coordinate transformation MI is given by

1

[l %)

oo 1o =

-1 (e]xojr--o

Then the matrix of the inverted magnet is

M = MMM
the net result being to change the sign ol the

()5 GPS) s (xfed) . (177, (xfxp9,) and the

(6]7) , (8]5) , (0]6) , (6]77), (6}xy0,) terns in the

Ma matrix to generate'the M matrix.

o Hote thgt all of the above informa-

tion ayplies to the wmagnetic midplane'orbits only,unless otherwise indicated.
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