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1 Introduction

In this article the final-state radiation (FSR) of the hard photon in e~ (p1) +
et(p2) — v(Q) — 7t (py) + 7 (p_) + (k) reaction is considered in the
framework of ChPT with vector p and axial-vector a; mesons 1) (the FSR
diagrams are shown in Fig.1).

Our consideration of FSR is motivated by the necessity to study model
dependence of the next-to-leading order hadronic contribution aﬁadﬂ to anoma-
lous magnetic moment (AMM) of the muon (a/:**7 is the hadronic contribution,

where additional photon is attached to hadrons). Also FSR is a main unre-
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stricted background to scan the hadronic cross—section at meson factories by
the radiative return method 2). In this method only ISR (initial-state radi-
ation) events have to be chosen and the FSR processes have to be rejected.
Different methods have been suggested to separate ISR and FSR contributions
for the dominant hadronic channel at low energies — the pion-pair production.
One of them is to choose kinematics, where photon is radiated outside the
narrow cones along the momenta of the pions. In these conditions the FSR
contribution is suppressed. If the FSR background can be reliably calculated
in some theoretical model then it can be subtracted from experimental cross
section of eTe™ — 7w~y or incorporated in the Monte Carlo event generator
used in analysis. Finally, the theoretical predictions for FSR can be tested by
studying the C—odd interference of ISR and FSR 3),

The FSR cross section has been calculated 3) in framework of the scalar
QED (sQED), in which the pions are treated as point-like particles, and the
resulting amplitude is multiplied by the pion electromagnetic form factor F(s)
evaluated in VMD model (s is the total ete™ energy squared) to )account for
2,3

the pion structure. Although sQED in some cases works well , it is clear
that sQED is a simplified model of a complicated process, which may include
excitation of resonances, loop contributions, etc. In view of the high require-
ments for the accuracy of theoretical predictions for AMM, further studies of

the FSR contribution are necessary.

2 Results of calculation

In view of the restricted space of this contribution only the results of calcula-
tions are presented (for details see Ref. 4>)

First, the charge asymmetry 3) proportional to the interference of ISR
and FSR is calculated for the so-called collinear kinematics in which the hard
photon is radiated inside a narrow cone with the opening angle 26y (6p <
1) along the direction of initial electron. In Fig.1 we show the asymmetry
dependence on pion polar angle at fixed two—pion invariant mass ¢%. It follows
that the asymmetry changes sign at about ¢ = 0.5 GeV?2. At all pion angles
the difference between sQED and ChPT shows up only at small values of ¢?
or, equivalently, at high photon energies. Thus only at high photon energies
the contribution from a; intermediate meson (see diagrams with a;—meson in

Fig.2) is sizable. For large values of ¢? the difference between predictions of
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Figure 1: Diagrams for FSR in the framework of ChPT.

sQED and full calculation in ChPT is small: for ¢?> > 0.6 GeV? it is less than
1% (the dashed and solid lines almost coincide in Fig.1). Taking into account
that the asymmetry itself is less than 1072, the experimental observation of
such deviations in the energy region ¢? > 0.6 GeV? is problematic.
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Figure 2: Charge asymmetry as a function of pion polar angle at fized ¢° for
s = 1 GeV?. The solid line corresponds to sQED, the dashed line — the full
result in ChPT.

Second, we apply the result of Ref. 4) to evaluation of ap™". It appears
that the additional contributions to a;,"7 arising in ChPT are very small com-
pared with SQED result (here only the radiation from hard photon (w > E.yt)
is taken into account). Even for E.,; = 200 MeV the ChPT result differs from
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Figure 3: Differential contribution aj;™" (left panel). Integrated contribution to

ap™ as a function of Eeu (central and right panels). Here Spar = 1.5 GeV2.
Notations for the curves are the same as in Fig.2.

the sSQED one by only 3.5%(see the solid and dashed lines in Fig.3 which al-
most coincide). These small deviations are not surprising. First, at fixed value
of s the low—energy photon region, which is described in a similar way by both
models, dominates in aj;™7. Second, the main contribution to aj;"7 comes from
the region of the p-resonance, which is treated in the same manner in sQED
and ChPT via VMD model.

At the same time, with increasing the photon energy sQED losses its
predictive power. This is demonstrated in Figs.2 and 3 (right panel). In this
region the contribution from a;—meson is considerable and has to be taken into
account. For example, at the photon energy about 500 MeV the deviation from
sQED reaches 60%. However, this deviations (which are of the order of 10712)
are beyond the accuracy of the present measurements of the muon AMM.

3 Conclusions

We demonstrated that the model dependence of the two—pion contribution to
aﬁ“dﬁ is weak, and the value of aﬁadﬂ is not sensitive to chiral dynamics beyond
the p—meson dominance. As for the charge asymmetry, its model dependence
can be observed experimentally only for ¢ near the two-pion threshold region:
4m?2 < ¢* < 0.4 GeVZ.

Therefore, in the bulk of energies up to 1 GeV, sQED is sufficient to de-
scribe the FSR contribution to both azadﬂ and C—odd asymmetry. To observe

had
m

deviations from sQED the existing experimental error bars for a'**?7 have to



be reduced by at least one order of magnitude. Possibly, the more complicated
many-particle channels in eTe™ annihilation are more sensitive to the chiral

dynamics.
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