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NEW COUNTEREXAMPLES TO MIN-OO’S CONJECTURE VIA

TUNNELS

PAUL SWEENEY JR.

Abstract. Min-Oo’s Conjecture is a positive curvature version of the positive mass theo-

rem. Brendle, Marques, and Neves produced a perturbative counterexample to this conjec-

ture. In 2021, Carlotto asked if it is possible to develop a novel gluing method in the setting

of Min-Oo’s Conjecture and in doing so produce new counterexamples. Here we build upon

the perturbative counterexamples of Brendle–Marques–Neves in order to construct coun-

terexamples that make advances on the theme expressed in Carlotto’s question. These new

counterexamples are non-perturbative in nature; moreover, we also produce examples with

more complicated topology. Our main tool is a quantitative version of Gromov–Lawson

Schoen–Yau surgery.

1. Introduction

The interaction of positive scalar curvature and stable minimal surfaces has been a fruitful
investigation in Riemannian geometry. The positive mass theorem is a landmark result in
this direction. It says: if an asymptotically flat Riemannian manifold has nonnegative scalar
curvature, then the mass of the manifold is nonnegative. Moreover, the mass is equal to
zero if and only if the manifold is isometric to Euclidean space. The positive mass theorem
was first proven for dimensions less than or equal to seven by Schoen and Yau [36] via
minimal surface techniques. Using spinors, Witten [41] proved the positive mass theorem in
all dimensions for spin manifolds. Over the years, there have been new proofs in dimension
three of the positive mass theorem using varying techniques. In 2001, Huisken and Ilmanen
[26] proved the positive mass theorem by studying inverse mean curvature flow. More
recently, Li [30] used Ricci flow to prove the positive mass theorem. Moreover, there are
several recent proofs of the positive mass theorem: Bray, Kazaras, Khuri, and Stern [5] via
levels sets of harmonic functions, Miao [31] via positive harmonic functions and capacity of
sets, and Agostiniani, Mazzieri, and Oronzio [1] via the Green’s function.

Other related rigidity phenomena, involving positive scalar curvature and minimal sur-
faces, have been studied by Carlotto, Chodosh, and Eichmair [9]. For example, the only
asymptotically flat three-dimensional Riemannian manifold with nonnegative scalar cur-
vature that contains a complete non-compact embedded surface S which is a (component
of the) boundary of some properly embedded full-dimensional submanifold and is area-
minimizing under compactly supported deformations is Euclidean R

3. Moreover, S is a
flat plane. Now, this result should be compared with a special case of a localized gluing
construction of Carlotto and Schoen [10]. For a nice discussion of the topic, see the article
of Chruściel [11]. The general construction allows for localized solutions to the vacuum
Einstein constraint equations and, roughly, states that one can construct asymptotically
flat initial data sets that have positive ADM mass but are trivial outside a cone of a given
angle. In particular, one can construct a metric on R

3 that is asymptotically flat, scalar
flat, and is Euclidean on R

2 × (0,∞), but is not the Euclidean metric on R
3.
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One is naturally led to wonder: Can something analogous be said for negative or positive
curvature? The answer for negative curvature is that there are parallel results. For spin
manifolds, Min-Oo [33] gave the first characterization of hyperbolic space in the context of
a positive mass theorem, which was later refined by Andersson and Dahl [3]. By combining
Chruściel and Herzlich [15] with Wang [40], the positive mass theorem for n-dimensional
asymptotically hyperbolic spin manifolds was established in the negative curvature setting.
Without the spin assumption, Andersson, Cai, and Galloway [2] proved a hyperbolic positive
mass theorem for n-dimensional manifolds, 3 ≤ n ≤ 7, with an additional hypothesis on the
mass aspect function. Also, Sakovich [35] used the Jang equation to prove the hyperbolic
positive mass theorem in dimension three. In [14], Chruściel and Delay proved a positive
mass theorem without rigidity for asymptotically hyperbolic manifolds in any dimension
via a gluing argument. Lastly, Huang, Jang, and Martin [25] proved the rigidity case for
the hyperbolic positive mass theorem. For a history and a systematic presentation of these
results see [8, Appendix C]. Moreover, there is also a localized gluing construction in the
negative curvature setting due to Chruściel and Delay [12].

The story in the positive curvature setting differs from the other two. The analogous
statement for the positive mass theorem is known as Min-Oo’s Conjecture [34]. The conjec-
ture states: if g is a smooth metric on the hemisphere Sn+ such that the scalar curvature, Rg,
satisfies Rg ≥ n(n− 1), the induced metric on the boundary ∂Sn+ agrees with the standard

unit round metric on S
n−1, and the boundary ∂Sn+ is totally geodesic with respect to g, then

g is isometric to the standard unit round metric on S
n
+. Many special cases of Min-Oo’s

Conjecture are known to be true ([6], [22], [23], [24]).
However, in [7], Brendle, Marques, and Neves constructed counterexamples to Min-Oo’s

Conjecture using perturbative techniques. They performed two perturbations to the stan-
dard unit round metric on S

n
+. First, they perturbed the metric so that scalar curvature is

strictly larger than n(n− 1) and the mean curvature of the boundary is positive. The sec-
ond perturbation made the boundary totally geodesic while preserving the scalar curvature
lower bound.

In light of the above gluing constructions for zero and negative curvature, Carlotto asked
in [8, Open Problem 3.16]: Can one design a novel class of counterexamples to Min-Oo’s
Conjecture based on a gluing scheme? More specifically, can one remove a neighborhood of
a point on the boundary of Sn+ and then use a gluing scheme analogous to Corvino [17] or
Corvino–Schoen [19] (also see [10] [13]) to produce counterexamples to Min-Oo’s conjecture.

In [18], Corvino, Eichmair, and Miao produced different counterexamples to Min-Oo’s
conjecture. Their gluing scheme says that given two smooth compact Riemannian manifolds
(Mi, gi), i = 1, 2, of constant scalar curvature κ which contain two non-empty domains
Ui ⊂ Mi where gi is not V-static then one can construct a smooth metric on M1#M2

with constant scalar curvature κ. Using this gluing theorem, they glued 3-spheres near the
boundary of the perturbative counterexample constructed by Brendle, Marques, and Neves
in [7, Theorem 7]. The resulting manifold satisfies the hypotheses of Min-Oo’s Conjecture
but has arbitrarily large volume. Their gluing method (which is related to the gluing
methods in [16], [27], [28]) has two parts. The first is a conformal deformation to construct
a neck connecting the two manifolds. The second is a deformation out of the conformal
class to preserve the initial metrics away from the gluing region.

A different gluing scheme found in [38], which is a quantitative version of Gromov–
Lawson Schoen–Yau tunnels ([21], [37]), can be used to build upon the Brendle–Marques–
Neves counterexamples [7] to construct new and more extreme counterexamples to Min-Oo’s



NEW COUNTEREXAMPLES TO MIN-OO’S CONJECTURE VIA TUNNELS 3

Conjecture. This construction allows for the removal of some of the assumptions required
in [18]. In particular, we show the following:

Theorem A. Let D > 0, n ≥ 3, and (Mn, g) be a Riemannian manifold such that the
scalar curvature, Rg, satisfies Rg > n(n − 1). Let ∂Sn+ = Σ. Then N = M#S

n
+ admits a

metric g̃ such that:

• The scalar curvature, g̃, satisfies Rg̃ > n(n− 1) everywhere.
• The induced metric on Σ agrees with the standard unit round metric on S

n−1.
• Σ is totally geodesic with respect to g̃.
• diamg̃(N) ≥ D.

Remark 1.1. We note, as opposed to the construction in [18], the gluing scheme employed
here does not need the existence of non-V-static metrics on the manifolds that we glue
together and we do not need an open subset of constant scalar curvature to which to glue.

The following corollaries of Theorem A provide examples that make strides on the theme
present in Carlotto’s question by exploring the shape of manifolds that satisfy the geometric
hypotheses of Min-Oo’s Conjecture. Specifically, they show that these counterexamples
can look geometrically very different than the standard unit round hemisphere. The first
corollary shows we can have a counterexample with an arbitrarily large diameter.

Corollary 1. For any D > 0, there exists a metric g on S
n
+, n ≥ 3, such that:

• The diameter of M = (Sn+, g) satisfies diamg(S
n
+) ≥ D.

• The scalar curvature satisfies Rg > n(n− 1) everywhere.
• The induced metric on ∂M agrees with the standard unit round metric on S

n−1.
• ∂M is totally geodesic with respect to g.

We also construct examples of arbitrarily large volumes.

Corollary 2. For any V > 0, there exists a metric g on S
n
+, n ≥ 3, such that:

• The volume of M = (Sn+, g) satisfies volg(S
n
+) ≥ V .

• The scalar curvature satisfies Rg > n(n− 1) everywhere.
• The induced metric on ∂M agrees with the standard unit round metric on S

n−1.
• ∂M is totally geodesic with respect to g.

Remark 1.2. In [18, Remark 6.4], Corvino, Eichmair, and Miao suggest one should be able
to construct similar examples using a gluing technique akin to the Gromov–Lawson tunnel
construction [21]. Corollary 2 rigorously proves this remark.

Remark 1.3. We note that for our construction we cannot glue near the boundary of the
counterexample in [7, Theorem 7] as they do in [18]; however, we can glue around any point
where the scalar curvature is strictly larger than n(n − 1) in [7, Theorem 7]. Moreover,
we can glue around any point in the counterexample constructed in [7, Corollary 6], in
particular near the boundary.

We want to emphasize that in Theorem A the only restriction on M is that it admits a
metric with scalar curvature strictly larger than n(n−1). In particular, any closed Riemann-
ian manifold that admits positive scalar curvature can be connected to a counterexample of
Min-Oo’s Conjecture. Therefore, we obtain new counterexamples with non-trivial topology.
For example:

Corollary 3. Let p, q, n ∈ N such that n ≥ 3 and p + q = n. Then there exists a metric g
on M = S

n
+#(Sp × S

q) such that:
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• The scalar curvature satisfies Rg > n(n− 1) everywhere.
• The induced metric on ∂M agrees with the standard unit round metric on S

n−1.
• ∂M is totally geodesic with respect to g.

Corvino, Eichmair, and Miao are able to obtain counterexamples to Min-Oo’s Conjecture
with a non-trivial fundamental group by gluing a counterexample of Min-Oo’s Conjecture
to S

1× S
n−1 or Sn/Γ where Γ is a finite subgroup of SO(n+1). Corollary 3 highlights that

many more topologies can be produced.
We observe that the result of Corollary 3 can be viewed as a 0-surgery on the interior

of Sn+ ∪ (Sp × S
q). The original construction of Gromov–Lawson [21] works for surgeries in

codimension greater than or equal to three. Therefore, one may wonder if the connected
sum procedure in [38] can be extended to surgeries in codimension greater than or equal
to three. We prove an analogous statement for surgeries in codimension greater than or
equal to three in Appendix A, which may be of independent interest. These surgeries are
performed on the interior of the manifold. As a result, we get the following statement:

Theorem B. Let n ≥ 3 and Mn be a manifold obtained from performing surgeries in
codimension greater than or equal to three on the interior of Sn+. Then there exists a metric
g on M such that:

• The scalar curvature, g, satisfies Rg > n(n− 1) everywhere.
• The induced metric on ∂M agrees with the standard unit round metric on S

n−1.
• ∂M is totally geodesic with respect to g.

In [7, Theorem 7], Brendle, Marques, and Neves construct a metric g on the n-hemisphere,
n ≥ 3, with the following properties: the scalar curvature is at least n(n − 1) everywhere,
there exists a point where the scalar curvature is strictly larger than n(n−1), and the metric
agrees with the standard unit round metric on S

n
+ in a neighborhood of the boundary. They

showed that this metric can be used to construct a metric on RP
n, n ≥ 3, that has analogous

properties as the one on the hemisphere. We would like to point out that if we view the
g as a metric on an n-ball we can produce analogous metrics on any lens space by making
the appropriate identifications on the boundary.

Theorem C. Let n ≥ 3. Then for any n-dimensional lens space Ln there exists a metric
g such that (Ln, g) has the following properties:

• The scalar curvature satisfies Rg ≥ n(n− 1).
• There exists a point p ∈ L such that Rg(p) > n(n− 1).
• The metric g agrees with the standard unit round metric in a neighborhood of the
equator in L.

Related to the work of Brendle, Marques, and Neves is the following rigidity result of Miao
and Tam [32] for hemispheres. Let gn1 denote the standard unit round metric on S

n
+. Their

theorem states: if g is a metric on S
n
+ such that the scalar curvature satisfies Rg ≥ Rgn1

, the

mean curvature of the boundary satisfies Hg ≥ Hgn1
, g = gn−1

1 on the boundary, the volume

satisfies Vg ≥ Vgn1 , and g is sufficiently close to gn1 in the C2 norm, then g is isometric to gn1 .
We note that the theorem of Miao and Tam is false without the perturbative hypothesis.
The first example showing this was constructed in [18]. We note that Corollary 2 gives an
alternative construction showing the need for the C2-closeness in [32].

Moreover, we construct the following example which should be compared with Corollary 2
and the rigidity result of Miao and Tam.



NEW COUNTEREXAMPLES TO MIN-OO’S CONJECTURE VIA TUNNELS 5

Theorem D. Let n ≥ 3, 0 < ǫ < 1
1000 , and D > 0. Then there exists a metric g on S

n
+

with the following properties:

• The scalar curvature satisfies Rg > n(n− 1).
• The mean curvature on ∂Sn+ satisfies Hg > 0.
• The induced metric on ∂Sn+ is the standard unit round metric on S

n−1.
• The volume satisfies

1

2
ωn ≤ volg(S

n
+) ≤

1

2
ωn + ǫ,

where ωn is the volume of the standard unit round n-sphere.
• The diameter satisfies diamg(S

n
+) > D.

By relaxing the condition on the curvature on the boundary from totally geodesic to
Hg > 0, we construct examples that are related to the result of Miao and Tam while keeping
the volume arbitrarily close to the volume of the standard unit round S

n
+. Moreover, from

the proof of Theorem D one can see outside a set of arbitrarily small volume the metric g
is a small perturbation of the standard unit round metric on S

n
+.
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3. Gluing Manifolds

In this section, we will prove Theorem A, Corollary 1, Corollary 2, Corollary 3, The-
orem B, and Theorem D. These proofs follow from the perturbative constructions in [7],
the gluing construction in [38], and Appendix A. First, let us recall some results. The first
proposition says that if the scalar curvature of a manifold is bounded below, then one can
attach a tunnel and only decrease the lower bound by an arbitrarily small amount while
maintaining control of the volume and diameter.

Proposition 3.1 ([38, Proposition 4.2] Constructing Tunnels). Let (Mn
i , gi), n ≥ 3, i =

1, 2, be Riemannian manifolds with scalar curvature Rgi. Let κ ∈ R, d ≥ 0, j ≥ 1, pi be a
point in the interior of Mi, and δ ∈

(

0, 1
10 min{inj1, inj2}

)

, where inji is the injectivity radius
of Mi at pi. Assume Rgi ≥ κ on B1 = Bg1(p1, 2δ) ⊆M1 and B2 = Bg2(p2, 2δ) ⊆M2. Then
there exists a complete Riemannian metric ḡ on the smooth manifold Pn =M1#M2, which
is obtained by removing Bi from Mi and gluing in a cylindrical region (Tδ, gδ) diffeomorphic
to S

n−1 × [0, 1], satisfying the following:

(i) the metrics gi agree with ḡ on Mi \Bi;
(ii) there exists constant C > 0 independent of δ, d, and j such that

d < diam (Tδ) < Cδ + d and vol (Tδ) < C(δn + dδn−1); (3.1)

(iii) Tδ has scalar curvature Rgδ > κ− 1
j
.
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The following is the statement of the counterexample of Min-Oo’s Conjecture constructed
by Brendle, Marques, and Neves.

Theorem 3.2 ([7], Corollary 6). Let n ≥ 3. There exists a Riemannian metric g on the
hemisphere S

n
+ such that:

(i) The scalar curvature, Rg, satisfies Rg > n(n− 1).
(ii) The boundary ∂Sn+ is isometric to the standard unit round (n− 1)-sphere.
(iii) The boundary ∂Sn+ is totally geodesic with respect to g.

Now we are ready to prove our main result.

Proof of Theorem A. Let n ≥ 3. Let (Mn, g) be a Riemannian manifold such that the
scalar curvature, Rg, satisfies Rg > n(n− 1). Let (Sn+, ḡ) be the Riemannian manifold from
Theorem 3.2. Choose d ≥ D and j large enough in Proposition 3.1 so that the constructed
metric on M#S

n
+ satisfies the conditions in Theorem A. ⊓⊔

Proof of Corollary 1. Let n ≥ 3. In Theorem A, take (Mn, g) to be
(

S
n, gn1

2

)

where gn1
2

is

the round metric on S
n of radius 1

2 . ⊓⊔

Proof of Corollary 2. First, we will construct for any n ≥ 3 a closed Riemannian manifold
(Mn, g) such that the scalar curvature is strictly larger than n(n − 1) and the volume is
larger than m

4 ωn, where ωn is the volume of Sn with its standard unit round metric.

In particular, let (N,h) be the round n-sphere of radius
(

1
2

)
1
n and note volh(N) = 1

2ωn

and Rh > n(n− 1). Let M be the manifold obtained from N by attaching (via a connected

sum) m round n-spheres of radius
(

1
2

)
1
n around the the equator of N . By Proposition 3.1,

there exists a complete Riemannian metric g on M such that Rg > n(n− 1). Observe that

volg(M) > m×
(

1
2 volh(N)

)

= m
4 ωn. Choose m large enough so that volg(M) > V .

Now by Theorem A, we obtain a metric on S
n
+ satisfying the conditions of Corollary 2.

⊓⊔

Proof of Corollary 3. Let n, p, q ≥ 1 and p+ q = n ≥ 3. In Theorem A, take (Mn, g) to be
(Sp × S

q, h) where h is a metric on S
p × S

q of scalar curvature strictly larger than n(n− 1).
In particular, one can choose h = 1

2(n(n−1)) (g
p
1 + gq1) where we recall gmr is the standard

round metric on S
m of radius r. ⊓⊔

Proof of Theorem B. Let n ≥ 3 and take (Mn, g) in Proposition A.1 to be the manifold
from Theorem 3.2. ⊓⊔

Proof of Theorem D. Let n ≥ 3. Recall that gn1 is the standard unit round metric on S
n.

By [7, Corollary 15] there exists a smooth function u : Sn+ → R and a smooth vector field
X on S

n
+ such that for all t small enough we have that the metric

g(t) = gn1 + tLXg
n
1 +

1

2(n − 1)
t2ugn1

has scalar curvature strictly greater than n(n − 1), the mean curvature of the boundary is
strictly positive, and g(t) = gn−1

1 on ∂Sn+.
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Fix 0 < ǫ < 1
1000 and D > 0. We note that this implies 10nωnǫ

n < ǫ
3 . Now choose t0

small enough so that
| volgn1 (S

n
+)− volg(t0)(S

n
+)| < ωnǫ

n,

where ωn is the volume of the n-sphere, the scalar curvature of g(t0) is strictly larger than
n(n − 1), and the mean curvature of the boundary is strictly positive. Using g(t0) and
Proposition 3.1 we can construct a metric on S

n
+ that satisfies the conditions of Theorem D.

In particular, in the setting of Proposition 3.1, we consider M1 = (Sn+, g(t0)) and M2 =
(Sn, gn10ǫ) and pi be in the interior ofMi, i = 1, 2. Choose δ > 0 and d > D in Proposition 3.1
such that 2δ < ǫ, C

(

δn + dδn−1
)

< ǫ
3 , and volg(t0) (B (p1, 2δ)) < ωnǫ

n. Also, choose j large

enough so that min
{

Rgn10ǫ
, Rg(t0)

}

− 1
j
> n(n − 1). Let B1 = Bg(t0)(p1, 2δ) ⊂ M1 and

B2 = Bgn10ǫ
(p2, 2δ) ⊂M2.

Thus, we obtain a metric g on Sn+#Sn which has scalar curvature strictly larger than

n(n− 1), mean curvature of the boundary strictly positive, and diamg

(

S
n
+#S

n
)

> D. Now
we will estimate volg(S

n
+#S

n).
Note

volg(S
n
+#S

n) = volg(t0)(S
n
+ \B1) + vol(T ) + volgn10ǫ(S

n \B2).

and
∣

∣volgn1 (S
n
+)− volg(t0)(S

n
+ \B1)

∣

∣ < 2ωnǫ
n.

Thus,

volgn1 (S
n
+) ≤ volg(t0)(S

n
+ \B1) + 2ωnǫ

n

≤ volg(t0)(S
n
+ \B1) + vol(T ) + (10n − 1)ωnǫ

n

≤ volg(S
n
+#S

n)

= volg(t0)(S
n
+ \B1) + vol(T ) + volgn10ǫ(S

n \B2)

≤ volgn1 (S
n
+) + 2ωnǫ

n + C(δn + dδn−1) + ωn (10ǫ)
n ,

where in final inequality we use (ii) from Proposition 3.1 to estimate vol(T ). Therefore, by
our choice of ǫ and δ we see that

1

2
ωn ≤ volg(S

n
+#S

n) ≤ 1

2
ωn + ǫ.

⊓⊔

Appendix A.
Surgery Construction with Controlled Scalar Curvature

In this appendix, we prove a technical proposition, which is a Gromov–Lawson type
surgery construction in codimension three or larger with a quantitative lower bound on the
scalar curvature. As expressed by Gromov–Lawson in [21] the higher surgery result is very
similar to connected sum construction. Therefore, the proof will combine both the improved
connected sum construction in [38] and the proof in [21] (cf. [39]). This result may be of
independent interest.

Proposition A.1. Let κ ∈ R and j > 0. Let (Mn, g), n ≥ 3, be a Riemannian manifold
with scalar curvature satisfying Rg ≥ κ. Let p+ q = n, p ≥ 1, and q ≥ 3. Let Sp ⊆M be an
embedded p-sphere in the interior of M with a trivial normal bundle. Let δ ∈

(

0, 1
10 radSp

)

where radSp is the normal injectivity radius of Sp. Let T (δ) (which is diffeomorphic to
S
p × D

q) be the δ-neighborhood of Sp. Then there exists a Riemannian metric ḡ on Nn,
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which is the smooth manifold obtained by performing a p-surgery on M , i.e. N = M \
T (δ) ⊔

(

D
p+1 × S

q−1
)

, satisfying the following:

(i) the scalar curvature of N satisfies Rg̃ > κ− 1
j
;

(ii) ḡ = g on M \ T (δ);
(iii) there is a continuous increasing function ξ : [0,∞] → [0,∞] independent of j and

δ where ξ(x)
x→0−−−→ 0 such that

volg (M)− ξ(δ) ≤ volḡ (N) ≤ volg (M) + ξ(δ).

To perform the surgery, we will construct a Riemannian metric on D
p+1×S

q−1 and attach
it to M \ T . The desired Riemannian metric will be the induced metric on a codimension
one submanifold. The codimension one submanifold will be specified by a particular curve
from which the metric will inherit the desired properties.

A.1. A Submanifold defined by a curve. Let (Mn, g) be a Riemannian manifold with
scalar curvatureRg ≥ κ. Let p+q = n, p ≥ 1, and q ≥ 3. Let Sp be an embedded p-sphere in
the interior ofM with a trivial normal bundle NS. By choosing global orthonormal sections
ν1, . . . , νq, we specify a diffeomorphism i : Sp × R

q → NS. Now define r : Sp × R
q → R,

r(y, x) = ||x||, where || · || is the Euclidean norm on R
q. Let Sp×Dq(s) = {(y, x) ∈ Sp×R

q :
||x|| ≤ s}. Choose δ ∈

(

0, 1
10 radSp

)

. Therefore, exp ◦ i
∣

∣

Sp×Dq(δ)
is an embedding, where

exp is the exponential map with respect to g. Denote the image of this map by T (δ) and
the coordinates (y, x) will be used to denote points on T (δ). Therefore, r is the distance
function to Sp × {0} in T (δ). Also, curves of the form {y} × ℓ when ℓ is a geodesic ray in
Dq(δ) emanating from the origin are geodesics in T (δ).

Let γ be a smooth curve in R
2 and consider the submanifold

Σ = {(t, y, x) ∈ R× T (δ) : (t, r(y, x)) ∈ γ}
of (R × T (δ), dt2 + g). Endow Σ with the induced Riemannian metric gγ . For brevity, we
will suppress the δ and refer to T (δ) as T from here on out. Now we want to calculate the
scalar curvature of Σ. To do so we will need the following lemma from [21] (cf. [20]). First,
we define some notation. If B(p, δ) is a geodesic ball in a Riemannian manifold (M,g),
then in polar coordinates (r,θ) about p the metric g in B(p, δ) takes the form dr2 + gr.
Let 0 < ǫ < δ and Sn−1

ǫ = {(r,θ) ∈ B(p, δ) : r = ǫ} be the geodesic spheres of radius ǫ in
B(p, δ); moreover, the induced metric on Sn−1

ǫ is gǫ.

Lemma A.2 ([21, Lemma 1]). Let B(p, δ) be a geodesic ball in a Riemannian manifold
(Mn, g). The principal curvatures of Sn−1

ǫ in B(p, δ) are each of the form 1
−ǫ

+ O(ǫ) for

small ǫ. Then, as ǫ→ 0, 1
ǫ2
gǫ → 1

ǫ2
gn−1
ǫ = gn−1

1 in the C2-topology.

Remark A.3. The above lemma is written with the convention that the second fundamental
form is A(X,Y ) = g(∇XY,N) and N is the outward pointing normal.

We note that submanifolds of the form S = R× ({y} × ℓ) of R× T are totally geodesic.
To calculate the scalar curvature of Σ, fix w ∈ Σ ∩ S. Let e1, . . . , en be an orthonormal
basis of of Tw(Σ) where e1 is tangent to γ and e2, . . . , eq is tangent to ∂Dq. Note that the
for points in Σ ∩ S the normal ν to Σ in R× T is the same as the normal to γ in S.

From the Gauss equations:

Rdt2+g(X,Y,Z,U) = Rgγ (X,Y,Z,U) −A(X,U)A(Y,Z) +A(X,Z)A(Y,U)
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we see
(

Kgγ

)

ij
=
(

Kdt2+g

)

ij
+ λiλj .

where λi are principal curvatures corresponding to ei and
(

Kgγ

)

ij
and

(

Kdt2+g

)

ij
are the

respective sectional curvatures. We note that λ1 = k where k is the geodesic curvature of
γ. For i = 2, . . . , q we see by Lemma A.2

λi = 〈∇eiei, ν〉 = 〈∇eiei, cos θ∂t + sin θ∂r〉 = cos θ〈∇eiei, ∂t〉+ sin θ〈∇eiei, ∂r〉

= sin θ〈∇eiei, ∂r〉 =
(

1

−r +O(r)

)

sin θ,

where θ is the angle that between ν and the t-axis. And for (q + 1), . . . , n we have

λi = 〈∇eiei, ν, 〉 = 〈∇eiei, cos θ∂t + sin θ∂r〉 = cos θ〈∇eiei, ∂t〉+ sin θ〈∇eiei, ∂r〉
= sin θ〈∇eiei, ∂r〉 = O(1) sin θ.

Now note that
(

Kdt2+g

)

1j
= Rdt2+g(ej , e1, e1, ej) = Rdt2+g(ej , cos θ∂r, cos θ∂r, ej) = cos2 θ (Kg)∂rj

and for i 6= 1 and j 6= 1
(

Kdt2+g

)

ij
= Rdt2+g(ej , ei, ei, ej) = (Kg)ij .

We see that

Rgγ =
∑

i 6=j

(

Kgγ

)

ij
= 2

∑

j≥2

(

cos2 θ (Kg)∂r ,j + kλj

)

+
∑

i 6=j
i,j≥2

(

(Kg)ij + λiλj

)

.

Therefore,

Rgγ = Rg − 2Ric(∂r, ∂r) sin
2 θ + (q − 1)(q − 2)

(

1

r2
+O(1)

)

sin2 θ

− (q − 1)

(

1

r
+O(r)

)

k sin θ,

(A.1)

where the terms involving sectional curvature combine to the first two terms, the λiλj terms
combine to give the second term, and the kλj terms combine to give the last term.

Next, we will construct a curve γ in R
2. If we construct γ : [0, L] → R

2, γ(s) = (t(s), r(s)),
such that near s = 0 we have that γ is a vertical line segment on the r-axis, then Σ will
smoothly attach to M \ T . Moreover, we will construct γ such that near s = L we have
that γ is a horizontal line segment parallel to the t-axis. Using (A.1), in place of [38, (4.1)],
during the construction of the curve in [38, Section 4] results in our desired curve. We
record the construction of γ in the following lemma:

Lemma A.4. Let Sp ⊆M and Σ be as above. Let δ ∈
(

0, 1
10radSp

)

and j > 0. Then there

exists a smooth curve with arclength parameterization γ : [0, L] → R
2, γ(s) = (t(s), r(s)),

such that length(γ) ≤ Cδ and Rgγ > κ− 1
j
, where C is independent of j and δ. Moreover,

near s = 0, we have that γ is a vertical line segment on the r-axis and s = L we have that
γ is a horizontal line segment parallel to the t-axis.

Therefore, we have now constructed a Riemannian metric, gγ , on Σ which smoothly
attaches toM \T . Let P be the Riemannian manifold defined as P = (M \ T )⊔Σ and with
a slight abuse of notation we will let gγ be the metric on all of P . Note that by construction
P is a smooth manifold with boundary, which satisfies Rgγ > κ− 1

j
.
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Remark A.5. Up until now the same argument would work for the p = 0 case (i.e.,
Proposition 3.1). Further details will be given in Subsection A.2. For now we will focus on
the cases p ≥ 1.

Now we must make a technical point that will become apparent later. Fix ψ : [0, 1] → R

a smooth increasing function satisfying

ψ(s) =

{

0 s ∈
[

0, 14
]

1 s ∈
[

3
4 , 1
]

.

Define Λn = 2(n − 1)|ψ′′(s)| + (n − 1)(n − 2)|ψ′(s)|. By taking δ smaller, if necessary, we
may assume that the scalar curvature of ∂P with its induced metric g∂P satisfies

Rg∂P > κ+ Λn − 1

j
.

Now we want to find a homotopy, {hs}, through metrics with scalar curvature strictly

greater than κ+Λn− 1
j
, from the induced metric on ∂P to gpa+g

q−1
b on S

p×S
q−1 where gmτ is

the standard round metric on S
m of radius τ . Define δ̄ = min

{

1

10
√

|Λn+κ|
, δ, 1

}

. By taking

a ≤ 1 and b < δ̄ we ensure scalar curvature of gpa + gq−1
b is strictly larger than κ+ Λn − 1

j
.

Then one can construct a metric ds2 + hs on the collar, C = [0, 2] × S
p × S

q−1, such that

at h0 is the induced metric on ∂P and at h1 is a product metric gpa + gq−1
b on S

p × S
q−1.

Finally, we can glue in
(

E = D
p+1 × S

q−1, gE
)

where gE is the product metric of a round
metric on the hemisphere and a round metric on the sphere to complete the surgery. We
will handle these steps in the next lemmas.

A version of the following lemma was first proved in [21] (cf. [39]) where one wanted to
ensure the Riemannian metrics in the homotopy have positive scalar curvature. Here we
upgrade this lemma so that the homotopy is through metrics with scalar curvature strictly
larger than κ+ Λn − 1

j
.

Lemma A.6. Let g∂P be the induced metric on ∂P from gγ . Then there exists a homotopy
through Riemannian metrics with scalar curvature strictly larger than κ + Λn − 1

j
to the

product metric gp1 + gq−1
η for some η ∈ (0, 1).

Proof. We follow the proof of [39]. Let g∂P be the induced metric on ∂P from gγ , recall
r(L) < δ, and set η = r(L). Let π : NSp → Sp be the normal bundle to the embedded Sp in
M . The Levi-Civita connection on M , with respect to gγ , gives rise to a normal connection
on the total space of the normal bundle and so also a horizontal distribution H on the total
space of NS. Equip the fibers of NS with the metric ĝ = hη , where hη is the Riemannian
metric on the q-ball that arises from the upper hemisphere of a round q-sphere of radius η.
Now consider the Riemannian submersion π : (NS, g̃) → (Sp, ǧ) where ǧ = g∂P and g̃ is the
unique submersion metric arising from ĝ, ǧ, and H. Now we want to restrict this metric
g̃ to the sphere bundle, Sp × S

q−1(η), and by a slight abuse of notation we will call this

restricted metric g̃. We note that g̃ restricted to S
q−1
η is gq−1

η , i.e., the round metric on the
(q − 1)-sphere of radius η.

Now by Lemma A.2 (cf. [39, Lemma 3.9]) we have that g∂P converges to g̃ as η → 0.
Therefore for small η, there is a homotopy from g∂P to g̃ through metrics with scalar
curvature strictly greater than κ+Λn− 1

j
. Now we want to construct a homotopy from g̃ to
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the product of two round spheres. Viewing g̃ as a submersion metric and applying O’Neill’s
formula [4, Chapter 9] we have the following equation for scalar curvature:

R̃ = Ř ◦ π + R̂− |A|2 − |T |2 − |n|2 − 2δ̌(n).

T is a tensor that measures the obstruction to the bundle having totally geodesic fibers. By
construction, the fibers are totally geodesic so T = 0 and n is the mean curvature vector
and so vanishes when T vanishes. A is O’Neill’s integrability tensor and it measures the
integrability of the horizontal distribution, i.e., when A vanishes the horizontal distribution
is integrable. Therefore, we have

R̃ = Ř ◦ π + R̂− |A|2

We want to deform g̃ through Riemannian submersions to one with a base metric gp1 while
keeping scalar curvature larger than κ+Λn− 1

j
. This can be done because the deformation

occurs on a compact interval and we can shrink η to make R̂ arbitrarily large. We just
need to ensure when we shrink η that the |A| term does not grow. This follows from the
canonical variation formula [4, Chapter 9] which states that if we shrink the fiber metric by

t then the scalar curvature of the new submersion metric R̃t satisfies

R̃t = Ř ◦ π +
1

t
R̂− t|A|2

Finally, we can perform another linear homotopy through Riemannian submersions to the
standard product metric gp1 + gq−1

η , i.e., where |A| = 0. Again we can shrink η if necessary
in order to preserve the scalar curvature bound. ⊓⊔

Thus, we have constructed the desired homotopy hs. Recall our goal is to construct a
metric on, ds2 + hs the collar, C = [0, 2] × S

p × S
q−1 and maintain the scalar curvature

bound. We now construct the metric on the collar. First, define C ′ = [0, 1]× S
p× S

q−1 and

recall that δ̄ = min

{

1

10
√

|Λn+κ|
, δ, 1

}

.

Lemma A.7. Let ψ : [0, 1] → R be the function fixed above. Recall that ψ is a smooth
increasing function satisfying

ψ(s) =

{

0 s ∈
[

0, 14
]

1 s ∈
[

3
4 , 1
]

.

Let β ∈ (0, δ̄) and define ϕ(s) = 1 − (1 − β2)ψ(s). Then the scalar curvature of (C ′, ds2 +
ϕ2(s)h0) satisfies

Rds2+ϕ2(s)h0
≥ Rh0 − Λn > κ− 1

j

Proof. Note that (C ′, ds2 + ϕ2(s)h0) is a warped and that β2 ≤ |ϕ| ≤ 1. Thus, by [29,
Proposition 1.13]

Rds2+ϕ2(s)h0
=
Rh0 − 2(n− 1)ϕ(s)ϕ′′(s)− (n− 1)(n − 2)|ϕ′(s)|

ϕ2(s)

≥ Rh0 − 2(n− 1)|ψ′′(s)| − (n− 1)(n − 2)|ψ′(s)|
ϕ2(s)

≥ Rh0 − 2(n− 1)|ψ′′(s)| − (n− 1)(n − 2)|ψ′(s)|
⊓⊔
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Lemma A.8. There exists a β ∈ (0, δ̄) such that (C ′, ds2+β2hs) has scalar curvature larger
than κ− 1

j
.

Proof. We note that we can view ds2+β2hs as a submersion metric where we are shrinking
the fibers by β2. Therefore, by the canonical variation formula [4, Chapter 9] we have

Rds2+β2hs
=

1

β2
Rhs + β2|A|

Now choose 0 < β < δ̄ such that

Rds2+β2hs
=

1

β2
Rhs + β2|A| > κ− 1

j

⊓⊔

We note that the metric from Lemma A.7 smoothly attaches to P and the metric from
Lemma A.8 smoothly attaches to (C ′, ds2 + φ2(s)h0) (i.e. the metric from Lemma A.7).
Thus, we have constructed the metric (which with a slight abuse of notation we will be
denoted as ds2 + hs) on the collar C that transitions from the induced metric on ∂P to

gpa + gq−1
b , where a = β and b = βη, such that scalar curvature is larger than κ− 1

j
because

our choice of β was small enough. Finally, recall that now we can attach E. Thus, we have
completed the construction of (N, ḡ) and verified (i) and (ii).

Finally, we can compute the volume estimate (iii). We note from the construction that
N consists of four disjoint pieces glued together: M \ T , Σ, C, and E.

Lemma A.9. Consider (N, ḡ) as constructed above. Then there is a continuous increasing

function ξ : [0,∞] → [0,∞] independent of j and δ where ξ(x)
x→0−−−→ 0 such that

volg (M)− ξ(δ) ≤ volḡ (N) ≤ volg (M) + ξ(δ).

Proof. We note that

volg (M)− volg (T ) ≤ volḡ (N) ≤ volg (M) + volḡ (Σ) + volḡ (C) + volḡ (E)

It suffices to show that to bound the volume of Σ, C, E, and T . Since the metric on
E = D

p+1×S
q+1 is the product metric the round metric of radius a on the (p+1)-hemisphere

with the round metric of radius b on a (q − 1)-sphere, we have that

vol(E) ≤ ωp+1ωq−1a
p+1bq−1 ≤ ωp+1ωq−1δ

q−1,

where ωm is the volume of the unit round m-sphere.
Let ξi : [0,∞] → [0,∞], i = 1 . . . 5, be continuous increasing functions such that

ξi(x)
x→0−−−→ 0. The volume bound for C will follow from applying the coarea formula.

First, recall that the homotopy hs has two parts I1 = [0, s0] and I2 = [s0, 2]. Let I1
correspond to the homotopy from g∂P to g̃ which comes from the C2-convergence of g∂P to
g̃. Therefore, | volhs − volg̃ | ≤ ξ1 (δ) for s ∈ I1 where ξ1 is independent of j and δ. Let I2
correspond to the remaining part of the homotopy and recall for all s ∈ I2, we have that hs
are submersion metrics.

It will suffice to estimate the volume for hs for s ∈ I2 because g̃ = hs0 and volg̃ is
sufficiently close to the volumes of hs, s ∈ I1. Now for s ∈ I2, consider πs :

(

S
p × S

q−1, hs
)

→
(Sp, gs) the submersion associated with hs. Using the coarea formula, we then have

volhs(S
p × S

q−1) =

∫

Sp

(

∫

π−1
s (y)

dVhs|
π
−1
s (y)

(x)

)

dVgs(y) ≤ ξ2(δ) volgs (S
p) ,
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where the last line follows by Lemma A.2 and ξ2 is independent of j and δ. By the com-
pactness of I2 we have that volgs (S

p) is bounded by some constant c3 independent of s;
moreover, by the construction of the submersions and the homotopy, c3 is independent of δ
and j. Therefore, by the coarea formula

volds2+hs
(C) =

∫ 2

0
volhs(S

p × S
q−1)ds ≤ ξ3(δ),

where ξ3 is independent of j and δ. As T is a tubular neighborhood of Sp ⊂ M , it has a
metric of the form gT = dr2+ gr on [0, δ]×S

p ×S
q−1 and has volume less than ξ4(δ), where

ξ4 is independent of j and δ. By Lemma A.2, Lemma A.4, and the definition of Σ, the
metric on Σ is of the form gγ = ds2+gr(s) on [0, length(γ)]×S

p×S
q−1 with length(γ) ≤ Cδ.

Thus, we have volgγ (Σ) ≤ ξ5(δ), where ξ5 is independent of j and δ. ⊓⊔

A.2. 0-Surgery. One may wonder if Proposition 3.1 can be derived using the same proof
as Proposition A.1. The answer is yes with minor variations (for full details see [20, 38]).
For the sake of completeness, we will quickly repeat these details. Recalling Subsection A.1,
we note when p = 0 that T (δ) is a disjoint union of two embedded disks. If we replace T (δ)
with a connected component T1(δ) of T (δ) then we can follow the same argument up to
Remark A.5 (i.e., the construction of the metric gγ on (M \ T )⊔Σ). Specifically, using the
curve γ1(s) = ((t1(s), r1(s)) provided by Lemma A.4, we have constructed Σ1 which is half
of a tunnel. Analogously, for the other connected component T2(δ) of T (δ), we construct a
curve γ2(s) = ((t2(s), r2(s)) and Σ2, which is another half of a tunnel. By making the same
choices in the construction of γ1 and γ2, we can ensure that r1(L) = r2(L). Now we will
modify the metric at the end of Σ1 so that it is a product metric of a round sphere and an
interval (as is done in [20]). Let 0 < α < δ be small enough so that for L− α ≤ s ≤ L, we
have γ1(s) is a horizontal line segment parallel to the t-axis. Therefore, by the construction
of γ1, we have for s ∈ [L − α,L] that t1(s) = s and r1(s) ≡ c for some constant c. Let
a = t1(L− α) = L− α and b = t1(L) = L. We note that the induced metric on the end of
the half-tunnel, {(t, y) ∈ Σ1 : a ≤ t ≤ b}, is h1 = gc + dt2, where gc is the induced metric
on the (n − 1)-sphere t−1({b}). Let h′1 = c2gn−1

1 + dt2 and φ(t) = ψ
(

t−a
α

)

where ψ(u) is a

smooth function on [0, 1] vanishing near zero, increasing to 1 at u = 3
4 and equal to 1 for

u > 3
4 . Define the metric h for t ∈ [a, b] as h(q, y) = gc(q, y)+φ(t)

(

c2gn−1
1 − gc

)

+ dt2. This
metric transitions smoothly between h1 and h′1. Note

h− h1 = φ(t)
(

c2gn−1
1 − gc

)

= φ(t)c2
(

gn−1
1 − 1

c2
gc

)

and that the first and second derivatives of φ(t) are O(α−1) and O(α−2), respectively. So
by Lemma A.2, we have that the second derivatives of h − h1 are O(α2). Therefore, for α
small enough, the scalar curvature of h is close to the scalar curvature of h1 which, again
by Lemma A.2, has scalar curvature larger than κ − 1

j
for small enough α. Therefore, we

have changed the metric at the end of Σ1 so that it looks like c2gn−1
1 +dt2. We can perform

the analogous procedure to Σ2. Therefore, we can immediately glue together the two half-
tunnels and construct a tunnel while keeping the scalar curvature larger than κ − 1

j
. If

we wish to make a long tunnel, then before gluing the two half-tunnels together insert a
round cylinder Ac,d = ([0, d] × S

n−1, dt2 + c2gn−1
1 ). The estimates in (3.1) follow because

d < diam(Ac,d) < d+ 2πc2 and vol(Ac,d) = dωn−1c
n−1 and outside of Ac,d the length of γi,



14 PAUL SWEENEY JR.

i = 1, 2, is O(δ) and each t = constant cross-section is close to a round sphere of radius less
than δ.
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[15] Piotr T. Chruściel and Marc Herzlich. “The mass of asymptotically hyperbolic Rie-
mannian manifolds”. In: Pacific J. Math. 212.2 (2003), pp. 231–264.
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