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Resumen

El estudio de objetos compactos en teorias modificadas de la gravedad expande
nuestra descripcion de la fisica gravitacional mas alla de la Relatividad General
(RG). En particular, las estrellas de neutrones son objetos con altas densidades y
fuertes campos gravitacionales, lo que las convierte en laboratorios ideales para
testear los limites de la teoria de Einstein en condiciones extremas. En esta
tesis, encontramos soluciones numéricas de estrellas de neutrones en gravedad 4D
Einstein-Gauss-Bonnet (4ADEGB) usando ecuaciones de estado (EdEs) realistas
para describir todas las regiones en el interior de una estrella de neutrones.
En particular, usamos la EdE SLy (Skyrme Lyon) y MS2 (Miiller and Serot),
previamente utilizadas por Charmousis et al. (2022), en conjunto con la familia de
EdEs BSk (Brussels-Montreal Skyrme functionales), la cual incorpora refinamientos
a la EdE SLy para mejorar el ajuste tanto a las propiedades de la materia nuclear
como a las observaciones de estrellas de neutrones. Con el fin de proporcionar
las condiciones necesarias para la existencia de dichas soluciones, analizamos
la estabilidad de las mismas a través de perturbaciones radiales adiabaticas.
Encontramos que el cambio de estabilidad ocurre en la configuracion de masa
méaxima, como en RG, obteniendo estrellas de neutrones estables con masas mas
grandes comparadas con las de la teoria de Einstein. Ademas, la brecha de masa
entre las estrellas de neutrones y los agujeros negros de los mismos radios se reduce
a medida que aumentamos la constante de acoplamiento de la teoria ADEGB. La
reduccion de esta brecha de masa indica que algunos objetos astrofisicos (dentro
de esta teoria) podrian ser estrellas de neutrones masivas u objetos mas exoticos
en lugar de agujeros negros. Nuestros hallazgos ofrecen valiosas contribuciones a

la comprension de los objetos compactos en el marco de la gravedad 4DEGB.
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Abstract

The study of compact objects in modified theories of gravity expands our
description of gravitational physics beyond General Relativity (GR). In particular,
neutron stars (NS) are objects with high densities and strong gravitational fields,
establishing them as ideal laboratories to test the limits of Einstein’s theory
under extreme conditions. In this thesis, we find numerical solutions of NS in 4D
Einstein-Gauss-Bonnet (4DEGB) gravity using realistic equations of state (EOSs)
to describe all regions inside a NS. In particular, we employ the SLy (Skyrme
Lyon) and MS2 (Miiller and Serot) EOSs, previously used by Charmousis et al.
(2022), along with the BSk (Brussels-Montreal Skyrme functionals) family of EOSs,
which incorporate refinements to SLy EOS to improve the fit to both nuclear
matter properties and neutron star observations. In order to provide necessary
conditions for the existence of such solutions, we analyzed the stability of these
configurations by adiabatic radial perturbations. We found that the change of
stability occurs at the maximum mass configuration, as in GR, obtaining stable
neutron stars with greater mass compared to neutron stars in Einstein’s theory.
In addition, the mass gap between neutron stars and black holes of the same
radii is reduced as we increase the coupling constant of the 4DEGB theory. The
reduction of this mass gap indicates that some astrophysical objects (within this
theory) could be massive neutrons stars or more exotic objects instead of black
holes. Our findings offer valuable contributions to the understanding of compact

objects within the framework of 4ADEGB gravity.
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Chapter 1

Introduction

1.1 Compact objects

When a star consumes most of its nuclear fuel, it approaches the final stage of its
life cycle. Depending on the size and mass of the star, its life will end in one of
two ways: either as a white dwarf (WD) or as a supernova explosion. In the latter
case, the implosion of the core will leave behind a small, dense core of tightly
packed neutrons called a neutron star (NS) or, a black hole with a gravitational
field so powerful that not even light can escape it. In this work, we focus on

neutron stars, but we briefly discuss white dwarfs.

The possible states of compact objects such as white dwarfs and neutron stars
can be modeled given a model of the gravitational interaction and an equation of
state (EOS), which amounts to a relation between the pressure and the density
inside the star considering their composition and interactions. Polytropes are
self-gravitating gaseous spheres that were very useful as a crude approximation to

more realistic stellar models. The polytropic EOS is
P=Kp", (1.1.1)

where K and I' are constants, the latter being the adiabatic or polytropic index [1].
Chandrasekhar [2| found that for the polytropic index I' = 4/3, white dwarfs can
only exist below a maximun mass Mp,.x = 1.42 M, known as the Chandrasekhar
limit. This EOS does not contain information about the physical origin of the

pressure that prevents the stellar collapse. Fowler [3] was the first who realized
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that for studying highly dense matter, in particular white dwarfs, one needs to
go beyond classical physics, i.e. to quantum physics. He understood that white
dwarfs owe their stability to the quantum pressure of the degenerate electron gas
resulting from the Pauli exclusion principle. Therefore, a first good approximation
for a stellar model is to consider the star as gaseous sphere of non-interacting
fermions at zero temperature, based on the fact that the temperature in white
dwarfs is much smaller than the Fermi temperature, according to Newtonian
gravity theory [1]. Using this EOS we also obtain the Chandrasekhar mass limit,
because if we take the non-relativistic and ultra-relativistic limits, the Fermi
EOS reduces to a polytropic one with polytropic index I' = 5/3 and T' = 4/3,

respectively [1], see figure 1.1.1a.

As the density of a white dwarf enters the relativistic (electron) domain (p ~
10% g/cm?), we could expect to approach the Chandrasekhar limit. However, this
never happens because, before that, the high densities inside the stellar core allow

for a nuclear reaction known as inverse beta decay,
p+e —n+v,, (1.1.2)

where a neutron is created by capture of an electron in the nucleus (and an electron
neutrino is emitted). This process changes the composition of the white dwarf
before its total collapse to a star mainly composed of neutrons, there the new
equilibrium state is reached due to the degeneration pressure of these fermions,
thus forming neutron stars. If the Fermi EOS at zero temperature is used, we
obtain that the Chandrasekhar mass limit is My = 5.73 Mg [5], see figure 1.1.1D.

If the gravitational theory is changed to General Relativity (GR), the hydrostatic
equilibrium equation is replaced by the Tolman-Oppenheimer-Volkoff equation
(T.O0.V.) [6]:

dP B GM(r)p(r)

dr 72

-1
p= YIGr: 1—7} o (1.1.3)

P 473 P 2
{1+ (r)} [1+ r (7")} [ GM(r)
The last three factors are general relativistic corrections. For instance, a typical
white dwarf has GM/c?R ~ 107* and a neutron star has GM/c?R ~ 107
Therefore, the general relativistic (or from other modified gravitational theory)

effects are more significant in neutron star than in white dwarfs, see figures 1.1.1a
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Figure 1.1.1: Mass-radius relation for neutron stars in the cases of the Fermi,

non-relativistic (I' = 5/3) and ultra-relativistic (I' = 4/3) polytropic EOS in
Newtonian gravity and in General Relativity.

and 1.1.1b for an illustration.

Oppenheimer and Volkoft [6] made the first calculation of a neutron star model.
They assumed that matter was composed of an ideal gas of free neutrons at
high density. They found that equilibrium configurations exist only below a
maximum mass Mp.x = 0.710 Mg and radius R = 9.16 km (4.37 times the
corresponding Schwarzschild radius), now known as the Oppenheimer—Volkoff
mass limit. However, current observations show that neutron stars can have masses
in the range 1 Mg — 2 Mg, and radius of about 10 km — 15 km [5]. Therefore, they
must avoid the gravitational collapse by pressure originating, for example, from
nuclear forces. The arising problem is that for neutron star densities the reliability
of many-body nuclear theory decreases and there is little experimental information
on the contributions of hyperons, quarks, phase transitions, etc. Thus, the EOS
at these densities requires to extrapolate calculations based on phenomenological
models of the nuclear force as well as in effective field theory models of quantum
chromodynamics (QCD) [7].

Among possible observables regarding neutron stars, the mass and radius are
the most important, since they can be used to constrain the neutron star EOS
within a certain observational uncertainty. The masses of several neutron stars
are known with good precision, but the information on their radii is less accurate.
One of the most precise measurements of neutron star masses come from pulsar
timing. For radii, the approaches can broadly be divided into spectroscopic and

timing measurements where data sets come from X-ray and y-ray satellites [3].
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Nevertheless, both measurements are crucial to constrain the EOS. In 2017, the
observations of gravitational waves (GW170817) emitted during the merger of a
neutron star binary [9—11| has given a new way of obtaining information on their
masses and radii, by measuring the tidal deformability, allowing to deduce upper
and lower limits for the masses and radii [3]. This allowed to impose constraints

on the EOS of matter at supranuclear densities.

1.2 A modified theory of gravity

General Relativity is doubtlessly a very successful theory of gravity that has
passed all observational tests to date. Nonetheless, modified theories of gravity
have been explored for several reasons. For instance, the current accelerated
expansion of the Universe, which according to the classical cosmological models is
caused by the cosmological constant. There is, however, no consistent explanation
of the value of the cosmological constant [!2]. For this and other reasons it is
theorized that GR could be modified at the large scale regime. We also have the
theoretical problem of finding a consistent quantum gravity theory. Such a pursuit
of modified gravitational models can help us understand GR and gravity more

deeply and have more confidence in that theory.

An approach to confront these problems is to propose modifications to the theory of
General Relativity by modifying the 4D Einstein-Hilbert action with cosmological
constant either by adding i) nonlinear curvature terms, such as f(R) theories,
critical gravity [!3], Einstenian cubic gravity [11], quasitopological gravities, etc,
and/or ii) including scalar fields, as in Horndeski theories [15], Dilaton Einstein

theories, Einstein conformally coupled to scalar fields, etc.

Lovelock’s theorem [16] states that the only (3 + 1)-dimensional gravity theory
which possesses diffeomorphism invariance, metricity, and second order equations
of motion is Einstein’s theory of gravity. Higher order terms vanish identically in 4
spacetime dimensions or less (D < 4). The first of these higher terms is the Gauss
Bonnet (GB) term which is quadratic in the curvature and is the integral of a total
derivative in D = 4, thus contributing nothing to the system’s dynamics. However,
it was recently shown [17] that the Gauss-Bonnet contribution to solutions to
the D-dimensional field equations can be non-trivial for D — 4 under a rescaling

of the GB coupling constant. Despite this apparent violation of the Lovelock
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theorem, a number of sensible 4-dimensional metrics can be obtained. This was
done for spherical black holes [17-21], cosmological solutions |17, 22, 23], star-like

solutions [24, 25|, radiating solutions [20], collapsing solutions [27], etc.

In reality the existence of such solutions does not actually imply the existence of a
well-defined 4D theory, and a number of objections in this vein quickly appeared
[258-30]. Two independent groups [31, 32| derived consistent versions of what has
come to be known as 4D Einstein-Gauss-Bonnet (4ADEGB) gravity, making use of
the same rescaling first introduced by Glavan and Lin [!7]. In both cases a scalar
field is introduced into the action making 4DEGB gravity a Horndeski theory of
gravity.

This 4DEGB gravity has been shown to be an interesting phenomenological
competitor to GR [25, 33, 31]. One important test of modified theories against
standard General Relativity is via observations of compact astrophysical objects
like neutron stars. The correct theory should be able to accurately describe recent
and future gravitational wave observations of astrophysical objects existing in
the mass gap between the heaviest compact stars and the lightest black holes. A
number of such objects have been recently observed that are inconsistent with
standard GR and a simple neutron star EOS. Recently it was shown that the
secondary component of the merger GW190814 [35] is well described as a slowly-
rotating neutron star in the 4DEGB theory without resorting to exotic EOSs, while
also demonstrating that the equilibrium sequence of neutron stars asymptotically
matches the minimum mass black hole solution, thus closing the mass gap between
NS and black holes of the same radius [25]. Such solutions beg the question
of stability since if we analyze the radial oscillations in GR of an uncharged,
spherical, gravitating compact star, it is stable in the part of the solution branch
where dM /dp. > 0 and the transition to instability happens at the maximum mass
solution [36]. In the literature, it has been unclear whether including non-vanishing
coupling to the 4DEGB theory will have a similar offsetting effect, and whether
the parts of the solution curves corresponding to extreme compact objects could
exist in a universe described by the 4DEGB theory. If there are indeed stable
solutions that approach the black hole horizon, then for that set of parameters
we can expect an universe with compact stars with radii arbitrarily close to the

horizon size of black holes.
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1.3 Hypothesis and Objectives

Our hypothesis is that neutron stars solutions obtained in 4DEGB gravity deviate
from those predicted by General Relativity, obtaining more massive stars. However,

the change of stability also occurs at the maximum mass solution.

To verify this hypothesis, our main objective is to study neutron stars in 4DEGB

using realistic equations of state at zero temperature. Specifically, we aim to:
1. Derive the hydrostatic equilibrium equations in 4DEGB.
2. Determine the eigenvalue problem for the radial oscillations in 4DEGB.

3. Find numerical solutions of the hydrostatic equilibrium equations and the

eigenfrequencies of the radial oscillation modes.
4. Contrast the results with the predictions of General Relativity.
This thesis is organized as follows:

— In chapter 2 we provide a review of the structure of neutron stars and the
EOSs for highly dense matter. The analytical representations of the EOSs

that we will use through this thesis are also discussed in this chapter.

— In chapter 3 we review the theory of General Relativity, starting from the
Einstein-Hilbert action (and omitting the mathematical preliminaries, as
it is assumed the reader already has a basic understanding of differential
geometry). Next, we review the Schwarzschild solution and the derivation
of the hydrostatic equilibrium equation for GR, the T.O.V. equation. We
conclude with numerical solutions of static NS configurations, followed
by an analysis of the stability of these solutions through adiabatic radial
oscillations, following the approach by Chandrasekhar [37].

— In chapter 4 we introduce the ADEGB gravity theory derived in Ref. [31]
and [32], followed by an exact solution of the field equations which represents
the spacetime of a non-rotating black hole in this theory. We also derive
the hydrostatic equilibrium equations and the radial oscillation equations.
We compute numerical solutions of the hydrostatic equilibrium equations
and the radial oscillation equations in 4DEGB. Finally, we conclude with

an analysis of these solutions comparing their stability in GR and 4DEGB.
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Chapter 2

Equations of State for Neutron Stars

2.1 Thermodynamics in curved spacetime

Consider the equilibrium thermodynamics of a perfect fluid, that is, a fluid that
can be completely characterized by its rest frame energy density e and isotropic
pressure P, neglecting the shear stresses, viscosity and heat conduction that the
fluid may have. The thermodynamic state of a fluid element can be characterized
by various thermodynamic potential n, €, P, T and s. All of these quantities are
referred to a local reference frame comoving with the fluid element. The formal

definitions of these thermodynamic potentials are as follows:

e n, baryon number density, i.e., the number of baryons per unit comoving

three-dimensional volume.

e ¢, total energy density, i.e., the total energy (including rest energy, thermal

energy, etc.) contained in a unit comoving three-dimensional volume.
e P, isotropic pressure in the rest frame.
e T’ temperature in the rest frame.
e s, entropy per baryon in the rest frame.

The most fundamental law of thermodynamics is baryon conservation. Consider a
fluid element whose moving walls are attached to the fluid so that baryons flow in

or out. As the fluid element moves, it deforms along the way changing its volume,
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but the number of baryons remains fixed, thus

diT(nV) 0, (2.1.1)

where 7 is the time measured by a comoving observer with the fluid element. The
changes in volume are produced by the flow of neighboring fluid pieces moving

away from or toward each other, explicitly, [35]

av
— = (V)Y (2.1.2)
where u* := da*/dr is the 4-velocity of the fluid. Consequently, the baryon

conservation equation (2.1.1) can be expressed as
_dn n ndV _ dz*

dr Vdr  dr

= u'V,n+nV u"

=V, (nu"); (2.1.3)

Oun + nV ut

that is,
V,.S* =0, (2.1.4)

with S* := nu* the baryon number flux 4-density. Equation (2.1.4) is known as

the baryon conservation law.

The first law of thermodynamics, in the proper reference frame of a fluid
element, is identical to the first law in flat spacetime because of the principle of

equivalence. Thus, we can write

d (5> — _Pd (%) +dQ, (2.1.5)

n

where d() is the heat gained per baryon. It is convenient to define these quantities

in terms of n, since it is a conserved quatity.

If a process occurs in a fluid element that is in equilibrium at all times (quasi-static

process), then d@) = T'ds. Under this condition, we can write the equation (2.1.5)

d (5) — _Pd (1> + Tds. (2.1.6)

n n

as follow:
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By developing equation (2.1.6) a little further, we can write the first law of

thermodynamics as
e+ P

n

de =

dn +nTds. (2.1.7)

In writing equation (2.1.6), we are assuming that €/n is a function only of n and s,
i.e., € = €(n, s). In addition, it allows us to express the thermodynamic potentials

P and T as derivaties of the energy per baryon:

__O(e/n) _ ,0(¢/n)
P= =iy =" e (2.1.8)
T= a(gé”). (2.1.9)

From equation (2.1.8) we can conclude that, in general, P = P(n,s) or P =
P(n,T). Moreover, if we consider the mass density p = ¢/c?, then p is a function
of the baryon number density n and the entropy per baryon, in this case, the

equation of state (EOS) for the star, modeled as a perfect fluid, is given by
P = P(n,s), p = p(n,s), (2.1.10)

or,
P=P(n,T), p=pn,T). (2.1.11)

Nevertheless, if the temperature of the star is negligible, which it will be the case
of a neutron star, the entropy per baryon will be constant for the whole star
according to Nernst’s heat theorem [39]. The EOS in this scenario is simply a
relation between P and p of the form P = P(p).

An important quantity that characterizes the relationship between pressure and
density (e.g. the stiffness) under adiabatic conditions is the adiabatic index,
denoted by I' and defined as [35]

n (0P
L= <8_n) (2.1.12)

Using the first law of thermodynamics (2.1.7), we have

Oe e+ P
() _exr ot

n
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Figure 2.2.1: Internal structure of a neutron star.

Thus, if we suppose that P = P(e(n)), we can write the adiabatic index as

e+ P [(OP
r=-—73 (E) (2.1.14)

Another quantity with the same importance for the EOS is the speed of sound [1()]

ldp
=y —. 2.1.15
v i ( )

2.2 The structure of a Neutron Star

Before discussing the equations of state for matter inside a neutron star, we start
with a brief overview of the structure of a neutron star. The cross section of a

typical neutron star can be divided into the following regions (see figure 2.2.1) [5,
, 41]:

1. The outer crust which is found underneath an atmosphere of just about
1 cm thickness. It consists of a lattice of completely ionized nuclei with a
degenerate electron gas, i.e., white dwarf matter. In this layer the density
increases to about 4 x 10" g/cm?; its thickness is typically a few hundred

meters.
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2. The inner crust starts at p ~ 4 x 10'! g/cm? and is less than 1 km thick,
at which point the density has reached the value p ~ 2.8 x 1014 g/cm?®. In
addition to a increasingly neutron-rich nuclei and degenerate relativistic
electrons, it contains also a degenerate neutron gas, which may be a

superfluid.

3. The outer core starts at p ~ 2.8 x 10 g/cm3 to p ~ 6 x 10 g/cm?. This
layer consists mainly of neutrons, which are possibly superfluid in a certain
density domain. In order to maintain the balance of the weak interaction
processes, a few percents of the nucleons have to be protons, which are

neutralized by electrons and muons.

4. The inner core starts at p ~ 6 x 10 g/cm?®, where all atomic nuclei have
been dissolved into their constituents, neutrons and protons. Due to the
high Fermi pressure, the core might also contain hyperons, more massive
baryon resonances, and possibly a gas of free up, down and strange quarks.

Finally, 7- and K-meson condensates may be found there too.

The composition of the central core is still unclear, but certainly consists in the
outer part only of neutrons, protons, electrons and muons. Today, neutron stars
come in various flavors depending on the composition of the core. In this respect,
we speak now of traditional neutron stars (or hadronic stars), where the core
mainly consists of neutrons, protons and electrons. At high densities, however,
also heavier baryons are excited, the neutron star now becomes a hyperon star.
Since these baryons are so densely packed, a quark bag could be formed, and
quarks are probably in a color-superconducting state, forming a neutron star with

a quark core. Finally, Bose condensates of pions and K mesons might occur [10].

2.3 Equations of state for highly dense matter

The state of matter at zero temperature is fully determined by its density and
composition, and then the EOS reduces to a simple function P = P(p). For low
densities, p < 500 g/cm?, the electrons cannot be treated as free and the pressure
depends strongly on the electrostatic interactions between the atomic nuclei and
the electrons, that is, it depends not only on the density but also on the atomic
number Z [12]. This domain is of little interest to astrophysics (however, they

are important for the physics of the Earth and other planets) because the lower
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the pressure, the more we must consider the effect of the temperature upon the
EOS at low temperatures: so that even at relatively low temperature the concept
of cold matter is no longer applicable. All ordinary stars have central densities
precisely in this region, for example, our Sun. In the case of compact stars such
as white dwarfs and neutron stars, we need to go to a high density regime, where

the effects of temperature are negligible. We will justify this statement as follows.

Cooling of neutron stars

When a neutron star is formed in the collapse of a stellar core it is very rapidly
cooled by neutrino radiation. After about a day, the internal temperature drops
to 10° K-10'° K. Photon emission overtakes neutrinos only when the internal
temperature falls to ~ 108 K, with a corresponding surface temperature roughly
two orders of magnitude smaller. Neutrino cooling dominates for at least the first

three years, and typically for much longer [5].

For an ideal Fermi gas in equilibrium, the Fermi-Dirac distribution function
f has the form 5]

1
f(E) = ———, 2.3.1
() = 5 2.3.)
where E = /p?c? + m?c*, m is the fermion mass, k is Boltzmann’s constant, ¢

the speed of light, p the magnitude of the momentum, 7" the temperature and pu

is the chemical potential.

When temperatures are low, the fermions will go to the lowest available energy
levels, being called completely degenerate Fermi gas in the limit 7" — 0.
For this case, the chemical potential p = EF is called Fermi energy, and the

distribution function becomes a step function:

1, if E<Ep
F(B) = : (2.3.2)
0, f E> Ep

The Fermi energy for a non-interacting ensemble of identical spin-1/2 fermions in

a three-dimensional system is given by (relativistic limit) [13]

3 2N 1/3
T ) , (2.3.3)

EF—hC(
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where N is the number of particles and V' the volume of the system.

For a neutron star, suppose that R = 10 km and p = 4.0 x 10! kg/m3. Then,

N

P 44 -3
— = — =~ 2.388 10 m™"°. 2.34
V m % ( )

Therefore, the Fermi energy is given by
Fp ~6.0722 x 107 J. (2.3.5)

and the Fermi temperature is

E
Tr = =% ~ 4.40 x 10" K. (2.3.6)
B

Thus, since the temperature of the neutron star shortly after its formation is
lower by three (or more) orders of magnitude than the Fermi temperature, we can

neglect the temperature of the neutron star.

There exist two main regimes of high density. As long as all nucleons are confined
to nuclei, their contribution to the total pressure is negligible compared to that of
the degenerate electrons. At some threshold density, pqrip, it becomes favorable
for the nuclei to disintegrate, i.e. the neutrons drip out of the nuclei and form a
nucleon gas. The standard EOS of Baym, Pethick and Sutherland (BPS) suggests
that paip < 4 x 10! g/cm?® [10]. One therefore distinguishes between the EOS
below neutron drip and above the neutron drip density. For example, for WD we

merely need the EOS below the neutron drip.

2.3.1 EOS below the neutron drip

In matter below the neutron drip, the EOS is governed mainly by an electron gas,
and we may treat these electrons in a first approximation as an ideal fermion gas,
where at extremely low densities Coulomb corrections have to be included. For
high densities corrections enter through the neutronization just below the neutron

drip.

This domain is subdivided into a region where the electrons are non-relativistic

(p < 10° g/cm?) and a region in which most of the electrons have an energy of the
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order of, or larger than, its rest energy, i.e. relativistic (p > 10° g/cm?). As the
density increases in the relativistic domain, approaching neutron drip density for
p > 107 g/cm? [7], electrons acquire enough energy to produce a type of nuclear

reaction known as inverse beta decay:
p+e  — n+r,, (2.3.7)

where a neutron is created by capturing an electron in the nucleus and an electron

neutrino is simply emitted out of the system. The beta decay,
n — p+e +7,, (2.3.8)

may interfere the creation of a star fully composed by neutrons. However, this
reaction is blocked if the density is high enough that all electron energy levels in

the Fermi sea are occupied up to the one that the emitted electron would fill.

The standard equations for cold, degenerate matter in white dwarfs (helium,
carbon, oxygen, and possibly iron dominated models) have been derived by
Chandrasekhar ||| and Hamada and Salpeter [11]. The Chandrasekhar EOS
considers a star consisting only of an ideal, non-interacting electron gas (following
the distribution function (2.3.2)), but the Hamada and Salpeter EOS refines the
Chandrasekhar EOS by including Coulomb interactions, inverse beta decay and
relativistic corrections, making it necessary to specify the chemical composition of
the star. Models for matter for low densities, p < 10* g/cm3, have been derived by
Dirac (1930) and Feynman, Metropolis and Teller (1932). The matter is described
in nuclear equilibrium and it is composed mainly by 5$Fe nuclei with electrons

model by the Thomas-Fermi-Dirac atomic model [5, 10].

The matter in neutron stars, below the neutron drip but above p > 107 g/cm?
(where the neutronization begins), become progressively neutron rich (because
of the inverse beta decay) until they begin losing neutrons (neutron drip). The
parameters which characterize the nuclei, i.e. their mass and charge numbers (A,
Z), are now functions of the density and are obtained by minimizing the total
energy, that is, the sum of nuclear, lattice and electron energies. To identify the
nuclei that are present at different density layers of the crust, experimental mass
tables for known nuclei have been used. Two well-known EOSs for this regime are:
the Harrison-Wheeler (HW) EOS and the Baym-Pethick-Sutherland (BPS) EOS
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[15]. The latter considers the correction of Coulomb lattice energy in addition to

the inverse beta decay.

2.3.2 EOS above the neutron drip

The EOSs above neutron drip can be divided into two regions. The first
region covers the intermediate density regime from pgy, to nuclear density,
P = 2.8 X 10 g/cm?, the density at which nuclei begin to dissolve and
merge together |5]. The properties of dense matter are reasonably well understood
in this density regime. In the second region above pp, (high density range), the

physical properties of matter are still uncertain.

Below nuclear density

Above the neutron drip the electrons and nuclei coexist with free neutrons. The
nuclei disappear at the upper end of this density range because their binding
energy decreases with increasing density. Therefore, in this regime, the first
approximation is to consider a neutron star as an ideal degenerate neutron gas
following the distribution function (2.3.2), making the contribution of the nuclei
to the total pressure negligible compared to that of the degenerate neutrons.
Oppenheimer and Volkoff [(] were the first to do calculations in GR using this

model which possesses a fully analytic expression given by [0]

P % (sinh(t) _ 8sinh (%) + St) , (2.3.9)

K
p = — (sinh(t) — 1), (2.3.10)
c
where the constant K is i
Tmae
K = = 2.3.11

and the parameter ¢ is defined as follows

ZEF+\/1+I%

Here we have denoted m, the neutron mass and pr the Fermi momentum defined

by the Fermi energy Ep = /pic? + m2ct,

br

t:=4In .
My C

(2.3.12)

) Ip =
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The EOS can be written in the polytropic form:
P=Kp", (2.3.13)

where I' is the adiabatic index and K is a constant, in two limiting cases [5]:

1. Non-relativistic neutrons, zr < 1 or p < 6 x 10'® g/cm?,

5 32/3 4/3 h2
r=2, g=2--7"_"_ (2.3.14)
3 5
2. Extremely relativistic neutrons, zr > 1 or p > 6 x 10 g/cm?,
4 313723 he

For a more realistic treatment, the Baym, Bethe and Pethick (BPP) EOS is used.
This EOS improved the approach made by HW and BPS in the determination
of the mass of the atomic nuclei, incorporating results obtained from detailed
many-body computations. One must account for the effects of the surrounding gas
of free nucleons on the nuclei, as well as other effects such as nuclei surface and
Coulomb energies making it a complicated calculation. Nonetheless, the properties
of matter in this range of densities can still be derived by a natural extrapolation
from ordinary nuclei. This EOS are based on the compressible liquid-drop model.
For problems where a more accurate description of the neutron star inner crust is
required, attention must be given to lattice effects, as the nuclei and free nucleons
arrange in a distinct spatial structure (where the nuclei settle into bubbles, slabs
or rods, depending on density). It is expected that at p & pyu./2 all nuclei will

have dissolved so that the matter is completely uniform [16].

Above nuclear density

The non-interacting gas approximation is not reliable for deriving the EOS above
nuclear density. Unlike electrostatic perturbations, nucleon-nucleon interactions
are not negligible, and the interaction energies are comparable to the Fermi energies
of the degenerate nucleons (electrons do not feel the strong interaction, and may
still be treated as noninteracting). Modeling of the nucleon-nucleon interaction

is one of the longest-standing problems in nuclear physics, still only partially
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solved. Profound difficulties exist due to the absence of a comprehensive theory of
the interactions and the difficulty of obtaining experimental data. Moreover, the
description of nuclear matter in the core of neutron stars (p & pnu) eludes the
main tools of investigation of QCD, such as perturbation theory and the lattice
formulation of the theory. The perturbation theory does not apply, since at the
densities found in neutron star cores, QCD remains in a strongly coupled regime
and lattice QCD works well only for vanishing or small baryon chemical potentials
[17]. Instead, the most useful approaches are still based on phenomenological
potential formalisms, because not only is the correct form of the nuclear potential
still uncertain, but a totally satisfactory many-body computational method for

solving the Schrodinger equation, given the potential, remains to be developed.

Current models for the EOS in this regime fall into two categories: nonrelativistic
variational approximation and relativistic field-theoretic approaches. The
first approach leads in general to acausal behavior at high densities, due to its
basis on the nonrelativistic Schrodinger equation (we will see this when we plot

the speed of sound).

Nonrelativistic approach

In this traditional approach one uses two-body potentials which are fitted to
nucleon-nucleon scattering and three-body terms whose form is suggested in
part by theory (two-pion exchange interaction) and purely phenomenological
contributions, whose parameters are determined by the binding of few-body nuclei
and saturation properties of nuclear matter. The effective nuclear Hamiltonian

can be written as [/1]
n_,
H= _Z%V" +Zvij + Z Vik, (2.3.16)
i 1<J i<j<k

where V;; is the potential of the nucleon-nucleon interactions and Vjj; is the

potential of the three-nucleon interactions.

The most realistic EOS based on nonrelativistic potentials are listed below (only

neutrons, protons, electrons and muons are considered):
1. AP family:

The AP (Akmal and Pandharipande) family of EOSs [15] are:
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e The AP1 EOS, where the only potential that describes the interaction
between a nucleon-nucleon pair is the Argonne Vg (or AV18) potential,
which consists of sums of 18 operators like ¢; - 7;, etc., with ¢; the

Pauli spin operators [19].

e The AP2 EOS, which considers the same AV18 potential plus relativistic

corrections (so-called boost interactions) [19].

e The AP3 EOS, which considers the AV18 potential plus the Urbana
IX (UIX) potential that describes three-nucleon interaction [19]. One
of the reasons to include three-nucleon interactions potentials is that
nucleon-nucleon potentials underbind the triton and other light nuclei

and predict too high equilibrium density for symmetric nuclear matter
[11]-
e The AP4 EOS, which considers the AV18 potential plus the UIX

potential plus relativistic corrections [19].

2. SLy:

The Skyrme Lyon (SLy) effective nucleon-nucleon interaction [50] consists
in a effective nuclear hamiltonian obtained from many-body calculations
with a simple two-nucleon potential. The nuclei in the neutron star crust

are described by the compressible liquid drop model.

. FPS:

In the FPS (Friedman, Pandharipande and Smith) model |51], different from
SLy model, the crust-core transition takes place through a sequence of phase
transitions involving changes in nuclear shapes (from spheres to spaghetti

and lasagna, and finally to bubbles).

. BSk:

The BSk (Brussels-Montreal Skyrme functionals) family of EOSs (BSk19-26)
[52, 53] are based on the nuclear energy-density functional theory with
generalized Skyrme effective forces that have been fitted with great precision
to essentially all the available mass data. At the same time, these forces were
constrained to reproduce microscopic calculations of homogeneous neutron

matter based on realistic two- and three-nucleon forces. This family of
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Figure 2.3.1: Density regimes inside a neutron star with their respective equations
of state.

EOSs incorporates refinements to the SLy EOS that improve the fit to both

nuclear matter properties and neutron star observations.

Relativistic approach

In this approach one starts from a local relativistic mean field theory with baryon
and meson degrees of freedom. Such models have the advantage to be relativistic
but sacrifice the connection to the large body of nucleon-nucleon scattering data.
The coupling constants and mass parameters of the effective Lagrangian are

constraint by empirical properties of nuclear matter at saturation.

We will focus on the non-relativistic approach, but one example of EOS using this
relativistic formalism is the MS2 (Miiller and Serot) EOS [5], which incorporate
other constituents such as hyperons, pions and condensates. In specific they
used the relativistic Dirac-Brueckner—Hartree-Fock formalism and a relativistic
mean field theory, accounting for the energetic contributions due to the exchange

between pions and mesons.

A summary of the EOS in all the density regimes is represented in figure 2.3.1.

2.4 Analytical fits to EOS

A particular EOS is usually presented in the form of a table containing a grid
of calculated values of matter density p, baryon number density n and pressure
P. The EOS is then interpolated between the tabulated forms to obtain a one-

paremeter form P = P(n) and p = p(n). Depending on the interpolation schemes,
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different results for the mass-radius relation are in general obtained. For numerical
purposes, it is sometimes useful to have analytical fits to the EOS. In what follows,
the analytical fits to the EOSs that will be used in this work will be discussed.

SLy

Haensel and Potekhin [55] proposed an analytical representation for the SLy EOS
(and FPS EOS). In the fitting, they neglect the small discontinuities that appear
at the interfaces between the crust and the core. However, the different character
of the EOS in the different domains is reflected by the complexity of the fit, which
consists of several fractional-polynomial parts, matched together by virtue of the

function
1

folz) = 1+e®

(2.4.1)

They rely on a tabulated unified SLy EOS at p > 5 x 10'° g/cm? found in the
following website. At lower densities, 10® g/cm?® < p < 5 x 10! g/cm?®, the crustal
matter is described by the EOS of Haensel and Pichon (HP94) [70] based on
experimental nuclear data, supplemented by the EOS for cold catalyzed matter
due to BPS [17] at still lower density p < 10% g/cm®. At extremely low densities,
the EOS would depend on temperature, this can however be neglected for fitting.

If we denote ¢ = log,o(P/dyn cm™2) and £ = log;,(p/g cm™3), the parametrization
is given by [57)]

aq + CL2§ + CL3§3

¢= 1+ agé folas(§ —ae)) + (a7 + as€) fo(ag(aio — §)) (2.42)
+ (an + a12€) fo(ars(ars — €)) + (a15 + a168) folarr(ars — ),
where the (dimensionless) coefficients {as, ..., a3} are tabulated in the table

2.4.1. The typical fit error of P is 1 — 2% (for £ 2 5). The maximum error is
determined by the jumps near the neutron drip and crust—core phase transitions
in the tabulated EOSs, which are smoothed by the fit (2.4.2). The maximum
error is 2.9% at £ = 8.42 [77].

Figure 2.4.1 shows the tabulated EOS (symbols) and the corresponding fit (solid
line). Triangles correspond to BPS, stars to HP94, and dots to SLy data.
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an, n an
6.22 10 | 11.4950
6.121 11 | -22.775
0.005925 || 12 | 1.5707
0.16326 || 13 4.3
6.48 14 | 14.08
11.4971 || 15| 27.80
19.105 16 | -1.653
0.8938 17 1.50
6.54 18 | 14.67

O 00 IO Uk WS

Table 2.4.1: Parameters of the fit (2.4.2), according to Ref. [577].
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Figure 2.4.1: Pressure-density relation for the analytical representation of the
SLy EOS (black solid line). The tabulated EOS used are: BPS (triangles), HP94
(stars) and SLy (circles). The vertical dash-dotted lines mark the main regimes
inside the NS. Adapted from Ref. [57].

BSk

The analytic parametrization of the BSk family of EOS is

3
== +1afaj£a3€ folas(€ = as)) + (a7 + as€) fo(as (a5 — &)

+ (a0 + a11§) fo(az(ars — &)) + (as + a15€) fo(ars(ar — §)) (2.4.3)
i ais 1 a21
L+ [a9(§ —az0)]* 1+ [aga(§ — a)]*’

¢

where the (dimensionless) coefficients {a, . .., as3} for the BSk19 and BSk22 EOSs
are tabulated in the table 2.4.2. The typical fit error of P is = 1% for £ = 6.
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The maximum error is 3.7% at £ = 9.51; it is determined by the jumps at the
interfaces between layers containing different nuclides in the tabulated EOS. The

fit (2.4.3) smoothly interpolates across these jumps.

n | a, (BSk19) a, (BSk22)
1 3.916 6.682
2 7.701 2.651
3 0.00858 0.00459
4 0.22114 0.14359
5 3.269 2.681
6 11.964 11.972
7 13.349 13.993
8 1.3683 1.2904
9 3.254 2.665
10 -12.953 -27.787
11 0.9237 2.0140
12 6.20 4.09
13 14.383 14.135
14 16.693 28.03
15 -1.0514 -1.921
16 2.486 1.08
17 15.362 14.89
18 0.085 0.098
19 6.23 4.75
20 11.68 11.67
21 -0.029 -0.037
22 20.1 11.9
23 14.19 14.10

Table 2.4.2: Parameters of the fit (2.4.3), according to Ref. [52] and [53].

Compared to equation (2.4.2), equation (2.4.3) contains additional terms in the
last line with coefficients a3 —as3. These terms improve the fit near the boundaries
between the outer and inner crust and between the crust and the core, where
the slope of P(p) sharply changes. In SLy the analogous changes are less abrupt.
However, in the case of BSk models, the residuals of the fit without these additional

terms may reach about 10% [52].

MS2

Gungor and Eksi [57] proposed an extension of the parameterization (2.4.2) made

by Haensel and Potekhin. This new analytical representation has 23 parameters,
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12 of which are fixed to represent low density regimes of BPS EOS and NV (Negele
and Vautherin) [73]. The remaining 11 free parameters are used to fit the different

EOS at high-density regimes and to match them. The analytic parametrization of
the MS2 of EOS is

¢ = Qowfola1(& — c11)) + folaa(crz — &))Chigh, (2.4.4)

where

CGlow = [c1 + €2(§ — €3)“] foles (€ — c6)) + (c7 4 cs€) fo(co(cio — §)) (2.4.5)

and

Chigh = (a3 + aq€) fo(as(ag — &) + (a7 + asé + ag€?) fo(aro(ar — &)  (2.4.6)

describe the low and high density regimes, respectively. The (dimensionless)
coefficients {cy,...,c12} and {ay,...,a;1} for the MS2 EOS are tabulated in the
table 2.4.3.

Cn an
10.6557 14.0084
3.7863  13.8422
0.8124  16.5970
0.6823  -1.0943
3.5279 5.6701
11.8100 14.8169
12.0584 -56.3794
1.4663 9.6159
3.4952  -0.2332
11.8007 -3.8369
14.4114 23.1860
14.4081 —

— =
o — > © 00U WN S

Table 2.4.3: Parameters of the fit (2.4.4) | according to Ref. [77].

In figure 2.4.2 the SLy, BSk19, BSk22, MS2 and Fermi EOSs are plotted. For
low densities, the curves are similar, but for higher densities, above the nuclear

density, the curves are quite different.

For the analytical representations of the EOS, we can express the adiabatic index
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Figure 2.4.2: Pressure-density relation for the EOS: SLy (red line), BSk19-22
(blue and green lines), and Fermi (gray dashed line) used by Oppenheimer and
Volkoff. The vertical dashed-dotted lines mark the main regimes inside the NS.

as a function of &, i.e.

s 10¢-¢

The adiabatic index as a function of the density is plotted in figure 2.4.3 for
different EOSs. One can see that the adiabatic index for SLy and BSk EOSs
falls below the line ' = 4/3 for lower densities (< 10'® g/cm?). This is because
for these EOS models, the pressure at this density is mainly determined by the
pressure of ultrarelativistic electron gas. On the other hand, the adiabatic index
' for the Fermi EOS approaches asymptotically 5/3 for lower densities and 4/3
for higher densities, which is compatible with equations (2.3.14) and (2.3.15),

respectively.

The speed of sound can also be written as follows

v = ,/104—6% % (2.4.8)

An illustration for this expression is found in figure 2.4.4. One can see that for the
SLy, BSk19 and BSk22 EOSs, from a value of density, the speed of sound will be
greater than the speed of light and causality will be violated. This is because of

the non-relativistic formalism at high densities that these EOSs present. However,
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— Sly
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— BSk22
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3
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Figure 2.4.3: The adiabatic index I' as a function of the density p for the Fermi,
SLy, BSk19, BSk22, and MS2 EOSs. The horizontal lines mark I' = 4/3 and
I'=5/3.

the MS2 does not exhibit this problem. Thus, the causal limit puts constraints on
the density for the EOSs considered. The maximum densities allowed are found
to be 3.007, 3.381, and 2.737 (in units of 10* g/cm?®) for the SLy, BSk19, and
BSk22 EOSs, respectively. Finally, the speed of sound for the SLy EOS is again
smaller than the speed of light at p = 3.747 x 10 g/cm?.

2.00
— Sly
—— BSk19

1.75 -
— BSk22

MS2
—--= Fermi

1.50 -
1.25-

Q
~ 1.00
=

Tl T T T e
p (g/cm?)

Figure 2.4.4: The speed of sound v, as a function of the density p for the Fermi,
SLy, BSk19, BSk22, and MS2 EOSs. The horizontal line marks the causal limit
Vs = C.
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Chapter 3

Relativistic Star Models

3.1 Schwarzschild solution

General Relativity is the most successful theory of gravity we have nowadays.
This theory was published by Albert Einstein in 1915 [59] changing the Newtonian
concept of gravity from a force at a distance between two massive bodies to
a unified description of gravity as the curvature of spacetime due to a matter
distribution. Precisely, GR is a (classical) field theory for the metric tensor g,,,
which describes the geometry of spacetime. The dynamic of this tensor is given

by the Einstein field equations ',

1 811G
Rlﬂ’ — §Rg/u/ + Aglﬂ’ = 7Tu”7 (3].].)

where R,,, is the Ricci tensor, R the curvature scalar, A the cosmological constant
(introduced by Einstein in 1917 [60]), and 7},, the energy-momentum tensor of

the matter distribution.

These field equations can be derived from the Einstein-Hilbert action [(1]

1
S = e /d4x\/—g(R —2A) + S, (3.1.2)

where K = 87Gc™* and S, is the action for matter. The field equations can be
obtained requiring that the variation 0. Sgy be zero for any variation of the metric

09, that vanishes at the boundary and that the energy-momentum tensor is

'We adopt the sign conventions (—, +, +, +).
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defined by 0 sS

V=g o9

The first non-trivial exact solution of the Einstein equations in vacuum (7}, = 0
and A = 0) was derived by Karl Schwarzschild in 1916 [62]. This solution

describes the gravitational field outside a non-rotating spherical body of mass M.

Ty = (3.1.3)

In Schwarzschild coordinates, x* = (ct,r, 6, ), the solution can be written as

ds* = —f(r)(cdt)® + ;(L:) + 72(d6* + sin’ Odyp?), (3.1.4)
where
fir)=1- 7“? (3.1.5)

and ry := 2GM/c? is the Schwarzschild radius. There are two singularities for
the coordinate r, when r — 0 and r — rs. Therefore, the metric is only defined
for the exterior region r > rg. However, r = ry is not a curvature singurality, and
it can be removed with a change of coordinates, first introduced by Eddington
and Finkelstein |03, 61].

It is natural to wonder whether the Schwarzschild metric is the unique spherically
symmetric solution in vacuum. According to Birkhoff’s theorem [05], any
spherically symmetric solution of the vacuum field equations must be static
and asymptotically flat. This means that the equation (3.1.4) is the most general
spherically symmetric vacuum solution to the Einstein field equations without

cosmological constant.

3.2 Tolman-Oppenheimer-Volkoff equation

In this section, we will find solutions for the Einstein field equations inside a
star modeled as a spherical, static perfect fluid in hydrostatic equilibrium. These
solutions complement the Schwarzschild solution (3.1.4), since the latter describes
the gravitational field outside a spherically symmetric mass, while the solutions

we will found describe the spacetime inside of the matter distribution.

It will be convenient to rewrite the field equations (3.1.1) as follows

8rG 1
R = A {Tuv - §Tgw/} + Mg, (3.2.1)
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where T':=T% = ¢g""T,, is the trace of the energy-momentum tensor.

Consider the line element for a spherically symmetric, static spacetime in

Schwarzschild coordinates:
ds® = —e®(cdt)? + ePdr? + r?(d6? + sin® 0dyp?), (3.2.2)

where a = «(r) and 8 = §(r) are the metric functions.

The non-trivial components of the Ricci tensor are:

1 Bl 2/ o?
— (=B | et T 2
RQO 26 |:O./ 9 + r + 5 :| s (3 3)
1 " B/Oél 2ﬁl 0/2
= —— — -4+ —, 2.4
R 5 {a 5 . + 5 (3.2.4)
_ B Loy b
Ropp=1—¢"|1— Erﬂ + ST, (3.2.5)
Ry, = sin® 0 Ray. (3.2.6)

The matter inside the star will be described in terms of the energy-momentum

tensor of a perfect fluid given by

P
T = (p + §> uly + Pgu, (3.2.7)

where the pressure and the density are functions of the coordinate r, u* = dz* /dr

is the 4-velocity of a fluid element, and 7 its proper time.

Since we are considering the static case, the only non-vanishing component of the
4-velocity is ug so that u, = (ug,0,0,0). Using the identity g, uu” = —c?, we
can obtain

uy = —ce®/?, (3.2.8)

Thus, replacing the components of the metric and components of the 4-velocity

(3.2.8) in the energy-momentum tensor (3.2.7), we can write

T,., = diag(pc’e®, Pe’, Pr? Pr?sin®0). (3.2.9)
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Taking the trace of (3.2.9), we have
174 P 174 174
T = ngu = (P + 6_2) Uuuygu + Pglwgu
Py
:—(p+c—2)6 —|-P5MM

= —pc® + 3P. (3.2.10)

Replacing the values for the components of the Ricci tensor (3.2.3)-(3.2.6) in the
field equations (3.2.1), we obtain three relevant field equations (since R, only

differs by a factor sin® § from Ryg) for a vanishing cosmological constant:

1 Bla’ 2a" o Ar G
_ = (a=pB) "o “r D 2 e
Ry = 5¢ {a 5 + . 5| = (pc” + 3P)e”, (3.2.11)
1 Bl 28 o 4G
R’r‘?" — " — _ _ = — 2 — P ﬁ 3212

1 1 e
Rop=1—¢" [1 — 57‘5’ + 57"0/} =7 (pc® — P)r?. (3.2.13)
c

Let us solve this system of equations. First, we will determine the function 5(r)
of the metric by performing the following combination:

1 1 | 1 8rG
§€_aROO + EG_ﬁRrr + 7“_2399 =P (é — —> + —= = " p- (3.2.14)

r o r2 72 c2

Multiplying the equation (3.2.14) by r2, then integrating from 7 = 0 to 7 = r, we

obtain the following

e PBr—e P 1= SWZGpTQ, (3.2.15)
c
d 87
— (e Pry=1— 2
= () o (3.2.16)
T d _ T 817G
& (B g — 1— 2 mr? ) dr 3.2.17
/0 g () /0 ( c? p(r)r) " 210
"8G
re=f0) _ fim re—B0) _ / TG R, (3.2.18)
r—0 0 C
1 1 ["8rG
80) — 1 4 X i ref0) _ L A2 dF
e 1+Tl%re 7’/0 > p(r)redr, (3.2.19)

-1
eﬁ(r) — <1 _ lhm reiﬁm _ M) , (3220)

r r—=0 c2r



30 3.2. Tolman-Oppenheimer-Volkoff equation

where in the last line we have used the same definition of the mass function M(r)

for the Newtonian case (see appendix A), i.e.,

M(r) = 4r /OTp(T)TZdr, (3.2.21)

or

d
d—/:fl = 47rp. (3.2.22)

The difference is that this function does not correspond to the rest mass contained
in a r radius of the star because it is a coordinate-dependent quantity (non-
invariant). Therefore, its interpretation is not trivial. The reader can find a

discussion of its meaning in chapter 23: spherical stars in Ref. [35].

Continuing with the calculation, let us assume that the metric function g,, = €°

is not singular at r = 0 so that

lim re=#) = 0, (3.2.23)

r—0

and not other finite value, so that the expression (3.2.20) does not present
divergences when r tends to zero. Thus, the metric coefficient g, is given by
1
)

T _ 26GMe)

c2r

(3.2.24)

Let us find the metric function «, for this, it is useful to use the conservation

equation for the energy-momentum tensor:

v, " = 0,T" +T" T + T ,T" = 0. (3.2.25)

Equation (3.2.25) is a consequence of the Einstein field equations (3.1.1) and
represents the relativistic version of the continuity and Euler equations for a
perfect fluid. In other words, it is the generalization to non-zero gravitational
fields of the law of conservation of energy and momentum of a system. Evaluating

the component p = r of equation (3.2.25), we obtain

1
VT =S¢ [(pe* + P)a’ + 2P (3.2.26)
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Thus, solving for o/ gives
, 2P
e Syl (3.2.27)

Replacing the equation (3.2.24) for 8 in the field equation (3.2.13), we can express

2.1
P’ only in terms of the properties of the matter (p, P and M)

_ 4AnG

Ry = (p02 — P)r2

ct

1 1
=1-e” [1 — 57’6' + 57“@’}

1 1_2G./\/l 1_1i I 1_2GM +1 —2P'
B cAr 2" dr cr 2" P+ pc?

L (] 2GMN L () 2GMN T 2GM 2GMY e,
N cr 2 cr c2r? c2r P+ pc?

GM  4nG 2G M r

= 1-— P. 2.2

c2r c? pre+ < c2r ) P+ pc? (3.2.28)
Solving for P’, we can write
2GM r ArG GM  47xGr?p

1— P = 2 _py?— — 3.2.29

( c2r ) P + pc? ct (pe r c2r 2 ( )
2G' M P’ G 47

— =—— —Pr3). 3.2.30

(r c? ) P+ pc? cAr (M et ) ( )

Thus, we have found P’ in terms of the three known fields: the pressure P(r),
the mass density p(r) and the mass function M(r), leading to the so-called
Tolman-Oppenheimer-Volkoff equation (T.0.V.) [(]:

dar T(T—M

c2

TSP:| : (3.2.31)

c? A

P pc2 +P [GM N 4G
)

If we want to see clearly the GR corrections of the hydrostatic equilibrium equation,

we can rewrite equation (3.2.31) as follows

dP B GM(r)p(r)

dr 72

4rr’P()] [} 26M(0)]™
& | M e o } . (3.2.32)

{1 . P(r)} {1 47r7’3P(7")} {1 | 2GM

Comparing with equation (A.8) of appendix A, we see that the last three factors

of (3.2.32) are the GR corrections and these are important when we are in a
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relativistic regime.

If we replace the equation (3.2.31) in the expression (3.2.27) for /, we can obtain

the explicit form of the metric function a:

,_ 2 dpP
pc? + P dr
B 2 GM 4rG 4
_r(r—zg—QM) { c? * ct TP]
2G 4mr3P(r) 2GM(r)] !
- [./\/l(r) e } [1 - =5 } . (3.2.33)

Integrating from 7 = r to ¥ — oo, we have

/Tooo/(f)df:/TOo 2G {M(fHM} {1_%@}_1 dF. (32.34)

272 c2

c2r
Assuming that the metric is asymptotically flat, that is,

lim a(r) =0 = lim goo =1, (3.2.35)
r—00

r—00
we obtain the metric function

26 [*dr

a(r) = —2 [M (r) +

(3.2.36)

47r7‘3P(7")] [1 2GM (7“)] - |

2 J, c? 2

The exterior solution

Outside a star the density and pressure vanish, so only the metric functions o and
f remain. From equation (3.2.21) one sees that the mass function M(r) stays
constant for values of r greater than R (radius of the star). Therefore, for r > R,

we have

p(r)=0, P(r)=0, M(r)=M, (3.2.37)

where we have denoted the constant M(R) by M. The first metric function « is
determined by imposing the conditions (3.2.37) in equation (3.2.36):
2G [*dr M 2GM
alr) = — M P (1 - ) . r>R (3.2.38)

c2 71— —252];4 c2r

T
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Using equation (3.2.24) to find the second metric function, we obtain the following

line element:

2
st — (1 _26GM > (cdt)? + U%M) +12(d6? + sin? 0dig?).  (3.2.39)

c2r

This solution is precisely the Schwarzschild metric (3.1.4). Thus, we can conclude
that the quantity M must be the total mass of the star so that the interior metric

solution will smoothly match the exterior Schwarzschild metric.

Equations of stellar structure

The system of equations to be integrated in order to obtain a complete stellar

model are the following:

do 2 GM  4ArnG 4
_ — P 3.2.40
ar T(T—QC;Q/VI){CZ Tt } (3:2.40)

d

d—/:fl = 47mr?p, (3.2.41)

dP p*+ P [GM 4AnG ,
—_— = P 3.2.42
dr ~ r(r— ) { o } (3.242)
P = P(p), (3.2.43)

where the last one is the EOS. It remains for us to state the boundary conditions
of the problem. First, when we write the equations (3.2.21) and (3.2.22), we
implicitly assume that M(0) = 0, which is physically acceptable. Indeed, following
an argument given in Ref. [38], if M(0) # 0, then near the origin, the spatial part

of the metric remains

-1
di* = (1 - %T(O)) dr? 4+ r2(d6* 4 sin? 0dp?) (3.2.44)
~ (1 - w> dr® + r*(df* + sin® 0dp?), r=0. (3.2.45)
c°r

We have a singularity at the origin, which is physically unacceptable because we

could not define a local inertial reference frame at » = 0. On the other hand, if
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we fixed M(0) = 0, then p =~ p. constant and

" 4
M(r) = / 4772 p(F)dF ~ gpcrg. (3.2.46)
0
Thus,
8rG ! :
di? = <1 - g,ocvg) dr® + r?(d6? + sin® 0dp?) (3.2.47)
~ dr® + r2(d6? + sin? 0dp?), 1~ 0 (3.2.48)

which describes a smooth spacetime geometry near the origin.

Continuing with the other fields involved, the pressure at the center of the star
has a given value P(0) = P.. With this value we can determine the central density
p(0) = p. using the EOS, or vice versa. The central value of « is arbitrary in
the numerical integration, but later it is renormalized imposing the boundary

condition at the radius of the star:

(3.2.49)

R

2R

In short, the boundary conditions P(0) = P., «(0) = a. and M(0) = 0 are
sufficient to uniquely determine the solution to the coupled equations (3.2.40)-
(3.2.43). We integrate these coupled equations from r = 0 until the pressure

vanishes. The point at which the pressure reaches zero is the radius of the star.

3.3 Uniform density case and Buchdahl limit

For realistic EOSs, the equations of stellar structure (3.2.40)-(3.2.43) cannot
be integrated analytically, numerical integration is necessary. However, analytic
solutions exist for various idealized EOSs. One of the most useful analytic solutions

describes a star of uniform density:

(3.3.1)

pe =const, r <R
p(r) =

0, r>R

This EOS is independent of the pressure, so we are considering incompressible
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matter. Replacing (3.3.1) in equation (3.2.21), we obtain

4?ﬂpcr?’, r<R

) 3.3.2
4%pCR?’, r>R ( )

M(r) = {

Replacing (3.3.1) and (3.3.2) in the T.O.V. equation (3.2.32), for r < R, we

obtain:

dP 4rG e
o =l + P {3—P * 7”3} 359
e 1 81G !
= =7 [pe” + P] {P + gpccﬂ {1 — gpcrz] : (3.3.4)

Reordering the terms of the equation above, we can write

/ -1
P _ _AnG sG] (3.3.5)
(P + pec®)(P + pc?/3) ct 3c?
If we change the variable
87Gp.
T =4/ 7;02p T, (3.3.6)
the equation (3.3.5) gives us
—2p.c*dP _ rdr (3.3.7)
(P + pec®)(3P + pec?) 1 —a2 o
Integrating with respect to r, we obtain
P o 1 1
n (ﬁl)p;) =-3 In(1 — 2?) — 5 Ina = In[a(1 — 2)]7/2, (3.3.8)

where a is an integration constant. This constant can be found by considering

vanishing pressure on the surface of the star, P(R) = 0. Thus,

Lo 1 (3.3.9)

T 1- g 11— TEp.R?

a
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Replacing the value of a in (3.3.8), we can write

P+ p.c®  [1—8rGp.R?/3c¢? 12

= <R. 3.3.10
3P + p.c? 1 — 81Gp.r?/3c? ’ "= ( )
Considering the Schwarzschild radius:
2GM  8rG .
rg = C2 = 302 pCR57 (3311)
and solving for P(r), we obtain
171"541%3 1
Plr) = p2 Y1 (3.3.12)
1-3 1-rs/R

1—rgr?R3

Simplifying, we obtain an exact solution for the pressure in terms of the radial

coordinate r, given by

> VI~ TIS*?EQ
P(r) = pec
—T

—4/1
3T — /1 el

;

_Is
R
)

r<R. (3.3.13)

|

Buchdahl’s bound

The pressure is always maximum at the center of the star, and in the uniform

density case it assumes the value

1—/1-%
P(0) = pect ——1L (3.3.14)

31— % —1

The central pressure must be finite and positive to sustain equilibrium, so we need

Trs 9
W/1——=-=1>0 R > —rg. 3.3.15
\/ = > = > grs ( )

Thus, it is necessary for the stability that the radius of the star is greater than

9 9GM
R>—T’S:—

8= (3.3.16)
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i.e., there is a lower bound for the radius R of a star of a given mass M. A rigorous
analysis shows that the result (3.3.16) is independent of the EOS. It depends only
on the structure of the relativistic equations for hydrostatic equilibrium and was
obtained by Buchdahl [06], that is why the expression (3.3.16) is known as the
Buchdahl’s bound.

3.4 Neutron star solutions

In this section, numerical solutions to the relativistic stellar structure equations
based on the T.0.V. equation for neutron stars will be determined using the
EOS described in chapter 2. For this purpose, we will normalize the equations
(3.2.40)-(3.2.43). First, we will write the dimensionless pressure P and the energy
density € as follows

P=KP, e =: K¢, (3.4.1)

where the constant K is defined in (2.3.11). Replacing (3.4.1) in the equations
(3.2.40)-(3.2.42), we obtain

do 2 GM  4nGK —
%_r(rﬂgy){@ T TP]’ 342)
dM 47K _
W: 2 7”26, (343)
dP e+P  [GM  47GK 4
e | .

It is also convenient to define the dimensionless radial coordinate z and mass m as
r=:ax, M =:bm, (3.4.5)

where a and b are constants. Replacing these definitions in (3.4.2)-(3.4.4), we find

da 2 Gbm  4rGKa* ,—
b = 22;:2771) [ > + a7 P} : (3.4.6)
dm 4nKa® _

dP e+ P Gbm  4nGKa?
= — 2Gbm) +

ac?

x3ﬁ} : (3.4.8)

dx T (m ac? ct
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Here we see that it is convenient to choose a and b such that

dr K CL3 ! bG !
— =1 — =1. 3.4.9
2 b ’ ac? ( )
Solving for a and b, we obtain
ct c?
= b= —a. 3.4.10
““Virre e (3:4.10)

Thus, we have reduced the relativistic stellar equations to the following normalized

equations:
do 2 -
—_— = P 3.4.11
dx  x(x —2m) (m +27P) ( )
d
g = 2%, (3.4.12)
dP e+ P —
e e Y Ay ) (3.4.13)

where now the boundary conditions are:

a(0) = a, (3.4.14)
m(0) =0, (3.4.15)
P(0) = P,. (3.4.16)

Since the pressure is monotonically decreasing from its maximum value at the
center of the star, there will be a point # = x; such that P(z;) = 0, and this will

be the dimensionless radius of the star, which then determine the radius as

Furthermore, the mass of the star will be obtain evaluating b in (3.4.10):

M = bm(z;) =~ 9.2648 m(x1) Me. (3.4.18)

Note that the value of a, is unknown, but it is fixed when the boundary condition

(3.2.49) is imposed, which is equivalent to setting a time scale such that the
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spacetime is asymptotically flat with solution (3.2.39). To integrate the stellar
structure equations it is necessary that the value of o at the origin is known, for
this we will take advantage of the fact that the differential equation (3.4.11) is
linear in «, i.e., we can add a constant to a and the resulting function satisfies

exactly the same equation (3.4.11). Thus, we can write
a(x) = apum () + e, (3.4.19)

where auum(0) = 0 and the constant . is found by imposing the boundary
condition (3.2.49):

2
. = In (1 . —m> — (1), (3.4.20)
I
Therefore, instead of numerically integrating a(z), we will integrate apuum(z),

which verifies the equation (3.4.11).

3.4.1 Numerical method and graphs

The system consisting of the equations (3.4.11)-(3.4.13) is solved numerically
using the fourth-order Runge Kutta method for values of central density between
pe =2 x 10 g/cm? and p. = 5 x 10'7 g/cm?. The complete code can be found

in this repository and the integration scheme is detailed as follows:

e Given a central density, we found the value of the central pressure using the
EOS from chapter 2.

o We integrate numerically using a equispaced interval of the  domain with
10% points and the function solve_ivp from the library scipy.integrate
of Python. This function is useful because it can stop the integration given
a certain condition, in our case, that the pressure at the surface of the star

18 zero.

e Once the integration is finished, we store and save the dimensionless radius
and mass of the star (the last element of the arrays of  and m, respectively)

in NumPy arrays.

e We calculate the constant (3.4.20) and save the arrays of: x (from zero to
x1), the metric functions o and 3, the pressure, the energy density and the

adiabatic index (it will be used later), all of them as a function of x. The


https://github.com/AleSaa66/Master-Thesis/tree/main/GR-non-perturbed
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
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Figure 3.4.1: Solutions of the T.O.V. equation for different values of the
dimensionless central energy density €.

files are saved in HDF5 format using the package h5py, which is a “Pythonic”
interface to save binary data, allowing us to store huge amounts of numerical

data, and easily manipulate that data with NumPy.
e We proceed similarly for each central density value.

Figure 3.4.1 shows the plots of the functions that were integrated (m, a and P)
using the SLy EOS for different values of central density. First, we can note the
different values of the coordinate = for which the pressure is zero, corresponding
to different radii for different central densities. A characteristic that immediately
attracts attention in the graph (3.4.1a) is that the function m(z) increases with

Pe Up to a certain maximum value, after which it decreases. Physically, this means


https://docs.h5py.org/en/stable/
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Figure 3.4.2: Solution for a central density p. = 9.5 x 10'7 g/cm?, using the
SLy EOS. The plot shows the metric functions e*® and e ?®) as well as the
dimensionless pressure P(x) and energy density €(z). The vertical line indicates
the position of the surface of the star. The numerical solution (left side of the
vertical line) smoothly matches with the exterior exact solution (right side of the
vertical line).

that there is a maximum value of the mass with respect to the central density
of the neutron star, see figure 3.4.3b. In addition, the continuity of the interior

solution with the exterior solution is evident in the figure 3.4.2.

Continuing with the SLy EOS, integrating for various values of central density,
we found different equilibrium configurations that a neutron star (modeled with

this EOS) can have in General Relativity, represented in figure 3.4.3.

Similarly for the other EOSs, we can represent the mass-radius relation resulting
from the T.0.V. equation, see figure 3.4.4. The maximum masses for each EOS
are shown in table 3.4.1. We observe that the causality condition cuts the curves
so that the speed of sound is smaller than the speed of light (the solid curves
for SLy, BSk19 and BSk22 EOSs). In principle, this condition could change the
maximum mass in each curve that are physical, but it is not the case in our results.
In particular, for the SLy and BSk19 EOSs, the maximum mass coincides with
the last point where vs = ¢, but the BSk22 EOS admits more solutions on the
left branch of the maximum mass. The last turn of the curve for the SLy EOS
satisfies the causality condition again. Cutting the curves at the point where the
causality condition is not satisfied (or just marking the solution) has been done,
for example, in Refs. [50, 53, 67]. Nevertheless, if the EOS is non-relativistic,

we should only consider the solutions where vy < ¢, such as when the speed
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Figure 3.4.3: Profiles for neutron star solutions using SLy EOS in GR.
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Figure 3.4.4: Profiles for neutron star solutions using SLy, BSk19, BSk22, MS2
and Fermi EOSs in GR. The circles mark the maximum mass. The dashed lines

of the curves are the solutions whose the speed of sound is greater than the speed
of light.
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of sound is, for instance, 10% the speed of light. Therefore, as shown in figure
2.4.4, the plots should be truncated at p. ~ 10! g/cm3, corresponding to masses
significantly smaller than 0.1 M. Thus, since the pressure/density profiles are
similar for these EOSs, we can overlook this fact. We note that the equilibrium
configurations are below the curve given by the Schwarzchild radius rg and the
Buchdahl’s bound, but that does not mean that such mass-radius configurations

can occur in nature, as we shall see in the next section.

EOS | Mpax (Mg) | R (km)
Fermi 0.71 9.17
SLy 2.05 9.98
BSk19 1.86 9.10
BSk22 2.26 11.20
MS2 2.78 13.24

Table 3.4.1: Maximum masses with their respective radii for SLy, BSk19, BSk22,
MS2 and Fermi EOSs.

3.5 Stability of relativistic stars

Equilibrium configurations of neutron stars are obtained by integrating the T.O.V.
equation. In what follows, we will study if that equilibrium is stable under

adiabatic radial oscillations. The calculations presented here were first developed
in 1964 by Chandrasekhar [37].

Consider a perfect fluid sphere oscillating radially with a small amplitude. The

non-perturbed metric is given by
ds® = —e® (cdt)? + e dr? + r?[d6? + sin? 0dp?], (3.5.1)

where we have used the subscript 0 to denote the fields of the equilibrium
configuration. Rewriting the equilibrium equations (3.2.40)-(3.2.42) for the fields

o, By and Py, we have

dOé(] 1 81G
— =—=(1-¢> Pyre® 5.2
0 . (1—e”)+ o bore”, (3.5.2)
dpgy 1 5 8tG s
= (1—e”) + i fore 0 (3.5.3)
dPO 1 dO(g
_—=_ Py)—. 5.4
dr 2<€0 + 1) dr (3:54)
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The perturbations are assumed to be radial, then the spacetime preserves its
spherical symmetry. For any spacetime with this characteristics, independent if is

static or dynamic, one can always introduce Schwarzschild coordinates such that
ds® = —e®(da®)? + P dr? 4 r*[d6? + sin? Odp?), (3.5.5)

where 2° = ct, a = a(z°,r) and 8 = B(2°,r) are the new functions of the metric,

now perturbed. Therefore, we can write

a(2®,r) = ag(r) + da(z’,r), (3.5.6)
B2, r) = Bo(r) + d8(z",r), (3.5.7)

and similarly for the pressure P, the energy density ¢ and the baryon number
density n. In addition, another perturbation is necessary to describe the
oscillations: the radial displacement dr of the fluid from its equilibrium position.
Thus, a fluid element located at the radial coordinate r in the equilibrium
configuration is displaced to the radial coordinate r + dr(x° r) at coordinate

time ¢ in the equilibrium configuration.

To perform the analysis of the oscillation, all equations will be linearized in the

perturbation functions ér, da, 05, O P, de y on.

3.5.1 Equations governing radial perturbations

Eulerian and Lagrangian perturbations

The evolution of these perturbations will be governed by: the Einstein field
equations, the conservation of the energy-momentum tensor and the laws of
Thermodynamics. However, before deriving these equations, we introduce two
concepts. Similarly in the context of fluid mechanics, we define the Eulerian
perturbations, denoted by 0 P and de¢, as changes measured by a fixed observer
at event of coordinates (2°,7,6, ). On the other hand, we have the Lagrangian
perturbations, denoted by AP and Ae, that are changes measured by an observer
located at r in the equilibrium configuration, but located at r + dr(z% r) in the

perturbed configuration. Eulerian and Lagrangian perturbations can be related
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by
AP(2°r) = P[a® 1 + 6r(2°,7)] — Py(r) =~ 0P + Pyor, (3.5.8)
Ae(z°, 1) = e[a®,r 4+ 6r(2°, )] — €o(r) = de + €, or, (3.5.9)
An(2°,r) = n[z° r + or(2°,r)] — no(r) = on + njér. (3.5.10)

Baryon conservation

Baryon conservation law (2.1.4) governs the evolution of the perturbations én and

An. The equation (2.1.4) can be written as

dn
— = —nV, u". 3.5.11
dr K ( )
By introducing small radial perturbations in the star, the «° and " components
are the only non-zero ones. The 4-velocity components are related by the following
expressions:

u” dr/dr  ldr 106r _ 1:

W@ " d(ct)jdr  cdt  c ot ~or, (3.5.12)

and
—(u®)?e® + (u")?ef = -2 (3.5.13)

From equation (3.5.12), we have u” = u°0r/c. Replacing this in equation (3.5.13),

we obtain
SN2
—()%e + (7)) (u)e” = —¢, (3.5.14)
1

u’ = ce™/? a cem0/? (1 - 55@) . (3.5.15)

Therefore, the result at first order in dr, da and 6 is

0 —ap/2 1

u’ =ce 1 — 5504 ) (3.5.16)

u" = dre /2, (3.5.17)

Note that the u” component is of first order in the perturbation, unlike u° which

has terms of zeroth and first order.
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Now, for any perturbed field ¢ = (2%, r), i.e.,

V(1) = Yo (r) + 6¢(a®, 1) = Po(r) + Ap(a®, r) — i(r)ér(a®,r),  (3.5.18)

with Ay = 0¢ + 9 dr, we can write

dp w9
O = o+ A — ghr] 0 g + A — ]
08A¢ 0 N
AP _%6 T uYo + or
U,O 8A¢ TaA@ZJ —0/2,1/ § —ao/2,/ £
~ <?W —|—u 7) — € 1/10(57’—"6 1%57“
_ d?fﬂ (3.5.19)

where in the penultimate line the components (3.5.16) and (3.5.17) for the 4-

velocity were used. Thus, equation (3.5.11) can be written as

dAn
dr

= —nV, u". (3.5.20)

Recall the identity [38]

Vut = \/—_a L (V=gut), (3.5.21)

where ¢ is the metric determinant. In our case, we have

V=g = P22 sin  x e20/2P0/? (1 + —da + (55) r“sin 6. (3.5.22)

Using the identity (3.5.22) in the equation (3.5.20), we can write

0An

poan o n EpY 9
Sl \/__98#(\/ gut), (3.5.23)
u_oaAn+ur8An__ ny + on
c Ot Or  e20/2B/2 (1 4 15a+ L5B) r2sin 6
10 1 1
ao0/2+50/2 - Z 2 sin Ou’ 3.5.24
L@t <e (1+25a+25ﬁ>7’ Sm@u) ( )

0 1 1
| p@0/2+B0/2 i - 2 r
+ " <e (1—1—25a—|—25ﬁ)7’ sin Qu )} ,
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u OAN ng + on 10 o202, 2

+% (ecxo/2+ﬁo/2r2uT)} )

(3.5.25)

Replacing the 4-velocity components (3.5.16) and (3.5.17) in equation (3.5.25),

we obtain
o—a0/2087 0An L ng + on
ot ew/2h/22 (1 + L5a+ 16p)
0 2 Bo/2 1 1 1 3 Bo/2,2
0 1 _ _ 1—— 0
[(‘% <r e + 25a—|— 25ﬁ 25a 87" < 570) :
(3.5.26)
O0An B ng + on L, ﬂO/Q@(SB 9 Bo/2,2
ot ebo/2y2 (1 + l504 + 155) [QT ‘ ot o or ( 57“)
ng + on 2 ﬁ/2a55 Bo/2,.2
_ _ oo _ = 0 0 3.5.27
efo/2y2 ( 5a 255> { ot 8r< 5T> ( )
B 196 | o 520 ( o225
= {2 BT +r ‘e 8r<€ 7'57“) .

Integrating with respect to the time coordinate ¢ and using the equation (3.5.10),

we obtain the equation that governs the evolution of the perturbation dn:

1
on = —ny {r_Qe_ﬁo/z(r%ﬁo/Q(Sr)' - 556] — ngor. (3.5.28)

Note that the integration constant is zero, since when we “turn oftf” the
perturbations (07 = 68 = 0), we impose dn = 0.
Adiabaticity

For adiabatic oscillations, the Lagrangian changes in number density and pressure
are related by the adiabatic index (2.1.12), then

n (0P n AP
r=—(—) =—F—. 5.2
P(@n) p An (8:5.29)

Combining this relation with (3.5.28), and equation (3.5.8) for P in terms of
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AP, we found that

(ng + dn) (6P + Pior)

F pu—
—no(Po + 6P) [r—2e~o/2(r2efo/25r) + 16]

(3.5.30)

1
—I'ng P, |:’r’_2€_60/2(7’26’80/257“)/ + 556} = ngd P + ngPyor. (3.5.31)

Simplifying, we obtain the equation that governs the evolution of the perturbation
oP:
1
dP =-TP, {r_Qe_ﬁo/Q(rzeﬁo/zér)’ + 5(55} — Bjor. (3.5.32)

Energy conservation

Recall the first law of thermodynamics (2.1.7). Since we are studying adiabatic
radial oscillations, the entropy of the fluid remains constant. Thus, applying the
first law along a flow line, plus the assumption that the entropy per baryon is

conserved along the flow line, we find the law of (local) conservation of energy:

de e+ Pdn

e (3.5.33)
Rewriting in terms of Lagrangian perturbations, we obtain
dAe e+ PdAn
e (3.5.34)
Expanding the equation (3.5.34) to first order, we have
dAe  (eg+ Py +de +0P)dAn
dr (no + on) dr
€y + PO dAn
= 3.5.35
N dr ( )

Integrating with respect to the proper time 7 and setting the integration constant
to zero (since Ae = 0 when on = 0), we find a relation between the Lagrangian

perturbations of € and n given by

P
Ae= 2T T0N, (3.5.36)

)
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Combining (3.5.36) with equation (3.5.28) for An and equation (3.5.9) for Je in

terms of Ae, we obtain the equation for the evolution of Je:

1
bc = —(eq + Py) |r2e Po/2 (2P0 25y 4 §5ﬁ — €407 (3.5.37)

Einstein field equations

Two of the Einstein field equations, when linearized, reduce to the equations
governing the evolution of the perturbations da and §3. The complete calculation
can be found in appendix B, the main results will be summarized here. The

relevant components of the Einstein tensor, when we evaluate in the metric (3.5.5),

are:
108,
Goyr = Ja(l‘ 1), (3.5.38)
G. = _i 65(‘”0’7’) — ra—a(;po 7“) — 1. (3539)
TT r2 or ’

At first order, we can write these components as follows

or = %85—?, (3.5.40)
Grr = (Gr)o — Tlgeﬁo(w + %88‘5—:‘, (3.5.41)
where
(Grp)o = _712 {eﬁo - r% - 1} (3.5.42)
is the (rr) component of the unperturbed Einstein tensor.
The components of the energy-momentum tensor (3.2.7) of interest, are:
Tor = —%(60 + Py)ePoor, (3.5.43)
T,, = Pye™ 4 Pye™§ 4 s Pe™. (3.5.44)

Consequently, the (0r) component of field equation reduces to equation (B.16),

that is,

0f3 = —SWG(GO + Po)reﬁoér = — (

— 3.5.45
dr + dr ( )

ct

dag d—ﬁo> or
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Using the above equation in equations (3.5.28), (3.5.32) and (3.5.37), we can write

them as follows:

on = —ngr=2(r*dre=/2) e/2 _nisr, (3.5.46)
6P = —T Pyr 2(r?sre=0/2)'e®/2 _ Plor, (3.5.47)
oe = —(eq + Po)r 2 (r2sre0/2) /2 _ ¢l o, (3.5.48)

On the other hand, linearizing the (rr) component of field equation, we obtain

the equation for the evolution of the perturbation da (see (B.27)):

) 81G 81G
8_& — _%Fpor—lea0/2+50 (rle=/25r) + 7T—4 [Pir — ey — Py] e™6r. (3.5.49)
r c ¢

Momentum conservation

Consider the conservation law of the energy-momentum tensor (3.2.25). Using
the form of this tensor for a perfect fluid (3.2.7), we find that

d,(€ + P)ufu” + (e + P)a" + (e + P)u"V, u” + ¢*¢"9,P = 0, (3.5.50)

where a* = u”V,u" is the 4-acceleration of the fluid. Taking the r component
of this equation, the first and third terms vanish, since u" is of first order in the
perturbation and both 0, (e + P)u” and V,u” are also of first order because they

are zero in the equilibrium configuration. Thus, equation (3.5.50) reduces to

(e + P)a" 4 e PP = 0. (3.5.51)

Let us determine the a” component of the 4-acceleration, to first order:

a" = u'Vou" +u"V,u"
1ouw .
%uo <EW+FO)\U )

.. 2 2
~ e+ Se (1= 3B)al + Seoal, (3.5.52)
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Thus, equation (3.5.51) can be written to first order as follows:
(co+ Po) |07 + e (1 = §8)af + e da’

2 (3.5.53)

+ %(56 + (SP)Q_BOQ{B + 026_’80(1 _ 6/8)(P(; + (SP’) 0.

If we write this equation only in terms of the functions in the equilibrium

configuration, then we obtain an equation for the evolution of 7:

1 .
—2(60 + P())eﬁo—ao(;r
C

e
_—— (€0 + Py) [[Pyrte™/2th0 (r2e=0/25r) — (Pir — g — Py) e™or]

A
1
+3 [(€0 + Po)r—2(r?6re=0/2) e®0/2 1 T Pyr=2(r?5re=0/2) e/
+epdr + Pyor] ag + [DPor=2(r?0re=/2) e/ 4 P(’)(Sr}/ : (3.5.54)

If we define the normalized displacement function
o = r2e /25y, (3.5.55)
we can write equation (3.5.54) as follows

12(60 + P0>7,726507a0/2~0'_
C

4G
= m (60 i Po) [FP0T—16040/2+500/ _ (Pér e — Po)r_Qeo‘O/gJ“BOa}

A
1
+3 [(€0 + Po)r—20’e™/? + T Pyr=20"e®/? + (e + Py)r—2e*?a] ay,
+ [[Pyr20’e®/? + Pér_2ea°/2a]/ . (3.5.56)

Multiplying both sides by e**+5/2  followed by an extensive calculation, equation
(3.5.56) reduces to [35]
Wé = (Qo') + Ro, (3.5.57)

where the coefficients are given by

1
W = — (o + Po)r—2e®0/*T3%/2, (3.5.58)
c

Q = T Pyr—2e3a0/2+60/2, (3.5.59)
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G

ct

P! 2
R = ¢3a0/2+bo/2 %7’2 — 4P — (€0 + Py)Pyr—2e™| . (3.5.60)
0+ 1o

There are infinite ways to write (3.5.57), but this form is preferred because it

leads us to a Sturm-Liouville problem for the radial perturbations.

Boundary conditions

Not all solutions of equation (3.5.57) are physically acceptable. In order to
be so, the displacement function ér must produce finite density and pressure

perturbations at the center of the star, which means

lim or _ finite. (3.5.61)

r—0t T
In fact, if we expand equations (3.5.47) and (3.5.48), we have
1
6P = —2T Pyr *6r — T Pyor’ + §FP05mg — Py, (3.5.62)

1
de = —2(eg + Po)r tor — (eo + Po)dr’ + 5(60 + Py)orag, — e or- (3.5.63)

Taking the limit  — 0, the expressions are finite if the equation (3.5.61) is verified,

since it implies that dr(z°,0) = 0 and

51 (2%, 1) — 87 (22,0 5
or'(x°,0) = lim rial,r) = or(@’,0) _ hr%l — finite. (3.5.64)
r— r r—=0 1

In terms of the function o, this boundary condition translates to

. o .
T£%1+ 5= finite. (3.5.65)

In addition, the displacement function must also leave the pressure equal to zero

at the surface of the star. Thus, from equations (3.5.47) and (3.5.8), we must have

lim AP = lim [[ Pyr—2e®/2¢’] = 0. (3.5.66)
r—R r—R
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3.5.2 Stability and normal modes

Assume that the normalized displacement function (3.5.55) has a harmonic time
dependence, that is 2,
o(2° r) = u(r)e ™" (3.5.67)

Thus, the dynamic equation (3.5.57) and the boundary conditions (3.5.61)-(3.5.66)
reduce to a Sturm-Liouville problem with Dirichlet-Neumann boundary conditions

for the squared frequency w? (eigenvalue) and the amplitude u(r) (eigenfunction):
(Qu) + Ru + w?*Wu =0, (3.5.68)

where the boundary conditions are:

u(r)

lir% —5~ = finite, (3.5.69)
r— T
lim [T Pyr—2e®4/ (r)] = 0. (3.5.70)

r—R

Since we obtained a Sturm-Liouville problem, we have the following results [5]:

2

1. The eigenvalues w* are all real.

2. The eigenvalues form an infinite discrete sequence

Wi <wi<wi< (3.5.71)

3. The eigenfunction wu, corresponding to w? has no nodes in the interval

0 < r < R. Generally, u,, has n nodes in this interval.

4. The functions u,, are orthogonal with weight W:
R
/ U (7) Uy (M)W (1) drr = 0, m # n. (3.5.72)
0

5. The functions u, are normal modes and form a complete set for the
expansion of any function satisfying the boundary conditions (3.5.69) and
(3.5.70).

2Since the differential equation is linear, this is equivalent to take the Fourier transform.
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Consequently, under radial perturbations we say that

2

— the star is unstable, if any of the eigenvalues w;

is negative, since we would
have purely imaginary frequencies and the amplitude of the perturbation of

the star would grow exponentially as el“nl.

— the star is stable, if all of the eigenvalues w? are positive, since the frequency

is real and any perturbation of the star will oscillate as e™*.

Lastly, one important consequence of the property 2. is that if the fundamental
radial mode of a star is stable (w2 > 0), then all radial modes are stable. In
contrast, if the star is radially unstable, the fastest growing instability will occur

through the fundamental mode (w? is “more negative” than the other w?’s).

In what follows, we will relate this type of stability analysis to more general
properties of stars, for example, how can we relate the eigenfrequencies to the

mass and central density of the star?

3.5.3 Sufficient and necessary conditions for stability

A solution of the T.0O.V. equation that satisfies the appropriated boundary
conditions describes a stellar configuration in hydrostatic equilibrium. This
equilibrium can be stable or unstable. Consider a sequence of equilibrium
configurations obtained by integrating the T.O.V. equations, with different values
of central density p.. The mass of the star will be a function of the central
density, M = M(p.). The star will pass from stability to instability with respect
to any radial mode of oscillation only if at a value of central density the following

condition is satisfied:
dM (pc)

dp.

= 0. (3.5.73)

This result applies to EOSs without discontinuities at zero temperature. We will

now give a heuristic proof of this result found in [36] .

The M (p.) profile is represented in figure 3.5.1, where each point on this curve
defines an equilibrium configuration of the star. Given a star in the equilibrium
configuration A, if a small radial perturbation reduces its central density, the new

(non-equilibrium) configuration will be represented by the point A;. This point is

3For a more rigorous proof, see chapter 7 of [(5].
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Figure 3.5.1: Mass-central density relation for NS using the Fermi EOS in GR.

above the curve, then the perturbed star has a mass greater than the mass of the
corresponding equilibrium configuration for that central density. Consequently,
the star is out of equilibrium because gravity exceeds pressure, and the star
will contract, increasing its central density, thus returning to the equilibrium

configuration A.

Similarly, if the radial perturbation increases its central density, the new
configuration is represented by the point A, located under the curve. The star in
the point A5 has a mass smaller than the one corresponding to the equilibrium
configuration for that central density. In this case, gravity is weaker than pressure,
and the star will expand to return to the equilibrium configuration. Thus, we
say that the equilibrium in A is stable. In conclusion, if A is a stable equilibrium

configuration, then

dM
0 3.5.74
dpc > Y ( )

at the point A. In contrast, for the point B where

dM
<0, (3.5.75)

dp.
a displacement to the configuration By, gravity is weaker that the pressure inside
the star, so it will expand reducing its central density. Similarly, a displacement to
the configuration By, gravity exceeds pressure, so the star will contract increasing

its central density. Thus, the equilibrium configuration B is unstable.

In figure 3.5.1, the branch to the left of the maximum mass corresponds to
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stable equilibrium configurations, while the right branch corresponds to unstable

equilibrium configurations [30].
Is the condition dM/dp. > 0 sufficient to say that the star is stable?

Harrison, Thorne, Wakano and Wheeler [0%| proved that an equilibrium
configuration has a zero-frequency mode of oscillation if condition (3.5.73) is
verified. Thus, as a consequence of the eigenfrequency ordering and the fact that
an oscillation mode changes stability at a stationary point (3.5.73), we can infer
the following: if the fundamental mode becomes unstable at the maximum mass,
then the next mininum in the sequence the stability is restored to the fundamental

mode or the next oscillation mode (overtone) becomes unstable, and so on.

For instance, in the branch to the left of the maximum mass in figure 3.5.1 all the
modes have w? > 0 and the right branch has one or more modes with w? < 0, in
particular, the fundamental mode becomes unstable [30]. However, upon reaching
the other critical (or stationary) point of the plot (a minimum), the fundamental
mode remains unstable, while the first overtone (mode with n = 1) becomes

unstable, even though dM/dp. > 0. In conclusion:

The statement dM /dp. > 0 is a necessary condition for stellar stability

but not sufficient.

3.5.4 Numerical solution

The problem of radial perturbations is not new; several methods have been used
to estimate the frequencies of the radial modes for a variety of EOSs. A common
analytical method to understand the stability of a star is to use a variational
principle, in particular, the Rayleigh-Ritz variational technique [69]. This
technique tells us that the eigenfunctions that satisfy equation (3.5.68) are those
that minimize the functional

fOR(Qu’2 — Ru?)dr

Iu] = Td (3.5.76)

and the minimum value that it takes is w?. If it is positive, the star is stable and

if it is negative, the star is unstable under adiabatic radial perturbations. Since
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the denominator of equation (3.5.76) is positive definite, we have stability if and
only if
R
/ (Qu* — Ru*)dr > 0, (3.5.77)
0

for all the functions u that satisfy the boundary conditions (3.5.69) and (3.5.70).

Using this method, one can prove that Newtonian stars are stable if the pressure-

averaged adiabatic index
R
_ [ Pydmr? dr
[— fOR ot (3.5.78)
o Podnr2dr

is greater that 4/3; unstable if I' < 4/3, and marginally unstable if I' = 4/3 [7].
In the last case, the fundamental frequency is equal to zero. For relativistic stars,

the criterion is no longer valid as a test for stability.

The method described above is difficult to implement in the context of relativistic
stars. For this reason, numerical methods have been used to analyze the stability
of stars solving equation (3.5.68) with boundary conditions (3.5.69) and (3.5.70).
The most used method is the shooting method [70]. In simple words, this
method consists of starting with a trial value of w?, integrating toward its surface
and searching for the value of w? such that the boundary condition at the surface

is satisfied and the solution has n nodes.

Defining v := Qu’, the second order differential equation (3.5.68) can be written

as the following system of first order differential equations for v and v:

du v
d
d—:f = —(R+ w*W)u. (3.5.80)

If we assume that each function is regular close to the origin, then we can expand
fr)=fo+ fir+ for* +--+, =0, (3.5.81)

with f = {u,v, ag, 5o, ', Py, €0}. Using the boundary condition (3.5.69), we find
up = w3 = up = 0. Thus, replacing these expansions in equations (3.5.79) and
(3.5.80), we found that

v(r) = 3ugl(0) Py(0)e*©/2+50/2 1 O(r). (3.5.82)
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Choosing us = 1/(3'(0) Py (0)e3@0(0)/2+5(0)/2) " the initial values for the integration
are u(0) = 0 and v(0) = 1. With this choice we do not lose generality
because the differential equations are linear, and it is equivalent to divide
the equations by 3usl'(0)Py(0)e?*0©)/2+50(0)/2 and define new variables @ :=
u/(30(0)Py(0)e320(0)/2+50)/2) ‘and ¢ := v/(31(0)Py(0)e3*0(0)/2+5(0)/2) = At the
surface of the star, the condition (3.5.70) translates to v(R) = 0.

Performing a dimensional analysis, we found that u has units of length cube and
v has units of pressure. Therefore, we propose to rewrite these functions in terms

of normalized functions in the following way:
u(r) = a*u(r),  o(r) = Ko(r), (3.5.83)

where the constants a and K are defined in (3.4.10) and (2.3.11), respectively.

Following the same approach made in the static case, we express the radial

coordinate, the pressure and the energy density as

r=ax, PO = KF(), €0 = KE(). (3584)

Therefore, we can write the normalized form of the system of differential equations
(3.5.79) and (3.5.80) as follows

Z_Z — Al2)T, (3.5.85)
& = [Bla) + 20 (3.5.86)

where Q% := a%w?/c? is the normalized squared frequency and the coefficients are

given by
1'2
A(z) = TP ogsanl2 e (3.5.87)
¢300/2+60/2 x dP,\”  dP, =
B(zx) = _ —4—= —dx(e5 + Py)Poe*™ | , (3.5.88
() 3 <€0+P0)(dl‘> dr (0 0) 0 ( )
Clx) = (Eo+ Po) +2P°)e“°/ ko2, (3.5.89)
X

The boundary conditions at the origin are #(0) = 0 and 7(0) = 1, and at the
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Figure 3.5.2: Changes of variable for radial perturbations.

surface of the star (R = azy), v(x;) = 0.

The system of differential equations for the functions @ and v cannot be integrated
numerically in a proper manner, since we have a divergence at the origin due to
the division by power of z, see the coefficients in (3.5.87)-(3.5.89). To solve this

problem, a change of variable is proposed for u:
u(r) = h(r)z? (3.5.90)

such that h(0) = 1/(30(0)Py(0)e?*0(©)/2+50(0)/2) " A summary of all the changes of

variable made in this section is found in figure 3.5.2.

Thus, the system of differential equations that is numerically integrated is

dh - h

= A 3? (3.5.91)
do ~ -
é — —[B+Q*C]h, (3.5.92)

where the coefficients are given by

. 1
Alz) = P g et (3.5.93)

B(z) = e3a0/2+60/2

J— 2 J—
xr dPO dPO . —
— —4——= —4a(& + Py)Poe™ |, (3.5.94
(Eo—i—PO)(da:) dx (€0 + Po)Po ( )

C(z) = x(8 + Py)e0/?+3%/2, (3.5.95)
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Figure 3.5.3: Numerical scheme of the shooting method.

Numerical scheme

In what follows, the implementation of the shooting method will be discussed.
First, we define an initial interval for the value of the eigenfrequency, say [w%, w%],
with w? < 0. We divide the interval into two regions with the midpoint w? =
(W} + w%)/2. If the solution of the function v for w”? has a number of nodes
greater than required, we change the upper limit of the interval from w% to w'.
Otherwise, we change the lower limit from w?% to w?. This procedure is repeated
until |w?% — w| (or |w% — w|) is smaller than a given tolerance and [7] is close to
zero, also given a tolerance value. In figure 3.5.3, the numerical scheme described
is summarized. The advantage of implementing the shooting method in this
way is that we can guarantee the convergence of the value obtained from the

eigenfrequency for a given tolerance value.
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Figure 3.5.4: Mass versus radius and central density curves for neutron stars

using the BSk19 EOS in GR. In the plots, the local maximum and local minimum
are represented by squares.

The program is tested for NS solutions O;, with ¢ = 1, 2, 3, represented in figure
3.5.4. The masses, radii, central densities, and eigenfrequencies for the first
three radial modes are registered in table 3.5.1. We observe that for the O,
solution, for which dM/dp. > 0, all of the squared eigenfrequencies are positive,
then the solution is stable. Since the O, solution satisfies dM/dp. < 0 , the
solution is unstable, which is verified by the fact that w32 is negative. However,
the O3 solution satisfies the condition dM/dp. > 0 and w?,w? < 0, then the NS
is unstable, consistent with the fact that dM/dp. > 0 is a necessary condition.
The radial profiles of the radial displacement modes ér,, and the Lagrangian
perturbation modes of the pressure AP, for the fundamental mode (n = 0) and
the n-overtones (n = 1,2,5,10) were computed for these NS solutions, see figure
3.5.5. We can observe that the amplitude of the radial displacement grows as the
radial coordinate increases, whereas AP oscillates with a decaying amplitude and
finally vanishes at the surface of the star (satisfying the boundary conditions).
Nevertheless, all the functions are smooth with respect to changes of the radial
coordinate. For higher-order modes, some of the nodes move across the core-crust
transition and lie in the crust (0.9R < r < R [7]), where the radial displacement
changes signs rapidly with a large amplitude, but AP, has a small amplitude in
the crust. This behavior for the higher-order modes is attenuated in solutions
O, and Og, i.e., as we move along the mass-radius curve (increasing the central

density). The fundamental mode for the Lagrangian perturbation increases its
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amplitude in the core of the NS. We discover that the apparent divergence of
the radial displacement at the surface of the star is due to numerical error, since
as the number of points increases and the tolerances of the eigenfrequencies are

smaller, this growth is still present but with a smaller amplitude. Similar results
are obtained for the SLy, BSk22 and MS2 EOSs.

| My (Mo) | R (km) | po (g/em?) | wf (10%72) | w? (10%72) | w? (10°72)

Oy 1.8 9.76 | 2.44 x 10% 1.50 20.92 48.26
O, 1.39 6.86 | 5.55 x 106 - 7.41 6.79 23.56
Os 1.35 7.07 | 3.62 x 10'7 -10.40 -1.55 7.11

Table 3.5.1: Mass, radius, central density, and eigenfrequencies for the first three
radial modes for NS solutions O;, with ¢« = 1,2, 3, represented in figure 3.5.4.

As discussed in section 3.5.3, the change of neutron star stability occurs in the
solution with the highest mass. We verify this statement by determining the
eigenfrequencies of the first three radial modes for the SLy, BSk19, BSk22 and
MS2 EOSs, see figure 3.5.6. We observe that w? becomes negative at the maximum
mass, independent of the EOS. In addition, the eigenfrequency w? is negative
just after the local minimum, confirming the theorem stated by Harrison, Thorne,
Wakano and Wheeler |05 and discussed in the section 3.5.3, i.e., the solutions that
verify dM /dp. = 0 have a zero-frequency radial mode. Moreover, the fundamental
mode becomes unstable at the maximum mass, and stability is not restored at the

next minimum of the sequence since the next radial mode also becomes unstable.

Thus, the NS solutions on the left branch of the maximum mass are stable and
the causality condition holds, proving once again that the condition dM/p. > 0
and the causality condition are necessary (but not sufficient) conditions for stellar
stability. Therefore, the study of radial perturbations is important for testing the

stability of neutron star solutions.
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Figure 3.5.5: Plots of the radial displacement modes 7, and the Lagrangian
perturbation modes of the pressure AP, versus the normalized radial coordinate
r/R for the fundamental mode (n = 0) and the n-overtones (n = 1,2,5,10) in NS
solutions O;, with ¢ = 1,2, 3, using the BSk19 EOS, shown in figure 3.5.4.
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Chapter 4

Star Models 1n 4D

Einstein-Gauss-Bonnet Gravity

4.1 Towards a 4-dimensional Gauss-Bonnet gravity

David Lovelock in his paper “The Einstein Tensor and Its Generalizations” [10]
solved the following problem: to seek all tensors AY with the properties:
(a) A% is symmetric, i.e., AY = A%,
(b) AY is a function of the metric tensor gq, and its two derivatives, i.e., A% =
Aij (gaba 8cgab7 achab)-
(c) AY is divergence-free, i.e., V;AY = 0.
(d) AY is linear in the second derivatives of gup.

He showed that in a four dimensional spacetime, such tensor must take the form:
AY = aGY + bg" (4.1.1)

where a and b are constants. The resulting field equations would then be the
Einstein equations with cosmological constant. Thus, if we want to modify General
Relativity in 4 dimensions, then it is necessary to either add other fields besides the
metric tensor, or relax one of the above conditions on A%, for example, allowing

higher order derivatives of the metric.

If the spacetime has dimension D > 5, the action of the theory has higher order
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terms in the curvature. The first of these higher terms is the Gauss Bonnet action

term which is quadratic in the curvature:
SGB — oz/de\/—gg, (4.1.2)

where « is a coupling constant, and G = R**"R,,,,, — 4R" + R* is the Gauss-
Bonnet term. In D = 4, G is a total derivative, thus not contributing to the

system’s dynamics

In early 2020, Glavan and Lin [17] consider the D-dimensional Einstein-Gauss-

Bonnet action

SEGB — /de\/—_g {i(R —2A) + ag} : (4.1.3)

of which the field equations are [2¥]

1 1
ﬁ (R;w - §g,uz/R + Agm/) + OéHm, = 0, (414)

where the “Gauss-Bonnet tensor” is given by

1
Hyy = 2R,por RS — AR, R, — AR, e R + 2RR,, — 599 (4.1.5)

They showed that the GB contribution to solutions to the D-dimensional field
equations can be non-trivial for D — 4 under the following rescaling of the GB

coupling constant:
o

— .
A Y

(4.1.6)

Despite this apparent violation of the Lovelock theorem, a number of sensible
4-dimensional metrics can be obtained. This was done for spherical black holes
[17=21], cosmological solutions [17, 22, 23], star-like solutions |24, 25|, radiating
solutions [26], collapsing solutions [27], etc. In reality the existence of such limiting
solutions does not actually imply the existence of a well-defined 4D theory, and
a number of articles [28-30] came out shortly after criticizing the method. For
example, Giirses et al. [28] showed that there is a part of the tensor H,, which is
always higher dimensional even though one part of the tensor can be made finite
with the procedure of dividing by 1/(D — 4) and then formally assuming that

the remaining indices are four dimensional. The important point here is that if
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one drops the extra dimensional part, then the Bianchi identity is not satisfied
for the remaining four dimensional theory, then one cannot couple the theory to

conserved matter fields.

Two independent groups |31, 32| derived consistent versions of what has come to
be known as 4D Einstein-Gauss-Bonnet (4DEGB) gravity, making use of the same
rescaling (4.1.6). In both cases, a scalar field is introduced into the action making
ADEGB gravity a Horndeski theory of gravity. In the former this is done via a
conformal rescaling trick (in analogy to an earlier procedure where in the D — 2
limit of GR was obtained [7!]), and in the latter a Kaluza-Klein dimensional
reduction technique |72]. These two approaches yield identical theories, with the
exception that the latter method yields additional terms in the metric equations
of motion that depend on the curvature of the maximally symmetric (D — 4)-
dimensional space. Taking these terms to vanish yields the 4DEGB action term is

given by [31, 32]

S5 — g / d'ey=g [$G + 4G, V"6V — A(VH)0s +2(V)'] . (4.1.7)

where ¢ is a new scalar field.

4.2 4D Einstein-Gauss-Bonnet gravity

The Einstein-Gauss-Bonnet theory of gravity in D = 4 dimensions is defined by
adding (4.1.7) to the Einstein-Hilbert action term [31]:

1
Sucn = 5 [ dv/=3 [R— 20+ 0 (66 + 4G V49v"9 — (V6706 +2((V0)))]
+ S, (4.2.1)
where k = 8tGc™?, «a is the 4ADEGB coupling constant (with units of length
squared), ¢ is the (dimensionless) scalar field and Sy, is the matter action.
The field equation for the scalar field is given by [31]

G —8G,,V"V"¢ — 8R,, V"¢V ¢ + 8(0¢)* — 8V, V, oV V"¢
—16V,V, ¢V’ ¢V* 0 — 8(V)*Oo = 0, (4.2.2)
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while the variation with respect to the metric leads to the following field equations:

Guv + Mg + @ |§Hyy = 2RIV, V0 + (V,u0)(V.9)] + 8R’,V.)V ¢
+8R V0oV, — 2G[(Ve)* + 20¢] — 4V, V.0 + (V,u0) (V,9)|0¢
— [9(V$)* = 4(V,u0)(Vu9)[(VE)* + 8V, V(. 5(V,)$) V¢
— A9 R [VoV 0 + (Vod)(V0)] + 26,(06)° = 20,0 (V,V60) (VIV9)
= 49 (V,Vo0) (V) (V70) + 4(V,V,0)(V, V)

+4Ro VPV )+ (VP9) (VI 0)]]

8rG
= C_4T,u1/7

(4.2.3)

where

2 S,
V=gdgm’

and H,, is given by equation (4.1.5), which identically vanishes in four dimensions

T,, = (4.2.4)

and less. In what follows, we will work with cosmological constant equal to zero.

One important property of the action (4.2.1) is its shift symmetry in the scalar

field, i.e., it remains invariant under the transformation
o — o+C, (4.2.5)

for any constant C.

4.2.1 Black Hole solution

This theory possesses an exact vacuum solution, with line element

dr?

ds® = —f(r)(cdt) +f(r)

+ 1r%(df? + sin’ 0dp?), (4.2.6)

where the metric function f(r) and the (derivative of the) scalar field ¢ are given
by [31]

2
f(r)=1+£—a (1— 1+8iié\4>, (4.2.7)
o _ VI -1

(4.2.8)
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and M is an integration constant. This solution is asymptotically flat, and we
can interpret M as the mass of a non-rotating black hole. There are two horizons
for a < 0, as well as for M > ¢*\/a/G = My, if a > 0. The outer event horizon

[25] is located at

M VE
=M JEM (4.2.9)

c? ct

There are other branches of spherically symmetric solutions in this theory, but
this one is the only asymptotically flat spherically symmetric solution which is
free of naked singularities [73]. For this reason, the spacetime outside a spherically
symmetric neutron star will be given by the line element (4.2.6) with metric
function (4.2.7).

Writing f(r) = 1 + 2¢(r)/c?, we can compute the gravitational force per unit of
mass in 4DEGB due to a spherical body |7

- dy cAr A3 +2aGM | 8aGM
=T p =" [1- 14+ =" |5 4.2.10
/ ar 200 ( c2r3 + 8aG M + = R ( )

which is smaller in magnitude than its Newtonian o = 0 counterpart ( ﬁ\l =
—GM7/r?) for a > 0. The expression in (4.2.10) vanishes at r = (aGM/c?)'/3,
but this is always at a smaller value of r than the outer horizon 7, of the
corresponding black hole. Hence the gravitational force outside of any spherical
body, while weaker than in GR, is always attractive provided o > 0. If a < 0 then
the corresponding gravitational force is more attractive than in GR. However, the
requirement that atomic nuclei should not be shielded by a horizon yields the
empirical constraint [25]

a> —107%" m? (4.2.11)

making the associated gravitational effects totally undetectable. For practical

purposes we can exclude negative o from our analysis.

An upper bound for the coupling constant
0<a<10" m? (4.2.12)

has been found using LAGEOS satellites [75]. Inclusion of preliminary calculations
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on recent GW data suggests that these constraints could be even tighter [77],
0<a<10" m? (4.2.13)

though a proper calculation remains to be carried out.

4.3 Stellar structure equations

Following the same approach as in GR, we consider a neutron star configuration
as a static, spherically symmetric perfect fluid in hydrostatic equilibrium. The

spacetime can be described by the line element

dr? 20702 1 i 2
+ r°(df* + sin” 0dy?), (4.3.1)

s2 = —eXU) £ (1) (edt)?
d F et +

where f(r) and x(r) are metric functions. The matter inside the star will be

described in terms of the energy-momentum tensor of a perfect fluid (3.2.7).

Since we are considering the static case, the only non-vanishing component of the
4-velocity is ug so that u, = (ug,0,0,0). Using the identity g, uu” = —c?, we
can obtain

uy = —c\/ feX/?. (4.3.2)

The energy-momentum tensor is then given by

T,., = diag(eeX f, P/ f, Pr?, Pr?sin®0). (4.3.3)

Replacing the metric (4.3.1) and the components of the energy-momentum

tensor (4.3.3) in the field equations (4.2.3), the non-redundant equations are

the components (00) and (rr) given, respectively, by

e

A

7“2f€:7”2f3¢/404+27“2f2¢/3f/04+47”2f3¢’2 /104—67“f2¢/2f/04—87’f3¢/¢”04
_2f3¢/2a_2f2¢/2a+6f2¢lfla+4f3¢/la_2f¢/f/a_4f2¢/la

—rff = £ .
(4.3.4)
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(G

ct

TZP:1—6f¢,f,04+6f2¢/204+2¢/f/a_6f2¢/X/CY+2f¢/X/a—2f2r2¢/3X/CY
_’_6f2r¢/2xla_2f,r2¢/3fla+6fr¢12f/a_8f2r¢l3a+3f27,2¢/4a

—2fd*a+ fX'r+ f+ f'r.
(4.3.5)

Since the action is invariant under the transformation (4.2.5), it can be shown
that the equation (4.2.2) for the scalar field in the spacetime given by (4.3.1) can

be recast as [70]
dj"
— =0 4.3.6
Ve, (430

with A
J == lr¢ = 12f — 26 = X'f = /1. (4.3.7)

If we want the spacetime to be asymptotically flat and match the exterior solution,

we need

(r¢' =1)°f =1=0. (4.3.8)

Solving for ¢’ leads us back to equation (4.2.8), which also holds for the interior

of the neutron star.

Replacing the expression (4.2.8) for the scalar field in equations (4.3.4) and (4.3.5),

and solving for the derivative of f and y, we obtain

df _(87TG/C4)ET4+Oéf2+(T’2 —2a)f -1’ +a (43.9)
dT_ T(T2—2af+2a) s L.
dx _ 8rG 73 (e + P)

dr— c* f(r2=2af +2a)

(4.3.10)

On the other hand, the r-component of the conservation equation for the energy-

momentum tensor, i.e. V,T*" = 0, leads to

P ,F
P Lerr) (x . 7) . (43.11)

Replacing the equations (4.3.9) and (4.3.10) in (4.3.11), we find

dP  (e+ P)[—af?* — (r* = 2a) f + (87G/c*)r'P +1? — o]
dr 2rf (r2 —2af + 2a) ’ (43.12)
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which defines the modified T.O.V. equation for this theory in terms of the metric

function f, the pressure and the energy density.

Boundary conditions
We determine the boundary conditions at the origin by assuming that each function
is regular close to the origin, that is,

h(,r,) — h’O + h17” + h2T2 4+ r — O’ (4313)

with h = {f, x, ¢,¢, P}. Replacing this expansion in equations (4.2.8), (4.3.9),
(4.3.10) and (4.3.12), solving order by order, and requiring that the scalar field is

regular at the origin implies

B 1 332G 9 3
firy=1+ 5 (1 —\VIt 34 0@) 2+ O(r?), (4.3.14)
e €. + P, 9 3
= Xe + +O(r?), 4.3.15
x(r) =x 1+ (327rG/3c4)aecr ) ( )
P(r) = P. + O(r?), (4.3.16)

where P, is the central pressure, €. the central energy density and x. an arbitrary
constant that is fixed by matching the interior and exterior solutions. We integrate
the coupled system of equations (4.3.9), (4.3.10) and (4.3.12) from r = 0 until the
pressure vanishes. The point at which the pressure reaches zero is the radius of
the star.

4.4 Uniform density and Buchdahl limit

In this section, we discuss an analytical solution to the field equations (4.3.9),
(4.3.10) and (4.3.12) for a relativistic star with uniform energy density. Although
this model of the star is not realistic, in General Relativity predicts the existence

of an upper bound for the stellar compactness, the Buchdahl limit.

As we mentioned, we consider a star with uniform energy density:

€. =const, r< R
e(r) = . (4.4.1)
0, r>R
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In this case, the equation for f is separated from the other equations. In order to

solve this equation it is convenient to introduce a new function u(r) defined by

2]

= (4.4.2)
In terms of yu, the equation (4.3.9) takes the form

Integrating this equation and asking that the solution is regular at the origin (the

integration constant is zero), we obtain

8tG
p+ap® = S 6 (4.4.4)

Solving the quadratic equation for 1 and imposing an asymptotically flat exterior

solution, we obtain

1 327G
=—1[11—-14/1 . 4.4.
W 7 < + 3 aec> (4.4.5)

In other words, we have

r? 327G
fir)y=1+ % (1 —\/1+ ?aec> , "<R. (4.4.6)
The matching condition gives the relation among the mass, the radius and the

energy density of the star, namely

4
M= LR, (4.4.7)

3c?

Now, with the explicit form of f we can obtain the pressure P. Replacing

f=1—pr? and €, in terms of y, in equation (4.3.12), we find

dP  3r(ap® — p— kP) (ap® + i+ kP/3)
dr 252 + 1)(1 — pr?) '

(4.4.8)
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Using the separation of variables method, we obtain

ap 3rdr
/ (ap? — p— kP)(ap? + p+ kP/3) / 2k (2ap + 1)(1 — pr2)’ (4.4.9)

RP A3’ + )| T
m[FoP—(auuu)} = —In(v/1— pr2) +C, (4.4.10)

P +3(op® +p) €€

KP = (op? +p) /1=

(4.4.11)

The integration constant C can be found by considering the pressure to be zero at
the surface of the star, P(R) = 0. Therefore,

2 _ 2
c_ Sl +py1—pk (4.4.12)

ap®+p

Replacing the value of € in (4.4.11) and solving for P(r), we have

ap? —
3(ap+u)y/1-pR2 3(oz,u2 + 1)
\/l—m“2

au? 1—pR?
()
BT Vi
m+3 /1 uR?
\/1—ur2—\/1—uR2
3?“—3%\/1—NR2—\/1—W’2.

pP=

(4.4.13)

3
= ;(Oélf + 1)

Using equation (4.4.4), we finally obtain an exact solution for the pressure in

terms of the radial coordinate r given by

T— 12 — /1 — LR?
P(r)= e 2 L (4.4.14)
3 “\/1 pR2 — /1 — pr?

This expression is valid for all & > 0 and for av < 0 such that 1 + 4kae./3 > 0. If
we take the limit & — 0 (General Relativity), the function u goes to ke/3 and we
recover the solution (3.3.13) using (4.4.7) and the definition of the Schwarzschild

radius.

The solution for the derivative of the scalar field is obtained by evaluating (4.4.6)

in equation (4.2.8). On the other hand, to determine the function x, we introduce



4.4. Uniform density and Buchdahl limit 75

a new function Q(r) := eXf and take the derivative:

dQ oL
C-q (x n ?> , (4.4.15)

Using equation (4.3.11), we obtain an equation for @Q:

dqQ 2QQ dP
—_— = — — 4.4.1
dr €. + P dr ( 6)
Solving for (), we have p
R a— 4.4.1
Q- (14.17)

where A is an integration constant. Evaluating at » = R, we find that A =
€2(1 — uR?*). Thus,
o (1 — pR?)

QZEC(Q—{—P)Q'

(4.4.18)

Replacing the expression (4.4.14) for P in (4.4.18), we obtain an expression for x:

2

. r<R. (4.4.19)

2
X 1(1—a,u) [1_31+a,u 1 — puR?

4 \1+2ap Il—ap\l 1—1r2u

The profiles of the pressure, metric functions, and the derivative of the scalar field
inside a star with uniform density are represented in figure 4.4.1. We observe
for a = 0.1R?* and p = 9.6/R? that the pressure is divergent close to the origin
because it is the limit where the Buchdahl bound is violated. These expressions
for P and x coincide with the ones found by Doneva and Yazadjiev in Ref. [2/]

for the ill-defined 4D Einstein-Gauss-Bonnet gravity by Glavan and Lin.

Buchdahl bound

The pressure is always maximum at the center of the star, and in the uniform

density case assumes the value

1—+/1— uR2
P(0) = éeyra ”}j . (4.4.20)
3170[”\/1 —puR? -1

The central pressure must be finite and positive to sustain equilibrium, so we need
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(b)
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Figure 4.4.1: Profiles of the pressure, metric functions f and eX, and the
derivative of the scalar field for a star with uniform density in 4DEGB gravity for
a = 0.1R? and different values of ji := pR?, with R the radius of the star.

that

1
37 T TR s 1. (4.4.21)

Expressing p in terms of the mass and radius of the star, the inequality

VIR (1 + ap) > %(1 —ap), (4.4.22)

1 / S8aGM

defines the modified Buchdahl bound of the theory. Sumanta and Dadhich [77]
generalized this result to any EOS which the energy density and the pressure are

where

positive and monotonically decreasing. Moreover, the Buchdahl bound intersects
the black hole horizon (4.2.9) at the minimum black hole mass allowed by this
theory, M, = *\/a/G, which was first discussed in Ref. [7].
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4.5 Numerical solutions

In this section, numerical solutions to the relativistic stellar structure equations
in the context of ADEGB for neutron stars will be determined using the EOSs
described in chapter 2. For this purpose, we will normalize the equations (4.3.9),
(4.3.10) and (4.3.12) in the same way as in GR. We write the normalized radial

coordinate z, pressure P and the energy density € as follows
r=ar, P=KP, ¢=KE, (4.5.1)

where the constants a and K are defined in (3.4.10) and (2.3.11), respectively.
Replacing equations (4.3.9), (4.3.10) and (4.3.12), we have

df — 2ea’ + (o/a®) f* + (2° = 2a/a®) f — 2® + a/a®

dx N x(x2 _ Q(Oé/a2)f+2a/a2) y (452)
h_ (e D)
B dr f (332 _ 2(a/a2)f + 204/@2)_’ (4.5.3)
dP __(#+P) [=(a/a®)f* — (2* — 20/a®) f + 22'P + &* — a/a’] (4.5.4)

dr 2ef (22 —2(a/a®) f + 2a/a?)

Here we see that it is convenient to normalize the coupling constant « defining
v := a/a*. Thus, we have reduced the coupled equations (4.3.9), (4.3.10) and

(4.3.12) to the following normalized equations:

df et 44+ (@ =29 f —a® ++

de x (22 —=2vf + 27) ’ (45.5)
dy  22°(e+P)
T EETTEET) (130
dﬁ . _(E‘i‘ﬁ) [_7f2_ (xQ —2’}/)f—|—2x4ﬁ+$2—’}/] (457)

dr 2ef (22 =29 f + 27) ’
where the boundary conditions are: f(0) =1, x(0) = x. and P(0) = P..

To numerically integrate this system of differential equations it is necessary that
the value of x at the origin is known, and for this we will take advantage of the

fact that the differential equation (4.3.10) is linear in y. We write

X(Z) = Xoum (%) + Xes (4.5.8)
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where Ynum is the function that will be integrated with xpum(0) = 0 and the
constant y. is found by imposing x(z1) = 0.

Since the pressure is monotonically decreasing from its maximum value at the
center of the star, there will be a point x = x; such that P(z;) = 0, and this will
be the normalized radius of the star. The radius of the star will be then given by
(3.4.17), just as in GR. However, the mass of the star is obtained by matching the

interior and exterior solutions, solving the following equation for M:

R? S8aGM
foum(R) =1+ (1 1+ c2—33> . (4.5.9)

The system of differential equations for the functions f, y and P cannot be
integrated numerically in a proper manner, since we have a divergence at the
origin due to the division by powers of z, see equations (4.5.5)-(4.5.7). To solve

this problem, a change of variable is proposed for f:

f(z) =1+ 2%g(x). (4.5.10)
Using the expansion (4.3.14), we have

1 327G

:2a

Finally, the system of differential equations that is numerically integrated is

dg 3vg® — 3g — 2€

de — x(1—2yg) (4.5.12)
d_X B 2x (E—i—ﬁ)
dP _x(e+P) 19’ +g - 2P] s

dx 2(1 + 22g9) (1 — 2v9)

Numerical scheme

The system consisting of the equations (4.3.9), (4.3.10) and (4.3.12) is solved

numerically using the fourth-order Runge Kutta method for values of central
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Figure 4.5.1: Solution for a central density p. = 2 x 10'°g/cm?, using the SLy
EOS in 4DEGB for a = 10 km?. The plot shows the metric components eX(") f(r)
and f(r), as well as the pressure and the energy density, normalized with respect
to their values at the origin. The vertical line represents the position of the surface
of the star. The numerical solution (left side of the vertical line) smoothly matches
the exterior exact solution (right side of the vertical line).

3. The complete

density between p, = 2 x 10 g/em? and p. = 5 x 10* g/cm
code can be found in this repository and the integration scheme is the same as
in GR. However, not all densities in this interval are allowed in all cases. For
a < 0 there is, according to (4.3.14), a maximum critical value p. such that
1+ (327rGap.)/(3c¢*) < 0. On the other hand, for o > 0, we increase p. up to the
point when the function f approaches zero, that is, the solution approaches a

black hole.

Figure 4.5.1 shows the plots of the metric functions, the pressure and the energy
density using the SLy EOS for o = 10 km?, we can see the matching between
the interior and the exterior solution. Integrating for various values of central
density, we found different equilibrium configurations that neutron star (modeled
with this EOS) can have in 4DEGB for the same value of the coupling constant,

represented in figure 4.5.2.

In figure 4.5.3a we show the mass-radius relation of stars for the SLy EOS,
reproducing the same result reported in Ref. [25], and in figures 4.5.3¢ and 4.5.3¢
for the BSk19-22 EOSs, using different values of the coupling constant «. First,
we see that positive values of a increase the mass of the NS for any given value of
radius with respect to GR due to the weaker gravity described by a positive a.
The BSk19 EOS predicts smaller and lighter neutron stars, while BSk22 predicts


https://github.com/AleSaa66/Master-Thesis
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Figure 4.5.2: Profiles for neutron star solutions using SLy EOS in 4D Einstein-
Gauss-Bonnet gravity for o = 10 km?.

larger, more massive neutron stars (see figure 4.5.5 for a clear comparison using
a = 10 km?). This is due to the stiffness of the EOS increasing from BSk19 to
BSk22. Therefore, even though the SLy EOS provides a unified model of matter,
the BSk models are more flexible and offer a broader range of possible neutron star
configurations due to their different versions. Finally, in figure 4.5.4a the same
results are shown for the MS2 EOS, which are strikingly similar to those shown for
the non-relativistic equations of state. We note that when the large a solutions
have a maximum mass near the black hole horizon with the non-relativistic EOSs,

this maximum mass point is relatively further from this intersection in MS2.

In figures 4.5.3b, 4.5.3d and 4.5.3f the mass versus central density curves are
plotted for the SLy, BSk19 and BSk22 EOSs. The vertical dashed lines demarcate
the central density where the speed of sound is equal to the speed of light. In figure

4.5.3b the solutions between the two vertical lines do not satisfy the condition



4.5. Numerical solutions 81

of maximum speed of sound. Similarly, in figures 4.5.3d and 4.5.3f the solutions
lying to the right of the vertical line are also excluded. This condition defines
maximum masses for which the solution is reliable. For example, in figure 4.5.3b,
the maximum mass point is located to the right of the first vertical line for
a 2 3 km?, but to the left for smaller o (for instance, @ = 1 km?). In other
words, as we increase the value of the coupling a the maximum mass points of
the M — p. curves move to the left, toward the vertical causality line. Therefore,
there must be a value of a such that all neutron star solutions satisfy the causality
condition, which is the case for & = 300 km?. Cutting the curves at the point
where the causality condition is not satisfied (or simply marking the solution) was
discussed in the previous chapter in the context of General Relativity. Finally in
figure 4.5.4b the same data is plotted for the relativistic MS2 equation of state -

in this case the causality line is absent as this EOS always respects causality.

Charmousis et. al. [25] pointed out that at high densities, the neutron star
equilibrium configurations approach the black hole limit asymptotically, and we
have numerically confirmed that these two sequences (NS and BH configurations)
become arbitrarily close near the minimum mass black hole of the theory. This
result is compatible with the modified Buchdahl bound of this theory given by
(4.4.22). This compatibility is due to the fact that the Buchdahl bound intersects
the black hole horizon (4.2.9) at the minimum black hole mass allowed by this
theory, M, = ¢*y/a/G. These results imply that compact objects in 4DEGB can
have radii smaller than those of the GR Buchdahl bound R > 9GM/ 4¢? or even
that of the Schwarzschild radius ry = 2GM/c?.

In short, we find that the neutron star solutions in 4DEGB gravity are qualitatively
similar for each of these EOSs. We explore the effects of different possible values
of the 4ADEGB coupling constant « and find that larger values of a tend to inflate
the mass-radius profiles. In table 4.5.1, we show the maximum masses and the
corresponding radii for « = 0 (GR), @ = 10 km? and o = 100 km? and for
the different EOSs. We see that the maximum masses increase with increasing
«, whereas the radii stay essentially unaltered. In addition, difference amongst
the maximum masses for different EOSs are suppressed for higher values of a.
For o = 300 km?, M. = 11.66 M, and R = 17.33 km for all realistic EOSs
considered in this work, these values approach the mass and radius of lightest
associated 4DEGB black hole.
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Figure 4.5.3: Mass versus radius and central density curves for neutron stars
using the SLy, BSK19 and BSk22 EOSs in GR (black solid line) and in 4DEGB
gravity for different values of « (colorful solid lines). The starred points mark the
last NS configuration where the speed of sound is equal to the speed of light. In
the plots (a), (¢) and (e), the dashed lines represent the mass-radius curves for
the relevant black holes, and the dashed-dotted lines correspond to the Buchdahl
limits in these two theories of gravity. In the plots (b), (d) and (f), the vertical
lines mark the central density where the speed of sound is equal to the speed of
light.
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Figure 4.5.4: Mass versus radius and central density curves for neutron stars
using the MS2 EOS in GR (black solid line) and in 4DEGB gravity for different
values of a (colorful solid lines). In the plot (a), the dashed lines represent
the mass-radius curves for the relevant black holes, and the dashed-dotted lines
correspond to the Buchdahl limits in these two theories of gravity. In plot (b)
we note the lack of a vertical line marking the transition from subluminal to
superluminal sound speeds as this EOS always respects causality.
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Figure 4.5.5: Mass-radius relation for neutron stars using the SLy, BSk19-22 and
MS2 EOSs in 4DEGB gravity for v = 10 km?. The black solid line corresponds
to the mass-radius relation for the black holes, and the dashed line represents
the 4ADEGB Buchdahl limit for that particular value of a. In contrast, the grey
solid and dashed lines show the mass-radius relation for the black holes and the
Buchdahl limit, respectively, in General Relativity. The coloured dots mark the
maximal mass point of a given curve.
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Figure 4.5.6: Mass versus radius and central density curves for NS using the SLy
EOS in 4DEGB gravity for a = 10® km? and o = 10* km?. In plot (a) the dashed
lines represent the black hole horizons, and the dashed-dotted lines correspond to
the Buchdahl limits in these two theories. The maximum mass solutions effectively
overlap with the minimum mass black hole horizon/Buchdahl bound intersection
point. In plot (b) the vertical line marks the central density where the speed of
sound is equal to the speed of light.

a=0 a = 10 km? a = 100 km?
EOS Mmax (MG)) R (km) Mmax (MQ) R (km) Mmax (MQ) R (km)
BSk19 1.86 9.10 2.58 9.04 6.73 10.61
SLy 2.05 9.98 2.70 9.97 6.74 11.34
BSk22 2.26 11.20 2.84 11.11 6.75 12.17
MS2 2.78 13.24 3.25 13.42 6.80 14.37

Table 4.5.1: Maximum masses with their respective radii for SLy, BSk19, BSk22,
MS2 EOSs in GR and 4DEGB for o = 0 (GR) and o = 10 km?.

4.6 Radial perturbations

Equilibrium configurations of a compact star are obtained by integrating the
equations (4.3.9)-(4.3.12). In what follows, we will study whether that equilibrium
is stable under adiabatic radial oscillations following the approach of section
3.5. In GR, a necessary but insufficient condition for the stability of compact
stars is dM/dp. < 0, corresponding to the parts of the solution curves before
the maximum mass point. There is no similar theorem in 4DEGB, so we will

investigate if this holds in spite of the modifications to gravity.

Consider a perfect fluid sphere oscillating radially with a small amplitude and

radial displacement dr . Since the oscillations are radial, the spacetime preserves
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its spherical symmetry. Thus, we can express the line element as follows

2
ds? = —ex f(da®)? + 2

7 + r2(d6? + sin? Odp?), (4.6.1)

where 20 = ct, x = x(2°,7) and f = f(2°,r) are the new metric functions, which

have now been perturbed. With this we can write

x(@°, ) = xo(r) + 6x(2°, ), (4.6.2)
f@°r) = fo(r) +0f (%), (4.6.3)

where we have used the subscript 0 to denote the field in the equilibrium
configuration (non-perturbed). Similar expressions are constructed for the scalar

field, the pressure and the energy density.

The expression obtained for the Eulerian perturbations of the pressure and the
energy density in section 3.5 are independent of the gravitational theory. Thus,
with the substitutions

e* = eXf, e — —, (4.6.4)

we can write equations (3.5.32) and (3.5.37) as

_ 5f o, 0 [r?%0r )
SP=TP, [Z_fo —\/ for 25 <7 } — Pjor, (4.6.5)
2
de = (eg + Py) {5—}; — \/for_Qg (%)} — €,0T- (4.6.6)

Field equations

The relevant components of the (linearlized) energy-momentum tensor (4.3.3) are:

(60 + Po) aor
Top = ——2 W2 4.6.
or cfy Ot (4.6.7)
1
T = — (Po + 6P — P0ﬁ> . (4.6.8)
fo fo
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The linearlized scalar field equation (4.2.2) is given by

(X0f11/2 —2f11/2+f9/2f0 +2f0) 926 ¢+2 (X 11/2 +2f11/2 "
R+ R AR +2xofo+4fofo)a§f
=203 (26 + Xofor + fir 2fo) O (ol — R — ol
AT 2 i~ 2+ i+ 25 — 253 4fa‘) 6f = 0.

(4.6.9)

On the other hand, the (0r) and (rr) components of the linearized field equation
(4.2.3) are given, respectively, by

r? 4+ 2a(1 — fo) 98 f 871G (eo + ) Or
T’Sfo ot N ct fo ot’

65X 1 85f 1 / /
(7’2 + 20((1 — fo)) ( or + % ar ) r2fé)/2 <—2axorf9 2 f 5 2

e
+ = R afy? - 20<f67“f§/2 + 2047 f3 + 1217 + 3afy”

98¢ _ 8nG r*6P

3/2 ! 1/2_2 3/2

< + fO f ) C4 fo ’
(4.6.11)

(4.6.10)

1
r

+2aforfs —dafs) of - f3/2

the other components are fully satisfied. Solving the equation (4.6.10) for § f, we

find that
81G (60 + P())T?’(ST

ct r? —=2afy+ 2

of = = foxoor, (4.6.12)

where we have used equation (4.3.10) for xg.

Equation (4.6.12) allow us to write the perturbations P and d¢ in terms only of

the fields in the equilibrium configuration and the radial displacement J7:

oP = —rpoﬂmexo/?g—i — PJor, (4.6.13)
e = —(eo + PO)M\/Eexo/?g—U — €)or, (4.6.14)
T

where we have used the normalized displacement function (3.5.55) express in terms
of f and y:

r2e—xo/2
o= T or. (4.6.15)
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Replacing (4.6.12) and (4.6.13) in equation (4.6.11), we obtain an equation for
0dx/Or in terms of the ¢ and Jr:

gox  06p O
W = CIW + CQW + 03(57“ (4616>

where the coefficients are

Aoy (r 3/2 ’—2f3/2+rf1/2f0+2f0>

¢ = , (4.6.17)
£33 (r? = 20.fy + 20)
1/2 x0/2+/ P+ TP
o= _d0€ >2<0<€° +P o+ Th) (4.6.18)
r2(eo + Fo)
eXo/2

03 = — (—Garfg’xgz + 13 f2xE + dary? 3/2 — darfixy

2r3f3/2(r2 —2afy + 2a)

167 G
+2r° fixG + 20 fExG — 6arx fo 15 + 1 fofoxo + ——1 Po foxo + 10af X
16 G
+ dar f2x0 — 4r* fixy + 2arxo fifo — 804f?’/2 L+ 4arf1/2f Xo + il r fo P
—8C¥f02X6 + 2T2f0X6 + 60Zf0X,0) .
(4.6.19)

Momentum conservation

Consider the r component of the conservation law of the energy-momentum tensor,

if we linearized this equation, we have

€0+ Py 0% o+ P06 f oy (1 of
220 07 T 2f, or +2(€0+P°> or T\ greleotRo)+Fy )=
P (., fi
or 2 ( fo

) (0e + 6P) = 0. (4.6.20)

Using the expressions for 6 f, dx, 6P and de in (4.6.9) and (4.6.20), we obtain the

dynamic equations for o and d¢, respectively,

2 2q
Al )aﬁﬁ +A(r )g 7 +As(r )?*’AZL( Jo + As(r )8;7? 0, (4.6.21)
2
BuN Tl 4 Balr) 58 + Byr) 97 + Bulr)o = 0, (4.6.22)
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where the coefficients are given by

(60 + P0)6X0/2

A = 4.6.2
1 2r2 f, ) (4.6.23)
Ay = —T'Pyr—2 fpe?xo/2, (4.6.24)
d
Ay = —— [Py foe™?] | (4.6.25)
T
(60 -+ P0)63X0/2 62
Ay = 12 2foxo +2f5 — T
(60 + P0)63X0/2 [ / / 3/2 ! pl
—4 —2)f% g V/
Afor3(r2 — 2afy + 20) aXo(rXo ) fo arxofov fo
+rf2(r + 2afo + 20)XE — foxh (—2r(r? 4+ 2a) fy — 6 fia (4.6.26)
817G 8 G
HA(r 4 20) fy — —Zegrt + — (r2 +3a)>
! 2 2 G 4
+fo <8f0a —4(r* 4 2a) fo + —r" (€0 + Po))} ;
) 2a(eo + Fy) (T\/%Xf) + U5 fo ) exo oo
°T r?2 — 2afy + 2« ’ (4.6.27)
By =8P (rf2xh + 2122 + rfo fl — 212), (4.6.28)
By = 4r'(rx f3 + 2057 X0 + 4r fofoxt + 260 + 20 fofg + S (4.6.29)
+4foN fo — 410 f0),
By = —Axor(xofar + 2f3° + v fofy — 203)ex?, (4.6.30)
By = =2 (20X [ + 10 + 532 fofy + 4 f?xgxg Sry2 /2
202 Y fo 4 TSR A ALEPNI 2 fox i — 12122y (4.6.31)

+4xoV/ fofor — 107 fofoxo — 4f0 rxo + 12f; X6> eXo/2,

The solutions of equations (4.6.21) and (4.6.22) are physically acceptable if
the displacement function ér does not produce infinite density and pressure
perturbations at the center of the star and leave the pressure equal to zero at the
surface of the star. Therefore, the boundary conditions (3.5.65) and (3.5.66) still
hold for o and AP, respectively.
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4.6.1 Numerical analysis

Assuming that the normalized displacement function and the perturbation of the

scalar field has a harmonic time dependence, we can write

o(2°,7) = u(r)e ™", (4.6.32)
Sp(a°, 1) = p(r)e ™. (4.6.33)

Therefore, the evolution equations (4.6.21) and (4.6.22) reduce to

AQU” + Agul -+ [A4 — W2A1]U + A5Q0/ = O, (4634)
B1Q0// + BQQO/ + B3U/ + B4U =0. (4635)

Note that equation (4.6.34) can be written as

d
—% (AQUI) = [A4 - szl]u -+ A5§0/. (4636)

On the other hand, if we multiply the equation (4.6.35) by some function 7, and
divide it by By, then we have

" 7732 SO/ + 7733 u/

B
ny  + +n4u

= 0. 4.6.37
B By By ( )

If we want to complete the derivative for ', we need that

d?’]_ BQ

=2, 4.6.
ar "B (4.6:38)

Solving for n, we obtain the following integrating factor:

n(r) = exp (/ %dr) =V (TfoX6 +rfi+ 2 fo — fo)> o2 (4.6.39)

Thus, we can write equation (4.6.35) as follows

By
By

Bs

(n¢") + Blnu’ + —nu = 0. (4.6.40)

a
dr
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Defining v := —Asu’ and ¢ = ny’, the system of second order differential equations
given by (4.6.36) and (4.6.40) can be written as the following system of first order

differential equations for the functions u, v and :

u' = dyv, (4.6.41)
v = [dy + wd)u + dyib, (4.6.42)
w/ = d5’U + d@U, (4643)
where the coefficients are given by

dy = _ 1 (4.6.44)

1 A27 cJ.
dy = Ay, (4.6.45)
ds = — Ay, (4.6.46)

A5 20./(60 + P0)6X0/2
d, == = , 4.6.47
Yo = 2a +20) 047
B / / 2 o /
dy = —3 p = (rfoxo + o+ 2(VFo — fo)) X07 (4.6.48)
BlAQ 2FP0\/%€X0/27’
B, B4€X0/2

de = ——nN=——"7. 4.6.49
6 Bln 87“4\/% ( )

Near the origin we expand the functions u, v, ¥, I', Py, €q, fo and drq as per equation
(4.3.13). Using the boundary condition (3.5.65), we have ug = u; = ug = 0. In
addition, we know from the non-perturbed case that fy(0) = 1, f;(0) = 0 and
X6(0) = 0. Therefore,

u(r) = uzr® + O(rt), (4.6.50)
Jo(r) =1+ ]'?0,27”2 + fo,37“3 +0(rh), (4.6.51)
Xo(r) = Xe + Xo2r? + Xoar° + O(r?). (4.6.52)

Replacing these expansions in equations (4.6.41)-(4.6.43), we obtain

v(r) = 3usl(0)P.e®X/2 + O(r), (4.6.53)
W(r) = ar® + O(r?). (4.6.54)

Choosing uz = 1/(3T'(0) P.e*¢</2), the initial values for the integration are u(0) = 0,
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v(0) = 1 and ¢(0) = 0. With this choice we do not lose generality because the
differential equations are linear, and it is equivalent to divide the system of
equations by 3usI'(0) P.e®X</2 and define new variables @ := u/(3usl'(0) P.e®x</2)
and ¥ := u/(3usl'(0) P.e®</2). At the surface of the star the condition (3.5.66)
translates to v(R) = 0. Equation (4.6.36) with these boundary conditions would
be a Sturm-Liouville problem if it were not for the differential equation (4.6.40)
for the scalar field coupled to (4.6.36).

Perfoming a dimensional analysis, we find that « has units of length cube, v has

units of pressure and ¢ has units of one over length. Therefore, we propose to

rewrite these functions in terms of normalized functions in the following way:
ulr) = a(r), o) = K50y, o) = 20, (4.6.55)

a

where the constants a and K are defined in (3.4.10) and (2.3.11), respectively.

Following the same approach as in the static case, we express the radial coordinate,

the pressure and the energy density as

T =axr, P() = KF(), €0 = KE(). (4656)

Thus, we can write the normalized form of the system of differential equations
(4.6.41), (4.6.42) and (4.6.43) as follows

du -
ﬁ — 4,7, (4.6.57)
do _ _ _
é = [dy + Q2d3)T + dud, (4.6.58)
-
— = d5v + dgu, (4.6.59)

where Q2 := a?w?/c? is the normalized squared frequency and the coefficients are
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given by
2
dy=—" (4.6.60)
FPOfOe3XO/2
- (& + Po)e>o/? Exo L dfy 1 (dfy)
dy = 2, L0 4 o0 S0 2 (fo
2 42 fo dz? + dz?  fo \ dx
(€0 + Po)e*x/? o (Ao o e
4 fox3(x? — 2vfo + 2) dx dx 0
dx df dxo\”
— 4z ° 0\/%+xfo (z +2'Yf0+2/7)<d > (4.6.61)
dXO 20 +29) X0 612 1 4(a® 42
—Jo o~ (2% + M)y~ 6fav 4z +29) o
—2egz" + 2Pz + 2(z* + 37))
Lo g 4 2 2 P
+ (8157 = 4(2® + 29) fo + 22" (20 + Po)) | »
- (Eo + ]_30)6X0/2
ds3 = ——-—F"—— 4.6.62
’ z? fo 7 (4.6.62)
- 2")/(50 + ﬁo)eXO/Q
d, — , 4.6.63
U foa? = 2vf0 + 29) (46.63)
7 _ o+ 2 20— fo) dxo (46.64)
o 2Tz Py/ foexo/2 dr’ o
- exo dxo dxo )’ 3/2 dxo\? 5, dfo
— 9 2X0 2xo o
s 4\/%:1:4<x ( > fo+ (d:c) 0 D dx xfodx
d*xo dx dx dx d* f
+4dx deQOd_O_8 ( 0) fe+ —2 g Ofo
(4.6.65)
dxo o (dfo 3/2 dXo dfo 3/2dX0
X0 2 (20 P 4o 19 3/20X0
dr (dx AR 2 g =12
d d dfo d d2 od
XO\/%ﬁx—loﬂffog%— 420 4122 X“)-

The boundary conditions at the origin are: @(0) = 0, 7(0) = 1 and ¢(0) = 0, and
at the surface of the star (R = axy), v(x;) = 0.

The system of differential equations for the functions @, 7 and 9 cannot be
integrated numerically in a proper manner, since we have a divergence at the

origin due to the division by powers of x, see the coefficients in (4.6.60)-(4.6.65).
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Figure 4.6.1: Changes of variable for radial perturbations.

To solve this problem, a change of variable is proposed for u:
u(x) = h(z)2?, (4.6.66)

such that h(0) = 1/(31(0)P.e**</2). A summary of all the changes of variable

made in this section is found in figure 4.6.1.

Thus, the system of differential equations that is numerically integrated is

dh  ~_  3h
dv ~ D
Ir [da + Fds]h + dat), (4.6.68)
dy -~ -
— = dzV + 6h, (4669)
x
where the coefficients are given by
g — 1 (4.6.70)
e IFP0f063X0/27 o
dy = 2°ds, (4.6.71)
- 0 -+ Po)eXo/2
g, = _ S+ Poere™ (4.6.72)
Jo
dy = dy, (4.6.73)
ds = ds, (4.6.74)
JG = SBSCZG. (4675)

To find the appropriate numerical method to integrate the system of equations

(4.6.67)-(4.6.69), we assume that there is an ordered set of frequencies w < w? <
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Figure 4.6.2: Normalized Lagrangian perturbation of the pressure inside the
star for several test values of w? with central density p. = 7.47 x 10 g/cm3.

w3 < --- such that the n-th frequency corresponds to an eigenfunction with n

nodes that satisfies the boundary conditions of the problem. We can observe this
behavior in figure 4.6.2, which shows solutions for the Lagrangian perturbation of
the pressure for some values of w?. This property is typical of a Sturm-Liouville

problem, and so we use the same shooting method discussed in subsection 3.5.4.

As a demonstration, we have computed the radial profiles of the radial displacement
modes 07, the Lagrangian perturbation modes of the pressure AP,, and the
derivative of the perturbation of the scalar field modes dy,, /dr for the fundamental
mode (n = 0) and the n-overtones (n = 1,2,10,15) for a NS of mass 1.08 Mg
and radius R = 12 km using the SLy EOS for a = 10 km? (see figure 4.6.3).
We observe that the amplitude of the radial displacement grows as the radial
coordinate increases, whereas AP and dp/dr oscillate with a decaying amplitude
before vanishing at the surface of the star. Nevertheless, all the functions are
smooth respect to the radial coordinate. For higher-order modes, some of the
nodes move across the core-crust transition and lie in the crust, where the radial
displacement changes signs rapidly with a large amplitude, but AP, possesses
a small amplitude in the crust. This behavior were observed in GR (see figure
3.5.5). We discovered that the apparent divergence of the radial displacement at
the surface of the star is due to numerical error. This, however, does not affect

the values of eigenfrequencies.

In figure 4.6.4, we show the eigenfrequencies of the first three oscillation modes
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Figure 4.6.3: Plots of the radial displacement modes dr,, the Lagrangian
perturbation modes of the pressure AP, and the derivative of the perturbation of
the scalar field modes dyp,, /dr with respect to the normalized radial coordinate
r/R for the fundamental mode (n = 0) and the n-overtones (n = 1,2,10,15) in a
NS of mass 1.08 M, and radius R = 12 km using the SLy EOS for a = 10 km?.

as a function of central density for the SLy EOS with a value of o = 10 km?.
We observe that the squared frequencies of the overtones remain positive for all
central densities, but for the fundamental mode there is a value of p. for which
w2 becomes negative (and remains so). The point where wy is zero coincides with
the maximum value of the mass, namely 2.70 M. Consequently, all NS solutions
with central density greater than this critical value are unstable. This result is
similar to GR where the change of stability also occurs at the maximum mass
solution. If we vary the value of the coupling constant «, we obtain the same

result, see figure 4.6.5a.

In figures 4.6.5 and 4.6.6, the results of the fundamental eigenfrequency are shown
for the BSk19, BSk22 and MS2 EOSs for different values of «. In figure 4.6.7, we
compare the fundamental frequencies of the SLy, BSk and MS2 EOSs. Based on
these results we can say that the change of stability for NS in 4DEGB gravity
also occurs at the maximum mass solution (independent of the EOS or whether
it is relativistic). Interestingly, in the fundamental eigenfrequency versus central
density plots we notice the curves start to approach a positive value again near
the BH horizon of the theory. We can interpret this as if the NS solutions were
trying to return to stability near the maximum central density, unlike in Einstein’s
theory, where they remain wholly unstable. We find that higher values of the
4DEGB coupling « tend to increase the mass of neutron stars of the same radius

until the maximum mass point is at the end of the mass-radius curve. These
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interesting parts of the solution space show possible extreme compact objects,
too dense to exist in GR. For instance, if @« = 100 km?, we obtain stable NS
solutions (under radial perturbations) that satisfy the causality condition with
masses greater than a black hole in GR for the same radius (see figure 4.5.3 and
4.5.4).

o ‘1‘0‘15 ' ' D ‘1‘0‘16 ' ' e ‘1‘0‘17
pe (g/cm?)

Figure 4.6.4: Eigenfrequencies of the first three oscillations modes for v = 10 km?
using the SLy EOS. The green point indicates where w? becomes negative, which
coincides with the maximum value of the mass 2.70 M.
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Figure 4.6.5: Fundamental eigenfrecuency and mass versus central density curves
for neutron stars using the SLy, BSk19 and BSk22 EOSs in GR (red dashed line)
and in 4DEGB for different values of « (blue lines). In the plots (a), (c) and (e),
the colored circles mark the spot where the fundamental eigenfrecuency is zero,
while in the plots (b), (d) and (f) they mark the maximum mass. In the plots the
vertical lines mark the central density at which the speed of sound is equal to the
speed of light. Beyond this value of density the speed of sound will be greater
than the speed of light, breaking causality. In plots (a) and (b) the second vertical
line marks the central density at which the speed of sound is again subluminal.
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Figure 4.6.6: Fundamental eigenfrecuency and mass versus central density curves
for neutron stars using the MS2 EOS in GR (red dashed line) and in 4DEGB for
different values of a (blue lines). In the plot (a) the colored circles mark the spot
where the fundamental eigenfrecuency is zero, while in the plot (b) they mark the
maximum mass. We note the lack of vertical lines marking the transition from a
subluminal to superluminal sound speed in these plots, as the MS2 EOS does not

have problems with causality.
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Figure 4.6.7: Fundamental eigenfrecuency versus central density and mass curves
for neutron stars using the SLy, BSk19-22 and MS2 EOSs in 4DEGB gravity for

a = 3 km?.
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Chapter 5
Conclusion

The objectives set out at the beginning of this work have been fulfilled and we have
verified our hypothesis, since neutron star solutions were studied and analyzed
in this new theory of gravity known as 4D Einstein-Gauss-Bonnet. In short, we
have investigated the stability of neutron stars using the SLy, BSk and MS2
EOSs, the latter being the only relativistic. We found that the neutron star
solutions in 4DEGB are qualitatively similar for each of these EOSs, with a larger
« increasing the mass of the neutron star. Our numerical results indicate that the
coincidence of the maximum mass points with the transition to instability still
holds in this modified theory of gravity. Surprisingly, we have found solutions
for which the fundamental eigenfrequency w? returns to zero for large values of
central density. This happens, for instance, when p. ~ 10*" g/cm? for the MS2
EOS and a = 10 km?, exhibited in figure 4.6.6a. Such results hint at possible
strange black hole-sized stable objects that are not present in GR.

For some EOSs and some values of a we found that the maximum mass points are
not reached before causality-violating pressures are required, however maximal
solutions do exist that respect causality. For example, for the BSk19 EOS the
maximum mass solution is not physical for a < 100 km?, however the maximal
solution for a = 300 km? does respect causality (see figure 4.5.3d). For large
enough coupling to the higher curvature gravity terms a maximum mass is not
attained until the solution curve merges with the black hole horizon. This means
that there is a whole range of stable 4DEGB objects that are disallowed in GR,

many of which are smaller than the GR Schwarzschild radius. Observation of an
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extreme compact object with these characteristics could be interpreted as evidence
for these higher curvature contributions to gravity having an important role to

play in real gravitational dynamics.

Nevertheless, it is important to highlight potential improvements to this work.
For instance, exploring other relativistic EOSs. One could also try to better
understand the behavior of the radial displacement at the surface of the neutron
star, which we have shown to be numerical in nature and does not affect the
eigenfrequency values. On other remaining question could be to understand why

the static NS solutions approach the black hole limit asymptotically.

As with all research work, this study does not end here; different new lines of
future research can be explored to expand and deepen the obtained results. For

instance,

- The study of other (hypothetical) compact objects, candidates for objects
more massive than neutron stars but less massive than a black hole, whose
equations of state differ significantly from those used for neutron stars, such
as quark stars or hybrid stars. In the literature, equilibrium solutions of
quark stars in 4DEGB have already been documented in Ref. [71], but it

remains to be done the analysis of the fundamental radial oscillation modes.

- The analysis of the stability of charged stars, because in General Relativity
the presence of charge can increase the stability or new instabilities can
appear [7%|. In principle, it is possible for charged stars to exist, but the
observed stars are globally neutral due to the neutralization. However, in
extreme conditions such as quark or strange stars, the presence of residual

charge may be relevant to their stability.

- Another interesting direction is to explore other modified theories of gravity,
both purely metric theories and theories with additional degrees of freedom
(e.g., a scalar field). The remarkable thing about this work is that despite
not defining a Sturm-Liouville problem, the equations can be solved with
the same numerical methods used in GR, thus providing a procedure to
address the problem of radial oscillations in stars in scalar-tensor theories of

gravity.
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Appendix A
Newtonian stellar equilibrium

Consider a star modeled as a spherical, static, non-relativistic perfect fluid in
equilibrium. Since the perfect fluid is incompressible and non-viscous, its dynamic

is described by the Euler equation [5]:

—

N (00 . S S
o) =otd) (G + 0 V0F) =-P@+ fD, ()
where U(Z,t) is the flow velocity of the fluid and f is the external force density
acting on each fluid element. In the static case, the flow velocity vanishes,

#(Z,t) = 0. Therefore, equation (A.1) reduces to

—

VP(F) = f(7). (A.2)

In our case, the only external force is gravitational, acting on a fluid element of
mass dm = p(Z) dV, where p(¥) is the mass density. The gravitational force is
given by dﬁg = —dmﬁ@ where ¢ is the Newtonian gravitational potential that

satisfies the Poisson equation

V3¢ = 4nGp. (A.3)

Thus, the force density is f = —pV¢ and the equilibrium condition can be

expressed by ip 0o

% = _p%’

(A4)
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where we have assumed spherical symmetry.

Integrating the equation (A.3) from the center of the star to an arbitrary radius

r, we obtain
.

f@_4ﬂé/ﬁf%W%:GM@% (A5)

dr 72

0

where we have defined the mass function M(r) by

M(r) = 4n /Or dr 7 p(F), (A.6)

or
—— = 4mr?p. AT
- p (A7)
Physically, the function M(r) (in this non-relativistic context) represents the
mass of the star within the radius r of the star. When we write (A.6), we assume
that there is no point mass in the center, since we would have a Dirac delta that

would cancel the integral.

Replacing the equation (A.5) in (A.4), we obtain the Newtonian hydrostatic

equilibrium condition:

dP GM

dr 72

p- (A.8)

Note that, since p > 0, the pressure is a monotonically decreasing function in the

radial coordinate.
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Appendix B

Derivation of the Sturm-Liouville
problem for the radial perturbations

in General Relativity

The line element for the radial perturbation problem is given by
ds® = —e®(da®)? + Pdr? 4 r*[d6? + sin? Odp?), (B.1)

where 2° = ct, @ = a(2%,r) and 8 = B(z° r) are the perturbed metric functions.

We can write
a(2®,r) = ag(r) + da(z®,r), (B.2)
B2, 1) = Bo(r) + 66(z°,7), (B.3)
and similarly for the pressure P, the energy density € and the baryon number
density n.

The components (0r) and (rr) of the Einstein tensor, when we evaluate the metric
(B.1), are:

— = 20 B.4
GOT’ cr at (:C 7T>, ( >
1 0 e
— = | BEr) 00 _
Gy S| rw (%, r)—1]. (B.5)
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At first order, we can write these components as follows

Gor = 2 (B +68) = - 2L (B.6)
G = —;2 {eﬂoe‘m — r%(ao + o) — 1]
:—r%{ °(1 —1—55)—1”%— %?‘-1] (B.7)
1 10
= (Gl — o038+ 100
where
(Grr)o = _r_12 {eﬁo - 7’% - 11 (B.8)
is the (rr) component of the non-perturbed Einstein tensor.
The covariant components of the 4-velocity (3.5.16) and (3.5.17) are:
Uy = —ce™/? (1 + %5@) , (B.9)
u, = P25y (B.10)

Thus, the components (0r) and (rr) of the energy-momentum tensor (3.2.7) are
Tor = (€0 + Py + de + 5P)%% + Pgo,
1 1 .
= —~(eg + Py + de + 6 P)e™/? (1 + §5a> efo—ao/25y (B.11)
c
1 .
= ——(€o + Pp)e™or,
c
T, (€0+P0+5€+5P)( ) +PM

1 :
= g(Go + Po + de + (5P)6260_a05r + (Py 4 0P)e™e

(B.12)
= (Py+dP)e™(1+4p)
= Pye® + Pye?#068 + §Pe.
Consequently, the (0r) component of the field equation reduces to
) .
08 _ 87TG r(eo + Po)e®or. (B.13)

ot
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Integrating with respect to t, we obtain the equation for the evolution of the

perturbation 5:

dp = —8726’(60 + Py)reor. (B.14)
c

Note that the integration constant is zero because 65 = 0 when dr = 0. Moreover,
the equation for the perturbation 65 depends only on the equilibrium configuration
and the displacement dr. Now, if we sum the equations (3.5.2) and (3.5.3), we
found that

day n d_ﬁo 81G

= i (€0 + Py)re™. (B.15)

Thus, we can write equation (B.14) as follows:

TG

ct

0 = —

(B.16)

(€0 + Py)re®ér = — (dao + d—ﬁo> or.

dr dr

This equation allow us to write the equations for the evolution of the perturbations
on, 0P and de in terms only of the fields of the equilibrium configuration and the

radial displacement dr since

1 1 [da dg
—2 —,30/2 2 60/2 / - — —2 —50/2 2 ,30/2 /_ - _O _0
r e (rée”26r)" + 2(55 r ‘e (ree™/=or) 5 ( o + I ) or

1 1 1
= —[yor + r2(r?or) — 504657“ — 55657“

T2

_ 1 e0/2
— (r 2(r?6r) — 5046(57") ]
_ (T_Q(T25T)/6_a0/2 + (B_QO/Q),(ST) eao/z
= 7“_2(7“257“6_0‘0/2)'60“0/2. (B.17)

=

Replacing the above equation in equations (3.5.28), (3.5.32) and (3.5.

write them as follows:

on = —ngr—2(r20re=0/2Y /2 _ nl §r, (B.18)
6P = —T Pyr~%(r26re=0/2) ex/2 — Plor, (B.19)
oe = —(eq + Po)r~2(r20re=0/2) /2 _ ¢ §p., (B.20)

On the other hand, using equations (B.7) and (B.12) in the (rr) component of
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the field equation, we can write

1 1 doa  8nG

(Grr)[) - T_eﬁo ﬂ 87’ - C (Poe’BO -+ Poe’BO(SB + (5Peﬁ°) (B21)
) 196a  8nG y )
—ﬁeﬁ 0B+ = (Poe™8pB + s Pe™) (B.22)

where in the last line, the field equation (G, )y = 8:—4GP0€’80 for the equilibrium

configuration was used.

Using equation (B.14) to remove 64 and (B.19) to remove 0 P from the equation
(B.22), we obtain

81G 1 dda 81G [ 8nG
cAr (co + Po)eor + ror ( ! Py(eo + Po)re*or
+ T Pyr=2(r?6re=0/2) g0/ 250 —i—Pé(Sre*Bo) ,
(B.23)
100 811G G 1
;a—:éz : (0 + Py)e 2ﬂ°(5?"<7r Por + )
(B.24)
— —87TGFP or 2 (r28re 0 2) g0/ 20 _ —87TGP65T660
4 b
00 8 G G
a—a = T (60 + P()) 26067” (T(—P[) + 1)
r ct
(B.25)
87TG “L(r2grema0/2) g0/ 2o _ —87T4GP67’57”660.
From equation (3.5.4), note that
— SWG €0 + Py)e?Poor —87TGP0T2 +1) - SIS rore™
4 4 0
_8nG G 16 G 87
= 7T4 (€o + Py)e*Poor (LpoT + 1) T Pjrére + 72 Plrore?
c c
_8nG 87G 87G 87G
—— (€o + Py)e*Poor (W—4P0r2 + 1) + 71 (€0 + Py)arore™ + W—4Pér5reﬁo
ct c c
87 87G 871G
= : (€o + Py)ePoor [—C e® Pyr? + ef0 — agr} + —:4 Plrore
_8nG 8rG 887G 87
S (€0 + Py)e o sy —eﬁOPor +efo 41— _ T 2 Pyeo +—7T Pérdreﬁo
ct ct C ct
_8 G
z [Pir — eg — Pyl e™dr. (B.26)

C4
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Replacing equation (B.26) in equation (B.25), we obtain the equation for the

evolution of the perturbation da:

)
E?a_oz — _87T4GFPOT’166“0/2+60 (rle=/25r) + @ [Pir — e — Pyl e®or. (B.27)
r c ¢

Momentum conservation

Consider the conservation law of the energy-momentum tensor (3.2.25). Using

the form of this tensor for a perfect fluid (3.2.7), we find that
O, (€ + P)ufu” + (e + P)a* + (e + P)u*V, u” + ¢*¢"*9,P = 0, (B.28)

where a* = u”V, u" is the 4-acceleration of the fluid. Taking the r component
of this equation, the first and third terms vanish, since u" is of first order in the
perturbation and both 0, (e + P)u” and V,u" are also of first order because they

are zero in the equilibrium configuration. Thus, equation (B.28) reduces to

(e + P)a" + e PP =0. (B.29)

Let us determine the a” component of the 4-acceleration, to first order:

a" = u'Vou" +u"V,u"

1 0u” ,

C
Oa r
- %a—i 7 (1) + T7g, (B.30)
But, 5 5
1 1
= Leap02 e 108 (B.31)

2 or’ o 99t

Therefore, the last term of equation (B.30) is of second order. Replacing the

expressions (3.5.16) and (3.5.17) for the components u® and ", respectively, in
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equation (B.30), we obtain

raeo (1o Ls 5"+f—ﬂ° dag=98 (1 —§ )2( + dav)
a =< e 2 (8% T 26 e e (6% ar (7)) (6%
2

~ e + Se (14 80)(1 - 68)(1 — da) (o + 8a)

e 2 2
e + CEe_ﬂo(l —0f)ag + %6_5060/. (B.32)

Thus, equation (B.29) can be written to first order as follows

(€0 + Po)a” + (de + 6P)a” + P (1 — 68)(Py + 6P') = 0, (B.33)
.. 2 2
(o + Py) |e~6r + %e’ﬁo(l —6f)ag + %67’8050/
2 (B.34)
+ S e+ OP)e ey + e (1 — 8B)(B) + 0F) = 0.

Using equation (3.5.4) to express B} in terms of «y, equation (B.34) reduces to
2 2

(60+P0)e’°‘05'%+%(604—]30)6’5060/—1— 5 (be+0P)e ™af4cPe 5P = 0. (B.35)

Multiplying by e /c? on both sides of the equation, we obtain the equation for

the evolution of dr:

1 | 1
— (€0 + Py)ePomosr + 5(60 + Py)oa’ + 5(56 +0P)ay + 6P = 0. (B.36)
c

Now, our mission is to obtain an equation for the evolution of dr that depends
explicitly on equilibrium configuration. For this purpose, replace equation (13.27)
for 6/ and equations (B.20) and (B.19) for de and § P, respectively,

1 .
—2(60 + PO>€50*0405T
C

e
= _ﬂ4 (e0 + Fo) [FPOT_leao/er’Bo (T2€_a0/25r)/ - (Pé?“ — & — h) 65057“]
C
1
n 5 [(60 1 PO)T_Q(,rQéTe_aO/Q)/eOéO/z 4 FPOT—2(7,25T6—&0/2)/6040/2

+epdr + Pyor] ag + [DPor2(r?0re=/2) e/ 4 P(;(Sr}/ : (B.37)
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If we define the renormalized displacement function
o = r2e /25y, (B.38)
we can write equation (B.37) as follows

—(€g —2pfo—a0/25
12( + Py)r—2efoma0/25
C

B e

=4 (€0 + Fo) [TPor_leo‘O/“BOa’ — (Pyr — €0 — Py) 7«‘26040/2%00}

1
+ 3 [(60 + Py)r20e0/2 £ T Pyr—2¢'e0/2 4 (€n + Pé)?“*Qeao/Za] ay

+ [[Pyr—20’e®/? + Pér_zeao/za]/ : (B.39)

Multiplying both sides by e®*%/2 follow by an extensive calculation, equation
(B.39) reduces to
Wé = (Qo') + Ro, (B.40)

where the coefficients are given by

1
W = —(eq + Po)r—2e0/2T3%h/2 (B.41)
C
Q = T Pyr—2e3a0/250/2, (B.42)
(P})? 87G

R = ¢3e0/2+bo/2 r2 — 4P — (€0 + Py)Pyr2e™| . (B.43)

60+P0 C4
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