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1 Introduction

How do we characterise a solution to Einstein’s equations on the gravitational phase space?

Consider, for example, the Kerr metric, which is determined by the mass M and the spin

J ≤M2 of the black hole. If appropriate gauge-fixing, parity, and falloff conditions for the

metric at infinity are satisfied, there are ten conserved Poincaré charges at spacelike infin-

ity [1–3], and every pair (J,M), J 6= 0 represents an entire 10-dimensional submanifold on

the ADM phase space for asymptotically flat boundary conditions. On the radiative phase

space [4–7], which describes the radiative modes at future (past) null infinity, the situation

is a little more difficult, because (i) future (past) null infinity is not a complete Cauchy

hypersurface, and (ii) there are infinitely many ways to embed the Poincaré group into

the asymptotic symmetry group of BMS transformations, which is infinite-dimensional.

At the quantum level, these infrared ambiguities [6–9] give rise to infinitely many uni-

tarily inequivalent Fock representations. Choosing a radiative Fock vacuum amounts to

choosing a specific Poincaré subgroup at future (past) null infinity [6, 8, 9], and there are

infinitely many unitarily inequivalent such choices. If one insists that superpositions of

different such unitarily inequivalent radiative vacua should be realised in nature, and also

takes into account that BMS translations define canonical transformation on the radiative
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phase space [6], one is naturally led to the idea that the BMS transformations should arise

from a non-unitary boundary field theory. Such theories still admit a positive-definite in-

ner product, and there are no negative probabilities, but the condition is dropped that

the Hamiltonian (e.g. a generic BMS supertranslation) preserves the different unitarily in-

equivalent Fock spaces. In the following, we will collect evidence in favour of this scenario

by considering three-dimensional Euclidean gravity (with negative cosmological constant).

In addition, we will work on a quasi-local phase space, where the gravitational field is

put in a box with boundaries at finite distance [10–16]. The topology of the boundary is

fixed: the boundary is an infinite cylinder R × S1, which serves as a toy model for future

(past) null infinity [17–22]. At this cylindrical boundary, we then choose specific conformal

boundary conditions [23]. Although there is just one single solution of Einstein’s equations

in the interior, namely empty AdS3, the physical phase space of the bulk plus boundary

system turns out to be infinite-dimensional. The physical origin of this vacuum degen-

eracy has to do with the introduction of the boundary, which turns otherwise unphysical

gauge directions into actual physical boundary degrees of freedom [24–26].1 Working in

the first-order connection representation, we will then see that these inequivalent bound-

ary configurations can be characterised by a boundary spinor that is coupled to the spin

connection in the bulk. The underlying boundary field theory has, however, a number of

unexpected features: the Virasoro algebra, which is the Euclidean analogue of the algebra

of BMS transformations, has no anomaly (the central charge vanishes at the level of classi-

cal Poisson brackets), and the kinetic term for the boundary fields is not positive-definite.

In fact, the boundary action defines a version of the β-γ ghosts of superstring theory with a

quartic self interaction V (β, γ) ∝ (|β|2 + |γ|2)2, which suggests that the resulting boundary

field theory defines a non-unitary CFT. A central charge may reappear upon quantisation,

but it would have the wrong ~ dependence that would be required to derive the entropy

of a BTZ black hole from the Cardy formula, see [27], where a similar issue arises for the

Liouville boundary CFT.

Outline. The paper is organised as follows. First of all (section 2), we introduce a

specific class of conformal boundary conditions, such that the abstract boundary R ×
S1 is mapped into a constant mean curvature one hypersurface (CMC-1 in units of ` =√
−1/Λ), which is embedded into three-dimensional hyperbolic space H3. We then show

how these specific conformal boundary conditions translate into a holomorphicity condition

for an SU(2) spinor ξA ≡ |ξ〉 ∈ C2, which is intrinsic to the boundary. The squared

SU(2) norm ‖ξ‖2 = 〈ξ|ξ〉 of this boundary spinor determines the conformal factor, which

relates the pull-back of the physical metric in the interior to the auxiliary metric at the

boundary. The relation between the boundary spinor ξA and the embedding variables

is provided by the three-vector ~n = 〈ξ|~σ|ξ〉, which defines the internal normal to the

boundary: ~n ≡ ni = eian
a, where eia denotes the co-triad in the interior. To clarify the

geometry of the problem, we consider then a particular class of such CMC-1 boundaries,

namely Bryant’s curved catenoid cousins [28, 29], and parametrise the solution space of

1There are infinitely many ways to embed the abstract boundary R×S1 into AdS3, and each of these dif-

ferent embeddings represents a physically distinguished configuration of the bulk plus boundary field theory.
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the boundary field theory in terms of holomorphic maps (see section 3). Next, we add the

appropriate counter terms to the triadic Palatini action such that the Einstein equations in

the interior and the additional conformal boundary conditions both follow from the saddle

point equations of the coupled bulk plus boundary action. Section 4 deals with the quasi-

local Hamiltonian analysis. We will introduce an extended gravitational phase space, and

identify the gauge transformations (small diffeomorphisms and SU(2) frame rotations) of

the extend bulk plus boundary system [16, 30–34]. The commutation relations between

the Laurent modes of the boundary spinor ξA are defined via the Dirac bracket, which

yields a deformation of the infinite-dimensional Heisenberg algebra. The strength of the

deformation is determined by the cosmological constant. If the cosmological constant

vanishes, the deformation disappears. Finally, we turn to quantum gravity and explain

under which assumptions the boundary conformal field theory could provide a concrete

realisation of Strominger’s proposal [35] for a microscopic derivation of black hole entropy

from the degeneracy of the eigenstates of quasi-local energy.

Notation. Our conventions are the following: a, b, c, . . . are abstract tensor indices, and

we will use them without any distinction for both tensor fields in space time and for

tensor fields that are intrinsic to the two-dimensional boundary B of the three-dimensional

cylinderM' R×Σ. Two-dimensional spinor indices A,B,C, . . . carry a representation of

SL(2,C), the complex conjugate representation is denoted by primed indices A′, B′, C ′, . . . .

The skew-symmetric and SL(2,C) invariant ε-tensor provides a map between covariant

and contravariant such spinors, i.e. ξA = εABξB, ξB = ξAεAB. Round (square) brackets

surrounding indices A1, A2, . . . denote total (anti)symmetrisation, i.e. 2ω(AB) = ωAB+ωBA.

In addition, there is also an SU(2) invariant inner product, 〈η|ξ〉 = δAA′ η̄
A′ξA, which allows

us to define the Hermitian conjugate ξ†A = δAA′ ξ̄
A′ , ξA† = εABξ†B. An element U ∈ SU(2)

can be then identified with those tensors UAB in the spin (1
2) ⊗ (1

2)∗ representation that

preserve δAA′ , i.e. δAA′ = δBB′U
B
AŪ

B′
A′ . This notation is convenient for us, because

it allows us to make sense of sums and differences of group elements (we are implicitly

working on the universal enveloping algebra, as in equation (4.22) below). Finally, let

us also mention that σABi ≡ σi are the usual Pauli matrices and τi = 1/(2i)σi is the

corresponding basis in su(2) that satisfies [τi, τj ] = εij
kτk.

2 Bulk plus boundary field theory for conformal boundary conditions

2.1 Conformal boundary conditions in AdS3

In the quasi-local covariant phase space approach boundary conditions on a t = const.

initial hypersurface Σ have a slightly different ontological status than those for the timelike2

portion B ⊂ ∂M of the boundary: different boundary conditions on B select different

Hamiltonians on a extended phase space PΣ of the bulk plus boundary system [13, 30, 36],

and the boundary conditions on B translate into external sources (background fields or

2The distinction between timelike and spacelike hypersurfaces is meaningless in Euclidean gravity, but

we can always work with an Euclidean t-coordinate, with respect to which the equations of motion of the

bulk plus boundary field theory can be cast into a standard Hamiltonian form.
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c-numbers) that parametrise the possible (time dependent) Hamiltonians on PΣ. In three

dimensions, this procedure is comparably easy to understand, because once we fix the gauge

conditions along B there is no additional free data left, since three-dimensional gravity is

topological. The boundary conditions on B determine how the boundary ∂Σ ' S1 of the

initial hypersurface Σ, which has the topology of the unit disk
{
z ∈ C

∣∣|z| ≤ 1
}

, extends into

a world tube B ' R×S1, which is embedded into spacetime. A particular simple possibility

to determine such an embedding is given by the following conformal boundary conditions:

the basic idea is to only fix the boundary metric up to conformal transformations,

ϕ∗Bgab =: hab ∈ [qab]⇔ Ω : B → R : hab = Ω−2qab. (2.1)

Similar boundary conditions can be used in 3+1 dimensions, where the two-radiative modes

can be encoded at the full non-perturbative level into teh conformal two-structure at the

null boundary [37, 38]. The conformal factor Ω, on the other hand, is unconstrained.

Instead, we freeze its conjugate momentum, which is the trace of the extrinsic curvature3

K = habKab, (2.2)

whereKab = ha
c∇cnb is the extrinsic curvature tensor and na : gabn

anb = 1 is the outwardly

oriented normal to the boundary. We choose, therefore, the following conformal boundary

conditions [23, 39–42],

δ[K] = 0, δhab ∝ qab, δ[hab] = 0. (2.3)

Since δ[K] vanishes, we have to choose a specific value for K. We will see in the following

that

K =
2

`
(2.4)

is preferred geometrically, because it selects specific Bryant surfaces that are in one-to-one

correspondence to holomorphic maps from the punctured complex plane C− {0} into the

spinor bundle over hyperbolic space [28].

2.2 Bulk plus boundary field equations

The action in the interior of the cylinder M' R×Σ is given by the usual triadic Palatini

action,

SM[e, ω] = − 1

8πG

∫
M

[
ei ∧ F i[ω] +

Λ

6
εilme

i ∧ el ∧ em
]
, (2.5)

where ωi denotes an SU(2) connection with curvature F i[ω] = dωi + 1
2ε
i
jkω

k ∧ ωk and ei

is the co-triad. The metric tensor is the composite field

gab = δije
i
ae
j
b. (2.6)

3On the ADM phase space, we can always choose a polarisation such that log Ω is canonically conjugate

to the trace of the extrinsic curvature.
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If the torsionless condition T i = dei + εilmω
l ∧ em = 0 is satisfied, the action (2.5) reduces

to the usual Einstein-Hilbert action

SEH[g] =
1

16πG

∫
M
d3vg

(
R[g]− 2Λ

)
, (2.7)

where d3vg = 1/3! εilke
i ∧ el ∧ ek is the metrical volume element and R[g] denotes the Ricci

scalar.

The torsionless condition is satisfied at the stationary points of the action. A generic

such variation yields a boundary term 1/(8πG)
∮
B ei ∧ δω

i. To make the action for the

conformal boundary conditions (2.3) functionally differentiable, we have to cancel this

boundary variation by the addition of an appropriate counter term. Since the reminder

1/(8πG)
∮
B ei ∧ δω

i of the ωi-variation is linear in the connection, we will construct such

a boundary term from the covariant derivative, which acts linearly on an SU(2) boundary

spinor ιA,

∇aιA = ∂aι
A + τABiω

i
aι
B, (2.8)

where ∂a is a flat reference connection and τi = 1/(2i)σi are the su(2) generators. The task

ahead is to find such a boundary term for the conformal boundary conditions (2.3), (2.4)

and add it to the action. To impose the boundary conditions (2.3) in terms of such surface

spinors, let us first write the extrinsic curvature in terms of a spin frame at the boundary.

Such a spin frame can be defined by a single and normalised SU(2) spinor ιA : δAA′ι
AῑA

′
= 1,

which immediately defines a second and linearly independent and orthogonal spinor oA,

oA := ιA† ≡ εABι
†
B = εABδBB′ ῑ

B′ , (2.9)

where δAA′ denotes the SU(2) invariant Hermitian metric and εAB is the skew symmetric ε-

tensor.4 Given the spin dyad (oA, ιA), we can then immediately construct a corresponding

internal triad,

vi =
i√
2
σAB

ivAB, vAB = −i
√

2 o(AιB), (2.10a)

wi =
i√
2
σAB

iwAB, wAB = +ioAoB, (2.10b)

w̄i =
i√
2
σAB

iwAB, w̄AB = −iιAιB. (2.10c)

It is easy to check that w̄iw
i = viv

i = 1, while all other contractions vanish (internal

indices are raised and lowered with the flat internal metric δij). In addition, w̄i is the

complex conjugate of wi and σABi = εACσCBi are the usual Pauli matrices. Consider

then a smooth section (oA, ιA) of the associated frame bundle in some neighbourhood of

∂M. Given the triad ei
a, we can now introduce an associate spacetime triad (va, wa, w̄a),

where e.g. va = ei
avi. The SU(2) covariant derivative annihilates the Pauli matrices. If

the torsionless condition is satisfied, it also annihilates the triad5 eia, and it is then easy

4The SU(2) and SL(2,C) spinor indices are raised and lowered with respect to the skew symmetric and

SL(2,C)-invariant ε-tensors, e.g. ξA = εBAξ
B , ξA = εABξB , and εABεAB = 2, see [43].

5On-shell, the covariant derivative satisfies ∇aeib = ∂aei
b + εil

mωlaem
b + Γbcaei

c = 0, where Γabc are

the Christoffel symbols for the metric gab = δije
i
ae
j
b.
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to see that the expansion ϑ and the twist ω of va reduce to the following complex-valued

spin coefficient,

1

2

(
ϑ− iω

)
:= waw̄b∇avb = −

√
2 ιAιBw

a∇a
(
oAιB

)
=
√

2 ιAw
a∇aιA, (2.11)

where we were using the normalisation of the dyadic spinor basis: ιAι
A = εABι

AιB = 0

and oAι
A = −ιAoA = 1.

If we extend na into a surface forming vector field in the neighbourhood of B, and align

na with the vector field va = ei
avi, we immediately see that the twist ω of va must vanish

(since na is surface forming), while the conformal boundary condition K = 2/` translates

into a condition for the ιA∇ιA spin coefficient,

ιAw
a∇aιA =

1√
2

1

`
. (2.12)

The conformal boundary conditions impose constraints on both the extrinsic curvature

and the induced metric. Having expressed the boundary condition K = 2/` in terms of

the spin coefficients, we have done only one half of the job. We must now turn to the

boundary condition for the off-diagonal components of the induced metric and rewrite it

as a boundary condition for the spin frame at the boundary. The induced metric is

ϕ∗Bgab = Ω−2qab = 2Ω−2m(am̄b), (2.13)

where ma ∈ Ω1(B : C) defines a reference dyad on the boundary and Ω is the conformal

factor.6 This condition can be easily translated into the spinor calculus. The basic idea is

to align the one-form ma with a spinor ξAξB such that the SU(2) norm of ξA determines

the conformal factor,7

ϕ∗Be
i = 4πG

(
1√
2
ξAξBσAB

im+ cc.

)
, (2.14)

see [40]. In fact, it is easy to check that the conformal factor turns into a composite field,

Ω−1 = 4πG‖ξ‖2 ≡ 4πGδAA′ξ
Aξ̄A

′
, (2.15)

where 4πG = `P denotes the Planck length in three spacetime dimension (in units of ~ = 1).

The Planck length has been introduced for dimensional reasons only, in quantum gravity,

on the other hand, equation (2.15) defines the most natural normalisation: for vanishing

cosmological constant, ‖ξ‖2 turns into an ordinary number operator, whose spectrum is

N + 1
2 , see [40]. At the boundary, there is a natural torsionless SU(2) × U(1) covariant

derivative Da. It annihilates the dyadic one-forms ma, which are uncharged under SU(2),

and it satisfies the two-dimensional torsionless condition,

Dm = d2 m+ i Γ ∧m = 0, (2.16)

6The dyadic one-form ma is a c-number on phase space, δ[ma] = 0.
7Notice that both ma and ξAξA are null: mam

a = 0 = ξAξBξ
AξB .
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where Γ ∈ Ω1(B) is the U(1) boundary spin connection and d2 is the exterior derivative

on B. By adding the spin connection from the bulk, the U(1) covariant derivative, which

is defined by Γa, extends naturally to an SU(2)×U(1) covariant derivative, which acts on

the boundary spinors via

DξA = d2 ξA − i

2
Γaξ

A + τABi(ϕ
∗
Bω

i)ξB. (2.17)

The torsionless condition in the bulk imposes now a constraint on this derivative. Since

the exterior derivative commutes with the pull-back, we easily find

0 = ϕ∗B∇ei = D
(
ϕ∗Be

i
)

= 4πG
(√

2 ξ(A
(
DξB)

)
σAB

i ∧m+ cc.
)
. (2.18)

Since ξAξB, ξA† ξ
B
† and ξ(AξB†

) are linearly independent and define a complexified basis in

the SU(2) Lie algebra, we conclude that the pull-back of the torsionless condition vanishes

if and only if

m ∧DξA ∝ ξA† = δAA′ ξ̄
A′ . (2.19)

The proportionality between the right hand side and the left hand side is determined by the

extrinsic curvature. To establish the relation between the extrinsic curvature and DξA, we

introduce a normalised spin frame (ιA, oA), which is aligned to ξA, such that we can infer

the extrinsic curvature from the spin coefficient ιA∇ιA, see (2.11). Consider, therefore, the

following spin frame at the boundary,

ιA =
ξA

‖ξ‖
, oA =

δAA′ ξ̄
A′

‖ξ‖
. (2.20)

There are now two associate bases in T ∗BC, namely (ma, m̄a), which is defined as the basis

dual to the dyadic one-forms (ma, m̄a),
8 and (wa, w̄a), which is induced from the bulk,

see (2.10a), (2.10b), (2.10c). The two bases are related by the conformal factor,

wa = Ωma, (2.21)

which is determined from the SU(2) norm (2.15) of the boundary spinor. Going back to the

definition of the extrinsic curvature in terms of the spin coefficients, i.e. equation (2.11),

we can now finally determine the relation (2.19) between m ∧DξA and ξA† ,

m∧DξA = − 1

‖ξ‖2
ξA† ξBm∧DξB = −ξA† m∧ ιBDιB = − 1

2
√

2
Ω−1

(
ϑ− iω

)
ξA† m∧ m̄. (2.22)

The conformal boundary condition (2.4) turns, therefore, into the following holomorphicity

condition for the boundary spinor ξA,

K =
2

`
⇔ maDaξ

A = −2
√

2πG

`
‖ξ‖2δAA′ξA

′
. (2.23)

In the following, we will treat this boundary condition as a dynamical field equation, which

is derived from the coupled bulk plus boundary action.

8I.e. mama = 0, m̄ama = 0.
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2.3 Bulk plus boundary action

Now that we have identified the boundary field equations (2.23) that impose the conformal

boundary condition K = 2/`, it is immediate to infer the corresponding bulk plus boundary

action. In fact, the action for the coupled bulk plus boundary system is given by the usual

triadic Palatini action in the interior and the action for a two-dimensional field theory at

the boundary,

S[e, ω|ξ] = − 1

8πG

∫
M

[
ei ∧ F i[ω] +

Λ

6
εilme

i ∧ el ∧ em
]
+

+
i√
2

∫
B

[
ξAm ∧DξA − ξ̄A′m̄ ∧Dξ̄A

′ − 2
√

2πG

`
m ∧ m̄‖ξ‖4

]
, (2.24)

where the quartic potential ‖ξ‖4 = (δAA′ξ
Aξ̄A

′
)2 is built from the SU(2) invariant Hermitian

norm and D denotes the SU(2)×U(1) boundary covariant derivative (2.17). The equations

of motion (EOM) in the interior are the three-dimensional Einstein equations plus the

torsionless condition,

T i = ∇ei = dei + εilmω
l ∧ em = 0, (2.25a)

F i = dωi +
1

2
εilmω

l ∧ ωm = −Λ

2
εilme

l ∧ em. (2.25b)

The boundary conditions K = 2/` along the cylindrical boundary follow as an additional

boundary equation of motion from the variation of the action with respect to ξA (resp.

ξ̄A
′
). In fact,

δξ
[
S[e, ω|ξ]

]
= i
√

2

∫
B

[
δξA

(
m ∧DξA +

2
√

2πG

`
m ∧ m̄‖ξ‖2δAA′ ξ̄A

′
)
− cc.

]
+

+
i√
2

∫
∂B

(
mξAδξ

A − cc.
)
. (2.26)

The first term imposes the boundary condition K = 2/`, while the one-dimensional in-

tegrals at the one-dimensional corners ∂B = ∂Σ−1
+ ∪ ∂Σ−1

− will add a corner term to the

pre-symplectic potential of the bulk plus boundary field theory, see (4.2).

Finally, there is also the gluing condition (2.14), which is satisfied at the stationary

points of the coupled bulk plus boundary action. This additional gluing condition follows

from the ωi-variation of the coupled bulk plus boundary action. A short calculation gives,

δω
[
S[e, ω|ξ]

]
=

1

8πG

∫
M
Ti ∧ δωi +

1

8πG

∫
B

[
ei − 4πG

(
1√
2
ξAξBσ

AB
im+ cc.

)]
∧ δωi+

+

∫ Σ+

Σ−

ei ∧ δωi. (2.27)

The first line vanishes as an equation of motion: T i = 0 is the torsionless condition (2.25a),

and the second term vanishes provided the gluing conditions (2.14) are satisfied. The two

boundary integrals in the second line define the contribution to the pre-symplectic potential

from the interior, see (4.2).
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The boundary equations of motion (2.23) can be simplified by introducing the

SL(2,C)×U(1) covariant derivative with respect to the Euclidean AdS3 connection,

DξA = DξA +
1

2`
σABi(ϕ

∗
Be

i)ξB, (2.28)

The gluing condition (2.14) implies σABiϕ
∗
Be

i = −4πG
√

2(ξAξBm − ξ†Aξ
†
Bm̄) such that

DξA = DξA + 2
√

2πG/`‖ξ‖2ξA† m̄. The boundary equation of motion (2.23) reduces, there-

fore, to the simple holomorphicity condition

maDaξA = 0 (2.29)

for the boundary spinor ξA, where Da is the SL(2,C)×U(1) covariant derivative (2.28).

3 Solution space, curved catenoids, deformed Gauss law

3.1 Particular solution: the AdS3 catenoid

To clarify the geometry of the system, let us consider first a particular solution of the bulk

plus boundary field equations. The goal is, in other words, to find a diffeomorphism ϕ that

maps the solid cylinder9 R×Σ into Euclidean AdS3 (i.e. three-dimensional hyperbolic space

H3 with cosmological constant Λ = −1/`2) such that the trace of the extrinsic curvature

of the boundary B = ϕ(R× ∂S1) satisfies the constraint

K =
2

`
. (3.1)

To find an explicit example of such a Bryant surface [28], we will work with cylindrical H3

coordinates (ρ, ϕ, η). In these coordinates, the H3 line element is given by

ds2 = `2
(
dρ2 + sh2 ρ dϕ2 + ch2 ρ dη2

)
. (3.2)

The trace of the extrinsic curvature K = habKab is the three-divergence of the normal

vector to the boundary, i.e. K = hab∇anb = ∇ana, where ∇a denotes the torsionless and

metric compatible derivative in the bulk. To satisfy (3.1) consider then the following ansatz

for the normalised vector field na,

na = N(ρ) εabc ∂bϕ∂c
(
η − f(ρ)

)
, (3.3)

which implies rotational symmetry (the boundary B defines a solid of rotation). Since

the covariant derivative is torsionless (∇[a∇b]f = 0) and annihilates the three-dimensional

Levi-Civita tensor εabc, the three-divergence ∇ana satisfies

∇ana = N ′(ρ)εabc∂aρ∂bϕ∂cη =
1

`3
N ′(ρ)

sh ρ ch ρ
. (3.4)

Given the ansatz (3.3), a solution to the boundary condition ∇ana = 2/` is therefore given

by

N(ρ) = `2
(

sh2 ρ+ c
)
. (3.5)

9The two-dimensional disk Σ is bounded by a circle ∂Σ ' S1.
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In the following, we will restrict ourselves to those configurations, where the integration

constant c is strictly positive, and we write, therefore

N(ρ) = `2
(

sh2 ρ+ a2
)
, (3.6)

for some constant a > 0. An additional constraint follows from the normalisation of the

vector field na, which must be normalised to one, hence

gabn
anb = N2(ρ) gab ∂aϕ∂bϕg

cd ∂c
(
η − f(ρ)

)
∂d
(
η − f(ρ)

)
=

=
1

`4
N2(ρ)

1

sh2(ρ)

[
1

ch2 ρ
+
(
f ′(ρ)

)2]
= 1. (3.7)

The function N(ρ) is already given in (3.6), and the normalisation of na determines, there-

fore, a differential equation for f(ρ), namely[
d

dρ
f(ρ)

]2

=
sh2 ρ

[sh2 ρ+ a2]2
− 1

ch2 ρ
. (3.8)

The left hand side must always be greater or equal to zero, which implies that the ρ-

coordinate satisfies the inequality

ρ ≥ ρo = log

(
1√

1− 2a2

)
. (3.9)

Next, we have to demonstrate that the resulting vector field na defines a surface B ⊂ H3

to which it lies orthogonal. Such a surface exists, if and only if the co-vector na satisfies

the Frobenius integrability condition,

∇[anb] = ω[anb], (3.10)

for some one-form ωa. Going back to our ansatz (3.3) for the vector field na, this is

immediate to verify: the co-vector na is given by

na =
N(ρ)f ′(ρ)

th ρ

(
∂aη +

1

ch2 ρ

1

f ′(ρ)
∂aρ

)
, (3.11)

and its exterior derivative dn satisfies, therefore, dn ∝ dρ ∧ dη ∝ dρ ∧ n, which implies, in

turn, that the condition for the Frobenius integrability theorem is satisfied (ω ∝ dρ). The

vector field na is therefore indeed orthogonal to a two-dimensional submanifold B ⊂ H3.

To understand how this surface B lies within H3, let us take ρ and ϕ as independent

coordinates intrinsic to B. If we then restrict ourselves to the negative square root for

f ′(ρ), i.e.

df(ρ)

dρ
= −

√
(1− 2a2) sh2 ρ− a4

(sh2 ρ+ a2) ch ρ
, (3.12)

we find
dη

dρ

∣∣∣∣
B

=
1

ch ρ

sh2 ρ+ a2√
(1− 2a2) sh2 ρ− a4

, (3.13)
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which determines the dependence of the η-coordinate along B. We will solve this differential

equation implicitly below.

Having given a particular example for a hypersuface B that satisfies K = 2/`, we now

want to identify the corresponding holomorphic spinor field thereon. To this goal, let us

first introduce complex coordinates that diagonalise the induced H3 line element on B,

which is given by the pull-back

dσ2 := ϕ∗Bds
2 = `2 sh2 ρ

(
ch2 ρ

(1− 2a2) sh2 ρ− a4
dρ2 + dϕ2

)
. (3.14)

We now look for a complex coordinate

z = ex−iϕ, (3.15)

that conformally maps the induced metric (3.14) into the flat metric qab = ∂(a z∂b)z̄ on the

punctured complex plane C− {0}. In other words,

dx =
d sh ρ√

(1− 2a2) sh2 ρ− a4
. (3.16)

Choosing initial conditions ρ(x = 0) = ρo, with the minimal radius ρo given in (3.9), we

infer the solution √
1− 2a2 sh ρ = a2 ch

(√
1− 2a2 x

)
. (3.17)

Going back to (3.13), we can then also immediately infer η as a function of x. With initial

conditions η(x = 0) = 0, we find

η(x) = x− 1

2
log

(
1− a2 +

√
1− 2a2 th(

√
1− 2a2 x)

1− a2 −
√

1− 2a2 th(
√

1− 2a2 x)

)
. (3.18)

For any fixed a > 0 the functions η(x) and ρ(x) define, therefore, an embedding of the

punctured complex plane into H3 such that the condition K = 2/` is satisfied. In the limit

of a→ 1/
√

2 we approach the asymptotic cylinder ρ→∞.

To determine the corresponding spinor field ξA on B, we now need to choose a cotriad

that diagonalises the H3 metric (3.2). To cover the entire H3 space, we introduce the

following rotating frame10

e1 = `(cosϕ dρ− sh ρ sinϕ dϕ), (3.19a)

e2 = `(sinϕ dρ+ sh ρ cosϕ dϕ), (3.19b)

e3 = ` ch ρ dη. (3.19c)

The components of the corresponding Levi-Civita spin connection are given by

ω1 = + sh ρ sinϕ dη, (3.20a)

ω2 = − sh ρ cosϕ dη, (3.20b)

ω3 = (ch ρ− 1) dϕ, (3.20c)

10If we introduce new coordinates r := `ρ, and x1 + ix2 = reiϕ, and x3 := `η, the rotating

frame (3.19a), (3.19b), (3.19c) reduces in the Euclidean ` → ∞ limit to the Cartesian frame ei = dxi

in R3.
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that satisfy the torsionless equation ∇ei = dei + εilmω
l ∧ em = 0, which determines ωi as

a function of the frame fields ei. We can now proceed to identify the boundary spinor ξA.

The defining property of ξA is that it diagonalises the induced triad on B,

1√
2
σABi(ϕ

∗
Be

i)a = −4πG
(
ξAξBma + hc.

)
, (3.21)

where ξA = εBAξ
B is the dual spinor. With respect to the Cartesian coordinates (3.15),

the dyadic one-form ma ∈ T ∗CB is simply given by

ma =
1√
2
∂az. (3.22)

The boundary spinor ξA can be inferred, therefore, immediately from the equation

σABie
i
a

(
∂ax + i∂aϕ

)
= −8πGξAξB = (3.23)

=
`

ch ρ

(
a2 + sh2 ρ

(
a2 sh(

√
1− 2a2x+ sh ρ ch ρ)

)
e−iϕ(

a2 sh(
√

1− 2a2x− sh ρ ch ρ)
)
e−iϕ −(a2 + sh2 ρ)

)
.

Up to an overall undetermined sign, we thus find

ξA =

(
ξ0(x, ϕ)

ξ1(x, ϕ)

)
=

√
`

8πG

i√
ch ρ

+
√

sh ρ ch ρ+ a2 sh(
√

1− 2a2 x) e−
x
2

−
√

sh ρ ch ρ− a2 sh(
√

1− 2a2 x) e−
x
2

+iϕ

 , (3.24)

where the ρ-coordiante has to be understood as an implicit function of a and x according

to (3.17).

We are now left to demonstrate that ξA defines a holomorphic spinor with respect to

the SL(2,C) connection along the boundary. Since the connection is flat and the interior of

the cylinder is simply connected, we can always find an SL(2,C) gauge element g : H3 →
SL(2,C) such that the De Sitter connection

Aa =
1

2i
σi

(
ωi +

i

`
ei
)

(3.25)

can be written as

Aa = g−1∂ag. (3.26)

By integrating this equation along the η-axis and along the radial ρ-direction, we easily

find

g(ρ, ϕ, η) = ch
(ρ

2

)(e−
η
2 0

0 e+ η
2

)
+ sh

(ρ
2

)( 0 e
η
2
−iϕ

e−
η
2

+iϕ 0

)
∈ SL(2,C). (3.27)

Finally, we perform the parallel transport and map the boundary spinor ξA(x, ϕ) back into

the origin (ρ = 0, η = 0) of the coordinate system. This is achieved by some straightforward

matrix algebra and yields the holomorphic spinor

ηA(z) := gAB
(
ρ(x), ϕ, η(x)

)
ξB(x, ϕ) = ia

√
`

8πG

(
1

−z−1

)
. (3.28)
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Hence the spinor ξA(x, ϕ) in the C2-spinor bundle over the boundary defines a holomorphic

function ηA(z) on the punctured complex plane C − {0}. In the next section, we will

demonstrate how to generalise this result to arbitrary genus 0 cylinders that are immersed11

into Euclidean AdS3.

3.2 Generic solution, monodromy, and deformed Gauss law

After having constructed an explicit solution12 of the bulk plus boundary field theory, we

now need to understand the geometry of a generic such solution.

First of all, we introduce the two SL(2,C) connections,

AABa =
1

2i
σABi

(
ωia +

i

`
eia

)
, (3.29a)

ĀA
′
B′a =

1

2i
σ̄A
′
B′i

(
ωia −

i

`
eia

)
, (3.29b)

where primed spinor indices transform13 under the complex conjugate representation of

SL(2,C). On shell, the Einstein and torsionless equations imply that the two connections

are locally flat. Since the initial hyspersurface Σ is assumed to be a genus zero disk, the

general solution of the equations of motion can always be written in terms of a single-valued

holonomy g : Σ→ SL(2,C),

AABa = [g−1∂ag]AB, AA
′
B′a = [ḡ−1∂aḡ]A

′
B′ . (3.30)

The dyadic one-forms (ma, m̄a) ∈ Ω1(B : C) are external background fields (c-numbers)

on the covariant phase space. Their field variations vanish δ[ma] = 0, and we can restrict

ourselves, therefore, to the flat case

ma =
1√
2
∂az, (3.31)

such that the U(1) boundary spin connection vanishes, see (2.16). Since the De Sitter

connections are flat, the boundary equations of motion, (2.29), translate now into the

ordinary Cauchy-Riemann differential equations,

∂z̄η
A = 0, (3.32)

where we defined the parallel transported spinor

ηA = gABξ
B. (3.33)

If ηA is single valued and has no singularities in B, it admits the Laurent expansion,14

ηA(z) =
1√
2π

∞∑
n=−∞

ηAn z
n. (3.34)

11There may be a non-trivial winding that wraps the cylinder into itself. Such winding numbers play an

important role in the evaluation of the non-perturbative spinfoam amplitude on a solid torus, see [44].
12The boundary B is an example of Bryant’s catenoid cousins, see [28].
13At B, generic such SL(2,C) transformations are no longer gauge directions on phase space, but become

physical.
14A specific example for such spinor that describes a catenoid has been given in equation (3.28) above.

– 13 –



J
H
E
P
0
3
(
2
0
2
0
)
1
7
5

So far, we have solved, however, only one half of the boundary equations of motion,

namely equation (2.29) that imposes K = 2/`. In addition to the boundary condition on the

extrinsic curvature, there are, however, also boundary conditions for the off-diagonal metric

components, namely the gluing conditions (2.14). In terms of the flat De Sitter connection

Aa = g−1∂ag, these gluing conditions translate now into the following constraint,

ϕ∗B
[
g−1dg

]
A
B + hc. = −4πG

`

(
[g−1]ACη

CηDg
D
Bdz + hc.

)
, (3.35)

where hc. denotes the Hermitian conjugate with respect to the SU(2) metric δAA′ , e.g.

[X†]AB = δAB
′
X̄A′

B′δBA′ . To disentangle the primed and unprimed spinor contributions

to this equation, we consider the following ansatz for the SL(2,C) group element at the

boundary,

g
∣∣
B = hU, (3.36)

where U ∈ SL(2,C) is yet unspecified and h is a holomorphic function h : C → SL(2,C)

that satisfies the following holonomy equation

d

dz
hAB = −4πG

`
ηAηCh

C
B, (3.37)

to some initial condition h(zo) = ho ∈ SL(2,C). If we insert this ansatz back into the

gluing condition (3.35), we immediately find that the function15 U : C′ → SL(2,C) must

satisfy the following constraint equation,

[U−1] d2 U + hc. = 0, (3.38)

where d2 is the exterior derivative on B. The generic solution of this equation is U(z, z̄) =

UoŨ(z, z̄), where Uo is a constant SL(2,C) element and Ũ(z, z̄) defines a map Ũ : B′ →
SU(2). Since the initial value ho of h(z) is already arbitrary, we can assume without loss

of generality Uo = 1 and Ũ(z, z̄) ∈ SU(2).

Since g : Σ → SL(2,C) is single-valued (the disk Σ has no handles or holes), there is

one further and non-local constraint. For a general boundary spinor ηA(z), such as the

one that describes Bryant’s catenoid cousins, see (3.28), the solutions of the holonomy

equation (3.37) will have a branch cut that we can always put along the negative real

axis, but gAB is single-valued, hence there is one additional constraint. Suppose then that

the initial point zo : |zo| > 0 lies on the branch cut. If γ(zo → z) is a family of paths

γ(zo → z) : (0, 1) → C − R− that connects16 the fixed initial point zo with any other

z ∈ C− R−, the general solution of h(z) is given by the path-ordered exponential,

h(z) = h(z, zo)ho ≡ Pexp

(
− 4πG

`

∫
γ(zo→z)

dz′Ω(z′)

)
ho, (3.39)

15The group element g : Σ→ SL(2,C) is single-valued, but the solutions hAB of (3.37) may have a branch

cut, which we can always put on the negative real axis, i.e. B′ ' C′ = C− R−.
16I.e. limε↘0 γ(zo → z)(ε) = zo, limε↘0 γ(zo → z)(1− ε) = z, such that γ(zo → zo) denotes a closed loop

that winds once around the origin z = 0.
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where Ω(z) defines the holomorphic and flat SL(2,C) connection,

ΩA
B(z)dz = ηA(z)ηB(z)dz. (3.40)

If we wind once around the origin, a generic such holomorphic spinor17 ηA(z) will induce

a non-trivial monodromy,

M = h−1
o Pexp

(
− 4πG

`

∮
γ(zo→zo)

dz′Ω(z)

)
ho

in general

6= 1. (3.41)

Since, however, g : Σ→ SL(2,C) is single-valued, and g = hU is parametrised in terms of

a holomorphic function h(z) ∈ SL(2,C) and an additional SU(2) element U(z, z̄), we must

conclude that the monodromy lies in SU(2), otherwise g = hU cannot be single-valued. In

other words,

M = h−1
o Pexp

(
− 4πG

`

∮
γ(zo→zo)

dz′Ω(z)

)
ho ∈ SU(2). (3.42)

We must impose, therefore, an additional non-local closure constraint,

M †M = 1. (3.43)

If this constraint is satisfied, we have a single-valued function g(z, z̄) = h(z)U(z, z̄) on the

boundary B of the cylinder.18

To understand the physical significance of the constraint (3.43) on the monodromy, let

us consider the ` →∞ Euclidean limit of this equation of-shell, i.e. prior to imposing the

constraint (3.43). We define

lim
`→∞

M †(`)M(`)− 1

`−1
=: G, (3.44)

where the monodromy M(`) depends for given boundary conditions h(zo) = ho and fixed

connection coefficients ΩA
B(z) = ηA(z)ηB(z) implicitly on `. A short calculation gives,

d

d`
M(`) =

4πG

`2

∮
γ(zo→zo)

dz h−1
o h(zo, z)Ω(z)h(z, zo)ho, (3.45)

where h(zo, z) is the parallel transport along the portion19 γ(z → zo) of the loop γ(zo → zo)

that starts at z and ends at zo. In other words,

h(zo, z) = Pexp

(
− 4πG

`

∫
γ(z→zo)

dzΩ(z)

)
. (3.46)

17Such as the one that defines the hyperbolic catenoid cousins, see (3.28).
18To extend this function into the bulk, we write g(z, z̄) as a product g(z, z̄) = B(z, z̄)V (z, z̄), where

V is an SU(2) element and B is a Lorentz boost that can always be written as B = exp(X) for some

X† = X. We now choose a new transversal and radial coordinate ρ ∈ (0, 1] in M, and define the function

g(ρ, z, z̄) := exp(ρX(z, z̄))V (z, z̄), which extends g from the boundary into the interior. In these coordinates,

the boundary B is the surface ρ = 1.
19N.B. γ(z → zo) ◦ γ(zo → z) = γ(zo → zo).
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Taking into account that lim`→∞M(`) = 1, we can use now D’Hopital’s rule and find,

G = −4πG

[ ∮
γ(zo→zo)

dz h−1
o Ω(z)ho + hc.

]
. (3.47)

For ` → ∞, the SL(2,C) group element g = h(z, zo)hoU(z, z̄) that defines the De Sitter

connection turns now into g = hoU , where U is the holonomy of the SU(2) spin connection,

and ho is a constant SL(2,C) group element at the boundary B. The integral (3.47) is then

nothing but the dressed integral20 of the triad, which is now parametrised in terms of

spinors ξA that define the flat triad ξAξBm + hc. ∝ σABiϕ
∗
Be

i at the boundary. More

specifically,

lim
`→∞

M †(`)M(`)− 1

`−1
=

∮
γ(zo→zo)

UσiU
−1ei = 0. (3.48)

For three-dimensional gravity with a vanishing cosmological constant, this is nothing

but the Gauss (or closure) constraint that generates rigid SU(2) frame rotations on the

phase space of the theory, see e.g. [45, 46]. For a non-vanishing cosmological constraint

Λ = −`−2, the flat closure constraint (3.48) is replaced, therefore, by the group-valued con-

straint (3.43) on the monodromy. We will see in the next section that this deformed closure

constraint (3.43) is still related to rigid SU(2) frame rotations at the boundary. Similar

deformed closure constraints have been identified in the discrete spinfoam approach to

three-dimensional gravity, see for instance [47–49] and references therein.

4 Covariant phase space, deformed Heisenberg algebra

4.1 Covariant phase space and boundary energy momentum tensor

The covariant pre-symplectic potential on a cross section Σ of the cylinder M ' Σ× can

be now inferred from the first variation of the bulk plus boundary action (2.24),

δS[e, ω|ξ] = EOM · δ + ΘΣ+(δ)−ΘΣ−(δ), (4.1)

where the equations of motion (EOM) include now both the three-dimensional field equa-

tions in the bulk and the additional boundary field equations (2.29), (2.14). The reminder

ΘΣ(δ) of the variation defines the pre-symplectic one-form on the covariant phase space,

which is the space PΣ of solutions of the bulk plus boundary field equations in a neigh-

bourhood of Σ. On the cross section Σ, the pre-symplectic potential has then contributions

from both the interior of the cylinder and its boundary,

ΘΣ =
1

8πG

∫
Σ
ei ∧ dωi +

i√
2

∮
∂Σ

[
mξAdξ

A − cc.
]
, (4.2)

where d denotes the exterior derivative on the infinite-dimensional phase space PΣ. Poisson

brackets are inferred from the covariant pre-symplectic two-form, which is given by the

exterior functional derivative

ΩΣ = dΘΣ. (4.3)

20The su(2)-valued integrand is parallely transported into the frame over the reference point zo ∈ B.
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For any two vector fields δ1 and δ2 on the covariant phase space PΣ, we then have,

ΩΣ(δ1, δ2) = δ1[ΘΣ(δ2)]− δ2[ΘΣ(δ1)]−ΘΣ

(
[δ1, δ2]

)
. (4.4)

To understand the gauge symmetries of the theory, we now have to identify the degen-

erate directions of the pre-symplectic two-form ΩΣ on the covariant bulk plus boundary

phase space PΣ. An internal SU(2) frame rotation, which is connected to the identity, is

generated by an infinitesimal gauge element Λi : M → su(2). Such a gauge element can

be lifted naturally into a vector field δΛ ∈ TPΣ on the covariant phase space,

δΛ[ωi] = −∇Λi, (4.5a)

δΛ[ei] = εijkΛ
jek, (4.5b)

δΛ[ξA] = τABiΛ
iξB, (4.5c)

where ∇a = ∂a + [ωa, ·] is the covariant derivative of the SU(2) connection ωia. If δ ∈ TPΣ

denotes now a second linearly independent vector field on the covariant phase space, i.e. a

linearised solution of the bulk plus boundary field equations, we easily find

ΩΣ(δΛ, δ) =
1

8πG

∫
Σ

[
εijkΛ

jek ∧ δωi + δei ∧∇Λi
]

+
1√
2

∮
∂Σ

[
mσABiΛ

iξBδξA + cc.
]

(4.6)

= − 1

8πG

∫
Σ
δ[∇ei] ∧ Λi − 1

8πG

∮
∂Σ
δ

[
ei −

4πG√
2

(
mξAξB − m̄ξ†Aξ

†
B

)
σABi

]
Λi = 0.

The first term in the second line vanishes thanks to the torsionless condition (2.25a),

and the second term vanishes thanks to the gluing conditions (2.14) that allow us to

parametrise the pull back of the triad in terms of the boundary spinor ξA. Simulataneous

frame rotations (4.5a), (4.5b), (4.5c) of the bulk plus boundary fields define, therefore, an

exact gauge symmetry of the coupled bulk plus boundary system.

Next, we consider the action of a diffeomorphism ϕ = exp(V ), which is generated by

a vector field V a ∈ TM, on the covariant phase space. A generic such diffeomorphism

will violate our conformal boundary conditions (2.3). It is easy to see, however, that a

vector field V a, whose restriction to the boundary defines a conformal Killing vector of the

boundary metric qab = 2m(am̄b) defines a symmetry of the bulk plus boundary field theory.

Consider, therefore, such a vector field,

V a
t ∈ TM : V a

t

∣∣
B = ta ∈ TB : D(atb) =

1

2
Dct

cqab, (4.7)

where Da is the boundary covariant derivative that annihilates qab as well as the dyadic

frame fields (ma, m̄a), see (2.16), (2.19). In addition, tensor indices at the boundary are

raised and lowered with respect to the fiducial boundary metric qab and its inverse, i.e.

ta = qabt
b ∈ T ∗B. Any such vector field Vt, can be then lifted into a vector field δt on the

covariant phase space. Its components are given by

δt[ω
i] = VtyF i, (4.8a)

δt[e
i] = Vty(∇ei) +∇(Vtyei) = ∇V i

t , (4.8b)

δt[ξ
A] = taDaξ

A +
1

2
m̄aDaNξ

A, (4.8c)

– 17 –



J
H
E
P
0
3
(
2
0
2
0
)
1
7
5

where N = tama is the holomorphic component of the conformal Killing vector, i.e.

maDaN = 0. Consider then the following boundary integral

H[N ] =
i√
2

∮
∂Σ

[
NξADξ

A − 2
√

2πG

`
Nm̄‖ξ‖4 − cc.

]
, (4.9)

where ‖ξ‖2 = δAA′ξ
Aξ̄A

′
denotes the SU(2) norm of the spinor ξA. To demonstrate that δt

is the Hamiltonian vector field of H[N ], we compute the variation of H[N ] on the covariant

phase space,

δ
[
H[N ]

]
=

i√
2

∮
∂Σ

[
2Nδ[ξA]DξA +DNδ[ξA]ξA − 2

√
2πG

`
Nm̄‖ξ‖2δ[‖ξ‖2]+

− 1

2i
NξAξBσ

AB
iδ[ω

i]− cc.

]
=

=
i√
2

∮
∂Σ

[
2mδ[ξA]δt[ξ

A] + 2Nm̄δ[ξA]maDaξ
A − 2mN̄δ[ξA]maDaξ

A+

− 1

2i
NξAξBσ

AB
iδ[ω

i]− 4
√

2πG

`
Nm̄‖ξ‖2δ[‖ξ‖2]− cc.

]
. (4.10)

We can now also use the boundary equations of motion (2.29), which imply

maDaξ
A =

2
√

2πG

`
‖ξ‖2δAA′ ξ̄A′ . (4.11)

And we are therefore left with the expression,

δ
[
H[N ]

]
=

i√
2

∮
∂Σ

[
2mδ[ξA]δt[ξ

A]− 1

2i
NξAξBσ

AB
iδ[ω

i]− cc.

]
. (4.12)

We now want to demonstrate that δt is integrable and that it is indeed generated by the

Hamiltonian H[N ]. We thus pick a second linearly independent tangent vector on the

covariant phase space and contract both vector fields with the pre-symplectic two-form.

We then have,

ΩΣ(δt, δ) =
1

8πG

∫
Σ

[
∇V i

t ∧ δ[ωi]− δ[ei] ∧ VtyF i
]

+
i√
2

∮
∂Σ

[
2mδt[ξA]δ[ξA]− cc.

]
=

=
1

8πG

∫
Σ

[
− (Vtyei)δFi − δ[ei] ∧ VtyF i

]
+

+

∮
∂Σ

[
1

8πG
(tyei)δ[ωi] +

i√
2

(
2mδt[ξA]δ[ξA]− cc.

)]
.

The Einstein equations (2.25b) imply that the first term vanishes. The second term, on

the other hand, can be written in terms of the boundary spinors alone: going back to the

gluing conditions (2.14), and comparing the resulting expression with δ[H[N ]], we find

ΩΣ(δt, δ) =
i√
2

∮
∂Σ

[
1

2i
NξAξBσ

AB
iδ[ω

i]− 2mδ[ξA]δt[ξ
A]− cc.

]
= −δ

[
H[N ]

]
. (4.13)

We have thus integrated the Hamiltonian field equations for any bulk diffeomorphism that

is generated by a vector field V a
t ∈ TM, whose restriction to the boundary B defines a
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conformal Killing vector ta = V a
t |B ∈ TB that preserves the conformal structure at the

boundary, i.e. Ltqab ∝ qab. There is a further simplification that will prove very useful in

the following: if we reintroduce the SL(2,C) × U(1) boundary covariant derivative Da, as

defined in (2.28), we can write

H[N ] =
i√
2

∮
∂Σ

[
NξADξA − cc.

]
=

∮
∂Σ
dvaTabt

b, (4.14)

where N = tama denotes the holomorphic component of the conformal Killing vector,

dva = im̄am + cc. ∈ TB ⊗ T ∗B is the vector-valued line element, and Tab denotes the

Brown-York boundary quasi-local stress-energy tensor [10, 50],

Tab =
1

8πG

(
Kab −

1

`
hab

)
. (4.15)

Notice that the energy momentum tensor is traceless, because the conformal boundary con-

ditions imply K = 2/`, see (2.4). Therefore, Tab is completely specified by its holomorphic

component, which determines the shear σ = 8πGm̄am̄bTab of the boundary B.

4.2 Extended phase space, Dirac bracket, deformed Heisenberg algebra

The purpose of this section is to establish the Poisson commutation relations between the

fundamental boundary modes on the physical phase space. Our starting point will be the

parametrisation of a generic solution of the bulk plus boundary field equations in terms of

the mode expansion (3.34). Given this parametrisation, we will then compute the pull-back

of the pre-symplectic two-form (4.3) with respect to the sequence of maps ηAn → ηA(z) =
1√
2π

∑
n η

A
n z

n → ξA = [g−1]ABη
B, which is induced by the Laurent expansion (3.34) of the

boundary spinor ξA. In the last section, we have identified two contributions to the pre-

symplectic potential, namely a boundary term ∝ ξAdξ
A for the gravitational edge modes

and a contribution ∝ ei∧dωi coming from the bulk. Let us consider the bulk integral first.

The general solution of the field equations (2.25a), (2.25b) in the interior is given by a flat

SL(2,C) connection,

Aa = g−1∂ag =
1

2i
σi

(
ωia +

i

`
eia

)
. (4.16)

If we now insert this parametrisation back into the pre-symplectic two-form (4.3), we im-

mediately recover the pre-symplectic two-form for three-dimensional gravity in the familiar

Chern-Simons formulation of three-dimensional gravity,21∫
Σ
dei

V
dωi =

i`

2

∫
Σ

Tr
(
d
(
g−1dg

)V
d
(
g−1dg

))
+ cc., (4.17)

see [51, 52]. The functional differential of the connection satisfies dA = d(g−1dg) =

g−1d(dgg−1)g, which implies that the bulk integral (4.17) collapses into a total exterior

derivative. We are now left with the boundary integral

ΩΣ = i

∮
∂Σ

[
`

16πG
Tr
(
g−1dg

V
d
(
g−1dg

))
+

m√
2
dξA

V
dξA − cc.

]
. (4.18)

21The symbol “
V

” combines the wedge product on the infinite-dimensional phase space with the ordinary

wedge product on spacetime: if δ1 and δ2 are vector fields on phase space, and α and β are p-form fields

on spacetime, (dα
V
dβ)(δ1, δ2) := δ1[α] ∧ δ2[β]− δ2[α] ∧ δ1[β].
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On the covariant phase space, the boundary fields ξA and g
∣∣
B are not completely indepen-

dent, because there are boundary equations of motion that introduce a coupling between

the boundary fields. There is the holomorphicity condition (2.29) for the boundary spinor

ξA, but there are also the gluing conditions

ϕ∗B
(
g−1dg

)A
B

+ hc. = −8πG

`

1√
2

(
ξAξBm+ hc.

)
, (4.19)

where the Hermitian conjugate is taken with respect to the SU(2) Hermitian metric δAA′ .

To impose these constraints, we proceed now as in section 3.2 above. First of all, we note

that the dyadic one-forms (ma, m̄) ∈ T ∗CB are a background field on phase space, hence

dm = 0. Working on a fixed Riemann surface B = C − {0}, which has the topology of

an infinite cylinder with open ends, we can now choose Cartesian coordinates z : m =
1√
2
dz such that the fiducial boundary metric qab = 2m(am̄b) is diagonal. Given these

coordinates, the map g : B → SL(2,C) splits now into a holomorphic part h : B →
SL(2,C) and a function U : B → SU(2) that takes values in SU(2), such that g = hU

is single-valued. Given this parametization of the boundary fields, the holomorphicity

condition (2.29) for the boundary spinor ξA, i.e. maDaξA = 0, turns now into the ordinary

Cauchy-Riemann differential equations ∂z̄η
A = 0 for ηA(z), where ξA is related to ηA via

ξA = [U−1h−1]ABη
B.

If we now want to use the parametrisation g = hU at the level of the pre-symplectic

two-form (4.18), we have to take into account that the gluing conditions (4.19) translate

into a constraint between η ⊗ η and h−1dh, namely

JAB[η, h](z) = 0, (4.20)

where we defined the following functional on the extended phase space of field configurations

hAB(z) and ηA(z),

JAB[η, h](z) =
i

2

[
ηA(z)ηB(z) +

`

4πG

[
∂zh(z)h−1(z)

]A
B

]
∈ sl(2,C). (4.21)

In addition to JAB(z) = 0, there is one further non-local constraint: the boundary fields

gAB and ξA are single-valued, but h(z) may pick up a monodromy around the origin

z = 0.22 In fact, the group element gAB(z) is single-valued, if and only if the following

additional non-local and complex-valued constraints are satisfied

C = h(z+
o )U(z+

o )− h(z−o )U(z−o ) = 0, (4.22)

where we have put the branch cut along the negative real axis.23 As explained in section 3.2

above, the constraints C = 0 can be seen as a deformed version of the closure constraint∮
∂Σ U

−1σiUe
i = 0 for the triadic fluxes in the flat Λ→ 0 limit [45, 46].

22This happens already for Bryant’s curved catenoids, where ηA(z) has a pole at the origin, see (3.28).
23The boundary points z±o lie above and below the branch cut, U(z±o ) = limε↘0 U(zo ± iε).
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If we now insert this parametrisation into the pre-symplectic two-form (4.18), we find

after some straightforward algebra that

Ω↑Σ =
i

2

∮
C

[
dz dηA

V
dηA − `

8πG
Tr
(
h−1dh

V
d
(
h−1dh

))
− cc.

]
+

+

[
i`

16πG
Tr
(
h−1dh

V
dUU−1

) ∣∣∣
∂C

+ cc.

]
. (4.23)

Compared to the symplectic two-form in the g-ξ-representation (4.18), there is now an

additional boundary term appearing. The geometric origin of this boundary contribution

has to do with the monodromy (3.42) around the origin: the boundary fields ηA(z) and

∂zhh
−1 are single-valued in C− {0}, but the SL(2,C) group element hAB(z), which is the

path-ordered exponential of η ⊗ η, see (3.39), may have a non-trivial SU(2) monodromy.

Accordingly, we introduce a branch cut along the negative real axis, such that the contour

C defines a path in the complex plane that starts at some point z−o on the negative real

axis and winds once around the origin.24

The constraint (4.22) is related to residual and global SU(2) gauge transformations.

This can be seen as follows: consider the following vector field on phase space, which acts

as a left-invariant derivative on the SU(2) coordinates

Yi[U(z±o )] = −U(z±o )τi, (4.24)

but vanishes otherwise,

Yi[h(z)] = 0, Yi[h̄(z)] = 0, Yi[η
A(z)] = 0, Yi[η̄

A′(z)] = 0. (4.25)

Consider then a field variation δ that lies tangential to the C = 0 constraint hypersur-

face, i.e. δ[C] = 0 with C = 0 denoting the constraint (4.22) on the monodromy. The vector

field Yi defines a degenerate direction of ΩΣ and it defines, therefore, a gauge symmetry,

Ω↑Σ(Yi, δ) =
i`

16πG

[
Tr
(
τiU
−1(h−1δh)U

)
− cc.

]∣∣∣
∂C

=

=
i`

16πG

[
Tr
(
τi(U

−1h−1δ[hU ])
)
− cc.

]∣∣∣
∂C

= 0. (4.26)

To compute the Poisson brackets between the Laurent modes ηAn , we consider now an

extended phase space P↑Σ, whose coordinates are given by the SU(2) elements U(z±o ) at

the marked boundary points ∂C = {z+
o }∪{z−o }, by the field configurations of ηA(z), which

is holomorphic in C − {0}, and by hAB(z), which has a branch cut along the negative

real axis, while the corresponding Maurer-Cartan form ∂zhh
−1 is holomorphic in C− {0}.

The Poisson brackets {·, ·}↑ on this extended phase space P↑Σ are determined then by the

symplectic two-form (4.23). To recover the Poisson commutation relations on the physical

phase space, we have to impose the constraints (4.21), (4.22) and perform the symplectic

reduction.

24The integral
∮
C df = f

∣∣
C denotes the difference limε↘0

(
f(zo + iε)− f(zo − iε)

)
≡ f(z+

o )− f(z−o ).
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To impose the constraints, it is convenient to introduce sl(2,C)-valued smearing func-

tions fAB(z) that are continuous across the branch cut along the negative real axis. We

are thus defining the smeared Kac-Moody generators

J [f ] :=

∮
C

dz fAB(z)JBA[η, h](z) ≡
∮
C

dz Tr(fJ). (4.27)

Using d(∂zhh
−1) = h∂z(h

−1dh)h−1, we compute the functional differential of J [f ],

dJ [f ] = −i

∮
C

[
dz fABηAdηB −

`

8πG
Tr
(
h−1fh d(h−1dh)

)]
. (4.28)

The constraints define an SL(2,C) Kac-Moody algebra. There is a central charge and

the constraints are second-class. This can be seen as follows: consider first the following

complexified vector field Xf ∈
(
TP↑Σ

)
C, whose components on phase space are given by[

h−1(z)Xf [h(z)]
]
A
B = fAB(z), (4.29a)

Xf [ηA(z)] = fAB(z)ηB(z). (4.29b)

All other components vanish:

h̄−1Xf [h̄] = 0, Xf [η̄A
′
(z)] = 0, Xf [U(z±o )] = 0. (4.30)

We now want to demonstrate that Xf is the Hamiltonian vector field of J [f ] provided the

closure constraint (4.22) is satisfied. We proceed as in above: consider a second linearly

independent field variation δ on the extended phase space, and contract both vector fields

with Ω↑Σ. We obtain

Ω↑Σ(Xf , δ) = −δJ [f ] +
i`

16πG

[
Tr
(
fδ[g]g−1

)∣∣∣
∂C
− cc.

]
, (4.31)

where g = hU . On the constraint hypersurface, where the closure constraint (4.22) is

satisfied, the map g : C − {0} → SL(2,C) is continuous across the branch cut and the

last boundary term disappears. Up to terms constrained to vanish, the Hamiltonian vector

field of J [f ] is given, therefore, by Xf . This in turn implies that we can immediately infer

the constraint algebra,25

{
J [f ], J [f ′]

}↑ ≈ Xf

[
J [f ′]

]
= i

∮
C

[
dz [f ′]ACf

C
BηAη

B +
`

8πG
Tr
(
h−1f ′h d(h−1fh)

)]
=

=
i

2

∮
C

[[
f ′, f

]
A
Bη

BηA +
`

4πG
Tr
([
f ′, f

]
dhh−1

)]
+

i`

8πG

∮
C

Tr
(
f ′df

)
=

= −J
[
[f, f ′]

]
+

i`

8πG

∮
C

Tr
(
f ′df

)
, (4.32)

where ≈ denotes equality up to terms that vanish on the C = 0 constraint hypersurface

and [·, ·] is the sl(2,C) Lie bracket in the fundamental spin ( 1
2 , 0) representation,

[f, f ′]AB = fAC [f ′]CB − [f ′]ACf
C
B, [f, f ′](AB) = 2f (A

C [f ′]B)C . (4.33)

25Notice that the vector field Xf preserves the constraint (4.22), hence Xi[C] = 0.
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The SL(2,C) Kac-Moody algebra (4.32) is anomalous. There is a central charge and the

constraint algebra is, therefore, second-class. To infer the Poisson commutation relations

on the physical phase space, we introduce the Dirac bracket. In this context, it is now

useful to introduce the mode expansion,

J in := J [τ iz−n]. (4.34)

From (4.32), we can then immediately infer the Poisson commutation relations for the

Kac-Moody constraints, {
J in, J

k
m

}↑ ≈ −εiklJ ln+m −
`

8G
nδn+mδ

ik, (4.35a){
J̄ in, J̄

k
m

}↑ ≈ −εiklJ̄ ln+m −
`

8G
nδn+mδ

ik, (4.35b)

where δn = 1 if n = 0, and δn = 0 otherwise. The zero mode J in=0 is first-class (the

constraint λiJ
i
n=0 + λ̄iJ

i
n=0 generates global SL(2,C) frame rotations), all other constraints

are second-class. On the physical phase space, where all constraints are satisfied, the

Poisson brackets are given now by the Dirac bracket {·, ·}, which is obtained by removing

the unphysical J-directions from the auxiliary Poisson brackets {·, ·}↑ on the extended

phase space. In other words,{
F,G

}
=
{
F,G

}↑ − 8G

`

∑
n 6=0

1

n

{
F, J in

}↑
δik
{
Jk−n, G

}↑ − 8G

`

∑
n 6=0

1

n

{
F, J̄ in

}↑
δik
{
J̄k−n, G

}↑
,

(4.36)

where F = F [h, η, U ] and G ≡ [h, η, U ] are functionals on the extended phase space P↑Σ.

On the extended phase space, which is equipped with the symplectic two-form Ω↑Σ, the

Laurent modes ηAn of ηA(z) generate an infinite-dimensional Heisenberg algebra,26{
ηAn , η

B
m

}↑
= −εABδm+n+1,

{
η̄A
′

n , η̄
B′
m

}↑
= −ε̄A′B′δm+n+1. (4.37)

The action of the Kac-Moody constraints J in on the Fourier modes ηAn is immediate:

{J in, ηAm}↑ = τA i
B ηBn+m. In other words, the second-class constraints J in do not commute

with ηAn , and the commutation relations for the Fourier modes ηAn will be significantly

changed by the introduction of the Dirac bracket (4.36). In fact, we find the following de-

formation of the Heisenberg algebra (4.37) for the boundary modes on the physical phase

space,{
ηAn ,η

B
m

}
=−εABδm+n+1 +

3G

`
εAB

∑
k 6=0

1

k
εCDη

C
n+kη

D
m−k−

2G

`

∑
k 6=0

1

k
η

(A
n+kη

B)
m−k, (4.38a)

{
η̄A
′

n , η̄
B′
m

}
=−ε̄A′B′δm+n+1 +

3G

`
ε̄A
′B′
∑
k 6=0

1

k
ε̄C′D′ η̄

C′
n+kη̄

D′
m−k−

2G

`

∑
k 6=0

1

k
η̄

(A′

n+kη̄
B′)
m−k. (4.38b)

In the `→∞ limit of vanishing cosmological constant, we are back to the ordinary Heisen-

berg commutation relations (4.37), see also [40].

26If we introduce for any n ≥ 0 the position and momentum modes qAn = ηAn resp. pnA = εBAη
B
−n−1, we

recover the usual canonical commutation relations {pnA, qBm} = −δBAδnm.
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4.3 Witt algebra of diffeomorphism charges

Finally, let us compute the Poisson commutation relations for the boundary charges (4.14)

that generate conformal boundary diffeomorphisms on the covariant phase space. We will

see, in fact, that the algebra defines a representation of the Viraso algebra with vanishing

central charge.

The boundary charge (4.14), is determined by the shear component σ ∝ Tab∂az∂bz of the

boundary stress energy tensor. As we have seen in above, the shear σ = 2∂az∂
b
z∇(anb) of

the normal vector na ⊥ TB to the boundary can be expressed in terms of the holomorphic

spin coefficient ξADξA, see (4.14). Since the SL(2,C) connection is given by A = g−1dg,

and ηA = gABξ
B is holomoprhic, the shear of na is now simply given by the holomorphic

function ηA∂zη
A = ξA∂

a
zDaξA, which is integrated over a cross-section C to obtain the

quasi-local energy H[N ].

In the last section, we introduced an extended phase space P↑Σ of field configurations

(ηA(z), hAB(z), UAB(z±o )), which is equipped with the symplectic structure (4.23). On the

extended phase space, the SL(2,C) element hAB(z), which has a branch cut along the neg-

ative real axis, and ηA(z), which is holomorphic in C−{0}, are functionally independent.27

The physical phase space is obtained by imposing two kinds of constraints: the infinite

tower of Kac-Moody constraints (4.20), which are local in z, and the non-local condition

on the monodromy (4.22). The resulting infinite-dimensional constraint hypsersurface is

equipped with the Dirac bracket (4.36), which turns it into a phase space.

Since we are working on this extended phase space, we now need to lift the diffeomor-

phism charges (4.14) onto P↑Σ, and we achieve this by introducing the following complex-

valued charge

L[N ] =
i√
2

∮
C

dz N

[
ηA∂zη

A − `

8πG
Tr
(
∂zh∂zh

−1
)]
, (4.39)

where the smearing function N(z), which defines the z-component of the conformal Killing

vector at the boundary, is holomorphic in C−{0}. Since Tr(∂zh∂h
−1) vanishes on the con-

straint hypersurface,28 the quasi-local Hamiltonian (4.14) is given by the real part of L[N ],

H[N ] ≈ L[N ] + cc., (4.40)

where ≈ denotes equality up to terms that vanish on the constraint hypersurface, which

is defined by the imposition of both the Kac-Moody constraints (4.20) and (4.22). To

identify the Hamiltonian vector field of L[N ] + cc. on the extended phase space, let us

first evaluate the functional differential,

dL[N ] = i
√

2

∮
C

dz

[
dηA

(
N∂zη

A +
1

2
∂zNη

A

)
− `

8πG
N Tr

((
∂zdh

)
∂zh
−1
)]
. (4.41)

27The group element h(z) has a branch cut, but ∂zh
−1 is holomorphic in C− {0}.

28N.B. ηAη
A = εBAη

BηA = −εABηBηA = 0, hence Tr(∂zh∂zh
−1) = ∂zh

A
B∂z[h

−1]BA ≈
−`2/(4πG)2ηAηBη

BηA = 0.
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Next, we define the following vector field XN ∈ TP↑Σ on the extended phase space,[
h−1XN [h]

]
A
B =

√
2N
[
h−1∂zh

]
A
B, (4.42a)[

h̄−1XN [h̄]
]
A′
B′ =

√
2N̄
[
h̄−1∂zh̄

]
A′
B′ , (4.42b)

XN [ηA] =
√

2

(
N∂zη

A +
1

2
(∂zN)ηA

)
, (4.42c)

XN [η̄A
′
] =
√

2

(
N̄∂z̄ η̄

A′ +
1

2
(∂z̄N̄)η̄A

′
)
. (4.42d)

The action of the vector field XN (as a functional derivative) on the SU(2) elements at

the marked boundary points ∂C = {z+
o } ∪ {z−o } of the contour C ⊂ B is arbitrary, because

there are the residual and rigid SU(2) gauge transformations (4.24) that always allow us

to set XN [U ] to zero by sending XN into some XN − λiNYi. We may define, therefore,

without any loss of generality that

XN [U(z±o )] = 0. (4.43)

If we now contract Ω↑Σ with both XN and a second arbitrary field variation δ ∈ TP↑Σ, we

immediately find

Ω↑Σ(XN , δ) = i
√

2

∮
C

[
dz

(
N∂zηA +

1

2
∂zNηA

)
δηA − `

8πG
N Tr

(
h−1∂zhd(h−1δh)

)
− cc.

]
− i
√

2 `

16πG

[
N Tr

(
h−1δh(h−1∂zh)

)
−N Tr

(
h−1∂zhδ[U ]U−1

)
− cc.

]∣∣∣∣
∂C
. (4.44)

Using Tr(τiτjτk) = −1
4εijk, we have

Tr
(
h−1∂zh(h−1∂zh)(h−1δh)

)
= 0, (4.45)

such that the first line of equation (4.44) simplifies to give the differential −δL[N ] + cc. If

the contribution from the marked boundary points vanishes in (4.44), the vector field XN

will be the Hamiltonian vector field of the quasi-local Hamiltonian L[N ]+cc. ≈ H[N ]. This

happens as soon as we restrict ourselves to field variations δ ∈ TP↑ that are tangential to

the C = 0 constraint hypersurface, i.e. δ[C] = 0. In fact, if we reintroduce g = hU , we have

Tr
(
h−1δh(h−1∂zh)

)
= Tr

(
g−1δ(g)U−1(h−1∂zh)U

)
+ Tr

(
h−1∂zh δ[U ]h−1

)
. (4.46)

On the C = 0 constraint hypersurface, which is defined by (4.22), the first term is

continuous across the branch cut, and the second term on the right hand side of (4.46)

will cancel against the last term in the second line of (4.44). For any field variation δ that

preserves the constraint on the monodromy, the boundary terms cancel, and we find that

XN is indeed the Hamiltonian vector field of L[N ] + cc. on the physical phase space,

Ω↑Σ(XN , δ) ≈ −δL[N ] + cc., ∀δ ∈ TP↑Σ : δ[C] ≈ 0, (4.47)

where ≈ denotes equality up to terms that vanish if the C = 0 constraint on the

monodromy (4.22) is satisfied. A particular example of such a field variation δ is given by
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the vector field XN itself: although h(z) ∈ SL(2,C) may have a branch cut, the extended

phase space P↑Σ contains only such configurations where ∂zhh
−1 is continuous across the

branch cut. This implies

XN [C] =
√

2N(z+
o )(∂zhh

−1)
∣∣
z+
o
C −

√
2N(z−o )(∂zhh

−1)
∣∣
z−o
C ≈ 0. (4.48)

Therefore, XN is a vector field in P↑Σ that lies tangential to the C = 0 hypersurface. In

addition, the vector field XN preserves the Kac-Moody constraints (4.21),

XN [J in] ≈ 0. (4.49)

We have thus shown that the vector field XN ∈ TP↑Σ lies tangential to the entire constraint

hypersurface PΣ =
{
p = [ηA(z), hAB(z), UAB(z±o )] : C(p) = 0 = J in(p)

}
. On the physical

phase space, equation (4.47) implies that the Hamiltonian vector field of H[N ] is given by

XN .

Having identified the Hamiltonian vector fields, we can now immediately evaluate the

corresponding Poisson algebra. We contract the symplectic two-form with any two such

vector fields and obtain

Ω↑Σ(XN , XM ) = i

∮
C

[
dz

(
N∂zηA +

1

2
∂zNηA

)(
M∂zη

A +
1

2
∂zMηA

)
+

− `

8πG
N Tr

(
h−1∂zh d

(
Mh−1∂zh

))
− (N ↔M)

]
+ cc. =

= −i

∮
C

dz (N∂zM −M∂zN)

[
ηA∂zη

A − `

8πG
Tr
(
∂zh∂zh

−1
) ]

+ cc. =

= −H
[
[N,M ]

]
, (4.50)

where we defined the Lie bracket29

[N,M ] =
√

2
(
N∂zM −M∂zN

)
. (4.51)

The constraint hypersurface is equipped with a natural symplectic form, which is given by

the pull-back of (4.23) from the auxiliary phase space P↑Σ back to PΣ. The corresponding

Poisson brackets on the constraint hypersurface are given by the Dirac bracket, (4.36). On

the C = 0 constraint hypersurface, the Hamiltonian vector field of H[N ] is given by XN ,

which preserves all the Kac-Moody constraints,{
H[N ], J in

}↑∣∣∣
C=0

= 0. (4.52)

This implies that the commutation relation for the generators H[N ] are unaffected by the

presence of the Dirac bracket,{
H[N ], H[M ]

}∣∣∣
C=0

=
{
H[N ], H[M ]

}↑∣∣∣
C=0

= Ω↑Σ(XN , XM )
∣∣∣
C=0

= −H
[
[N,M ]

]∣∣∣
C=0

,

29The prefactor of
√

2 is a consequence of our conventions for the conformal Killing vector taN : taN =

Nm̄a + cc., with ma =
√

2∂az̄ and [tN , tM ]a = ta[N,M ].
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where {·, ·}↑ denotes the Poisson brackets on the extended phase space. If we define the

usual Virasoro charges,

Ln =
1√
2
L[zn+1]. (4.53)

we immediately find two copies of the Virasoro algebra with vanishing central charge{
Ln, Lm

}
≈ (n−m)Ln+m, (4.54a){

L̄n, L̄m
}
≈ (n−m)L̄n+m, (4.54b)

where ≈ denotes again terms that vanish provided the closure constraint (4.22) for the

monodromy is satisfied.

It is now instructive to evaluate the Virasoro charges for the simplest non-trivial clas-

sical solution, namely Bryant’s curved catenoid cousins [28, 29]. In fact, we have identified

an entire one-parameter family {Ba}0≤a<1/
√

2 of such CMC-1 surfaces in Euclidean AdS3,

see (3.18), and (3.17). Any such catenoid cousin is now characterised by the holomorphic

boundary spinor,

ηA[Ba] = ia

√
`

8πG

(
1

−z−1

)
. (4.55)

For any such configuration all but one of the quasi-local boundary charges vanish,

Ln[Ba] =
i

2

∮
dz zn+1ηA∂zη

A

∣∣∣∣
Ba

=
`a2

8G
δn. (4.56)

The limit to the asymptotic boundary is the limit a→ 1/
√

2. In this limit, we recover the

asymptotic value of the AdS3 vacuum energy,

Ln[∂AdS3] := lim
a→ 1√

2

Ln[Ba] =
`

16G
δn. (4.57)

Before we proceed, let us briefly summarise the results of this section. To com-

pute the Poisson commutation relations between the quasi-local boundary observables

H[N ] =
∮
dvaTabt

b
N , we found it useful to work on an extended phase space P↑Σ, where

the functional dependence between the holomorphic boundary spinors ηA(z) and the holo-

morphic SL(2,C) elements hAB(z) is removed such that ηA(z) and hAB(z) can be treated

as independent coordinates on the extended phase space. The physical phase space is

obtained by imposing the conditions that reestablish the functional dependence between

ηA(z) and hAB(z), namely by imposing the Kac-Moody constraints (4.20), and the non-

local closure constraint (4.22) on the monodromy. By introducing the Virasoro generators

L[N ], we then lifted the Hamiltonian charges H[N ] onto this extended phase space. Next,

we found specific vector fields XN ∈ TP↑Σ that lie tangential to the solution space of the

constraints (4.21) and (4.22), and coincide on the constraint hypsersurface with the Hamil-

tonian vector fields of H[N ], see (4.47). Having identified the Hamiltonian vector fields of

H[N ], we then found the corresponding Poisson (Dirac) brackets on the solution space of

the constraint equations. We recovered two copies of the Virasoro algebra with vanishing

central charge.
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5 Entropy and partition function

Finally, a few remarks on quantum gravity and black holes. Our main goal in this section

is to gather some evidence that the conformal boundary spinors ξA provide a microscopic

explanation for black hole entropy. Our discussion relies on the observation due to Stro-

minger [35] that the Bekenstein-Hawking entropy for a three-dimensional black hole has

the same algebraic structure as the Cardy formula [53] for a two-dimensional conformal

field theory,

S(M,J) =
2πρ(r+)

4G
= π

√
`

2G

(√
M`+ J +

√
M`− J

)
, (5.1)

where M and J are the mass and angular momentum of the BTZ black hole. The Cardy

formula holds for a large class of boundary CFTs, which makes the argument robust, but

it does not tell us much about the field content of the boundary CFT. In the following, we

would like to discuss this issue from the perspective of the boundary modes ξA. To this

goal, let us consider first the bulk plus boundary path integral,

X(τ, τ̄) =

∫
Mτ

D[e, ω]D[ξ] eiS[e,ω|ξ], (5.2)

whereMτ is a solid torus, which is characterised by the modular parameter30 τ = i
2π (β+iϕ)

that encodes the periodicity z ∼ z eβ+iϕ on the complex plane C − {0}. Notice that

the exponent is imaginary, because the Euclidean bulk plus boundary action (2.24) is

real. We are considering, therefore, an oscillatory path integral, which also underlies the

Ponzano-Regge and Turaev-Viro spinfoam amplitudes and their generalisations to four

dimensions [46, 54–59].

The integral over the triad ei and the SU(2) connection ωi in the interior is redundant,

because there are no radiative degrees of freedom in the bulk (the ωi and ei directions lie

tangential to the gauge orbits). We are thus left with the path integral over the boundary

spinors alone, which defines a Virasoro character31

X(τ, τ̄) = Tr
(

e−2πτL0e2πτ̄L̄0

)
= Tr

(
e−iβH+ϕJ

)
. (5.3)

Only those states will contribute to this trace that satisfy the infinitely many Kac-Moody

constraints J in ≈ 0, which are imposed via the Dirac bracket at the classical level. In

addition, we have to impose also the closure constraint on the monodromy (4.22). The

closure constraint mixes the holomorphic and anti-holomorphic sectors of the theory and

we cannot assume, therefore, that the character factorises, X(τ, τ̄) 6= X(τ)X̄(τ̄).

The Hamiltonian H, which generates translations along the radial |z|-direction, and

the angular momentum J are the real and imaginary32 part of the Virasoro generators L0

30The extra imaginary unit infront of (β+iϕ) has to do with the fact that we are considering an oscillatory

integral.
31We have absorbed a potential vacuum energy back into the definition of L0.
32The Euclidean BTZ black hole solution is characterised by an imaginary spin J , and a positive mass

M ≥ ` |J |.
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and L̄0,

H = L0 + L̄0, (5.4a)

J = L0 − L̄0. (5.4b)

In our case, the Virasoro generators will satisfy the reality conditions

L†n = L̄n, (5.5)

where L†0 denotes the Hermitian conjugate with respect to the Hilbert space inner product.

Notice, that there is no reason a priori for the Virasoro generators (4.39) to satisfy the

more familiar adjointness relations L−n = L†n (and L̄†n = L̄−n) that underpin conventional

unitary CFTs.33

If the boundary spinors ξA are the origin of black hole entropy, we should be then able

to compute the micro-canonical entropy

S(∆, ∆̄) = log Ω(∆, ∆̄), (5.6)

where Ω(∆, ∆̄) is the number of boundary states that have energy E and spin L, with

∆ = E + iL denoting the (complex) eigenvalue of L0 = H + J . The degeneracy of L0

can be then calculated by an averaging procedure [51, 60], namely by taking the Laplace

transform of the character,

Ω(∆, ∆̄) = Tr
(
δ(L0 −∆)δ(L̄0 − ∆̄)

)
=

1

(2π)2

∫
γ∗
dτ∗
∫
γ
dτ X(τ, τ∗)e2πτ∆e−2πτ∗∆̄, (5.7)

where we have analytically continued X(τ, τ̄) into an analytic function X(τ, τ∗) of two

complex numbers (τ, τ∗). The paths γ(t) = τ(t) and γ∗(t) = −τ̄(t) are chosen such that

the integral converges. Since we do not know the spectrum of L0, we can now only proceed

at a formal level. Suppose, therefore, that for some given configuration (∆, ∆̄) the integral

converges in both τ and τ∗ and that the main contribution to the integral comes from

a single saddle point34 τo (res. τ∗o ). The relation between the entropy S(∆, ∆̄), and the

inverse temperature τo is then given by the usual saddle point equations

2π∆ = −∂ logX

∂τ

∣∣∣
(τo,−τ̄o)

, (5.8a)

S(∆, ∆̄) ≈ logX(τo,−τ̄o) + 2πτo∆ + 2πτ̄o∆̄. (5.8b)

We can now formally continue to derive a version of the Cardy formula: since the modular

S-transformation τ → −τ−1 defines the same torus, we expect that the Virasoro character

of the boundary field theory is invariant under these large diffeomorphisms. Let us then

also assume that for large temperature |τo| → 0 the integral over the oscillating trace is

dominated by a single semi-classical (coherent) state |Ω〉,

X(τ, τ∗) ≈ e
2π
τo
〈Ω|L0|Ω〉e

− 2π
τ∗o
〈Ω|L̄o|Ω〉. (5.9)

33We could insist to use a bilinear form (·, ·) such that (L−n[·], ·) = (·, Ln[·]), but then the requirement

of positivity for (·, ·) must be dropped.
34If τo is such a saddle point for the integral over τ , then −τ̄o will be the saddle point for the τ∗o integral.
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If such a state |Ω〉 exists, we can immediately perform the Legendre transformation from

X(τ, τ∗) to S(∆, ∆̄) and obtain,

τo =

√
∆

〈Ω|L0|Ω〉
, (5.10a)

S(∆, ∆̄) ≈ 4π
√

∆〈Ω|L0|Ω〉+ cc. (5.10b)

Notice that we do not require that |Ω〉 is an eigenstate of L0. In fact, for a non-unitary

CFT L0 + L̄0 may be unbounded from below and may have no normalisable eigenstates in

the Fock space of the boundary CFT.35

Given these assumptions (namely, (i) modular invariance and the (ii) existence of a

semi-classical state |Ω〉 that dominates the partition function at large temperature), we have

a version of Cardy’s formula for the boundary CFT, which we expect to be non-unitary.

For a generic such coherent state |Ω〉 the entropy (5.10b) is in violation of the Bekenstein-

Hawking formula (5.1). If, however, the semi-classical state |Ω〉, represents the asymptotic

boundary, which corresponds to the a→ 1√
2

limit of the bulk catenoids (3.18), (3.17) the sit-

uation is different: since the state is assumed to be semi-classical, we would then recover the

classical values for the Virasoro generators (at least to leading order in ~). In other words,

〈Ω|L0|Ω〉 =
`

16G
, (5.11)

see (4.57). Equation (5.10b) together with (5.11) would then reproduce the Bekenstein-

Hawking entropy, for mass M and imaginary spin J that are now determined by the real

and imaginary parts of ∆ = M`+ J .

The key open task to make this argument robust is to show that there exists a coher-

ent state |Ω〉 that represents the asymptotic AdS3 boundary and dominates the Virasoro

character at high temperature. This task is not unfeasible, because there has been a

lot of progress in non-perturbative quantum general relativity to construct such coherent

boundary states using the spin network representation, which would provide a lattice reg-

ularisation of the boundary CFT, see for instance [61–65] and references therein. In fact,

using a coherent spin network for the quantum states in the bulk, we will have a coher-

ent boundary state Ω that will be now only supported in a finite number of punctures,

i.e. 〈ξ|Ω〉 = Ω[ξA(z1), ξA(z2), . . . ], with every such puncture representing a gravitational

Wilson line that ends at the boundary [40, 66]. Introducing a UV cutoff for the mode

expansion of the boundary CFT, one can then map the Hilbert space of N such punctures

back into the Hilbert space of the boundary CFT in the continuum, which would then

allow us to test the validity of the approximation (5.10b), see [40, 66] and [67] for related

developments based on the sampling theorem.

35In the ` → 0 limit of vanishing cosmological constant, the quasi-local energy H = L0 + L̄0 turns into

a two-mode squeeze operator, which has no normalisable eigenstates on the Hilbert space of the boundary

CFT, see [40].
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6 Summary and discussion

In this paper, we established the quasi-local Hamiltonian formulation of three-dimensional

Euclidean gravity (Λ = −1/`2) with conformal boundary conditions. The conformal class of

the induced metric at the boundary is fixed, but there are no restrictions on the variations of

the conformal factor. Instead, there are constraints on the canonically conjugate variable to

log Ω, which is the trace K = ∇ana of the extrinsic curvature. The specific value K = 2/`

is preferred geometrically, because the solution space of this specific class of conformal

boundary conditions can be coordinatised in terms of holomorphic maps from Riemann

surfaces into the spin bundle [28, 29] over hyperbolic space. To impose the conformal

boundary conditions at a Hamiltonian level, we found it then useful to work on an extended

phase space [30, 66], where there are additional boundary degrees of freedom that turn

these holomorphic maps into dynamical boundary fields, whose Euclidean time evolution is

governed by the Noether charges (4.14). After having introduced the appropriate counter

terms to the triadic Palatini action (2.24), we studied the phase space and the gauge

symmetries of the bulk plus boundary system. Simultaneous SU(2) frame rotations of

the bulk plus boundary fields are unphysical gauge directions. For diffeomorphisms, the

situation is different: large diffeomorphism are physical [51, 68]. A preferred class of such

large diffeomorphisms is given by those specific bulk diffeomorphisms that preserve the

conformal boundary conditions. The corresponding conserved Noether charges are the

Virasoro generators (4.14).

Finally, we computed the Poisson commutation relations for the holomorphic bound-

ary spinors, and found a one-parameter family of deformations of the classical Heisenberg

algebra: {ηAn , ηBm} = −εABδm+n+1 +
∑

rs r
AnBm
CrDs η

C
r η

D
s . The infinite-dimesnional matrix

rAnBmCrDs ∼ G/` that controls the strength of this deformation disappears in the ` → ∞
limit of vanishing cosmological constant. The geometrical origin of this deformation can be

traced back to the Kac-Moody constraints (4.20), which are second-class. In fact, rAnBmCrDs

is simply the inverse of the Dirac matrix {J in, Jkm} of the second-class constraints. Be-

sides the Kac-Moody constraints there is a small number of residual first-class constraints,

namely the zero mode J i0 of the Kac-Moody charges in addition to the deformed closure con-

straint (3.43) that entangles the holomorphic and anti-holomorphic sectors of the boundary

field theory.

From the perspective of the spin network representation of quantum general relativity,

the field content of the boundary CFT should be no surprise. In loop quantum gravity

(LQG), the quantum states of the geometry are constructed by successively exciting grav-

itational Wilson lines for the spin connection.36 The introduction of a boundary breaks

these Wilson lines apart, and excites a distributional surface charge, namely a boundary

spinor, at the puncture. In 2 + 1 spacetime dimensions, the partition function for these

gravitational boundary modes is given by the evaluation of boundary spin networks against

36The underlying diffeomorphism invariant Ashtekar-Lewandowski vacuum is a state that represents no

geometry at all [69]. More recently, dual vacua have been proposed that are peaked in the conjugate

variables: the metric is widely spread, but the conjugate momentum, which encodes the extrinsic curvature

is sharply peaked, see [70, 71].
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the Ponzano-Regge spinfoam amplitudes. The resulting spin network evaluation defines a

large class of 1 + 1-dimensional statistical model [44, 72–74]. The Heisenberg XYZ spin

chain is an example for such a statistical model in 1 + 1 dimensions, which corresponds

to the massive Thirring model in the continuum. The results of this paper strengthen

these dualities from the opposite direction, namely by starting from a 1 + 1 dimensional

boundary field theory for conformal boundary conditions in the continuum.

The main part of the paper dealt with the classical theory. In the last section, we

discussed the physical relevance of our results in the context of those proposals that de-

rive the entropy of black holes from the Cardy formula. Our discussion closely followed

Strominger’s original proposal, but there are a few unusual features. First of all, we found

that there is no central charge among the Poisson brackets of the Virasoro generators,

see (4.54a) and (4.54b). In our opinion, this is a strong indication that the underlying

boundary CFT is non-unitary. This observation is further supported by the structure of

the boundary action, (2.24). If we isolate the spin up and down components of the bound-

ary spinor and introduce component functions β and γ, such that ξA = (β, γ), we will find

that the boundary action (2.24) turns into the action for the β-γ ghosts of string theory,

with a quartic potential and a minimal coupling to the spin connection from the bulk

(the boundary CFT resembles, therefore, the Thirring model [75], but with a kinetic term,

which is now borrowed from the β-γ theory). Yet the statistics is different, since ξA must

be bosonic.37 The main difficulty in quantising such a theory is that H = L0 + L̄0 is not

manifestly positive. This becomes explicit in the ` → ∞ limit of vanishing cosmological

constant, where H = L0+L̄0 is a two-mode squeeze operator H ∼
∑

n(2n+1)(anbn+a†nb
†
n),

see [40]. We expect that these features survive for Λ 6= 0 and that the Hamiltonian will

have a similar spectrum, such that the exponentials of the Hamiltonian vector fields of the

supermomentum generators Pn = `(Ln + L̄n) would not preserve the original Fock space,

but map it into a unitarily inequivalent superselection sector.
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