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ABSTRACT: We consider the bulk plus boundary phase space for three-dimensional gravity
with negative cosmological constant for a particular choice of conformal boundary condi-
tions: the conformal class of the induced metric at the boundary is kept fixed and the
mean extrinsic curvature is constrained to be one. Such specific conformal boundary con-
ditions define so-called Bryant surfaces, which can be classified completely in terms of
holomorphic maps from Riemann surfaces into the spinor bundle. To study the observ-
ables and gauge symmetries of the resulting bulk plus boundary system, we will introduce
an extended phase space, where these holomorphic maps are now part of the gravitational
bulk plus boundary phase space. The physical phase space is obtained by introducing two
sets of Kac-Moody currents, which are constrained to vanish. The constraints are second-
class and the corresponding Dirac bracket yields an infinite-dimensional deformation of the
Heisenberg algebra for the spinor-valued surface charges. Finally, we compute the Poisson
algebra among the generators of conformal diffeomorphisms and demonstrate that there is
no central charge. Although the central charge vanishes and the boundary CFT is likely
non-unitary, we will argue that a version of the Cardy formula still applies in this context,
such that the entropy of the BTZ black hole can be derived from the degeneracy of the
eigenstates of quasi-local energy.
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1 Introduction

How do we characterise a solution to Einstein’s equations on the gravitational phase space?
Consider, for example, the Kerr metric, which is determined by the mass M and the spin
J < M? of the black hole. If appropriate gauge-fixing, parity, and falloff conditions for the
metric at infinity are satisfied, there are ten conserved Poincaré charges at spacelike infin-
ity [1-3], and every pair (J, M), J # 0 represents an entire 10-dimensional submanifold on
the ADM phase space for asymptotically flat boundary conditions. On the radiative phase
space [4-7], which describes the radiative modes at future (past) null infinity, the situation
is a little more difficult, because (i) future (past) null infinity is not a complete Cauchy
hypersurface, and (ii) there are infinitely many ways to embed the Poincaré group into
the asymptotic symmetry group of BMS transformations, which is infinite-dimensional.
At the quantum level, these infrared ambiguities [6-9] give rise to infinitely many uni-
tarily inequivalent Fock representations. Choosing a radiative Fock vacuum amounts to
choosing a specific Poincaré subgroup at future (past) null infinity [6, 8, 9], and there are
infinitely many unitarily inequivalent such choices. If one insists that superpositions of
different such unitarily inequivalent radiative vacua should be realised in nature, and also
takes into account that BMS translations define canonical transformation on the radiative



phase space [6], one is naturally led to the idea that the BMS transformations should arise
from a non-unitary boundary field theory. Such theories still admit a positive-definite in-
ner product, and there are no negative probabilities, but the condition is dropped that
the Hamiltonian (e.g. a generic BMS supertranslation) preserves the different unitarily in-
equivalent Fock spaces. In the following, we will collect evidence in favour of this scenario
by considering three-dimensional Euclidean gravity (with negative cosmological constant).
In addition, we will work on a quasi-local phase space, where the gravitational field is
put in a box with boundaries at finite distance [10-16]. The topology of the boundary is
fixed: the boundary is an infinite cylinder R x S*, which serves as a toy model for future
(past) null infinity [17-22]. At this cylindrical boundary, we then choose specific conformal
boundary conditions [23]. Although there is just one single solution of Einstein’s equations
in the interior, namely empty AdSs, the physical phase space of the bulk plus boundary
system turns out to be infinite-dimensional. The physical origin of this vacuum degen-
eracy has to do with the introduction of the boundary, which turns otherwise unphysical
gauge directions into actual physical boundary degrees of freedom [24-26].! Working in
the first-order connection representation, we will then see that these inequivalent bound-
ary configurations can be characterised by a boundary spinor that is coupled to the spin
connection in the bulk. The underlying boundary field theory has, however, a number of
unexpected features: the Virasoro algebra, which is the Euclidean analogue of the algebra
of BMS transformations, has no anomaly (the central charge vanishes at the level of classi-
cal Poisson brackets), and the kinetic term for the boundary fields is not positive-definite.
In fact, the boundary action defines a version of the - ghosts of superstring theory with a
quartic self interaction V(3,7) o (|8]?+|v|?)?, which suggests that the resulting boundary
field theory defines a non-unitary CFT. A central charge may reappear upon quantisation,
but it would have the wrong A dependence that would be required to derive the entropy
of a BTZ black hole from the Cardy formula, see [27], where a similar issue arises for the
Liouville boundary CFT.

Outline. The paper is organised as follows. First of all (section 2), we introduce a
specific class of conformal boundary conditions, such that the abstract boundary R x
S' is mapped into a constant mean curvature one hypersurface (CMC-1 in units of ¢ =
/—1/A), which is embedded into three-dimensional hyperbolic space Hs. We then show
how these specific conformal boundary conditions translate into a holomorphicity condition
for an SU(2) spinor ¢4 = [¢) € C2, which is intrinsic to the boundary. The squared
SU(2) norm ||€]|? = (£]¢) of this boundary spinor determines the conformal factor, which
relates the pull-back of the physical metric in the interior to the auxiliary metric at the
boundary. The relation between the boundary spinor €4 and the embedding variables
is provided by the three-vector 7 = (£|5|¢), which defines the internal normal to the
boundary: 77 = n’ = e‘,n®, where €', denotes the co-triad in the interior. To clarify the
geometry of the problem, we consider then a particular class of such CMC-1 boundaries,
namely Bryant’s curved catenoid cousins [28, 29], and parametrise the solution space of

! There are infinitely many ways to embed the abstract boundary R x S* into AdSs, and each of these dif-
ferent embeddings represents a physically distinguished configuration of the bulk plus boundary field theory.



the boundary field theory in terms of holomorphic maps (see section 3). Next, we add the
appropriate counter terms to the triadic Palatini action such that the Einstein equations in
the interior and the additional conformal boundary conditions both follow from the saddle
point equations of the coupled bulk plus boundary action. Section 4 deals with the quasi-
local Hamiltonian analysis. We will introduce an extended gravitational phase space, and
identify the gauge transformations (small diffeomorphisms and SU(2) frame rotations) of
the extend bulk plus boundary system [16, 30-34]. The commutation relations between
the Laurent modes of the boundary spinor £ are defined via the Dirac bracket, which
yields a deformation of the infinite-dimensional Heisenberg algebra. The strength of the
deformation is determined by the cosmological constant. If the cosmological constant
vanishes, the deformation disappears. Finally, we turn to quantum gravity and explain
under which assumptions the boundary conformal field theory could provide a concrete
realisation of Strominger’s proposal [35] for a microscopic derivation of black hole entropy
from the degeneracy of the eigenstates of quasi-local energy.

Notation. Our conventions are the following: a,b,c,... are abstract tensor indices, and
we will use them without any distinction for both tensor fields in space time and for
tensor fields that are intrinsic to the two-dimensional boundary B of the three-dimensional
cylinder M ~ R x ¥. Two-dimensional spinor indices A, B, C, ... carry a representation of
SL(2,C), the complex conjugate representation is denoted by primed indices A, B',C’, .. ..
The skew-symmetric and SL(2,C) invariant e-tensor provides a map between covariant
and contravariant such spinors, i.e. {4 = eAB¢p, €5 = 4 4p. Round (square) brackets
surrounding indices A1, A, ... denote total (anti)symmetrisation, i.e. 2w(ap) = waBtwBA.
In addition, there is also an SU(2) invariant inner product, (n|¢) = 6447 €4, which allows
us to define the Hermitian conjugate fL = S &Y, {ff“ = eABﬁg. An element U € SU(2)
can be then identified with those tensors U“ 5 in the spin (1) ® (3)* representation that
preserve 044/, i.e. dqq = S UP AUP 4. This notation is convenient for us, because
it allows us to make sense of sums and differences of group elements (we are implicitly
working on the universal enveloping algebra, as in equation (4.22) below). Finally, let
us also mention that o4p; = o; are the usual Pauli matrices and 7; = 1/(2i)o; is the

corresponding basis in su(2) that satisfies [r;, ;] = €;;%7%.

2 Bulk plus boundary field theory for conformal boundary conditions

2.1 Conformal boundary conditions in AdS3

In the quasi-local covariant phase space approach boundary conditions on a ¢ = const.
initial hypersurface ¥ have a slightly different ontological status than those for the timelike?
portion B C OM of the boundary: different boundary conditions on B select different
Hamiltonians on a extended phase space Py, of the bulk plus boundary system [13, 30, 36],
and the boundary conditions on B translate into external sources (background fields or

2The distinction between timelike and spacelike hypersurfaces is meaningless in Euclidean gravity, but
we can always work with an Euclidean t-coordinate, with respect to which the equations of motion of the
bulk plus boundary field theory can be cast into a standard Hamiltonian form.



c-numbers) that parametrise the possible (time dependent) Hamiltonians on Py. In three
dimensions, this procedure is comparably easy to understand, because once we fix the gauge
conditions along B there is no additional free data left, since three-dimensional gravity is
topological. The boundary conditions on B determine how the boundary 9% ~ S' of the
initial hypersurface ¥, which has the topology of the unit disk {z € C‘ |z| < 1}, extends into
a world tube B ~ R x 8!, which is embedded into spacetime. A particular simple possibility
to determine such an embedding is given by the following conformal boundary conditions:
the basic idea is to only fix the boundary metric up to conformal transformations,

Bgab = hab € [qap] & Q: B — R hy, = Q 2qy, (2.1)

Similar boundary conditions can be used in 3+1 dimensions, where the two-radiative modes
can be encoded at the full non-perturbative level into teh conformal two-structure at the
null boundary [37, 38]. The conformal factor €2, on the other hand, is unconstrained.
Instead, we freeze its conjugate momentum, which is the trace of the extrinsic curvature?

K =h®K,, (2.2)

where K, = h,“Vny, is the extrinsic curvature tensor and n® : gabn“nb = 1is the outwardly
oriented normal to the boundary. We choose, therefore, the following conformal boundary
conditions [23, 39-42],

5[K] =0, 0hab X Gab, 5[hab] = 0. (2.3)

Since §[K] vanishes, we have to choose a specific value for K. We will see in the following
that
K= (2.4)
=7 )

is preferred geometrically, because it selects specific Bryant surfaces that are in one-to-one
correspondence to holomorphic maps from the punctured complex plane C — {0} into the
spinor bundle over hyperbolic space [28].

2.2 Bulk plus boundary field equations

The action in the interior of the cylinder M ~ R x 3 is given by the usual triadic Palatini

action,

1 X A ,
Smle,w] = “5:G /., [ei A F'w] + geilmel Aetnem|, (2.5)

where w’ denotes an SU(2) connection with curvature F'[w] = dw’ + € j5w" A w* and €
is the co-triad. The metric tensor is the composite field

Gab = 0ije ae’p. (2.6)

30n the ADM phase space, we can always choose a polarisation such that log € is canonically conjugate
to the trace of the extrinsic curvature.



If the torsionless condition T% = de’ + €',,w! A e™ = 0 is satisfied, the action (2.5) reduces
to the usual Einstein-Hilbert action
1

Senlg) = 1o /M vy (Rlg] - 2A), (2.7)

where d®v, = 1/3! €;pe’ A el A eF is the metrical volume element and R[g] denotes the Ricci
scalar.

The torsionless condition is satisfied at the stationary points of the action. A generic
such variation yields a boundary term 1/(87G) §ze; A dw'. To make the action for the
conformal boundary conditions (2.3) functionally differentiable, we have to cancel this
boundary variation by the addition of an appropriate counter term. Since the reminder
1/(87G) §zei A dw' of the w'-variation is linear in the connection, we will construct such
a boundary term from the covariant derivative, which acts linearly on an SU(2) boundary
spinor LA,

Vot =02 + TABZ‘wiaLB, (2.8)

where 0, is a flat reference connection and 7; = 1/(2i)0; are the su(2) generators. The task
ahead is to find such a boundary term for the conformal boundary conditions (2.3), (2.4)
and add it to the action. To impose the boundary conditions (2.3) in terms of such surface

spinors, let us first write the extrinsic curvature in terms of a spin frame at the boundary.
A-A
=1,

which immediately defines a second and linearly independent and orthogonal spinor o?,

Such a spin frame can be defined by a single and normalised SU(2) spinor ¢4 : 6447t

o = Lf;‘ = eABLJ]rB = eABcSBB/ZB/, (2.9)

where 044 denotes the SU(2) invariant Hermitian metric and e#? is the skew symmetric e-

tensor.* Given the spin dyad (OA, LA), we can then immediately construct a corresponding

internal triad,
i

v = ﬁUABiUAB, AP = —iv/204,B), (2.10a)
] i i, AB AB . A B
w' = —oap'w”, w?” = 4io” 07, (2.10b)
V2
g1 i, AB _AB . A B
W' = —=oAp'w"", w?” = 7. (2.10c¢)
V2

It is easy to check that w;w' = v;v' = 1, while all other contractions vanish (internal
indices are raised and lowered with the flat internal metric &;;). In addition, @’ is the

ACGp; are the usual Pauli matrices. Consider

complex conjugate of w' and o%p; = €
then a smooth section (04, :4) of the associated frame bundle in some neighbourhood of
OM. Given the triad e;*, we can now introduce an associate spacetime triad (v®, w®, w%),
where e.g. v* = ¢;%". The SU(2) covariant derivative annihilates the Pauli matrices. If

the torsionless condition is satisfied, it also annihilates the triad® e’,, and it is then easy

“The SU(2) and SL(2,C) spinor indices are raised and lowered with respect to the skew symmetric and
SL(2, C)-invariant e-tensors, e.g. £4 = epal®, €4 = e*Bp, and e*Peap = 2, see [43].

5On-shell7 the covariant derivative satisfies Vae;® = 0aei® + €™ w aem? + [Peaei® = 0, where I'*;. are
the Christoffel symbols for the metric g.» = 5ij€ia6jb.



to see that the expansion ¥ and the twist w of v® reduce to the following complex-valued
spin coefficient,

1

5(19 - iw) = wVavp = —V2 14t pwV, (OALB) = \@LAw“VaLA, (2.11)
where we were using the normalisation of the dyadic spinor basis: ¢ = eaptB =0
and 0404 = —1 404 = 1.

If we extend n® into a surface forming vector field in the neighbourhood of B, and align
n® with the vector field v® = e;%v", we immediately see that the twist w of v® must vanish
(since n® is surface forming), while the conformal boundary condition K = 2/¢ translates
into a condition for the ¢4 V¢4 spin coefficient,

_ 11
- 7

The conformal boundary conditions impose constraints on both the extrinsic curvature

LAWY 1A (2.12)

and the induced metric. Having expressed the boundary condition K = 2/¢ in terms of
the spin coeflicients, we have done only one half of the job. We must now turn to the
boundary condition for the off-diagonal components of the induced metric and rewrite it
as a boundary condition for the spin frame at the boundary. The induced metric is

Pigab = qap = 227 mgimy), (2.13)

where m, € Q'(B : C) defines a reference dyad on the boundary and €2 is the conformal
factor. This condition can be easily translated into the spinor calculus. The basic idea is
to align the one-form m, with a spinor £é4¢5 such that the SU(2) norm of €4 determines
the conformal factor,”

1
V2

see [40]. In fact, it is easy to check that the conformal factor turns into a composite field,

e’ = 4nG ( 4680 45'm + cc.) , (2.14)

Q7! = 47 G|¢||]? = 47 G S an EAEY, (2.15)

where 471G = ¢p denotes the Planck length in three spacetime dimension (in units of & = 1).
The Planck length has been introduced for dimensional reasons only, in quantum gravity,
on the other hand, equation (2.15) defines the most natural normalisation: for vanishing
cosmological constant, ||£]|? turns into an ordinary number operator, whose spectrum is
N + 1, see [40]. At the boundary, there is a natural torsionless SU(2) x U(1) covariant
derivative D,. It annihilates the dyadic one-forms m,, which are uncharged under SU(2),
and it satisfies the two-dimensional torsionless condition,

Dm =2dm +il' Am =0, (2.16)

5The dyadic one-form m, is a c-number on phase space, d[ma] = 0.
"Notice that both m, and £ala are null: meym® =0 = §A§B§A§B.



where I' € Q!(B) is the U(1) boundary spin connection and 2d is the exterior derivative
on B. By adding the spin connection from the bulk, the U(1) covariant derivative, which
is defined by I'y, extends naturally to an SU(2) x U(1) covariant derivative, which acts on
the boundary spinors via

DeA = 2det - il“af“‘ + 7 (ppw')EB. (2.17)
The torsionless condition in the bulk imposes now a constraint on this derivative. Since
the exterior derivative commutes with the pull-back, we easily find

0=pEVe' = D(go}}ei) = 47TG<\/§§(A(D§B))UABi Am+ cc.). (2.18)

Since £4¢B, 51{455 and & (AﬁTB ) are linearly independent and define a complexified basis in
the SU(2) Lie algebra, we conclude that the pull-back of the torsionless condition vanishes
if and only if

m A DEY oc g = 64 4 €Y. (2.19)

The proportionality between the right hand side and the left hand side is determined by the
extrinsic curvature. To establish the relation between the extrinsic curvature and DEA, we
introduce a normalised spin frame (14, 04), which is aligned to ¢4, such that we can infer
the extrinsic curvature from the spin coefﬁc1ent 1aV1iA, see (2.11). Consider, therefore, the

following spin frame at the boundary,

4 A 0N

B

There are now two associate bases in 7% B¢, namely (m®,m®), which is defined as the basis

(2.20)

dual to the dyadic one-forms (mg,mg)," and (w®,w®), which is induced from the bulk,
see (2.10a), (2.10b), (2.10c). The two bases are related by the conformal factor,

w® = Qm?, (2.21)

which is determined from the SU(2) norm (2.15) of the boundary spinor. Going back to the
definition of the extrinsic curvature in terms of the spin coefficients, i.e. equation (2.11),
we can now finally determine the relation (2.19) between m A DA and {fr“,

1
] T2

The conformal boundary condition (2.4) turns, therefore, into the following holomorphicity

mADEA = !2§T ¢emADEP = —¢mnip DB QY —iw)émAam. (2.22)

condition for the boundary spinor ¢4,

2\/§7TG

2 ’
K= T mADEN = == ||PoA pe . (2.23)

In the following, we will treat this boundary condition as a dynamical field equation, which
is derived from the coupled bulk plus boundary action.

81.e. m®m, = 0,m%mg = 0.



2.3 Bulk plus boundary action
Now that we have identified the boundary field equations (2.23) that impose the conformal

boundary condition K = 2//, it is immediate to infer the corresponding bulk plus boundary
action. In fact, the action for the coupled bulk plus boundary system is given by the usual
triadic Palatini action in the interior and the action for a two-dimensional field theory at
the boundary,

4 A .
Sle,w|é] = {ei A F'lw] + geilmel AetAe™|+

871G
+1/ [ﬁAmADéA—EAImADEA'—QﬁﬂGmAm\liH"‘ , (2.24)
V2 /g 14

where the quartic potential ||¢]|* = (64.4/6464)? is built from the SU(2) invariant Hermitian
norm and D denotes the SU(2) x U(1) boundary covariant derivative (2.17). The equations
of motion (EOM) in the interior are the three-dimensional Einstein equations plus the
torsionless condition,

Tt =Ve! =de' + €l Ae™ =0, (2.25a)
. 1. A
F* =dw' + gﬁllmwl Aw™ = —§ellmel Ae™. (2.25D)
The boundary conditions K = 2/¢ along the cylindrical boundary follow as an additional

boundary equation of motion from the variation of the action with respect to &4 (resp.
€4, In fact,

Se[Sleswlé)) = iv2 | [&A <mA Deh + Q@Gmmuén%%&’) - ]+
B
+ % /68 (mEadEd — cc.). (2.26)

The first term imposes the boundary condition K = 2/¢, while the one-dimensional in-
tegrals at the one-dimensional corners 0B = 82;1 Udx_! will add a corner term to the
pre-symplectic potential of the bulk plus boundary field theory, see (4.2).

Finally, there is also the gluing condition (2.14), which is satisfied at the stationary
points of the coupled bulk plus boundary action. This additional gluing condition follows
from the w’-variation of the coupled bulk plus boundary action. A short calculation gives,

1 » 1 1 .
Ow [S[e,wm] =50 » T; N\ dw" + 3G ; [e,- — 47rG<ﬂ§A§BUABim + cc.)} A dw'+
o+ .
+ / ei N ow'. (2.27)

The first line vanishes as an equation of motion: 7% = 0 is the torsionless condition (2.25a),
and the second term vanishes provided the gluing conditions (2.14) are satisfied. The two
boundary integrals in the second line define the contribution to the pre-symplectic potential
from the interior, see (4.2).



The boundary equations of motion (2.23) can be simplified by introducing the
SL(2,C) x U(1) covariant derivative with respect to the Euclidean AdSs3 connection,

1 .
Det = Det + o pil e )€, (2.28)
The gluing condition (2.14) implies oap;pxe’ = —4nGV2(Ex6pm — filﬁ};m) such that

DEA = DEA + 2\/§7TG/€”§H2£§[477L The boundary equation of motion (2.23) reduces, there-
fore, to the simple holomorphicity condition

MDA =0 (2.29)

for the boundary spinor &4, where D, is the SL(2,C) x U(1) covariant derivative (2.28).

3 Solution space, curved catenoids, deformed Gauss law

3.1 Particular solution: the AdS3 catenoid

To clarify the geometry of the system, let us consider first a particular solution of the bulk
plus boundary field equations. The goal is, in other words, to find a diffeomorphism ¢ that
maps the solid cylinder? R x ¥ into Euclidean AdS3 (i.e. three-dimensional hyperbolic space

H3 with cosmological constant A = —1/¢2) such that the trace of the extrinsic curvature
of the boundary B = (R x 9S') satisfies the constraint
2
K=-. 3.1
- (3.1)

To find an explicit example of such a Bryant surface [28], we will work with cylindrical Hs
coordinates (p, ¢,n). In these coordinates, the Hj line element is given by

ds? = (dp2 + sh? pdp? + ch? pd772). (3.2)

The trace of the extrinsic curvature K = h® K, is the three-divergence of the normal
vector to the boundary, i.e. K = h®V,n, = V,n®, where V, denotes the torsionless and
metric compatible derivative in the bulk. To satisfy (3.1) consider then the following ansatz
for the normalised vector field n?,

n® = N(p) ™ 0y d(n — f(p)), (3.3)

which implies rotational symmetry (the boundary B defines a solid of rotation). Since
the covariant derivative is torsionless (V[,Vy f = 0) and annihilates the three-dimensional
Levi-Civita tensor €*°, the three-divergence V,n® satisfies

1 N'(p)
aa:N/ abca = et 4
Given the ansatz (3.3), a solution to the boundary condition V,n®* = 2/¢ is therefore given
by
N(p) :£2(Sh2p—|—c). (3.5)

9The two-dimensional disk ¥ is bounded by a circle 9% ~ S*.




In the following, we will restrict ourselves to those configurations, where the integration
constant c is strictly positive, and we write, therefore

N(p) = EQ(sh2 p+ az), (3.6)

for some constant ¢ > 0. An additional constraint follows from the normalisation of the
vector field n®, which must be normalised to one, hence

garnn” = N?(p) g™ 0up Opp g°* 0c(n — f(p))Da(n — f(p)) =
1 1 1 2
- — N2 — - (f :| = 1. 3.7
/4 (p)Sh2(p) |:Ch2p (f (,0)) ( )
The function N (p) is already given in (3.6), and the normalisation of n® determines, there-
fore, a differential equation for f(p), namely

d 2 B sh? p 1
) = S ot e iy (35)

The left hand side must always be greater or equal to zero, which implies that the p-
coordinate satisfies the inequality

p > po = log (ﬁ) (3.9)

Next, we have to demonstrate that the resulting vector field n® defines a surface B C Hg
to which it lies orthogonal. Such a surface exists, if and only if the co-vector n, satisfies
the Frobenius integrability condition,

V[anb} = w[anb], (3.10)

for some one-form w,. Going back to our ansatz (3.3) for the vector field n®, this is
immediate to verify: the co-vector n, is given by

_ N(p)f'(p) 11
Y (&m T ) 8“'0>’ (310

and its exterior derivative dn satisfies, therefore, dn o< dp A dn o< dp A n, which implies, in

turn, that the condition for the Frobenius integrability theorem is satisfied (w o< dp). The

vector field n® is therefore indeed orthogonal to a two-dimensional submanifold B C Hs.
To understand how this surface B lies within Hs, let us take p and ¢ as independent

coordinates intrinsic to B. If we then restrict ourselves to the negative square root for

f'(p), ie

df(p) \/(1 — 2a2)sh? p — a*

— , 3.12
dp (sh? p + a2)chp (8.12)
we find
dnl sh*p + a? (3.13)
dpls Chp \/ — 2a2)sh?p a47

~10 -



which determines the dependence of the n-coordinate along B. We will solve this differential
equation implicitly below.

Having given a particular example for a hypersuface B that satisfies K = 2/¢, we now
want to identify the corresponding holomorphic spinor field thereon. To this goal, let us
first introduce complex coordinates that diagonalise the induced Hjs line element on B,
which is given by the pull-back

2
2. k3.2 42 1.2 ch®p 2 2
do* = ppds” = {*sh p<(1—2a2)sh2p—a4dp —i—dgo). (3.14)
We now look for a complex coordinate
z =¥ (3.15)

that conformally maps the induced metric (3.14) into the flat metric g,, = O(q 20p)Z on the
punctured complex plane C — {0}. In other words,

de = dshp . (3.16)
\/(1 —2a2)sh? p — a*

Choosing initial conditions p(z = 0) = p,, with the minimal radius p, given in (3.9), we

V1-2a%shp=a’ch(v1-2a2z). (3.17)

Going back to (3.13), we can then also immediately infer 1 as a function of x. With initial

infer the solution

conditions n(z = 0) = 0, we find

(3.18)

1—a”+¢1—%ﬁmhﬂ—2ﬁwn
1—a2—+1-2a2th(v1—2d22)/
For any fixed @ > 0 the functions n(z) and p(x) define, therefore, an embedding of the

M@Zw—;%<

punctured complex plane into Hj such that the condition K = 2/¢ is satisfied. In the limit
of a — 1/+/2 we approach the asymptotic cylinder p — ooc.

To determine the corresponding spinor field €4 on B, we now need to choose a cotriad
that diagonalises the Hs metric (3.2). To cover the entire Hs space, we introduce the

following rotating frame!'?
et = {(cos pdp — sh psin pdy), (3.19a)
e = U(sin pdp + sh pcos o dy), (3.19b)
e3 ={chpdn. (3.19¢)

The components of the corresponding Levi-Civita spin connection are given by

w!l = 4 sh psingdn, (3.20a)
w? = —sh pcos ¢ dn, (3.20Db)
w3 = (chp—1)de, (3.20c)
1°Tf we introduce new coordinates r := fp, and z' + iz? = re'?, and x® := {1, the rotating

frame (3.19a), (3.19b), (3.19¢) reduces in the Euclidean ¢ — oo limit to the Cartesian frame ¢’ = dz’
in R,
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that satisfy the torsionless equation Ve! = de’ + €'j,,w! A €™ = 0, which determines w’ as
a function of the frame fields e’. We can now proceed to identify the boundary spinor £4.
The defining property of ¢4 is that it diagonalises the induced triad on B,

1

EUABi(QO%Ci)a = —47rG(§A§Bma + hc.), (3.21)

where €4 = epa&P is the dual spinor. With respect to the Cartesian coordinates (3.15),
the dyadic one-form m, € T B is simply given by

mg = \}iaaz- (322)

The boundary spinor ¢4 can be inferred, therefore, immediately from the equation
o pie’a (08 +10%) = —87G ¢*¢p = (3.23)

_ a? +sh?p (a?sh(v1 — 2a2z + shp chp))e
~ chp \ (a’sh(V1 —2a2z —shp chp))e™ ¥ —(a% +sh? p) '

Up to an overall undetermined sign, we thus find

eh (ﬁo(x,cp)> 14 i +1/shpchp+ a?sh(v/1 —2a2z)e" 2  (324)

gHa,p))  V87G Vehp —\/shpchpfa%h(mx)e*%“@

where the p-coordiante has to be understood as an implicit function of ¢ and z according
to (3.17).

We are now left to demonstrate that ¢4 defines a holomorphic spinor with respect to
the SL(2, C) connection along the boundary. Since the connection is flat and the interior of
the cylinder is simply connected, we can always find an SL(2,C) gauge element g : Hs —
SL(2,C) such that the De Sitter connection

1 i
Aa = 50'1' <LL)Z + €6Z> (325)
can be written as
Ay =g 10,9. (3.26)

By integrating this equation along the n-axis and along the radial p-direction, we easily
find

P\ (e 0 p 0 e3 ¥
9(p, 0,1 :ch<§> ( . e+2> +sh (5) <e3+w , |€sL@O). (3.27)

Finally, we perform the parallel transport and map the boundary spinor & A(m, ¢) back into
the origin (p = 0,7 = 0) of the coordinate system. This is achieved by some straightforward
matrix algebra and yields the holomorphic spinor

7 (2) = g" B (p(x), 0, n(2))" (2, ) = ia@(_i_J : (3.28)
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Hence the spinor §A(a¢, ¢) in the C2-spinor bundle over the boundary defines a holomorphic
function 7(z) on the punctured complex plane C — {0}. In the next section, we will
demonstrate how to generalise this result to arbitrary genus 0 cylinders that are immersed !
into Euclidean AdSs.

3.2 Generic solution, monodromy, and deformed Gauss law

After having constructed an explicit solution'? of the bulk plus boundary field theory, we
now need to understand the geometry of a generic such solution.
First of all, we introduce the two SL(2,C) connections,

1 ) i .
Alp, = % o pi (w’a + gela), (3.29a)
iy Y Y
AV pro = 0% i <wla - ge’a>, (3.29D)

where primed spinor indices transform'® under the complex conjugate representation of
SL(2,C). On shell, the Einstein and torsionless equations imply that the two connections
are locally flat. Since the initial hyspersurface ¥ is assumed to be a genus zero disk, the
general solution of the equations of motion can always be written in terms of a single-valued
holonomy ¢ : ¥ — SL(2,C),

Apa = 1971091, AV . =[7'0.9]" 5 (3.30)

The dyadic one-forms (mg,m,) € QY(B : C) are external background fields (c-numbers)
on the covariant phase space. Their field variations vanish d[m,] = 0, and we can restrict
ourselves, therefore, to the flat case

= 5002, (3.31)

such that the U(1) boundary spin connection vanishes, see (2.16). Since the De Sitter
connections are flat, the boundary equations of motion, (2.29), translate now into the
ordinary Cauchy-Riemann differential equations,

o= =0, (3.32)
where we defined the parallel transported spinor

nt = gtpeb. (3.33)

If n? is single valued and has no singularities in B, it admits the Laurent expansion,*

e == 3 (3.34)

n=—oo

" There may be a non-trivial winding that wraps the cylinder into itself. Such winding numbers play an
important role in the evaluation of the non-perturbative spinfoam amplitude on a solid torus, see [44].

2The boundary B is an example of Bryant’s catenoid cousins, see [28].

13At B, generic such SL(2, C) transformations are no longer gauge directions on phase space, but become
physical.

1A specific example for such spinor that describes a catenoid has been given in equation (3.28) above.
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So far, we have solved, however, only one half of the boundary equations of motion,
namely equation (2.29) that imposes K = 2//. In addition to the boundary condition on the
extrinsic curvature, there are, however, also boundary conditions for the off-diagonal metric
components, namely the gluing conditions (2.14). In terms of the flat De Sitter connection
Ay = g7 0,9, these gluing conditions translate now into the following constraint,

©R [g_ldg]AB +he. = -~ ([g_l]A(;nCanDde + hc.), (3.35)

where hc. denotes the Hermitian conjugate with respect to the SU(2) metric 44/, e.g.
[X T]A B = §AB x4 B'0par. To disentangle the primed and unprimed spinor contributions
to this equation, we consider the following ansatz for the SL(2,C) group element at the
boundary,

9|z = hU, (3.36)

where U € SL(2,C) is yet unspecified and h is a holomorphic function h : C — SL(2,C)
that satisfies the following holonomy equation

d 4G
Dty = T ents, (3.37)

to some initial condition h(z,) = h, € SL(2,C). If we insert this ansatz back into the
gluing condition (3.35), we immediately find that the function'® U : €' — SL(2,C) must
satisfy the following constraint equation,

U 124U +he. =0 3.38
[ ,

where 2d is the exterior derivative on B. The generic solution of this equation is U(z, z) =
UOU(z,E), where U, is a constant SL(2,C) element and U(z,é) defines a map U : B/ —
SU(2). Since the initial value h, of h(z) is already arbitrary, we can assume without loss
of generality U, = 1 and U(z, ) € SU(2).

Since g : ¥ — SL(2,C) is single-valued (the disk ¥ has no handles or holes), there is
one further and non-local constraint. For a general boundary spinor n“(z), such as the
one that describes Bryant’s catenoid cousins, see (3.28), the solutions of the holonomy
equation (3.37) will have a branch cut that we can always put along the negative real
axis, but g“  is single-valued, hence there is one additional constraint. Suppose then that
the initial point 2, : |z,] > 0 lies on the branch cut. If v(z, — z) is a family of paths
v(zo — 2) : (0,1) — C — R_ that connects'® the fixed initial point z, with any other
z € C —R_, the general solution of h(z) is given by the path-ordered exponential,

h(z) = h(z, z0)ho = Pexp< — # dz’Q(z’))ho, (3.39)
¥(zo—2)

15The group element g : ¥ — SL(2, C) is single-valued, but the solutions h* 5 of (3.37) may have a branch
cut, which we can always put on the negative real axis, i.e. B ~C' =C —R_.

1T.e. limes0 ¥(20 — 2)(€) = 2o, limen,07(20 — 2)(1 —€) = 2, such that y(z, — z,) denotes a closed loop
that winds once around the origin z = 0.

— 14 —



where €(z) defines the holomorphic and flat SL(2, C) connection,
Q45(2)dz = (2)np(2)dz. (3.40)

If we wind once around the origin, a generic such holomorphic spinor!” nA(z) will induce
a non-trivial monodromy,

4 in general
M= ho_lPeXp< - WTG dz/ Q(z)> he # 1. (3.41)
Y(zo—20)

Since, however, g : ¥ — SL(2,C) is single-valued, and g = hU is parametrised in terms of
a holomorphic function h(z) € SL(2,C) and an additional SU(2) element U(z, z), we must
conclude that the monodromy lies in SU(2), otherwise ¢ = hU cannot be single-valued. In
other words,

4
M = ho_lPeXp< — WTG d2’ Q(z)) ho € SU(2). (3.42)
Y(zo—20)

We must impose, therefore, an additional non-local closure constraint,
MM =1. (3.43)

If this constraint is satisfied, we have a single-valued function ¢(z, 2) = h(2)U(z, ) on the
boundary B of the cylinder.'®

To understand the physical significance of the constraint (3.43) on the monodromy, let
us consider the £ — oo Euclidean limit of this equation of-shell, i.e. prior to imposing the
constraint (3.43). We define

i MY OME) -1 _

: .44
{—00 -1 G, (3 )

where the monodromy M (¢) depends for given boundary conditions h(z,) = h, and fixed
connection coefficients Q45(2) = n(2)np(2) implicitly on ¢. A short calculation gives,

%M(ﬁ) _ %G 7{ dz b h(z0, 2) )02, 20) P, (3.45)
’Y(Zc_>zc)

where h(z,, 2) is the parallel transport along the portion'® (2 — z,) of the loop (2o — 2o)
that starts at z and ends at z,. In other words,

2o, 2) = Pexp( - # dz Q(z)) (3.46)
Y(2=20)

17Such as the one that defines the hyperbolic catenoid cousins, see (3.28).

18To extend this function into the bulk, we write g(z, %) as a product g(z,2) = B(z,2)V(z,Z), where
V is an SU(2) element and B is a Lorentz boost that can always be written as B = exp(X) for some
X" = X. We now choose a new transversal and radial coordinate p € (0, 1] in M, and define the function
9(p, z,Z) := exp(pX(z, 2))V(z, Z), which extends g from the boundary into the interior. In these coordinates,
the boundary B is the surface p = 1.

INB. 7(z = 20) 0 Y(20 = 2) = Y(20 = Zo).
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Taking into account that limy_,o, M (¢) = 1, we can use now D’Hopital’s rule and find,

G = _4wc[fdz hylQ(2)h, + he.|. (3.47)
Y(20—20)

For ¢ — oo, the SL(2,C) group element g = h(z, z,)hoU(z, Z) that defines the De Sitter
connection turns now into g = h,U, where U is the holonomy of the SU(2) spin connection,
and h, is a constant SL(2, C) group element at the boundary B. The integral (3.47) is then
nothing but the dressed integral?’ of the triad, which is now parametrised in terms of

spinors ¢4 that define the flat triad £é4¢gm + he. « o? pipge’ at the boundary. More

specifically,

MT(OM(0) — 1 ,

lim () 7( ) = f Uo, U te! =0. (3.48)
{—00 / 1

Y(z0—20)

For three-dimensional gravity with a vanishing cosmological constant, this is nothing
but the Gauss (or closure) constraint that generates rigid SU(2) frame rotations on the
phase space of the theory, see e.g. [45, 46]. For a non-vanishing cosmological constraint
A = —(72 the flat closure constraint (3.48) is replaced, therefore, by the group-valued con-
straint (3.43) on the monodromy. We will see in the next section that this deformed closure
constraint (3.43) is still related to rigid SU(2) frame rotations at the boundary. Similar
deformed closure constraints have been identified in the discrete spinfoam approach to
three-dimensional gravity, see for instance [47-49] and references therein.

4 Covariant phase space, deformed Heisenberg algebra

4.1 Covariant phase space and boundary energy momentum tensor

The covariant pre-symplectic potential on a cross section Y of the cylinder M ~ ¥ x can
be now inferred from the first variation of the bulk plus boundary action (2.24),

5S[e,w|¢] = EOM - § + Ox (§) — Ox—(6), (4.1)

where the equations of motion (EOM) include now both the three-dimensional field equa-
tions in the bulk and the additional boundary field equations (2.29), (2.14). The reminder
Ox(0) of the variation defines the pre-symplectic one-form on the covariant phase space,
which is the space Pyx of solutions of the bulk plus boundary field equations in a neigh-
bourhood of . On the cross section ¥, the pre-symplectic potential has then contributions
from both the interior of the cylinder and its boundary,

L g A
Oy = 87TG/EeZ/\cd]w + \/5%92 [mfAdE cc.], (4.2)

where d denotes the exterior derivative on the infinite-dimensional phase space Pyx. Poisson
brackets are inferred from the covariant pre-symplectic two-form, which is given by the
exterior functional derivative

Qy, = dOs. (4.3)

20The su(2)-valued integrand is parallely transported into the frame over the reference point z, € B.
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For any two vector fields §; and ds on the covariant phase space Py, we then have,

O5(61,02) = 61[Ox(82)] — 62[Ox(51)] — O ([61, 55)). (4.4)

To understand the gauge symmetries of the theory, we now have to identify the degen-
erate directions of the pre-symplectic two-form 25, on the covariant bulk plus boundary
phase space Px. An internal SU(2) frame rotation, which is connected to the identity, is
generated by an infinitesimal gauge element A’ : M — su(2). Such a gauge element can
be lifted naturally into a vector field d5 € TPy, on the covariant phase space,

Salw’] = —VAY, (4.5a)
Sale’] = € jpNIe, (4.5b)
Saled] = T4 BiNTER, (4.5¢)

where V, = 0, + [wa, -] is the covariant derivative of the SU(2) connection w',. If § € TPx
denotes now a second linearly independent vector field on the covariant phase space, i.e. a
linearised solution of the bulk plus boundary field equations we easily find

Qx(p,0) = 87TG/ e”kA]ek/\éw —}—561/\VA1 TTLO'ABzAZEB(;fA—{—CC] (4.6)

ox

i 1 47TG i
= 87rG/5vel JAA —% 5[61— \/5 (m§A§B—m§A§B) Z]A =0.

The first term in the second line vanishes thanks to the torsionless condition (2.25a),
and the second term vanishes thanks to the gluing conditions (2.14) that allow us to
parametrise the pull back of the triad in terms of the boundary spinor £4. Simulataneous
frame rotations (4.5a), (4.5b), (4.5¢) of the bulk plus boundary fields define, therefore, an
exact gauge symmetry of the coupled bulk plus boundary system.

Next, we consider the action of a diffeomorphism ¢ = exp(V'), which is generated by
a vector field V¢ € T M, on the covariant phase space. A generic such diffeomorphism
will violate our conformal boundary conditions (2.3). It is easy to see, however, that a
vector field V%, whose restriction to the boundary defines a conformal Killing vector of the
boundary metric g = 2m,my) defines a symmetry of the bulk plus boundary field theory.
Consider, therefore, such a vector field,

1
VAETM Ve =t"€TB: Dty = §Dcthab, (4.7)

s

where D, is the boundary covariant derivative that annihilates g, as well as the dyadic
frame fields (mg, mg), see (2.16), (2.19). In addition, tensor indices at the boundary are
raised and lowered with respect to the fiducial boundary metric g, and its inverse, i.e.
te = qapt® € T*B. Any such vector field V;, can be then lifted into a vector field &; on the
covariant phase space. Its components are given by

§e[w’] = ViuF?, (4.8)
5i[e] = Viu(Vel) + V(Viue') = VV, (4.8b)
5 [€4] = 17D e + %m“DaNgA, (4.8¢)
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where N = t%m, is the holomorphic component of the conformal Killing vector, i.e.
m®D,N = 0. Consider then the following boundary integral

i A 2V2nG
HIN = o f |Nenet - 22

where [|€]|? = 6446464 denotes the SU(2) norm of the spinor €. To demonstrate that &
is the Hamiltonian vector field of H[N], we compute the variation of H[N] on the covariant

Nnllg]* — cc.|, (4.9)

phase space,

S[HIN]| = 2/onG

[m[gA]DgA + DNG[EAJE? — NmE|2a]l1E 2]+

i
V2 Jos
- %NfAfgaABi(s[wi] —cc.| =

[Qmé[fA]ét[ﬁA] + 2NRS[EA]M Do — 2mNS[EA]m® Do+

427G
14

1
V2 Jox

1 .
- ENﬁAfBUABM[Wl] -

Nng|?ollgl*) - ce.|.  (4.10)

We can now also use the boundary equations of motion (2.29), which imply

2\[7rG

moDEr = DTG e 25AN g, (4.11)
And we are therefore left with the expression,
_ v a1 AB 51 i1
§[H[N]| = N [Qm(s[fA]&t[g ] 2iN§A§Ba S[w’] cc}. (4.12)

We now want to demonstrate that 9, is integrable and that it is indeed generated by the
Hamiltonian H[N]. We thus pick a second linearly independent tangent vector on the
covariant phase space and contract both vector fields with the pre-symplectic two-form.
We then have,

Q5:(0,9) / VYV A 6[wi] —5[61]/\‘/;5_|FZ —|—— 2m5t§,4] (€4 —cc.| =
816 s

SWG/ (Vi )6 F; — 5[ei]AVHF}+

W i A

The Einstein equations (2.25b) imply that the first term vanishes. The second term, on
the other hand, can be written in terms of the boundary spinors alone: going back to the
gluing conditions (2.14), and comparing the resulting expression with §[H[N]], we find

Q5 (04, 0) ff{ [ _NEalpolB [i]—2m5[gA}5t[gA]—cc.]:-5[H[N]]. (4.13)

We have thus integrated the Hamiltonian field equations for any bulk diffeomorphism that
is generated by a vector field V,* € T'M, whose restriction to the boundary B defines a
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conformal Killing vector t* = V,*|g € TB that preserves the conformal structure at the
boundary, i.e. £¢qap X gap- There is a further simplification that will prove very useful in
the following: if we reintroduce the SL(2,C) x U(1) boundary covariant derivative D, as
defined in (2.28), we can write

H[N] [NEADEA —cc] = ¢ dv Tyt (4.14)

i
V2 o %
where N = t*m, denotes the holomorphic component of the conformal Killing vector,
dv® = im*m + cc. € TB ® T*B is the vector-valued line element, and T, denotes the

Brown-York boundary quasi-local stress-energy tensor [10, 50,

1 1
Tab - % (Kab - Ehab> . (415)

Notice that the energy momentum tensor is traceless, because the conformal boundary con-
ditions imply K = 2/¢, see (2.4). Therefore, T, is completely specified by its holomorphic
component, which determines the shear o = 8tGm*m’Tyy, of the boundary B.

4.2 Extended phase space, Dirac bracket, deformed Heisenberg algebra

The purpose of this section is to establish the Poisson commutation relations between the
fundamental boundary modes on the physical phase space. Our starting point will be the
parametrisation of a generic solution of the bulk plus boundary field equations in terms of
the mode expansion (3.34). Given this parametrisation, we will then compute the pull-back
of the pre-symplectic two-form (4.3) with respect to the sequence of maps n2 — n(z) =
\/% Snazn — ¢4 = [g71 A pn®, which is induced by the Laurent expansion (3.34) of the
boundary spinor £4. In the last section, we have identified two contributions to the pre-
symplectic potential, namely a boundary term oc 4dé4 for the gravitational edge modes
and a contribution o e; A dw’ coming from the bulk. Let us consider the bulk integral first.
The general solution of the field equations (2.25a), (2.25b) in the interior is given by a flat
SL(2,C) connection,

2i 4

If we now insert this parametrisation back into the pre-symplectic two-form (4.3), we im-

Ay = g_laag = 5:04 (Wza + leza) . (4.16)

mediately recover the pre-symplectic two-form for three-dimensional gravity in the familiar
Chern-Simons formulation of three-dimensional gravity,?!

/ de; Ndw' = 16/ Tr (d](g_ldg)i\d](g_ldg)) + cc., (4.17)
s 2 Js

see [51, 52]. The functional differential of the connection satisfies dA = d(g~'dg) =
g~ 'd(dgg—')g, which implies that the bulk integral (4.17) collapses into a total exterior
derivative. We are now left with the boundary integral

. ¢ _ _
Qy = 1?({92 |:167TG Tr (g 'dgnd(g~'dg)) + %d]fAi\dlﬁA - cc.]. (4.18)

21The symbol “A” combines the wedge product on the infinite-dimensional phase space with the ordinary
wedge product on spacetime: if d; and Jd2 are vector fields on phase space, and « and (8 are p-form fields
on spacetime, (daAdB)(d1,02) := d1[a] A d2[B] — d2]a] A 61[8].
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On the covariant phase space, the boundary fields €4 and g| 5 are not completely indepen-
dent, because there are boundary equations of motion that introduce a coupling between
the boundary fields. There is the holomorphicity condition (2.29) for the boundary spinor
&4, but there are also the gluing conditions

ei(g7dg) "y +he. = == —(¢4€pm + h), (4.19)

where the Hermitian conjugate is taken with respect to the SU(2) Hermitian metric d44/.
To impose these constraints, we proceed now as in section 3.2 above. First of all, we note
that the dyadic one-forms (m,,m) € T¢B are a background field on phase space, hence
dm = 0. Working on a fixed Riemann surface B = C — {0}, which has the topology of
an infinite cylinder with open ends, we can now choose Cartesian coordinates z : m =
%dz such that the fiducial boundary metric quy = 2m(,my) is diagonal. Given these
coordinates, the map ¢g : B — SL(2,C) splits now into a holomorphic part h : B —
SL(2,C) and a function U : B — SU(2) that takes values in SU(2), such that g = AU
is single-valued. Given this parametization of the boundary fields, the holomorphicity
condition (2.29) for the boundary spinor €4, i.e. m®D,&4 = 0, turns now into the ordinary
Cauchy-Riemann differential equations d:n = 0 for n(2), where £ is related to n? via
§A — [Uflhfl]ABnB.

If we now want to use the parametrisation ¢ = hU at the level of the pre-symplectic
two-form (4.18), we have to take into account that the gluing conditions (4.19) translate
into a constraint between n ® n and h~'dh, namely

JAsn, h(z) =0, (4.20)

where we defined the following functional on the extended phase space of field configurations
h4p(2) and 74(2),

JAB[mh](Z)Z% 7 (2)ns(2) ﬁ[azh(z)h‘l(z)]“‘fg € sl(2,C). (4.21)

In addition to J4pg(z) = 0, there is one further non-local constraint: the boundary fields
gp and &4 are single-valued, but h(z) may pick up a monodromy around the origin
z = 0.22 In fact, the group element g p(z) is single-valued, if and only if the following
additional non-local and complex-valued constraints are satisfied

C=h(zNHU(zS) —hz)U(z,) =0, (4.22)

where we have put the branch cut along the negative real axis.?® As explained in section 3.2
above, the constraints C' = 0 can be seen as a deformed version of the closure constraint
$95 U toiUe" = 0 for the triadic fluxes in the flat A — 0 limit [45, 46].

22This happens already for Bryant’s curved catenoids, where *(z) has a pole at the origin, see (3.28).
#The boundary points 2= lie above and below the branch cut, U(zE) = limeso U(zo + ig).
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If we now insert this parametrisation into the pre-symplectic two-form (4.18), we find
after some straightforward algebra that

i 0 _ _
ol = 2752 [dz diandi® — = Tr (b~ dhad(h~"dh)) - cc.]+

+ [mlja Tr (h'dhadUU ) |+ Cc.] . (4.23)
Compared to the symplectic two-form in the g-{-representation (4.18), there is now an
additional boundary term appearing. The geometric origin of this boundary contribution
has to do with the monodromy (3.42) around the origin: the boundary fields n“(z) and
0,hh~! are single-valued in C — {0}, but the SL(2,C) group element h” g(z), which is the
path-ordered exponential of n ® 7, see (3.39), may have a non-trivial SU(2) monodromy.
Accordingly, we introduce a branch cut along the negative real axis, such that the contour
C defines a path in the complex plane that starts at some point z, on the negative real
axis and winds once around the origin.?*

The constraint (4.22) is related to residual and global SU(2) gauge transformations.
This can be seen as follows: consider the following vector field on phase space, which acts
as a left-invariant derivative on the SU(2) coordinates

Yi[U(z5)] = -U(z5)m, (4.24)

o

but vanishes otherwise,
Yih(2)] =0,  Yilh(z)] =0, Yily'(z)]=0, Yi[¥(z)]=0. (4.25)

Consider then a field variation § that lies tangential to the C' = 0 constraint hypersur-
face, i.e. 6[C] = 0 with C' = 0 denoting the constraint (4.22) on the monodromy. The vector
field Y; defines a degenerate direction of {25, and it defines, therefore, a gauge symmetry,

QL(Y;,0) = 1617€G [Tr(nU_l(h_léh)U) —~ cc.} ’86 =
= 1617€G [Tr(Ti(Ufllrlé[hU])) — cc.} ‘86 =0. (4.26)

To compute the Poisson brackets between the Laurent modes nf, we consider now an
extended phase space Pg, whose coordinates are given by the SU(2) elements U(zF) at
the marked boundary points dC = {21} U{z; }, by the field configurations of 7°(z), which
is holomorphic in C — {0}, and by h“g(z), which has a branch cut along the negative
real axis, while the corresponding Maurer-Cartan form d,hh~! is holomorphic in C — {0}.
The Poisson brackets {-,-}" on this extended phase space P; are determined then by the
symplectic two-form (4.23). To recover the Poisson commutation relations on the physical
phase space, we have to impose the constraints (4.21), (4.22) and perform the symplectic
reduction.

24The integral fc df = f|C denotes the difference lim.\ o (f(zo +ig) — f(zo — ie)) = f(z) - f(z5).
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To impose the constraints, it is convenient to introduce sl(2, C)-valued smearing func-
tions fA4 p(z) that are continuous across the branch cut along the negative real axis. We
are thus defining the smeared Kac-Moody generators

JUf] = jq{ dz FAR(2) TP aln, h)(2) = 7{ dz Te(f.). (4.27)
C C
Using d(0,hh~1) = hd.(h~'dh)h~!, we compute the functional differential of J[f],
dJ[f] = —i?{: [dz fAByadng — %T&"(h_lfh d(h_ldh))] . (4.28)

The constraints define an SL(2,C) Kac-Moody algebra. There is a central charge and
the constraints are second-class. This can be seen as follows: consider first the following
complexified vector field Xy € (T ’P;)(C, whose components on phase space are given by

[ () X4 ()] B = 1 B(2), (4.29a)
X' (2)] = (20" (2). (4.20b)

All other components vanish:

h'Xphl =0,  XinY(2)] =0,  XU(zF)] =0. (4.30)

We now want to demonstrate that Xy is the Hamiltonian vector field of J[f] provided the
closure constraint (4.22) is satisfied. We proceed as in above: consider a second linearly
independent field variation d on the extended phase space, and contract both vector fields
with Q; We obtain

OL(X},8) = —0J[f] + % [Tr(fd[g]gfl) ‘ac - cc.}, (4.31)

where g = hU. On the constraint hypersurface, where the closure constraint (4.22) is
satisfied, the map g : C — {0} — SL(2,C) is continuous across the branch cut and the
last boundary term disappears. Up to terms constrained to vanish, the Hamiltonian vector
field of J[f] is given, therefore, by X;. This in turn implies that we can immediately infer
the constraint algebra,?”

(I TN = X [P = ij@{ [dz [T € snan® + Tr(h_lf’hd(h_lfh))] =

C &rG
i / A_ B 4 / -1 il 7{ /
= —T dhh Tr(f'df) =
5 | 1At (1 flan )|+ s fmn(ran
oL i ,
=— Tr(f'd 4.32
TS+ 5o $TH(AD), (4.32)
where &~ denotes equality up to terms that vanish on the C' = 0 constraint hypersurface
and [, ] is the s[(2, C) Lie bracket in the fundamental spin (1,0) representation,
o fT s = Folf 1 = 1 efCr U 14D =21 1P, (4.33)

#5Notice that the vector field X preserves the constraint (4.22), hence X;[C] = 0.
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The SL(2,C) Kac-Moody algebra (4.32) is anomalous. There is a central charge and the
constraint algebra is, therefore, second-class. To infer the Poisson commutation relations
on the physical phase space, we introduce the Dirac bracket. In this context, it is now
useful to introduce the mode expansion,

Ji

n

= J[r'27". (4.34)

From (4.32), we can then immediately infer the Poisson commutation relations for the
Kac-Moody constraints,

14

{J2, J,’f”n}T SR S . L (4.35a)
8G
o L ¢
(T, T\~ ek L — 5 Gn5n+m5’k (4.35b)

where 4, = 1 if n = 0, and §,, = 0 otherwise. The zero mode Jé:o is first-class (the
constraint \;J¢_o + N Ji_, generates global SL(2, C) frame rotations), all other constraints
are second-class. On the physical phase space, where all constraints are satisfied, the
Poisson brackets are given now by the Dirac bracket {-,-}, which is obtained by removing
the unphysical J-directions from the auxiliary Poisson brackets {-,-}T on the extended
phase space. In other words,

8G

8G Z
(F,G} ={F G} - - n; {FJ}Tézk{ Tk ey - ¢ 2

{F T} ou{ %, G}

(4.36)
where F' = Flh,n,U] and G = [h,n, U] are functionals on the extended phase space 73;
On the extended phase space, which is equipped with the symplectic two-form QTE, the
Laurent modes 7/ of n(2) generate an infinite-dimensional Heisenberg algebra,?

{né:nﬁ}T = _GAB5m+n+17 {nnlu ﬁgl}T 7A/ l m+n+1~ (437)

The action of the Kac-Moody constraints J: on the Fourier modes 77 is immediate:
{JE At = TABi nB ' m- In other words, the second-class constraints J, do not commute
with 72, and the commutation relations for the Fourier modes n;' will be significantly
changed by the introduction of the Dirac bracket (4.36). In fact, we find the following de-
formation of the Heisenberg algebra (4.37) for the boundary modes on the physical phase

Space,
3G 1 2G 1
A A B
{nnanfb} :—6A36m+n+1+76 BZEECDTITCLLHCT}??L—]C_T Enr(%kk’r}m)fk" (438&)
k#0 k#0
A" _B’ _// 3G _arp ’ 2G A _B’
{77n aﬁg =—eP Om+nt1+ 7€A B Z %EC/D/%M?%% kT T k 7(1+k77m )k (4.38Db)
k#0 k#0

In the ¢ — oo limit of vanishing cosmological constant, we are back to the ordinary Heisen-
berg commutation relations (4.37), see also [40].

261f we introduce for any n > 0 the position and momentum modes g2 = 17;;1 resp. p'y = epan®,_., we
recover the usual canonical commutation relations {p%,q5} = —0567,.
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4.3 Witt algebra of diffeomorphism charges

Finally, let us compute the Poisson commutation relations for the boundary charges (4.14)
that generate conformal boundary diffeomorphisms on the covariant phase space. We will
see, in fact, that the algebra defines a representation of the Viraso algebra with vanishing
central charge.

The boundary charge (4.14), is determined by the shear component o o T,,,020° of the
boundary stress energy tensor. As we have seen in above, the shear o = 28;‘82V(anb) of
the normal vector n* 1 T'B to the boundary can be expressed in terms of the holomorphic
spin coefficient £4DEA, see (4.14). Since the SL(2,C) connection is given by A = g~ldg,
and n = ¢4 &P is holomoprhic, the shear of n® is now simply given by the holomorphic
function 9490 = £409D.E4, which is integrated over a cross-section C to obtain the
quasi-local energy H[N].

In the last section, we introduced an extended phase space Pg of field configurations
(n(2), W B(2), UAB(2F)), which is equipped with the symplectic structure (4.23). On the
extended phase space, the SL(2, C) element h4 5(z), which has a branch cut along the neg-
ative real axis, and n“(z), which is holomorphic in C— {0}, are functionally independent.?”
The physical phase space is obtained by imposing two kinds of constraints: the infinite
tower of Kac-Moody constraints (4.20), which are local in z, and the non-local condition
on the monodromy (4.22). The resulting infinite-dimensional constraint hypsersurface is
equipped with the Dirac bracket (4.36), which turns it into a phase space.

Since we are working on this extended phase space, we now need to lift the diffeomor-
phism charges (4.14) onto Pg, and we achieve this by introducing the following complex-
valued charge

L[N] = % 7£ dz N [nAaznA - %T&"(&Zhﬁzh_l) , (4.39)
where the smearing function N(z), which defines the z-component of the conformal Killing
vector at the boundary, is holomorphic in C —{0}. Since Tr(d,h0h~!) vanishes on the con-
straint hypersurface,?® the quasi-local Hamiltonian (4.14) is given by the real part of L[N],

H[N] ~ L[N] + cc., (4.40)

where &~ denotes equality up to terms that vanish on the constraint hypersurface, which
is defined by the imposition of both the Kac-Moody constraints (4.20) and (4.22). To
identify the Hamiltonian vector field of L[N] + cc. on the extended phase space, let us
first evaluate the functional differential,

1 ‘
s A - A -1
dL[N] = 1\f2fédz [d]nA <Nazn +50:-N1 ) o Tr((azd]h)azh )] (4.41)

*"The group element h(z) has a branch cut, but d,h~" is holomorphic in C — {0}.
28N.B. nAnA = eBAanA = —eABanA = 0, hence Tr((’)zhazhfl) = 8zhA58z[h*1]BA ~
—0?/(4nG)*n* 0" na = 0.
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Next, we define the following vector field Xy € T' Pg on the extended phase space,

(W' XN[h]]4 B = V2N [h9.h] 5, (4.42a)
(A XN[A]Y 5 = V2N [ t0.h]Y b, (4.42D)
Xyt = x/i(NaznA + ;(QZN)nA>, (4.42¢)
Xy = V2 <Nazﬁf4’ + ;(aZN)ﬁA’) (4.42d)

The action of the vector field X (as a functional derivative) on the SU(2) elements at
the marked boundary points 9C = {2} U {z, } of the contour C C B is arbitrary, because
there are the residual and rigid SU(2) gauge transformations (4.24) that always allow us
to set Xn[U] to zero by sending Xy into some Xy — )@VYZ We may define, therefore,
without any loss of generality that

XnU@ED)] =0. (4.43)

If we now contract Q; with both Xn and a second arbitrary field variation § € T’ P;, we
immediately find

QL (Xn,0) =iv2 ]{ [dz (NaznA + ;aZNnA) R SEGN Tr(h™'89.hd(h™"6h)) — Cc.]
C s

iv2
_ivad [NTr (h"'6h(h™10.h)) — N Tr (R 0.hs[UIU ) — cc.] . (4.44)
167G ac
Using Tr(77j7) = —%eijk, we have
Tr(h™'0.h(h™'0.h)(h~'6h)) =0, (4.45)

such that the first line of equation (4.44) simplifies to give the differential —dL[N] + cc. If
the contribution from the marked boundary points vanishes in (4.44), the vector field Xy
will be the Hamiltonian vector field of the quasi-local Hamiltonian L[N]+cc. ~ H[N]. This
happens as soon as we restrict ourselves to field variations 6 € TPT that are tangential to
the C' = 0 constraint hypersurface, i.e. §[C] = 0. In fact, if we reintroduce g = hU, we have

Tr(h™'6h(h™'0.h)) = Tr(g '6(g)U (K 10.0)U) + Tr(h'0.hS[URTY). (4.46)

On the C' = 0 constraint hypersurface, which is defined by (4.22), the first term is
continuous across the branch cut, and the second term on the right hand side of (4.46)
will cancel against the last term in the second line of (4.44). For any field variation ¢ that
preserves the constraint on the monodromy, the boundary terms cancel, and we find that
Xy is indeed the Hamiltonian vector field of L[N] + cc. on the physical phase space,

OL(Xn,8) =~ —0L[N] +cc., V& e TPL:4[C] ~0, (4.47)

where =~ denotes equality up to terms that vanish if the C' = 0 constraint on the
monodromy (4.22) is satisfied. A particular example of such a field variation ¢ is given by
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the vector field X itself: although h(z) € SL(2,C) may have a branch cut, the extended
phase space Pg contains only such configurations where 9.hh~! is continuous across the
branch cut. This implies

Xn[CO] = V2N (25)(0:h07)

+C = V2N(z;)(9:hh7 )| -C (4.48)

Therefore, Xy is a vector field in P; that lies tangential to the C' = 0 hypersurface. In
addition, the vector field X preserves the Kac-Moody constraints (4.21),

Xn[Ji] =~ 0. (4.49)

We have thus shown that the vector field Xy € T Pg lies tangential to the entire constraint
hypersurface Py = {p = n(2), k" p(2), U ()] : C(p) = 0 = Ji(p)}. On the physical
phase space, equation (4.47) implies that the Hamiltonian vector field of H[N] is given by
XN.

Having identified the Hamiltonian vector fields, we can now immediately evaluate the
corresponding Poisson algebra. We contract the symplectic two-form with any two such
vector fields and obtain

QL(Xn, Xur) = 17{

1 1
[dz (NaznA + 28ZN17A> <M6Z17A + 26ZM17A> +
C

0 _ -
— %NTr( '0.hd(Mh™'9.h)) — (N + M)} + cc. =

—i NO,M — MO,N R —
1fédz( 0, 0, ){m@zn e

= —H[[N, M]], (4.50)

Tr (Bzhazhfl) ] + cc. =

where we defined the Lie bracket2?
[N, M] = V2(N9,M — MO.N). (4.51)

The constraint hypersurface is equipped with a natural symplectic form, which is given by
the pull-back of (4.23) from the auxiliary phase space Pg back to Px. The corresponding
Poisson brackets on the constraint hypersurface are given by the Dirac bracket, (4.36). On
the C' = 0 constraint hypersurface, the Hamiltonian vector field of H[N] is given by Xy,
which preserves all the Kac-Moody constraints,

NI, J;}T‘CZO ~0. (4.52)

This implies that the commutation relation for the generators H|[N] are unaffected by the
presence of the Dirac bracket,

{H[N],H[M]}‘CZO = {H[N] }T‘ XN>XM)‘ —HJ[N, M]H

=0’

2The prefactor of /2 is a consequence of our conventions for the conformal Killing vector t% : t% =
Nm® + cc., with m® = /202 and [ty, tar]® = v, -

— 96 —



where {, -}T denotes the Poisson brackets on the extended phase space. If we define the

usual Virasoro charges,

\}iL[z”H]. (4.53)

we immediately find two copies of the Virasoro algebra with vanishing central charge

Ly, =

{Ly,Ln} =~ (n—m)Lpim, (4.54a)
{Ln, L} = (n—m)Lyim, (4.54b)

where ~ denotes again terms that vanish provided the closure constraint (4.22) for the
monodromy is satisfied.

It is now instructive to evaluate the Virasoro charges for the simplest non-trivial clas-
sical solution, namely Bryant’s curved catenoid cousins [28, 29]. In fact, we have identified
an entire one-parameter family {Bq}< .y I3 of such CMC-1 surfaces in Euclidean AdSs,
see (3.18), and (3.17). Any such catenoid cousin is now characterised by the holomorphic

n[Ba] = iay/ 87fG (_:1) : (4.55)

For any such configuration all but one of the quasi-local boundary charges vanish,

boundary spinor,

i la?
Ln[Ba] = 5 %dz Zn+177A8277A 5 = @ n- (4'56)

The limit to the asymptotic boundary is the limit a — 1/4/2. In this limit, we recover the
asymptotic value of the AdS3 vacuum energy,

Lal0AdSy] i= T LalBa] = ——d,. (4.57)

o 16G

Before we proceed, let us briefly summarise the results of this section. To com-
pute the Poisson commutation relations between the quasi-local boundary observables
H[N] = §dv* S, we found it useful to work on an extended phase space Pg, where
the functional dependence between the holomorphic boundary spinors nA(z) and the holo-
morphic SL(2, C) elements h“ g(z) is removed such that n(z) and h5(2) can be treated
as independent coordinates on the extended phase space. The physical phase space is
obtained by imposing the conditions that reestablish the functional dependence between
n(z) and h*5(z), namely by imposing the Kac-Moody constraints (4.20), and the non-
local closure constraint (4.22) on the monodromy. By introducing the Virasoro generators
L[N], we then lifted the Hamiltonian charges H[N] onto this extended phase space. Next,
we found specific vector fields Xy € TP; that lie tangential to the solution space of the
constraints (4.21) and (4.22), and coincide on the constraint hypsersurface with the Hamil-
tonian vector fields of H[N], see (4.47). Having identified the Hamiltonian vector fields of
H[N], we then found the corresponding Poisson (Dirac) brackets on the solution space of
the constraint equations. We recovered two copies of the Virasoro algebra with vanishing
central charge.
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5 Entropy and partition function

Finally, a few remarks on quantum gravity and black holes. Our main goal in this section
is to gather some evidence that the conformal boundary spinors ¢4 provide a microscopic
explanation for black hole entropy. Our discussion relies on the observation due to Stro-
minger [35] that the Bekenstein-Hawking entropy for a three-dimensional black hole has
the same algebraic structure as the Cardy formula [53] for a two-dimensional conformal
field theory,

S(M, J) = %Zg” ZW\/Z (x/M£+J+\/M€—J), (5.1)

where M and J are the mass and angular momentum of the BTZ black hole. The Cardy
formula holds for a large class of boundary CFTs, which makes the argument robust, but
it does not tell us much about the field content of the boundary CFT. In the following, we
would like to discuss this issue from the perspective of the boundary modes ¢4. To this
goal, let us consider first the bulk plus boundary path integral,

X(r,7) = y Dle, w] D¢] eSlewlE] (5.2)

where M is a solid torus, which is characterised by the modular parameter3® 7 = ﬁ (B+ip)
that encodes the periodicity z ~ ze*¥ on the complex plane C — {0}. Notice that
the exponent is imaginary, because the Euclidean bulk plus boundary action (2.24) is
real. We are considering, therefore, an oscillatory path integral, which also underlies the
Ponzano-Regge and Turaev-Viro spinfoam amplitudes and their generalisations to four
dimensions [46, 54-59].

The integral over the triad e’ and the SU(2) connection w' in the interior is redundant,
because there are no radiative degrees of freedom in the bulk (the w® and e directions lie
tangential to the gauge orbits). We are thus left with the path integral over the boundary
spinors alone, which defines a Virasoro character!

X(r,7) = Tr (e72rEoe2n7ho ) — qy (e=9H+27), (5.3)

Only those states will contribute to this trace that satisfy the infinitely many Kac-Moody
constraints J¢ = 0, which are imposed via the Dirac bracket at the classical level. In
addition, we have to impose also the closure constraint on the monodromy (4.22). The
closure constraint mixes the holomorphic and anti-holomorphic sectors of the theory and
we cannot assume, therefore, that the character factorises, X (7,7) # X (7)X (7).

The Hamiltonian H, which generates translations along the radial |z|-direction, and

the angular momentum .J are the real and imaginary®? part of the Virasoro generators L

39The extra imaginary unit infront of (8+ip) has to do with the fact that we are considering an oscillatory
integral.

31We have absorbed a potential vacuum energy back into the definition of Lo.

32The Euclidean BTZ black hole solution is characterised by an imaginary spin J, and a positive mass
M >¢1J|.
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and Lo,

H=1Ly+ Eo, (5.43,)
J=Lo— Eo. (5.4b)

In our case, the Virasoro generators will satisfy the reality conditions

Ll = L,, (5.5)

n

where Lg denotes the Hermitian conjugate with respect to the Hilbert space inner product.
Notice, that there is no reason a priori for the Virasoro generators (4.39) to satisfy the
more familiar adjointness relations L_,, = L, (and L}, = L_,) that underpin conventional
unitary CFTs.?3

If the boundary spinors £ are the origin of black hole entropy, we should be then able
to compute the micro-canonical entropy

S(A,A) =1og Q(A, A), (5.6)

where Q(A,A) is the number of boundary states that have energy E and spin L, with
A = E + iL denoting the (complex) eigenvalue of Ly = H + J. The degeneracy of Ly
can be then calculated by an averaging procedure [51, 60], namely by taking the Laplace
transform of the character,

Q(A,A) =Tr (6(Lo — A)§(Lo — A)) = 1/d7'*/d7' X(, T*)e%TAe*Q”*A, (5.7)
(2m)2 ) Jy

where we have analytically continued X (7,7) into an analytic function X (7,7*) of two
complex numbers (7,7*). The paths v(t) = 7(t) and *(t) = —7(t) are chosen such that
the integral converges. Since we do not know the spectrum of Ly, we can now only proceed
at a formal level. Suppose, therefore, that for some given configuration (A, A) the integral
converges in both 7 and 7% and that the main contribution to the integral comes from
a single saddle point®* 7, (res. 7). The relation between the entropy S(A,A), and the
inverse temperature 7, is then given by the usual saddle point equations

Olog X
2rA = — 5.8
4 Ot (ro,—70) (5.82)
S(A, A) ~log X (7o, —To) + 2TToA + 27T, A. (5.8b)

We can now formally continue to derive a version of the Cardy formula: since the modular
S-transformation 7 — —7 ! defines the same torus, we expect that the Virasoro character
of the boundary field theory is invariant under these large diffeomorphisms. Let us then
also assume that for large temperature |7, — 0 the integral over the oscillating trace is
dominated by a single semi-classical (coherent) state |Q2),

I _ 27 I
X(T, 7—*) ~ e%<Q‘L0‘Q>e T <Q|LO|Q>‘ (59)

33We could insist to use a bilinear form (-,-) such that (L_,[],-) = (-, L»[-]), but then the requirement
of positivity for (-, -) must be dropped.
341f 7, is such a saddle point for the integral over 7, then —7, will be the saddle point for the 7 integral.
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If such a state |Q2) exists, we can immediately perform the Legendre transformation from

X(1,7) to S(A, A) and obtain,
A
o — 9 5.103
"=\ WL (100

S(A, A) =~ dm/AQLo|Q) + cc. (5.10b)

Notice that we do not require that |Q2) is an eigenstate of Lg. In fact, for a non-unitary
CFT Ly + Ly may be unbounded from below and may have no normalisable eigenstates in
the Fock space of the boundary CFT.3

Given these assumptions (namely, (i) modular invariance and the (ii) existence of a
semi-classical state |€2) that dominates the partition function at large temperature), we have
a version of Cardy’s formula for the boundary CFT, which we expect to be non-unitary.
For a generic such coherent state |2) the entropy (5.10b) is in violation of the Bekenstein-
Hawking formula (5.1). If, however, the semi-classical state |(2), represents the asymptotic
boundary, which corresponds to the a — % limit of the bulk catenoids (3.18), (3.17) the sit-
uation is different: since the state is assumed to be semi-classical, we would then recover the
classical values for the Virasoro generators (at least to leading order in ). In other words,

(©IL0l9) = . (5.11)
see (4.57). Equation (5.10b) together with (5.11) would then reproduce the Bekenstein-
Hawking entropy, for mass M and imaginary spin J that are now determined by the real
and imaginary parts of A = M/{ + J.

The key open task to make this argument robust is to show that there exists a coher-
ent state |2) that represents the asymptotic AdS3 boundary and dominates the Virasoro
character at high temperature. This task is not unfeasible, because there has been a
lot of progress in non-perturbative quantum general relativity to construct such coherent
boundary states using the spin network representation, which would provide a lattice reg-
ularisation of the boundary CFT, see for instance [61-65] and references therein. In fact,
using a coherent spin network for the quantum states in the bulk, we will have a coher-
ent boundary state €} that will be now only supported in a finite number of punctures,
ie. (€]Q) = Q[¢A(21),€4(20),...], with every such puncture representing a gravitational
Wilson line that ends at the boundary [40, 66]. Introducing a UV cutoff for the mode
expansion of the boundary CFT, one can then map the Hilbert space of N such punctures
back into the Hilbert space of the boundary CFT in the continuum, which would then
allow us to test the validity of the approximation (5.10b), see [40, 66] and [67] for related
developments based on the sampling theorem.

35In the £ — 0 limit of vanishing cosmological constant, the quasi-local energy H = Lo + Lo turns into
a two-mode squeeze operator, which has no normalisable eigenstates on the Hilbert space of the boundary
CF'T, see [40].
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6 Summary and discussion

In this paper, we established the quasi-local Hamiltonian formulation of three-dimensional
Euclidean gravity (A = —1/¢2) with conformal boundary conditions. The conformal class of
the induced metric at the boundary is fixed, but there are no restrictions on the variations of
the conformal factor. Instead, there are constraints on the canonically conjugate variable to
log 2, which is the trace K = V,n® of the extrinsic curvature. The specific value K = 2//
is preferred geometrically, because the solution space of this specific class of conformal
boundary conditions can be coordinatised in terms of holomorphic maps from Riemann
surfaces into the spin bundle [28, 29] over hyperbolic space. To impose the conformal
boundary conditions at a Hamiltonian level, we found it then useful to work on an extended
phase space [30, 66], where there are additional boundary degrees of freedom that turn
these holomorphic maps into dynamical boundary fields, whose Euclidean time evolution is
governed by the Noether charges (4.14). After having introduced the appropriate counter
terms to the triadic Palatini action (2.24), we studied the phase space and the gauge
symmetries of the bulk plus boundary system. Simultaneous SU(2) frame rotations of
the bulk plus boundary fields are unphysical gauge directions. For diffeomorphisms, the
situation is different: large diffeomorphism are physical [51, 68]. A preferred class of such
large diffeomorphisms is given by those specific bulk diffeomorphisms that preserve the
conformal boundary conditions. The corresponding conserved Noether charges are the
Virasoro generators (4.14).

Finally, we computed the Poisson commutation relations for the holomorphic bound-

ary spinors, and found a one-parameter family of deformations of the classical Heisenberg

algebra: {n2,nB} = —e*Bominir + X, r&rEm 0.

ranBm G/ that controls the strength of this deformation disappears in the £ — oo

The infinite-dimesnional matrix

limit of vanishing cosmological constant. The geometrical origin of this deformation can be
traced back to the Kac-Moody constraints (4.20), which are second-class. In fact, réﬁg;”
is simply the inverse of the Dirac matrix {J,J*} of the second-class constraints. Be-
sides the Kac-Moody constraints there is a small number of residual first-class constraints,
namely the zero mode J} of the Kac-Moody charges in addition to the deformed closure con-
straint (3.43) that entangles the holomorphic and anti-holomorphic sectors of the boundary
field theory.

From the perspective of the spin network representation of quantum general relativity,
the field content of the boundary CFT should be no surprise. In loop quantum gravity
(LQG), the quantum states of the geometry are constructed by successively exciting grav-
itational Wilson lines for the spin connection.?® The introduction of a boundary breaks
these Wilson lines apart, and excites a distributional surface charge, namely a boundary
spinor, at the puncture. In 2 + 1 spacetime dimensions, the partition function for these
gravitational boundary modes is given by the evaluation of boundary spin networks against

36The underlying diffeomorphism invariant Ashtekar-Lewandowski vacuum is a state that represents no
geometry at all [69]. More recently, dual vacua have been proposed that are peaked in the conjugate
variables: the metric is widely spread, but the conjugate momentum, which encodes the extrinsic curvature
is sharply peaked, see [70, 71].
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the Ponzano-Regge spinfoam amplitudes. The resulting spin network evaluation defines a
large class of 1 + 1-dimensional statistical model [44, 72-74]. The Heisenberg XYZ spin
chain is an example for such a statistical model in 1 + 1 dimensions, which corresponds
to the massive Thirring model in the continuum. The results of this paper strengthen
these dualities from the opposite direction, namely by starting from a 1 + 1 dimensional
boundary field theory for conformal boundary conditions in the continuum.

The main part of the paper dealt with the classical theory. In the last section, we
discussed the physical relevance of our results in the context of those proposals that de-
rive the entropy of black holes from the Cardy formula. Our discussion closely followed
Strominger’s original proposal, but there are a few unusual features. First of all, we found
that there is no central charge among the Poisson brackets of the Virasoro generators,
see (4.54a) and (4.54b). In our opinion, this is a strong indication that the underlying
boundary CFT is non-unitary. This observation is further supported by the structure of
the boundary action, (2.24). If we isolate the spin up and down components of the bound-
ary spinor and introduce component functions 5 and -y, such that £4 = (8,7), we will find
that the boundary action (2.24) turns into the action for the -y ghosts of string theory,
with a quartic potential and a minimal coupling to the spin connection from the bulk
(the boundary CFT resembles, therefore, the Thirring model [75], but with a kinetic term,
which is now borrowed from the S-y theory). Yet the statistics is different, since &4 must
be bosonic.?” The main difficulty in quantising such a theory is that H = Lo + Lg is not
manifestly positive. This becomes explicit in the ¢ — oo limit of vanishing cosmological
constant, where H = Lo+ Lo is a two-mode squeeze operator H ~ Zn(2n+1)(anbn+a;rlb;rl),
see [40]. We expect that these features survive for A # 0 and that the Hamiltonian will
have a similar spectrum, such that the exponentials of the Hamiltonian vector fields of the
supermomentum generators P, = (L, + L,) would not preserve the original Fock space,
but map it into a unitarily inequivalent superselection sector.
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