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Abstract

In the past decade, the construction of quantum maximum distance separable codes
(MDS for short) has been extensively studied. For the length n = ‘127'1 where mis an
integer that divides either g + 1 or g - 1, a complete set of results has been avail-
able. In this paper, we dedicate to a previously unexplored cases where the length
n= ‘127‘1 subject to the conditions that m is neither a divisor of g - 1 nor g + 1. Ulti-

o mately, this problem can be summarized as exploring the necessary and sufficient
?;:)alzt;;nExl:)To);n\éviz\?vJle:gut?rllzgffr gr;eryn Y conditions for the existence of pairs (m1,m.), where m = 22 is an integer, with the
quantum MDS codes with larger distance. PLos  @dditional requirement that the greatest common divisor (gcd) of m with both m; and
One 20(6): 80325027. hitps:/doi.org/10.1371/  my, ged(m, m1) > 1 and ged(m, my) > 1, and ged(m, mz) = 2. The quantum MDS codes
lournal.pone. 0325027 presented herein are novel and exhibit distance parameters exceeding g
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Published: June 5, 2025 Quantum error-correction codes have been demonstrated as an encoding technique specif-

ically engineered to safeguard quantum data against the effects of noise and interference. In
quantum communication systems such as quantum key distribution (QKD), quantum MDS
codes can be used to enhance the security and robustness of the key distribution process. They
can help detect and correct errors that may occur during the transmission of quantum states
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are within the manuscript. products, as referenced in [3]. This concept was later extended to the non-binary cases in
[1,21]. Henceforth, the construction of quantum error-correcting codes has seen significant
advancements following the realization of the interplay between quantum codes and classical
codes. Let g be a prime power, and a g-ary quantum code is defined as K-dimensional sub-
space within the Hibert space (C1)®" = C?', which is capable of detecting quantum errors
atmost d - 1. Let k =log K, and we denote a g-ary quantum code as [[n, k, d]],. Similar to
classical coding theory, one of the fundamental challenge in quantum coding theory is to
develop quantum codes with desirable parameters. The inequality 2d <n - k + 2 providesa
bound on the distance achievable for a quantum code [[n, k, d]], (as detailed in [17,18]). A
quantum code attaining this bound is referred to as a quantum maximum-distance-separable

Funding: This study was financially supported
by the Key Special Projects of the National Key

PLOS One | https://doi.org/10.1371/journal.pone.0325027 June 5, 2025 1/9



https://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0325027&domain=pdf&date_stamp=2025-06-05
https://doi.org/10.1371/journal.pone.0325027
https://doi.org/10.1371/journal.pone.0325027
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8849-6087
mailto:ydchen@stu.edu.cn
https://doi.org/10.1371/journal.pone.0325027

PLOS One

Exploring new lengths for g-ary quantum MDS codes with larger distance

R&D Program of China in the form of an award
(2022YFB3103100) received by XH. This study
was also financially supported by the National
Natural Science Foundation of China Special
Project in the form of an award (J2324013)
receibed by XH. This study was also financially
supported by the Ningbo Education Science
Planning Research Project in the form of an
award (2024YGHO040) received by XH. This
study was also financially supported by the
Yongjiang Talent Project of Ningbo in the form
of an award (2024A-398-G) received by XH.
This study was also financially supported by the
14th Five Year Plan Teaching Reform Project of
Zhejiang Province in the form of an award
(jg20220633) received by JW. This study was
also financially supported by the Second Batch
of Undergraduate Teaching Reform Projects
During the 14th Five Year Plan of Zhejiang
Province in the form of an award
(JGBA2024612) received by JW. This study was
also financially supported by the Key Research
Platforms and Projects of Higher Education
Institutions in Guangdong Province in the form
of an award (20242DZX1021) received by YC.
This study was also financially supported by the
Basic and Applied Basic Research Foundation of
Guangdong Province in the form of an award
(2025A1515012156) received by YC. This study
was also financially supported by the Science
and Technology Planning Projects of Shantou,
China in the form of an award
(220516096491783) received by YC.

Competing interests: The authors have
declared that no competing interests exist.

(MDS) code. Numerous classes of quantum MDS codes have been systematically constructed
employing various approaches.

The Hermitian inner produce over F”, is defined as follows. < u, v >),= ulv? + + u,vl
where u = (u1, ..., u,) and v = (vq, ..., v,,) are vectors in 72 The approach outlined below rep-
resents a construction of g-ary quantum MDS codes from Hermitian self-orthogonal MDS

codes over FJ,, which is one of the significant techniques presented in [1].

Theorem 1 (Hermitian Construction). Suppose that C is an [[n,k,n - k + 1]],» MDS code
over 2, and is orthogonal with respect to the Hermitian inner product. Then we can construct a
g-ary quantum MDS code of parameters [[n,n - 2k, k + 1]],.

1.1 Contributions and organization

The quantum MDS codes have several potential applications: one of the most important
applications is in quantum error correction, and can be used to detect and correct errors in
quantum information. By using quantum MDS codes, quantum operations can be performed
in a way that is resilient to certain types of errors. This is essential for building large-scale and
practical quantum computers that can run complex algorithms without being overwhelmed
by errors.

Contributions. For length of the form ‘127_1, where m is an integer such that m divides
q - 1 or m divides g + 1, comprehensive results are available, as shown in Table 1. The notation
[a, b] represents the inclusive set of integers from a to b. However, in this paper, we concen-
trate on the case where m is not a divisor of either g - 1 or q + 1. Specifically, we consider pairs

(my, my) such that m = ™2 js an integer and ged(m,, my) = 2.

my+my-2

1. When m odd, m|q -1, it is clear that Hermitian self-orthogonal MDS codes can’t be con-

2
structed with the length n = q—y;l. As illustrated in Corollary 1, our construction covers
some cases.
2. We provide the necessary and sufficient conditions for the existence of pairs (m;, m;)
miy-my :
my a2 A0 integer.
3. Additionally, for any given integer m = a; by, Algorithms 1 and 2 help us determine

. . e
several possible pairs (my,m;) such that m = =L

that makes m =

is an integer.

Organization. The rest part of this paper is structured as below. In Sect 2: Previous Known
Results, we briefly review the previous known results about constructions for quantum MDS
codes. In Sect 3: Preliminaries, we introduce the necessary preliminaries. Our main results are
established in Sect 4: Constructions. The paper comes to an end in Sect 5: Conclusion.

2 Previous known results

The construction of quantum MDS codes has been a significant area of research since the pio-
neering work of Shor [23] and the subsequent generalizations by Calderbank, Rains, Shor,

2
Table 1. Quantum MDS code with Length q74.

Length Distance References
Lﬂ:l,m|q+l,meven de[z,qzé1 + %1] [24,25]
Lﬂ:l, m|g + 1, m odd de |2, q;—l + %] [4,10,24]
iﬂf,rrdq—l,meven de[z,%+%] [4,10]

https://doi.org/10.1371/journal.pone.0325027.t001
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and Sloane [3]. These works laid the foundation for constructing quantum codes using clas-
sical codes over finite fields. The central idea is to find classical self-orthogonal codes with
certain properties and then convert them into quantum codes [1,21].

An important method for constructing quantum MDS codes is the Hermitian construc-
tion. This method involves finding classical codes that are self-orthogonal with respect to
the Hermitian inner product. The Hermitian construction has been used to create quantum
MDS codes with larger minimum distances than those achievable through Euclidean self-
orthogonal codes. For example, Jin, Ling, Luo, and Xing have used classical Hermitian self-
orthogonal MDS codes to construct quantum MDS codes [12,13]. Additionally, Kai and Zhu
have developed new quantum MDS codes from negacyclic codes [15], and Zhang and Chen
have introduced new quantum MDS codes with large minimum distances [4]. Xueying Shi,
Qin Yue and Xiaomeng Zhu use the classical Hermitian self-orthogonal generalized Reed-
Solomon codes to construct some new quantum MDS codes with minimum distance bigger
than 4 + 1 [22]. Reference [6] constructs six new classes of g-ary quantum MDS codes by
using generalized Reed-Solomon (GRS) codes and Hermitian construction.

Generalized Reed-Solomon (GRS) codes have been particularly useful in constructing
quantum MDS codes. GRS codes are a generalization of the classical Reed-Solomon codes
and are known for their optimal error-correcting capabilities. By using GRS codes, several
new classes of quantum MDS codes have been constructed with parameters that exceed the
minimum distance of previously known codes. For example, Reference [20] constructs a new
family of quantum MDS codes from classical generalized Reed-Solomon codes and derive the
necessary and sufficient condition for the existence. Jin [14] presents a new construction of
quantum MDS codes with minimum distance greater than £ + 1. The authors use Hermitian
self-orthogonal codes to construct these new quantum MDS code. Reference [2] constructs
quantum MDS codes with parameters [[¢* + 1,q* + 3 - 2d,d]], foralld<q + 1, d # q. These
codes are shown to exist by proving that there are classical generalised Reed-Solomon codes
which contain their Hermitian dual.

Constacyclic codes over finite fields have been another rich source for constructing quan-
tum MDS codes. These codes offer a flexible structure that can be tailored to achieve the MDS
property. Kal et al. [16] generated several classes of quantum MDS codes based on consta-
cyclic codes. Subsequently, Chen et al. [4] got four families of g-ary quantum MDS codes
through MDS cyclic codes. Hu et al. [11] proposed a way to determine the maximum distance
of [[n,k,d]]; quantum MDS codes from constant cyclic codes with the given n and ¢, and in
the meanwhile presented a new class of quantum MDS codes derived from Hermitian dual-
containing MDS constacyclic code. Kai and Zhu [15] construct two families of quantum MDS
codes by leveraging negacyclic codes.

In recent years, a plenty of quantum MDS codes possessing favorable properties have
been derived from classical error-correcting codes, including algebraic-geometric codes,
BCH codes, and Reed-Muller codes, as detailed in References [5], [7], [14], [13], [12] etc.

The underlying principle of constructing the Hermitian self-orthogonal codes hinges on the
solvability in [F; of a system of homogenous equations over [F;> [14]. By applying Hermitian
self-orthogonal algebraic geometry codes to quantum codes, some good quantum codes were
obtained [13]. Grassl et al. [9] constructed a class of g-ary quantum MDS codes with length
n=q" - 1. La Guardia [19] constructed a class of quantum MDS codes utilizing MDS cyclic
codes. By identifying polynomials rooted in appropriate trace functions, a novel family of
linear codes was introduced, facilitating the construction of stabilizer quantum codes over
several finite fields [8].
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3 Preliminaries

In this section, we introduce a straightforward approach to constructing generator matrices
that are crucial for the formation of Hermitian self-orthogonal MDS codes over the finite field
[, as detailed in Reference [10]. This approach not only recaptures the case where the code

length n = Lﬂ:l, but also paves the way for the development of a variety of new MDS quantum
codes. We will proceed with two key lemmas that are fundamental to our construction. How-
ever, we choose to omit the proofs of these lemmas and instead, direct the interested reader to
Reference [10] for a comprehensive explanations of the proofs.

Lemma 2. Let © be a primitive element within the multiplicative group of the finite field F,,

21

- . 2
and an integer m|q* - 1, then 221 07 =0 except the case that t| q—ﬂ;l.
Lemma 3. Let vy, ..., vy be n non-zero elements in the multiplicative group I, Let gl =
(g11> - gm) for 1=1, ..., k be k linear independent rows in Fy. such that Z;Zl ngjllgquz =0 for

any two indices Iy and I in the set {1, ..., k} (where I, = I, is allowed). Consequently, we can
construct a Hermitian self-orthogonal [n, k], code produced by these k rows.

With Lemmas 2 and 3, given m, g, and m|q* - 1, for any fixed positive integer k, a linear

error codes of length q—ﬂ;l over [FZZ can be defined as follows:

C= {(em]f(em),emf(e“),... MO, ... ,e”zm*’l-l)"y(e(im’“l)f"),f(l))

:f€Fp[x],deg(f) <k- 1}

2
It is evident that C is an MDS code with the parameters [# = %, k,n—k+1] over Fp.
2
2

Essentially, this code is an evaluation code at the points 6”,6%", ...,8( 5 ~Dm 1,
The Hermitian inner product of any two codewords (associated with two polynomials

£ . £
fandg)is Y77 @/miimfga(6/m). Thus, if the sum Y, 7] @m(1+4+1+24) = 0, where V1,1, €
[0,k - 1], then C is a Hermitian self-orthogonal MDS code.

4 Constructions

2
This section focuses on the construction of novel quantum MDS codes with a length of %,
where m tq - 1and mtq+ 1, pairs (my, m;) with m = _ =L,
sents an odd prime power.
Let m;, m;, be two even integers. mi|q - 1, my|q + 1. According to Lemma 3.1 in [10], we
have the following identity when 0 < #;,#, < ‘12;1 + qm;: - 1.

ged(my, my) =2, and q repre-

o .my (q+1)

P-1
St gmtisen g4 o
j=1

According to Theorem 1 from Reference [25], the subsequent identity is established when
0<t, <L+ 4202

-1
6jfﬂ2([1+t2q) . 6le2(q+l) — 0.
j=1
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Table 2. New Quantum MDS code with n = q;kl -(q+1).

(my, my) q m Distance d
(8,6) 17 4 [2,11]
(8,6) 41 4 [2,27]
(10,8) 71 5 [2,44]
(12,10) 49 6 [2,29]
(14,12) 71 7 [2,31]
(16,14) 97 8 [2,56]
(18,16) 127 9 [2,71]

https://doi.org/10.1371/journal.pone.0325027.t002

By summing the two identities, we derive the following new identities:

-1 -1

2 my (q+1)
2

D S
Z gim2(ti+taq) | gima(q+1) | H(Z gim(ti+ha) | @2 )=0
j=1 j=1
Here, H can be any nonzero element in [}, and the common position t;, , are in the range
-1 gt -1
0<h, <t +mm{‘1m—z—2,‘fn—l— 1}.
2 2
jmy . q-1 jmy . i _ q-1 .
Let M be the set {&/™ -]1— L., WTI} U {@1”1‘2 :j=1,.., %=}, and the code is the set
. . o+ .

{(f(x))xem : 0 <deg(f) < &= + min{L~ -2,1- -1}

Theorem 4. [25] Let q be an odd prime power, my,m; be two even integers. my|q-1,my|q+1,
then we construct a q-ary quantum MDS code with the following parameters:

2 2 2
. q -1 q -1 _ q -1 .
1. length n: <=+ "= ()’ where lcm(my, m,) denotes the least common multiple of
my, mj.
gy ; -1 . 1 g-1
2. minimum distance d: 2 <d < = + min{L=, "},
mi my

In Theorem 4, by carefully selecting specific parameters for the pair (m;, m,), we can
derive a novel class of quantum codes that exhibit highly beneficial properties, as demon-

strated in Corollary 1.

Corollary 1. With the notation defined as above, m; = 2k is an even divisor of q - 1, m, =
2k - 2>3isaneven divisor of ¢ + 1, then we can construct an q-ary quantum MDS code with
the parameters:

2.1 g1
1. lengthn: = =1= . (q+1),
2. minimum distance d: d € [2, %1 + %]

Remark 1.  When g odd, k|q - 1, it is clear that Hermitian self-orthogonal MDS codes can’t
be constructed by the generator matrices over the finite field [ as detailed in [10]. However,
this case is partially covered by Corollary 1.

Theorem 4 provides the theoretical result of the construction, but it must be ensured that
_ mym . . . . .
= piTrn_ged(mrmg) 1S an integer. This allows us to choose certain values pair (m;, m;) such

thatmtq-1,mtq+ 1, but gcd(m,q-1)>1,gcd(m,q + 1) > 1. This case has not been sys-
tematically discussed and studied.
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Lemma 5. Let my, m, be two even integers, and gcd(my, my) =2. If m = %

ger, gcd(my, m) > 1,gcd(my, m) > 1, then, at least one of myandm, has a factorization with at
least three prime factors.

is an inte-

Proof: The proof can be accomplished by introducing the method of proof by contradic-
tion. Without loss of generality, we can assume that m; = 2a;, m; = 2b;, both a,andb, are
primes, otherwise, either m;orm; has three factors. Hence, we have m = 201261 Ngte that

2a, +2191 -2°
m =4,2a,0r2b,, then a1by =a, + by - 1,by =a, + by - lora; =a; + by - 1, which is completely
impossible. Therefore, m;orm; has at least three prime factors. O
Remark 2. Consider that ged(my, m,) = 2, m;, m; even, therefore, the factorization of m;

or m,, one with one factor 2 and the other can have multiple factors 2. We can assume that
my =2a1a,, a;,a; odd, my = 2b1 by, by,b, can be odd or even, otherwise, gcd(m;, m,) # 2.

In the following text, assume that m; = 2a,a,, a1, a; > 3 odd, m, =2b; by, by, b, > 2,

= — _2a1ay2b1by
ged(ayay, biby) =2, m= TS TE

Theorem 6. The necessary and sufficient conditions for the existence of (my, my) pairs is

myormy has at least three prime factors. Here, m = % is an integer and gcd(m, m;) > 1
and gcd(m,my) > 1.

Proof: From Lemma 5, we know that m;0rm; has at least three prime factors. Next, we just
need to prove that the pairs (1, m,) always exists as long as m; = 2a,a,, m, = 2b; b,.

Let m = % =2a, by, then we have 2a;a, + 2b1b, - 2=2a,b,, thenby(a, - by)
=may - 1.

With the assumption that a,, a, are odd, therefore, a,a, — 1 can be factorised into p; p,, that
is, by(a,-by) = ayay -1 = p1p,. Hence, let by = py,a, - by = p; or by = py,a, - by = py to make the
equation holds.

Now, we need to prove that a, — p; > 2. From the equation a;a, = p1p, + 1, and a;,4, odd,
then we have ay(a;-2) 2 p2+1.a2-2a,-pi-120, (ay-1)?> 2 p2+2, 4~ 1 2\/p? + 2> p1 +V/2.
a-p1>1+ /2. Consider that a,, p1 are integers, therefore, a; > py + 2.

The conclusion holds. O

Remark 3. Theorem 6 provides an existence case, and other cases can be similarly proved.
For example, when m; = 2p, p odd. Even if p a prime, we can also prove its existence. Let m, =
2b1 by, by, by > 2 integers. Similarly, let m = 2b;, thenwe have pb, =p + biby -1, (p-b1)b,
=p - 1. Hence, let b; = 1%1, b, = 2 to make the equation holds. We treat this case in the follow-

ing Algorithm 1.

Algorithm 1. Algorithm for determining parameters m,, m,.

Input: input parameters m =2 - b;
Output: m,, m,

p=2-b-1;

by =2;
m=2-p=4-b -2;
my=4-by;

return

Remark 4. Theorem 6 demonstrates that given an arbitrary m,, m, can always be found such

that —“1™_ is an integer. Similarly, given m,, m; can also be found such that -2 is an
my+my—-2 my+my-2

integer. Considering that this proof is identical, we omit here. The prerequisite for this is that

m; or my has at least three prime factors.
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Algorithm to choose the parameters m,, m,

Theorem 6 only tells us the existence of the pair (m;,m, ), we need to fully determine the
value of a pair (m;, m,). Given any integer m = a; b, Algorithm 2 can help us determine
several possible pairs (m, m;,).

According to the proof process of Theorem 6, the algorithm run through the variable p;,
which varies from 1 to a;b; - 1 or larger, which can be used to determine the pair (m;,m,).
From Corollary 2, p, € Z always exists.

Corollary 2. Given two integer a; >2 odd and by >1,m=2 - a; - by, there exists a pair
(p1,p2) that makes m = mrf::;_z € Z, Here, p, = ‘“(hl}:“ilpl)‘l’ my =2a; (b + p1), my = 2b1p,.

Proof: Assume that p; =a,b; - 1, then p, = ‘“(h%fl)’l =1 + a; >2 € Z. The corollary holds.
o

Algorithm 2. Algorithm for determining parameters m;, m,.
Input: input parameters m =2 - ay - by, a; odd

Output: m;, m,
for p, = 1toco do

if pi|(a1 - (p1 + by) - 1) then
_ ar(pi+bi)-1
P2 =T
by=p>;
az = by +pi;
my=2-ay-ay;
my=2-by by
else
| p+=1
end

end

return

With Algorithm 1, we can get the value of pairs (m;,m; ). Let’s make some examples to
illustrate this.

Example 1. Let m =2a;b; =2-3-4,py=a; -by-1=11,thenm; =2-3-(4+11) =90,m;, =
2 -4 . %:32.Letp1:1alsocangiveapairofm:24,bzz%z%ml:30,
myp =112,

Example 2. Let m=2a,b, =2 - 3 - 5,p; =1,b, =17, then m; = 36, m, = 170. Case p =2 can
also give a pair (m;, m,) with m =30, m; = 42,m, = 100. Let p; =7, m; =72,m, =50. Ilf p = 14,
mp = 113, my =40.

Example 3. Let m=2a1b, =2 - 5 - 4,p=1, then m; =50,m, =192. Let p; = 19, then m; =
230, m, = 48.

Now, we need to determine the g that makes m = a,b;,mi|q-1,my|q+ 1, mtq-1,mtq+1.
Consider that ged(m,, m,) = 2, then there exists two integers Iy, ko fulfilling lym; + 2 = komy.
Set g = mymyt + lym; + 1, or g = mymyt + kom, — 1 and it is easy to verify that m;|q - 1, my|q +
1. Table 3 gives some examples of new quantum MDS codes, with the length #n = %, but
miq-1,miq+1.

Remark 5.  The integer 2 plays a special role throughout the entire paper, including ged(m;,

my) =2, m =~ The reason for doing this is to consider the existence of g, which only
1+my-2

exists when gcd(m;,my) =1 or 2, and satisfies m |q - 1, mz|q + 1 in the meanwhile.
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2
Table 3. New Quantum MDS code with n = %, mtq-1,mtq+1.

(my1, my) q m Distance d
(30,112) 449 24 228
(90,32) 449 24 229

(18,32) 127 12 66

(42,16) 127 12 66

(50,32) 449 20 233

(30,56) 449 20 232
(110,24) 769 20 391
(40,114) 1481 30 752

https://doi.org/10.1371/journal.pone.0325027.t003

5 Conclusion

In this paper, we have conducted a investigation of the case where the length is given by n =
Lﬂ;l, under the conditions that m $ g-1,m}t q+1,m= m?f:;z, where m;andm, are both even,
and gcd(my, m;) = 2. We have derived the necessary and sufficient conditions for the exis-
tence of such pairs (m;, m; ). Additionally, for a specified value of m, we design Algorithms 1
and 2 to determine the pair (m,, m,). With these insights, it is now a straightforward task to
construct a new class of quantum MDS codes.

Despite the numerous methods have been proposed to construct quantum MDS codes,
in fact, the code length 7 is still sparse for g < n < g*. In most cases, codes have not been con-
structed because the majority of the constructed results are concentrated in the case of n =

2
117-11‘ Our future work is to develop a general method that is not limited to the case of length
2

B
n=91—,
m
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