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Abstract
In the past decade, the construction of quantum maximum distance separable codes
(MDS for short) has been extensively studied. For the length n = q2–1

m , where m is an
integer that divides either q + 1 or q – 1, a complete set of results has been avail-
able. In this paper, we dedicate to a previously unexplored cases where the length
n = q2–1

m , subject to the conditions that m is neither a divisor of q – 1 nor q + 1. Ulti-
mately, this problem can be summarized as exploring the necessary and sufficient
conditions for the existence of pairs (m1,m2), where m = m1×m2

m1+m2–2
is an integer, with the

additional requirement that the greatest common divisor (gcd) of m with both m1 and
m2, gcd(m,m1) > 1 and gcd(m,m2) > 1, and gcd(m1,m2) = 2. The quantum MDS codes
presented herein are novel and exhibit distance parameters exceeding q

2 .

1 Introduction
Quantum error-correction codes have been demonstrated as an encoding technique specif-
ically engineered to safeguard quantum data against the effects of noise and interference. In
quantum communication systems such as quantum key distribution (QKD), quantumMDS
codes can be used to enhance the security and robustness of the key distribution process. They
can help detect and correct errors that may occur during the transmission of quantum states
used for key generation, ensuring the integrity of the shared secret key.

The construction of quantum error-correcting codes has been transformed into a find-
ing for classical self-orthogonal codes over the fields 𝔽2 or 𝔽4 with respect to specific inner
products, as referenced in [3]. This concept was later extended to the non-binary cases in
[1,21]. Henceforth, the construction of quantum error-correcting codes has seen significant
advancements following the realization of the interplay between quantum codes and classical
codes. Let q be a prime power, and a q-ary quantum code is defined as K-dimensional sub-
space within the Hibert space (ℂq)⨂ n ≅ℂqn , which is capable of detecting quantum errors
at most d – 1. Let k = logqK, and we denote a q-ary quantum code as [[n, k,d]]q. Similar to
classical coding theory, one of the fundamental challenge in quantum coding theory is to
develop quantum codes with desirable parameters. The inequality 2d≤ n – k + 2 provides a
bound on the distance achievable for a quantum code [[n, k,d]]q (as detailed in [17,18]). A
quantum code attaining this bound is referred to as a quantum maximum-distance-separable
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employing various approaches.
The Hermitian inner produce over 𝔽n

q2 is defined as follows. < u, v >h= u1vq1 + ⋯ + unv
q
n,

where u = (u1,… ,un) and v = (v1,… , vn) are vectors in 𝔽n
q2 . The approach outlined below rep-

resents a construction of q-ary quantumMDS codes from Hermitian self-orthogonal MDS
codes over 𝔽n

q2 , which is one of the significant techniques presented in [1].

Theorem 1 (Hermitian Construction). Suppose that ℂ is an [[n, k,n – k + 1]]q2 MDS code
over 𝔽q2 , and is orthogonal with respect to the Hermitian inner product. Then we can construct a
q-ary quantum MDS code of parameters [[n,n – 2k, k + 1]]q.

1.1 Contributions and organization
The quantumMDS codes have several potential applications: one of the most important
applications is in quantum error correction, and can be used to detect and correct errors in
quantum information. By using quantumMDS codes, quantum operations can be performed
in a way that is resilient to certain types of errors. This is essential for building large-scale and
practical quantum computers that can run complex algorithms without being overwhelmed
by errors.

Contributions. For length of the form q2–1
m , wherem is an integer such thatm divides

q – 1 orm divides q + 1, comprehensive results are available, as shown in Table 1. The notation
[a, b] represents the inclusive set of integers from a to b. However, in this paper, we concen-
trate on the case wherem is not a divisor of either q – 1 or q + 1. Specifically, we consider pairs
(m1,m2) such thatm = m1⋅m2

m1+m2–2
is an integer and gcd(m1,m2) = 2.

1. Whenm odd,m|q–1, it is clear that Hermitian self-orthogonal MDS codes can’t be con-
structed with the length n = q2–1

m . As illustrated in Corollary 1, our construction covers
some cases.

2. We provide the necessary and sufficient conditions for the existence of pairs (m1,m2)
that makesm = m1⋅m2

m1+m2–2
an integer.

3. Additionally, for any given integerm = a1b1, Algorithms 1 and 2 help us determine
several possible pairs (m1,m2) such thatm = m1⋅m2

m1+m2–2
is an integer.

Organization. The rest part of this paper is structured as below. In Sect 2: Previous Known
Results, we briefly review the previous known results about constructions for quantumMDS
codes. In Sect 3: Preliminaries, we introduce the necessary preliminaries. Our main results are
established in Sect 4: Constructions. The paper comes to an end in Sect 5: Conclusion.

2 Previous known results
The construction of quantumMDS codes has been a significant area of research since the pio-
neering work of Shor [23] and the subsequent generalizations by Calderbank, Rains, Shor,

Table 1. QuantumMDS code with Length q2–1
m .

Length Distance References
q2–1
m ,m|q + 1,m even d∈ [2, q–12 +

q+1
m ] [24,25]

q2–1
m ,m|q + 1,m odd d∈ [2, q–12 +

q+1
2m ] [4,10,24]

q2–1
m ,m|q – 1,m even d∈ [2, q+12 +

q–1
m ] [4,10]

https://doi.org/10.1371/journal.pone.0325027.t001
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and Sloane [3]. These works laid the foundation for constructing quantum codes using clas-
sical codes over finite fields. The central idea is to find classical self-orthogonal codes with
certain properties and then convert them into quantum codes [1,21].

An important method for constructing quantumMDS codes is the Hermitian construc-
tion. This method involves finding classical codes that are self-orthogonal with respect to
the Hermitian inner product. The Hermitian construction has been used to create quantum
MDS codes with larger minimum distances than those achievable through Euclidean self-
orthogonal codes. For example, Jin, Ling, Luo, and Xing have used classical Hermitian self-
orthogonal MDS codes to construct quantumMDS codes [12,13]. Additionally, Kai and Zhu
have developed new quantumMDS codes from negacyclic codes [15], and Zhang and Chen
have introduced new quantumMDS codes with large minimum distances [4]. Xueying Shi,
Qin Yue and Xiaomeng Zhu use the classical Hermitian self-orthogonal generalized Reed-
Solomon codes to construct some new quantumMDS codes with minimum distance bigger
than q

2 + 1 [22]. Reference [6] constructs six new classes of q-ary quantumMDS codes by
using generalized Reed-Solomon (GRS) codes and Hermitian construction.

Generalized Reed-Solomon (GRS) codes have been particularly useful in constructing
quantumMDS codes. GRS codes are a generalization of the classical Reed-Solomon codes
and are known for their optimal error-correcting capabilities. By using GRS codes, several
new classes of quantumMDS codes have been constructed with parameters that exceed the
minimum distance of previously known codes. For example, Reference [20] constructs a new
family of quantumMDS codes from classical generalized Reed-Solomon codes and derive the
necessary and sufficient condition for the existence. Jin [14] presents a new construction of
quantumMDS codes with minimum distance greater than q

2 + 1. The authors use Hermitian
self-orthogonal codes to construct these new quantumMDS code. Reference [2] constructs
quantumMDS codes with parameters [[q2 + 1, q2 + 3 – 2d,d]]q for all d ≤ q + 1, d ≠ q. These
codes are shown to exist by proving that there are classical generalised Reed-Solomon codes
which contain their Hermitian dual.

Constacyclic codes over finite fields have been another rich source for constructing quan-
tumMDS codes. These codes offer a flexible structure that can be tailored to achieve the MDS
property. Kal et al. [16] generated several classes of quantumMDS codes based on consta-
cyclic codes. Subsequently, Chen et al. [4] got four families of q-ary quantumMDS codes
through MDS cyclic codes. Hu et al. [11] proposed a way to determine the maximum distance
of [[n, k,d]]q quantumMDS codes from constant cyclic codes with the given n and q, and in
the meanwhile presented a new class of quantumMDS codes derived from Hermitian dual-
containing MDS constacyclic code. Kai and Zhu [15] construct two families of quantumMDS
codes by leveraging negacyclic codes.

In recent years, a plenty of quantumMDS codes possessing favorable properties have
been derived from classical error-correcting codes, including algebraic-geometric codes,
BCH codes, and Reed-Muller codes, as detailed in References [5], [7], [14], [13], [12] etc.
The underlying principle of constructing the Hermitian self-orthogonal codes hinges on the
solvability in 𝔽q of a system of homogenous equations over 𝔽q2 [14]. By applying Hermitian
self-orthogonal algebraic geometry codes to quantum codes, some good quantum codes were
obtained [13]. Grassl et al. [9] constructed a class of q-ary quantumMDS codes with length
n = q2 – 1. La Guardia [19] constructed a class of quantumMDS codes utilizing MDS cyclic
codes. By identifying polynomials rooted in appropriate trace functions, a novel family of
linear codes was introduced, facilitating the construction of stabilizer quantum codes over
several finite fields [8].
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3 Preliminaries
In this section, we introduce a straightforward approach to constructing generator matrices
that are crucial for the formation of Hermitian self-orthogonal MDS codes over the finite field
𝔽q2 as detailed in Reference [10]. This approach not only recaptures the case where the code
length n = q2–1

m , but also paves the way for the development of a variety of new MDS quantum
codes. We will proceed with two key lemmas that are fundamental to our construction. How-
ever, we choose to omit the proofs of these lemmas and instead, direct the interested reader to
Reference [10] for a comprehensive explanations of the proofs.

Lemma 2. Let 𝜃 be a primitive element within the multiplicative group of the finite field 𝔽∗q2 ,

and an integer m|q2 – 1, then∑
q2–1
m

j=1 𝜃jtm = 0 except the case that t| q
2–1
m .

Lemma 3. Let v0,… , vn be n non-zero elements in the multiplicative group 𝔽∗q2 . Let gl =
(g1l,… , gnl) for l = 1,… , k be k linear independent rows in 𝔽n

q2 such that∑
n
j=1 vjgjl1g

q
jl2 = 0 for

any two indices l1 and l2 in the set {1, …, k} (where l1 = l2 is allowed). Consequently, we can
construct a Hermitian self-orthogonal [n, k]q2 code produced by these k rows.

With Lemmas 2 and 3, givenm, q, andm|q2 – 1, for any fixed positive integer k, a linear
error codes of length q2–1

m over 𝔽n
q2 can be defined as follows:

ℂ = {(𝜃mf(𝜃m),𝜃2mf(𝜃2m),… ,𝜃jmf(𝜃jm),… ,𝜃(
q2–1
m –1)mf(𝜃(

q2–1
m –1)m), f(1))

∶ f∈ 𝔽q2[x], deg(f) ≤ k – 1}

It is evident that ℂ is an MDS code with the parameters [n = q2–1
m , k,n – k + 1] over 𝔽q2 .

Essentially, this code is an evaluation code at the points 𝜃m,𝜃2m,… ,𝜃( q
2–1
m –1)m, 1.

The Hermitian inner product of any two codewords (associated with two polynomials

f and g) is∑
q2–1
m

j=1 𝜃jm+jqmfgq(𝜃jm). Thus, if the sum∑
q2–1
m

j=1 𝜃jm(1+q+t1+t2q) = 0, where ∀t1, t2 ∈
[0, k – 1], then ℂ is a Hermitian self-orthogonal MDS code.

4 Constructions
This section focuses on the construction of novel quantumMDS codes with a length of q2–1

m ,
wherem ∤ q – 1 andm ∤ q + 1, pairs (m1,m2) withm = m1⋅m2

m1+m2–2
, gcd(m1,m2) = 2, and q repre-

sents an odd prime power.
Letm1,m2 be two even integers.m1|q – 1,m2|q + 1. According to Lemma 3.1 in [10], we

have the following identity when 0 ≤ t1, t2 ≤ q–1
2 +

q–1
m1

– 1.

q2–1
m1

∑
j=1

𝜃jm1(t1+t2q) ⋅ 𝜃j
m1(q+1)

2 = 0.

According toTheorem 1 from Reference [25], the subsequent identity is established when
0 ≤ t1, t2 ≤ q–1

2 +
q+1
m2

– 2:

q2–1
m2

∑
j=1

𝜃jm2(t1+t2q) ⋅ 𝜃jm2(q+1) = 0.
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Table 2. New QuantumMDS code with n = q–1
k ⋅ (q + 1).

(m1,m2) q m Distance d
(8,6) 17 4 [2,11]
(8,6) 41 4 [2,27]
(10,8) 71 5 [2,44]
(12,10) 49 6 [2,29]
(14,12) 71 7 [2,31]
(16,14) 97 8 [2,56]
(18,16) 127 9 [2,71]

https://doi.org/10.1371/journal.pone.0325027.t002

By summing the two identities, we derive the following new identities:

q2–1
m2

∑
j=1

𝜃jm2(t1+t2q) ⋅ 𝜃jm2(q+1) +H(

q2–1
m1

∑
j=1

𝜃jm1(t1+t2q) ⋅ 𝜃j
m1(q+1)

2 ) = 0.

Here, H can be any nonzero element in 𝔽∗q , and the common position t1, t2 are in the range
0 ≤ t1, t2 ≤ q–1

2 +min{ q+1m2
– 2, q–1m1

– 1}.

LetM be the set {𝜃jm1 ∶ j = 1,… , q
2–1
m1
} ∪ {𝜃jm2 ∶ j = 1,… , q

2–1
m2
}, and the code is the set

{(f(x))x∈M ∶ 0 ≤ deg(f) ≤ q–1
2 +min{ q+12m2

– 2, q–1m1
– 1}.

Theorem 4. [25] Let q be an odd prime power, m1,m2 be two even integers. m1|q–1,m2|q+1,
then we construct a q-ary quantum MDS code with the following parameters:

1. length n: q2–1
m1
+ q2–1

m2
– q2–1

lcm(m1 ,m2) , where lcm(m1,m2) denotes the least common multiple of
m1,m2.

2. minimum distance d: 2 ≤ d ≤ q–1
2 +min{ q+1m1

, q–1m2
}.

InTheorem 4, by carefully selecting specific parameters for the pair (m1,m2), we can
derive a novel class of quantum codes that exhibit highly beneficial properties, as demon-
strated in Corollary 1.

Corollary 1.With the notation defined as above, m1 = 2k is an even divisor of q – 1, m2 =
2k – 2 ≥ 3 is an even divisor of q + 1, then we can construct an q-ary quantum MDS code with
the parameters:

1. length n: q2–1
k =

q–1
k ⋅ (q + 1),

2. minimum distance d: d∈ [2, q–12 +
q+1
2k–2 ].

Remark 1. When q odd, k|q – 1, it is clear that Hermitian self-orthogonal MDS codes can’t
be constructed by the generator matrices over the finite field 𝔽q2 as detailed in [10]. However,
this case is partially covered by Corollary 1.

Theorem 4 provides the theoretical result of the construction, but it must be ensured that
m = m1m2

m1+m2–gcd(m1 ,m2) is an integer. This allows us to choose certain values pair (m1,m2) such
thatm ∤ q – 1,m ∤ q + 1, but gcd(m, q – 1) > 1, gcd(m, q + 1) > 1. This case has not been sys-
tematically discussed and studied.
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Lemma 5. Let m1,m2 be two even integers, and gcd(m1,m2) = 2. If m = m1×m2
m1+m2–2

is an inte-
ger, gcd(m1,m) > 1, gcd(m2,m) > 1, then, at least one of m1andm2 has a factorization with at
least three prime factors.

Proof : The proof can be accomplished by introducing the method of proof by contradic-
tion. Without loss of generality, we can assume thatm1 = 2a1,m2 = 2b1, both a1andb1 are
primes, otherwise, eitherm1orm2 has three factors. Hence, we havem = 2a1⋅2b1

2a1+2b1–2 . Note that
m = 4, 2a1or2b1, then a1b1 = a1 + b1 – 1, b1 = a1 + b1 – 1ora1 = a1 + b1 – 1, which is completely
impossible. Therefore,m1orm2 has at least three prime factors. ◻

Remark 2. Consider that gcd(m1,m2) = 2,m1,m2 even, therefore, the factorization ofm1

orm2, one with one factor 2 and the other can have multiple factors 2. We can assume that
m1 = 2a1a2, a1, a2 odd,m2 = 2b1b2, b1,b2 can be odd or even, otherwise, gcd(m1,m2) ≠ 2.

In the following text, assume thatm1 = 2a1a2, a1, a2 ≥ 3 odd,m2 = 2b1b2, b1, b2 ≥ 2,
gcd(a1a2, b1b2) = 2,m = 2a1a2⋅2b1b2

2a1a2+2b1b2–2 .

Theorem 6.The necessary and sufficient conditions for the existence of (m1,m2) pairs is
m1orm2 has at least three prime factors. Here, m = m1×m2

m1+m2–2
is an integer and gcd(m,m1) > 1

and gcd(m,m2) > 1.

Proof : From Lemma 5, we know thatm1orm2 has at least three prime factors. Next, we just
need to prove that the pairs (m1,m2) always exists as long asm1 = 2a1a2,m2 = 2b1b2.

Letm = 2a1a2⋅2b1b2
2a1a2+2b1b2–2 = 2a1b1, then we have 2a1a2 + 2b1b2 – 2 = 2a2b2, then b2(a2 – b1)

= a1a2 – 1.
With the assumption that a1, a2 are odd, therefore, a1a2 – 1 can be factorised into p1p2, that

is, b2(a2 –b1) = a1a2 –1 = p1p2. Hence, let b2 = p1, a2 –b1 = p2 or b2 = p2, a2 –b1 = p1 to make the
equation holds.

Now, we need to prove that a2 – p1 ≥ 2. From the equation a1a2 = p1p2 + 1, and a1, a2 odd,
then we have a2(a1–2) ≥ p21+1. a22–2a2–p21–1 ≥ 0, (a2–1)2 ≥ p21+2, a2–1 ≥

√
p21 + 2 > p1+

√
2.

a2 – p1 > 1 +
√
2. Consider that a2, p1 are integers, therefore, a2 ≥ p1 + 2.

The conclusion holds. ◻

Remark 3. Theorem 6 provides an existence case, and other cases can be similarly proved.
For example, whenm1 = 2p, p odd. Even if p a prime, we can also prove its existence. Letm2 =
2b1b2, b1, b2 ≥ 2 integers. Similarly, letm = 2b1, then we have pb2 = p + b1b2 – 1, (p – b1)b2
= p – 1. Hence, let b1 = p+1

2 , b2 = 2 to make the equation holds. We treat this case in the follow-
ing Algorithm 1.

Algorithm 1. Algorithm for determining parametersm1,m2.

Input: input parametersm = 2 ⋅ b1
Output:m1,m2
p = 2 ⋅ b1 – 1 ;
b2 = 2 ;
m1 = 2 ⋅ p = 4 ⋅ b1 – 2 ;
m2 = 4 ⋅ b1 ;
return

Remark 4. Theorem 6 demonstrates that given an arbitrarym1,m2 can always be found such
that m1m2

m1+m2–2
is an integer. Similarly, givenm2,m1 can also be found such that m1m2

m1+m2–2
is an

integer. Considering that this proof is identical, we omit here. The prerequisite for this is that
m1 orm2 has at least three prime factors.
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Algorithm to choose the parametersm1,m2

Theorem 6 only tells us the existence of the pair (m1,m2), we need to fully determine the
value of a pair (m1,m2). Given any integerm = a1b1, Algorithm 2 can help us determine
several possible pairs (m1,m2).

According to the proof process of Theorem 6, the algorithm run through the variable p1,
which varies from 1 to a1b1 – 1 or larger, which can be used to determine the pair (m1,m2).
From Corollary 2, p2 ∈ Z always exists.

Corollary 2. Given two integer a1 ≥ 2 odd and b1 ≥ 1 , m = 2 ⋅ a1 ⋅ b1, there exists a pair
(p1, p2) that makes m = m1m2

m1+m2–2
∈ Z, Here, p2 = a1(b1+p1)–1

p1
, m1 = 2a1(b1 + p1),m2 = 2b1p2.

Proof : Assume that p1 = a1b1 – 1, then p2 = a1(b1+p1)–1
p1

= 1 + a1 ≥ 2∈ Z. The corollary holds.
◻

Algorithm 2. Algorithm for determining parametersm1,m2.

Input: input parametersm = 2 ⋅ a1 ⋅ b1, a1 odd
Output:m1,m2
for p1 = 1to∞ do

if p1|(a1 ⋅ (p1 + b1) – 1) then
p2 = a1 ⋅(p1+b1)–1

p1
;

b2 = p2 ;
a2 = b1 + p1;
m1 = 2 ⋅ a1 ⋅ a2;
m2 = 2 ⋅ b1 ⋅ b2;

else
p1+ = 1;

end
end
return

With Algorithm 1, we can get the value of pairs (m1,m2). Let’s make some examples to
illustrate this.

Example 1. Letm = 2a1b1 = 2 ⋅ 3 ⋅ 4, p1 = a1 ⋅ b1 – 1 = 11, thenm1 = 2 ⋅ 3 ⋅ (4 + 11) = 90,m2 =
2 ⋅ 4 ⋅ a1⋅(p1+b1)–1

p1
= 32. Let p1 = 1 also can give a pair ofm = 24, b2 = a1⋅(p1+b1)–1

p1
= 7,m1 = 30,

m2 = 112.

Example 2. Letm = 2a1b1 = 2 ⋅ 3 ⋅ 5, p1 = 1, b2 = 17, thenm1 = 36,m2 = 170. Case p = 2 can
also give a pair (m1,m2) withm = 30,m1 = 42,m2 = 100. Let p1 = 7,m1 = 72,m2 = 50. If p = 14,
m1 = 113,m2 = 40.

Example 3. Letm = 2a1b1 = 2 ⋅ 5 ⋅ 4, p = 1, thenm1 = 50,m2 = 192. Let p1 = 19, thenm1 =
230,m2 = 48.

Now, we need to determine the q that makesm = a1b1,m1|q–1,m2|q+1,m ∤ q–1,m ∤ q+1.
Consider that gcd(m1,m2) = 2, then there exists two integers l0, k0 fulfilling l0m1 + 2 = k0m2.
Set q =m1m2t + l0m1 + 1, or q =m1m2t + k0m2 – 1 and it is easy to verify thatm1|q – 1,m2|q +
1. Table 3 gives some examples of new quantumMDS codes, with the length n = q2–1

m , but
m ∤ q – 1,m ∤ q + 1.

Remark 5. The integer 2 plays a special role throughout the entire paper, including gcd(m1,
m2) = 2,m = m1⋅m2

m1+m2–2
. The reason for doing this is to consider the existence of q, which only

exists when gcd(m1,m2) = 1 or 2, and satisfiesm1|q – 1,m2|q + 1 in the meanwhile.
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Table 3. New QuantumMDS code with n = q2–1
m ,m ∤ q – 1,m ∤ q + 1.

(m1,m2) q m Distance d
(30,112) 449 24 228
(90,32) 449 24 229
(18,32) 127 12 66
(42,16) 127 12 66
(50,32) 449 20 233
(30,56) 449 20 232
(110,24) 769 20 391
(40,114) 1481 30 752

https://doi.org/10.1371/journal.pone.0325027.t003

5 Conclusion
In this paper, we have conducted a investigation of the case where the length is given by n =
q2–1
m , under the conditions thatm ∤ q–1,m ∤ q+1,m = m1m2

m1+m2–2
, wherem1andm2 are both even,

and gcd(m1,m2) = 2. We have derived the necessary and sufficient conditions for the exis-
tence of such pairs (m1,m2). Additionally, for a specified value ofm, we design Algorithms 1
and 2 to determine the pair (m1,m2). With these insights, it is now a straightforward task to
construct a new class of quantumMDS codes.

Despite the numerous methods have been proposed to construct quantumMDS codes,
in fact, the code length n is still sparse for q ≤ n ≤ q2. In most cases, codes have not been con-
structed because the majority of the constructed results are concentrated in the case of n =
q2–1
m . Our future work is to develop a general method that is not limited to the case of length

n = q2–1
m .
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